Features and Feature Models:
A Survey of Variation Representations

Eric Walkingshaw
School of EECS
Oregon State University
walkiner @eecs.oregonstate.edu

Abstract

This survey explores and organizes existing work on
the long-term management of software that varies in
multiple dimensions. It focuses, in particular, on the
representation of features in software product lines,
and on capturing relationships between features in
feature models.

1 Introduction

Managing variation in code and other artifacts is
a fundamental problem in software engineering that
manifests itself in many different ways throughout
the field. This leads to many branches of research
and a broad assortment of tools for managing dif-
ferent types of variation, each with their own ways
of representing the parts of a system that vary and
how those parts can be combined.

While the diversity of variation representations
is not inherently a problem, it would be nice if
advances in one of line of research could be easily
understood and incorporated by others. Addition-
ally, by focusing on domain-specific applications,
researchers may miss insights that can only be
gained by examining the problem from a broader,
more abstract point of view.

Toward a solution to these issues, we have been
developing a general model for representing soft-
ware variation, the choice calculus [11]. Our goals
for the choice calculus are to provide a common
language of discourse and a theoretical foundation
for tools and research on software variation man-
agement, filling a role similar to the lambda calculus

for programming languages or relational database
theory for databases.

While our approach in developing the choice cal-
culus in fundamentally and purposefully top-down,
a knowledge of the research we hope to support
is crucial to our success. This paper will attempt
to organize and explicate one multifaceted branch
of software variation research, specifically, the de-
velopment and maintenance of long-term, multi-
dimensional variations.

1.1 Scope of Work

The scope of this survey is best understood by
comparison with what is omitted. A short-term
variation might represent a temporary exploration
of alternatives by a designer, perhaps to circumvent
a premature commitment. For example, a designer
may not know which data structure to use in a
particular instance, and so provides two alternatives,
one of which will eventually be chosen when the
operations required of the data structure are more
clear.! In contrast, a long-term variation is typically
planned, intended to produce distinct programs, and
must be maintained. For example, multi-platform
software might contain parts that correspond to
only the Windows or only the Unix versions of the
program.

While this work examines multi-dimensional
variation tools, revision control and software config-

I'Short-term variations are currently very poorly supported
by tools, despite evidence that they are needed [31]. Identifying
and addressing gaps in support is another potential benefit of
the top-down approach.

uration management (SCM) systems instead focus
on variation management in a single dimension,
allowing users to easily track and manage varia-
tion over time [12]. These variations are usually
captured as line-based deltas, or patches, which
indicate the minimum number of lines that differ
between two versions of a file [28]. Many SCM sys-
tems actually do provide support for additional di-
mensions of variation (e.g. release number or target
platform) via repository branching operations, but
this is neither their primary focus nor their forte [7],
as evidenced by the organizational rigor needed to
successfully manage multiple repository branches
[33]. Multi-dimensional approaches contrast this by
treating all dimensions of variation equally.

1.2 Software Product Lines

Long-term, multi-dimensional variation manage-
ment is closely related to the idea of software prod-
uct lines (SPLs) (also called product families) [27].
Very generally, a software product line is a collec-
tion of related programs based on a common soft-
ware platform or generated from a common set of
resources. The concept of product lines originated
in manufacturing to minimize the development and
production costs of a range of similar products—
the classic example is car manufacturers who design
many different car models around a common set of
components (e.g. a small set of different chassis and
engines), and allow further customization for indi-
vidual customers through feature options (e.g. trans-
mission type, air conditioning, power windows).
The first to apply this idea to software engineering
appears to have been Parnas [26]. Since then, it has
become by far the dominant paradigm in variation
management.

Essentially all current research in tool-supported
multi-dimensional variation management is directed
toward the creation and maintenance of SPLs, but
this research is only a small part of SPL research on
the whole. Much research focuses on the methodol-
ogy and organizational aspects of SPL engineering
[9, 24, 27]. While this work can inform the de-
velopment of tools which support these processes,
it is of little interest in a survey of variation rep-
resentations. It is also worth noting that most

work seems to assume that SPL-oriented variation
management and SCM are fundamentally different
problems, while we have assumed in developing
the choice calculus that they are two views of the
same problem. The relationship of SCM to SPL
development is made explicit by Krueger in [22].

Because a SPL is such a high-level idea, we
can mostly ignore it while discussing lower-level
variation representations. Much of the discussion,
however, will revolve around a few key SPL con-
cepts. Most importantly, a feature is some piece
of functionality which can be included or not in a
program, and a feature model is a way of describing
the relationships and constraints that exist between
features. Together these form two mostly inde-
pendent levels of variation representation in a SPL.
The lower-level feature representation captures the
actual code (or other data) that constitutes a feature,
and how it is added to the program to incorporate the
feature. The higher-level feature model describes
relationships between features, such as alternative
features which form a dimension, and describes
which lists of features can be selected to produce
valid programs. Theoretically, one could choose a
feature representation and feature model separately
and combine them to form a complete variation
representation. Finally, a base program is just a
program containing no features, which features can
then be added to.

In the rest of this paper we will examine several
different ways of representing both features and
feature models. In Sections 2, 3, and 4 we will look
at compositional feature representations, where fea-
tures are defined and exist separately from the base
program. In Section 5 we will see annotative ap-
proaches, where features are embedded within the
context of the base program. In Section 6 we look
at representations of feature models, and wrap up
with some conclusions in Section 7.

2 Compositional Feature Representations

Compositional approaches to feature representa-
tion are related to many traditional ideals of soft-
ware reuse. In particular, compositional methods
emphasize the modularization of features—that the

code and other data comprising a feature should be
self-contained and separate from code describing
other features and the base program. This leads
to a highly distributed variation model where the
variational structure is represented by one or more
base programs, a set of discrete features, and some
kind of feature model for describing constraints on
which features can be applied to the base program
and in what order.

In general, compositional approaches sacrifice
variational granularity, flexibility, and generality for
higher degrees of maintainability and comprehensi-
bility. As we will see in the next two sections, com-
positional approaches typically cannot represent ar-
bitrarily fine-grained variation, nor can they repre-
sent variation in arbitrary places in the program.
Additionally, working tools are tied to specific pro-
gramming languages, or require an extension for
working with each new type of artifact. Annotative
approaches do not have these limitations, but they
are accepted in compositional approaches because
it is thought that modularizing features makes them
easier to maintain and understand,” due to a separa-
tion of concerns [32].

The goal of modularization towards increased
maintainability and comprehensibility is closely re-
lated to the idea of stepwise refinement [34], in
which a program is incrementally built by applying
refinements that correspond to distinct development
phases or design decisions. Some of the tools
described in this section primarily aim to support
stepwise refinement and have merely been adapted
for use in SPL development, while others have been
designed with both uses in mind.

In the next two sections we will examine two
different ways of expressing and composing fea-
tures. The first relies on concepts of inheritance and
mixins from object-oriented programming, while
the second uses strategies from aspect-oriented pro-
gramming. While “features” are a general concept
that apply in any SPL system, the emphasis on
expressing and isolating features has led to the term
feature-oriented programming (FOP) to describe

2Though removing code from context can also decrease
understandability. See Section 5.

compositional approaches to variation management.
Researchers in aspect-oriented methods constrain
this term even further, using it to refer exclusively
to inheritance-based, object-oriented feature repre-
sentations. Since this is often convenient, we will
adopt this usage as well.

3 Feature-Oriented Programming

The goals of compositional feature representa-
tions, to separate and encapsulate features, are very
similar to the goals of object-oriented programming
(OOP), so it should perhaps not be surprising to see
object-oriented techniques prevalent in the compo-
sitional approach. In fact, the notion of inheritance,
fundamental to OOP, can be viewed as a limited
variation mechanism in itself. Inheritance allows
a subclass to add data and functionality to a base
class, and to change the existing behavior of a base
class through method overriding. Subclasses can
vary the same base class in different ways, and
clients can then choose which subclass (variant) to
instantiate and use.

There are many limitations of a purely
inheritance-based variation model. First, a
feature may span multiple subclasses, making it
difficult to ensure that all of the right subclasses are
instantiated to incorporate a particular feature—this
limitation is easily handled by the tools described
below. More fundamental limitations also exist,
however, such as the inability to choose a subset
of classes in a particular class lineage in order to
include some features and exclude others. These
problems can be partially solved with design
patterns (e.g. the decorator pattern, for the above
example) [13], but this requires foresight and
cannot be applied to existing, unmodifiable code.
As a more general solution, traditional inheritance
is often supplemented in FOP with mixins [8]. A
mixin is essentially a subclass with no explicit
superclass. When applied to an existing class, a
mixin’s functionality is transparently incorporated
into the original class.

3.1 GenVoca

The GenVoca feature-oriented design methodol-
ogy [5] relies heavily on subclasses and mixins,

referring to them collectively as “refinements”. In
GenVoca, a base program is a set of classes, while
a feature is a set containing new classes to add to
the program and refinements to apply to existing
classes. GenVoca calls base programs and features,
“constants” and “functions”, respectively.

Constraints on the ordering of feature application
to a base program are very common in this ap-
proach, and GenVoca provides a simple, declarative
feature algebra for specifying these constraints and
defining valid combinations of features; we will
come back to this algebra in Section 6.2.

The code-level details of applying a feature to a
base program (e.g. determining which refinements
to apply to which classes) are left undefined, os-
tensibly to be flexible with regard to the object
language. This exemplifies a frequent trade-off in
generality that FOP systems make: a fully specified
representation ties a model to a particular type of
artifact, while bids for generality leave gaps in the
model. GenVoca’s strategy of defining everything
but one artifact-specific operation is a typical solu-
tion, reminiscent of the framework model.

3.2 Multi-Dimensional Separation of Concerns

An implementation of GenVoca for Java pro-
grams has been built with Hyper/J [25], which in
turn is a Java realization of Tarr et al.’s Multi-
Dimensional Separation of Concerns (MSC) [32].
MSC has been hugely influential for explicating
the problems that FOP is meant to address and
establishing a terminology and set of goals for FOP
researchers.

The variation model developed in MSC is very
general and much further removed from any partic-
ular object language than GenVoca. MSC advocates
an intentionally coarse variation granularity and the
use of standard modules (as defined by the object
language, e.g. packages and classes in Java), with-
out additional language extensions. Modules can be
grouped together into a “hyperslice”, which isolates
a single concern or feature. A hyperslice is so
named because it “‘slices” across potentially many
modules in the program; that is, a single module
in the composite program can be expected to exist
in many hyperslices. Sets of hyperslices can be

grouped into dimensions. And finally, an object
language-specific composition operation must be
provided to compose hyperslices.

As an example of how this model actually works,
in Java a hyperslice might be realized by a directory
tree full of class files. Many of the class names
in each hyperslice will be duplicated. If a class
named C in one hyperslice contains method a, and a
corresponding class also named C in another hyper-
slice contains method b, when we compose the two
hyperslices, we would expect the resulting class C
to contain both methods a and b.

3.3 AHEAD

The last inheritance-based system we will look at
is AHEAD [6], which is both the direct successor
of GenVoca and a realization of many of the goals
established in MSC. AHEAD represents the state-
of-the-art in FOP systems. The primary advances
in AHEAD over GenVoca are increased artifact
structure leading to clearer composition semantics
and better abstraction, and a generalization of re-
finement to other, potentially non-code artifacts.

In GenVoca, a constant corresponded to a set
of classes and a function to a set of classes and
refinements. In AHEAD these components have
more structure. A constant is a base artifact (e.g.
a class in an OOP language) or a list of constants;
a function is a refinement or a list of constants
and/or refinements. In other words, constants and
functions are trees. Applying a function to a con-
stant is then just a tree merge operation, where
corresponding elements are composed. Composi-
tion of internal nodes, which are represented by
directories in the implementation, is implemented
by composing corresponding children and adding
the union of all remaining children as children of
the new composite node. When composing two
leaves, one should be a refinement and the other a
constant; the refinement is then simply applied to
the constant.

AHEAD also generalizes refinement to new ar-
tifact types, but this is not very ground-breaking
since it still requires a plug-in to implement mixin-
like functionality for every artifact type it intends
to support. Still, simply supporting multiple artifact

types in an inheritance-based feature representation
appears to be unique.

4 Aspect-Oriented Programming

The primary goals of the compositional approach
to feature representation are to separate and localize
features from the rest of the program, but FOP
approaches often struggle with both. Separating
a feature from the surrounding program is some-
times difficult because of the coarseness of varia-
tion mechanisms like class refinement with method
overriding. Features often overlap with other fea-
tures and don’t correspond exactly to a set of classes
or methods.

Isolating features into sets of classes and meth-
ods may be possible with refactoring, but we risk
obscuring the natural structure of the code. Alter-
natively, we can simply duplicate common parts in
many feature representations. Duplication seems to
be the more common approach, but it is inefficient
and significantly impairs maintainability. Changes
in a duplicated part of one feature must be prop-
agated to other features, increasing the amount of
work that must be done and increasing the risk of
errors if one duplicate is edited and another is not.

Even if we do successfully separate a feature with
FOP, it may still be poorly localized. A feature may
be spread across many modules, with only minor
changes in each one. A classic example is adding
logging to an application, which may affect nearly
every method but require adding only a single line
to each. In a model like AHEAD, this feature would
lead to the structure of the entire source tree be-
ing duplicated, with each class refinement looking
something like the examples in Figure 1. Notice
that, every time we add a class or method to the
underlying system, we must also add that class or
method to the logging feature. It is also impossible
to apply the logging feature to a different program,
since the feature contains an overwhelming amount
of base program-specific information.

Aspect-oriented programming (AOP) [20] is ded-
icated to concisely representing exactly these kinds
of so-called crosscutting features. An aspect is
in some ways similar to an object in that it can

class Logger {
static void log(String s) {
System.out.println(s);
}
}
refine class Cat {
void purr() {
Logger.log("Cat.purr()");
super.purr();

}

Affection pet () {
Logger.log("Cat.pet ()");
return super.pet();

}

}
refine class Dog {
HospitalBill bite(Child c) {
Logger.log("Dog.bite()");
return super.bite(c);

}

Figure 1: Adding logging with FOP.

have its own state and methods, but aspects are
not directly instantiated or manipulated. Instead,
they rely on hooking into the control-flow of the
underlying (object-oriented) program, usually by
intercepting method calls. This will become clearer
in the following subsections as we examine two Java
language extensions that support AOP.

4.1 Aspect]

Aspect] [19] is almost certainly the most widely
used AOP system and can be regarded as the de-
facto standard for AOP implementations. In As-
pect], an aspect is a stand-alone module, intended
to encapsulate a single, crosscutting feature. Like
an object, an aspect can have data members and
methods—these are essentially local variables and
procedures, respectively, since aspects cannot be
instantiated. Additionally, an aspect can contain
pointcut definitions and advice. A pointcut de-
scribes a set of join points, which are places in the
control flow where new code can be inserted and
executed. Advice specifies code to run at the join
points described by a particular pointcut.

aspect Logger {
void log(String s) {
System.out.println(s);
}
pointcut all() : execution(* *.x(..))
before (String c, String m): all()
&& methodClass (c)
&& methodName (m) {
log(c ++ "." ++ m ++ "()");
}

Figure 2: Adding logging with AOP.

A join point is like a hook into the control flow of
the underlying object-oriented program. They are
points in the execution of a program where an aspect
can insert code (advice). Examples of join points
include method execution, class instantiation, and
member variable referencing.

A pointcut is essentially a predicate over join
points, and the set of join points it describes is
the set of all join points that fulfill the predicate.
A pointcut can be either a primitive pointcut or a
boolean expression of other pointcuts. There are
many primitive pointcuts: some match on the types
involved at a particular join point (e.g. the receiver,
argument, or return types of a method call), while
others match the names of elements at a join point
(e.g. the name of an executed method or accessed
data field). Defining pointcuts in this way is both
very powerful and potentially dangerous. Relying
on the names of methods and data fields forces
programmers to adhere to a set of non-enforceable
conventions or risk breaking pointcut definitions.
Newer versions of Aspect] can instead match on
Java 5 annotations, which are more explicit and
stable than pointcuts. Stable join points provide a
considerably safer and more structured way to insert
advice [18].

Advice can be executed before, after, or around
each join point captured by a particular pointcut—
for example, if the pointcut # intercepts calls to the
Nukes.launch () method, advice may specify that
a security check be performed on the caller before
n is executed, and invoke the duckAndCover ()
method on every Person object after.

Figure 2 demonstrates an aspect-oriented
representation of the logging feature discussed
above. The statement beginning with the keyword
pointcut introduces a new pointcut named all
that matches all method invocations—execution
is a primitive pointcut operator provided by Aspect]
that takes a pattern and uses it to match method
signatures. The block beginning with the before
keyword is advice to be executed before the
pointcut provided to the right of the colon. The
all pointcut matches all method invocations and
the targetClass and methodName pointcuts
(defined elsewhere) match all join points, and
bind their argument pointers to the class name and
method name of the invoked method, respectively.

When applied to a base program, the AOP feature
in Figure 2 and the FOP feature in Figure 1 produce
equivalent programs, but the AOP version encapsu-
lates the feature much better. It is much easier to
maintain, since changes to the base program do not
require changes to the feature representation, and it
can even be applied to other base programs.

Aspect] is not designed with SPLs or variation
management in mind, but rather to support mod-
ularization and stepwise refinement. In particular,
aspects are simply included in a system; there
is no notion of aspect selection or relationships
between aspects (other than application ordering
dependencies). This is not a fundamental limitation
of aspects, however. As our little example suggests
and as multiple researchers have observed [2, 23],
AOP and FOP are very complimentary—often the
weaknesses of one approach correspond to strengths
of the other. Thus, it would be very beneficial for
variation management systems to incorporate both.
Apel et al. have begun work on this by adding
aspects to traditional feature models in [2]. Next we
will see a somewhat more radical approach, where
mixin and aspect language constructs are merged.

4.2 Caesar

The goal of the Caesar programming language
[23], an extension to Java, is to combine and im-
prove on the strengths of FOP and AOP to provide
language-level support for variability, feature and
refinement modularity, and SPL development.

Caesar classes, called crosscutting layers, are
generalized to include aspect-oriented features
(pointcuts and advice) as well as several other ex-
perimental extensions to the class metaphor. With
both FOP and AOP features available, users could
simply pick the metaphor that works better for a
particular feature, but the designers claim that it
offers significantly more than just the sum of these
parts. As an example, recall that in Section 4.1
we noted that aspect member variables and methods
correspond to variables and procedures in a proce-
dural language—that is, in Java parlance, they are
implicitly static. Thus, if one wants to refactor
an instance variable out of a class and into an aspect,
the aspect must manually maintain a mapping from
object instances to values of the original instance
variable type. This is cumbersome, error-prone and
not very object-oriented. The alternative is to leave
the instance variable in the original class, but if it
is specific to the feature described by the aspect, we
have violated our goal of separating concerns. Since
Caesar combines aspects and mixins, a layer can
both describe aspect-oriented functionality while
also mixing new state and methods into existing
classes, encapsulating the feature more cleanly than
either FOP or AOP could alone.

Caesar expresses variability through a notion of
deployment. A layer can be initially deployed, or
can be deployed dynamically at run time simply
by instantiating the layer and applying a special
deploy operation to it. When layers correspond
to features, deployment corresponds to feature se-
lection. Since layer deployment is managed within
the Caesar language itself, arbitrary relationships
can be described between features. For example,
one could represent a dimension as a list of layer
instances; one instance is selected from the list
and then deployed. Caesar’s deployment scheme is
interesting for a few reasons: First, it provides a way
to selectively apply aspects, something which is not
supported by AOP tools. Second, it appears to be
unique among feature-oriented tools in supporting
and promoting dynamic feature selection.

Caesar provides many other esoteric language
features, such as “bidirectional interfaces” and “vir-

tual classes”, mostly directed toward isolating fea-
tures more completely from the base program.
These can lead to improvements in feature reuse, but
are excluded here to retain some sense of brevity.

While Caesar is perhaps the most complex varia-
tion representation we have seen yet, there are still
things it cannot do. In the next section we reign
in the complexity, lose a little bit of modularity,
and present a class of simple but highly expressive
feature representations.

5 Annotative Feature Representations

Annotative approaches represent features by
marking corresponding sections of the source code
(or other data) in some way. Unlike compositional
representations, annotations are often completely
independent of the object language, and can there-
fore capture variation in a much broader range of
artifacts. They are also usually capable of very
fine-grained variation, and of capturing variation
distributed arbitrarily throughout the artifact or even
across artifact types. In other words, the repre-
sentational design goals of annotative approaches
are almost completely opposite of those for com-
positional representations. In general, annotative
representations exalt granularity, flexibility and gen-
erality, and are willing to sacrifice modularity and
maintainability to maximize them.

Comparing the comprehensibility of both types
of representation is a bit more subtle. In general, as
the complexity of a variational structure increases,
we expect the degradation of comprehensibility
to be slower with compositional representations.
Thanks to a separation of concerns, compositional
approaches make it easier to understand complex
structures by simply ignoring the parts we aren’t
interested in. However, for simpler structures, with
fewer dimensions of variation and less overlapping
concerns, we might expect annotative approaches
to be easier to understand, if the annotations them-
selves are not very intrusive. While compositional
approaches require switching between features and
the base program to understand how they will in-
teract, annotative approaches allow users to view
features in context, with other features and the base

program.

Kim et al. argue that annotative approaches are
preferable when refactoring an existing program to
extract a set of features [21]—they show that the
number of features, and particularly the number
of nested features, is relatively small for programs
designed without features and SPLs in mind. How-
ever, they also concede that projects designed with
variation in mind from the start are likely to be
considerably more complex.

The following tools are just a few of many an-
notative approaches. Each is representative of a
potentially larger class of related tools. The first is a
purely annotation-based tool, the second relies on
both user-interface and language-specific support,
and the last attempts to combine annotations with
feature composition to get the benefits of each.

5.1 C Preprocessor

One of the most straightforward, and certainly the
most widely used [10], annotation-based variation
tool is the conditional compilation subset of the C
Preprocessor language [14].

Despite the name, CPP is almost completely
indifferent to the type of underlying artifact—it
must simply be a text file, and not contain text
that resembles CPP syntax. Although CPP can do
other things, like macro definition and expansion,
we are interested only in its ability to condition-
ally include parts of files. CPP provides a set of
directives for this purpose, which combine to form
conditional statements in the obvious way: #if,
#ifdef, #ifndef, #else, #elif, and #endif.
Each directive must occur on a line by itself, and
text between directives form the then- and else-
blocks of the conditional structures. The #if and
#elif directives can accept arbitrary C-style inte-
ger expressions as their conditions—if an expres-
sion evaluates to a non-zero value, the correspond-
ing block of text is included; if it evaluates to zero
the block is not included and either the next #elif
is checked, a corresponding else-block is included,
or nothing is included, depending on the conditional
structure. The #ifdef and #ifndef directives
accept a macro as an argument. This macro can
either be “defined” or “undefined”. A defined macro

class Buffer {
int buf;
#ifdef RESTORE
int back;
#endif
void set (int b) {
#ifdef LOG
Logger. log (buf) ;
#endif
#ifdef RESTORE
back = buf;
#endif
buf = b;
}
#ifdef RESTORE
void restore() {
#ifdef LOG
Logger.log (buf) ;
#endif
buf = back;

}
#endif

}
#ifdef LOG
class Logger {
static void log(int i) {...}

}
#endif

Figure 3: Buffer with optional logging and restore
features in CPP.

causes the block of an #1i fdef to be included, while
an undefined macro causes the block of an #i fndef
to be included. When the preprocessor is run on a
given file, the user specifies a set of macros which
will be considered defined.

The limitation that directives must occur on a
line by themselves limits CPP’s granularity some-
what. For C-like languages, CPP provides very fine-
grained variability since practically any syntactic
element can be isolated on a line with directives
added above and below. For other types of artifacts,
however, this could be an issue.

The #ifdef directive provides a very straight-
forward way to capture and conditionally include
features in CPP. We can simply use a different
macro name for each feature and wrap all code
corresponding to a particular feature in appropri-
ate #ifdef statements. The example in Figure 3

demonstrates this approach. In this example, a class
representing a generic buffer contains two optional
features—one which logs the value of the buffer
each time it is changed, and one that provides a
limited undo capability, to restore the previous value
of the buffer.

Clearly, the notational overhead of CPP’s syntax
completely overwhelms the code we are actually
interested in, and even this simple example is nearly
incomprehensible. This is just one of a few well-
known and long-recognized problems with CPP,
despite its continued use [30].

Other issues with CPP mostly revolve around its
lack of structure. We have used macros to represent
features, but this is obviously not captured explicitly
in the CPP code anywhere. Nor is there any rep-
resentation of relationships between these features.
We must also consider that some conditional expres-
sions will not just depend on a single macro, but
on arbitrary integer expressions containing macros.
All of this makes documentation of how macros
are used and how they are related essential for
understanding larger programs. Unfortunately, such
documentation rarely exists.

Finally, an issue that CPP shares with any truly
generic annotative approach is that it is difficult to
make any static guarantees about how an artifact is
varied. For example, it would be nice to definitively
say that all variations of an artifact are syntactically
valid. With no constraints on where and how
variation can occur, this is not possible without
examining every variation or performing some other
complex analysis.

All of these issues make CPP difficult to under-
stand and error-prone as a tool for variation man-
agement. The tool described next solves many of
these issues by providing a less intrusive annotation
mechanism, a simple feature representation, and
tying variation to nodes in an AST.

5.2 CIDE

The Colored IDE, or CIDE [17], is a graphical
tool for creating and managing features. Users can
edit code in CIDE, as in a regular IDE, but can also
create features, assign code to features, select and
deselect features, and export code corresponding to

Legend: [BUFFER| [RESTORE| (LOG |

1 |class Buffer {

2 int buf;

3

4

5 void set (int b) {
6 Logger.log (buf) ,-|
7 back = buf;|

8 buf = b;

9 }

10

11 void restore() {,/
12 | Logger.log (buf) ;|
13 buf = back;

14 }

15 | }

16

17 | class Logger ({

18 static wvoid

19 log(int i)

20 {..}

21 | }

Figure 4: Buffer with optional logging and restore
features in CIDE (image from [21]).

the current feature selection. Feature annotations
are shown in different colors—each feature is as-
signed a color, and code corresponding to a feature
is highlighted in its color. Figure 4 demonstrates
this with our logged and restorable buffer example.

In addition to being significantly easier to read
and understand than the CPP representation, CIDE
provides interactions which further support compre-
hensibility. If a feature is deselected its code is
removed from the display (leaving a small marker
in its place). This provides a virtual separation
of concerns—although the code corresponding to a
feature is not modularized, it can still be removed
from consideration when trying to understand other
parts of the program. CIDE also provides naviga-
tion operations for moving between pieces of code
associated with a common feature.

CIDE’s annotation model also differs from CPP’s
in that it constrains feature assignment to nodes in
the AST of the underlying language. This avoids
some of the structural issues of CPP and other

generic annotated approaches, but does so at the
cost of generality—CIDE must be able to parse
the underlying language in order to annotate it.
To annotate a node with a feature, the user high-
lights the corresponding code in the interface (the
selection snaps to correspond with an AST node,
accordingly), then selects the feature to assign it
to. Any element in the AST can be annotated,
providing very fine-grained variation.

Features in CIDE are either present or not, and
no mechanism is provided for describing additional
relationships between features. A more advanced
feature model could easily be incorporated, how-
ever, perhaps incorporating user interface elements
from the GUI translations of feature models in
Section 6.3. Some work has been done on deriving
feature models from CIDE annotations [21].

5.3 XVCL

The XML-based Variant Configuration Language
(XVCL) [35, 36] is a hybrid annotative and com-
positional variation management system. It aims
for the generality, flexibility and fine-grained gran-
ularity of annotative approaches, but also supports
true separation of concerns like compositional ap-
proaches. XVCL provides several commands, in
the form of XML tags, which can be added to
arbitrary artifacts. It is unique in providing both a
mechanism for in-place variation and mechanisms
for distributed variations.

In-place variation is specified by the <select>
command, which contains an arbitrary number of
<option> blocks and an optional <otherwise>
block. Option and otherwise blocks can contain
arbitrary text. Each selection is associated with a
named variable, and each option is associated with
a potential value of that variable. When a selec-
tion is encountered, the value of the corresponding
variable is used to determine which option’s code is
included. If the value doesn’t match any options,
the code in the otherwise block is included, if
present. This representation of in-place variation
is somewhere between CPP and the choice calcu-
lus. Selections, variables, and values correspond
roughly to choices, dimension names, and tags, but
unlike in the choice calculus, the completeness of

10

selections is not enforced. Also, as in CPP, the
values of variables can change at selection time, i.e.
there are XVCL commands which change the value
of variables. In XVCL, in-place variation is very
flexible, but also potentially error prone.

Distributed variation is provided through the
<break> and <insert> commands, which are
very similar to AOP join points and advice, respec-
tively. A break is just a named point at which
code can be inserted. Since breaks can be added
anywhere, they are more flexible than join points
which are limited to well-defined places in the
control flow. But adding a break also requires
modifying the source code, whereas code can be
added to join points in an existing program without
modification. An insert is essentially identical to
advice, specifying a block of code to insert before,
after, or in place of a break.

XVCL also provides mechanisms for declaring
and copying named chunks of code to facilitate
reuse.

6 Feature Models

Until now, we have focused almost exclusively
on how representations capture features, but another
important part of variation management and SPL
development is understanding how these features
are related. Which features form a dimension of
variation? Which combinations of features produce
valid or desirable programs? Are there constraints
on the order of feature application? In some cases
this information is encoded directly in the feature
representation; for example, the choice calculus
provides explicit dimension declarations. In other
cases, this information can be at least partially
derived by analyzing the feature representation. The
most common and general solution, however, is to
supplement the feature representation with a higher
level description of feature relationships.

Feature models describe relationships between
features and act as constraints on the set of all
possible feature combinations. Given n features
and no relationships between them, each feature
can either be included or not, giving a total of 2"
variations. If we consider all possible orderings of

transmission interior

automatic stereo

manual

cd

cassette

Figure 5: Partial feature diagram for a car.

all possible combinations of features, the number of
variations grows substantially larger. Fortunately,
the number of valid or desirable variations is usually
many orders of magnitude smaller. Feature models
can help isolate these interesting cases and discard
the invalid and uninteresting ones.

In this section we look at a representative sample
of feature models. As an aside, note that in the lit-
erature, the term ‘“feature model” sometimes refers
only to the hierarchical feature models described
in Section 6.1. We use the term more broadly
to mean any model or language which describes
relationships between features.

6.1 Hierarchical Models and Feature Diagrams

Many feature representations lead naturally to hi-
erarchically structured feature dependencies. Com-
positional approaches based on stepwise refine-
ment, in particular, are strongly hierarchical by
design [6]. Users of these systems often rely on
a variation of the hierarchical feature models and
diagrams described in this subsection. Even when
these models are not directly integrated into the
system, they are used as design documents to help
develop and understand feature-oriented software.

Hierarchical feature models are most naturally
encoded as feature diagrams [16]. Feature diagrams
are a tree-based visual notation for describing rela-
tions between features. An example feature diagram
is given in Figure 5, describing the relationship of a
few features from a feature-oriented design of a car.
The following relations are encoded in this diagram:

e Children are dependant on their parents. A
child cannot be included unless its parent is

11

also included. For example, we cannot include
the “cd” feature, unless the ““stereo” feature is
also included. The root feature is not depen-
dent on any feature.

Edges connected by horizontal lines establish
alternatives. Only edges from a common par-
ent can be connected as alternatives, and ex-
actly one descendant from the set of alternative
edges must be included, assuming the parent
feature is also included. Thus, if the “trans-
mission” feature is included in the example,
we must also include either the “manual” or
“automatic” feature.

Children with solid dots are mandatory—if the
parent of a mandatory feature is included, it
must also be included (except as overridden
by the alternative relationship, which takes
precedence). Thus, an “interior” must have
both a (steering-) “wheel” and “seats”.

Children with hollow dots are instead op-
tional—if the parent of an optional feature is
included, the feature may be included, or not.
Features included in an alternative relationship
cannot be marked optional. In the example, the
“stereo” feature may optionally be included if
the “interior” feature is included.

The original definition of feature diagrams in [16]
also allows arbitrary supplemental relationships,
written in plain text. For example, we might specify
that if we choose an automatic transmission, then
we must also include a stereo, a relationship that
cannot be captured in this notation.

The notation above represents the common
core of many related feature diagram notations.
Schobbens et al. describe many extensions to fea-
ture diagrams that have been developed over the
years, provide a generalized (but less usable) repre-
sentation that subsumes most of these, and provide a
formal semantics for the generalized notation [29].

6.2 Feature Algebras

While users of compositional variation systems
often rely on feature diagrams to design and un-

derstand their code, the systems themselves instead
rely on much simpler feature algebras.

The feature algebra used in GenVoca is extremely
simple—refinements are represented as functions,
programs as constants, and every variation of inter-
est is explicitly specified by successively applying
functions to constants [5].

The algebra used by AHEAD is only slightly
more advanced. In AHEAD, constants and refine-
ments are recursively defined as lists of smaller
constants and refinements, as described in Sec-
tion 3.3. Function composition is then defined
as a component-wise composition of elements—
composing refinements like function composition,
and taking the union of constants. From here the
user proceeds as in GenVoca, providing explicit
definitions of every desired variant [6]. Apel et
al. provide a fundamentally similar, but generalized
model that can accommodate other feature repre-
sentations like aspects [3].

The feature algebra created by Hofner et al. [15]
is a much more theoretically intensive, and funda-
mentally more general approach, more in the spirit
of the choice calculus than other representations
seen so far. This algebra is based on the concept
of idempotent semirings, which is a fancy way of
saying the formalism operates over a set of values,
contains two operations for composing values, and
two special values, all of which obey a certain set of
laws. In the context of combining features to form
product families, the two operations correspond to
a choice between two features/product lines (“or”
and the co-occurrence of two features/product lines

“and”).

The authors demonstrate the algebra to be very
powerful and general compared to other feature
models, and to better support theoretical results
related to correctness and reusability. Compared
to the choice calculus, the feature algebra is quite
abstract—containing no mechanism for represent-
ing code-level variation, and not tied to any par-
ticular feature structure (the choice calculus is a
fundamentally dimension-oriented approach).

12

car = transmission interior
interior = wheel seats [stereo]
transmission := manual | automatic
stereo = cd | cassette

Figure 6: Car feature diagram rendered as a grammar.

car: transmission interior

interior: wheel seats ™ stereo
transmission: @ manual O automatic

stereo: Ocd @ cassette

Figure 7: Car feature diagram rendered as a GUL

6.3 Other Feature Models

There are many other potential feature model
representations. Batory provides straightforward
transformations of feature diagrams into many other
representations, including various types of gram-
mars, propositional formulas, and even as a simple
GUI representation [4]. Examples of a couple of
these transformations on the car feature model from
Figure 5 are shown in Figures 6 and 7.

A class of restricted grammars called iterative
tree grammars, of which the example in Figure 6
is an instance, have the same expressiveness as
feature diagrams. Internal nodes in the feature
diagram appear as non-terminals on the left with
their children on the right. And-branching (the
default type of branching, with mandatory children)
is equivalent to juxtaposition on the right, while
alternative-branching is equivalent to disjunction.
Optional features are indicated in square brackets,
and are correspondingly optional in the grammar.

In the GUI representation, alternatives are rep-
resented as groups of radio buttons while optional
features have check-boxes. These types of simple
GUIs for feature selection can be automatically
generated from a feature model [1]. This could be
useful in an extension to CIDE, which is very good
at representing features, but provides essentially no
higher-level feature model.

7 Conclusions

Representations of software variation can be
studied and categorized along many dimensions.
We can separate the problem space by recogniz-
ing distinctions between long-term variations and
short-term, multi-dimensional variations and single-
dimensional ones. In this work, we focus on just
one of the quadrants created by this partitioning, but
our eventual goal is to support all four. This will
require exploring in more depth the existing work in
these other three areas. Previously, we have devoted
some effort to understanding the quadrant of long-
term, single-dimension variations, the area covered
by revision control and SCM. In future work we will
have to see what, if any, work exists in the context
of short-term variations.

We can also separate the solution space along
several axes. For the area of the problem space
explored here, we have observed that there are two
levels involved in representing features. The lower
level describes which code corresponds to what
features, and how to put it all together. The higher
level describes relationships between features and
how these features combine to form variations. The
lower level can be further separated into composi-
tional approaches vs. annotative approaches, which
have distinctly different goals and thus capture very
different notions of features. And, finally, com-
positional approaches can be separated into FOP-
and AOP-based approaches, whose strengths are
largely complementary and which recent research is
beginning to combine to great effect.

In developing the choice calculus and its associ-
ated theory, it will be useful to keep these categories
in mind. They are a means of abstraction, helping
us to understand the scope of the problem, while
freeing us from continually descending into the
details of particular representations.

References

[1] M. Antkiewicz and K. Czarnecki. FeaturePlugin:
Feature Modeling Plug-In for Eclipse. In OOPSLA
Work. on Eclipse Technology eXchange, pages 67—
72. ACM Press, 2004.

[2] S. Apel, T. Leich, and G. Saake. Aspectual feature

13

modules. IEEE Trans. on Software Engineering,
34(2):162-180, 2008.

S. Apel, C. Lengauer, B. Moller, and C. Kistner.
An Algebra for Features and Feature Composition.
In Int. Conf. on Algebraic Methodology and Soft-
ware Technology, volume 5140 of LNCS, pages 36—
50. Springer-Verlang, 2008.

D. Batory. Feature Models, Grammars, and
Propositional Formulas. In Int. Software Product
Line Conf., volume 3714 of LNCS, pages 7-20.
Springer-Verlang, 2005.

D. Batory and S. O’Malley. The Design and
Implementation of Hierarchical Software Systems
with Reusable Components. ACM Trans. on
Software Engineering and Methodology, 1(4):355-
398, 1992.

D. Batory, J. N. Sarvela, and A. Rauschmayer.
Scaling Step-Wise Refinement. [EEE Trans. on
Software Engineering, 30(6):355-371, 2004.

J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela,
H. Obbink, and K. Pohl. Variability Issues in
Software Product Lines. In Int. Workshop on Soft-
ware Product-Family Engineering, volume 2290 of
LNCS, pages 13-21. Springer-Verlang, 2001.

G. Bracha and W. Cook. Mixin-Based Inheritance.
In ACM SIGPLAN Int. Conf. on Object-Oriented
Programming, Systems, Languages, and Applica-
tions, pages 303-311, 1990.

G. Chastek, P. Donohoe, and J. McGregor. For-
mulation of a Production Strategy for a Software
Product Line. Technical Report CMU/SEI-2009-
TN-025, Software Engineering Institute, Carnegie
Mellon University, Aug. 2009.

M. D. Emst, G. J. Badros, and D. Notkin. An
Empirical Analysis of C Preprocessor Use. IEEE
Trans. on Software Engineering, 28(12):1146—
1170, 2002.

M. Erwig and E. Walkingshaw. The Choice
Calculus: A Representation for Software Varia-
tion to Support a Variation Design Theory, 2009.
Draft Paper. http://eecs.oregonstate.
edu/~erwig/papers/cc—draft.pdf.

J. Estublier, D. Leblang, A. van der Hoek, R. Con-
radi, G. Clemm, W. Tichy, and D. Wiborg-Weber.
Impact of Software Engineering Research on the
Practice of Software Configuration Management.
ACM Trans. on Software Engineering and Method-
ology, 14(4):383-430, 2005.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.

(3]

(5]

(6]

(7]

[9]

(10]

(11]

(12]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading,
MA, 1995.

GNU Project. The C Preprocessor. Free Soft-
ware Foundation. http://gcc.gnu.org/
onlinedocs/cpp/.

P. Hofner, R. Khedri, and B. Moller. Feature
Algebra. In Int. Symp. on Formal Methods, volume
4085 of LNCS, pages 300-315. Springer-Verlang,
2006.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Re-
port CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, Nov. 1990.

C. Kistner, S. Apel, and M. Kuhlemann. Granular-
ity in Software Product Lines. In /EEE Int. Conf.
on Software Engineering, pages 311-320, 2008.

A. Kellens, K. Mens, J. Brichau, and K. Gybels.
Managing the Evolution of Aspect-Oriented Soft-
ware with Model-Based Pointcuts. In European
Conf. on Object-Oriented Programming, volume
4067 of LNCS, pages 501-525. Springer-Verlang,
2006.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
Aspect]. In European Conf. on Object-Oriented
Programming, volume 2072 of LNCS, pages 327—
354. Springer-Verlang, 2001.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
Oriented Programming. In European Conf. on
Object-Oriented Programming, volume 1241 of
LNCS, pages 220-242. Springer-Verlang, 1997.

C. H. P. Kim, C. Kistner, and D. Batory. On
the Modularity of Feature Interactions. In Int.
Conf. on Generative Programming and Component
Engineering, pages 19-23, 2008.

C. W. Krueger. Variation Management for Soft-
ware Production Lines. In Int. Software Product
Line Conf., volume 2379 of LNCS, pages 37-48.
Springer-Verlang, 2002.

M. Mezini and K. Ostermann. Variability Man-
agement with Feature-Oriented Programming and
Aspects. ACM SIGSOFT Software Engineering
Notes, 29(6):127-136, 2004.

L. M. Northrop and P. C. Clements. A Frame-
work for Software Product Line Practice, Version
5.0. Software Engineering Institute, Carnegie Mel-

14

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

lon University, 2007. http://www.sei.cmu.
edu/productlines/frame_report/.

H. Ossher and P. Tarr. Hyper/J: Multi-Dimensional
Separation of Concerns for Java. In IEEE Int. Conf.
on Software Engineering, pages 734-737, 2000.

D. L. Parnas. On the Design and Development
of Program Families. IEEE Trans. on Software
Engineering, 2(1):1-9, 1976.

K. Pohl, G. Béckle, and F. van der Linden. Software
Product Line Engineering: Foundations, Princi-
ples, and Techniques. Springer-Verlang, Berlin
Heidelberg, 2005.

M. J. Rochkind. The Source Code Control System.
IEEE Trans. on Software Engineering, 1(4):364—
370, 1975.

P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux.
Feature Diagrams: A Survey and a Formal Seman-
tics. In IEEE Int. Requirements Engineering Conf.,
pages 139-148, 2006.

H. Spencer and G. Collyer. #ifdef Considered
Harmful, or Portability Experience With C News.
In Proc. of the USENIX Summer Conf., pages 185—
198, 1992.

P. Szekely, P. Luo, and R. Neches. Facilitating the
Exploration of Interface Design Alternatives: The
HUMANOID Model of Interface Design. In ACM
SIGCHI Conf. on Human Factors in Computing
Systems, pages 507-515, 1992.

P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr.
N Degrees of Separation: Multi-Dimensional Sep-
aration of Concerns. In IEEE Int. Conf. on Software
Engineering, pages 107-119, 1999.

C. Walrad and D. Strom. The Importance of
Branching Models in SCM. Computer, 35(9):31—
38, 2002.

N. Wirth. Program Development by Stepwise
Refinement. Comm. of the ACM, 14(4):221-227,
1971.

H. Zhang and S. Jarzabek. XVCL: A Mechanism
for Handling Variants in Software Product Lines.
Science of Computer Programming, 53(3):381—
407, 2004.

H. Zhang, S. Jarzabek, and S. M. Swe. XVCL
Approach to Separating Concerns in Product Fam-
ily Assets. In Int. Conf. on Generative and
Component-Based Software Engineering, volume
2186 of LNCS, pages 36—47. Springer-Verlang,
2001.

