
Interactive Fault Localization Techniques to Empower
the Debugging Efforts of End-User Programmers

Joseph R. Ruthruff and Margaret M. Burnett

July 23, 2004

Abstract

End users develop more software than any other group of programmers, using
software authoring devices such as e-mail filtering editors, by-demonstration macro
builders, and spreadsheet environments. Despite this, there has been only a little
research on finding ways to help these programmers with the dependability of the
software they create. We have been working to address this problem in several ways,
one of which includes supporting end-user debugging activities through interactive
fault localization techniques. This thesis investigates these fault localization tech-
niques in the realm of end-user programming. We investigate a technique previously
described in the research literature, and two new techniques that are introduced in
this thesis. This thesis also presents the results of two empirical studies to examine
whether fault localization techniques are effective in end-user testing and debug-
ging tasks. The first study compares how well the three techniques isolate the faults
in two end-user programs. The second study examines the impact of two orthogo-
nal factors on the effectiveness of fault localization techniques. Our results reveal
several insights into the contributions such techniques can make to the end-user
debugging process, and highlight key issues of interest to researchers and practi-
tioners who may design and evaluate future fault localization techniques.

2

CHAPTER 1

INTRODUCTION

A quiet revolution is occurring in the world of software. Not too long ago, most

software was developed primarily by professional programmers, a large portion of

whom had reason to be interested in and understand software engineering theory

and practice. Today, however, end-user programmers far outnumber professional

programmers. It is estimated that, by next year, 55 million end users, as compared

to only 2.75 million professional programmers [12], will be creating software appli-

cations such as multimedia simulations, dynamic web pages, e-mail filtering rules,

and spreadsheets. The implications of this trend for the software engineering com-

munity are considerable—requiring that research emerge to provide support to the

millions of end users that create software.

Is adequate support being provided to these end users? The evidence suggests

that it is not. Research [10, 43, 44] has revealed that end-user spreadsheet programs,

the most common type of software developed by end users, often contain an alarm-

ing number of faults. (Following standard terminology [6], in this thesis, afailure

is an incorrect computational result, and afault is the incorrect part of the program

that caused the failure.) Perhaps even more disturbing, spreadsheet developers often

express unwarranted confidence in the quality of these programs [22, 44]. More

generally, Boehm and Basili [11] observe that 40–50% of the software created by

3

end users contains non-trivial faults. These faults can be serious, costing millions

of dollars in some cases (e.g., [30, 43, 52]).

A problem for the software engineering community, then, is to provide end users

with better support for their software development activities. For example, end-

user programmers, like professional programmers, need devices for improving the

quality of their software, such as testing and anomaly detection methodologies to

help them detect failures, andfault localizationdevices to help them find the causes

of failures. Fault localization devices for end-user programmers are the aspect of

interest in this thesis.

Software engineering researchers have long recognized the importance of fault

localization devices, and have invested considerable effort into bringing fault local-

ization devices to professional programmers (e.g., [3, 14, 24, 29, 32, 39, 46, 51, 61]).

However, significant differences exist between professional and end-user software

development, and these differences have ramifications for fault localization devices

by acting as constraints on the types of devices suitable for end users. We have

divided these differences into four classes.

A first class of differences is that, unlike professional programmers, end users

rarely have knowledge of software engineering theory and practice, and are unlikely

to take the time to acquire it. This impacts fault localization devices because, tra-

ditionally, such devices often require at least partial knowledge of such theory to

either properly employ the device or understand its feedback. For example, critical

slicing [24] uses mutation-based testing, a strategy of which end-user programmers

are unlikely to have any prior knowledge. This lack of knowledge could hinder end

users’ ability to understand why critical slicing is producing particular fault local-

ization feedback, which in turn can result in a loss of trust in the feedback. (As [23]

4

explains, understanding is critical to trust, which in turn is critical to users actually

believing a system’s output and acting on it.) Techniques that require knowledge of

software engineering theory and practice may be inherently unsuitable for end-user

programmers.

A second class of differences pertains to the manner of interaction between the

software developer and the programming environment. Most professional program-

ming environments are modal, featuring separate code, compile, link, and execute

modes, and separate devices for tasks such as fault localization. The lack of in-

teraction in these environments has allowed many fault localization techniques to

perform a batch processing of information before displaying feedback (e.g., [3, 32]).

In contrast, end-user programming environments are usually modeless and highly

interactive: users incrementally experiment with their software and see how the re-

sults seem to be working out after every change, using devices such as the automatic

recalculation feature of spreadsheet environments. Techniques that perform batch

processing are therefore at best unsuited, and at worst incompatible, with these types

of interactive environments.

A third class of differences pertains to the amount of information available in

professional versus end-user software development environments for fault localiza-

tion. End users do not usually have suites of organized test cases, so large bases

of information are rarely available to debugging devices such as fault localization

techniques. Complicating the situation is the interactive nature of end-user debug-

ging: end users may observe a failure and start the debugging process early—not

just after some long batch of tests—at which time the system may have very little

information with which to provide feedback. Techniques that require large amounts

of data may be inappropriate.

5

A fourth class of differences pertains to a common assumption in software engi-

neering devices created for professional programmers: that the accuracy of the in-

formation (such as testing information) provided to the devices is reliable. Evidence

[45, 58] shows that end users often make mistakes when performing interactive test-

ing and debugging. (Professional programmers are not perfect either, of course, but

there is reason to hope that their own understanding of testing and their institution’s

testing processes render them less error-prone than end users.) Unfortunately, many

fault localization techniques (e.g., [39]) cannot operate in the presence of such unre-

liable information. Techniques that require a high degree of reliability in data may

be inherently unsuited for end-user programmers.

We have been working to bring fault localization support to end users, in ways

that accommodate the foregoing considerations, as part of ourend-user software

engineeringresearch [17, 19], prototyping our ideas in the spreadsheet paradigm

because it is so widespread in practice. The concept of end-user software engineer-

ing is a holistic approach to the facets of software development in which end users

engage. Its goal is to bring some of the gains from the software engineering com-

munity to end-user programming environment,without requiring training, or even

interest, in traditional software engineering theory or practices.

Earlier work [50, 58] presented a single fault localization technique for end users

that considers the four previously mentioned differences between professional and

end-user programming. However, more research is needed to devise additional tech-

niques, particularly with varying costs and benefits, for end-user programmers. Fur-

ther, this single technique has been the subject of only one preliminary evaluation

[45, 58] to examine interactive, human-centric issues arising in its use in debugging

6

tasks. More empirical investigation is needed to evaluate the effectiveness of this

and other fault localization techniques.

This thesis addresses each of these concerns through three primary contribu-

tions. First, we present three unique fault localization techniques for end users—two

of which are introduced for the first time in this thesis—that are cognizant to the four

previously mentioned differences between professional and end-user programming.

Second, we empirically investigate the effectiveness of these techniques through an

experiment to inform our techniques’ design. Our results suggest the possibility that

there may be multiple, independentfactorsof techniques that impact effectiveness

in the realm of end-user software development. An understanding of these factors

and their role in technique effectiveness is necessary in order for future designers

of end-user fault localization techniques to build upon principled design choices,

instead of ad hoc guesses. Finally, we empirically investigate the importance of

two such factors—information base and mapping—through a second experiment,

and provide data on three specific information bases and three mappings. These

results provide insights into the way that fault localization effectiveness needs to

be measured, so as to inform others’ evaluation work in end-user fault localization

techniques.

The remainder of this thesis is organized as follows: Chapter 2 describes the

end-user software engineering devices with which our fault localization techniques

are integrated; Chapter 3 presents the fault localization technique from our pre-

vious work, introduces two new techniques for end users, and discusses previous

fault localization research that is related to this thesis; Chapter 4 describes the pro-

cedures of our first experiment, as well as outlining and discussing the results of

this experiment; Chapter 5 decomposes our techniques into two individual factors;

7

Chapter 6 describes the procedures of our second experiment, as well as outlining

and discussing the results of this experiment; and Chapter 7 concludes the thesis.

8

CHAPTER 2

BACKGROUND

We believe that software development support can reduce the growing reliability

problem in programs created by end users. Towards this end, our “end-user soft-

ware engineering” strategy [17, 19] consists of a blend of components that come

together seamlessly via interactive visual devices. One of these components is the

“What You See Is What You Test” (WYSIWYT) testing methodology [20, 53, 54].

(Other components include an automated test case generation device [27], a test

re-use strategy [28], and an approach for supporting assertions by end users [16].)

Our fault localization techniques are prototyped in the spreadsheet paradigm, in

conjunction with our WYSIWYT testing methodology, so we briefly describe that

methodology here.

Figure 2.1 presents an example of WYSIWYT in Forms/3 [8, 15, 18], a spread-

sheet language that utilizes “free-floating” cells in addition to traditional spread-

sheet grids.1 The underlying assumption behind the WYSIWYT testing methodol-

ogy is that, as a user incrementally develops a spreadsheet program, he or she is

also testing incrementally. Because the intended audience is end users, all commu-

nication about testing is performed through visual devices. In WYSIWYT, untested

cells that have non-constant formulas are given a red border (light gray in this the-

1 WYSIWYT has also been extended to the dataflow [33] and screen transition [13] paradigms.

9

FIGURE 2.1: An example of WYSIWYT in the Forms/3 language.

sis), indicating that the cell is untested. (Cells whose formulas are simply constants

do not participate in WYSIWYT devices, since the assumption is that they do not

need to be tested.) For example, the CourseGrade cell has never been tested; hence,

its border is red (light gray). The borders of such cells remain red until they become

more “tested”.

In order for cells to become more tested, users must create tests. Testing actions

can occur at any time—intermingled with editing formulas, adding new formulas,

and so on. The process is as follows. Whenever a user notices a correct value, he

or she can place a checkmark (p) in the decision box at the corner of the cell he or

she observes to be correct: thistesting decisionconstitutes a successful “test”. Such

checkmarks increase the “testedness” of a cell, which is reflected by adding more

blue to the cell’s border (more black in this thesis). For example, in Figure 2.1, the

CourseAvg cell has been given a checkmark, which is enough to fully test this cell,

thereby changing its border from red to blue (light gray to black). Further, because

a correct value in a cellc depends on the correctness of the cells contributing toc,

10

these contributing cells participate inc’s test. Consequently, in this example, the

border of cell FinalPercentage also turns blue (black).

Although users may not realize it, WYSIWYT “testedness” colors reflect the use

of a definition-use test adequacy (du-adequacy) criterion [38, 41, 47] that measures

the interrelationships in the source code that have been covered by the users’ tests.

A definitionis a point in the source code where a variable (cell) is assigned a value,

and auseis a point where a variable’s value is used. Adefinition-use pair, or du-

pair, is a tuple consisting of a definition of a variable and a use of that variable.

A du-adequatetest suite, which is based on the notion of anoutput-influencing

all-definition-use-pairs-adequate test suite[25], is a test suite that exercises each

du-pair in such a manner that it (dynamically) participates in the production of an

output explicitly validated by the user. (Readers are referred to [53, 54] for details

on this criterion.)

In addition to providing feedback at the cell level, WYSIWYT gives the user

feedback about testedness at two other granularities. A percent testedness indicator

provides testedness feedback at the program granularity by displaying a bar that fills

and changes color from red to blue (following the same colorization continuum as

cell borders) as the overall testedness of the program increases; in Figure 2.1, the

program is 44% tested. Testedness feedback is also available at a finer granularity

through dataflow arrows. In addition to displaying dataflow relationships at the

cell level (in Figure 2.1, the user has triggered dataflow arrows for the CourseAvg

cell), users can also display arrows at the subexpression level (shown in Figure 2.2).

The system also provides testedness feedback through an intelligent explanation

system [65], implemented via “on-demand” tooltips that display the testedness of

any specified cell or dataflow relationship. In Figure 2.1, the user has chosen to

11

FIGURE 2.2: An example of dataflow arrows at the subexpression level.

examine a black arrow leading into CourseAvg, which shows that the relationship

between QuizAvg and CourseAvg is 100% tested.

WYSIWYT’s purpose is to help identify failures, and it has been empirically

shown to be useful to both programmers and end users [37, 55]; however, it does

not by itself explicitly support a debugging effort to localize the fault(s) causing an

observed failure. Providing this debugging support is the aim of our fault localiza-

tion techniques, which we describe next.

12

CHAPTER 3

FAULT LOCALIZATION

This chapter describes our approach to fault localization for end users. We begin

by presenting an overview of our fault localization approach, including the goals of

our design. We then present three fault localization techniques, along with accom-

panying algorithms. Finally, we discuss previous fault localization research that is

related to this thesis.

3.1 Overview and Goals

Fault localization support attempts to help programmers locate the causes of failures

in two ways: (1) by indicating the areas in a program that should be searched for a

fault, therebyreducing the search space; and (2) by indicating the areas in a program

most likely to contain a fault, therebyprioritizing the sequence of the searchthrough

this space.

In our particular prototype, which follows the spreadsheet paradigm1, WYSI-

WYT serves as a springboard for fault localization: instead of noticing that a cell’s

value is correct and placing a checkmark, a user might notice that a cell’s value is

incorrect (a failure) and place an “X-mark”.

1 Our fault localization approach is also generalizable to other programming paradigms, as dis-
cussed in [58].

13

These X-marks trigger afault likelihoodestimation for each cell (with a non-

constant formula) that might have contributed to the failure. Fault likelihood, up-

dated for each appropriate cell after any testing decision or formula edit, is repre-

sented by visually highlighting the interior of suspect cells in shades of red (gray

in this thesis). This serves our first goal of fault localization: reducing the user’s

search space.

As the fault likelihood of a cell grows, the suspect cell is highlighted in increas-

ingly darker shades of red (gray). The darkest cells are estimated to be the most

likely to contain the fault, and are the best candidates for the user to consider in

trying to debug. This serves our second goal of fault localization: helping end users

prioritize their search.

For example, suppose that after working a while, the user has gotten the Grade-

book program to the stage shown at the top of Figure 3.1. At that point, the user no-

tices that values of the ExamAvg and Midterm1Perc cells are incorrect: the values

are obviously too high. Upon spotting these failures, the user places X-marks in the

two cells, triggering fault likelihood estimations for all cells whose values dynam-

ically contributed to the values in ExamAvg and Midterm1Perc.2 The results of

these fault likelihood estimations are communicated to the user by highlighting the

interiors of cells suspected of containing faults (i.e., with non-zero estimated fault

likelihood) in red (gray). The cells deemed (by the system) most likely to contain

the fault (i.e., have higher estimated fault likelihood) are highlighted the darkest. An

example is shown at the bottom of Figure 3.1. The Midterm1Perc has an estimated

2 In fact, in Figure 3.1, the fault is an incorrect mathematical operation in the Midterm1Perc cell
(not shown in the figure).

14

FIGURE 3.1: (Top) A Gradebook program at an early stage of testing. (Bottom)
The user notices incorrect values in ExamAvg and Midterm1Perc—the values are
obviously too high—and places an X-mark in each cell’s decision box.

fault likelihood of “High” (indicated by the explanation tooltip), MidtermAvg, and

ExamAvg cells have an estimated fault likelihood of “Medium” (not indicated by

tooltips), and the CurvedMidterm3 and FinalPercentage cells have an estimated

fault likelihood of “Very Low” (again, not indicated by tooltips). The testedness

15

borders of the cells with non-zero fault likelihood have faded to draw visual focus

to the fault likelihood component of the cell.3

3.2 Three Fault Localization Techniques

How should these fault localization colors be computed? Computing exact fault

likelihood values for a cell, of course, is not possible. Instead, we combine heuris-

tics with deductions that can be drawn from analyzing the source code (formulas)

and/or from the user’s tests to estimate fault likelihood. Because these techniques

are meant for highly interactive visual environments, we are also interested in the

cost of each technique.

We now describe the algorithms for three fault localization techniques, includ-

ing their information basis for making deductions; the algorithms and properties

each technique uses or maintains, if any, in drawing further inferences from these

deductions; and how much each technique’s reasoning costs. In these descriptions,

we will use producer-consumer terminology to keep dataflow relationships clear;

that is, aproducerof a cellc contributes toc’s value, and aconsumerof c usesc’s

value. Using slicing terminology [64], producers are all the cells inc’s backward

slice, and consumers are all the cells inc’s forward slice. c is said toparticipate

in a test(or to have a test) if the user has made a testing decision (e.g., with a

checkmark) onc or any ofc’s consumers.

3 Emerging work [57] has suggested that certain facets of debugging may be improved by not
fading these borders.

16

3.2.1 The Blocking Technique

Similar to program dicing [21, 39], the “Blocking Technique”4 notices the dataflow

relationships existing in the testing decisions thatreacha cellc, and whether tests

are blockedfrom c by one or more other tests. It leverages these dataflow rela-

tionships with the testing information to estimate the likelihood that each cell in a

program contains faults. Specifically, the technique observes the number of passed

and failed tests that reachc (i.e., are not blocked fromc by one or more other tests).

This is accomplished by maintaining, for each cellc, (1) information on the tests

to which that cell contributes, and (2) dataflow information to determine which of

those tests are blocked and unblocked from the cell.

There are three basic interactions the user can perform that could potentially

trigger action by the Blocking Technique. The interactions are: (1) users might

change a constant cell’s value (analogous to changing test cases by running with

a different input value), (2) users might place an X-mark or checkmark in a cell’s

testing decision box (analogous to adding another test), or (3) users might add or

modify a non-constant cell’s formula (analogous to changing the program’s logic).5

We describe the algorithms invoked in the case of each interaction, and also the

cost of these algorithms. In this and all future discussions, we focus on the case of

4 This technique was introduced by Reichwein et al. [50] as a debugging methodology for spread-
sheet programs, and complete algorithms appear in [49]. We summarize Reichwein’s algorithms
in this thesis to present a full account of the material.

5 Variations on these interactions also trigger activity. For example, removing a test (e.g., removing
a checkmark) constitutes a change in the testing information base of the system, thereby requiring
the same type of action as if a test had been added. However, we will ignore these variations
because they are obvious and do not add materially to this discussion.

17

a “bare” spreadsheet language, without the support of a testing methodology such

as WYSIWYT and its accompanying data structures. We discuss this case because

fault localization support may be desired without accompanying testing support. As

such, this discussion goes to the heart of the cost of the fault localization technique.

3.2.1.1 Changing Test Cases

Suppose that the user changes a constant cell’s value. A constant cell edit already

requires the spreadsheet environment to update the values of any non-constant cells

affected by the edit. The Blocking Technique piggy-backs off of this work to re-

move all of the affected testing decisions on cells (although their effects on fault

likelihood information are preserved). This also happens when a cell is affected

by a change in the spreadsheet program’s logic. This interaction adds onlyO(1)

overhead to the work already being triggered by the user’s edit.

3.2.1.2 Making a Testing Decision

When X-marks or checkmarks are placed by the user, the Blocking Technique must

perform maintenance on its data structures to account for the testing decision that

was placed or removed, as well as to determine which tests are blocked or un-

blocked by other tests. To do this, the technique’s algorithm (see Figure 3.2) makes

three passes over the dynamic backward slice of the cell in which a testing decision

was made. The first two of these three passes are separately detailed in Figures 3.3

and 3.4, and are responsible for updating data structures. The third pass, which is

explained in Section 3.2.1.4, is responsible for mapping the information base of the

18

1: procedure MarkPlaced (markedCell, aTest)
2: Let markedCell’s current testing decision be aTest
3: FirstPass(markedCell, topologicalCellListby Ref)
4: Remove first element from topologicalCellList
5: Let updateGUIList = SecondPass(topologicalCellList, markedCell, aTest)
6: Estimate fault likelihood and update user interface for every cell in updateGUIList

fThis is the third passg
7: end procedure

FIGURE 3.2: Algorithm #1 — The MarkPlaced subroutine for the Blocking Tech-
nique’s algorithm. This is called when a testing decision is made on or removed
from a cell (e.g., when the user adds a checkmark).

1: procedure FirstPass (aCell, topologicalCellListby Ref)
2: if aCell has not yet been visited by FirstPassthen
3: for all aUpwardCell that dynamically affect aCelldo
4: FirstPass(aUpwardCell, topologicalCellListby Ref)
5: end for
6: Add aCell to beginning of topologicalCellList
7: end if
8: end procedure

FIGURE 3.3: Algorithm #2 — The FirstPass subroutine of the Blocking Technique.
FirstPass builds topologicalCellList.

technique into a fault likelihood range for each cell in updateGUIList and updating

the user interface accordingly.

The job of FirstPass is to build a “cells-to-process” list in topological order. It

performs a recursive depth-first search on the dynamic backward slice of the cell

marked with the aTest testing decision. In doing so, it visits (in topological order)

the cells in the dynamic backward slice, adding them into the topologicalCellList,

19

1: function SecondPass (topologicalCellList, markedCell, aTest)
2: Add markedCell to updateGUIList
3: if aTest was added to markedCell by userthen
4: Record that aTest blocks all tests reaching markedCell, and add aTest to marked-

Cell
5: else
6: faTest was removedg
7: Unblock tests formerly blocked by aTest, and remove aTest from markedCell
8: end if
9: Propagate markedCell’s tests to create dynamically affecting cells’ workLists

10: for all sortedCell in topologicalCellListdo
11: Add sortedCell to updateGUIList
12: if sortedCell currently has a testing decision (i.e., an X-mark or checkmark)then
13: Make any test in sortedCell’s workList that is new to sortedCell a blocked test

if that test is blocked by sortedCell’s testing decision.
14: end if
15: Copy sortedCell’s workList changes to sortedCell’s tests
16: Propagate sortedCell’s workList changes to the workLists of affecting cells
17: end for
18: return updateGUIList
19: end function

FIGURE 3.4: Algorithm #3 — The SecondPass function of the Blocking Tech-
nique. This function updates the technique’s information base of tests to which
cells contribute. These tests are later used in line 6 of Figure 3.2 to estimate each
cell’s fault likelihood.

which is returned to the algorithm in Figure 3.2. The cell on which the aTest testing

decision was made (i.e., the cell actually marked by the user) is the first element

in the stack. This first element is not needed by SecondPass, so it is discarded in

Figure 3.2.

SecondPass is responsible for maintaining the “blocking” characteristics of the

Blocking Technique. Its job is to propagate the testing decision to the cellList re-

turned by FirstPass, and to track whether that decision is blocked by (or blocks)

20

another testing decision. This is done by using a (temporary) workList for each

cell. A workList tracks the “blocking” changes being made to its respective cell due

to this new testing decision.6 The blocked and unblocked tests for markedCell are

propagated to the workList of each cell dynamically affecting markedCell. When

each workList has been processed and all changes are complete, the changes are

applied to each cell’s information base. One of the implementation details in these

data structures is that when marks are blocked, the number of paths in which they

are blocked is also tracked. This characteristic is used to determine when a testing

decision is no longer blocked by any other testing decisions.

Let p be the number of cellc’s producers—i.e., cells inc’s dynamic backward

slice. Furthermore, lete be the number of edges in the graph consisting ofc’s

dynamic backward slice, and letm be the total number of testing decisions (X-

marks and checkmarks) in the program’s history. The first pass (Figure 3.3) of the

MarkPlaced algorithm in Figure 3.2 is simply a depth-first search, and therefore

hasO(p + e) runtime complexity. The second pass (Figure 3.4) iterates over the

p producing cells to propagate tests to the work lists of the producing cells using

thee edges, and then to process those work lists. When propagating tests to work

lists (line 8 of Figure 3.4), insertion and removal operations are performed on sets

of blocked and unblocked tests. These operations consist of inserting (or removing)

the dataflow paths from one testing decision inm to potentially all other decisions

in m. Because as many asm tests could be propagated to a workList and require

6 Temporary work lists are used, rather than propagating markCell’s tests straight to affecting cell’s
information base of tests for efficiency reasons. This strategy allows the technique to process only
those tests from markedCell, and not all the tests of each sortedCell in topologicalCellList.

21

m insertions or removals of dataflow paths, the worst case performance of these

operations isO(m2). As a result, the second pass of this algorithm has a worst-case

runtime complexity ofO((p+e)m2). The third pass updates the user interface for all

p cells, thereby having a complexity ofO(p). The runtime complexity of making a

testing decision is dominated by the second pass. Therefore, the worst-case runtime

complexity of making a testing decision isO((p+ e)m2).

3.2.1.3 Changing the Spreadsheet Logic

When the user edits a non-constant formula or changes a constant formula into a

non-constant formula, the spreadsheet program’s logic is changed. In this case, the

NewFormula algorithm, which is outlined in Figure 3.5, is invoked. This algorithm

requires the cell in which the edit was made, and the cell’s new formula. It is respon-

sible for removing the effects of all testing decisions to which the cell contributes.

As before, the actual fault likelihood estimation for each applicable cell is made

when the user interface for those cells is updated (in line 8 of the algorithm).

In Figure 3.5, the UndoTestEffects function performs a recursive, depth-first

search on the cells that statically affect aMarkedCell, where aMarkedCell is a cell

on which a testing decision was made that affects editedCell, which was given the

new formula. UndoTestEffects removes all testing decisions to which the edited cell

contributes, as well as the effects of those decisions on affecting cells. (Obviously,

the algorithm does not remove the effects of a testing decision that was placed on

a value that was not affected by the edited cell.) For efficiency, this walk is careful

not to visit the same cell’s formula data structure twice during a single invocation

of NewFormula.

22

1: procedure NewFormula (editedCell)
2: if editedCell contributes to any blocked or unblocked teststhen
3: Let allEditedCellTests be all the testing decisions affecting editedCell
4: for all aTest in allEditedCellTestsdo
5: Call UndoTestEffects(aMarkedCell, editedCell, allEditedCellTests), where

aMarkedCell is where aTest was made, and add returned lists to updateGUIList
6: end for
7: end if
8: Estimate fault likelihood and update user interface for every cell in updateGUIList
9: end procedure

10:
11: function UndoTestEffects (aMarkedCell, editedCell, allEditedCellTests)
12: if aMarkedCell has already been visited in this passthen
13: return null
14: end if
15: Add aMarkedCell to updateGUIList
16: if aMarkedCell currently has a testing decision aTest in allEditedCellTeststhen
17: Remove aTest from aMarkedCell
18: end if
19: if aMarkedCell was affected by editedCellthen
20: Remove all tests from aMarkedCell reaching editedCell, and remove the

WYSIWYT testedness on aMarkedCell from these tests
21: end if
22: Call UndoTestEffects(aCellToUpdate, editedCell, allEditedCellTests) for all aCell-

ToUpdate statically affecting aMarkedCell, and add returned lists to updateGUIList
23: return updateGUIList
24: end function

FIGURE 3.5: Algorithm #4 — The NewFormula routine for the Blocking Tech-
nique, and the accompanying UndoTestEffects function.

Let p be the number of cells inc’s static backward slice. Also, lete be the

number of edges in the dataflowmultigraph7 consisting ofc’s static backward slice,

7 The edges are those of a multigraph because a cell can be referenced multiple times in a formula.

23

and letm be the total number of testing decisions (X-marks and checkmarks) in the

program’s history. The algorithm performs a depth-first search on the cells that are

statically affected by the edited cell. Because the algorithm is careful not to visit

cells more than once, onlyp cells are visited. For each of these cells, at least one

removal operation must be performed on sets of lists of tests (see line 17 of Figure

3.5). This operation has a worst-case runtime complexity ofO(m2). Also, the

UndoTestEffects function visits the incoming edges in the dataflow multigraph forc.

The final runtime complexity of the NewFormula algorithm is thereforeO(e+pm2).

3.2.1.4 Mapping Information to Estimated Fault Likelihood

The mapping behavior of the Blocking Technique’s algorithms was summarized by

Reichwein et al. [50] using five properties:

Property 1: If c or any of its consumers have a failed test, thenc will have non-

zero fault likelihood. This first property ensures that every cell that might have

contributed to the computation of an incorrect value will be assigned some non-

zero fault likelihood. This reduces the chance that the user will become frustrated

searching for a fault that is not in any of the highlighted cells, which could ulti-

mately lead to a loss of a user’s trust in the system. The property also acts as a

robustness feature by ensuring that (possibly incorrect) checkmarks do not bring

the fault likelihood of a faulty cell to zero.

24

Property 2: The fault likelihood ofc is proportional to the number ofc’s failed

tests.This property is based on the assumption that the more incorrect calculations

a cell contributes to, the more likely it is that the cell contains a fault.

Property 3: The fault likelihood ofc is inversely proportional to the number ofc’s

successful tests.The third property, in contrast to Property 2, assumes that the more

correct calculations a cell contributes to, the less likely it is that the cell contains a

fault.

Property 4: An X-mark onc blocks the effects of any checkmarks onc’s consumers

(forward slice) from propagating toc’s producers (backward slice).This property

is specifically to help users narrow down where the fault is located by preventing

“dilution” of important clues. More specifically, producers that contribute only

to incorrect values are darker, even if those incorrect values contribute to correct

values further downstream. This prevents dilution of the cells’ colors that lead only

to X-marks. (In short, X-marks block the propagation of checkmarks.)

Property 5: A checkmark onc blocks the effects of any X-marks onc’s consumers

(forward slice) from propagating toc’s producers (backward slice), with the ex-

ception of the minimal fault likelihood property required by Property 1.Similar

to Property 4, this property uses checkmarks to prune offc’s producers from the

highlighted area if they contribute to only correct values, even if those values even-

tually contribute to incorrect values. (Put another way, checkmarks block most of

the propagation of X-marks.)

25

To implement these properties, let NumBlockedFailedTests(c) (NBFT) be the

number of cellc’s consumers that are marked incorrect, but are blocked by a value

marked correct along the dataflow path fromc to the value marked failed. Fur-

thermore, let NumUnblockedFailedTests(c) (NUFT) be the result of subtracting

NBFTfrom the number ofc’s consumers. Finally, let there be NumBlockedPassed-

Tests(c) (NBPT) and NumUnblockedPassedTests(c) (NUPT), with definitions simi-

lar to those above.

If c has no failed tests, the fault likelihood ofc is estimated to be “None”. Ifc

has failed tests but none are reachable (i.e., unblocked), thenc’s fault likelihood is

estimated to be “Very Low”. Otherwise, the Blocking Technique first assigns a dis-

crete “0–5” fault likelihood range toNUFT andNUPTusing the scheme presented

in Table 3.1.8 The technique then maps this testing information into an estimated

fault likelihood forc using the following equation:

fault likelihood(c) = max(1; NUFT � floor(NUPT=2))

The formulamax(1; NUFT � floor(NUPT=2)) was chosen to fulfill Proper-

ties 2 and 3. It ensures that as the number of X-marks affected byc increases, the

fault likelihood increases. In contrast, as the number of checkmarks affected byc in-

creases, the fault likelihood decreases. The number of X-marks was given a higher

weight than the number of checkmarks to prevent an equal number of X-marks and

checkmarks from canceling each other out.

8 Note that the “Very Low” fault likelihood range is not included in Table 3.1. Rather, that range is
reserved exclusively for the “blocking” situation mentioned in Property 5.

26

Numerical Values Fault Likelihood Range Fault Likelihood Description
0 0 “None”

1–2 2 “Low”
3–4 3 “Medium”
5–9 4 “High”

10–1 5 “Very High”

TABLE 3.1: The scheme used by the Blocking Technique to transform numerical
values to discrete fault likelihood ranges. The range of 1 (not shown in this table)
corresponds to the “Very Low” fault likelihood used in Property 5.

3.2.1.5 An Example of the Blocking Technique

Figure 3.6 demonstrates the Blocking Technique on the Gradebook spreadsheet

program from Section 3.1. The two failures, noted with X-marks by the user, have

contributed to fault likelihood estimations for the Midterm1Perc, ExamAvg, and

CourseAvg cells. However, the strategically-placed checkmarks on FinalPercentage

and CurvedMidterm3 block most of the effects of these X-marks, causing those

two cells to be assigned a lower fault likelihood.

3.2.2 The Nearest Consumers Technique

In interactive end-user programming environments, fault localization feedback can

be invoked during any interactive testing or debugging activity. In the case of

spreadsheet environments, suchtriggers are the modification of a cell formula,

and a testing decision (i.e., X-marks and checkmarks) regarding the correctness of

a cell value. The cost of fault localization techniques such as the Blocking Tech-

27

FIGURE 3.6: The Gradebook program with the Blocking Technique.

nique during these interactive activities, however, may be too great to maintain the

responsiveness required as program size increases.

We designed the Nearest Consumers Technique with this concern in mind. It is

a greedy technique that considers only thedirect consumersof a cellc (those con-

nected withc directly by a dataflow edge). Accessing only neighboring consumers

is one way this techniques keeps costs down.

The fault likelihood ofc is estimated solely from the X-marks and checkmarks

currentlyplaced on cells, and the average fault likelihood ofc’s direct consumers

(if any). c’s producers are then updated using the same calculations. However, all

of these calculations use the testing decisions for only the current input values (i.e.,

the current test case). The technique does not utilize any historical information

regarding previous testing decisions. This use of only current information is the

second way this technique keeps costs down.

28

3.2.2.1 Changing Test Cases

Just as with the Blocking Technique, when a user changes a constant cell’s value,

all of the affected testing decisions on cells are removed. The Nearest Consumers

Technique removes these testing decisions as the spreadsheet environment updates

cell values, thereby adding onlyO(1) overhead to this interaction.

3.2.2.2 Making a Testing Decision

When a testing decision is made, the Nearest Consumers Technique attempts to

approximate the five properties of the Blocking Technique at a low cost using the

algorithm outlined in Figure 3.7. Nearest Consumers begins by computing the nu-

merical fault likelihood of cellc. In MarkPlacedHelper, this numerical value is

the average fault likelihood ofc’s direct consumers. This value is then mapped

to a discrete fault likelihood range as outlined in Table 3.2. Note that, unlike the

Blocking Technique, the fault likelihood of cells is estimated early in the algorithm

rather than immediately before the user interface is updated. This is because the

algorithms of the Blocking Technique are primarily designed around updating the

technique’s information base, and estimating fault likelihood should be done only

after these information bases are updated. In contrast, Nearest Consumers relies on

the fault likelihood of other cells, and so this estimation for each cell should occur

immediately. (The estimation should occur immediately because producing cells’

fault likelihood estimations depend on the fault likelihood of consuming cells that

were previously visited by the technique.)

The AdjustFaultLikelihood subroutine adjusts the fault likelihood of aCell based

on trends it observes in the current testing decisions. This subroutine implements

29

1: procedure MarkPlaced (markedCell, aTest)
2: Let markedCell’s current testing decision be aTest
3: Call MarkPlacedHelper(markedCell, false, false)
4: Update the user interface for markedCell and all of markedCell’s producers
5: end procedure
6:
7: procedure MarkPlacedHelper (aCell, retainHighFL?, retainLowFL?)
8: Let aCell’s fault likelihood be the average fault likelihood of its direct consumers
9: Map the numeric fault likelihood of aCell to a fault likelihood range

10: Call AdjustFaultLikelihood(aCell, retainHighFL?by ref, retainLowFL?by ref)
11: Set retainHighFL? to true if aCell currently has an “X-mark” testing decision
12: Set retainLowFL? to true if aCell currently has a “Checkmark” testing decision
13: if aCell’s current fault likelihood is less than its previous fault likelihoodthen
14: Set aCell’s fault likelihood to the previous fault likelihood if retainHighFL? is true
15: end if
16: if aCell’s current fault likelihood is greater than its previous fault likelihoodthen
17: Set aCell’s fault likelihood to the previous fault likelihood if retainLowFL? is true
18: end if
19: Using a breadth-first search, call MarkPlacedHelper(directProd, retainHighFL?, re-

tainLowFL?) for all directProd in aCell’s direct producers
20: end procedure

FIGURE 3.7: Algorithm #5 — The MarkPlaced subroutine for the Nearest Con-
sumers Technique. MarkPlacedHelper performs a breadth-first search of the pro-
ducing cells of markedCell.

five rules, which are presented in the upcoming discussion in placed of presenting

the algorithm.

The first three rules potentially adjust the fault likelihood of aCell, which was

initially estimated in line 8 of Figure 3.7. It sequentially checks the conditions

of each rule, and applies (fires) the first rule whose condition is met. These three

rules are described next. In doing so, we use the following notation:DC is the set

of a cell c’s direct consumers,avgFL(DC) is the average fault likelihood ofDC

30

Numerical Values Fault Likelihood Range Fault Likelihood Description
0 0 “None”
1 1 “Very Low”
2 2 “Low”
3 3 “Medium”
4 4 “High”

5–1 5 “Very High”

TABLE 3.2: The mapping used by the Nearest Consumers Technique to transform
numerical values to discrete fault likelihood ranges.

(previously calculated in line 8 of Figure 3.7),xm is the number of X-marks in

DC, andcm is the number of checkmarks inDC.

Rule 1. If the value ofc is currently marked correct by the placement of a check-

mark,c is assigned a fault likelihood of “Very Low”—regardless ofavgFL(DC)—

to approximate Property 5 of the Blocking Technique.

Rule 2.If c has a failure (X-mark) butavgFL(DC) < “Medium”, thenc is assigned

a fault likelihood of “Medium”. This assignment approximates Property 4 of the

Blocking Technique by preventing cells’ low fault likelihood from diluting the fault

likelihood of a cell in which a user has observed a failure. A common occurrence

of this situation is when a user places the very first X-mark in the program’s testing

history in a cellc. Since it is the first X-mark placed, before the algorithm is applied,

the fault likelihood of all cells, includingc’s direct consumers, is obviously “None”.

31

Rule 3.The fault likelihood fromavgFL(DC) is incremented one level whenever

there are more X-marks than checkmarks, provided sufficient evidence is present.

Three specific cases are handled: (1) ifxm > 1 andcm = 0, (2) if xm > cm

andcm > 0, or (3) if xm > cm andc has an X-mark. The first two cases differ

only in that the fault likelihood ofc is not incremented ifxm = 1 andcm = 0.

(This is not seen as strong enough evidence to increment fault likelihood.) The

third case differs from the first two by considering whetherc has an X-mark. In

essence, this rule increases fault likelihood in areas of the program where more

failures than successes (i.e., more X-marks than checkmarks) have been observed,

thereby approximating Properties 2 and 3 of the Blocking Technique.

After adjusting the fault likelihood of aCell through Rules 1–3, MarkPlacedHelper

applies two final rules to the fault likelihood. Unlike Rules 1–3, both Rules 4–5 can

be applied if their conditions hold true.

Rule 4. If the value ofc is currently marked as incorrect with an X-mark, the

technique constrains the fault likelihood ofc and c’s producers to their previous

estimated fault likelihood, or to higher estimations. This rule serves to help enforce

Property 4 of the Blocking Technique by preventing cells with lower fault likeli-

hood (due to checkmarks) from diluting the fault likelihood of a cell in which a

failure has been observed, as well as all upstream cells.

Rule 5.Similarly, if a checkmark is currently placed inc, the technique constrains

the fault likelihood ofc andc’s producers to their previous estimated fault likeli-

32

hood, or to lower estimations. This rule serves to help enforce Property 5 of the

Blocking Technique by pruning off cells contributing to correct values.

The Nearest Consumer Technique enforces Property 1 of the Blocking Tech-

nique. Ensuring that any cell that could have contributed to a failure is assigned at

least some fault likelihood is done by taking a ceiling of the average fault likelihood

of each cellc’s direct consumers on line 8 of Figure 3.7. This mathematical mech-

anism ensures that if any direct consumer ofc has at least some fault likelihood

(due to at least one X-mark), then the average of those fault likelihood values will

ensure thatc has at least a “Very Low” fault likelihood, as will its affecting cells in

its dynamic backward slice.

The technique’s advantages are that it does not require the maintenance of any

data structures; it stores only the fault likelihood of cells. Given this information,

after marking a cellc, estimatingc’s fault likelihood requires only a look atc’s

direct consumers. This is followed by a singleO(p+d) breadth-first traversal upc’s

dynamic backward slice to estimate the fault likelihood of these producers, whered

is the number of direct consumers connected to thep producers.

3.2.2.3 Changing the Spreadsheet Logic

Unlike the Blocking Technique, Nearest Consumers does not have to worry about

removing the effects of all testing decisions to which an edited non-constant cellc

contributes because it does not maintain such testing decisions. The Nearest Con-

sumers Technique must consider those cells that are affected byc because those

cells will likely have new values, thereby rendering their current testing decisions

33

(if any) obsolete. Consequently, as the spreadsheet environment traverses down the

static forward slice ofc and updates cell values, Nearest Consumers removes any

X-marks or checkmarks on this set of affected cellsA, includingc. Because the

forward slice is traversed, all cells inA will have no current testing decision for the

test case in question. Therefore, with no testing decision history to draw on, Nearest

Consumers also resets the fault likelihood of bothc and all cells inA to “None”.

This is all done withO(1) overhead to the spreadsheet environment.

However, sincec’s fault likelihood has changed to “None”, the cells inc’s static

backward slice must have their fault likelihood updated. This is performed by call-

ing the NewFormula algorithm in Figure 3.8. Because this algorithm requires a

single breadth-first traversal upc’s static backward slice, the runtime complexity is

O(p+ d), whered is the number of direct consumers connected to thep producers

in the backward slice.

1: procedure NewFormula (editedCell)
2: Call MarkPlacedHelper(editedCell, false, false)
3: Estimate fault likelihood and update the user interface for editedCell and all of edit-

edCell’s producers
4: end procedure

FIGURE 3.8: Algorithm #6 — The NewFormula subroutine of the Nearest Con-
sumers Technique. This algorithm performs a breadth-first search onc’s backward
slice using the MarkPlacedHelper subroutine in Figure 3.7.

34

3.2.2.4 Mapping Information to Estimated Fault Likelihood

Table 3.2 shows that the Nearest Consumers Technique uses the same fault like-

lihood ranges as the Blocking Technique, albeit with different numbers mapping

to different ranges. (This is due to the fact that Nearest Consumers uses averages

to make fault likelihood estimations, rather than multiplications and subtractions).

Moreover, Nearest Consumers approximates the five properties of the Blocking

Technique through the procedures described earlier. This behavior is done by av-

eraging the fault likelihood of a cell’s direct consumers, and then potentially ad-

justing that calculation based on trends the technique observes in the current testing

decisions on cells (i.e., applying one or more of the five rules described in Section

3.2.2.2).

3.2.2.5 An Example of the Nearest Consumers Technique

The Nearest Consumers Technique was used to create Figure 3.1 on the same

spreadsheet program as in previous examples. In approximating the blocking be-

havior of the Blocking Technique, the fault likelihood of the FinalPercentage

and CurvedMidterm3 cells has been estimated as “Very Low”. However, the

ExamAvg and MidtermAvg cells contribute to a single X-mark in ExamAvg and

have an estimated fault likelihood of “Medium”. In addition, Midterm1Perc con-

tributes to the ExamAvg X-mark as well as the X-mark in its own cell, and has an

estimated fault likelihood of “High”. Both the bottom of Figure 3.1 and Figure 3.6

show that the FinalPercentage and CurvedMidterm3 cells have been estimated to

have the lowest estimated fault likelihood of all cells, while the other three cells

have higher estimated fault likelihood. However, notice that these differences be-

35

tween the former two cells and the latter three cells have been exaggerated by the

Nearest Consumers Technique at the bottom of Figure 3.1. Clearly, the Nearest

Consumers Technique does not always compute the same results as the Blocking

Technique.

3.2.3 The Test Count Technique

The technique we term “Test Count” maintains, for each cellc, an information

base of the number ofsuccessful tests(indicated by the user via a checkmark) and

failed testsin which c has participated. This information base can be considered

a subset of that of the Blocking Technique, as Test Count maintains a record of

previous tests, but not the information that would be required to calculate complex,

intertwined dataflow relationships.

This technique came about by leveraging algorithms and data structures that

were written for another purpose—to support semi-automated test re-use [28] (re-

gression testing) in the spreadsheet paradigm. The detailed algorithms and data

structures used for test re-use purposes are detailed in [28]. Here, we present the

algorithms relevant to fault localization support for the three interactions that could

trigger action from the Test Count Technique.

3.2.3.1 Changing Test Cases

Changing the input values of the spreadsheet program causes the Test Count Tech-

nique to retrieve the prior testing decision for each cell affected by the new inputs,

if such testing decisions have been previously made. In the worst case, alln cells

in the spreadsheet program will have contributed to allm testing decisions, and the

36

technique would have to search through the entire history of each cell to retrieve

the testing decision. The runtime complexity in this worst case scenario is therefore

O(n �m).

3.2.3.2 Making a Testing Decision

The placement or removal of a testing decision triggers the algorithm outlined in

Figure 3.9. The algorithm adds or removes the appropriate testing decision from

the cell under consideration, and then propagates that decision to the test histories

of the cells in the dynamic backward slice of the marked cell. Finally, as the user

interface is updated for these cells, a fault likelihood estimation is made for each

cell c. The scheme used to make this estimation is described in Section 3.2.3.4.

Using the test re-use algorithms presented in [28], after a testing decision

is placed on or removed from a cellc, the information base of the Test Count

Technique—the test history of each cell—is updated inO(u � p) time, whereu is

the maximum number of uses of (references to) any cell in the program, andp is

the number ofc’s producers.

1: procedure MarkPlaced (markedCell, aTest)
2: Let markedCell’s current testing decision be aTest
3: Add or remove aTest to/from markedCell’s test history as appropriate
4: Propagate aTest to the test history of all dynamic producers of markedCell
5: Estimate fault likelihood and update the user interface for markedCell and all of

markedCell’s dynamic producers
6: end procedure

FIGURE 3.9: Algorithm #7 — The MarkPlaced subroutine for the Test Count Tech-
nique.

37

3.2.3.3 Changing the Spreadsheet Logic

Changing cellc’s non-constant formula to a different formula requires all saved

information aboutc’s tests and those of its consumers to be considered to be obso-

lete. For the same reason, the fault likelihood ofc and its consumers must all be

reinitialized to zero.

Using the test re-use methodology [28], all of the related testing information can

be updated inO(t �m �max(u; cost of set operations)), wheret is the number of

tests that reach the modified cell,m is the maximum number of consumers affected

by c’s tests, andu (as it was earlier) is the maximum number of uses for any cell in

the program.

3.2.3.4 Mapping Information to Estimated Fault Likelihood

The Test Count Technique maintains the first three properties of the Blocking Tech-

nique. Because it does not track the dataflow relationships between cells and testing

decisions, it cannot maintain the “blocking” characteristics of the Blocking Tech-

nique, and therefore does not maintain the fourth and fifth properties. Instead, fault

1: procedure NewFormula (editedCell)
2: Remove all decisions in editedCell’s test history from editedCell’s consumers
3: Clear the test history of editedCell
4: Set fault likelihood of editedCell and all consumers to “None”
5: Update the user interface for editedCell and all of editedCell’s consumers
6: end procedure

FIGURE 3.10: Algorithm #8 — The NewFormula subroutine for the Test Count
Technique.

38

Numerical Values Fault Likelihood Range Fault Likelihood Description
0 0 “None”

1 – 3 1 “Low”
3 – 4 2 “Medium”
5 – 6 3 “High”
7 –1 4 “Very High”

TABLE 3.3: The mapping used by the Test Count Technique to transform numerical
values into discrete fault likelihood ranges.

likelihood estimations are made purely by observing the number of X-marks and

checkmarks in each cell’s test history.

Let NumFailingTests (NFT) be the number of X-marks placed onc, and let

NumSuccessfulTests (NST) be the number of checkmarks placed onc. If a cell c

has no failed tests, the fault likelihood ofc is “None”. Otherwise, the fault likelihood

of a cell is estimated as follows:

fault likelihood(c) = max(1; 2 �NFT �NST)

This calculation is mapped to one of four possible fault likelihood ranges using the

scheme outlined in Table 3.3.

3.2.3.5 An Example of the Test Count Technique

An example of the previously introduced Gradebook spreadsheet program with the

Test Count Technique is provided in Figure 3.11. The Midterm1Perc cell con-

tributes to two X-marks, and has an estimated fault likelihood of “Medium”. The

other four highlighted cells contribute to only a single X-mark, and therefore have

a fault likelihood of “Low”.

39

FIGURE 3.11: The Gradebook program with the Test Count Technique.

Note that the FinalPercentage and MidtermAvg cells have the same fault like-

lihood as ExamAvg and CourseAvg despite their checkmarks. This is because

the Test Count Technique does not maintain or approximate the blocking proper-

ties of the Blocking Technique (i.e., Properties 4 and 5). Although the technique

does maintain the third property of making fault likelihood inversely proportional

to the number of checkmarks in which the cell participates, the “Low” fault like-

lihood range is the lowest property maintained by this technique. Consequently,

the technique cannot reduce the estimated fault likelihood of FinalPercentage and

Midterm Avg, despite the checkmarks on these cells.

3.3 Related Work

Chapter 1 mentioned some previous research into fault localization techniques for

professional programmers. We first expand on that discussion, and then outline

some of the emerging work into fault localization for end-user programmers.

40

3.3.1 Fault Localization for Professional Programmers

Most fault localization research has been based on program slicing [64] and dicing

[39] techniques; see [60] for a survey of this work. In general, a program slice rel-

ative to a variablev at a program pointp is the set of all statements in the program

that affect the value ofv atp. Our fault localization techniques draw from informa-

tion gleaned via dynamic program slicing [2, 36], and make use of that information

using heuristics inspired by dicing.

There has been a great deal of work on fault localization strategies for profes-

sional programmers (e.g., [3, 14, 24, 29, 32, 39, 46, 51, 61]). For example, Agrawal

et al. [3] present a technique, implemented as a tool called�slice, for locating faults

in traditional programming languages using execution traces from tests. This tech-

nique is based on displaying dices of the program relative to one failing test and a

set of passing tests. Jones et al. [32] describe a similar approach implemented as

a tool called TARANTULA . Unlike �slice, TARANTULA utilizes information from

all passing and failing tests, coloring statements based on the likelihood that each

statement is faulty according to its ratio of failing tests to passing tests. Francel

and Rugaber [29] use execution traces to build a directed graph that models the

propagation of values, and then use output values to narrow the region that should

be examined. Using a faulty “run” and a larger number of correct runs, Renieris and

Reiss [51] propose a fault localization technique that compares a faulty run with

the correct run that most resembles that faulty run, and reports “suspicious” areas

of the program based on this comparison. Two ways that our methods differ from

all of these approaches are that our methods (1) are targeted at end users, and (2) are

41

interactive and incremental at the granularity of revising fault likelihood estimations

in real time after each single program edit.

Pan and Spafford [42] developed a family of twenty heuristics appropriate for

automated fault localization. These heuristics are based on the program statements

exercised by passing and failing tests. Our strategy directly relates to three of these

heuristics: the set of all program points exercised by failed tests, program points

that are exercised by a large number of failed tests, and cells that are exercised by

failing tests and that are not exercised by passing tests.

3.3.2 Fault Localization for End-User Programmers

Although work aimed specifically at aiding end users with debugging is beginning

to emerge, fault localization support for end users remains scarce. Focusing specif-

ically on fault localization, Ayalew and Mittermeir [9] present a method of “fault

tracing” for spreadsheet programs based on “interval testing” and slicing. This strat-

egy reduces the search domain after it detects a failure, and selects a single cell as

the “most influential faulty”. Woodstein [62, 63] is a web interface agent that as-

sists e-commerce debugging by allowing users to directly interact with web pages.

Users can invoke an inspector that converts web page data into buttons, which the

user can manipulate to traverse transactions. Ko and Myers [35] present a type of

fault localization via the Whyline, an “interrogative debugging” technique. Users

pose questions in the form of “Why did. . . ” or “Why didn’t. . . ” that the Why-

line answers by displaying visualizations of the program. This work builds on their

model of programming errors [34], which classifies errors and their causes. Our

approach differs from the first strategy by allowing users to interactively improve

42

feedback by providing the system with additional information, and from all these

strategies through the incorporation of the robustness feature built into Property 1.

There is other work that can help end users find faults. S2 [59] provides a vi-

sual auditing feature in Excel 7.0: similar groups of cells are recognized and shaded

based upon formula similarity, and are then connected with arrows to show dataflow.

Igarashi et al. [31] present comprehension devices that can aid spreadsheet users in

dataflow visualization and editing tasks, and finding faults. There is also recent

work to automatically detect certain kinds of errors, such as errors in spreadsheet

units [1, 7, 26] and types [4]. Our approach differs from these approaches by har-

nessing the relationship between testing and debugging to provide explicit fault

localization feedback.

There has also been work to help end users detect failures. Statistical outlier

finding [40] and anomaly detection [48] use statistical analysis and interactive tech-

niques to direct end-user programmers’ attention to potentially problematic areas

during automation tasks. Also, the assertions approach in Forms/3 automatically

detects failures in spreadsheet cells, and has been shown empirically to help end-

user programmers correct errors [16, 65].

43

CHAPTER 4

AN EXPERIMENT TO INVESTIGATE TECHNIQUE EFFECTIVENESS

Which of the three fault localization techniques described in Chapter 3 provide

effective fault localization feedback? In what ways should we consider adjusting

our techniques so that they might provide more effective feedback? Prior to this

thesis, no empirical work had been conducted that could answer these questions.

Consequently, we conducted a formative experiment—described in this chapter—

to gain insights into the effectiveness of our three techniques’ feedback at two points

in debugging: first, very early in debugging, when the fault localization techniques

provide initial feedback to the user; and second, at the end of debugging, when the

techniques have accumulated a quantitatively greater amount of testing information

with which to provide feedback. Answering questions such as those that were pre-

viously mentioned is the purpose of a formative experiment, so named because it

helps to inform the design of a system or process.1

4.1 Design

One possible experiment aimed at these questions would have been to create hy-

pothetical test suites to simulate a user’s actions in some collection of spreadsheet

1 The results of this experiment were first reported in [56].

44

programs. We could have then run each hypothetical test suite under each technique

to compare the techniques’ effectiveness. However, to tie our study more closely

to its ultimate users, we instead elected to use as test suites the testing actions that

end users actually performed in an earlier experiment. These test suites were the

subjects of our experiment.

In this previous study, no fault localization technique was present in the pro-

gramming environment. Also, the participants were not allowed to change any

formulas—they could only change the values of the input cells and communicate

testing decisions using X-marks and checkmarks. These restrictions were useful for

control and measurement purposes of the current experiment because they ensured

that all spreadsheet programs contained the same faults throughout the duration of

each session. Also, allowing program changes would carry the possibility of in-

validating previous testing decisions, which would inhibit one of our experiment’s

goals: to measure the effectiveness of our fault localization techniques as they ac-

cumulate greater amounts of testing information.

4.1.1 Materials

In the previous study that generated our current study’s test suite subjects, end-user

participants recruited from a computer literacy course were instructed to test and

identify errors in two Forms/3 spreadsheet programs: Change and Grade, which

are shown in Figures 4.1 and 4.2, respectively. Change calculates the optimized

number of dollars, quarters, dimes, nickels, and pennies that are returned when a

jar of pennies is cashed in at a bank. Grade computes a letter grade (A, B, C, D,

45

FIGURE 4.1: The Change spreadsheet program used in our first experiment. The
Quarters, Nickels, and Pennies cells contain faults.

F) based on four quiz scores and an extra credit score. Each of the two programs

contained three seeded faults, which are outlined in Tables 4.1 and 4.2.

A difference between the two spreadsheet programs with implications for fault

localization is that Change involves a narrow dataflow chain leading to a single

output, whereas Grade has several relatively independent dataflow paths.

46

FIGURE 4.2: The Grade spreadsheet program used in our first experiment. The
EC Award, LetterGrade, and ErrorsExist? cells contain faults.

4.1.2 Procedures

The previous study began with the end-user participants being given a brief tutorial

to familiarize themselves with the Forms/3 environment and WYSIWYT testing

methodology, which was described in Chapter 2. The tutorial taught the use of

placing checkmarks and X-marks, but did not include any testing or debugging

strategy content. We led the participants through tasks in the Forms/3 environment,

with guidance at each step. The participants completed these guided tasks on their

own machines. Participants were free to ask questions or seek clarifications during

the tutorial.

47

Cell Name Faulty Formula Correct Formula

Quarters if (jar of pennies - (100 * if (jar of pennies - (100 *
Dollars)> 75) then 3 else Dollars)� 75) then 3 else
(if (jar of pennies - (100 * (if (jar of pennies - (100 *
Dollars)� 50) then 2 else Dollars)� 50) then 2 else
(if (jar of pennies - (100 * (if (jar of pennies - (100 *
Dollars)� 25) then 1 Dollars)� 25) then 1
else 0)) else 0))

Nickels if (jar of pennies - (100 * if (jar of pennies - (100 *
Dollars) - (25 * Quarters) - Dollars) - (25 * Quarters) -
(10 * Dimes)> 5) then 1 (10 * Dimes)� 5) then 1
else 0 else 0

Pennies jar of pennies - (100 * jar of pennies - (100 *
Dollars) - (25 * Quarters) - Dollars) - (25 * Quarters) -
(10 * Dimes) (10 * Dimes) - (5 * Nickels)

TABLE 4.1: The faults seeded in the Change task.

After the tutorial, participants were given the Change and Grade spreadsheet

programs in varying order, with instructions to try input values and mark cells con-

taining correct values with checkmarks, and cells containing incorrect values with

X-marks. During the course of this study, we recorded the testing actions of each

participant into an electronic transcript.

For our current study, these recorded transcripts were our subjects. We ran these

recorded transcripts through a tool that replays the testing actions contained therein

to extract the test values the users entered into input cells, as well as the cells in

which they placed X-marks or checkmarks.

48

Cell Name Faulty Formula Correct Formula

LetterGrade if ErrorsExist? = 1 then if ErrorsExist? = 1 then
error else (if error else (if
Total Score� 90 Total Score� 90
then “A” else (if then “A” else (if
Total Score� 80 Total Score� 80
then “B” else (if then “B” else (if
Total Score� 70 Total Score� 70
then “C” else (if then “C” else (if
Total Score� 50 Total Score� 60
then “D” else “F”)))) then “D” else “F”))))

EC Award if ExtraCredit> 25 if ExtraCredit> 25
then 5 else (if then 5 else (if
ExtraCredit� 20 ExtraCredit� 20
then 2 else 0) then 3 else 0)

ErrorsExist? if quiz1> 100 or quiz2 if quiz1> 100 or quiz2
> 110 or quiz3> 100 > 100 or quiz3> 100
or quiz4> 100 or or quiz4> 100 or
ExtraCredit> 100 then ExtraCredit> 100 then
1 else 0 1 else 0

TABLE 4.2: The faults seeded in the Grade task.

4.1.3 Measures for Evaluation

The experiment reported in this chapter seeks to measure theeffectivenessof a fault

localization technique. For this experiment, we define the effectiveness of a fault

localization technique as its ability to correctly and visually differentiate the correct

cells in a program from those cells that contain faults. The better job a technique

does in visually distinguishing a program’s faulty cells from its correct cells, the

more effective the technique. Thus, we measure effectiveness by measuring thevi-

sual separationbetween the faulty cells and the correct cells of each program. For

49

this experiment, our effectiveness metric subtracts the average fault likelihood esti-

mated for the correct cells from the average fault likelihood estimated for the faulty

cells. (Subtraction is used instead of calculating a ratio because the fault likeli-

hood ranges form an ordinal, not a ratio, scale.) Positive effectiveness is preferable

to negative effectiveness, and a greater effectiveness indicates a better distinction

between faulty and non-faulty cells.

We measure effectiveness at two points in time: (1) at the end of testing af-

ter all information has been gathered; and (2) very early, just after the first failure

is observed (regardless of whether successful tests have occurred). The reason for

measuring visual separation at the end of testing is because this is the point at which

the greatest amount of testing information is available for providing fault localiza-

tion feedback. The reason for measuring after the first failure (X-mark) is because

it is at this point that a technique would first give a user visual feedback. This initial

visual feedback may be flawed because the technique has very little information

upon which to base its estimations. However, initial feedback is important because

it may influence the subsequent actions of the user.

4.1.4 Threats to Validity

Every experiment has threats to the validity of its results2, and these threats must

be considered in order to assess the meaning and impact of results. This section

discusses potential threats to the validity of our experiment and, where possible,

2 Readers are referred to [66] for a general discussion of validity evaluation and a threats classifi-
cation.

50

how we attempted to mitigate the impact of these threats on our results. The threats

we discuss include: (1) threats to internal validity (could other factors be responsi-

ble for our results), (2) threats to construct validity (are the results yielded by this

experiment based on appropriate information), (3) threats to external validity (to

what extent could our results be generalized), and (4) threats to conclusional va-

lidity (what are the limitations of the conclusions drawn from this experiment, and

how could a stronger experiment be designed).

4.1.4.1 Threats to Internal Validity

The specific faults in the experiment’s programs may have contributed to our results.

Unfortunately, the specific faults could be responsible for the results of any experi-

ment we might conduct, so our results must always be interpreted in the context of

this limitation.

4.1.4.2 Threats to Construct Validity

The effectiveness metric used in this experiment may not accurately reflect the fault

localization feedback provided by our techniques. While our results should be con-

sidered in light of this threat, it is also important to note that this experiment was

designed to be a formative experiment to shed some light on the effectiveness of

our previously unevaluated techniques. Future studies could address this concern

by employing a variety of metrics to measure fault localization effectiveness.

51

4.1.4.3 Threats to External Validity

Program representativeness is an issue facing this experiment. The spreadsheet pro-

grams used in this experiment are relatively small, and therefore might not resemble

those used in practice. Another threat is the selection of faults in the two programs.

To reduce this threat, experienced Forms/3 developers seeded “real-world” faults

into these programs that resemble those that the developers have seen in spread-

sheet programs, and in their own use of the Forms/3 system. Finally, this exper-

iment was conducted in the Forms/3 research language [8, 15, 18], and end users

could make different testing decisions in a different language. All of these threats

can be addressed only through repeated studies, using different programs, faults,

and languages.

4.1.4.4 Threats to Conclusional Validity

The use of additional spreadsheet programs, with varying degrees of complexity,

would enhance the power of our conclusions. We could also strengthen future stud-

ies by comparing a greater number of fault localization techniques.

4.2 Results

4.2.1 Effectiveness Comparisons

Which fault localization technique would fare the best at the point of the “First

X-mark”, when very little information is available with which to provide fault lo-

calization feedback? Would the same techniques with a favorable effectiveness at

the test suites’ first X-mark do well by the “Last Test”, at the end of the subject test

52

suites? As a statistical vehicle to shed light on these effectiveness questions, we

state the following (null) hypotheses:

H1: At the point the first failure is recorded, there is no difference in effectiveness

among the three fault localization techniques.

H2: By the time all tests have been completed, there is no difference in effective-

ness among the three fault localization techniques.

We used the Friedman test to statistically analyze the results pertaining to each

research question. This test is an alternative to the repeated measures ANOVA,

when the assumption of normality or equality is not met. Because Friedman tests

only indicate whether there is a significant difference in the effectiveness of the three

techniques, we also used the Sum of Ranks test to determine which technique(s)

were significantly more effective than other technique(s).

Table 4.3 presents the mean effectiveness calculations of the three fault local-

ization techniques. In the table, the mean effectiveness calculations are shown, with

standard deviations parenthesized. An effectiveness of 1.000 would signify that one

discrete fault likelihood range separates the faulty cells from the correct cells. The

maximum possible effectiveness is 5.000, the minimum possible effectiveness is

-5.000, and 0.000 signifies that the average fault likelihood of faulty and correct

cells is the same. The technique with the greatest average effectiveness is shown

in bold. The “n” denotes the number of subjects measured at each point. Also,�

denotes marginal statistical significance in a technique’s difference from the other

techniques (0.10 level of significance), * denotes a difference significant at the 0.05

level, and ** at the 0.01 level.

53

First X-mark Last Test
TC BL NC TC BL NC

Change -0.212 0.008� -0.201 0.466* 0.227 0.152
(n = 44) (0.798) (0.612) (1.213) (0.812) (0.593) (0.868)
Grade 0.016 0.093 0.190** 0.151* 0.031 -0.081
(n = 43) (0.879) (0.738) (1.213) (0.756) (0.597) (0.874)

TABLE 4.3: The effectiveness of the three fault localization techniques.

For the first X-mark placed in the Change spreadsheet program, statistical anal-

ysis using the Friedman test showed a marginally significant difference (at the 0.10

level) among the three techniques (df = 2; p = 0:0561). At this 0.10 level, the

Sum of Ranks test indicated that the Blocking Technique was more effective (with

marginal significance) than the Test Count and Nearest Consumers Techniques. In

the Grade program, there was a significant difference (at the 0.01 level) among the

three techniques(df = 2; p = 0:0028), and the Sum of Ranks test indicated that

the Nearest Consumers Technique was significantly more effective than Blocking

or Test Count. We therefore reject H1.

By the last test of the subject test suites, the Test Count Technique showed the

benefits of the information that it builds up over time. More tests did not help the

Blocking and Nearest Consumers Techniques as much. Friedman tests showed a

significant difference among the three techniques (Change:df = 2; p = 0:0268;

Grade:df = 2; p = 0:0109). Perhaps more revealing, by the last test, the Sum of

Ranks test revealed that the Nearest Consumers Technique had significantly worse

separations than the Test Count Technique in both programs. (The Test Count and

54

Nearest Consumers Techniques were not significantly different from the Blocking

Technique.) Given these differences, H2 must also be rejected.

We caution that the standard deviations in the data are large. These large stan-

dard deviations may not be surprising given the variations in human behavior during

interactive testing; still, we must be cautious about generalizing from these data.

The large standard deviations suggest another view of the effectiveness of our

visualizations: for how many subjects did the visualization succeed and fail? That

is, how often was the darkest cell—colored dark to attract the attention of the user—

truly faulty? At the left of Table 4.4 is the percent of test suites (subjects) in which

the darkest cell at the end of testing was indeed faulty. The right side shows the

percent of subjects in which a correct cell was erroneously colored darker than the

faulty ones. (Ties, in which the darkest correct cell and the faulty cell are the same

color, are omitted from this table.) Low false identification rates may be particularly

important to end users, who may be relying on the visualizations for guidance in

finding the faults.

True Identifications False Identifications
TC BL NC TC BL NC

Change 18.18% 13.64% 31.82% 11.36% 13.64% 9.09%
Grade 44.19% 51.16% 39.53% 6.98% 11.63% 16.28%

TABLE 4.4: Is the darkest cell faulty at the end of testing?

55

4.2.2 Robustness

As explained in Chapter 1, empirical evidence suggests that end users engaging

in interactive testing are likely to make some mistakes [45, 58]. For example, a

user might pronounce a test successful when in fact it reveals a failure. A fault

localization technique may not be useful, regardless of its effectiveness, if it cannot

withstand such mistakes.

To consider this issue, of the 44 subjects for the Change spreadsheet program,

we isolated 29 that contained either a wrong X-mark or a wrong checkmark. Sim-

ilarly, 21 of the 43 subjects for the Grade program contained an erroneous mark.

We refer to subjects with no erroneous marks as “perfect”, and refer to the others

as “imperfect”. Given this information, we form the following (null) hypotheses to

investigate robustness.

H3: At the point the first failure is recorded, there is no significant difference in

effectiveness among the three fault localization techniques for “perfect” sub-

jects.

H4: By the time all tests have been completed, there is no significant difference

in effectiveness among the three fault localization techniques for “perfect”

subjects.

H5: By the time all tests have been completed, there is no significant difference

in effectiveness among the three fault localization techniques for “imperfect”

subjects.

Table 4.5 contains the data for the perfect subjects. When restricted to these sub-

jects, the differences indicated by Friedman tests were significant only for the first

X-mark of Grade (First X-mark Change:df = 2; p = 0:6592; Last Test Change:

56

First X-mark Last Test
TC BL NC TC BL NC

Change -0.089 0.078 -0.078 0.667 0.389 0.456
(n = 15) (0.877) (0.678) (1.367) (0.893) (0.760) (0.856)
Grade 0.296 0.333 0.722* 0.037 0.000 -0.148
(n = 9) (0.735) (0.493) (0.833) (0.740) (0.577) (0.626)

TABLE 4.5: The average effectiveness, with standard deviations, for the “perfect”
subjects.

df = 2; p = 0:3618; First X-mark Grade:df = 2; p = 0:0169; Last Test Grade:

df = 2; p = 0:2359). Although this may be due simply to the smaller sample sizes

involved, another possibility is that the errors included in the full sample were part

of what distinguished the techniques from one another. We reject H3, but not H4.

Comparing data on the imperfect subjects in isolation is a way to investigate this

possibility. We cannot do a “First X-mark” comparison for these subjects, since the

sample necessarily includes both subjects with a correct first X-mark followed by

other errors, and subjects with an incorrect first X-mark, followed possibly by other

errors.

However, the data for the last test are shown in Table 4.6. In the Change

spreadsheet program, the Friedman test indicates marginally significant differences

(df = 2; p = 0:0697). The Sum of Ranks test adds to this information by indicating

that the Test Count Technique is more effective than the other two techniques at this

significance level. For the Grade program, the Friedman test indicates significant

differences (df = 2; p = 0:0433), and the Sum of Ranks test indicates that the Test

57

First X-mark Last Test
TC BL NC TC BL NC

Change Not applicable 0.362� 0.144 -0.006
(n = 29) (0.763) (0.479) (0.847)
Grade Not applicable 0.181* 0.039 -0.064
(n = 34) (0.768) (0.610) (0.936)

TABLE 4.6: The average effectiveness, with standard deviations, for the “imper-
fect” subjects.

Count Technique was significantly better than the Nearest Consumer Technique (but

not the Blocking Technique). Thus, H5 is rejected.

4.3 Discussion

4.3.1 Dataflow and Initial Fault Localization Feedback

In Section 4.2.1, note that the “First X-mark” results for the Change spreadsheet

program had most of its effectiveness calculations in the wrong direction—the cor-

rect cells tended to be colored darker than the faulty cells—but this did not happen

in the Grade program. Recall that the Change program’s cells lined up in a single

dataflow chain feeding into the final answer, whereas the Grades program had mul-

tiple dataflow chains. This may suggest that the techniques are all at a disadvantage

in providing reasonable early feedback, given a single dataflow chain. The ques-

tion of whether certain dataflow patterns are especially resistant to early feedback

about faulty cells is an interesting one, but it requires further experimentation with

additional spreadsheet programs.

58

4.3.2 Cost-Effectiveness Implications

Whenever the Friedman tests revealed a significant difference by the last test of

a test suite, Test Count was the most effective. Test Count was also fairly reli-

able, reporting a reasonably low number of false identifications, although it did not

distinguish itself in true identifications. Further, it seemed to be the most robust,

maintaining the best effectiveness even in the presence of incorrect testing deci-

sions. These positive attributes are despite the fact that it is not as expensive as the

Blocking Technique. However, it was the least effective of the three techniques at

providing early feedback.

The Blocking Technique is the most expensive, and we had expected its effec-

tiveness to be commensurately high, producing a good cost-effectiveness ratio. The

data from Section 4.2, however, do not lead to this conclusion by the end of a test

suite.

The Blocking Technique did show two important advantages, however. First,

it was always better than Test Count for the early feedback. Second, it was much

more consistent than the other two techniques, showing smaller spans and smaller

variances than the other two in most cases. These facts suggest that if effectiveness

were the only goal, a possibility might be to start with the Blocking Technique for

early feedback, and switch to the Test Count Technique in the long run.

We devised the Nearest Consumers Technique with the hope that it would ap-

proach the performance of the other two with less cost. Instead, we learned that

the Nearest Consumers Technique was less consistent that the other two techniques,

both in the comparisons with the others’ data, and in the large variance within its

results. Further, in some cases, it performed quite badly by the last test. However,

59

it sometimes performed quite well, especially in the “First X-mark” comparisons.

This may say that, despite the fact that it is less consistent than the Blocking Tech-

nique, it may still be viable to use during the early feedback period, and its lower

expense may make it the most cost-effective choice for this purpose.

4.3.3 Improving the Blocking Technique

Recall that one of the questions that we hoped to answer through this formative

experiment was: “In what ways should we consider adjusting our techniques so that

they might provide more effective feedback?” Coming into this experiment, we

had expected the Blocking Technique to outperform all other techniques due to its

consideration of dataflow relationships in its fault likelihood estimationsin addition

to its maintenance of passed and failed tests. But this was not the case: by the last

test of our subject test suites, the Test Count Technique proved to be superior to

the Blocking Technique. What characteristic does the Test Count Technique have

that the Blocking Technique does not that could account for the differences seen in

Section 4.2?

We noticed that the mathematical mapping of testing information employed by

the two techniques has a stark difference. Both techniques give failed tests twice

the weighting as passed tests. However, the ratio between the weighting of failed

and passed tests in Test Count is double that in Blocking. We hypothesized that

60

this difference may have accounted for the disparity in the effectiveness of the two

techniques.3

To investigate this, we made the mathematical mapping of the Blocking Tech-

nique more similar to that of the Test Count Technique. This was done by changing

Blocking’s ratio between the weighting of failed and passed tests so that it was iden-

tical to that of Test Count. We then duplicated the procedures of the experiment for

this “modified” Blocking Technique.

A comparison among the “original” Blocking Technique with the modified tech-

nique and Test Count is provided in Table 4.7. The modification to the mathemat-

ical mapping of the Blocking Technique did not improve effectiveness at the first

X-mark of the subject test suites. However, by the last test, this modification dramat-

ically improved technique effectiveness. In fact, the modified Blocking Technique

had nearly the same average effectiveness as the Test Count Technique, which in

Section 4.2 proved to be the superior technique at this point of measurement.

This result was quite surprising, indicating that adjusting a factor such as map-

ping may dramatically improve a technique’s effectiveness. We caution that our

ability to draw such conclusions is limited without a measurement of statistical con-

fidence in this result. However, because we simply changed one aspect of the Block-

ing Technique—the mathematical mapping—and achieved a quantitatively greater

effectiveness, the result caused us to ponder whether there is more than one inde-

3 A second difference between the techniques was that the Blocking Technique had five fault likeli-
hood ranges (“Very Low” to “Very High”), while Test Count had only four fault likelihood ranges
(“Low” to “Very High”). However, a greater amount of fault likelihood ranges was seen as more
of an asset to the Blocking Technique, so we decided not to isolate this particular factor.

61

First X-mark
Orig-BL Mod-BL TC

Change 0.008 -0.201 -0.212
(n = 44) (0.612) (0.775) (0.798)
Grade 0.093 0.078 0.016
(n = 43) (0.738) (0.849) (0.879)

Last Test
Orig-BL Mod-BL TC

Change 0.227 0.462 0.466
(n = 44) (0.593) (0.800) (0.812)
Grade 0.031 0.159 0.151
(n = 43) (0.597) (0.999) (0.756)

TABLE 4.7: A comparison of the “original” Blocking Technique (Orig-BL) de-
scribed in Section 3.2.1, the “modified” Blocking Technique (Mod-BL), and the
Test Count Technique (TC).

pendent factor involved a fault localization technique’s effectiveness. In the next

two chapters, we describe the steps we took to investigate this possibility.

62

CHAPTER 5

TWO FACTORS INFLUENCING FAULT LOCALIZATION TECHNIQUES

We observe that any fault localization approach that includes some form of re-

porting or feedback to a human is composed of two orthogonal factors1:

� Information Base:This factor is theinformationused by a technique to esti-

mate fault likelihood. To abstract away implementation details such as data

structures or algorithmic details, we use this term to refer to only the type of

information used and the circumstances under which it is maintained.

� Mapping:This factor is how a technique maps the information base into fault

localization feedback. Once again, we do not consider implementation details

regarding specifically how such a mapping occurs.

For example, TARANTULA [32], a fault localization technique for traditional

programming languages, uses a set of passed and failed tests as its information

base. As its mapping, two mathematical formulas calculate (1) a color representing

each statement’s participation in testing, and (2) the technique’s confidence in the

correctness of each color.

1 One could consider the specific mechanisms used to communicate fault likelihood to a user as a
third factor. We do not discuss this factor in this chapter because the visualization mechanisms
of communicating fault likelihood estimations are highly dependent on the targeted environment.
Also, these mechanisms are unlikely to impact theactual estimationsmade by the technique,
which are usually based on the information maintained by the technique and how that information
is mapped into fault localization feedback.

63

5.1 Information Bases

To support the behavior of a fault localization technique, information must be stored

and maintained by the technique (or the surrounding environment). Each of our

three techniques maintains a unique base of information that is used to achieve

the behavior described in Chapter 3. We draw from that chapter to describe each

technique’s information base, which we refer to as I-TC, I-BL, and I-NC for the

remainder of this thesis.

� Test Count(I-TC). The information base of the Test Count Technique tracks,

for each cellc, the set of passed and failed tests that dynamically executec.

This information base is similar to that used in TARANTULA [32].

� Blocking(I-BL). There are two aspects to this information base. Like I-TC,

I-BL maintains a list of all passed and failed tests for each cell. However,

to achieve its “blocking” behavior, I-BL also uses the dataflow relationships

between each cell to allow tests to “block” other tests from reaching certain

cells under the circumstances described in Chapter 3. This information base

is similar to that used in dicing [21, 39].

� Nearest Consumers(I-NC). This base tracks only (1) the current fault like-

lihood of every cell in the program, and (2) the current testing decision for

each cellaffected by the current test caseso as to adjust for trends in testing

decisions. This “discount” information base is more modest than that used by

most other fault localization techniques in the literature.

Note that, because the context for this discussion isinteractivefault localization,

each of these information bases is immediately updated whenever any action is

taken by a user that affects the contents of the base, potentially interfering with the

64

environment’s interactivity. One reason to compare these information bases, then,

is to learn whether it is possible for a modest version such as I-NC to compete in

effectiveness with the other two more extensive information bases.

5.2 Mappings

The manner in which our techniques draw from the information bases to estimate

fault likelihood is through the mapping factor. Mappings transform information

bases into fault localization feedback that fulfills the goals outlined at the beginning

of Chapter 3.

Many mappings are possible, but it would not be feasible to compare them all.

Further, doing so is not warranted until we learn whether mapping is important to

a technique’s effectiveness. Thus, we use the three particular mappings from our

three fault localization techniques as a vehicle for investigating the importance of

mapping as an independent factor. We refer to our three mappings techniques as

M-TC, M-BL, and M-NC for the remainder of this thesis.

� Test Count(M-TC). The Test Count technique’s mapping ensures that the

fault likelihood of a cellc is directly proportional to the number ofc’s failed

tests, and inversely proportional to the number ofc’s passed tests. It has the

characteristic of mapping information bases to four fault likelihood values,

and begins by assigningc the lowest fault likelihood if it contributes to a

single failure (X-mark), thereby allowing fault likelihood to build with further

failures.

� Blocking(M-BL). This mapping is similar to M-TC, except that it supports

five, rather than four, fault likelihood values, and begins by assigningc the

65

second lowest fault likelihood value so as to be able to build but also to reduce

a cell’s fault likelihood value when a test blocks fault likelihood propagation

to it. Also, as presented in Chapter 3, the weighting assigned to passed and

failed tests in M-BL is different than that used in M-TC.

� Nearest Consumers(M-NC). This mapping computes an adjusted average of

the fault likelihood of the cells to whichc directly contributes. This calcu-

lated mean is adjusted as described in Chapter 3 based on trends in current

testing decisions. It also supports five fault likelihood values, and begins by

assigningc the third value so as to allow viability of increasing or decreasing

fault likelihood values as the cell’s neighbors’ fault likelihoods increase and

decrease.

These mappings have another important characteristic. A previous study investi-

gating the strategies and behaviors of end-user programmers using fault localization

techniques [45, 58] found that end-users often make mistakes when interactively

testing or debugging their programs. In consideration of this, each of our mappings

incorporates a “robustness” feature (labeled “Property 1” in Chapter 3) that ensures

that any cell that might have contributed to the computation of an incorrect value

(failure) will be assigned some positive fault likelihood. This property ensures that

if there had been even one correctly placed X-mark involving a cell, ensuing incor-

rect checkmarks could not completely remove the cell from a user’s search space.

Although each mapping comes from a different technique, all mappings have

two characteristics: (1) some number of fault likelihood values possible, and (2)

an “initial” value. Later in this thesis, when we refer to applying a mapping to

an information base, we refer to applying these two characteristics. Note that we

66

do not attempt to tease apart the influences these characteristics might have, but

simply consider them an atomic unit to learn whether mapping in general can have

an impact on technique effectiveness.

To our knowledge, no previous work has considered the impact that a mapping

alone might have on the effectiveness of a particular fault localization technique.

Instead, any results pertaining to effectiveness are attributed to the technique as a

whole (primarily to its reasoning mechanisms). A contribution of this thesis is to

show that mapping must be separated as a factor from the information base in un-

derstanding effectiveness results. Otherwise, the effectiveness (or ineffectiveness)

of a technique may be wrongly attributed to the underlying information base, when

instead it is simply an impact of the mapping.

5.3 Evaluation of Interactive Fault Localization Techniques

In considering how to evaluate interactive fault localization techniques for end

users, we reflect again on an important difference between end-user and profes-

sional software development that was outlined in Chapter 1. Many traditional fault

localization techniques report feedback only at the end of a batch processing of in-

formation. This point of maximal system reasoning potential—when the system has

its best (and only) chance of producing correct feedback—is therefore the appropri-

ate point to measure these techniques.

Given the interactive nature of end-user environments, however, debugging, and

therefore fault localization use, occurs not just at the end of testing, butthroughout

the testing process. Measuring technique effectiveness only at the end of testing

would thus ignore most of the reporting being done by the interactive technique.

67

Ideally, then, we should measure at every point at which a user receives feed-

back. However, it is not statistically viable to measure at all feedback points, be-

cause not every point will be reached by enough subjects to allow comparison.

Therefore, in the upcoming experiment, we measured at the following points where

fault localization feedback is reported:

� First X-mark. When a failure is first reported by users (in our environment,

signaled by an X-mark), theyimmediatelyreceive fault localization feedback.

We term this the beginning of adebugging session. (X-marks initiate such

sessions only when no other session is already in progress.) Because this

point marks the first (and perhaps only) opportunity for techniques to provide

feedback, we measure technique effectiveness here.

� Second X-mark.The second X-mark’s computations are based on a greater

quantity of information than the first X-mark, so measuring at this point helps

to gauge effectiveness trends over time. For the same reason, we measured

at the third X-marks, fourth X-marks, and so on, but the participants in the

upcoming experiment kept their debugging very incremental, which caused

almost all debugging sessions to consist of two or fewer X-marks. Thus, we

do not analyze marks beyond the second X-mark (except as they impact the

fault localization feedback at the next point of measurement).

� Last Test.When users find the cause of a failure (a fault), they oftenimme-

diately try to fix it. This point includes at least one X-mark and any number

of checkmarks, and denotes the end of a debugging session. As such, it is the

feedback point at which fault localization has the most information available

to it, so technique effectiveness is also measured here.

68

Two points should become evident through this discussion. First, in interactive

end-user environments, we clearly cannot measure technique effectiveness only at

the end of testing, because doing so would not capture usage of the technique before

the end of all testing actions. Second, while it would be possible to measure at addi-

tional feedback points in a debugging session, for reasons of statistical comparison,

it was necessary to choose points that occuruniformlyacross all sessions.

We note that the need to evaluate at such points is not specific to our particular

experiment. Rather, because the traditional measurement point of evaluating fault

localization—at the end of testing or debugging—is insufficient in the domain of

interactive debugging,anyinteractive fault localization technique must be evaluated

on the basis of multiple feedback points. Without doing so, the experiment would

be omitting most of the data reported by the technique.

69

CHAPTER 6

AN EXPERIMENT TO INVESTIGATE TWO ORTHOGONAL FACTORS

IN FAULT LOCALIZATION

How important is each orthogonal factor of a fault localization technique to

the effectiveness of that technique? Given the evidence of mistakes in interactive

end-user testing, does each factor separately impact technique effectiveness in the

presence of unreliable information? To shed some insight into these questions, we

conducted an experiment investigating the following research questions:

RQ1: How do differences in information bases affect the effectiveness of a fault

localization technique?

RQ2: How do differences in mappings affect the effectiveness of a fault localization

technique?

RQ3: How does inaccurate information affect information bases and technique ef-

fectiveness?

RQ4: How does inaccurate information affect mappings and technique effective-

ness?

One reason to investigate RQ1 in the context of our spreadsheet experiments

is that the three information bases we have considered in that context are markedly

different in cost. If there is no difference in their effectiveness, we can safely choose

the least expensive; and if there is a difference in their effectiveness, that informa-

tion can lend insights into which one to pursue.

70

Previous fault localization research often evaluates techniques as a whole, with-

out considering the specific factors that contribute to observed results. We devised

RQ2 because we suspected that mapping alone could be an important factor in de-

termining technique effectiveness.

Our final two research questions were inspired by the unreliability in interactive

end-user testing, which we have seen in previous empirical work [45, 58]. Differ-

ences in the information bases and mappings may be exaggerated, or diminished,

when isolating situations where techniques must operate in the presence of unreli-

able information.

6.1 Design

In formulating our experiment, we considered three possible methodologies for

gathering sources of data. The first possible methodology was to follow the clas-

sic human-subjects approach: gather participants for each possible mapping and

information base combination and compare technique effectiveness across groups.

This methodology has the advantage of eliciting test suites from real end users, but

it has two drawbacks. First, given the nine possible combinations of information

bases and mappings (techniques), it would require a very large number of subjects

for proper statistical comparison. Second, and most importantly, each technique

would be given differing testing actions, thereby making it impossible to ensure

that differences in test suites were not confounding any results.

A second possible methodology was to follow a classic test suite generation

approach: generate hypothetical test suites according to some criterion, and select

(randomly or according to other criteria) from these test suites to simulate end users’

71

testing actions. We could then run each selected test suite under each technique, and

compare effectiveness. This methodology features the tight controls we sought, but

the test suites could not be tied to our ultimate users, and may not be representative

of real end-user testing actions.

We chose instead to adopt a third methodology that draws upon advantages from

both of the above, while avoiding their drawbacks. We obtained actual testing ac-

tions from real end users, and then uniformly applied these actions across all map-

ping and information base combinations. The test suites, as defined by the testing

actions that the end users performed, were the subjects of our experiment. These

test suites were sampled according to the methods outlined in Section 5.3.

6.1.1 Participants

To obtain the necessary test suites as subjects, we recruited 20 students (18 un-

dergraduate students and 2 graduate students) from Oregon State University. We

attempted to recruit students with spreadsheet experience because we did not want

the learning of spreadsheet functionality to be a factor in our experiment. Of the 20

participants, 17 had at least some previous spreadsheet experience. We also sought

participants without any personal or professional programming experience in order

to make our participants more representative of real end users. (It is fairly common

these days for business and engineering students to take a high school or college

programming class.) Only one participant had professional programming experi-

ence, which consisted of writing a few basic spreadsheet macros using Visual Basic

during a summer internship. The background of the 20 participants is summarized

in Table 6.1. In the education category of this table, “LA” encodes the number

72

of liberal arts participant, “Bus” encodes business participants, “Eng” encodes en-

gineering participants, and “GPA” encodes the average grade point average of all

20 participants. In the spreadsheet and programming categories, “HS” encodes the

number of participants that used spreadsheets (or programmed) in a high school

class, “C” encodes use in a college class, “Per” encodes personal use, and “Pro”

encodes professional use.

In order for participants to include the use of a fault localization technique in

their testing actions, some technique had to be incorporated into the environment

for use by the participants. Because of their successes in Chapter 4 and earlier

empirical work [45, 58], we chose to incorporate the I-TC information base with

the M-BL mapping into the environment described in Chapters 2 and 3. We then

applied the testing actions collected using this technique across all information base

and mapping combinations.

6.1.2 Materials

The experiment utilized two spreadsheet programs, Gradebook and Payroll (shown

in Figures 3.1 and 6.1, respectively). To make our programs representative of real

end-user spreadsheet programs, Gradebook was derived from an Excel spreadsheet

Gender Education Spreadsheet Programming
M F LA Bus Eng GPA HS C Per Pro HS C Per Pro
11 9 6 11 3 3.19 8 16 9 8 3 8 0 1

TABLE 6.1: A summary of the participants’ general, educational background, pre-
vious spreadsheet experience, and previous programming experience.

73

FIGURE 6.1: The Payroll task.

program of an (end-user) instructor, which we ported into an equivalent Forms/3

spreadsheet program. Payroll was a spreadsheet program designed by two Forms/3

researchers from a payroll description from a real company.

These spreadsheet programs were seeded with five faults created by real end

users. To obtain these faults, we provided three separate end users with the follow-

ing: (1) a “template” spreadsheet for each program with cells and cell names, but no

cell formulas; and (2) a description of how each spreadsheet program should work,

which included sample values and correct results for some cells. Each person was

given as much time as he or she needed to design the spreadsheet program using the

template and the description.

From the collection of faults left in these end users’ final spreadsheet programs,

we chose five according to Allwood’s classification system [5]. Under Allwood’s

system, mechanical faults include simple typographical errors or wrong cell refer-

ences. Logical faults are mistakes in reasoning and are more difficult to correct than

74

mechanical faults. An omission fault is information that has never been entered into

a cell formula, and is the most difficult to correct [5].

When classifying these faults, we realized that Allwood’s scheme does not al-

ways clearly differentiate types of faults. For example, the scheme does not specify

how to distinguish typographical mistakes (mechanical faults) from mistakes in rea-

soning (logical faults). In our study, if a seeded fault was a single incorrect character

adjacent on the keyboard to the correct character (e.g., a 5 that should have been a

4), the fault was classified as a “mechanical” fault—the result of a typographical

error. Faults were also classified as mechanical faults if they were due to mistakes

in the placement of parentheses, erroneous operators, or incorrect cell references. If

the fault was missing information, such as a missing cell reference, subexpression,

or logical construct, it was classified as an “omission” fault. Otherwise, the fault

was classified as a “logical” fault.

We seeded Gradebook with three mechanical faults, one logical fault, and one

omission fault, and Payroll with two mechanical faults, two logical faults, and one

omission fault. These faults are outlined in Tables 6.2 and 6.3. Payroll was intended

to be the more difficult program due to its larger size, greater level of dataflow and

intertwined dataflow relationships, and more difficult faults.

6.1.3 Procedures

After completing a background questionnaire, participants were given a brief tuto-

rial to familiarize them with the environment. In the tutorial, participants performed

actions on their own machines with guidance at each step. The tutorial taught use

of WYSIWYT (checkmarks and associated feedback), but did not include any de-

75

Cell Name Faulty Formula Correct Formula
(Fault Type)

Quiz Avg ((Quiz1 + Quiz2 + Quiz3 ((Quiz1 + Quiz2 + Quiz3
(Mechanical — + Quiz4 + Quiz5) - (min + Quiz4 + Quiz5) - (min
Typographical) Quiz1 Quiz2 Quiz3 Quiz4 Quiz1 Quiz2 Quiz3 Quiz4

Quiz5)) / 5 Quiz5)) / 4
else 0 else 0

Midterm Avg Midterm1 Perc + (Midterm1 Perc +
(Mechanical — Midterm2 + Midterm2 +
Parentheses) CurvedMidterm3 - (min CurvedMidterm3 - (min

Midterm1 Perc Midterm2 Midterm1 Perc Midterm2
CurvedMidterm3) / 2 CurvedMidterm3)) / 2

CourseAvg (Quiz Avg * 0.4) + (Quiz Avg * 0.4) +
(Mechanical — (Midterm Avg * 0.4) + (Midterm Avg * 0.4) +
Operator) (Final Percentage * (Final Percentage *

0.2) / 10 0.2)
ExamAvg (Midterm Avg + (2 * Midterm Avg +
(Logical) Final Percentage) / 3 Final Percentage) / 3
CurvedMidterm if Midterm3> 0 if Midterm3> 0
(Omission) then 2 then Midterm3 + 2

TABLE 6.2: The faults seeded in the Gradebook task.

bugging or testing strategy content. We also did not teach use of fault localization;

rather, participants were introduced to the mechanics of placing X-marks and given

time to explore any aspects of the feedback that they found interesting. At the end

of the tutorial, the participants were given five minutes to explore the program they

were working on during the tutorial to allow them to work further with the features

taught in the tutorial.

After the tutorial, participants were given the Gradebook and Payroll programs

(tasks) with instructions to test and correct any errors found in the programs. The

participants were also provided with two correct sequences of input and output for

76

Cell Name Faulty Formula Correct Formula
(Fault Type)

MarriedWithHold if GrossPay ¡ 248 if AdjustedWage ¡ 248
(Mechanical — then 0 else (GrossPay then 0 else (Adjusted-
Reference) - 248) * 0.10 Wage - 248) * 0.10
AdjustedGrossPay GrossPay - GrossPay -
(Mechanical — PreTaxChild Care PreTaxChild Care
Reference) - EmployeeInsurCost - NetInsurCost
SingleWithHold if AdjustedWage ¡ 119 if AdjustedWage ¡ 119
(Logical) then 0 else (Adjusted- then 0 else (Adjusted-

Wage - 248) * 0.10 Wage - 119) * 0.10
SocSec if GrossOver87K = 0 if GrossOver87K = 0
(Logical) then (GrossPay * then GrossPay *

0.062 * 0.0145) else 0.062 else (GrossPay
(Omission) (87000 * GrossPay * - GrossOver87K) *

0.062 * 0.0145) 0.062

TABLE 6.3: The faults seeded in the Payroll task. The SocSec cell has a fault in
the “then” clause and a separate fault in the “else” clause. The fault in the “else”
clause was classified as an omission fault because it was deemed that the clause was
missing information regarding subtracting the amount over $87,000 from the gross
pay before taking the tax of 6.2%.

each task to facilitate testing. The experiment was counterbalanced with respect to

task order so as to distribute learning effects evenly. The tasks necessarily involved

time limits—set at 20 minutes for Gradebook and 30 minutes for Payroll—to ensure

participants worked on both spreadsheet programs, and to remove possible peer in-

fluence of some participants leaving early. To obtain the participants’ testing actions

during these two tasks, the actions by each participant were recorded into electronic

transcripts.

77

6.1.4 Measures For Evaluation

As in Chapter 4, we define effectiveness as a technique’s ability to correctly and

visually differentiate the correct cells in a spreadsheet program from those cells that

actually contain faults.

In this experiment, we considered two notions of effectiveness, resulting in two

possible effectiveness metrics. The first possibility was to use the metric in Chapter

4, measuring the visual separation between all faulty cells and all correct cells of

each spreadsheet program, regardless of whether those cells are colored or not. We

abbreviate this metric Eff-All. The second possibility is to consider only those

faulty and correct cellsthat are actually coloredby the fault localization technique.

By disregarding the cells that are not colored by a fault localization technique, this

metric especially focuses on how well the technique prioritizes the sequence of the

search by coloring certain cells darker than others. We abbreviate this metric Eff-

Color.

As before, effectiveness is calculated by subtracting the average fault likelihood

of the appropriate faulty cells from the average fault likelihood of the appropriate

correct cells. Positive effectiveness is preferable, and a greater effectiveness indi-

cates a better distinction between faulty and non-faulty cells. These effectiveness

metrics are the dependent variable of our experiment, and are employed at every

feedback point outlined in Section 5.3.

6.1.5 Threats to Validity

As in Chapter 4, we discuss the threats to this experiment’s validity and, where

possible, how we attempted to mitigate the impact of these threats on our results.

78

6.1.5.1 Threats to Internal Validity

The specific types of faults seeded in a program can affect fault localization results.

To reduce this threat, as described in Section 6.1.2, we selected faults according

to Allwood’s classification scheme [5] to ensure that different types of faults were

included.

As mentioned in Section 6.1.1, in order to apply the same test suites uniformly

across all techniques, we had to obtain suites using a single information base and

mapping, and we chose the I-TC information base and M-BL mapping. It is pos-

sible that the specific actions taken by participants, in response to fault localization

feedback, would have varied had a different information base or mapping been cho-

sen. This tradeoff was necessary in order to obtain uniform test suites, as we have

already explained. Had we chosen a design that allowed for varying testing actions,

we would have risked confounding the independent variable—information base or

mapping selection—with a second variable of varying testing actions.

Another threat to the internal validity of the experiment is the possibility that

participants may not have understood programs’ functionality sufficiently to correct

the faults. Also, the study’s time limits could have interacted with the learning

styles of some participants. However, as described in Section 6.1.3, one reason our

study involved time limits was to eliminate another threat to internal validity: peer

influence as the result of some participants leaving early.

79

6.1.5.2 Threats to Construct Validity

It is possible that other metrics could better measure how well techniques provide

fault localization feedback. To reduce this threat, we used two metrics to measure

the effectiveness of our fault localization techniques.

We chose to measure at the First X-mark, Second X-mark, and Last Test points

because they provide a snapshot of a techniques performance with minimal feed-

back and when the feedback was sufficient for the user to determine which formula

to edit. Measuring effectiveness at other feedback points in debugging sessions

could have yielded valuable information that is not captured by our experiment de-

sign. However, our analysis reveals that the number of X-marks (failures) placed in

each session rarely exceeded two, thereby limiting the number of such points.

6.1.5.3 Threats to External Validity

Program representativeness is an issue facing our experiment. If the programs used

in our experiment did not mimic those that real end users create, our results may

not generalize. To reduce this threat, we selected “real-world” spreadsheet pro-

grams from a real end-user instructor and a real payroll description. Also, to better

control experiment conditions and ensure that subjects could complete the tasks in

the allotted time, our programs were not large. End user programs can be in varying

sizes; however, our results should be taken in the context of this limitation. Future

empirical work gathering additional empirical evidence using a greater range and

number of programs would reduce this threat.

The ability to generalize our results may also be limited by our selection of

faults. We attempted to address this issue by seeding “real-world” faults into our

80

tasks using the procedures outlined in Section 6.1.2. Also, to help control the threats

to internal validity, we selected faults from the end users according to Allwood’s

classification scheme [5]. However, this came at a cost of some external validity,

because the fault patterns of end users may differ from those introduced into our

experiment tasks.

Finally, our experiment was conducted in the Forms/3 research language [15].

However, end users may debug differently in a different language. All of these

external validity concerns can be addressed only through repeated studies, using

different programs, faults, and languages.

6.1.5.4 Threats to Conclusional Validity

The power of our conclusions would be enhanced had we used more than two

spreadsheet programs. One way we attempted to mitigate this concern was select-

ing programs with varying degrees of complexity. Our study’s conclusions would

also be strengthened had we used more than three information bases and mappings.

For this reason, we choose information bases and mappings from three distinctly

different techniques with varying costs.

6.2 Results

6.2.1 RQ1: The Information Base Factor

To investigate RQ1, which pertains to the different information bases’ impact on

technique effectiveness in isolation from the mapping factor, we compared the in-

formation bases’ effectiveness three times, once under each mapping described in

81

Section 5.2. The comparisons were done at the three feedback points described in

Section 5.3.

As a statistical vehicle for our analyses, we state the following (null) hypothe-

ses:

H1: There is no difference in the effectiveness of the three information bases with

the M-TC mapping.

H2: There is no difference in the effectiveness of the three information bases with

the M-BL mapping.

H3: There is no difference in the effectiveness of the three information bases with

the M-NC mapping.

The results using both the Eff-Color and Eff-All metrics are shown in Tables

6.4–6.6. We used the Friedman test to statistically analyze the data. This test is an

alternative to the repeated measures ANOVA when the assumption of normality or

equality is not met. (We did not run Friedman tests on the Second X-mark data due

to the small sample sizes.)

Table 6.4(a) shows marginal significance (at the 0.10 level) at the Last Test of

the Payroll task using the Eff-Color metric. Table 6.4(b) corroborates this finding,

showing significance (at the 0.01 level) at the same point using the Eff-All metric.

Therefore, we reject H1.

Similar trends were found using the M-BL mapping to isolate the information

base factor. Table 6.5(a) shows marginal significance (at the 0.10 level) and 0.01

level significance at the First X-mark and Last Test, respectively, of Payroll, while

Table 6.5(b) shows marginal significance at the Last Test of Payroll. Given these

differences, especially at the Last Test of the larger Payroll task, we reject H2.

82

First X-mark
I-TC I-BL I-NC

Gradebook 0.389 0.259 0.389
(p = 0:8948) (0.502) (0.622) (0.502)
(n = 18)
Payroll 0.000 -0.166 0.039
(p = 0:1211) (0.000) (0.404) (0.075)
(n = 13)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.000 0.166 0.000
(p = n=a) (1.000) (0.764) (1.000)
(n = 3)
Payroll 0.155 0.011 0.183
(p = n=a) (0.458) (0.122) (0.489)
(n = 5)

Last Test
I-TC I-BL I-NC

Gradebook -0.056 0.004 -0.038
(p = 0:4389) (0.539) (0.493) (0.512)
(n = 18)
Payroll 0.127 -0.118 0.210
(p = 0:0608) (0.280) (0.476) (0.497)
(n = 13)

(a) The Eff-Color metric.

First X-mark
I-TC I-BL I-NC

Gradebook 0.170 0.130 0.170
(p = 0:6065) (0.156) (0.222) (0.156)
(n = 18)
Payroll -0.041 -0.046 0.057
(p = 0:1637) (0.160) (0.115) (0.157)
(n = 13)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.133 0.133 0.133
(p = n=a) (0.231) (0.340) (0.231)
(n = 3)
Payroll 0.354 0.175 0.342
(p = n=a) (0.402) (0.181) (0.411)
(n = 5)

Last Test
I-TC I-BL I-NC

Gradebook 0.027 0.027 0.034
(p = 0:8890) (0.204) (0.204) (0.205)
(n = 18)
Payroll 0.145 0.434 0.437
(p = 0:0018) (0.388) (0.338) (0.486)
(n = 13)

(b) The Eff-All metric.

TABLE 6.4: Isolating the information base factor with mapping M-TC. The mean
(standard deviation) effectiveness values comparing the three information bases
with the M-TC mapping are shown. The information base with the greatest av-
erage effectiveness is shown in bold. The “p” denotes p-values of the Friedman
tests, and “n” denotes the number of subjects measured at each point.

Differences were even more pronounced using the M-NC mapping, as shown in

Table 6.6. This was especially true using the Eff-Color metric (Table 6.6(a)) where,

for both tasks, statistical differences were at the 0.10 level at the First X-mark, and

at the 0.05 and 0.01 levels at the Last Test. We reject H3.

Although the Friedman test reveals only whether there is a difference among the

three information bases in the measured settings, Tables 6.4–6.6 indicate that the I-

NC information base, which is the basis of the inexpensive Nearest Consumers tech-

83

First X-mark
I-TC I-BL I-NC

Gradebook 0.831 0.859 0.943
(p = 0:7165) (0.841) (1.005) (0.923)
(n = 18)
Payroll 0.294 0.347 0.487
(p = 0:1000) (0.425) (0.327) (0.397)
(n = 13)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.333 0.500 0.500
(p = n=a) (2.082) (1.803) (1.803)
(n = 3)
Payroll 0.372 0.359 0.560
(p = n=a) (0.947) (0.595) (0.830)
(n = 5)

Last Test
I-TC I-BL I-NC

Gradebook 0.265 0.331 0.376
(p = 0:4464) (1.116) (1.063) (1.034)
(n = 18)
Payroll 0.302 0.596 0.768
(p = 0:0128) (0.602) (0.532) (0.664)
(n = 13)

(a) The Eff-Color metric.

First X-mark
I-TC I-BL I-NC

Gradebook 0.351 0.368 0.376
(p = 0:6065) (0.188) (0.269) (0.185)
(n = 18)
Payroll 0.026 0.098 0.221
(p = 0:1353) (0.175) (0.293) (0.249)
(n = 13)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.350 0.433 0.433
(p = n=a) (0.541) (0.404) (0.404)
(n = 3)
Payroll 0.621 0.757 0.699
(p = n=a) (0.741) (0.593) (0.740)
(n = 5)

Last Test
I-TC I-BL I-NC

Gradebook 0.180 0.196 0.231
(p = 0:3679) (0.303) (0.384) (0.286)
(n = 18)
Payroll 0.574 0.986 0.878
(p = 0:0555) (0.505) (0.788) (0.700)
(n = 13)

(b) The Eff-All metric.

TABLE 6.5: Isolating the information base factor with mapping M-BL. The mean
(standard deviation) effectiveness values comparing the three information bases
with the M-BL mapping are shown.

nique [56], may be the most effective of the three information bases—I-NC showed

the highest average effectiveness at almost every point measured. Implications of

this will be discussed in Section 6.3.

6.2.2 RQ2: The Mapping Factor

How important is mapping alone to technique effectiveness? The tables in Section

6.2.1 are suggestive in this regard. To statistically consider whether this factor had a

84

First X-mark
I-TC I-BL I-NC

Gradebook 1.146 1.394 1.496
(p = 0:0923) (1.322) (1.374) (1.385)
(n = 18)
Payroll 0.690 0.543 0.935
(p = 0:0695) (0.784) (0.652) (0.796)
(n = 13)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.500 0.833 1.000
(p = n=a) (2.783) (2.566) (2.646)
(n = 3)
Payroll 0.693 0.542 0.936
(p = n=a) (1.170) (1.055) (1.217)
(n = 5)

Last Test
I-TC I-BL I-NC

Gradebook 0.274 0.756 0.791
(p = 0:0022) (1.519) (1.477) (1.612)
(n = 18)
Payroll 0.646 0.833 1.268
(p = 0:0199) (0.859) (0.879) (0.955)
(n = 13)

(a) The Eff-Color metric.

First X-mark
I-TC I-BL I-NC

Gradebook 0.491 0.579 0.581
(p = 0:1324) (0.315) (0.377) (0.244)
(n = 18)
Payroll 0.135 0.141 0.370
(p = 0:1382) (0.337) (0.294) (0.412)
(n = 13)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.483 0.650 0.733
(p = n=a) (0.725) (0.606) (0.643)
(n = 3)
Payroll 0.939 1.056 1.056
(p = n=a) (0.886) (0.981) (1.079)
(n = 5)

Last Test
I-TC I-BL I-NC

Gradebook 0.212 0.390 0.427
(p = 0:0072) (0.459) (0.492) (0.418)
(n = 18)
Payroll 0.894 1.212 1.246
(p = 0:1017) (0.699) (0.976) (0.965)
(n = 13)

(b) The Eff-All metric.

TABLE 6.6: Isolating the information base factor with mapping M-NC. The mean
(standard deviation) effectiveness values comparing the three information bases
with the M-NC mapping are shown.

significant impact on effectiveness, we used the Friedman test to compare the map-

pings’ effectiveness under each information base, for the following hypotheses:

H4: There is no difference in the effectiveness of the I-TC information base with

different mappings.

H5: There is no difference in the effectiveness of the I-BL information base with

different mappings.

H6: There is no difference in the effectiveness of the I-NC information base with

different mappings.

85

First X-mark
M-TC M-BL M-NC

Gradebook 0.389 0.831 1.146
(p = 0:0031) (0.502) (0.841) (1.322)
(n = 18)
Payroll 0.000 0.294 0.690
(p = 0:0060) (0.000) (0.425) (0.784)
(n = 13)

Second X-mark
M-TC M-BL M-NC

Gradebook 0.000 0.333 0.500
(p = n=a) (1.000) (2.082) (2.784)
(n = 3)
Payroll 0.155 0.372 0.693
(p = n=a) (0.458) (0.947) (1.170)
(n = 5)

Last Test
M-TC M-BL M-NC

Gradebook -0.056 0.265 0.274
(p = 0:1180) (0.539) (1.116) (1.519)
(n = 18)
Payroll 0.128 0.302 0.646
(p = 0:1220) (0.280) (0.602) (0.859)
(n = 13)

(a) The Eff-Color metric.

First X-mark
M-TC M-BL M-NC

Gradebook 0.170 0.351 0.491
(p < 0:0001) (0.156) (0.188) (0.315)
(n = 18)
Payroll -0.041 0.026 0.135
(p = 0:2490) (0.160) (0.175) (0.337)
(n = 13)

Second X-mark
M-TC M-BL M-NC

Gradebook 0.133 0.350 0.483
(p = n=a) (0.160) (0.541) (0.725)
(n = 3)
Payroll 0.354 0.621 0.939
(p = n=a) (0.402) (0.741) (0.886)
(n = 5)

Last Test
M-TC M-BL M-NC

Gradebook 0.027 0.180 0.212
(p = 0:0285) (0.204) (0.303) (0.459)
(n = 18)
Payroll 0.434 0.574 0.894
(p = 0:0025) (0.338) (0.505) (0.699)
(n = 13)

(b) The Eff-All metric.

TABLE 6.7: Isolating the mapping factor with information base I-TC. The mean
(standard deviation) effectiveness values comparing the three mappings with the
I-TC information base are shown.

As Tables 6.7–6.9 show, for all three information bases, mapping M-NC was

consistently the most effective. Even more, the Friedman tests reveal significant

differences in technique effectiveness among the different mappings at the First

X-mark and the Last Test points of measurement. These differences were almost

always significant at the 0.05 level, and often significant at the 0.01 level. Clearly,

H4, H5, and H6 must all be rejected.

86

First X-mark
M-TC M-BL M-NC

Gradebook 0.259 0.859 1.394
(p = 0:0004) (0.622) (1.005) (1.374)
(n = 18)
Payroll -0.166 0.347 0.543
(p = 0:0016) (0.404) (0.327) (0.652)
(n = 13)

Second X-mark
M-TC M-BL M-NC

Gradebook 0.167 0.500 0.833
(p = n=a) (0.764) (1.803) (2.566)
(n = 3)
Payroll 0.011 0.358 0.542
(p = n=a) (0.122) (0.595) (1.055)
(n = 5)

Last Test
M-TC M-BL M-NC

Gradebook 0.004 0.331 0.756
(p = 0:0424) (0.493) (1.063) (1.477)
(n = 18)
Payroll -0.118 0.596 0.833
(p = 0:0001) (0.476) (0.532) (0.878)
(n = 13)

(a) The Eff-Color metric.

First X-mark
M-TC M-BL M-NC

Gradebook 0.130 0.368 0.579
(p < 0:0001) (0.222) (0.269) (0.377)
(n = 18)
Payroll -0.046 0.098 0.141
(p = 0:3526) (0.115) (0.293) (0.294)
(n = 13)

Second X-mark
M-TC M-BL M-NC

Gradebook 0.133 0.433 0.650
(p = n=a) (0.340) (0.404) (0.606)
(n = 3)
Payroll 0.175 0.757 1.056
(p = n=a) (0.181) (0.593) (0.981)
(n = 5)

Last Test
M-TC M-BL M-NC

Gradebook 0.027 0.196 0.390
(p = 0:0056) (0.204) (0.384) (0.492)
(n = 18)
Payroll 0.145 0.986 1.212
(p = 0:0001) (0.388) (0.788) (0.976)
(n = 13)

(b) The Eff-All metric.

TABLE 6.8: Isolating the mapping factor with information base I-BL. The mean
(standard deviation) effectiveness values comparing the three mappings with the
I-BL information base are shown.

6.2.3 RQ3: Information Base Robustness

As our first step to investigate the pervasiveness of mistakes, we counted the num-

ber of incorrect testing decisions made in each subject (end-user test suite). In the

context of our environment, this is either a WYSIWYT checkmark, signifying a

correct value placed in a cell that really has an incorrect value; or an X-mark, sig-

nifying an incorrect value (a failure) placed in a cell that really has a correct value.

In the Gradebook task, 8.99% of the checkmarks and 5.95% of the X-marks were

incorrect. This trend continued in Payroll, where 20.62% of the checkmarks and

87

First X-mark
M-TC M-BL M-NC

Gradebook 0.389 0.943 1.496
(p = 0:0001) (0.502) (0.923) (1.385)
(n = 18)
Payroll 0.039 0.488 0.935
(p = 0:0005) (0.075) (0.397) (0.796)
(n = 13)

Second X-mark
M-TC M-BL M-NC

Gradebook 0.000 0.500 1.000
(p = n=a) (1.000) (1.803) (2.646)
(n = 3)
Payroll 0.183 0.560 0.936
(p = n=a) (0.489) (0.830) (1.217)
(n = 5)

Last Test
M-TC M-BL M-NC

Gradebook -0.039 0.376 0.791
(p = 0:0045) (0.512) (1.034) (1.612)
(n = 18)
Payroll 0.210 0.768 1.268
(p = 0:0036) (0.497) (0.664) (0.955)
(n = 13)

(a) The Eff-Color metric.

First X-mark
M-TC M-BL M-NC

Gradebook 0.170 0.376 0.581
(p < 0:0001) (0.156) (0.185) (0.244)
(n = 18)
Payroll 0.057 0.221 0.369
(p = 0:0366) (0.157) (0.249) (0.412)
(n = 13)

Second X-mark
M-TC M-BL M-NC

Gradebook 0.133 0.433 0.733
(p = n=a) (0.231) (0.404) (0.643)
(n = 3)
Payroll 0.342 0.699 1.056
(p = n=a) (0.411) (0.740) (1.079)
(n = 5)

Last Test
M-TC M-BL M-NC

Gradebook 0.034 0.231 0.427
(p = 0:0001) (0.205) (0.286) (0.418)
(n = 18)
Payroll 0.437 0.878 1.246
(p = 0:0007) (0.486) (0.700) (0.965)
(n = 13)

(b) The Eff-All metric.

TABLE 6.9: Isolating the mapping factor with information base I-BL. The mean
(standard deviation) effectiveness values comparing the three mappings with the
I-BL information base are shown.

3.33% of the X-marks were incorrect. These results corroborate the findings found

in earlier formative studies [45, 58].

Clearly, the large number of incorrect testing decisions means that the informa-

tion bases and mappings were corrupted with incorrect information. Given that such

mistakes corrupt information bases, how did these mistakes impact an information

base’s effect on technique effectiveness? To investigate this, we measured effec-

tiveness at each First X-mark, Second X-mark, and Last Testthat was in the context

88

of at least one incorrect testing decision. We isolated information bases using the

same procedure as in Section 6.2.1.

H7: There is no difference in the effectiveness of the three information bases with

the M-TC mapping when feedback is provided in the context of mistakes.

H8: There is no difference in the effectiveness of the three information bases with

the M-BL mapping when feedback is provided in the context of mistakes.

H9: There is no difference in the effectiveness of the three information bases with

the M-NC mapping when feedback is provided in the context of mistakes.

As can be seen in Tables 6.10 and 6.11, there were no significant differences

(at the 0.05 or 0.01 levels) among the techniques, so we cannot reject H7 or H8.

However, in Table 6.12, at the last test of debugging sessions, the differences in

each information base’s effectiveness were marginally significant for Payroll, and

significant (at the 0.01 level) for Gradebook. Therefore, we reject H9.

More important though, as shown in all three of these tables, all three informa-

tion bases were able to provide effective feedback (indicated by positive values in

the table) in most cases, even in the presence of user mistakes. (As one would ex-

pect, the mistakes appeared to have an impact on technique effectiveness. Although

there was almost no change in effectiveness at the First X-mark feedback point due

to incorrect testing decisions, by the Last Test feedback point, many effectiveness

measures were adversely affected.) This ability to provide effective feedback in

these scenarios may be in part due to the help of our robustness feature. However,

further research would be required in order to test this possibility.

Another interesting trend in the data is that, once again, the I-NC information

base usually showed the highest average effectiveness, even in the context of these

89

First X-mark
I-TC I-BL I-NC

Gradebook 0.769 0.436 0.769
(p = 0:8669) (1.013) (1.013) (1.013)
(n = 13)
Payroll 0.000 -0.202 0.051
(p = 0:2231) (0.000) (0.458) (0.083)
(n = 10)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.333 0.500 0.333
(p = n=a) (1.528) (1.323) (1.528)
(n = 3)
Payroll 0.292 0.067 0.314
(p = n=a) (0.505) (0.115) (0.543)
(n = 3)

Last Test
I-TC I-BL I-NC

Gradebook -0.308 -0.187 -0.285
(p = 0:3679) (0.630) (0.673) (0.608)
(n = 13)
Payroll 0.149 -0.195 0.159
(p = 0:1030) (0.286) (0.465) (0.394)
(n = 10)

(a) The Eff-Color metric.

First X-mark
I-TC I-BL I-NC

Gradebook 0.385 0.283 0.385
(p = 0:5134) (0.215) (0.295) (0.215)
(n = 13)
Payroll -0.081 -0.050 0.155
(p = 0:1211) (0.364) (0.227) (0.335)
(n = 10)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.350 0.350 0.350
(p = n=a) (0.409) (0.541) (0.409)
(n = 3)
Payroll 0.454 0.347 0.394
(p = n=a) (0.606) (0.134) (0.592)
(n = 3)

Last Test
I-TC I-BL I-NC

Gradebook 0.065 0.056 0.076
(p = 0:8669) (0.385) (0.392) (0.395)
(n = 13)
Payroll 0.704 0.403 0.609
(p = 0:0727) (0.439) (0.307) (0.478)
(n = 10)

(b) The Eff-All metric.

TABLE 6.10: Isolating the information base factor with mapping M-TC for feed-
back points that were in the context of at least one incorrect testing decision. The
mean (standard deviation) effectiveness values comparing the three information
bases with the M-TC mapping are shown.

testing mistakes. We discuss possible reasons for this superior robustness in Section

6.3.

6.2.4 RQ4: Mapping Robustness

In the context of at least one incorrect testing decision, some of the differences in

information base effectiveness tended to disappear. Would the same trend hold true

for the mapping factor?

90

First X-mark
I-TC I-BL I-NC

Gradebook 0.821 0.859 0.974
(p = 0:7165) (0.798) (1.032) (0.915)
(n = 13)
Payroll 0.262 0.317 0.500
(p = 0:1309) (0.416) (0.296) (0.398)
(n = 10)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.333 0.500 0.500
(p = n=a) (2.082) (1.803) (1.803)
(n = 3)
Payroll 0.743 0.492 0.775
(p = n=a) (0.908) (0.709) (0.999)
(n = 3)

Last Test
I-TC I-BL I-NC

Gradebook 0.036 0.128 0.190
(p = 0:4464) (1.092) (1.037) (1.007)
(n = 13)
Payroll 0.311 0.488 0.698
(p = 0:0539) (0.587) (0.394) (0.610)
(n = 10)

(a) The Eff-Color metric.

First X-mark
I-TC I-BL I-NC

Gradebook 0.363 0.386 0.397
(p = 0:6065) (0.143) (0.268) (0.132)
(n = 13)
Payroll 0.024 0.087 0.267
(p = 0:2053) (0.192) (0.319) (0.260)
(n = 10)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.350 0.433 0.433
(p = n=a) (0.541) (0.404) (0.404)
(n = 3)
Payroll 0.729 0.699 0.706
(p = n=a) (0.956) (0.746) (1.026)
(n = 3)

Last Test
I-TC I-BL I-NC

Gradebook 0.159 0.182 0.229
(p = 0:3679) (0.289) (0.405) (0.267)
(n = 13)
Payroll 0.584 0.923 0.827
(p = 0:1988) (0.541) (0.681) (0.649)
(n = 10)

(b) The Eff-All metric.

TABLE 6.11: Isolating the information base factor with mapping M-BL for feed-
back points that were in the context of at least one incorrect testing decision. The
mean (standard deviation) effectiveness values comparing the three information
bases with the M-BL mapping are shown.

H10: There is no difference in the effectiveness of the three information bases with

the M-TC mapping when feedback is provided in the context of mistakes.

H11: There is no difference in the effectiveness of the three information bases with

the M-BL mapping when feedback is provided in the context of mistakes.

H12: There is no difference in the effectiveness of the three information bases with

the M-NC mapping when feedback is provided in the context of mistakes.

91

First X-mark
I-TC I-BL I-NC

Gradebook 1.103 1.423 1.564
(p = 0:1251) (1.274) (1.484) (1.377)
(n = 13)
Payroll 0.683 0.452 0.947
(p = 0:1095) (0.789) (0.550) (0.800)
(n = 10)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.500 0.833 1.000
(p = n=a) (2.784) (2.566) (2.646)
(n = 3)
Payroll 1.278 0.850 1.235
(p = n=a) (1.001) (1.202) (1.522)
(n = 3)

Last Test
I-TC I-BL I-NC

Gradebook -0.105 0.577 0.587
(p = 0:0024) (1.364) (1.566) (1.647)
(n = 13)
Payroll 0.698 0.667 1.163
(p = 0:0665) (0.841) (0.709) (0.939)
(n = 10)

(a) The Eff-Color metric.

First X-mark
I-TC I-BL I-NC

Gradebook 0.513 0.595 0.603
(p = 0:1837) (0.198) (0.382) (0.210)
(n = 13)
Payroll 0.145 0.121 0.427
(p = 0:1390) (0.367) (0.286) (0.441)
(n = 10)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.483 0.650 0.733
(p = n=a) (0.275) (0.606) (0.643)
(n = 3)
Payroll 1.120 1.044 1.058
(p = n=a) (1.150) (1.232) (1.500)
(n = 3)

Last Test
I-TC I-BL I-NC

Gradebook 0.177 0.391 0.438
(p = 0:0078) (0.406) (0.539) (0.411)
(n = 13)
Payroll 0.937 1.113 1.174
(p = 0:4423) (0.774) (0.837) (0.959)
(n = 10)

(b) The Eff-All metric.

TABLE 6.12: Isolating the information base factor with mapping M-NC for feed-
back points that were in the context of at least one incorrect testing decision. The
mean (standard deviation) effectiveness values comparing the three information
bases with the M-NC mapping are shown.

In the context of at least one incorrect testing decision, Table 6.13 shows signifi-

cant differences in effectiveness using difference mappings. This trend continued in

Tables 6.14 and 6.15. These differences were almost always significant at the 0.05

or 0.01 levels, so we must reject H10, H11, and H12.

92

First X-mark
M-TC M-BL M-NC

Gradebook 0.769 0.821 1.103
(p = 0:2813) (1.013) (0.798) (1.274)
(n = 13)
Payroll 0.000 0.262 0.683
(p = 0:0536) (0.000) (0.416) (0.789)
(n = 10)

Second X-mark
M-TC M-BL M-NC

Gradebook 0.333 0.333 0.500
(p = n=a) (1.528) (2.082) (2.784)
(n = 3)
Payroll 0.292 0.743 1.278
(p = n=a) (0.505) (0.909) (1.001)
(n = 3)

Last Test
M-TC M-BL M-NC

Gradebook -0.308 0.036 -0.105
(p = 0:2847) (0.630) (1.092) (1.364)
(n = 13)
Payroll 0.149 0.311 0.698
(p = 0:1128) (0.286) (0.587) (0.841)
(n = 10)

(a) The Eff-Color metric.

First X-mark
M-TC M-BL M-NC

Gradebook 0.385 0.363 0.513
(p = 0:0038) (0.215) (0.143) (0.198)
(n = 13)
Payroll -0.081 0.024 0.145
(p = 0:0275) (0.364) (0.192) (0.367)
(n = 10)

Second X-mark
M-TC M-BL M-NC

Gradebook 0.350 0.350 0.483
(p = n=a) (0.409) (0.541) (0.725)
(n = 3)
Payroll -0.081 0.024 0.145
(p = n=a) (0.364) (0.192) (0.367)
(n = 3)

Last Test
M-TC M-BL M-NC

Gradebook 0.065 0.159 0.177
(p = 0:1905) (0.385) (0.289) (0.406)
(n = 13)
Payroll 0.704 0.584 0.938
(p = 0:0622) (0.439) (0.541) (0.774)
(n = 10)

(b) The Eff-All metric.

TABLE 6.13: Isolating the mapping factor with information base I-TC for feedback
points that were in the context of at least one incorrect testing decision. The mean
(standard deviation) effectiveness values comparing the three mappings with the
I-TC information base are shown.

6.3 Discussion

6.3.1 The Information Base Factor

The results regarding RQ1 showed that the information base factor can make a

significant difference in technique effectiveness. This result is in keeping with tra-

dition. We also found that the information bases’ differences in effectiveness were

most pronounced at the end of debugging sessions, most likely due to the increased

testing information available at the end of a session, allowing the techniques a

93

First X-mark
M-TC M-BL M-NC

Gradebook 0.436 0.859 1.423
(p = 0:0052) (1.013) (1.032) (1.484)
(n = 13)
Payroll -0.202 0.317 0.452
(p = 0:0204) (0.458) (0.296) (0.550)
(n = 10)

Second X-mark
M-TC M-BL M-NC

Gradebook 0.500 0.500 0.833
(p = n=a) (1.323) (1.803) (2.566)
(n = 3)
Payroll 0.067 0.492 0.850
(p = n=a) (0.115) (0.709) (1.202)
(n = 3)

Last Test
M-TC M-BL M-NC

Gradebook -0.187 0.128 0.577
(p = 0:1985) (0.673) (1.037) (1.566)
(n = 13)
Payroll -0.195 0.488 0.667
(p = 0:0013) (0.465) (0.709) (0.709)
(n = 10)

(a) The Eff-Color metric.

First X-mark
M-TC M-BL M-NC

Gradebook 0.283 0.386 0.595
(p = 0:0016) (0.295) (0.268) (0.382)
(n = 13)
Payroll -0.050 0.087 0.121
(p = 0:2366) (0.227) (0.319) (0.286)
(n = 10)

Second X-mark
M-TC M-BL M-NC

Gradebook 0.350 0.433 0.650
(p = n=a) (0.541) (0.404) (0.606)
(n = 3)
Payroll 0.347 0.699 1.044
(p = n=a) (0.134) (0.746) (1.232)
(n = 3)

Last Test
M-TC M-BL M-NC

Gradebook 0.056 0.182 0.391
(p = 0:0401) (0.392) (0.539) (0.539)
(n = 13)
Payroll 0.403 0.923 1.113
(p = 0:0004) (0.307) (0.681) (0.837)
(n = 10)

(b) The Eff-All metric.

TABLE 6.14: Isolating the mapping factor with information base I-BL for feedback
points that were in the context of at least one incorrect testing decision. The mean
(standard deviation) effectiveness values comparing the three mappings with the
I-BL information base are shown.

greater opportunity to differentiate themselves from each other. However, a surprise

was that effectiveness did not always get better as debugging sessions progressed—

in the case of Gradebook, all nine information bases and mappings consistently got

worse. We believe this may relate to the mistakes the users made in their testing,

a point we will return to shortly. The implied importance of the information base

factor indicates that researchers could serve end users, and the software they create,

by investing effort into devising information bases for end-user fault localization

94

First X-mark
M-TC M-BL M-NC

Gradebook 0.769 0.974 1.564
(p = 0:0040) (1.013) (0.915) (1.377)
(n = 13)
Payroll 0.051 0.500 0.947
(p = 0:0084) (0.083) (0.398) (0.800)
(n = 10)

Second X-mark
M-TC M-BL M-NC

Gradebook 0.333 0.500 1.000
(p = n=a) (1.528) (1.803) (2.646)
(n = 3)
Payroll 0.314 0.775 1.235
(p = n=a) (0.543) (0.999) (1.522)
(n = 3)

Last Test
M-TC M-BL M-NC

Gradebook -0.285 0.190 0.587
(p = 0:0354) (0.608) (1.007) (1.664)
(n = 13)
Payroll 0.159 0.698 1.163
(p = 0:0450) (0.394) (0.610) (0.939)
(n = 10)

(a) The Eff-Color metric.

First X-mark
M-TC M-BL M-NC

Gradebook 0.385 0.397 0.603
(p = 0:0008) (0.215) (0.132) (0.210)
(n = 13)
Payroll 0.155 0.267 0.427
(p = 0:0283) (0.335) (0.260) (0.441)
(n = 10)

Second X-mark
M-TC M-BL M-NC

Gradebook 0.350 0.433 1.000
(p = n=a) (0.409) (0.404) (0.643)
(n = 3)
Payroll 0.394 0.706 1.058
(p = n=a) (0.592) (1.026) (1.500)
(n = 3)

Last Test
M-TC M-BL M-NC

Gradebook 0.076 0.229 0.438
(p = 0:0115) (0.395) (0.267) (0.411)
(n = 13)
Payroll 0.609 0.827 1.174
(p = 0:0450) (0.478) (0.649) (0.959)
(n = 10)

(b) The Eff-All metric.

TABLE 6.15: Isolating the mapping factor with information base I-NC for feedback
points that were in the context of at least one incorrect testing decision. The mean
(standard deviation) effectiveness values comparing the three mappings with the
I-NC information base are shown.

techniques, just as has been done for professional programmers’ fault localization

techniques.

Another surprise was the superior effectiveness of the I-NC information base.

The first surprising aspect of this result is the fact that this information base is the

least computationally expensiveof the three we compared. The second surprising

aspect of this result is that the I-NC information base is the information base least

like those of many traditional fault localization techniques, which tend to use counts

95

of passed and failed tests (as does I-TC) or dicing-like approaches (as does I-BL) to

generate feedback.

In generalizing this experience, the first lesson to researchers may be that the

most expensive and intelligent information basemay not always be the most effec-

tive. In fact, from a cost-effectiveness standpoint, a simple, inexpensive technique

may be sufficient for end users programming in spreadsheet environments. Second,

researchers may find that techniques employing non-traditional measures generate

the most effective feedback in the spreadsheet paradigm. Future research may shed

some insights into whether similar lessons are indicated in other end-user program-

ming paradigms.

We were surprised at the role of the information base factor in the presence of

user mistakes (RQ3). We had expected that this factor would be the most important

factor in providing quality feedback in the presence of these mistakes. Contrary

to expectations, when using the M-TC and M-BL, the information base factor of-

ten did not make a significant difference in effectiveness. This comesdespite the

importance of the information base factor from the investigation in RQ1. A likely

reason is that the information bases themselves are corrupted by such mistakes.

This corruption may generally mitigate any differences among information bases.

But because significant differences were found when using the M-NC mapping to

isolate this factor, future research is needed to determine the importance of the in-

formation base factor in the presence of user mistakes by using a greater number of

information base and mapping combinations on a wider variety of subjects.

96

6.3.2 The Mapping Factor

Turning to RQ2, the role of mapping in the fault localization techniques’ perfor-

mance was quite pronounced. The significant differences occurred despite only

small distinctions among the way the three mappings were done (described in Sec-

tion 5.2).

This result has two implications. First, regarding the design of fault localization

techniques, our results suggest that because mapping plays such a critical role, great

care should be exercised in selecting what mapping to include in a fault localiza-

tion technique. The second implication concerns the evaluation of fault localization

techniques. Since the information base and mapping factors had significant,inde-

pendentroles in the techniques’ effectiveness, our results suggest that evaluating

each factor separately is necessary in order to obtain accurate information as to the

effectiveness of a fault localization technique. In fact, researchers may find that

some mappings consistently perform better than others, as we found in this partic-

ular experiment with M-NC. To our knowledge, this work is the first to formally

suggest the possible importance of evaluating each factor of a fault localization

technique separately.

The mapping factor continued to play a significant role in technique effective-

ness when considering situations where at least one incorrect testing decision had

been made (RQ4). This result may not seem terribly surprising given the results for

RQ2, but it is quite surprising given the results for RQ3, where the information base

factor often did not make a significant difference.

The immediate consequence of these results is a reinforcement of the impor-

tance of the mapping factor, and the care that researchers should take when choos-

97

ing a mapping for their own fault localization techniques. In fact, these results

suggest that the mapping factor may be even more important than the information

base factor. Further research, of course, is needed to place additional confidence in

this statement.

98

CHAPTER 7

CONCLUSIONS AND IMPLICATIONS FOR FUTURE WORK

End-user programmers are writing an unprecedented number of programs, due

in large part to the significant effort put forth to bring programming power to end

users. Unfortunately, this effort had not been supplemented by a comparable effort

to increase the correctness of these often faulty programs, especially with respect to

the debugging tasks that end-user programmers inevitably must perform.

To begin to address this need, we have been working towards bringing fault lo-

calization techniques to end users. This thesis presents algorithms for three fault

localization techniques, two of which are introduced for the first time in this thesis.

These fault localization techniques aim to reduce a user’s search space in debug-

ging, and also to prioritize the sequence of the search through that space. This

is accomplished by estimating the likelihood that each program point (in our pro-

totype, spreadsheet cells) contains a fault that contributed to failures observed by

the user, and communicating this feedback to the user using simple visual mecha-

nisms. The three techniques presented in this thesis have varying costs associated

with making these estimations, providing researchers and developers of end-user

programming environments with cost-effectiveness considerations regarding which

technique(s) to pursue.

To investigate how well these previously unevaluated techniques provide fault

localization feedback, and to find ways that we could improve the techniques, we

99

conducted a formative experiment to measure the effectiveness of each technique

at the end of testing—after all information has been gathered—and very early: just

after the first failure is observed. Measuring feedback at the end of testing is often

considered in fault localization research; however, measuring early feedback, which

is often not considered, is important because it is at this point that a technique would

first give a user visual feedback.

This investigation indicated significant differences among the effectiveness of

our techniques in both the cases of early feedback and at the end of testing. Also,

because previous research [45, 58] has indicated that end users make mistakes when

interactively testing and debugging, we investigated technique effectiveness in the

presence of mistakes in testing information. We found that there were often signif-

icant differences in the effectiveness of the fault localization feedback provided by

our techniques in the presence of mistakes. This indicates that developers of future

fault localization techniques should consider how well those techniques provide

quality feedback in the presence of mistakes.

In seeking to improve our techniques’ effectiveness in light of this experiment’s

findings, we found evidence that there exist two orthogonal factors in fault local-

ization techniques that can play important roles in providing fault localization feed-

back. To tease apart the differences between these factors and their impact on the

effectiveness of fault localization feedback, we conducted a second empirical study

to isolate the impact of these factors in fault localization. This study indicated that

both the information base and the mapping factor can each have a significant impact

on the effectiveness of fault localization techniques. In fact, the mapping factor may

play an even more critical role in technique effectiveness than the information base

factor, especially in the presence of incorrect testing information.

100

This thesis has several implications for future work into bringing interactive

fault localization techniques to end-user programmers. First, throughout the two

empirical studies in thesis, we found differences in the effectiveness of our three

fault localization techniques. Our computationally expensive techniques, designed

to harness as much testing information as possible, were at times outperformed by

our less expensive technique. Designers of future fault localization techniques may

find that some expensive fault localization techniques may not be as cost-effective

as some other less expensive techniques.

Second, this thesis evaluated fault localization techniques’ effectiveness very

early in debugging, when the techniques must provide initial feedback to the user.

Because prior fault localization research usually evaluates techniques only at the

point of maximal system reasoning potential—when the system has its best (and

only) chance of producing correct feedback—a contribution of this thesis is to break

from traditional fault localization research by highlighting the need to evaluate tech-

niques early in the interactive debugging, when very little information may be avail-

able on which to base fault localization feedback.

Third, this thesis has reinforced the need to evaluate interactive fault localiza-

tion techniques in the presence of mistakes and incorrect testing information. This

thesis has also corroborated earlier findings [45, 58] that such mistakes are com-

monly made by end users performing interactive testing and debugging in spread-

sheet environments. This contribution is important because it goes against another

traditional assumption in fault localization research: that all information provided

to the technique is correct.

Finally, our results suggest that the mapping factor may have a significant im-

pact on technique effectiveness more often than the information base factor. The

101

importance of the mapping factor provides yet another contrast to traditional fault

localization research, which has often focused solely on ways to bring bigger, better,

and faster information bases to fault localization techniques.

102

BIBLIOGRAPHY

[1] R. Abraham and M. Erwig. Header and unit inference for spreadsheets through
spatial analyses. InProceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing, Rome, Italy, September 26–29, 2004 (to ap-
pear).

[2] H. Agrawal and J.R. Horgan. Dynamic program slicing. InProceedings of
the ACM SIGPLAN ’90 Conference on Programming Language Design and
Implementation, pages 246–256, June 1990.

[3] H. Agrawal, J.R. Horgan, S. London, and W.E. Wong. Fault localization us-
ing execution slices and dataflow tests. InProceedings of the IEEE Sixth In-
ternational Symposium on Software Reliability Engineering, pages 143–151,
Toulouse, France, October 1995.

[4] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi. A type system
for statically detecting spreadsheet errors. InProceedings of the18th IEEE In-
ternational Conference on Automated Software Engineering, pages 174–183,
Montreal, Quebec, October 6–10, 2003.

[5] C. Allwood. Error detection processes in statistical problem solving.Cognitive
Science, 8(4):413–437, 1984.

[6] ANSI/IEEE. IEEE Standard Glossary of Software Engineering Terminology.
IEEE, New York, 1983.

[7] T. Antoniu, P.A. Steckler, S. Krishnamurthi, E. Neuwirth, and M. Felleisen.
Validating the unit correctness of spreadsheet programs. InProceedings of
the 26th International Conference on Software Engineering, pages 439–448,
Edinburgh, Scotland, May 23–28, 2004.

[8] J. Atwood, M. Burnett, R. Walpole, E. Wilcox, and S. Yang. Steering programs
via time travel. InProceedings of the IEEE Symposium on Visual Languages,
pages 4–11, Boulder, Colorado, September 3–6, 1996.

[9] Y. Ayalew and R. Mittermeir. Spreadsheet debugging. InProceedings of
the European Spreadsheet Risks Interest Group, Dublin, Ireland, July 24–25,
2003.

[10] M. Betts and A.S. Horowitz. Oops! Audits find errors in 49 out of 54 spread-
sheets.Computerworld, page 47, May 24, 2004.

103

[11] B. Boehm and V.R. Basili. Software defect reduction Top 10 list.Computer,
34(1):135–137, January 2001.

[12] B.W. Boehm, C. Abts, A.W. Brown, and S. Chulani.Software Cost Estimation
with COCOMO II. Prentice Hall PTR, Upper Saddle River, NJ, 2000.

[13] D. Brown, M. Burnett, G. Rothermel, H. Fujita, and F. Negoro. Generalizing
WYSIWYT visual testing to screen transition languages. InProceedings of
the IEEE Symposium on Human-Centric Computing Languages and Environ-
ments, pages 203–210, Auckland, New Zealand, October 28–31, 2003.

[14] P. Bunus and P. Fritzson. Semi-automatic fault localization and behavior ver-
ification for physical system simulation models. InProceedings of the18th
IEEE International Conference on Automated Software Engineering, pages
253–258, Montreal, Quebec, October 6–10, 2003.

[15] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. Reichwein, and S. Yang.
Forms/3: A first-order visual language to explore the boundaries of the spread-
sheet paradigm.Journal of Functional Programming, 11(2):155–206, March
2001.

[16] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, and C. Wallace.
End-user software engineering with assertions in the spreadsheet paradigm.
In Proceedings of the25th International Conference on Software Engineering,
pages 93–103, Portland, OR, May 3–10, 2003.

[17] M. Burnett, C. Cook, and G. Rothermel. End-user software engineering. In
Communications of the ACM, September 2004 (to appear).

[18] M. Burnett and H. Gottfried. Graphical definitions: Expanding spreadsheet
languages through direct manipulation and gestures.ACM Transactions on
Computer-Human Interaction, 5(1):1–33, March 1998.

[19] M. Burnett, G. Rothermel, and C. Cook. An integrated software engineer-
ing approach for end-user programmers. In H. Lieberman, F. Paterno, and
V. Wulf, editors,End User Development. Kluwer Academic Publishers, 2004
(to appear).

[20] M. Burnett, A. Sheretov, and G. Rothermel. Scaling up a ‘What You See Is
What You Test’ methodology to spreadsheet grids. InProceedings of the IEEE
Symposium on Visual Languages, pages 30–37, Tokyo, Japan, September 13–
16, 1999.

[21] T.Y. Chen and Y.Y. Cheung. On program dicing.Software Maintenance:
Research and Practice, 9(1):33–46, January–February 1997.

104

[22] C. Cook, M. Burnett, and D. Boom. A bug’s eye view of immediate visual
feedback in direct-manipulation programming systems. InProceedings of Em-
pirical Studies of Programmers: Seventh Workshop, pages 20–41, Alexandria,
VA, October 1997.

[23] C. Corritore, B. Kracher, and S. Wiedenbeck. Trust in the online environment.
In HCI International, volume 1, pages 1548–1552, New Orleans, LA, August
2001.

[24] R.A. DeMillo, H. Pan, and E.H. Spafford. Critical slicing for software fault lo-
calization. InProceedings of the International Symposium on Software Testing
and Analysis, pages 121–134, San Diego, CA, January 8–10, 1996.

[25] E. Duesterwald, R. Gupta, and M.L. Soffa. Rigorous data flow testing through
output influences. InProceedings of the2nd Irvine Software Symposium, pages
131–145, Irvine, CA, March 1992.

[26] M. Erwig and M. Burnett. Adding apples and oranges. InProceedings of the
4th International Symposium on Practical Aspects of Declarative Languages,
pages 173–191, January 2002.

[27] M. Fisher, M. Cao, G. Rothermel, C.R. Cook, and M.M. Burnett. Automated
test case generation for spreadsheets. InProceedings of the24th International
Conference on Software Engineering, pages 141–151, Orlando, Florida, May
19–25, 2002.

[28] M. Fisher II, D. Jin, G. Rothermel, and M. Burnett. Test reuse in the spread-
sheet paradigm. InProceedings of the IEEE International Symposium on Soft-
ware Reliability Engineering, pages 257–268, November 12–15, 2002.

[29] M. Francel and S. Rugaber. Fault localization using execution traces. InPro-
ceedings of the ACM30th Annual Southeast Regional Conference, pages 69–
76, Raleigh, North Carolina, 1992.

[30] D.S. Hilzenrath. Finding errors a plus, fannie says; mortgage giant tries to
soften effect of $1 billion in mistakes.The Washington Post, October 31,
2003.

[31] T. Igarashi, J.D. Mackinlay, B.-W. Chang, and P.T. Zellweger. Fluid visu-
alization of spreadsheet structures. InProceedings of the IEEE Symposium
on Visual Languages, pages 118–125, Halifax, Nova Scotia, September 1–4,
1998.

[32] J.A. Jones, M.J. Harrold, and J. Stasko. Visualization of test information to
assist fault localization. InProceedings of the24th International Conference
on Software Engineering, pages 467–477, Orlando, Florida, May 19–25, 2002.

105

[33] M. Karam and T. Smedley. A testing methodology for a dataflow based visual
programming language. InProceedings of the IEEE Symposium on Human-
Centric Computing Languages and Environments, pages 280–287, Stresa,
Italy, September 5–7, 2001.

[34] A.J. Ko and B.A. Myers. Development and evaluation of a model of program-
ming errors. InProceedings of the IEEE Symposium on Human-Centric Com-
puting Languages and Environments, pages 7–14, Auckland, New Zealand,
October 28–31, 2003.

[35] A.J. Ko and B.A. Myers. Designing the Whyline: A debugging interface for
asking questions about program failures. InProceedings of the ACM Con-
ference on Human Factors in Computing Systems, pages 151–158, Vienna,
Austria, April 24–29, 2004.

[36] B. Korel and J. Laski. Dynamic slicing of computer programs.Journal of
Systems and Software, 13(3):187–195, November 1990.

[37] V. Krishna, C. Cook, D. Keller, J. Cantrell, C. Wallace, M. Burnett, and
G. Rothermel. Incorporating incremental validation and impact analysis into
spreadsheet maintenance: An empirical study. InProceedings of the Inter-
national Conference on Software Maintenance, pages 72–81, Florence, Italy,
November 2001.

[38] J. Laski and B. Korel. A data flow oriented program testing strategy.IEEE
Transactions on Software Engineering, 9(3):347–354, May 1983.

[39] J.R. Lyle and M. Weiser. Automatic program bug location by program slic-
ing. In Proceedings of the2nd International Conference on Computers and
Applications, pages 877–883, 1987.

[40] R.C. Miller and B.A. Myers. Outlier finding: Focusing user attention on possi-
ble errors. InProceedings of the ACM Symposium on User Interface Software
and Technology, pages 81–90, November 2001.

[41] S.C. Ntafos. On required element testing.IEEE Transactions on Software
Engineering, 10(6):1984, November 1984.

[42] H. Pan and E. Spafford. Toward automatic localization of software faults.
In Proceedings of the10th Pacific Northwest Software Quality Conference,
October 1992.

[43] R. Panko. Finding spreadsheet errors: Most spreadsheet errors have design
flaws that may lead to long-term miscalculation.Information Week, page 100,
May 1995.

106

[44] R. Panko. What we know about spreadsheet errors.Journal on End User
Computing, pages 15–21, Spring 1998.

[45] S. Prabhakararao, C. Cook, J. Ruthruff, E. Creswick, M. Main, M. Durham,
and M. Burnett. Strategies and behaviors of end-user programmers with inter-
active fault localization. InProceedings of the IEEE Symposium on Human-
Centric Computing Languages and Environments, pages 15–22, Auckland,
New Zealand, October 28–31, 2003.

[46] B. Pytlik, M. Renieris, S. Krishnamurthi, and S.P. Reiss. Automated fault
localization using potential invariants. InProceedings of the5thInternational
Workshop on Automated and Algorithmic Debugging, pages 273–276, Ghent,
Belgium, September 8–10, 2003.

[47] S. Rapps and E.J. Weyuker. Selected software test data using data flow infor-
mation. IEEE Transactions on Software Engineering, 11(4):367–375, April
1985.

[48] O. Raz, P. Koopman, and M. Shaw. Semantic anomaly detection on online
data sources. InProceedings of the24th International Conference on Software
Engineering, pages 302–312, Orlando, FL, May 19–25, 2002.

[49] J. Reichwein and M.M. Burnett. An integrated methodology for spreadsheet
testing and debugging. Technical Report 04-60-02, Oregon State University,
Corvallis, OR, January 2004. http://eecs.oregonstate.edu/library/?call=2004-
6. Last accessed: July19th, 2004.

[50] J. Reichwein, G. Rothermel, and M. Burnett. Slicing spreadsheets: An inte-
grated methodology for spreadsheet testing and debugging. InProceedings
of the2nd Conference on Domain Specific Languages, pages 25–38, Austin,
Texas, October 3–5, 1999.

[51] M. Renieris and S.P. Reiss. Fault localization with nearest neighbor queries.
In Proceedings of the18th IEEE International Conference on Automated Soft-
ware Engineering, pages 30–39, Montreal, Canada, October 6–10, 2003.

[52] G. Robertson. Officials red-faced by $24m gaffe: Error in contract bid hits
bottom line of TransAlta Corp. Ottawa Citizen, June 5, 2003.

[53] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A. Sheretov. A methodol-
ogy for testing spreadsheets.ACM Transactions on Software Engineering and
Methodology, 10(1):110–147, January 2001.

[54] G. Rothermel, L. Li, C. Dupuis, and M. Burnett. What You See Is What You
Test: A methodology for testing form-based visual programs. InProceedings
of the20th International Conference on Software Engineering, pages 198–207,
Kyoto, Japan, April 19–25, 1998.

107

[55] K.J. Rothermel, C.R. Cook, M.M. Burnett, J. Schonfeld, T.R.G. Green, and
G. Rothermel. WYSIWYT testing in the spreadsheet paradigm: An empirical
evaluation. InProceedings of the22nd International Conference on Software
Engineering, pages 230–239, Limerick, Ireland, June 4–11, 2000.

[56] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S. Prabhakararao, M. Fisher II,
and M. Main. End-user software visualizations for fault localization. InPro-
ceedings of the ACM Symposium on Software Visualization, pages 123–132,
San Diego, CA, June 11–13, 2003.

[57] J.R. Ruthruff, A. Phalgune, L. Beckwith, M. Burnett, and C. Cook. Reward-
ing “good” behavior: End-user debugging and rewards. InProceedings of
the IEEE Symposium on Visual Languages and Human-Centric Computing,
Rome, Italy, September 26–29, 2004 (to appear).

[58] J.R. Ruthruff, S. Prabhakararao, J. Reichwein, C. Cook, E. Creswick, and
M. Burnett. Interactive, visual fault localization support for end-user pro-
grammers.Journal of Visual Languages and Computing, 2004 (to appear).

[59] J. Sajaniemi. Modeling spreadsheet audit: A rigorous approach to automatic
visualization. Journal on Visual Languages and Computing, 11(1):49–82,
February 2000.

[60] F. Tip. A survey of program slicing techniques.Journal on Programming
Languages, 3(3):121–189, 1995.

[61] J.M. Voas. Software testability measurement for assertion placement and fault
localization. InProceedings of the International Workshop on Automated and
Algorithmic Debugging, pages 133–144, 1995.

[62] E. Wagner and H. Lieberman. An end-user tool for e-commerce debugging.
In Proceedings of the International Conference on Intelligent User Interfaces,
page 331, Miami, Florida, January 12–15, 2003.

[63] E.J. Wagner and H. Lieberman. Supporting user hypotheses in problem di-
agnosis on the web and elsewhere. InProceedings of the International Con-
ference on Intelligent User Interfaces, pages 30–37, Funchal, Madeira Island,
January 13–16, 2004.

[64] M. Weiser. Program slicing.IEEE Transactions on Software Engineering,
10(4):352–357, July 1984.

[65] A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L. Casburn, C. Cook,
M. Durham, and G. Rothermel. Harnessing curiosity to increase correctness
in end-user programming. InProceedings of the ACM Conference on Human
Factors in Computing Systems, pages 305–312, Fort Lauderdale, FL, April
5–10, 2003.

108

[66] C. Wohlin, P. Runeson, M. Host, B. Regnell, and A. Wesslen.Experimentation
in Software Engineering. Kluwer Academic Publishers, Boston, MA, 2000.

109

APPENDICES

110

APPENDIX A

TUTORIAL FOR EXPERIMENT #1

We are conducting this research study so we can learn about how people test

and find errors in spreadsheets.

The people involved in this study are Professors Burnett, Cook, and Rothermel,

and students Dan Keller, and Josh Cantrell.

For today’s experiment, you will be learning about testing spreadsheets in the

Forms/3 environment. I’ll lead you through a brief tutorial, and then you will have

a few experimental tasks to work on.

Participation in this study is completely voluntary. If you choose to continue in

this study, you will receive 5 points Extra Credit or $10.00.

There are no risks associated with this study. The benefits are the reward you

choose and helping us to shape a future direction in computer science. There will

be no record tying you to your work performed during the study. Your data will be

assigned a random number, and no record will tie you to that number after the data

has been collected. You may choose to withdraw at any time.

Please don’t discuss the experiment with anyone. We are doing sessions all

week and would prefer the students coming later not have any advance knowledge.

Any questions about this research study and its procedures may be directed to

any of the following people involved with this study.

111

� Dan Keller — keller@cs.orst.edu

� Josh Cantrell — cantrjos@cs.orst.edu

� Dr. Burnett — burnett@cs.orst.edu

� Dr. Cook — cook@cs.orst.edu

Any other questions can be directed to the IRB Coordinator at 737-3437 or

irb@orst.edu.

As we go through this tutorial, I want you to actually DO the steps I’m describ-

ing. When I say “click”, I will always mean click the left mouse button once unless

I specify otherwise. Pay attention to your computer while you do the steps, and look

at my slide to confirm you result.

You have a “Forms/3 Quick Reference Card” that you may refer to during the

study. Feel free to add notes to it during this tutorial. If you have a question, raise

your hand and my assistant will help you.

For each spreadsheet that we will be looking at, you will have a sheet of paper

describing what the spreadsheet is supposed to do. Read the description of the

PurchaseBudget spreadsheet now.

Now open the PurchaseBudget spreadsheet by clicking on the button labeled

PurchaseBudget at the bottom of the screen.

There are some obvious differences between Forms/3 and other spreadsheets.

For example, Forms/3 does not use a fixed grid of cells (PAUSE) and we can give

the cells useful names like Pens and TotalCost (point to the cells on the spreadsheet).

Just like other spreadsheets, you see a value associated with each cell.

112

You can select a cell by clicking on it. Click on the Pens cell (PAUSE).

The Pens cell now has a selection outline indicating you have selected it. You

can move the cell by holding the mouse button down over the cell and dragging.

You can also resize the cell by dragging one of the black boxes on the selection

outline. Try moving and resizing the Pens cell.

You can look at the formula for a cell by clicking on the down arrow button.

Click on the down arrow for PenTotalCost.

It calculates the total cost of the pens being ordered by multiplying the number

of pens added by the cost of each pen. You can display more than one formula at a

time. Click on the down arrow for Pens to look at its formula.

Pens is an input cell, so its formula is simply a value. During this study, you

will be able to change the value in input cells but you cannot change the formulas

in output cells. Change the value of Pens to 70 by clicking in the formula window,

deleting the old value and entering the new value, 70. Press apply to save your

changes. When you press apply, you should see the value of Pens and some other

cells change to reflect the new value. Hide the formulas for Pens and PenTotalCost

by clicking on the hide button in the formula windows.

Earlier I said that you would be testing some spreadsheets and looking for errors.

What this means is that you will try some different combinations of inputs, look at

the corresponding output values, and tell the system if the value for output cells are

correct or incorrect.

You have probably noticed by now that output cells have colored borders and

decision boxes in the upper right corner. These tools are to help you with your

testing. The colored borders indicate how well you have tested a cell. A red border

means completely untested, a blue border means fully tested and a purple border

113

indicates that a cell is only partially tested. The “bluer” the purple, the more tested

the cell is.

The decision box is used to communicate your testing decisions to the system.

If you look at the decision box for all the output cells, they have a question mark

in them. A question mark indicates that you haven’t made a decision for inputs

like these. You make a testing decision by looking the value displayed in an output

cell and deciding whether it is right or wrong given the current input values. If the

output is correct for the given inputs, you tell the system it is correct by clicking on

the decision box for the cell.

Let’s do an example of recording a decision. Look at the value in the PenTotal-

Cost cell. Does the value in PenTotalCost seem to be correct? You can check the

description of the spreadsheet to help you determine if the cell is calculating the

correct value. The description says that PenTotalCost should calculate the total cost

of the pens you are going to buy.

Since you are ordering 70 pens and the cost the per pen is 3, the PenTotal-

Cost should be 210. The value looks correct, so tell the system the value is correct

by clicking on the decision box. Remember, the computer does not know if your

decision is right or wrong, it just records your decision.

You should have noticed that three things happened:

1. The decision box displays a checkmark, showing that your decision was

recorded. A checkmark means that the system has recorded that you decided

the current value is correct.

2. The border color for PenTotalCost turned blue. Remember a blue border

means the cell is tested.

114

3. The Percent Tested indicator located in the top margin changed. The percent

indicator lets you know how much of the entire spreadsheet you have tested.

The color of the percent tested indicator follows the same convention as cell

borders. Red means untested, blue means fully tested and shades of purple

between red and blue indicate various degrees of partial testedness. As you

test more cells, the percent tested will increase. When all the cells are fully

tested, the percent tested indicator will be 100%

If you make a mistake and clicked on a wrong decision box, or if you didn’t no-

tice the changes in the colors or Percent Tested indicator, you can undo the decision

you just made. Now, click on the PenTotalCost decision box again to remove your

decision.

Notice that the checkmark changed back to a question mark, the border turned

back to red and the percent tested indicator went back to 0.

Now click on the decision checkbox in the PenTotalCost cell again.

Since the rest of the cells still have question marks, let’s make decisions for

them too.

Look at the value of the PaperTotalCost cell. PaperTotalCost calculates the total

cost of the paper on order. Based on the current inputs, does the value in Paper-

TotalCost seem to be correct?

You are ordering 400 units of paper and the cost per unit is 4. So 1600 seems to

be correct. Tell the system that this value of PaperTotalCost is correct.

Look at the value for PenQCheck. This cell lets you know if you are ordering

enough pens. Does this value seem to be correct?

115

The minimum number of pens you need is 68. You will have 70 pens after the

order, so the value for the cell seems to be correct. Tell the system this value of

PenQCheck is correct.

Look at the value for PaperQCheck. This cell lets you know if you are ordering

enough paper. Does this value seem to be correct?

The minimum amount of paper you need is 400. You are ordering 400, so

that should be enough. However, the PaperQCheck cell says that you do not have

enough paper. That means this cell has an error in it. When you find a cell with a

wrong value you need to tell the system the value is wrong. To tell the system the

value is wrong, right click on the decision box for the cell. Go ahead and tell the

system this value for PaperQCheck is wrong.

When you tell the system a value is wrong, an X appears in the decision box.

If you tell the system a value is wrong and you shouldn’t have, you can undo

your decision by right clicking on the decision box again. Right click on PaperQ-

Check to undo the decision. Notice the X turns back into a question mark. Tell the

system that the value for PaperQCheck is wrong again.

Usually when you find an error in spreadsheet, you would want it fix it. How-

ever, for this study it is sufficient to indicate that the value is wrong. If you find a

wrong value, you should indicate that it is wrong and continue with your testing.

There may be more than one wrong value for a cell. Also, if you find a wrong value,

you may not be able to get up to 100% testedness.

Now look at the value for the TotalCost cell. This cell calculates the total cost

of the units on order. Does this value seem to be correct?

You are spending 210 on pens and 1600 on paper, so 1810 seems to be correct.

Tell the system this value is correct.

116

Look at the value for the cell BudgetOK?. This cell checks to see that the total

cost is within the alloted budget. Does this value seem to be correct?

Your budget is 2000 and the total cost is 1810, so it seems that your budget is

okay. Tell the system this value is correct.

Now we have tested every cell. However, some cells are purple and the percent

tested indicator is only at 50%.

Remember that I said that when the cell is purple it is only partially tested. That

means there are some more situations that we haven’t tried yet. Let’s change an

input value to look at another situation. Change the value of Pens to 0.

Notice that the decision box for PenQCheck is displaying a question mark, indi-

cating that this is a new situation for that cell. Also notice that the decision boxes for

PenTotalCost, TotalCost, and BudgetOK? turned into a blank. A blank for a cell’s

decision box means that you have already tested a situation like this before and

telling the system about this value won’t increase the testedness of the spreadsheet.

Let’s look at the value for PenQCheck, since we haven’t made a decision for

this situation yet. PenQCheck says that we don’t have enough pens. Does this seem

to be correct?

The minimum number of pens we need is 68 and we are ordering 0. This is not

enough pens, so the value seems to be correct. Tell the system this value is correct.

Now let’s look at the PaperQCheck cell. You can look at the formula to help

figure out what part hasn’t been tested. Open the formula to see what part of Paper-

QCheck hasn’t been tested.

The value of the cell is “not enough paper”, so we must be in the “then” part of

the formula. To get to “else” part, Paper must be greater than 400.

117

Let’s change the value of Paper, so there will be enough paper. Open the formula

for Paper and change the value to 410. Remember to press the apply button. Hide

the formula when you are done.

Notice that the decision box for PaperQCheck is displaying a question mark,

meaning that you haven’t tested a situation like this one. Look at the value in Paper-

QCheck. Does it seem to be correct? There is enough paper now, so the value is

correct. Tell the system the value is correct for PaperQCheck.

TotalCost and BudgetOK? are still purple, which means that they are both only

partially tested.

To help you decide which parts haven’t been tested, Forms/3 provides arrows so

you can see the relationships between cells. You can turn on the arrows for a cell

by right clicking on the cell. Right click on the BudgetOK? cell.

You can see arrows from Pens, Paper, and TotalCost pointing to the BudgetOK?

cell, because BudgetOK? uses all those values in its calculations.

The arrows follow the same color scheme as the cell borders. A red arrow

indicates an untested relationship, a blue arrow indicates a fully tested relationship,

and a purple arrow indicates a partially tested situation. Opening the formula for

a cell allows you to see some more detail with the arrows. Open the formula for

BudgetOK?.

Look at the arrow pointing from TotalCost to BudgetOK? It is purple, so that

means that the relationship between the two cells is only partly tested. Notice also

that the arrow is pointing to the if statement where TotalCost is used. BudgetOK?

says that the budget is currently okay, so we are in the else part of the if statement.

To go to the then part of the if, the TotalCost must be greater than 2000. We need

to change the inputs to get to that new situation. Turn off arrows for BudgetOK? by

118

right clicking on it again. Hide the formula for BudgetOK? by clicking on the hide

button.

We need to have the TotalCost be greater than 2000. Let’s change the number

of Pens to 1000.

Notice that there is a question mark in the decision box for BudgetOK?, telling

us that this is a new situation. Does the value of BudgetOK? seem to be correct? The

TotalCost is 4,640 which is more than 2000 so “over budget” seems to be correct.

Tell the system this value is correct.

TotalCost is still purple, so let’s see if we can figure out what part hasn’t been

tested yet. Open the formula for TotalCost. TotalCost is displaying the sum of Pen-

TotalCost and PaperTotalCost, so it is in the else part. To get to the then part of the

if, Pens or Paper must be less than 0. Let’s change Paper to -1.

Now look at the value for TotalCost. Does it seem to be correct? It does, so tell

the system this value is correct.

Notice that PaperQCheck also has a question mark in its decision box. Does the

value for PaperQCheck seem to be correct? It does, so tell the system it is correct.

Notice that BudgetOK? also has a question mark in its decision box. Does the

value for BudgetOK? seem to be correct? It does, so tell the system the value is

correct.

BudgetOK? is still purple so that means there is at least one more untested sit-

uation for it. Open the formulas for TotalCost and BudgetOK? by clicking on their

down arrows. Now turn on arrows for BudgetOK? by right clicking on it.

There are two arrows from TotalCost to BudgetOK?: one is red and one is blue.

The blue arrow indicates a relationship that has been tested. The red arrow indicates

a relationship that has not been tested.

119

The red arrow starts at the “then” part of TotalCost. That means that Pens or

Paper must be less than zero. The red arrow ends at the first else part of BudgetOK?

To get to the first else part of BudgetOK?, Pens and Paper must both be greater than

or equal to zero. Therefore the red arrow represents a relationship where Pens and

Paper must be less than zero and greater than or equal to zero at the same time. This

is impossible and gives us an impossible situation that can’t be tested.

On your experimental tasks there may or may not be impossible situations, so

do your best to test as many situations as you can. Remember to tell the system

whether the value is correct or incorrect for the output cells in each situation.

120

APPENDIX B

MATERIALS FOR EXPERIMENT #1

FIGURE B.1: The task description of the PurchaseBudget spreadsheet program

from Chapters 4 and 6. This program was used in the tutorials for Experiment #1

and Experiment #2.

121

FIGURE B.2: The PurchaseBudget spreadsheet program used in the tutorial of Ex-

periment #1 and Experiment #2 in Chapters 4 and 6.

122

FIGURE B.3: The task description of the Change spreadsheet program from Chap-

ter 4.

123

FIGURE B.4: The task description of the Grade spreadsheet program from Chapter

4.

124

APPENDIX C

TUTORIAL FOR EXPERIMENT #2

Hi, my name is Joseph R. Ruthruff, and I will be leading you through today’s

study.

The other people involved in this study are Dr. Margaret Burnett, Dr. Gregg

Rothermel, and the assistants helping me out today.

Just so you know, I’ll be reading through this script so that I am consistent in

the information I provide you and the other people taking part in this study, for

scientific purposes.

The aim of our research is to help people create correct spreadsheets Past studies

indicate that spreadsheets contain several errors like incorrectly entered input values

and formulas. Our research is aimed at helping users find and correct these errors.

For today’s experiment, I’ll lead you through a brief tutorial of Forms/3, and

then you will have a few experimental tasks to work on.

But first, I am required by Oregon State University to read aloud the text of the

“Informed Consent Form” that you currently have in front of you. (READ FORM.)

Please do NOT discuss this study with anyone. We are doing later sessions and

would prefer the students coming in not to have any advance knowledge.

Questions? Contact:

� Dr. Margaret Burnett burnett@cs.orst.edu

� Dr. Gregg Rothermel grother@cs.orst.edu

125

Any other questions may be directed to IRB Coordinator, Sponsored Programs

Office, OSU Research Office, (541) 737-8008

Before we begin, I’d like to ask if anyone in here is color blind. We will be work-

ing with something that requires the ability to distinguish between certain colors,

and so we would need to give you a version that does not use color.

In this experiment, you will be working with the spreadsheet language Forms/3.

To get you familiarized with the features of Forms/3, we’re going to start with a

short tutorial in which we’ll work through a couple sample spreadsheet problems.

After the tutorial, you will be given two different spreadsheets; asked to test the

spreadsheets, and correct any errors you find in them.

As we go through this tutorial, I want you to ACTUALLY PERFORM the steps

I’m describing. For example, at times I will want you to click the left mouse button,

at times I will want you to click the middle mouse button (the scroll button in the

middle of your mouse) and at other times I will want you to click the right mouse

button. I will be very clear regarding what actions I want you to perform. Please

pay attention to your computer screen while you do the steps.

If you have any questions, please don’t hesitate to ask me to explain.

For each spreadsheet that we will be working with, you will have a sheet of

paper describing what the spreadsheet is supposed to do.

(HAND OUT PurchaseBudget DESCRIPTION)

Let’s read the first page of the description of the PurchaseBudget spreadsheet

now.

(Read aloud with them)

Now open the PurchaseBudget spreadsheet by selecting the bar labeled Purchase-

Budget at the bottom of the screen with your left mouse button.

126

This is a Forms/3 spreadsheet. There are a few ways that Forms/3 spreadsheets

look different than the spreadsheets you may be familiar with:

� Forms/3 spreadsheets don’t have cells in a grid layout. We can put cells any-

where (select and move a cell around a bit). However, just like with any other

spreadsheet, you can see a value associated with each cell.

� We can give the cells useful names like PenTotalCost (point to the cell on the

spreadsheet).

� You can also see that some dells have colored borders.

Let’s find out what the red color around the border means. Rest your mouse on

top of the border of the PenTotalCost cell (show wave the mouse around the cell

and then rest mouse on border). Note that a message will pop up and tell us what

this color means. Can anyone tell me what the message says? (PAUSE, look for a

hand.) Yes, it means that the cell has not been tested.

You might be wondering, what does testing have to do with spreadsheets? Well,

it is possible for errors to exist in spreadsheets, but what usually happens is that they

tend to go unnoticed. It is in our best interest to find and weed out the bugs or errors

in our spreadsheets so that we can be confident that they are correct.

So, the red border around the cells is just telling us that the cell has not been

tested. Consequently, we may not be confident that the cell’s value is correct. It is

up to us to make a decision about the correctness of the cells based on how we know

the spreadsheet should work. In our case, we have the spreadsheet description that

tells us how it should work.

127

Observe that the Pens and Paper cells do not have any special border color (wave

mouse around cells). Such cells without colored borders are called input cells. Cells

with colored borders are called formula cells.

Let’s examine the TotalCost cell. Drag your mouse over the small box with a

question mark in the upper-right-hand corner of the cell. Can anyone tell me what

the pop-up message says? (PAUSE, wait for answer.) Yes, it says that if the value

of this cell is correct, we can left-click and if the value of the cell is wrong, we can

right-click. It also tells us that these decisions help test and find errors.

We can see that the value of this TotalCost cell is zero. Is this value correct?

(PAUSE for a second). Well, let’s look at our spreadsheet description. Look at the

Total Cost section of the spreadsheet. It says, “The sum of PenTotalCost and Paper-

TotalCost.” Well, both PenTotalCost and PaperTotalCost are zero. Since zero plus

zero is zero, TotalCost appears to have the correct value.

The previous pop-up message told us to left-click if the cell’s value is correct.

So let’s left-click this decision box for TotalCost—again, that’s the box in the Total-

Cost cell with the question mark. Notice what happened. Three things changed.

A checkmark replaced the question mark in the decision box (wave mouse). The

border colors of some cells changed-three cells have blue borders instead of red, and

the percent testedness indicator changed to 28% (point to it). Forms/3 lets us know

what percent of the spreadsheet is tested through the percent testedness indicator. It

is telling us that we have tested 28% of this spreadsheet.

Now if you accidentally place a checkmark in the decision box, if the value in

the cell was really wrong, or if you haven’t seen the changes that occurred, you

can “uncheck” the decision about TotalCost with another click in the same decision

box. Try it by left-clicking on that checkmark in TotalCost’s decision box. (PAUSE)

128

Everything went back to how it was. The cells’ borders turned back to red, the %

testedness indicator dropped back to 0% and a question mark reappeared in the

decision box.

Since we’ve already decided the value in the TotalCost cell is correct, we want

to retell Forms/3 that this value is correct for the inputs. So left-click in the decision

box for TotalCost to put our checkmark back in that box.

You may have noticed that the border colors of the PenTotalCost and Paper-

TotalCost cells are both blue. Now let’s find out what the blue border indicates by

holding the mouse over the cell’s border in the same way as before. What does

the message say? It tells us that the cell is fully tested. (PAUSE) Also notice the

blank decision box in the PenTotalCost and PaperTotalCost cells. What does that

mean? Position your mouse on top of the box to find out why it is blank. A message

pops up that says we have already made a decision about this cell. But wait, I don’t

remember us making any decisions about PenTotalCost or PaperTotalCost. How

did that happen?

Let’s find out. Position your mouse to the TotalCost cell and click the middle

mouse button. Notice that colored arrows appear. Click the middle mouse button

again on any one of these arrows-it disappears. (PAUSE) Now, click the middle

mouse button again on TotalCost cell—all the other arrows disappear. Now bring

the arrows back again by re-clicking the middle mouse button on TotalCost.

Move your mouse over to the blue arrow and hold it there until a message ap-

pears. It explains that the arrow is showing a relationship that exists between Total-

Cost and PenTotalCost. The answer for PenTotalCost goes into or contributes to the

answer for TotalCost. (PAUSE)

129

Oh, okay, so does explain why the arrow is pointed in the direction of TotalCost?

Yes it is, and it also explains why the cell borders of PenTotalCost and PaperTotal-

Cost turned blue. Again, if you mark one cell as being correct and there were

other cells contributing to it, then those cells will also be marked correct. (PAUSE)

We don’t need those arrows on TotalCost anymore, so let’s hide them by middle-

clicking on the TotalCost cell.

Let’s work on getting another cell fully tested. Look at the value of the Paper-

QCheck cell. Is this value correct? Let’s read the second paragraph at the top of

the spreadsheet description. (read it.) Well, with a value of zero in the paper cell,

and a value of 21 in the PaperOnHand cell, we have 21 sheets of paper, which is not

enough to fill our shelves. Since the PaperQCheck cell says “not enough paper”, its

value is correct. Now how do I indicate that a cell’s value is correct? I forgot. Let’s

rest our mouse over the question mark on PaperQCheck’s decision box. Oh yeah,

it says “Left-click if the cell’s value is correct, and right-click if the cell’s value is

incorrect. These decisions help test and find errors.” Remember, anytime you have

a question about an item of the Forms/3 environment, you can place your mouse

over that item, and wait for the pop-up message. So let’s left-click in the decision

box of this cell to place a checkmark.

But wait! The border of this cell is only purple. Let’s rest our mouse over this

cell border to see why. Can anyone read what the pop-up message says? (wait for

hand) That’s right, this cell is only 50 percent tested.

Let’s middle-click on this cell to bring up the cell’s arrows. Hey, the arrows

are both purple too. Let’s rest our mouse over the top arrow that is coming from

the Paper cell. Ah ha, the relationship between Paper and PaperQCheck is only 50%

130

tested! So there is some other situation we haven’t tested yet. Let’s change the value

of the Paper cell to see if we can find this other situation.

Move your mouse to the Paper cell and rest the mouse cursor over the little

button with an arrow on the bottom-right-hand side of the cell. It says “Click here

to show formula.” Let’s do that by left-clicking on this arrow button.

Hey, a formula box popped up. We can change the value of this box to change

the value of the Paper cell. Let’s try changing the value to 50. Change the number

0 in this formula box to a 50 and hit the Apply button.

Now look at the decision box of the PaperQCell. It is blank. I don’t remember

what that means, so let’s rest my mouse over the decision box of this PaperQCell.

Oh yeah, it means I’ve already made a decision for a situation like this one. Okay,

let’s try another value for the Paper cell. I’m going to try a really big value. Move

your mouse back to the formula box for the Paper cell, change its value to 500, and

left-click the Apply button. Now push the Hide button on this formula box.

Now look at the PaperQCell. There we go! The decision box for the cell now

has a question mark, meaning that if I make a testing decision on this cell, I will

make some progress. Let’s look at the cell’s value. Well, with 500 in the Paper cell

and 21 in the PaperOnHand cell, I have 521 paper on stock. Is this enough paper?

I’m going to go back and read my spreadsheet description to find out. (read second

paragraph aloud again) So I only need 400 reams of paper, but I have 521. So this is

enough. And the PaperQCell says “paper quantity ok”. Well, this is correct, so let’s

left-click on the PaperQCheck cell’s decision box. All right! The border changed

to blue, and even more, the spreadsheet is now 56% tested.

Now, let’s test the BudgetOk? cell by making a decision whether or not the

value is correct for the inputs. What does the spreadsheet description say about

131

my budget? Let me go back and read: : :oh yeah, “you cannot exceed a budget of

$2000”.

This time, let’s use the example correct spreadsheet from our spreadsheet de-

scription to help us out. Let’s set the input cells of this sheet identical to the values

of our example correct spreadsheet in the spreadsheet description. Pens is already

zero, so we don’t have to worry about that input cell. Wait, Paper is 400 in this ex-

ample spreadsheet, but my value is still 500. So let’s change the value of this Paper

to 400 so that it matches the example spreadsheet in my description. How do I do

this? Left-click on the arrow button at the bottom of the Paper cell, and change the

500 to a 400, and push the Apply button. I think I’m done with this formula, so let’s

hide it by left-clicking on the “Hide” button. Moving on, in this example correct

spreadsheet, PensOnHand is 25, and PaperOnHand is 21. Oh good, my spreadsheet

already has these values, so I don’t have to change anything.

Now, according to this example spreadsheet in our description, BudgetOk?

should have the value “Budget Ok”. But it doesn’t; my spreadsheet says “Over

Budget”. So the value of my BudgetOK? cell is wrong. What should I do?

Move your mouse to the decision box with the question mark in it and hold it

there until a message pops up. What does it say? The message tells us that if the

cell’s value is correct to go ahead and left-click and if it is wrong to right-click.

Well, this value is wrong, so go ahead and right-click on this decision box.

Hey, wait a second, look at that! Things have changed! Why don’t you take a

few seconds to explore the things that have changed by moving your mouse over

the items and viewing the popup messages.

Now let’s make a decision about the correctness of the TotalCost cell. For the

current set of inputs, the Total cost should be 1600. But our total cost cell says

132

2800. That means the value associated with the TotalCost cell is “Wrong”. What

can we do? Well, TotalCost does have a question mark in the decision box, so since

the value is wrong, we can right-click in the decision box to place an X-mark. Let’s

do that now. Take a few seconds to explore anything that might have changed by

moving your mouse over the items and viewing the pop-up messages.

Finally, I notice that, according to the example spreadsheet in my description,

PaperTotalCost should be 1600. But our value is 2800, and that is wrong. So let’s

place an X-mark on this cell as well.

Okay, so we have three cells with wrong values. There is at least one bug in

a formula somewhere on this spreadsheet that is causing these three cells to have

incorrect values. I’m going to give you a couple minutes to look for this bug and

fix it. To do this, find the cells that you think might have bugs in their formulas.

You can then open the formula of these suspect cells and check to see if the formula

matches what your spreadsheet description says it should do. If you find something

wrong with the formula, fix it.

So take a couple minutes, and try to find this bug.

(PAUSE for 2 minutes)

Okay, let’s make sure that everyone found the bug by going over it together.

I’m going to start by looking in the PaperTotalCost cell. So let’s open its formula.

Hmmm, okay, so it is taking the value of the Paper cell and multiplying it by 7. But

wait, let me go back and read my spreadsheet description. I’m going to read from

the “Costs of Pen and Paper” section. (read the section.) Ah ha, the cost of paper

is four dollars, but this cell is using a cost of seven. This is wrong. So I’m going

to change the 7 in this formula to a 4, and left-click the Apply button to finalize my

changes.

133

Hey wait, my total spreadsheet testedness at the top of my window went down to

28%! What happened? Well, since I corrected the formula, Forms/3 had to discard

some of my previous testing. After all, those tests were for the old formula. I have

a new formula in this cell, so those tests are no longer valid. But, never fear, I can

still retest these cells.

For example, the value of this PaperTotalCost cell is 1600, which matches the

example spreadsheet in my description. Since this cell is correct, let’s left-click to

place a checkmark in the decision box for PaperTotalCost. Oh good, the percent

testedness of my spreadsheet went up to 35%; I got some of my testedness back.

Okay, now I’m going to give you a few more minutes to explore the rest of this

spreadsheet. Look at the bottom of the description. It says, “Test the spreadsheet to

see if it works correctly, and correct any errors you find.” Why don’t you go ahead

and do that.

Remember, if you are curious about any aspect of the system, you can hover

your mouse over the item and read the pop-up. Also, you might find those check-

marks and X-marks to be useful. You can place checkmarks in the decision box of

correct cells by left-clicking, and X-marks in the decision box of incorrect cells by

right-clicking.

Go ahead now and try to finish this task. I’ll give you a few minutes.

134

APPENDIX D

MATERIALS FOR EXPERIMENT #2

FIGURE D.1: The background questionnaire of the experiment described in Chap-

ter 6.

135

FIGURE D.2: The first page of the task description of the Gradebook spreadsheet

program from Chapter 6.

136

FIGURE D.3: The second page of the task description of the Gradebook spread-

sheet program from Chapter 6. This page contains two example, correct “report

cards” that participants were allowed to use to facilitate testing of the spreadsheet

task.

137

FIGURE D.4: The first page of the task description of the Payroll spreadsheet pro-

gram from Chapter 6.

138

FIGURE D.5: The second page of the task description of the Payroll spreadsheet

program from Chapter 6. This page contains two example, correct “payroll stubs”

that participants were allowed to use to facilitate testing of the spreadsheet task.

