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Cognitive radio technology emerges as a promising solution for overcoming shortage and inef-

ficient use of spectrum resources. In cognitive radio networks, secondary users, which are users

equipped with cognitive radios, can opportunistically access spectrum assigned to primary users,

the spectrum license holders. Although it improves spectrum utilization efficiency, this oppor-

tunistic spectrum access incurs undesired delays that can degrade the quality of service (QoS)

of delay-sensitive applications substantially. It is therefore important to understand, model, and

characterize these delays, as well as their dependency on primary user behaviors. Moreover,

the lack of access priority leads to significant performance degradation when the network is un-

der jamming attacks. It turns out that addressing jamming attacks while maintaining a desired

QoS is very challenging. In this thesis, we characterize the properties of the random process that

describes the availability of the opportunistic resources, and analytically model and analyze cog-

nitive network average delays. Furthermore, we propose and study new techniques that mitigate

jamming attacks in mobile cognitive radio networks. More specifically, this thesis consists of

the following three complimentary frameworks:



1. Stochastic Resource Availability Modeling and Delay Analysis. In this framework, we de-

fine and characterize the properties of the random process that describes the availability

of the opportunistic network resources. We apply the mean residual service time concept

to derive an analytical solution for the cognitive network queueing delay. We model the

service mechanism, and determine the manner in which it depends on spectrum availabil-

ity. We show that the delay becomes unbounded if spectrum dynamics are not carefully

considered in network design.

2. Mitigating Jamming through Pseudorandom Time Hopping. In this framework, we pro-

pose and evaluate jamming countermeasure approaches for mobile cognitive users. We

propose two time-based techniques which, unlike other existing frequency-based tech-

niques, do not assume accessibility to multiple channels and hence do not rely on spec-

trum handoff to countermeasure jamming. In these two techniques, we allocate data over

time based on cryptographic and estimation methods. We derive analytical expressions

of the jamming, switching and error probabilities. Our findings show that our proposed

technique outperforms other existing frequency-based techniques.

3. Optimally Controlled Time-Hopping Anti-Jamming Technique. In this framework, we pro-

pose a jamming and environment aware resource allocation method for mobile cognitive

users. We propose to mitigate jamming based on an optimal allocation of data over time.

In addition, we optimally control network mobility to meet a desired QoS. Our findings

show that our proposed technique achieves better QoS than those achieved by existing

cryptographic methods while not compromising jamming resiliency.
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Chapter 1: Introduction

The drastic increase in demand for wireless devices, services, and applications is causing a

shortage in the radio spectrum resource supply [1]. This spectrum shortage problem is, however,

shown to be due not to the scarcity of the wireless spectrum resource, but rather to the current

static assignment schemes used to allocate this spectrum resource among spectrum users [2].

Indeed, studies have shown that the licensed radio spectrum is under-utilized, and only a small

fraction of it is being actually exploited by licensed users, commonly referred to as primary

users. This problem has therefore prompted spectrum regulatory bodies (e.g., FCC) as well as

industry and academic researchers to think of new ways that can utilize the available spectrum

more effectively.

The use of cognitive radios [3] has therefore emerged as a potential solution that can over-

come this shortage problem by enabling dynamic (or opportunistic) spectrum access (DSA) [4].

The main idea behind DSA, enabled via the cognitive radio technology, is to allow unlicensed

users (also referred to as secondary or cognitive users) to exploit and utilize unused licensed

spectrum whenever primary users are not using it. Through cognitive capabilities, cognitive

users can then adjust their operating parameters, such as power and frequency, to avoid interfer-

ing with primary users. Generally speaking, in order to be able to dynamically access the spec-

trum, cognitive users need to undergo a four-phase cycle [3, 5, 6]: (i) Observation or sensing

phase, during which cognitive radio users perform real-time spectrum sensing to locate and de-

termine spectrum access opportunities. This requires the reliance on signal detection techniques

designed for spectrum sensing. (ii) Reasoning phase, during which cognitive radio users an-

alyze the observation data acquired through the sensing phase to decide on the best strategy to
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use to allocate spectrum and share it among other users. (iii) Adaptation phase, during which

cognitive radio users switch to the best available spectrum opportunity, and tune their param-

eters (operating frequency, transmission power, modulation scheme, etc.) accordingly. During

this phase, users might be required to handoff from one frequency channel to another, and every

time they do so they need to adjust their parameters to match the new channel. (iv) Acting

phase, during which cognitive users carry out their communications according to the adapted

parameters.

Due its great potential in improving spectrum utilization efficiency and addressing next-

generation wireless spectrum challenges, DSA communication and networking have received

significant research attraction ranging from distributed spectrum resource sharing [7–11] and

power resource allocation [12–14] to performance analysis [15–19] and protocol design [20,21].

Although DSA enabled through cognitive radios has great potential for overcoming the spec-

trum supply shortage problem, the lack of access priority to spectrum incurs undesired delays

and possible network outages. This can degrade the quality of service (QoS) of delay-sensitive

applications substantially. Moreover, having cognitive users go over the aforementioned cycle

incurs overhead in terms of energy consumption, delay, and control traffic, which in turns leads

to QoS degradation. For example, the spectrum sensing process is needed to locate spectrum

opportunities, but not without consuming energy, causing delay, and incurring extra traffic over-

head. Furthermore, the nature of the cognitive radio access makes it more subject and vulnerable

to security threats than what conventional wireless networks are.

In the rest of this section, we first highlight the impact of the opportunistic spectrum access

on some performance and security aspects of cognitive radio networks and review some of the

related works. We then present a summary of the contributions made in this thesis.
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1.1 Performance of Cognitive Radio Networks

Due to the opportunistic access and sharing nature of spectrum, the performance assessment

metrics in cognitive radio networks differ from those used in conventional wireless networks.

As mentioned earlier, a cognitive user is susceptible to experiencing some delay when trying

to locate and use spectrum opportunities. The main cause of such delays is due to the random

and sporadic availability of the licensed spectrum whose primary users have the right to access

and leave their licensed frequency bands at any time. Upon the return of a primary user to its

channel, cognitive users must immediately vacate the channel, which may result in halting the

ongoing communication for some time until a new available channel is found, thereby causing

undesired delays that can be problematic especially if the applications are time-sensitive. What

makes this delay problem even more problematic is the fact that these events are unpredictable

and look very random to cognitive users. It is therefore important to model, characterize, and

analyze these delays by capturing and studying the impact of spectrum availability randomness

on them. Delay performance modeling and analysis can then help in providing guidelines for

designing protocols and techniques for cognitive radio networks.

For a given primary user activity, cognitive users might not be able to meet a certain perfor-

mance criterion, and such an activity could result in excessive packet drops or queue instability

through the network. Hence, modifications need to be introduced to network settings to make

sure desired QoS is maintained. To the best of our knowledge, little to no work has been done in

the literature to derive comprehensive delay models for cognitive radio networks. Hence, more

thorough investigations need to be done in this area. We now review some of the existing de-

lay analysis works. In [22], the authors present a queuing analysis to study delay in cognitive

networks. They derive the solution of the queue average length for cognitive users that content

to access primary user channels. The authors in [23] analyze the stationary queue distribution
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for a constant cognitive users arrival process. They derive a closed-form expression for the

stationary queue distribution for the case of two channels, and upper and lower bounds for an

arbitrary number of channels. In [24], the authors analyze the delay for a clustered cognitive

radio network by approximating the average length of queue size. The authors in [25] consider

cooperation among secondary and primary users to enhance the delay performance. In [26],

the authors analyze the cognitive network transmission delay by considering the distribution of

time through which some opportunistic resources are available. In [27], the authors propose

centralized and distributed spectrum access schemes for cognitive users with different priority

classes. The authors also study the performance of cognitive radio networks by analyzing the

blocking probability and average switching delay of cognitive users. The authors in [28] develop

an admission control technique that meets the QoS requirements in terms of packet queueing de-

lay. In [29], the authors study the impact of guard bands on the cognitive radio performance by

deriving the termination and blocking probabilities of cognitive users under various spectrum

assignment schemes. In our work [15, 30] (Chapter 2), we capture and study the volatile nature

of spectrum availability in cognitive radio networks while considering Markovian primary user

activities, and assess its impact on network outage statistics, spectrum handoff (or switching)

statistics, queueing delay, and service delay.

1.2 Security in Cognitive Radio Networks

Cognitive radio systems are vulnerable to numerous security threats. The lack of access priority

of cognitive users to spectrum makes their communications subject to a set of security attacks

that conventional wireless networks are not subject to. Security threat models and countermea-

sure solution techniques have already been investigated for cognitive networks [31]. There is,

for example, a spectrum sensing threat called primary user emulation attack, where an adversary
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transmits signals whose characteristics emulate those of primary user signals. This type of attack

interferes with the spectrum sensing process, leading to significant reduction in spectrum access

opportunities [32–35]. There are also user privacy attacks that again result from the access flexi-

bility nature of cognitive radio communication. For example, cognitive users can be involved in

a cooperative spectrum sensing task to identify spectrum access availability, and when it is the

case, they end up exchanging sensing reports with one another. The correction between the data

in the sensing reports and their corresponding user location results in leakage of the location

privacy information of cognitive users [36–41]. Cognitive radio networks are also vulnerable

to jamming attacks, which can significantly impact the network performance by degrading the

spectrum utilization efficiency. It is therefore important to address such jamming attacks so as

to maintain a desired QoS. Jamming attacks are known to be more detrimental than other types

of attacks [42]. Though attempts to address jamming in the context of cognitive radio networks

have been made, most existing jamming countermeasures proposed so far assume accessibil-

ity to multiple channels, and hence consider frequency-hopping (spectrum handoff) based ap-

proaches to mitigate jamming. For instance, in [43], the authors assume that cognitive users

hop among multiple channels and randomly allocate power to defend against jammers. They

model interactions between jammers and secondary users as a Colonel Blotto game, and derive

hopping patterns by relying on Markov decisions processes and learning techniques. Similarly,

the authors in [44] propose frequency-hopping based countermeasure methods by modeling the

anti-jamming problem as a game. Unlike [43], in [44], hopping patterns are derived based on

prospect theory. The work in [45] is similar to that in [43]. However, while transmission power is

allocated randomly in [43], the authors in [45] use learning algorithms instead to allocate power

optimally. In [46], the authors assume that jammers and legitimate users compete sequentially,

and model their interaction as a game using Stackelberg model. Their scheme allocates power

to secondary users based on estimated jamming power. The authors in [47] model spectrum
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availability and access as a partially observed Markov process. They assume that users learn

to retreat from jammers through, similar to the other works, spectral surfing. They derive their

retreating strategy using a multiple-armed bandit problem with the assumption that secondary

users and jammers have the same knowledge about spectrum availability. In [48], the authors

also consider spectral surfing as a jamming countermeasure with the assumption that secondary

users use pre-shared secret keys for channel selections.

In our work [49], unlike most existing techniques, we propose a cryptography time-based

countermeasure solution approach. Through pseudorandom allocation of data over time, we

achieve jamming resiliency without making any assumptions about the number of accessible

channels. More details about our proposed anti-jamming techniques are given in Chapters 3 and

4. In the following section, we present the thesis contributions.

1.3 Dissertation Contributions and Organization

The contributions of this dissertation are summarized as follows.

• We model and characterize, in Chapter 2, the properties of the random process that de-

scribes the opportunistically available spectrum resources. Our characterization of these

properties allow us to analytically derive handoff and network outage performances that

cognitive users experience. In this Chapter, we also apply the mean residual service time

concept [50] to derive the queueing delay for single as well as batch packet arrivals. In

addition, inspired by the slotted-Aloha system [51], we statistically characterize the packet

service time distribution, and hence the average service delay for single as well as multi-

cluster networks.

• We propose, in Chapter 3, time-based techniques which, unlike other existing techniques,
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provide jamming resiliency without making any assumptions about the number of acces-

sible channels. Our techniques do not rely on spectrum handoff and hence avoid any

associated communication overhead. With the use of a shared private key, users allocate

data securely over time. In addition, unlike existing works, our work considers user mobil-

ity and does assume that users are stationary. We also derive closed-form expressions for

a number of performance metrics, including jamming probability, switching probability,

and error probability.

• In Chapter 4, we propose a mathematical framework for modeling a decision process that

uses reinforcement learning to allocate data over time and control mobility of cognitive

radio users. Our proposed framework does so while accounting for spectrum resource

volatility, channel gain variations over both time and space, and jamming attacks.



8

Chapter 2: The Impact of Stochastic Resource Availability on Cognitive

Network Performance: Modeling and Analysis

The dynamical spectrum availability makes secondary user (SU) packet average delay one of the

most important performance measures of a cognitive network. It is important to understand the

nature of delay, as well as its dependence on primary user (PU) behaviors. In this chapter, we

analytically model and analyze spectrum dynamics and their impact on delay, where the cog-

nitive network is modeled as a discrete-time queueing system and the PU channel occupancy

is modeled as a two-state Markov chain. The contribution of this chapter is characterizing the

random process that describes the opportunistic availability of spectrum. In addition, we apply

the mean residual service time concept to achieve an analytical solution for the queueing delay.

Moreover, inspired by the slotted-Aloha system, we model the packet service process, and de-

rive the packet service delay accordingly. Depending on PU behaviors, we show that the delay

can become unbounded, thereby demonstrating the importance of considering PU behaviors in

network design.

2.1 Introduction

The rapid and continuous growth of new wireless devices and applications increases the demand

for spectrum resources. The development of cognitive radios is a promising framework to get

the best of the limited radio spectrum and keeping up with the growth of wireless technologies.

However, in case cognitive users are not allowed to simultaneously transmit with primary users,
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their activities become restricted. In other words, unless there is a spectrum hole (spectrum not

utilized by primary users), cognitive users are required to be inactive. They are also required

to vacate a spectrum whenever a primary user reclaims the right to use it. These requirements,

in turn, can cause huge cognitive network delay and as a consequence, instability issues. It

is therefore important to quantify PU activities and determine the impact of that on cognitive

network performance in general, and most importantly on delay.

In this chapter we analyze the performance of clustered cognitive networks, where a set of

nodes along with a cluster head, equipped with a cognitive radio, form a cluster. This model

can very well apply to a cognitive radio sensor network, where the sensor nodes send their data

to a sink, the cluster head in our model, that accesses to channels opportunistically. Sensor

applications usually generate data in small rates and hence there is no need for acquiring a

licensed band, and having opportunistic spectrum access can be enough to achieve a desired

QoS.

2.1.1 Summary of Contributions

The availability of spectrum varies over time depending on PU behaviors. It turns out that differ-

ent important cognitive network characteristics, e.g., handoff process parameters, are modeled

analytically by establishing the model of the process that describes this availability. To the best

of our knowledge, this research has never been addressed.

In addition, the adaption of cognitive user’s operation parameters to spectrum dynamics re-

sults in different delay components. A SU experiences a delay while identifying and exploiting

spectrum access opportunities. To the best of our knowledge, none of the existing works com-

prehensively address all of these delays. There is also no much work done about modeling SU’s

packets service mechanism, in spite of its importance in delay performance analysis. Hence,
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more investigations in this area need to be developed. The complexity of analyzing cognitive

networks delay performance and the broad aspects of such analysis seem to be the reason behind

the area being not well investigated.

In this chapter, we analyze the performance of clustered cognitive radio network modeled as

a discrete-time queueing system where the data queues up at the cluster head. We consider the

case where there is only one cluster, and extend it to the case where there are multiple clusters

content for spectrum resources. The channel occupancy is modeled as a Markov chain. The

contributions of this chapter ( [15, 30] ) are summarized as follows.

• We characterize the properties of the random process that describes spectrum dynamics.

Based on this process, we analytically characterize the handoff (also refereed to as switch-

ing) performed and the outage experienced by cognitive users.

• We develop an analytical model for the SUs’ packet waiting delay. We also model the

service time distribution and hence derive the average service delay formula. The derived

closed-form expression captures the dependence of this delay on the PU behaviors.

• Trough providing some numerical results, we show the importance of our analytical anal-

ysis in maintaining network stability.

2.2 Related Work

Due to its great potentials in addressing the spectrum shortage problem, the cognitive radio net-

work paradigm has attracted significant research focus over the past decade, addressing various

different aspects, such as protocol design [4, 52–56], spectrum sensing [41, 57–59], resource al-

location and management [60–67], performance modeling and analysis [18, 19, 21, 68–71], and

spectrum trading and auction [72–74], just to name a few. Delay performance analysis has also
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received some attention, but not as much [22–28]. As a way to study network delay, the au-

thors in [22], determined the queue average length for SUs that content to access spectrum. The

authors in [23], however, analyzed queue distribution. They obtained analytical solutions for

case of two channels, and upper and lower bounds for an arbitrary number of channels. They

assumed constant packet arrival processes. In this chapter, however, we are not concerned about

the queue statistics, but rather about the impact of spectrum dynamics on delay for given traffic

parameters. In [24], the authors analyzed the delay for a clustered cognitive network. They also

ended up analyzing the delay through approximating the queue size average length. In [26], a

delay analysis was done by considering the distribution of time through which some opportunis-

tic spectrum resources are available. In our chapter, however, we characterize the properties of

the process that describe the evolution of the resource availability over time. We use this process

not only to understand the nature of delay, but also to obtain the analytical characterization of

network outage and switching mechanism. To enhance delay experience, the authors in [25]

assumed SUs and PUs cooperate for spectrum access. In [27], for different priority classes, the

authors proposed different spectrum access methods. They analyzed blocking probability and

average spectrum handoff delay. The authors in [28] developed an admission control technique

that guarantee a QoS requirements in terms of queueing delay. The authors assumed the avail-

ability of channels holds over a slot duration. In [75], the authors suggested a pricing strategy for

reusing cellular networks spectrum. The cellular primary usage in [75] is modeled as a Poisson

process. In this chapter, we model the primary users behavior similarly. In [76], the authors used

fluid flow models to analyze the queueing system in a cognitive network. Aside from congni-

tive networking, [50] presented the residual service time concept and applied it for continuous

systems queueing analysis. The residual service time concept, for the best of our knowledge,

has not been considered for evaluating the performance of discrete-time systems. In this chapter,

inspired with [50], we determine the mean residual service time for the discrete systems and use
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it to analyze the delay performance in cognitive radio networks. The authors in [51] charac-

terized the service time mechanism of a slotted-Aloha system with either finite or infinite user

population where each user has finite or infinite buffer capacity. We consider the analysis in [51]

to determine the service time distribution in cognitive networks.

2.3 Network Model

The cognitive radio network (CRN) has access to N channels licensed to some PUs. The occu-

pancy of each channel is modeled as a two-state Markov chain. We are considering a clustered

network, whereM nodes along with a cluster head, which equips cognitive radio, form a cluster.

There are L clusters, each contend with probability Pc to access the spectrum. Each cluster is

modeled as a discrete-time queueing system where the data queues up at the cluster head buffer.

Fig. 2.1 illustrates a single cluster network.

The cognitive radio system works as follows:

• The system is time slotted.

• The traffic arrives to the cluster head follows a Bernoulli process. The arrivals are inde-

pendent of each other. Packets arrive in a batch within each slot. The average number of

arrived packets per slot is λ, which can be viewed of as the arrival rate per slot.

• Over any available channel, the cluster head sends the data on a first-in first-serve basis. It

switches from a spectrum to another whenever the last assigned becomes unavailable.

• The service times are assumed to be independent and identically distributed with an un-

specified general distribution. The service process is assumed to be independent from the

arrival process.
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Figure 2.1: A single cluster cognitive network

The slotted system assumption is a reasonable widely-used assumption, e.g. [22], [24], and

[28], and many others consider a similar assumption. In addition to dedicating a part of the slot

for packets transmission, another part is usually assumed to be dedicated to spectrum sensing

and opportunities detection.

The Bernoulli arrival process assumption is more realistic than the Poisson process in our

setting. Unless some sort of reservations is assumed, which might not be possible to achieve,

assuming a Poisson arrivals for multi-packet messages is not reasonable.

In addition, our PU model applies to the users in cellular networks. It is popular to model

the calls arrival as a Poisson process (i.e., exponentially distributed interarrival times), and the

call durations probability distributions as exponential [75]. Successive interarrival times and call

durations are independent of each other in this model.

The SUs’ packet arrival process is independent from the service process. As we will explain

in Section 2.5, the service process depends mainly on the size of packets, contention methodol-
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ogy and the dynamics of the spectrum availability.

As the cluster head plays the role of identifying spectrum opportunities, we are not concerned

with the delay that might result from sensing errors, as it remains low. This error is usually

ignored when there is a central point involved in detecting spectrum opportunities (that is the

case in [28] and [76] for example). Our work can serve as the basis for achieving other analytical

delay models that include this delay.

Our model applies to cognitive radio sensor networks, where sensor nodes send their data

to a sink, the cluster head in our model. The sensors send their data over unlicensed channel in

a triggered based. In other words, once an event is sensed, sensors report to the cluster head.

Sensor applications usually require large number of sensors to be implemented, each generates

data in small rate. Hence, a scheduled access scheme might not be suitable and it suffices for

nodes to randomly access the channel shared among them. Within each slot λ packets arrive

the cluster head on average. Through reusing cellular bands, L number of clusters within the

network transmit data, received from the nodes associated with them, to backbone network.

2.4 Resource Availability Process

The availability of the opportunistic resources vary over time depending on the primary users

activity and their spectrum usage pattern. In this section, we model and derive a number of

statistics that describe the random availability of the resources. We model a number of random

processes that are used to define the resource availability process and characterize its properties.

Single-Channel Availability Model The evolution of the availability of a channel i over time

is a random process CHi. This process is a family of random variables {CHi(t) : t ≥ 0}, where

each random variable takes a value zero if the channel is idle and one otherwise. By assumption,
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Figure 2.2: (a) Single channel Markov chain. (b) Extended model of the two-channel availability.
(c)Simultaneously occupied channels model.

this process is modeled as a continuous-time Markov Chain with two states, labeled 0 and 1.

The states 0 and 1 represent the idle and busy events, respectively. The transition time of the

CHi states, denoted by TCHi , is exponentially distributed with parameters u for the zero state

and v otherwise. The state-transition diagram a channel occupancy appears in Fig 2.2(a). All

the channels are assumed to be independent of each other and identical.. The analysis can be

developed similarly if the channels are unidentical. Through out our analysis we are assuming

the transition rates u and v are known. In practice, if they are not known, they can be estimated

by observing the PUs behavior.

Multi-Channels Availability Model Studying the process corresponding to the joint channels

availability is important for our subsequent analysis. The joint availability process CHjoint is

a family of vectors of random variables {(CH1(t), . . . , CHN (t)) : t ≥ 0}. Since at any time
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instant, the realization of CHi, ∀i ∈ {1, .., N}, is either zero or one, the state space of CHjoint

has a size of 2N states. The transition time between the states is denoted by TCHjoint .

Lemma 1. The joint availability process is Markov.

Proof. The state transition time for a given state {(CH1 = ch1, .., CHN = chN )}, where

chi ∈ {0, 1} ∀i ∈ {1, .., N}, is given by TCHjoint = min{TCH1 , . . . , TCHN
}. Since TCHi ,

for ∀i ∈ {1, .., N}, is exponentially distributed with parameter u1−chivchi , TCHjoint has also

exponential distribution with parameter equals
∑N

i=1 u
1−chivchi [77].

2.4.1 Resource Availability Process Model

The resource availability process is basically a process that describes if there are any resources

can be accessed by the cognitive network at any given time. Modeling this process is required

for achieving the analytical analysis for some performance measures.

Definition 1. The resource availability process for N-channel system (N ≥ 2) is a process

CH = {CH(t) : t ≥ 0} such that:

CH(t) = CH1(t)CH2(t) . . . CHN (t).

At any instant of time, the value of CH ∈ {0, 1}. When CH equals zero, it means that

there are some resources can be used by cognitive users. In other words, there is at least one PU

channel idle. However, when CH equals one, that indicates all the channels are simultaneously

busy and the cognitive network is going through an outage.

The process CH is not Markovian. The state zero in the state space corresponds to all states

in the CHjoint state space except the state representing the event of all busy channels, i.e., the
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state with CHi = 1, ∀i ∈ {1, .., N}. Hence, the transition time of the state zero, denoted by

T0, is a random sum of the transition times of the corresponding CHjoint states. As proven in

Lemma 1, the probability distribution of the transition time of each CHjoint state is exponential,

hence T0 can not be exponential.

2.4.2 Resource Availability Process Statistics

The previously described models are used to derive some of the process statistics, which are

important in making decisions concerning the applications that are admissible by the cognitive

network. The cognitive users rate of switching, the cognitive network probability of outage, and

the rate of outage, are important performance measures. It is of interest to obtain the analytical

relationship between those statistics and the dynamics of the spectrum availability.

Switching Model To find the rate of switching, denoted by rsw, we extend the CHjoint chain

such that each state is represented by (CH1, CH2, . . . , CHN , n) where n ∈ {1, .., N} indicates

the last channel the cluster head was assigned to. For a two-channel system, we show in Fig.

2.2(b) the state-transition diagram for this extended Markov chain. The dashed arrows in the

figure represent transitions that involve channel switching. By analyzing the chain for N-channel,

we get

rsw =
u

(u/v + 1)2
+

(N − 1)v

(v/u+ 1)N
(2.1)

Where u is a channel idle-to-busy transition rate and v is a channel busy-to-idle transition

rate.
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Outage Model The cognitive radio network outage rate, the outage probability, and the aver-

age outage time formulas can be derived by modeling the number of channels that are simulta-

neously busy. The evolution of the number of occupied channels over time is a random process

{i(t) : t ≥ 0} where i ∈ {0, 1, . . . , N}. This process is modeled as a Markov chain with N + 1

states labeled 0 to N . The state label indicates the number of simultaneously occupied channels.

The ith state transition time distribution is exponential with parameter iv + (N − i)u (the proof

follows from the proof of Lemma 1). Fig. 2.2(c) shows the state-transition diagram for this

chain.

The outage rate, denoted by routage, is defined as the rate at which all channels become

simultaneously busy. It can be obtained by determining the rate at which the state N is visited.

By analyzing the chain we obtain

routage = Nv/(1 + v/u)N (2.2)

The outage probability, denoted by Poutage, is defined as the percentage of time during which

no resources are available. That is the probability that the system is in the state N . It can be

expressed as follows

Poutage = 1/(1 + v/u)N (2.3)

The average outage time, denoted by T outage, is the average time spent in the state N . It is

given by

T outage = 1/(Nv) (2.4)
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2.5 Delay Modeling and Characterization

In this section we are interested in analytically characterizing the average time required to deliver

a packet within the cognitive radio network. We are considering two delay components, waiting

and service delay.

The waiting delay is the time a packet spends at the queue until it starts being served. If a

packet arrives to the system while there is a packet under service, the remaining of this service

time is included in its waiting time. In addition, if a packet arrives while the queue is not empty,

then the waiting time also includes the service time of all the packets ahead of it in the queue. In

this section, we achieve the analytical solution for the expected waiting delay and show the way

it is related to the service delay and hence to the opportunistically available resources.

The service delay is defined as the time between the instant the packet reaches the head of

the queue to the instant it successfully departs the queue. If the cognitive network has access

priority, it takes only one slot to serve a packet. The service time of any packet starts and ends

at the slot boundaries. However, since the cluster head has only an opportunistic access to the

channel, it takes integral (random) multiple of the slot duration to successfully transmit a packet.

In this section, we determine the service time distribution and obtain analytically the manner in

which the expected service time depends on the dynamics of the spectrum availability.

2.5.1 Residual Service Time

We derive the average waiting delay for our system using the service residual time concept. The

concept of the mean residual service time has been considered for evaluating the performance of

some continuous-time queueing systems [50]. However, to the best of our knowledge, it has not

been considered for evaluating the performance of discrete-time systems. The analysis made for
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continuous-time systems can not be readily applied to discrete-time systems. In this section, we

determine the mean residual service time for the discrete systems and use it to analyze the delay

performance.

2.5.1.1 Residual Service Time Concept

An arrival to the system may experience some delay resulting from the residual service time of

one of the packets arrived ahead of it. Let Ri denotes the residual service time seen by the ith

arrival. If the jth packet is being served when the ith packet arrives, then Ri corresponds to the

remaining time until packet j completes its service. When packet i arrives while the system is

empty, then Ri equals zero.

Fig. 2.3 illustrates by example the concept of residual time. In this figure we draw the

number of arrivals and departures over time and show the residual service time corresponding to

each arrival. Xi denotes the service time of the ith arrival. ti represents the time at which the ith

arrival arrives, and t
′
i represents the time at which the ith arrival leaves the system. The residual

time can take a non zero value only at the instants at which an arrival occurs.

2.5.1.2 Residual Service Time in Discrete Systems

The evolution of the residual time over time is random, we showed a sample path for a simple

example in Fig. 2.3. In continuous systems, the residual time can take a non zero value at any

instants since an arrival can occur at any time. However, in discrete systems, the residual time

can take a non zero value only at the slot boundaries. Also, since a service time is integral

multiples of slot duration and it starts and ends at the slot boundaries, the remaining of a service

time as seen by an arrival can only equal integral multiples of the slot duration.
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Figure 2.3: The concept of residual service time

Let the service time of the ith arrival starts at the beginning of the kth slot. Assume this

service lasts for Xi slots. Let’s refer to the residual time at the end of a slot k by rk, where rk is

measured in slots. The residual times corresponding to the arrivals arrive during the service of

the ith arrival are denoted by rk, rk+1, . . . , rk+Xi−1. Their values are Xi − 1, Xi − 2, . . . , 1, 0

slots, respectively. At the end of the first slot of the service time, the residual time is Xi − 1

slots, and its value decreases by one slot at the end of the next slot, and keeps doing so until the

service time completes. It equals zero at the end of the last slot of the service time. See Fig. 2.4

for illustration.

For an outside observer, any service corresponds to an arrival arrives right prior to the start of

the service. The service that starts at the kth slot corresponds to an arrival arrives at the begining

of that slot. Since one packet at most can arrive at any given time slot, no other arrivals can

arrive at this particular arrival instant. The residual times at the beginning of any slot at which a

service starts is zero. See Fig. 2.4 for illustration.
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Figure 2.4: A sample path of a server status and the corresponding residual service time.

2.5.1.3 Mean Residual Service Time

According to [50] , the mean residual time as seen by an arrival is equal to the mean residual

time seen by an outside observer at a random time. This is valid for any arrivals satisfying the

Poisson Arrivals See Time Averages (PASTA) property, which is the case for the queueing sys-

tems with Poisson arrival process. The question arises here is what about the Bernoulli arrivals

system. Since the Bernoulli Arrivals See Time Averages (BASTA) property for those systems

is analogous to the PASTA property in continuous-time systems, we can also define the mean

residual time as seen by an arrival (denoted by R) to be the mean residual time seen by an out-

side observer at a random time. We use a graphical argument to obtain R. The analysis we make

applies for single and batch arrivals. The residual time of an arrival depends on the arrival instant

and not on the number of arrivals arrive at that instant.

The cluster head status over time is random. During any time slot, it could be either busy

serving a packet or idle. When a packet i starts to be served, the cluster head stays busy for Xi

slots. In Fig. 2.4, we plot a sample path of the cluster head status. We also plot the corresponding
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residual service time sample path, which we use to obtain the time average of the residual service

time. Consider the time interval [0,τ ], where τ is the time instant corresponding to the end of

the mth slot. We are assuming that up to the mth slot, Nm packets have already been served.

The time average of the residual time (measured in slots) in this interval is given by Em =

1
m

∑m
k=1 rk.

Since we know the values of rk’s during the service time of each packet (as we explained

earlier), the sum of the rk over them slots can be determined by summing the rk’s corresponding

to the service times. The average time of the residual time can then be rewritten as

Em =
1

2

Nm

m
(

∑Nm
i=1Xi

2

Nm
−
∑Nm

i=1Xi

Nm
)

Taking the limit as m→∞, assuming it exists, we obtain

lim
m→∞

Em =
1

2
lim
m→∞

Nm

m
lim
m→∞

(

∑Nm
i=1Xi

2

Nm
−
∑Nm

i=1Xi

Nm
)

The left-hand side limit is the time average of the residual time. The limits on the right-hand side

are the departure rate (which equals the arrival rate), the service time second and first moments

respectively. Assuming that the time averages can be replaced by the ensemble averages, the

average residual time can then be expressed as

R =
1

2
λ(X2 −X) (2.5)

where X and X2 denote the service time first and second moment respectively.



24

2.5.2 Waiting Delay

We derive the average waiting delay for our system in terms of the average service residual time.

2.5.2.1 Single Arrival Systems

The per-packet average waiting time W can be expressed in terms of the average residual time

as W = R/(1− ρ), where ρ = λX is the utilization factor [50]. ρ should be less than unity for

a stable system [78] and λ is the arrival rate per slot. Replacing R with its expression presented

in Equation (2.5) yields

W =
1

2

λ(X2 −X)

(1− ρ)
(2.6)

2.5.2.2 Batch Arrival Systems

The average waiting time of an arbitrary chosen packet in batch arrival systems is consisting

of two independent components. One is the average waiting time of the batch that the packet

belongs to, Wb. The other is the average waiting time within the batch Ww. The average waiting

time Wb is the same as the average waiting time of the first packet in the batch. Wb equals

average residual time of the first packet arrive in the bach plus the average service time of all the

packets ahead of the batch in the queue. Wb can be expressed as

Wb =
R+ ρWw

(1− ρ)
(2.7)

Denote by A the batch size. The first moment and second moment of A are denote by λ, and

λ2 respectively. For a fixed batch size a, the average waiting of a packet within a batch is given
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by X (a2−a)
2a . The probability that an arbitrary chosen packet is in a batch of size a is expressed

as aPa/λ, where Pa is the probability that a batch has a size a. Therefore, Ww for an arbitrary

packet is expressed as

Ww =
1

2
X(λ2 − λ) (2.8)

From Equation (2.7) and (2.8), the per-packet mean waiting time of a batch arrival system

can be written as

W =
λ2(X2 −X) +X(λ2 − λ)

2λ(1− ρ)
(2.9)

2.5.3 Service Delay

The service time distribution is a prerequisite for analyzing the delay performance. The analytic

solution of the expected waiting delay given in Equations (2.6) and (2.9) involves both the first

and second moments of the service time. Delay analysis can still be made if the service time

distribution is not realized. However, the exact analysis appears to be very difficult. Depending

on the model of the system under consideration, the service time can turn out to be not following

any standard distribution. Let’s assume that a channel needs to be available for an S amount of

time continuously so that a packet can be transmitted. Let’s also assume that the cluster head

starts to serve packets whenever there is a channel available. It is possible that a cluster head

starts to serve a packet and then before it completes its transmission, the channel gets occupied

by a PU. This could happen many times in a random manner. This causes the service time to be

random and not following any standard distribution.

Inspired by the slotted-Aloha system presented in [50] and [51], we make the following
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arguments. Let S denotes the slot duration. Corresponding to our model, at any given slot

the cluster head transmits a packet ready for service if there is idle channel. Given that the

availability of spectrum is time-variant with some probability channel remains available over the

entire slot duration and transmission succeeds. If transmission failed, cluster head retransmits

(with probability Pc in case there are number of clusters contend for channels) the packet in the

successive slot until transmission succeeds. Denote by µ the probability that the time spent in

serving a packet is one slot only. µ can be viewed as the service rate per slot. The service time

(measured in slots) needed by the cluster head to successfully transmit a packet is geometric

random variable with parameter µ. We derive the expression of µ for the single and multi-cluster

systems.

2.5.3.1 Single Cluster Systems

A packet transmission is successful within a time slot if there is at least one channel available

during at least the slot duration. The probability of transmission success can be written as µ =

Pr{no outage}Pr{channel idle time > S}.

Using Equation (2.3) which gives the probability of no cognitive network outage and con-

sidering the exponential distribution of channel idle time, we obtain

µ = (1− 1

(1 + v/u)N
)e−uS (2.10)

The packet average delay (denoted by T ) consists of the average waiting delay and the ser-

vice time average delay. From Equation (2.6), T for the single arrival system can be written

as
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T = X +
1

2

λ(X2 −X)

(1− λX)
(2.11)

2.5.3.2 Multi-cluster Systems

Clusters contend with probability Pc to access primary user channels in multi-cluster system.

We illustrate in Fig. 2.5 arrivals state transition diagram for single-arrival multi-cluster system.

At any given slot, a packet at cluster head queue waits (i.e., it is in the state labeled WAITING in

Fig. 2.5) for service with probability ρ, which is the probability that the cluster head is loaded.

When the packet reaches the head of queue (i.e., it makes transition to state ACQUIRING), with

probability Pn the cluster head acquires an idle channel. Pn is the probability that there is no

outage. The cluster head contends over the acquired channel with probability Pc. The cluster

transmits the packet with probability PnPc (makes transition to state TRANSMITTING). With

probability Pt the transmission succeed and the packet leaves the system. Pt is the probability

that no collision occurred over the acquired channel and no primary user reclaims the channel

usage right. The average service time X corresponds to the average time spent in ACQUIRING

and TRANSMITTING states. X is given by 1/µ. Denote the number of clusters by L. µ can be

expressed as

µ = e−uS
( u/v

1 + u/v

)N
(1− Pc)L

L∑
l=1

(
L− 1

l

)( Pc
1− Pc

)l
N∑
i=1

(
N

i

)
(u/v)i

( i− 1

i

)l−1
(2.12)
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Figure 2.5: Arrivals state transition diagram

2.6 Performance Evaluation and Analysis

In this section, we numerically analyze the impact of the PU behaviors on the statistics of the

resource availability process. We also measure the delay performance and study its dependence

on the dynamics of the spectrum availability. For convenience, a reference of used network

parameters and their descriptions is given in Table 2.1.

2.6.1 Resource Availability Process Statistics Analysis

In Fig. 2.6, we plot the probability of outage (Equation (2.3)) versus the ratio between the

average channel idle time to the busy time. Here we refer to the average channel idle and busy

interval by T idle (which equals 1/u, where u is the PU idle to busy transition rate) and T busy

(which equals 1/v, where v is the PU busy to idle transition rate) respectively.
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Table 2.1: Descriptions of Frequently Used Symbols
Parameter Description
u A channel idle-to-busy transition rate
v A channel busy-to-idle transition rate
N Number of channels
routage Outage rate
T idle Average channel idle interval
T busy Average channel busy interval
λ Arrival rate per slot
S Time slot duration

As the ratio T idle/T busy increases, the outage probability decreases. When this ratio is much

less than one, the outage probability can be close to one. Also, as the number of channels N in-

creases, the outage probability decreases. Increasing the number of channels gives the cognitive

network more chances to find an idle one. However, as T idle/T busy increases, the outage occurs

with less probability and the effect of having more channels on this probability becomes less.

This is an important observation to consider when it comes to making decision about the number

of channels a cluster head needs to be able to access to.

Fig. 2.7 plots the effect of the PUs activity on the outage rate, as expressed by Equation (2.2).

The observation we make here is when T idle is low (1/u < 1) and T idle is less than T busy (i.e.,

v < u), as the value of T busy decreases, so does the outage rate routage. However, for large T idle,

as the T busy increases, the routage decreases. One thinks that the lower the value of the T busy is,

the better the performance. For example, if the PUs are a cellular network users, one thinks the

smaller the average call duration, the better the SUs performance. However, Fig. 2.7 indicates

for a large call interarrival time, the longer the call duration, the less the outage rate. The trend

for the outage probability change is different though, as shown Fig. 2.6. In other words, as the

calls durations increases, the outage probability decreases. That should make sense since the

outage rate illustrates how often the network goes through outage, but does not tell how long
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Figure 2.6: Outage probability vs T idle/T busy

the outage is or what its probability is. The different changing trends shows the importance

of considering all the different resource availability statistics if one desires to determine if an

application is admissible by the cognitive network.

The switching rate is also an important parameter to consider when it comes to designing

a multi-channel cognitive network. In practice, there is a communication overhead and energy

consumption associated with switching. The graph of switching rate behavior, as described by

Equation (2.1), versus T idle is shown in Fig. 2.8. An important conclusion we point out from

this figure is that the impact of the number of channel on the performance varies depending on

the value of T idle. For a given v value (i.e., T busy), when u > 1 (T idle is small) and T idle is less

than T busy (i.e., v < u), the larger the number channels N , the higher the switching rate. This is

because when the time in which a channel remains idle gets smaller on average, the cluster head

needs to switch across the channels more often. As T busy increases, the switching rate decreases.
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Figure 2.7: Outage rate vs T idle

It might seem appealing to decrease the switching rate, however, as v and N decrease, the

outage probability increases. In fact, the increase in the outage probability is the reason behind

the decrease in the switching rate as no switching occurs during the outage. Similar to the

observation we made about the outage rate, the trend of switching rate change is different than

that for the outage probability. This confirms our conclusion about the importance of considering

all these statistics for making designing decisions concerning the cognitive network.

2.6.2 Delay Analysis

For a given SUs’ and PUs’ traffic parameter, we plot in Fig. 2.9 the delay performance for the

single-arrival single-cluster system (Equation (2.11)) versus number of channels. The average

delay decreases as number of channels increases, which is intuitive. However, how fast delay

decreases and what value the delay converges to depend on the slot duration, the SUs’ packet
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Figure 2.8: Switching rate vs T idle

arrival rate, and the PUs usage of the channels reflected via the rate at which a channel make

transition from idle to busy (u) and from busy to idle (v).

As we explained earlier, as u increases, the outage probability increases. Also, the prob-

ability that a channel remains idle for an entire slot duration S decreases. Hence, the average

service rate decreases. Since the cluster head uses only one channel at any given time to send

data, having more channels while u is large does not improve the performance considerably.

Note that in this and all the subsequent figures, if the results are not shown for a range of

values within the horizontal axis, this implies that the delay is unbounded. For a given network

setting, if the cluster head can not keep up with the arrival rate, in other words service rate is less

than the arrival rate, the network becomes unstable and the delay increases without bounds.

Fig. 2.10 illustrates how Equation (2.11) behaves when T idle changes. As T idle increases,

the performance improves. However, the significance of the improvement depends on some other
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Figure 2.9: Average delay vs. number of PU channels

network settings. We observe from this figure that increasing the number of channels for highly

loaded network has more impact on the delay performance than the lightly loaded. Similarly,

the impact of increasing the slot duration becomes more severe as the value of λ increases.

Increasing the slot duration decreases the probability that a channel can remains idle over the

slot duration. Hence, the average service time increases, and so consequently does the average

waiting time, especially for large values of λ. The range of T idle through which the system is

unstable varies depending on the primary and cognitive network settings. In order to maintain

the network stability, it is necessary to design the cognitive network such that the traffic arrival

rate does not exceed the service rate, which is as expressed in Equation (2.10) is a function of

primary users’ traffic parameter.
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Figure 2.10: Average delay vs average of channel availability time (T idle)

2.7 Conclusion and Future Work

In this chapter, we have analyzed the dynamics of the spectrum availability and studied the

delay performance of a clustered cognitive network. We have introduced the concept of the

resource availability process and characterized its properties as a way to measure the network

performance. We have also obtained the analytical characterization of the relationship between

the packets delay and the dynamics of the spectrum availability. The opportunistically available

resources need to be carefully considered in making design decisions regarding the cognitive

network to maintain its stability. We plan to study the gain of the multiple-interface transmission

on the performance of both discrete-time and continuous-time systems.
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Chapter 3: Mitigating Jamming Attacks in Mobile Cognitive Networks

Through Pseudorandom Time Hopping

5G wireless networks are expected to support massive connectivity and require lots of spectrum

resources, mainly due to device-to-device communications and the high bandwidth demand of

next-generation wireless services and applications. An enabling technology for device-to-device

links is the dynamical spectrum access, where the devices, to be equipped with cognitive radios,

are to be allowed to reuse spectrum occupied by cellular links in opportunistically. However,

security threats can severely affect spectrum utilization of these emerging cognitive networks.

Jamming attacks for example can disrupt cognitive network communications completely. One

potential solution to address these attacks is rely on traditional cryptographic schemes. In this

chapter ( [49]), we focus on the study and modeling of cognitive radio networks under jamming

attacks. Specifically, we model and characterise the impact of the spectrum dynamics on the

performance of jammed cognitive networks. While existing anti-jamming mechanisms assume

stationary users, in this chapter we propose and evaluate countermeasure solutions for cognitive

radio networks whose users are mobile. Unlike existing countermeasure methods, our techniques

are not frequency-based and hence do not assume accessibility to multiple channels. In this

framework, we derive analytic solutions that capture cognitive mobile network performances

terms of their jamming, switching and error capabilities. Our findings show that our techniques

outperform their existing frequency-based counterparts.
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3.1 Introduction

5G wireless networks are projected to support 1,000-fold gains in capacity and support 100 bil-

lion devices in the very near future [79]. Deployment of networks with such a massive capacity

and connectivity poses many challenges, among which radio resource management is the most

significant. The challenge is even more acute when security concerns are taken into account.

Cognitive users can be self-managed as they are capable of observing, learning, and adapting to

environment changes. The self-management is a desirable capability when it comes to deploying

networks with large number of devices. However, the lack of access priority makes communica-

tion between cognitive users more vulnerable to security attacks, and therefore, mechanisms that

handle security threats and take into account the volatility of resources need to be designed. Jam-

mers can utilize their transmission capabilities over the limited resources accessible by cognitive

users and completely disrupt the communications between them. As mobility of users makes

communication channels in both frequency and time dispersive, the challenge of maintaining a

desired QoS is even more acute when users are mobile. The focus of this chapter is then on

proposing and studying anti-jamming schemes for mobile cognitive users.

3.1.1 Related Work

Jamming attacks in cognitive networks have attracted research attention as they are more detri-

mental than other types of attacks. Most existing countermeasure approaches ( e.g., [43–47]) are

based on spectrum handoff. Such countermeasures are only applicable in case multiple channels

are accessible. In [43], the authors proposed to randomly allocate the power among multiple

channels to anti-jamming. The interactions between jammers and cognitive users were mod-

eled as a Colonel Blotto game. Similarly, the authors in [44] proposed frequency hopping based
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countermeasure and modeled the anti-jamming scheme as a game. They applied prospect theory

to derive the hopping patterns. As in [43, 44] , the authors in [45] proposed a frequency-based

countermeasures. However, while the transmission power is allocated randomly in [43], the au-

thors in [45] proposed to allocate power optimally based on some learning techniques. In [46],

the authors assumed that jammers and legitimate users compete sequentially. They modeled their

interaction as a game using Stackelberg model. Power is allocated, in their techniques, based on

estimated jamming power. [47] modeled spectrum dynamics as partially observed Markov pro-

cess. The authors in [47] assumed that users learn to retreat from jammers through, similar to the

other works, spectral surfing. They applied multiple-armed bandit method to derive their coun-

termeasure. In [48], the authors also considered spectral surfing as a jamming countermeasure

with the assumption that secondary users use pre-shared secret keys for channels selection.

3.1.2 Summary of Contributions

Most jamming countermeasures exist in literature are based on frequency hopping. They mainly

differ in the strategies used to derive hopping patterns. Due to volatile access opportunities,

frequency-based countermeasures are not the best choices in cognitive networks. Since sec-

ondary users lack spectrum-access priority, whenever a primary user claims the right to use a

channel, they have to vacate it and switch to some other idle one. Mitigating jamming through

spectral surfing leads to a higher switching rate. Hence, more energy consumption, delay, and

communication overhead in general. In addition, high primary users activity reduces the number

of channels accessible by secondary users. Hence, frequency hopping techniques become less

effective as primary users become more and more active. More importantly, these techniques

work only if multiple channels are accessible. None of them addresses jamming attacks when

there is only one channel accessible by legitimate users. To avoid these limitations, we propose to
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mitigate jamming through time-based techniques. In the following we summarize the properties

of our proposed countermeasures and point out their differences from existing schemes.

• We propose two time-based techniques that work with arbitrary number of channels. They

can be as few as one. Existing jamming countermeasures, however, assume accessibility

to multiple channels.

• Our techniques do not rely on switching and hence avoid any associated overhead.

• While existing schemes assume stationary users, we assume mobile users. One of our pro-

posed schemes is designed to mitigate jamming and mobility effects as well (see section

3.3.2 for details).

• We obtain closed-form formulas to a number of performance metrics including jamming

probability, switching probability, and error probability.

• Our findings show our proposed techniques outperform other existing frequency-based

techniques.

3.2 Preliminaries and Models

Notations. Operator || denotes the concatenation. dxe denotes the ceiling of x. bxc denotes the

floor of x.

Definitions.

1. key derivation function (KDF) is a function with which an input key and other input data

are used to generate keying material that can be employed by cryptographic algorithms.
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Figure 3.1: Pseudorandom time hopping system block diagram

2. Pseudorandom number generators (PRNG) is a deterministic algorithm used to generate

a sequence of bits which looks like random sequence, given as input a short random se-

quence (the input seed).

Channels Model. Cognitive users have access to N channels licensed to some primary users.

Cognitive users opportunistically utilize the spectrum. The occupancy of each channel is mod-

eled as a two-state Markov chain. The average channel idle and busy interval are independent

and exponentially distributed with parameters u and v respectively. All channels are assumed

to be independent of each other and identical. Channels are both frequency and time dispersive.

The frequency dispersion is caused by the relative motion between the two communicating enti-

ties. We consider the mobile-to-mobile channel model described in [80]. The model of primary

users applies to users in cellular networks. It is popular to model arrival of calls as a Poisson

process (i.e., exponentially distributed interarrival times), and the probability distributions of call

durations as exponential [81]. Successive interarrival times and call durations are independent

of each other in this model.

Secondary Users Model. We assume that there are n connections within the cognitive network

at most. Each connection is established between a pair of secondary users which access spec-

trum opportunistically. Each user accesses no more than one channel at a time. Users operate

in a time-slotted mode. They are required to sense the spectrum periodically to avoid interfering

with primary users. They also need to vacate a channel if it is detected to be occupied. More
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details about how users get assigned to spectrum each transmission period is given in section

4.3.

Jamming Model. We assume that there is jammer in the cognitive network with transmission

capabilities similar to secondary users. In other words, jammer is able to identify and exploit

spectrum access opportunities. It intentionally disrupts the communication between secondary

users. Jammer activities are required to be transparent to licensed users. This assumption is

reasonable and widely-used, e.g. [48, 82], and many others consider a similar assumption. To

ensure transparency, jammer, similar to legitimate users, is required to perform periodic channel

sensing. In fact, we are not concerned about primary users security. We are only addressing jam-

ming attacks in cognitive networks. Back to the model, jammer periodically sense the spectrum

to identify the unoccupied channels and pick one of them randomly to launch a jamming attack.

Jammer exploits its limited energy to degrade legitimate users performance either by performing

partial-time or continuous-time jamming. It aims to make legitimate users switch between chan-

nels by making jammed channels unaccessible. However, our main goal is to make legitimate

users avoid jamming without having them switch between channels.

3.3 Proposed Schemes and their Analysis

To mitigate jamming, we propose to spread a legitimate user data over time. More specifically,

instead of transmitting legitimate user data continuously over time, a user transmits some data

over some time, holds for some other random amount time, and then transmits again and so on.

The idea is to make the transmission instants look random to jammer. In this way, we impose

jammer to jam in a discontinuous way, otherwise, it wastes its limited power (more details about

possible jammer interactions and their effects on performance are to discussed). This idea, which

we refer to as time hopping, is simple yet outperform frequency hopping technique. It is also
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used to achieve multiple access. To apply time hopping we propose the two following schemes.

3.3.1 Private Key Based Time Hopping (PKTH)

In PKTH, we consider the capacity of a channel to be subdivided into n portions, where n is

the maximum number of connections can be established between secondary users. A user is

constrained to use only one portion for data transmission. The allocation is done by dividing

the time axis into frames. Each frame is divided into n slots of fixed length (e.g., one bit or one

packet long). According to a pairwise shared key, a user allocates one slot per a frame. A block

diagram of time hopping transmitter and receiver system is shown in Fig. 3.1. In any signal-

ing interval, time hopping pattern (slots to be occupied by the transmitted signal over time) and

channel selections are determined as described in Algorithm 2. As we do not assume multiple

channels accessibility, we only consider time evasion as a countermeasure in PKTH. However, in

case there is more than a channel accessible by the cognitive network, users take the advantage of

their pre-shared keys for spectrum access. Spectral surfing is performed to avoid interfering with

primary users. To ensure security seeds used for time hopping pattern derivation are different

from the ones used for spectrum access. The transmitter pre-shares the key and seeds with the

receiver, which in turn removes the pseudorandomness introduced to allocate transmitted signal

over time and frequency. We give a high level description of Algorithm 2 below, and discuss its

complexity.

Initialization. A trusted third party, which is in our model the primary users network base

station, distributes private keys among pairs of users. Keys are generated such that similar-

ities between patterns derived from different pairs are minimal such that multiple access can

be achieved [83]. Cellular network base station also assigns an identification number to each

legitimate user.
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Algorithm 1 Time Hopping Pattern Derivation and Channel Selection Algorithm
Initialization: Executed once after the network deployment.

1: Cellular network base station assigns a private key to each pair of users.

2: Users X and Y both determine the slot g (decisionTH ) and channel k ( decisionCS) to be used for

transmission. They set a to be dlog2 ne, b to be dlog2Ne, CCS , CTH ,A ,B all to be one. SeedCS

(SeedTH ) denotes seed used for channel selection (time hopping). s denotes session ID. l denotes

the size of users X and Y private key K.

Pseudorandom Numbers Generation: Executed by both X and Y each session.

3: SeedCS ← KDFK(IDx ‖ IDy ‖ s).

4: PRSeqCS←PRNGK(SeedCS). Denote the binary string PRSeqCS by {xi}li=1.

5: if B = 0 then B ← 1, CCS ← 1, go to 12

6: SeedTH ← KDFK(IDy ‖ s ‖ IDx).

7: PRSeqTH←PRNGK(SeedTH). Denote the PRSeqTH binary string by {yi}li=1.

8: if A = 0 then A← 1, CTH ← 1, go to 20

Hopping Pattern Derivation: Executed every time frame by both X and Y .

9: if the last assigned channel is idle then decisionCS ← no switching.

10: else

11: if CCS ≤
⌊ l
b

⌋
then

12: k ← (
∑CCS+b−1

j=CCS
xj2

j) mod N .

13: CCS ← CCS + 1

14: if kth channel is idle then decisionCS ← switch to kth channel.

15: else

16: go to 11

17: else

18: B ← 0, update s, go to 3

19: if CTH ≤
⌊ l
a

⌋
then

20: g ← (
∑CTH+a−1

i=CTH
yi2

i) mod n. decisionTH ← allocate gth slot.

21: CTH ← CTH + 1

22: else

23: A← 0, update s, go to 6
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Pseudorandom Numbers Generation. Using the private key along with seeds (generated by

KDF using session, transmitter and receiver IDs) transmitter and receiver run PRNG to generate

pseudorandom sequence of bits used for time hopping pattern derivation (denoted by PRSeqTH )

and sequence used for channel selection (denoted by PRSeqCS).

Hopping Pattern Derivation. The generated pseudorandom sequencesPRSeqTH andPRSeqCS

are truncated into chunks of dlog2 ne and dlog2Ne bits long respectively. The modulo n and

modulo N of the decimal numbers corresponding to resulted chunks are used to indicate the

allocated slot and channel.

Algorithm complexity The number of accessible channels, the chance of their occupancy, the

required level of security required by Algorithm 2 are all factors determine its computational

complexity. The type of the employed key derivation function, KDF, and the length of the seed

it generates play an important role in determining the running time of the algorithm. We assume

that BLAKE hash [84] based key derivation function is applied and analyze the complexity

accordingly. In BLAKE based key derivation functions, users hash some secret information (in

our case a private key, their id’s, and session id) using BLAKE hash function. BLAKE is one of

hash functions in the final of National Institute of Standards and Technology (NIST) 2007-2012

Competition for developing cryptographic hash algorithms [85]. There are two main instances

of BLAKE, BLAKE-256 and BLAKE-512. They respectively produce 256- and 512-bit digests

and run with complexity O(2561.3) and O(5121.225) [84].

The complexity of the pseudorandom number generators, PRNG, algorithm is also affected by

the output of the KDF (the input for the PRNG algorithm). The goal of the PRNG algorithm

is to generate a number that has a pseudo-random distribution such that no efficient procedure

can distinguish it from uniform distribution. The complexity of the PRNG algorithm depends on

the type of procedure the generator is secure aganist. In case efficient procedures are associated
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with (probabilistic) polynomial time algorithm, the PRNG complexity is a polynomial time (in

terms of its input, the seed) [86]. I.e., the PRNG runs in O(lLs ) where ls is the seed length, and

L is an integer greater than one. Hence, the complexity of the KDF and PRNG in Algorithm 2

is O(lLs ) where ls equals either 256 or 512 depending on the used hash function. For any given

session, executing lines 6-7 is enough for allocating time slot for
⌊
l/a
⌋

time frames. Similarly,

lines 3-4 results in allocating a channel for (at most)
⌊
l/b
⌋

time frames. However, since with a

probability pbusy a channel is occupied by a primary user, it takes
⌈
1/pbusy

⌉
operations as much,

in average, to allocate a channel. The overall computational complexity of the algorithm, hence,

is O(NSNT

⌈
1/pbusy⌊
l/b
⌋ ⌉lLs ), where NS is the number of sessions, NT is the number of time frame

within each session assuming, without loss of generality, all sessions have the same number of

frames.

To analyze the anti-jamming capabilities of the time hopping system, we assume users em-

ploy orthogonal frequency division multiplexing (OFDM) with Nc subcarriers where each sub-

carrier employs either coherent binary phase shift keying (BPSK) or differential phase shift

keying (DPSK) modulation depending on the fading environment.

We further analyze a number of performance measures to evaluate this technique. We an-

alyze the jamming probability and investigate its dependence on primary user behaviors. We

also derive the expression of the switching and bit error probability in the presence of jamming

attack.

3.3.1.1 Jamming Probability

The dynamical spectrum availability makes cognitive users more vulnerable to jamming. It

is important to understand the nature of jamming probability and its dependence on primary

user behaviors. The jamming probability has its consequence on the delay performance, error
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probability and hence on the network design.

Jamming probability is the probability that a jammer hits both the channel and slot assigned

to a legitimate user. At least one channel needs to be idle for a jammer to be able to jam cog-

nitive users communication. A channel idle time and busy time are exponentially distributed

with parameters u and v respectively. The average idle and busy intervals are denoted by T idle

and T busy respectively. The probability that a channel is idle, as a result of this model, is given

by v
(u+v) . Considering that there are N identical and independent channels, the probability that

there are exactly i idle channels out of theN accessible channels is given by 1
(v/u+1)N−i

1
(u/v+1)i

.

A jammer chooses to jam a fraction ρ of each time frame. Jammer sets the value ρ to counter-

measure the time hopping technique, as we will see in section 3.3.1.3 and 3.3.2. Conditioning

on the availability of i channels, the probability of jamming a channel in a given time frame

is ρ
i . Recalling that the probability of the availability of i is given by 1

(v/u+1)N−i
1

(u/v+1)i
, and

considering that there are
(
N
i

)
possible combinations for i idle channels out of the N channels,

the jamming probability, denoted by Pj , is expressed as

Pj =
N∑
i=1

(
N

i

)
ρ

i

1

(v/u+ 1)N−i
1

(u/v + 1)i
(3.1)

The graph of this equation for different primary user behaviors and continuous time jamming

(ρ = 1) is shown in Fig. 3.2. It is observed that Pj changes drastically as primary user activities

change. The jammer is gaining from the volatile availability of spectrum. For high levels of

primary user activities (i.e., the ratio between u and v is high which means that T busy/ T idle

is high), the average number of unoccupied channels can be much less than the total number of

channels, which in turn gives jammer a higher chance to disrupt the communication of legitimate

users. Another observation we can make is that Pj can be low when there are few channels and

u/v is relatively high. The reason is that the resources are lacking for both legitimate users
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Figure 3.2: Jamming probability vs number of primary user channels

and attacker. In other words, jammer is not able to jam because of lack of access opportunities.

Low Pj might seem appealing, but the lack of access opportunities leads to higher transmission

delay [30].

3.3.1.2 Switching Probability

In the time hopping systems no switching is performed due to the presence of a jammer. In other

words, if a jammer gets to access the same channel that a legitimate user uses, the legitimate user

is not required to switch to another channel.

Channels availability and user’s offered load β, which is defined as the ratio between the
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arrival probability and service probability, determine if a channel handoff needs to be performed

within a particular time frame. For stability conditions β is assumed to be less than unity. The

arrival probability λ is the probability that a user generates a data packet within a frame duration.

The service probability µ is the probability that a cognitive user gets a channel access opportunity

for at least slot duration Ts. The service probability, derived in [30], is the probability that at least

a channel is idle (which is given by (1− 1
(1+v/u)N

)) multiplied by the probability that the channel

is idle for at least a time frame (which is, considering our channel model, given by e−uTs). In

other words, the service probability is expressed as [30]

µ = (1− 1

(1 + v/u)N
)e−uTs (3.2)

The probability that a user switches between channels at any frame is the probability that the

last assigned channel is busy during that frame while there is another channel idle and offered

load is greater than zero. The switching probability is written as

Psw = β
N−1∑
i=1

(
N − 1

i

)
1

(v/u+ 1)N−i
1

(u/v + 1)i
(3.3)

The justification behind this equation is similar to that made for Equation(3.1). In Equation(3.3),

however, the limit of the sum does not exceed N − 1. That is intuitive since, excluding the chan-

nel a user is currently assigned to, the user can only switch to one of N − 1 channels at most. In

Fig. 3.3, we plot the switching probability for time hopping system along with the corresponding

probability in frequency hopping system where legitimate users are required to vacate a channel

whenever it is jammed. [47, 48] and some other existing works assume that successful channel

jamming leads to switching. We set u = 2, v = 1, and slot duration Ts = 100 msec. It is ob-

served that switching probability for the time hopping system is relatively low. Because of high

jamming probability, the switching probability of frequency hopping system is much higher than



48

Figure 3.3: Switching probability vs number of primary user channels

that for the time hopping, especially with few channels.

3.3.1.3 Error Probability

We investigate the probability of error for the additive white Gaussian noise (AWGN) channels

and mobile-to-mobile fading channels. The jamming signal is modeled as a Gaussian random

process with zero mean. Similar jamming signal model is commonly considered in the literature

(e.g., [48, 87, 88]).

Error Probability in AWGN Channel The jammer jams ρ fraction of the total frame time.

If the jamming power per frame is J , then the received jamming-signal variance per slot is ρJ .

Assuming that the jamming power dominates the noise, the probability of error is given by
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Pe =
N∑
i=1

(
N

i

)
ρ

i

1

(v/u+ 1)N−i
1

(u/v + 1)i
Q
(√2ρEs

J

)
(3.4)

where Q(x) = 1√
2π

∫∞
x e−t

2/2dt and Es is the average symbol energy. Equation (3.4) follows

from Equation (3.1) and the BPSK error probability [88].

Attacker sets ρ to countermeasure legitimate user anti-jamming techniques. The jammer

selects ρ that causes the worst legitimate users performance. In Fig. 3.4, for several values of

Es/J we plot the probability of error versus jamming fraction time ρ. As legitimate-to-attacker

power ratio increases, the attacker can make legitimate users performance worse by focusing its

power over smaller fraction time. Otherwise, the attacker wastes its power without degrading

the performance of legitimate user significantly. That is to say that by making legitimate user

discontinuously transmit its data and randomly allocate data over time, we impose jammer to

follow the same strategy (i.e., jam discontinuously), which is turn reduces the probability of

jamming.

Error Probability in Mobile-to-Mobile Fading Channel Within each OFDM subcarrier the

channel is assumed to be non-selective Rayleigh fading with zero mean Gaussian channel gain.

The cross correlation between lth subcarrier channel gain at time t + τ (αl(t + τ)) and the

and kth subcarrier channel gain at time t (αk(t)) can be factorized into two factors Rt(τ) and

Rf (τ). While Rt(τ) represents the temporal correlation of the channel gain, Rf (τ) represents

the correlation across subcarriers. We consider the mobile-to-mobile model described in [80] to

characterize our channel. Rt(τ) in this model is expressed as 2J0(2πfm1τ)J0(2πfm2τ). Where

J0(.) is the zero order Bessel function. In this model the communicating users both can be in

motion. fm1, and fm2 are the maximum Doppler frequency due to the motion of the transmitter
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Figure 3.4: Error probability vs jamming fraction

and receiver respectively. Without loss of generality, fm2 can be represented in terms of fm1

as afm1, where 0 ≤ a ≤ 1. The power spectral density PSD(f) corresponding to Rt(τ) is

given in [89] and expressed in Equation(3.3.1.3). The multipath power intensity profile which

describes the frequency selectivity of channels is modeled as an exponential.

PSD(f) =
1

π2fm1
√
a



1

x
K(

1

x
) if |f | ≤ (1− a)fm1

K(x) if (1− a)fm1 < |f | ≤ (1 + a)fm1

0 if |f | > (1 + a)fm1

where x ,
1 + a

2
√
a

√
1−

( f

(1 + a)fm1

)2 and K(x) ,
∫ π/2
0

dt√
1− x2sin2t

dt is the complete el-

liptical integral of the first kind. Due to the mobility of users, all OFDM subchannels experience

frequency dispersion, leading to intercarrier interference. The OFDM baseband signal trans-
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mitted over the channel is expressed as s(t) = 1√
Ts

∑Nsc−1
i=0 sie

j2πi/Tst, where 0 ≤ t ≤ Ts,

Nsc is the number of subcarriers. si, i ∈ {1, .., Nsc}, represents the BPSK symbol at the

ith subcarrier. The subcarrier symbols are assumed to be independent and identically dis-

tributed, each with zero mean and average energy Es. The received baseband signal is ex-

pressed as sr(t) = 1√
Ts

∑Nsc−1
i=0 αi(t)sie

j2πi/Tst + j(t), where j(t) is the jammer signal. The

lth subchannel-gain variations over time αl(t) can be expressed as αl(Ts/2) + άl(t − Ts/2),

0 ≤ t ≤ Ts, where άl is the lth subchannel-gain first derivative [90]. To detect the lth sym-

bol, the received signal is passed through a correlator tuned to the lth frequency. The received

lth symbol ŝl is expressed (as in [88]) as
1√
Ts

∫ Ts
0 sr(t)e

−j2πfltdt. Where fl is the lth carrier

frequency. As a result, ŝl is expressed as

ŝl = αl(Ts/2)sl +
Ts

2jπ

Nsc−1∑
i=0
i 6=l

άl(Ts/2)sl
(i− l)

+ jl (3.5)

Where jl is the jamming signal at the lth subcarrier. Due to the mobility of users, subchannels

interfere with the lth subcarrier (second term in Equation(3.5)). Considering the power spectral

density of the channel, the average power of intercarrier interference at the lth subchannel Il is

expressed as

Il =
4EsT

2
s

π2fm1
√
a

Nsc−1∑
i=0
i 6=l

1

(l − i)2

[ ∫ (1−a)fm1

0
f2

1

x
K(

1

x
)df

+

∫ (1+a)fm1

(1−a)fm1

f2K(x)df

]
(3.6)

The probability of error, corresponding to detecting the symbol at the lth subcarrier, is de-

fined only if there exists at least one idle primary user channel. The lack of a channel access
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opportunity causes a service delay [30]. The error probability conditioned on the subchannel

gain is given by

Pe|αl
=

N∑
i=1

(
N

i

)
1

(v/u+ 1)N−i
1

(u/v + 1)i

[
ρ

i
Q(

√
2Es|αl|2
ρJ + Il

)+

(1− ρ

i
)Q(

√
2Es|αl|2

Il
)

]
(3.7)

Equation (3.7) can be derived from Equation (3.1) and (3.4). By averaging over the distribu-

tion of the subchannel gain we obtain the unconditional error probability which can be expressed

as

Pe =
1

2

N∑
i=1

(
N

i

)
1

(v/u+ 1)N−i
1

(u/v + 1)i[
ρ

i

(
1−

√
γ1

1 + γ1

)
+ (1− ρ

i
)

(
1−

√
γ2

1 + γ2

)]
(3.8)

where γ1 = 2EsE[|αl|2]
ρJ/+Il

, and γ2 = 2EsE[|αl|2]
Il

. E[|αl|2], which is normalized to unity,

denotes the average value of |αl|2. Note that for a deterministic number c, the random variable

c|αl|2 has a chi-square probability distribution given by c−1exp(−c−1|αl|2).

In Fig. 3.5, we plot the error probability for the subcarrier in the middle of a channel (l =

128). We set the number of primary user channels to four (N = 4), number of subcarriers to 256,

ρ to 0.1, average busy to idle time to unity (u/v = 1), receiver to transmitter speed ratio to be 0.5

(a = 0.5), and the product of maximum Doppler frequency and slot duration (Tsfm1) to 0.05.

We observe from the figure that the probability of error reaches a limit such that any increase

in Es/J no longer improves the performance. In other words, increasing legitimate-to-jammer
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Figure 3.5: Error probability vs legitimate-to-attacker power ratio

power ratio makes no difference after a certain threshold as mobility effects starts to dominate

jamming effect. This limit, which can be derived by taking the limit of Equation (3.8) as Es/J

goes to infinity, is referred to as irreducible error probability [91]. For a given transmitter and

receiver speed, if a higher quality of service is desired, an adjustment in the slot duration needs

to be made (to reduce the value of Tsfm1) so that the effect of mobility is mitigated. Also

we can observe that for low legitimate-to-attacker power ratio, the pseudorandom time hopping

system outperforms the frequency hopping system. In other words, when jamming power is

relatively high, our system achieves with less power the same level of performance that frequency

hopping systems achieve. That is because, in the time hopping system we enforced jammer

to discontinuously jam. One might think that we are not utilizing our resources, as we only

allocate one slot for a legitimate user within each frame. However, our system is a multiusers

system where each slot can be allocated to a different user. As legitimate-to-attacker power
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ratio increases, the intercarrier interference domains the jamming effect and time and frequency

hopping systems perform similarly.

To overcome the performance improvement limitations and mitigate the fading channel ef-

fects, we propose another time hopping technique.

3.3.2 Selective Diversity Based Time Hopping (SDTH)

SDTH anti-jamming technique is similar to PKTH, however, in this scheme we consider the

channel quality in the hopping pattern derivation. The time axis is divided into frames. The time

frame is subdivided into s subframes, which are in turn divided into ns slots. In any signaling

interval, based on a shared key, a user selects a subframe. Within the selected subframe, slot

to be allocated with user’s transmitted signal is determined based on channel quality. Chan-

nel envelope-crossing rate, which is the rate at which the transmitted signal envelope crosses a

specified level, can be a criteria for channel quality determination. Duration of fades defined

as average time during which signal envelope remains below a certain level is another channel

quality measure. Mobile-to-mobile channel statistical properties that can be used to determine

channel quality over time are analytically characterized in [92]. In SDTH, best channel gain is

our criteria for subrames slot allocation. Best gain in the sense that the allocated slot has the

maximum channel gain among the subframe slots. The estimation method presented in [93] can

be used to determine the channel with the best quality. Channel coherence time, which char-

acterizes the time varying of the frequency dispersiveness caused due to mobility of users, is

an important SDTH design parameter that needs to be considered in determination of slot and

frame durations. The slot duration should be small (smaller than channel coherence time) so that

channel variations within the slot are small. Also, since coherence time quantifies the correlation

of channel gain at different times, to ensure security, frame duration should be larger than the
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coherence time. In other words, frame durantion should be set such that channel responses for

different frames are uncorrelated.

We further analyze analytically the scheme error probability and compare it with the corre-

sponding probability of PKTH. We will show, in different fading environments, SDTH improves

the probability of error considerably over PKTH and hence over frequency hopping.

There is a correlation between channel gains at different slots in the subframes, in general.

Using the probability joint distribution of channel gains at different slots to obtain the error

probability is complicated and does not lead to a closed form solution. The correlation between

the channel gains can be described by their joint characteristic function [94]. Considering the

correlation between the ns subframe slots, the error probability of an allocated slot is expressed

as [94]

Pe =

∫ ∞
−∞

..

∫ ∞
−∞

CF (x1, .., xns)f(x1, .., xns)dx1..dxns (3.9)

CF (x1, .., xns) is the characteristic function which is defined asE[ej(x1r1+..+xnsrns )]. Where

ri , |αsi |2, and αsi is the ith slot channel gain ∀ i ∈ {1, .., ns}. ri is distributed as chi-squared

with two degrees of freedom. CF (x1, .., xns) is expressed as det(A)−1. where A(l, l) =

1 − jxlE[rl], and A(l, k) =
√
cVrlVrk ∀ l, k ∈ {1, .., ns}. c is the correlation coefficient

between rl and rk, Vrl is the variance of the random variable rl. f(x1, .., xns) is given by

f(x1, .., xns) =
1

(2π)ns

∫ ∞
0

Pe|rh(r, x1, .., xns)dr (3.10)
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Where r is the maximum of r1, .., rns and h(r, x1, .., xns) is given by

h(r, x1, .., xns) =

ns∏
l=1

[ ns∑
k=1

(−1)k+1

∑
b1+..+bns

j(b1x1 + ..+ bns)

exp(jr((b1x1 + ..+ bns)))

]
(3.11)

Depending on the fading environment, it can be difficult for coherent systems such as phase

shift keying to maintain coherence over a single pulse duration. With out loss of generality,

we consider differential phase shift keying modulation to express Pe. The error probability

conditioned on the availability of at least one channel for a fixed r is given by

Pe|r =
ρ

2

N∑
i=1

(
N

i

)
1

i (v/u+ 1)N−i
1

(u/v + 1)i
×(

exp
(
− Esr

(J/ρ+ I)

)
− exp

(
−Esr

I

))
+

1

2

(
1− 1

(v/u+ 1)N

)
exp
(
−Esr

I

)

Considering the error probability of DPSK [88], Equation (3.12) can be derived similar to

Equation (3.4). By plugging Equation (3.12) and (3.11) into equation (3.10) which in turns

plugged into (3.9) gives the closed form of the error probability for any fading environment,

jamming strategy, and primary user activities level. For mathematical tractability, we evaluate

SDTH error probability when number of slots within a subframe ns is two. In this case, Pe is

expressed as follows
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Pe =
2ρ

(4π)2

[ N∑
i=1

(
N

i

)
1

i (v/u+ 1)N−i
1

(u/v + 1)i∫ ∞
−∞

∫ ∞
−∞

(
f1(x1, x2)− f2(x1, x2)

)
dx1dx2

+
(

1− 1

(v/u+ 1)N

)∫ ∞
−∞

∫ ∞
−∞

f2(x1, x2)dx1dx2

]

Where fi(x1, x2) for i ∈ {1, 2} is given by

fi(x1, x2) =
1

(x1E[r1] + j)(x2E[r2] + j)
×

(x1 + x2 − 2jγi)

(x1 − jγi)(x2 − jγi)(x1 + x2 − jγi)
(3.12)

Where γ1 = EsE[r]
J/ρ+I , and γ2 = EsE[r]

I .

In Fig. 3.6, we plot SDTH error probability vs legitimate-to-attacker power ratio for various

values of correlation coefficient. We consider both the cases when there is no correlation between

slots (c=0) and the correlation coefficient is 0.7. We assume that there are two identical primary

user channels. The probability that a channel is idle is half. The fraction of jammed frame time

ρ is half. The product of maximum Doppler frequency and slot duration is 0.05, the receiver-to-

transmitter speed ratio is 0.5. E[r1] and E[r2] are normalized with respect to E[r] each equals

4/3, the variance of both r1 and r2 equal four.

Fig. 3.6 shows that SDTH technique reduces error probability significantly over PKTH

scheme. The reduction becomes more significant as the intecarrier interference dominates jam-

ming (i.e., as legitimate-to-attacker power ratio increases). Furthermore, we observe that a cor-

relation between slots leads to more performance improvements. The number of slots within a
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Figure 3.6: Error probability vs legitimate-to-attacker power ratio

Figure 3.7: Error probability vs legitimate-to-attacker power ratio
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frame, number of subframes, and the duration of time slots can all be designed such that slots

within a subframe are correlated to maintain a desired error performance.

In Fig. 3.7, for correlation coefficient equals 0.7 and various values of jamming fraction

time ρ, we plot the error probability for both PKTH and SDTH. The figure shows that in case

of SDTH, when the jammer power is relatively high (i.e, Es/J is low) as the percentage of time

jammed increases, legitimate user performance can be degraded significantly. In other words,

if the power of jammer is high, it can contentiously jam (ρ = 1) and hence the performance

of legitimate user becomes worse than that if it jams partially (ρ < 1). However, as jammer-to-

legitimate power ratio decreases, the lower the jamming fraction time, the worse the performance

it can be. These observations agree with those made from Fig. 3.4 in the sense that jammer can

lead to worst case performance depending on its power and percentage of jammed time.

3.4 Conclusion

In this chapter, we have proposed two time based jamming countermeasures. While taking into

account jamming attacks, mobility of users, and spectrum availability dynamics, we obtained

the analytical solutions of jamming, switching, and error probabilities. We showed that our

anti-jamming methods outperform the frequency hopping anti-jamming schemes.
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Chapter 4: Optimally Controlled Time-Hopping Anti-Jamming Technique

for Mobile Cognitive Radio Networks

We proposed in Chapter 3 cryptographic time-based jamming countermeasures that outperform

other existing frequency-based schemes. The techniques proposed in chapter 3 require a secret

key to be shared between cognitive users. In this chapter, however, we propose to mitigate

jamming through optimal control by controlling the mobility of cognitive users so that desired

QoS levels are met. Our proposed approach mitigates jamming while avoiding the overhead

associated with secret key sharing. Our approach does so while also achieving better QoS levels

and without compromising jamming resiliency.

4.1 Introduction

The availability of resources in cognitive networks varies over time and space depending on

primary user behaviors. The process of identifying and exploiting spectrum access opportunities

causes performance degradation as we showed in Chapter 2. In addition, jamming the limited

resources accessible by cognitive users results in achieving poor QoS levels. Since mobility

of cognitive users makes spectrum access opportunities even more stochastic, the performance

can be degraded even more when considering mobile users. In this chapter, we propose a time-

based framework that is robust against jamming while improving the quality of communication.

Our framework introduces randomness over time and controls mobility based on how spectrum

access opportunities and channel gains vary over space.
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4.1.1 Summary of Contributions

This chapter is an extension of our work presented in chapter 3. We use the idea of time hopping

as a way to retreat the jammer. However, the methodology of the data allocation and objectives

of the allocation in this chapter are completely different. In the following, we highlight what

distinguishes the countermeasure technique proposed in this chapter from existing ones.

• Does not assume, similar to the countermeasure approaches proposed in chapter 3, ac-

cessibility to multiple channels. Existing jamming countermeasure approaches, however,

assume accessibility to multiple channels.

• Unlike our previously proposed countermeasures, does not require secret keys for data

communication.

• Considers cognitive user mobility, where mobility is defined in terms of an agent moving

through users. We optimally control the agent mobility to achieve a better quality of

service.

• Allocates data optimally by learning the variations of channel gain, spectrum access op-

portunities, and jammer’s strategy over time.

4.2 System and Adversary Models

System Model. We consider cognitive network where each legitimate user is associated to

one out of M clusters. Users opportunistically utilize a spectrum, licensed to some primary

users. Cognitive users operate in a time-slotted mode, and are required to sense the spectrum

periodically to avoid interfering with primary users. The users communicate with a central unit,

a cluster head, which moves through the M clusters. This model applies to a cognitive radio
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sensor network, where the sensor nodes send their data to a sink, the cluster head in our model,

that moves through them and accesses to channels opportunistically. Sensor applications usually

generate data in small rates, and hence, there is no need for acquiring a licensed band. The cluster

head coordinates spectrum usage through a control channel, and clusters are defined based on

the stochastics of spectrum availability and channel variations models (as we will explain later).

Adversary Model. We assume that the cognitive network is subject to random jamming in the

sense the jammer alternates, due to energy limitations, between sleeping and jamming modes.

In other words, the jammer jams for some random time, and enters sleep mode for some other

random time. During the transmission mode, it emits random signal. If legitimate user and

adversary happen to transmit signals at the same time, a collision occurs. If no ACK is received,

legitimate user detects that a packet is jammed. The jammer is assumed to be reactive as it learns

about the success of previously launched attacks and use that to decide about future attacks.

Deciding about the success of jamming attacks can be determined by listing to ACK intervals.

This type of jamming attack is widely used as it is proven to be effective [95]. Jammer activities

are also required to be transparent to licensed users. This assumption is reasonable and widely-

used, e.g. [48, 82], and many others consider a similar assumption. To ensure transparency, the

jammer is required to perform periodic channel sensing. We also assume that all clusters are

subject to a similar jamming, and jammers over different clusters are assumed to apply a similar

jamming strategy.

4.3 Problem Formulation and Optimal Solutions

The anti-jamming technique to be proposed needs to achieve the following goals.

• Cluster head needs to adapt its transmission statistics and location to environment varia-

tions.
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• Cluster head needs to introduce some sort of randomness to maximize the cognitive net-

work throughput while mitigating jamming.

To achieve the above, we adapt our idea of spreading the legitimate user data over time [49].

Instead of transmitting legitimate user data continuously over time, a user transmits some data

over some time, holds for some other random amount time, and then transmits again and so

on. This way, transmission instants look random to jammer, and as a consequence, jammer is

imposed to jam in a discontinuous way, otherwise, it wastes its limited energy [49]. We referred

to this technique as time hopping. How to allocate data over time is what distinguishes this work

from our previous one. In [49], we assumed users are sharing secret keys which in turn are used

to determine transmission instants. In this work, however, no keys are assumed to be shared.

The allocation is done by dividing the time axis into frames (or stages), where each frame is

divided into N slots of fixed length (one packet long). At any given stage, the cluster head uses

the knowledge it has acquired about channel variations and jamming experience to decide about

the number packets to be transmitted (or equivalently the number of slots to be occupied). It also

uses that to control its mobility. Some rewards are received for each decision the cluster head

takes. The goal of the decision process is to determine the optimal actions for a given system

state and to use that to coordinate the use and sharing of spectrum among users. Details about

system states, system dynamics, accessible actions, and possible rewards are given below. These

quantities are used to derive the optimal decisions for any given system state.

4.3.1 System States

At any given frame k, the system state Sk is

Sk = Ak, Gk, Ck, Nk−1, Jk−1 (4.1)
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where k is the discrete time or frame index, k ∈ {1, 2, ..,K}. A system state at the kth stage

Sk is a random variable represents joint of the random variables corresponds to channel ac-

cessibility Ak, channel gain Gk, the location of cluster head at that stage Ck, and jamming

experience in stage k− 1 represented by the Nk−1 and Jk−1. The state at first stage is initialized

as A1, G1, C1, 0, 0.

4.3.1.1 Channel availability

The random variable Ak ∈ {0, 1} expresses the channel availability at stage k. While Ak = 0

indicates channel is idle, Ak = 1 indicates channel is occupied by a primary user. Ak follows a

discrete Markov chain distribution with statistics vary over space. In other words, different clus-

ters observe different primary users activity. The probability that Ak = i given that Ak−1 = j

for a given cluster Ck = c, P{Ak = i|Ak−1 = j, Ck = c}, is denoted by pijc for all i, j ∈ {0, 1}.

4.3.1.2 Channel gain

The random variableGk represents the channel gain. It is modeled, based on [96], as a finite-state

Markov process. States correspond to partitioning channel gain amplitude intoL nonoverlapping

regions
[
0, v1c

)
,
[
v1c , v

2
c

)
, ...,

[
vL−1c ,∞

)
, where the vlc denotes the lth fading amplitude partition

threshold within the cth cluster for all l ∈ {1, 2, .., L−1}. Fading amplitude within the cth cluster

is assumed to follow Rayleigh distribution with fading channel gain variance σ2c . vlc is expressed

in [96] as
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vlc =

√
−σ2c ln(1− l

L
) (4.2)

The transition probabilities between state i and j within the cth cluster, denoted by qijc , for i

and j ∈ {1, 2, .., L− 1} and i 6= j can be written, based on [96], as

vlc =

√
−σ2c ln(1− l

L
) (4.3)

The transition probabilities between state i and j within the cth cluster, denoted by qijc , for i

and j ∈ {1, 2, .., L− 1} and i 6= j can be written, based on [96], as

qijc ≈


√

2πL vlc
σc
fDTf exp

(
− (vlc)

2

σ2
c

)
if |i− j| = 1,

0 otherwise .

Where l = max(i, j), fD denotes the Doppler frequency and Tf is the time frame duration.

qiic = 1− qii+1
c − qii−1c ∀i ∈ {2, .., L− 2}. The probability of revisiting state 1 & L− 1 is given

by 1− q12c and 1− qL−1L−2c respectively.
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4.3.1.3 Jamming experience

Adversary tends to increase the chance of jamming data by introducing randomness to its trans-

mission timing. Jammer transmits Jk random number of packets within the frame k, which in

turn, results in Nk random number of jammed packets. The randomness introduced is done

based on the success of jamming in frame k−1. More details about adversary’s strategy is given

in section 4.3.2.

4.3.1.4 Cluster head mobility

The variable Ck indicates cluster head location at time frame k. To model mobility, we adapt

the random waypoint model, origionally proposed in [97]. If at a given time stage k cluster head

decides to move to a certain cluster c′, it selects a destination point (referred to as waypoint)

uniformly distributed in the destination cluster c′. It then moves at a fixed velocity v along the

line connecting its current waypoint to the newly selected waypoint. This process repeats at each

waypoint. We assume cluster head moves only to neighboring clusters.

To limit the system state space, we do not keep track of the exact physical location of cluster

head. Instead, we use Ck to identify the cluster. Ck = c indicates that the cluster head is at cth

cluster at the kth decision interval. We assume through out the chapter, without loss of generality,

that there are M clusters and they all have same shape and occupy same area. The mobility of

cluster head is to be optimally controlled as we explain in section 4.3.3.
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4.3.2 System Dynamics

In this subsection we explain how we model system state transitions. Assume that, at the kth

(k > 1) time frame, the system is at state s = a, g, c, n, j (s is the realization of Sk, a, g, c, n, and

j are the realizations of Ak, Gk, Ck, Nk−1, and Jk−1 respectively) and the cluster head decides

to transmit dst packets within this frame and moves to the dsm clusters. The probability the system

evolves, in the following time frame, to a state s′ = a′, g′, c′, n′, j′ (s′ is the realization of Sk+1,

a′, g′, c′, n′, and j′ are the realizations ofAk+1, Gk+1, Ck+1, Nk, and Jk respectively) is given by

the state transition probability T (Sk+1 = a′, g′, c′, n′, j′|Sk = a, g, c, n, j, dst , d
s
m). This proba-

bility can be written as P (Ak+1 = a′, Gk+1 = g′, Nk = n′, Jk = j′|Sk = a, g, c, n, j, Ck+1 =

c′, dst , d
s
m) P (Ck+1 = c′|Sk = a, g, c, n, j, dst , d

s
m). The probability cluster head moves to

cluster c′ conditioned on current location c and a mobility decision dsm is independent from

other random variables. Current location c and a mobility decision dsm are sufficient statistics

for determining the chance of c′ (this will become more clear as we explain how the decision

process works). In other words, the probability P (Ck+1 = c′|Sk = a, g, c, n, j, dst , d
s
m), de-

noted as pc, can be written as P (Ck+1 = c′|Ck = c, dsm). Based on our cluster head mo-

bility model, pc equals one if c′ equals c and zero otherwise. The probability P (Ak+1 =

a′, Gk+1 = g′, Nk = n′, Jk = j′|Sk = a, g, c, n, j, Ck+1 = c′, dst , d
s
m) can be written as

P (Ak+1 = a′, Gk+1 = g′|Sk = a, g, c, n, j, Ck+1 = c′, Nk = n′, Jk = j′, dst , d
s
m) P (Nk =

n′, Jk = j′|Sk = a, g, c, n, j, Ck+1 = c′, dst , d
s
m). The channel gain variations are, conditioning

on the current gain, independent of the actions of cluster head, jammer and primary users ac-

tivity. Also, since primary users have priority to access spectrum, their activity (hence channel

availability) is independent from the cognitive network activity. In other words, the probability

P (Ak+1 = a′, Gk+1 = g′|Sk = a, g, c, n, j, Ck+1 = c′, Nk = n′, Jk = j′, dst , d
s
m), denoted by

pag, based on the channel gain and channel availability model, can be expressed as
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pag =


pa
′a
c qg

′g
c if c=c’,

pa
′
c

L
otherwise.

Where pa
′
c is the probability the channel is in state a′ conditioned in cluster c. pa

′
c can be

determined easily by solving the channel availability model Markov chain. L is the number of

channel gain amplitude partitions. pa
′a
c and qg

′g
c are respectively defined in section 4.3.1.1 and

4.3.1.2.

The last term determines the state transition probability is P (Nk = n′, Jk = j′|Sk =

a, g, c, n, j, Ck+1 = c′, dst , d
s
m). We denote this probability by Pj . This probability represents

how jammer actions and the number of jammed packets evolve over time. Pj does not depend

on the mobility decisions and channel gain by assumption. It, however, depends on channel

availability as follows

Pj =


1 if a=1 & n’=j’=0,

Pja if a=0

0 otherwise.

That is to say that jammer does not jam unless channel is idle. Pja equals P (Nk+1 = n′, Jk+1 =

j′|Nk = n, Jk = j, dst ) which in turns equals P (Nk+1 = n′|Nk = n, Jk = j, Jk+1 =

j′, dst )P (Jk+1 = j′|Nk = n, Jk = j, dst ). We assume that the j′ packets , transmitted by the jam-

mer, are randomly allocated over N possible frame slots. The same assumption holds for the dst

packets transmitted by the cluster head. Hence, P (Nk+1 = n′|Nk = n, Jk = j, Jk+1 = j′, dst ),

denoted by Pn′ , depends only on jammer and cluster head actions. Pn′ is expressed as
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Pn′ =



(
j′

n′

)(
N−j′
dst−n′

)(
N
dst

) if max
(
0, dt − n′ + j′

)
≤ n′,

& if n′ ≤ min (dst , j
′) .

0 otherwise .

P (Jk+1 = j′|Nk = n, Jk = j, dst ), denoted by Pj′ , by assumption is given by

Pj′ =


r
(
N+h
j′+h

)
0.5(N+h) if (−1)1(h,p) (j′ − j) ≤ 0.

0 otherwise .

Where r is a normalization factor, ρ is a random variable equals zero with probability p and

one otherwise. h and 1 (h, ρ) are given respectively by

h =


−j if n ≤ 0.5j& ρ = 0.

0 otherwise .

1 (h, p) =


1 if h = −jor ρ = 1& j′ < j.

0 otherwise .

The intuition behind this jamming strategy is to introduce as much randomness as possible while

taking energy limitations into consideration. Equations (4.3.2 to 4.3.2) indicate that if jammer

successfully jammed less than fifty percent of what has been transmitted in frame k, it (proba-

bilistically, with probability 1− p) transmits Jk+1 random number of packets, Jk+1 takes value

less than N and greater than j. However, with the same probability, 1 − p , if successfully

jammed more than fifty percent, it jams for less than what has been jammed in time frame k.

In other words, Jk+1 takes value less than j. To avoid predictable actions, with probability p,
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jammer jams for Jk+1 random number of packets with Jk+1 ∈ {0, 1, .., N} in spite of the previ-

ously taken actions. In all cases Jk+1 is distributed as Binomial(0.5,n), where n, as mentioned,

depends on the probability p and the last frame jamming success. In the following subsection

we show how to optimally allocate the resources in the presence of such a jammer.

4.3.3 Anti-jamming Scheme

At each stage k, cluster head decides about number of slots dst , to be occupied for data transmis-

sion within the stage. dst ∈ {0, 1, .., N} if the channel is idle, dst equals zero otherwise. The set

of the admissible decisions for a state s is denoted by Ds
t . Cluster head also decides which clus-

ter to move to dsm. Depending on the network model, cluster head speed, time frame duration,

and the cluster head location at stage k, cluster head may be, at stage k+1, able only to access to

one of a limited number of clusters. The set of all admissible mobility decisions for a given state

is denoted by Ds
m. A cluster head action results in a reward given by a reward function denoted

by R(Sk, d
s, Sk+1), where ds denotes the joint of dsm and dst ∀dsm ∈ Ds

m and dst ∈ Ds
t . d

s is the

decision variable (or control) selected from the control space Ds, where Ds denotes the joint of

the two sets Ds
m and Ds

t . Sk and Sk+1 are the random variables corresponding to current and

future states respectively. Assuming that the reward function is additive, the total cost incurred

over the horizon, K, is given by

K∑
k=1

γkR(Sk, d
s
, Sk+1) (4.4)

Where γ takes value between 0 and 1. The rewards are discounted (by the factor γ) to

indicate that rewards come later in time are less desirable than the current rewards. This can

covers the case when jamming threat discontinues.
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Considering that the goal of cluster head is to achieve a high data rate while counter-measuring

jamming, we choose the reward function to be the effective throughput. For s being the current

state s = (a, g, c, n, j) (the realization of Sk), and s′ being the future state s′ = (a′, g′, c′, n′, j′)

(the realization of Sk+1), and ds = (dsm, d
s
t ) we define the effective throughput as

R(s, ds, s′) =


g

(
1− n′

dst

)
ifa = 0,&dst 6= 0.

0 otherwise.

The reward function in Equation (4.3.3) captures the effect of channel gain g, channel avail-

ability a, as well as jamming effects (in terms of fraction of unjammed packets), motivating

cluster head to transmit more while avoiding jammer, and move to clusters where the channel is

more accessible and has a higher gain. Hence achieving a better communication quality while

mitigating jamming.

The goal of legitimate user is to select the decision ds such that the total overall reward given

by equation (4.4) is maximized. Since the reward function involves number of random variables,

it cannot be meaningfully optimized. We therefore formulate the problem as an optimization of

the expected cost

E{
K∑
k=1

γkR(Sk, d
s
, Sk+1)} (4.5)

where the expectation is with respect to the transition probability T (Sk+1 = s′|Sk = s, ds),

derived in section 4.3.2. The optimization is over the control space.

The solution of the problem is to find a policy that specify the optimal control, for each state

s, ds ∈ Ds. At each time frame, our discrete time stochastic control process is in some state,

and the decision maker, the cluster head, chooses an action available in the state. The system
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randomly, following the transition function derived in section 4.3.2, transit into a new state, and

the decision maker gets rewarded according to the action and transition. The transition between

states depends on the current state and the cluster head action. Transitions are conditionally

independent of all previous states and decisions. In other words, the state transitions of our

system satisfy the Markov property, and hence the formulated stochastic control process is a

Markov decision process (MDP).

The knowledge the cluster head has about the system model is what determines how to derive

the optimal solution of the process. In case cluster head knows the adversary model, optimal

solution can be determined analytically via Bellman equation. Bellam equation summarizes the

principle of optimality. The optimal value of a state s, denoted by V ∗(s), is defined as the

expected sum of future discounted rewards a decision maker gets if it acts optimally from the

time the state s visited and on words. Bellam equation characterizes V ∗(s) as

V ∗(s) = max
ds

∑
s′

T (s′|s, ds)
[
R(s, d, s′) + γV ∗(s′)

]
(4.6)

There are number of algorithms solve Equation (4.6) to determine the optimal policy. E.g.

value iteration algorithm [98] and policy iteration algorithm [99]. However, these algorithms

require state transition function (the jamming transition model as well as the stochastic environ-

ment model) to be explicitly specified. Since in a practical settings, having such a knowledge

might not be possible, we use reinforcement learning instead to derive our policy. With rein-

forcement learning methods, optimal policy can be derived without specifying any underline

models. In this chapter, we adapt the Q-learning method originally proposed in [100]. This

method associates for each state and action ds ∈ Ds a Q-value, denoted by Q(s, ds). The Q-

value quantifies the expected sum of reward as result of committing to decision ds and acting

optimally afterword. The Q-value of a state estimates how good a decision is, and hence used as



73

a criteria for obtaining the optimal policy. For an observed state s, at the kth decision interval,

cluster head takes, with a probability ε
(
we assume it to be equal to 1 − 1

log k+2

)
, a decision

ds ∈ Ds that maximizes Q(s, ds). As a result of committing to ds, system lands probalistically

into state s′, and cluster head updates the Q-value according to the following equation

Q(s, ds)← (1− α)Q(s, ds)

+ α

[
R(s, ds, s′) + γmax

ds′
Q(s′, ds

′
)

]
(4.7)

The first term in equation (4.7) corresponds to the old value of the expected discounted sum

of rewards. The other term updates Q(s, ds) based on current experienced reward R(s, ds, s′)

and the estimate of optimal future value maxds′ Q(s′, ds
′
) discounted. α is the update coefficient.

The value of α at the kth time stage is given, by assumption, by 1√
k+2

. α decays with time to

make the influence of future observations less.

Details on how we derive the optimal policy is given in Algorithm 2. The description of the

main parts of the algorithm is given below.

Initialization The values of the discount factor γ, update rate α, and the probability ε are

initialized in this part. Based on the speed of the cluster head v and frame duration Tf , the

distance traveled during a frame transmission, denoted by disf , is determined.

Decision Making There are two different decisions can be taken in the control process, the

transmission decisions and mobility decisions. Transmission decisions are made at each time

frame. Mobility actions, however, are taken at the waypoints only. Cluster head holds on taking
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decisions for counter number of frames through which cluster head moves between waypoints.

Recall that the distance traveled during a frame transmission is denoted by disf , and denote the

distance between waypoints by disw, counter can be expressed as
⌈disw
disf

⌉
. At each time frame

k (k ∈ {1, 2, ..,K}), the system state s is observed. If the state has not been previously observed

and cluster head is at a waypoint, a set of available decisions Ds is generated and an action

ds is taken uniformly randomly from the set. The cluster head transmits dst packets uniformly

randomly allocated over the kth frame N slots and moves to the dsm cluster. If, however, the

state has been previously observed, with probability 1− ε (this probability decays with time), it

commits uniformly randomly to one of the actions in Ds. With probability ε it takes the action

that maximizes the Q-value. At any decision interval, cluster head keeps committing to new

transmission decisions, it, however, holds to the mobility decision chosen at a previous waypoint

until it gets to a new waypoint.

Learning At each time stage k, the Q value corresponds to the observed state and committed

action Q(s, ds) is updated. The value of α and ε are also updated. The algorithm is repeated till

convergence. The policy, for every state s in the state space, is ds that maximizes Q(s, ds)∀ds ∈

Ds.
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Algorithm 2 Optimal policy derivation
Initialization:

1: Set the value of discount factor γ. Initialize the update coefficient α ← 1√
2
, and action

choice probability ε← 1− 1
log 2 .

2: Set the distance traveled during a frame transmission disf to be vTf . v is the velocity, and

Tf is time frame duration.

3: Initialize a location tracking counter, counter ← 0, and time stage counter, k ← 1.

Decision Making: Executed each time frame k.

4: Observe system state, s.

5: if s is not previously observed then

6: Generate the admissible decisions set for the state, Ds (the joint of Dst and Dsm).

7: Initialize Q(s, ds) to zero ∀ds ∈ Ds.

8: if counter equals zero then

9: Take a uniformly random decision ds from Ds. ds = (dst , d
s
m).

10: Transmit dst packets uniformly randomly allocated over the kth frame N slots.

11: Select destination waypoint uniformly distributed within the cluster dsm.

12: Move at velocity v along the line connecting current to newly selected waypoints.

13: disw ← distance between waypoints. counter ←
⌈disw
disf

⌉
.

14: Store the mobility decision dsm correspondence to ds in dsm.hold.

15: counter ← counter − 1.

16: else

17: Take a uniformly random decision dst from Dst .

18: ds ← (dst , d
s
m.hold).

19: Transmit dst packet uniformly randomly allocated over the kth frame N slots.

20: Continue to move to the waypoint previously selected in dsm.hold.

21: counter ← counter − 1.
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22: else
23: if counter equals zero then
24: With probability ε, take transmission action ds maximizes Q(s, ds). Take a uni-

formly random action otherwise.
25: Execute 10 to 15.
26: else
27: With probability ε, while holding to the previous mobility decision dsm.hold, take

transmission action dst maximizes Q(s, ds). Take a uniformly random dst action otherwise.
28: Execute 19 to Execute 21.

Learning: Executed each time frame.
29: Update Q(s, ds) according to 4.7.
30: α← 1√

k+2
, and ε← 1− 1

log k+2 .
31: Go to 4 until convergence.
32: For every state s is the state space, the policy is ds ← maxds Q(s, ds)∀ds ∈ Ds.

4.4 Performance Evaluation

In this section, we evaluate the proposed framework of allocating data over time through for-

mulating the system as an MDP. We compare the performance of our system with that of the

cryptography-based allocation system [49]. The anti-jamming scheme proposed in [49] allocates

data pseudo-randomly such that the chance a cluster head decides to transmit at any given slot

is uniformly random. Throughout this section, we assume that our network has eight-hexagonal

clusters, all occupying the same area. The cluster head is assumed to move to neighboring clus-

ters only. The model of the network is presented in Fig.(4.1). The Markov chain model for the

communication channel over each cluster is also given in Fig.(4.1). State transition probabilities

for the two-state chain are provided in this figure. The two states are labeled idle and busy to

represent channel idle and busy events respectively. The channel gain variance for each cluster

is also included in Fig. (4.1).

As done in [96], the channel gain is assumed to be partitioned into eight levels. The product
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Figure 4.1: Channel model parameters

of Doppler frequency and time frame duration fDTf is set to be 0.01. We fix waypoints to cluster

centers for simplicity, and assume the distance required to transmit a frame disf is the same as

the distance traveled from cluster center to cluster edge. In practice, however, there is a number

of localization services that can provide a mobile entity with an accurate estimate of its own

location and provide directory services and hence waypoints location can be made more general.

The discount factor γ in our control process is set to 0.9. The number of slots within each frame

N are assumed to be four. Due to jammer energy constraint, we assume it jams fifty percent of

the time at most. Jammer evolves as described in 4.3.2.
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Figure 4.2: Instantaneous effective throughput

We simulate the network with the aforementioned system set up and plot in Fig.(4.2) the in-

stantaneous effective throughput for relatively early time stages. As mentioned before, we con-

sider the cryptography-based allocation time hopping proposed in [49] as our baseline. Trans-

mission decisions in this scheme are made, at any given slot, uniformly random. Mobility deci-

sions are also assumed to be made uniformly random. Fig.(4.2) reveals that our proposed scheme

performs similar to our baseline. However, as shown in Fig. (4.3), as we proceed in time, clus-

ter head learns when and how long to transmit and where to move resulting in more successful

transmissions.
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Figure 4.3: Instantaneous effective throughput

The average effective throughput shown in Fig.(4.4) confirms this observation. At any given

time stage, the effective throughput is averaged over the current and all preceding stages. This

figure shows that our scheme is able to achieve more successful transmissions with better channel

conditions.
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Figure 4.4: Average effective throughput versus time

One might think that we are sacrificing jamming probability for effective throughput. In

other words, one might think we, in our scheme, transmit more than the baseline scheme to

achieve more throughput and as a result we get jammed more. To show that this is not the case,

we plot in Fig.(4.5) the probability of jamming versus time stages. The probability of jamming at

any given time stage k is defined as the ratio between the number of jammed packets in stages 1 to

k to the number of transmission attempts made in those stages. As the figure shows, our scheme

achieves a similar jamming probability in the long term. Due to the randomness introduced by

the jammer and the similarity of jamming effects over space, cluster head is not able to gain

much over the cryptography based scheme in terms of probability of jamming. However, the

goal of our scheme is not to avoid the jamming only but also to get best of resources when there
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is no jamming.

Figure 4.5: Probability of jamming versus time

Since we control mobility in our scheme, it is important to analyze the effect of speed on the

performance. Since Doppler frequency is directly proportional to the speed, we only vary the

normalized Doppler frequency (fDTf ) and evaluate the performance. We consider fDTf = 0.01

as our reference value, we use it to normalize other values of fDTf . In Fig. (4.6), we plot the

average throughput for different values of fDTf normalized to the reference fDTf . To come

up with the results shown in Fig. (4.6) (and the figures come later), we simulate our network,

run our decision algorithm and evaluate the average effective throughput. We repeated the same

thing hundreds of times (or iterations). The results in Fig. (4.6) correspond to the average over

all iterations of obtained average effective throughput. We assume that for fDTf equals 0.01,

cluster head holds from taking mobility decisions for two frames after it gets to a new waypoint.

For the other values of fDTf , cluster head holds for twice the ratio between the fDTf and the

fDTf reference.
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Figure 4.6: Average effective throughput versus normalized fDTf

As we can see form Fig. (4.6), for a relatively low mobility speed, the average effective

throughput is relatively low. However, as speed becomes higher, the performance starts to im-

prove. This is intuitive as the cluster head takes more advantage of the environment variations as

it moves faster. The performance starts to degrade again, however, as the speed increases more

and more. That is also intuitive. As the cluster head speeds up more, the fading effects becomes

more significant, hence degrading the performance.

To analyze the effect of speed even more, in Fig. (4.7) we plot, for different fDTf to

fDTfreference ratio, the average effective throughput for various iteration numbers. In each

iteration we limit the simulation to several million time frames and evaluate the performance.

It is important to evaluate the performance over a limited amount of time as it is important to

evaluate if the network can achieve a desired quality of service not only in the long term but also

in the short term as well.
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Figure 4.7: Average effective throughput versus iteration number

As we can notice from this figure, as the speed gets slower, the performance varies more

drastically from iteration to another. The variation becomes less and less as the speed reaches the

reference speeds. The reason behind this is that as the cluster head moves faster it becomes able

to achieve a performance close to the average no matter what the initial condition is. However,

as the speed gets slower, the cluster head takes longer time to leave a cluster, and as a result,

it might "stuck" to poor transmission conditions for a while and hence, depending on the initial

system state, it performs poorly.

To conclude, at a relatively low speed, the system can achieve a performance that is higher

than any other speed. However, achieving such a performance is very sensitive to the initial

state of the system. As speed increases, sensitivity to system initial state starts to diminish, but

with more mobility fading effects. It is important to choose a cluster head speed that leads to

achieving a desired quality of service.
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4.5 Conclusion

In this chapter, we have proposed a time based environment aware anti-jamming scheme. Specif-

ically, we proposed a mathematical framework for modeling decision process that allocates re-

sources and controls network mobility over time. The model takes into account jamming attacks,

channel gain variations, and spectrum availability dynamics. We showed that our resource allo-

cation scheme outperforms other cryptography-based schemes.
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Chapter 5: Dissertation Conclusions

In this thesis, we have modeled the spectrum dynamics in cognitive networks, and studied its

impact on a number of performance metrics. Specifically, we characterized the spectrum handoff

process cognitive radio users need to perform as a way to adapt to their wireless environment. We

also derived some important statistics of the network outage that results from the lack of access

opportunities. Furthermore, we modelled, characterised, and analyzed analytically the average

of both the queueing and service delays. We also showed the impact of spectrum dynamics on

network stability measured in terms of the total packet delay of the cognitive user. Moreover, in

this thesis, we proposed and studied methods for mitigating jamming when considering mobile

cognitive users in cognitive radio networks. We proposed a time-hopping based countermeasure

solutions, where hopping patterns are derived based on cryptographic, estimation, as well as on

learning techniques. Our findings showed that these techniques outperform some other existing

ones.
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