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Accurate positioning has become an active research area in recent years. It has a wide

range of applications in many fields such as navigation, asset tracking, health care,

proximity marketing/location-based advertising, and sport analytics. Transmitter posi-

tioning via radio frequency (RF) signals is the most widely encountered scenario, and it

uses a two-step process: First, parameters that depend on the location of the transmitter

are extracted from the received signal. Second, the transmitter’s location is estimated

by using these parameters. Many parameters can be used; for instance, time of arrival

(TOA), time difference of arrival (TDOA), angle of arrival (AOA), and received signal

strength (RSS). Localization can use one or multiple of such parameters. In this the-

sis, a hybrid AOA and TDOA method is studied. Specifically, an array of N collinear

receiving antennas are employed to estimate the transmitter position. In order to use

AOA, existing assumes that the transmitter is far away from the receiving antennas and

that the spacing between the receiving antennas is very small (typically a fraction of

one wavelength). This ensures that the directions of the incident waves to all receivers

are parallel, so that there is a single AOA for all receivers. Such condition cannot be

maintained for some scenarios (e.g., when wavelength is very large). Also, in order to

use valid TDOAs, the receiving antennas cannot be placed very close to one another,

which will result a unique AOA for each of the receiving antennas. This research develop

solutions for the cases where the above constraints cannot be maintained. A maximum

likelihood (ML) estimator is developed to obtain the AOA of each receiving antenna

assuming there is no limitation on the antenna spacing; it can be sufficiently large or



small . A cross correlation algorithm is used to determine the TDOA between the re-

ceived signals. Finally, an algorithm that jointly processes the AOAs and the TDOAs

to estimate the position of the transmitter is developed.
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Chapter 1: Introduction

1.1 Problem Statement

Transmitter positioning [1–8] has become one of the most widely studied research areas

due to its vast applications in many fields such as, navigation, asset tracking, health

care, proximity marketing/location-based advertising, and sport analytics. Positioning

via radio frequency (RF) signals is the most commonly encountered scenario and it uses

a two-step process. First, some parameters are extracted from the received signals at

each anchor point (which is assumed to be a receiver in this thesis). These parameters

can be time-of-arrival (TOA), time-difference-of-arrival (TDOA), angle-of-arrival (AOA)

and received signal strength (RSS) information. In AOA system, the anchor antennas

are typically assumed to be closely placed (typically a fraction of one wavelength) and

the transmitter is very far from them such that the incident signals are parallel to all

receive antennas; i.e., all receiving antennas have the same AOA [9–13]. This assumption

has many limitations in some application scenarios. One scenario that we consider here

is to use both AOA and TDOA information, but from a single array of receivers, aiming

to generate the simplest system. In this case the antennas cannot be placed closely to

be able to detect the time delay between the incident signals at each receiver. This

is because when the receiving antennas are placed very close together (e.g., a fraction

of a meter), it is difficult to derive from these antennas any meaningful TDOA values,

since even with ultrawideband signaling [14–23], it is difficult to obtain decimeter-level-
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accurate TDOAs. Accordingly the angles of arrival are no longer equal. Existing work

has used different anchors to combine TDOA and AOA, which require at least three

anchors for 2D positioning. In such cases, the AOA is mainly used for increasing the

accuracy, but the system is as complex as a conventional TDOA system.

1.2 Proposed Scheme

The research in this thesis aims to design a very simple system: using a single linear

array of N receivers each with one antenna for 2D positioning under the condition that

the transmitter is on one side of the array. Of course in this system the same anchor

(i.e., the array of receivers) can be used for AOA positioning, for TDOA positioning,

or for positioning using both TDOA and AOA. All three approaches are analyzed and

studied in this thesis. To be able to use the same array, an algorithm that does not

restrict the receiving antennas to be very closely placed together is developed. This

system can thus be used for ‘near field’ positioning scenario, i.e., the transmitter can

be close to the anchor, since it does not assume that the signal from the transmitter

have the same AOA to all the receivers on the array. To make the analysis simple, N co-

linear receiving antennas are placed equidistant from one another with a distance d. The

performance of this system does not change if the parameter d equals an integer multiple

of the wavelength λ. We will analyze the mean squared error (MSE) performance of this

system as a function of the signal-to-noise ratio (SNR) for the three cases mentioned

above: AOA, TDOA, and a hybrid approach.
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1.3 Thesis Organization

The thesis is organized as follows. Chapter 2 reviews existing AOA solutions based on

the ‘far field’ assumption. It also includes a review of the polygon area oriented systems

along with the results for these approaches as well as hybrid TDOA and AOA solutions

and how the individual results are used together to estimate the transmitter location.

Chapter 3 presents the proposed system architecture, transmitter and receiver ar-

rangement, also explains the transmitter specifications along with the channel modeling.

It also develops an analytical solution of the algorithms used in each of the the three

approaches: AOA estimation approach, TDOA estimation approach, and the hybrid

TDOA/AOA estimation approach.

Chapter 4 presents simulation results that include the properties of the signal trans-

mitted and channel implemented for each of the implemented approaches. Performance

in terms of the MSE versus SNR is presented for each approach.

Chapter 5 provides a summary of the work and outlines a few areas of work that

could be done in the future.
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Chapter 2: Related Work

This chapter reviews related work for AOA and TDOA approaches. It also sumamrizes

how their results can be used in this research to create a hybrid solution, which is very

simple to deploy while still maintaining a good performance.

The conventional way of estimating the TDOA, as explained in [9–11,29], uses cross-

correlation of the received signals at multiple sensors (anchor). One of the receivers may

be assumed to be a reference anchor (i.e., the time of arrival of the received signal at this

anchor equals zero). The time instants of the received signals at the rest of the anchors

are compared with that of the reference anchor.

Let us use the example of 2 receivers as shown in Fig. 2.1. This difference in distance

travelled can be used to calculate the time difference of arrival using the two equations

below, assuming that A is the reference receiver, XA , YA ,XB ,YB ,XC and YC are

the coordinates of the receivers, and XT and YT are the unknown coordinates of the

transmitter.

dAB =
√

(XA −XT )2 + (YA − YT )2 −
√

(XB −XT )2 + (YB − YT )2 (2.1)

dAC =
√

(XA −XT )2 + (YA − YT )2 −
√

(XC −XT )2 + (YC − YT )2. (2.2)
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The time difference of arrival can be calculated using the relationship:

τAB =
dAB
u

(2.3)

τAC =
dAC
u
, (2.4)

where u is the speed of light in vacuum.

Solving equations (2.1) and (2.2) simultaneously yields the transmitter position. In

other words, in the ideal case, the hyperbolas represented by equations (2.1) and (2.2)

intersect at the transmitter position.

Antenna #B Antenna #A
D

Transmitter Incident 
wave directionElectromagnetic 

wavefront

North (0 degrees)

θ 
θ 

Bearing

Figure 2.1: Interferometry technologies applied in AOA monitoring station configured a
pair of closely spaced antenna at the same monitoring station.

The conventional way of estimating angle of arrival can be found in [9–11]. The spac-

ing between the receivers is typically small (e.g., half a wavelength) and the transmitter
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placed far away from the antenna array. Thus, all incident waves are approximately

parallel, and all receivers have almost the same angle of arrival, as illustrated in Fig.

2.1. Angle of arrival can be estimated using the phase difference between the received

signals as

∆φ = 2 π D sin(θ)
f

u
. (2.5)

2.1 Time Difference of Arrival Estimation

The cross correlation algorithm is a good way to estimate the time difference as it can

deal with cases with an unknown transmission time and unknown transmitted signal.

Antenna #2

Antenna #1

G

AoA

DToA

Figure 2.2: Illustration of parallel incident waves.
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In [24], the antennas have a spacing that is much smaller than the distance from the

transmitter; thus the incident rays are assumed to be parallel as illustrated in Fig. 2.2.

The time difference between the received signals can be written as

τD = G× cos(AOA)

u
. (2.6)

This puts a limitation on the maximum value of τD to be

τD =
G

u
. (2.7)

Obtaining the TDOA typically requires two steps: first, obtaining the cross-correlation

points, and second, quadratic interpolation of these estimated points. Cross-correlation

is commonly done via the complex baseband filtering (to extract the in-phase (I) and

quadrature (Q) components). The system model for this approach is shown in Fig. 2.3.
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IF Filtering 
I/Q conversion

BB Filtering

IF Filtering 
I/Q conversion

BB Filtering

IF Filtering 
I/Q conversion

BB Filtering

IF Filtering 
I/Q conversion

BB Filtering

S(t)

Channel 
mode

Rx Channel # 1

Rx Channel # 2

Cross- 
Correlation 
algorithm

Delay τDelay τDDelay τD

r  = I  + jQ 
1  1 1

r  = I  + jQ 
1  1 1

r  = I  + jQ 
2  2 2

r  = I  + jQ 
2  2 2

n (t)
1

n (t)
1

 n (t)
2

 n (t)
2

Figure 2.3: System model.

The cross-correlation points are acquired by averaging the product of the received

signals. These values are then used to get the best fit of the parabolic curve. The

maximum of this curve will be the time difference between the received signals as shown

in Fig. 2.4. Fig. 2.5 shows the TDOA variance versus SNR for different types of

transmitted signals.
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Cross correlation function

Time (s)

Figure 2.4: Interpolation of the cross-correlation values.
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Figure 2.5: TDOA estimation: measured vs. expected results [24].

In [30], the authors found out that the two step approaches are sub-optimal and

decided to use a single step approach; direct position maximum likelihood estimator

whose results outperformed the two step approaches. This method can be applied to all

types of signals−narrowband, wideband, lowpass or bandpass signals. This was studied

for two cases. Case 1: when the transmitted signal is unknown and Case 2: when the

transmitted signal is known but the transmission time is not. The example illustrated

in Fig. 2.6 shows a transmitter placed at coordinates (135,75) Km, while the receivers

are placed as in the figure on two lines perpendicular on one another. The transmitter
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is assumed to be very far compared to the largest distance between the receivers:

Tobs >
dmax

u
. (2.8)

0 25 50 75 100 125 150
0

25

50

75

100

125

150

x (Km)

y 
(K

m
)

S3S3

S1S1

S0S0 S2S2

Figure 2.6: Structure of sensors (for M = 4) and transmitter position used in simulation.

For the first case when the transmitted signal was unknown, Fourier series was used

to transform the signal to a form where they can have a parameter estimation. The

transmitter coordinate is estimated as

(x̂t, ŷt) = arg λmax(B′), (2.9)
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that is the maximum eigenvalue of

B′ = Y ′Y ′T =

M−1∑
i=0

(Y ′Y ′T )

and

Y ′ = [ y′0 y
′
1 ... y

′
M−1 ]

while

y′0 =

∫ T

0
ri(t)h(t− τi)dt

such that h(t) is the vector of sinusoids of the Fourier series and ri is the ith received

signal

h(t) =

[
1√
2

cos(2πF0t) ... cos(2π(N − 1)F0t) sin(2πF0t) ... sin(2π(N − 1)F0t)

]T
.

(2.10)

Although with this approach the matrices involved to obtain the ML estimate, the CRLB

and and Fisher information matrix (FIM) are difficult to derive, this approach is adapt-

able to any signal type.

For the second case when the transmitted signal is known but the transmission time is

not, no Fourier series was necessary. It was found that the estimate for the transmitter

coordinates can be acquired by cross correlating the received and transmitted signals

summed over all the sensors as represented in the below equation:

(xt, yt) = arg
max

M−1∑
i=0

(

∫ T

0
ri(t)S(t− τi)dt)2 (2.11)

where M is the number of sensors, T is the observation interval, ri is the ith received
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signal and S(t) is the transmitted signal.

In the simulations, the two-step method was implemented by first cross correlating

each of the received signals with the received signal at the reference sensor to get the

time difference of arrival. then an area of 1 Km × 1Km around the true transmitter

position was split into 100×100 grids. The delay at each grid point was calculated using

τ
′
i =

√
(xT − xi)2 + (yt − yi)2

c
−
√

(xT − x0)2 + (yt − y0)2
c

; i = 1, 2, ...M − 1, (2.12)

and compared to the delay obtained from the cross correlation in the first step. Then,

a squared error between the calculated value (using equation above) and the estimated

value in the first step. The grid point that yielded the least square error was considered

the estimated transmitter position.

LSE =

M−1∑
i=1

(τ̂
′
i − τ

′
i )

2 (2.13)

where τ̂
′
i is the TDOA estimated at the first step.

The direct positioning maximum likelihood estimator method was implemented for

an area of 1Km × 1 Km, which is divided into 100 × 100 grids. This method is very

complex but the results showed much better performance than the two-step algorithm

as shown in Fig. 2.7.
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Figure 2.7: Comparison of MLE, TDOA and CRLB for different SNR values.

2.2 Angle of Arrival Estimation

In [12] and [27] the authors focused on one of the most widely used and efficient al-

gorithms for AOA estimation: the Multiple Signal Classification (MUSIC) algorithm.

MUSIC was studied extensively and its performance has been proved to be robust and

adaptable to many signal types.

MUSIC is a peak search method for AOA estimation. It uses the the decomposition
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of the eigenvalues of the co-variance matrix of the received signals. It can be applied

in scenarios with single or multiple transmitters. A condition is that the number of

receivers must be greater than the number transmitters. The general equation describing

the MUSIC algorithm is
X1

X2

:

XM

 =
[
a(θ1) a(θ2) .... a(θD)]

]

F1

F2

:

FD

+


W1

W2

:

WM

 (2.14)

where M is the number of receivers and D is the number of transmitters. This equation

can be written in a compact matrix-vector form as

x = Af + w, (2.15)

where matrix A is the steering vector with a dimension M ×D. It represents the phase

shift between each received signal and the reference signal. As in [12] a single vector of

the steering matrix can be written as

a(θk) =


1

e−j
2πd1 sin(θk)

λ

:

e−j(D−1)
2πdp−1 sin(θk)

λ

 . (2.16)

The equation for the MUSIC algorithm is

θMUSIC = arg
min

βH(θ) QN QHN β(θ) (2.17)

where β is the signal sub-space and QN is the noise subspace, and they are orthogonal
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to each other.

PMUSIC =
1

θMUSIC
. (2.18)

In the simulations, the peaks of the PMUSIC equation occurs when the AOA is equal to θ

as illustrated in Fig. 2.8. The above equations are all valid when the signals are coherent.

In [12] an improved MUSIC algorithm was proposed to work with non-coherent signals

by adding an identity transition matrix T to the equation so that the new received signal

matrix is defined as

x = Tj∗ (2.19)

where J∗ denotes the complex conjugate of the original received signal.

Figure 2.8: Spatial spectrum for MUSIC algorithm.

Existing work have used other algorithms to estimate the AOA such as a biased

estimator as discussed in [28]. Also, one of the most commonly used algorithms used

is the Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT)
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which makes use of sub-arrays (named as doublets) within the main array to find the

AOAs. But the MUSIC algorithm outperforms both. Many papers compared the per-

formances of ESPRIT, MUSIC, and other algorithms (e.g., [25,26]), MUSIC was shown

to outperform both the above algorithms.

2.3 Hybrid TDOA/AOA Method

In [9] and [10], a hybrid TDOA/AOA solution was implemented to estimate the trans-

mitter longitude and latitude. The transmitter was mobile and it was assumed to be

moving at a far distance from the antennas so as to validate the assumption of having

parallel incident signals. For TDOA, three fixed stations were placed in a triangular

shape. The AOA used a single station of the three. The shared station was considered

the central control server (CCS) at which the computation of the AOA bearing line

and TDOA cross correlation algorithms were done. All the received signals at different

stations are sent to the central control server for algorithms computation. The authors

used the intersection of the hyperbolic curves from the TDOA along with the bearing

line obtained from the AOA to estimate the transmitter location which was done also at

the CCS.

Simulations showed that the range of coverage of the 3 receivers was approximately 20

∼ 30Km. An advantage of this approach is that the range of detection can be increased

by increasing the number of receivers at the expenses of an increased cost.
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Chapter 3: Proposed Scheme

3.1 System Model

The architecture of the proposed system is shown in Fig. 3.1, which consists of a trans-

mitter, whose position is to be estimated, the channel and one array of three receivers.

Each receiver has a single antenna. A double sideband with carrier signal is used as

input for the TDOA, where the carrier is only used as the signal for AOA. This is done

to increase diversity and avoid redundant information. As shown in Fig. 3.1, the AOA

input signal is a concatenation of the carrier and a sequence of zeros. This concatena-

tion is needed because the modified AOA method implemented in this work does not

restrict the phase difference between the received signals to a fraction of the period (i.e.,

a maximum of 2π phase difference) as the spacing between antennas can be multiples of

λ.

Input 

Sequence

Input 

Sequence

CarrierCarrier

Zeros 

sequence

Zeros 

sequence

ConcatenateConcatenate

ChannelChannel

TDOA Input 

signal

AOA Input 

signal

Receiver - 2Receiver - 2
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 Curve Hybrid 

method to get the 

Tx coordinates
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method to get the 

Tx coordinates

AOA AOA 

TDOATDOA

xcorr algorithm xcorr algorithm 

xcorr algorithm xcorr algorithm 
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(f   )

BPF

(f   )B
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AOA algorithmAOA algorithm
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xcorr algorithm xcorr algorithm 

AOA algorithmAOA algorithm

Receiver - 1
xcorr algorithm 
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Sampling

(f   )s

Sampling

(f   )s

Figure 3.1: System block diagram.
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A maximum likelihood estimator is used to estimate the time difference between the

received signals. This will be explained in detail in Section 3.2. Another maximum

likelihood estimator is used to estimate the angles of arrival at each receiver, which will

be explained in detail in Section 3.3. The last block combines the outputs of the TDOA

and AOA blocks to estimate the transmitter coordinates. The transmitted signals are

filtered at the receiver as described in [13] before sampling to limit the additive white

Gaussian nose (AWGN) bandwidth so as to limit its power. The noise samples are

therefore band-limited.

The arrangement of transmitter and receivers is illustrated in Fig. 3.2, for a simple

case of 2D positioning with one array of receivers (here 3 as a example) placed equidis-

tantly and collinearly, and a single transmitter.



20

d d
Antenna #3 Antenna #2 Antenna #1

Transmitter

θ 1θ 1θ 2θ 2θ 3θ 3

Figure 3.2: Transmitter and receivers arrangement.

3.2 TDOA Approach

In TDOA systems the received signals are expressed as

r = s(τ ) + e (3.1)

r =

r1r2
r3

 =

as(t− τ1)as(t− τ2)
as(t− τ3)

+

e1e2
e3

 (3.2)
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where τ1, τ2 and τ3 are the differences in time compared to the the time when the

signal was transmitted initially. The absolute initial transmission time is assumed to be

unknown in TDOA systems; thus, τ1 can be used as the reference time (i.e., assuming it

equals zero). Accordingly, all the time delays will be calculated with respect to receiver

1 and thus named as τ12 and τ13 and the above vector equation can be rewritten as

r =

r1r2
r3

 =

as(t− τ11)as(t− τ12)
as(t− τ13)

+

e1e2
e3

 (3.3)

where τ11 is equal to zero. We exploit the maximum Likelihood estimator to estimate

the transmitter position using the TDOAs. The vector of the parameters required to be

estimated τ can be defined as

τ =

[
τ12

τ13.

]
(3.4)

The error is assumed to have a normal distribution of zero mean and variance equals σ2.

Thus, the probability density function of r1 is pr1(r1) is defined as

pr1(r1) =
1√

2πσ2
e
−(r1−s(t−τ11))

2

2σ2 (3.5)

Accordingly, the conditional probability can be expressed as

pr1(r1|τ) =
1√

2πσ2
e
−(r1−as(t−τ11))

2

2σ2 (3.6)

Since the observations are independent, the PDF of the observation vector r can be



22

written as

pr(r|τ ) =

N∏
i=1

pri(ri|τ )

=
1

(2πσ2)
N
2

e
−

∑N
i=1(ri−as(t−τ1i)

2

2σ2 , N = 3 (3.7)

In order to get the ML estimator, taking the logarithm of the above equation results in

LTDOA = log pr(r1 r2 r3| τ ) = −N
2

log (2πσ2)−
∑N

i=1(ri − as(t− τ1i))2

2σ2
. (3.8)

To obtain the transmitter coordinators using only TDOAs, we resort to the following

equations for calculating τ12 and τ13:

τ12 =
1

c
× (
√

(x1 − xt)2 + (y1 − yt)2 −
√

(x2 − xt)2 + (y2 − yt)2). (3.9)

τ13 =
1

c
× (
√

(x1 − xt)2 + (y1 − yt)2 −
√

(x3 − xt)2 + (y3 − yt)2). (3.10)

The corresponding values of xt and yt that will yield the maximum value of the loga-

rithmic expression will be the transmitter coordinates.

τ̂ = argτ max LTDOA (3.11)

3.3 AOA Approach

A condition differing from previous work for the AOA approach considered here is that

the system operates in ‘near field’, meaning that the distance between the transmitter

and the array of receiving antennas is not significantly larger than the antenna spacing

to allow all receivers to have the same AOA. Besides, the spacing between the array



23

antennas is not restricted to a maximum of half the signal wavelength as in past work.

It can be multiples of the signal wavelength. As a result, each receiver has a different

angle of arrival and the incident waves can not be assumed to be parallel anymore.

The difference in distance traveled by the signal between each receiver and the ref-

erence one is illustrated in Fig. 3.3.

d
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θ 2θ 2

θ 2θ 2
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1

Rx 
1

Rx 
2

Rx 
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Figure 3.3: Rx1 and Rx2.

Tr2 Rx2 = d sin θ2 (3.12)

Rx1 Tr2 = d cos θ2 (3.13)
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Figure 3.4: Distance travelled to Rx1.

Fig. 3.4 shows the triangle Tx Tr2 Rx1. The following equations apply to get R1

which is the distance travelled by the signal from the transmitter Tx to receiver 1 (Rx1):

d cos θ2 = R sinZ

= R1 sin(90◦ − θ1 − y)

= R1 cos(−θ1 − y)

= R1 cos(−θ1 + θ2 − 90◦

= R1 sin(θ2 − θ1)

=⇒ R1 = d
cos θ2

sin(θ2 − θ1)

(3.14)
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The expression for the distance from Tx to Rx2 can be derived as the following

R2 = d sin θ2 + R1 cosZ

= d sin θ2 +
d cos θ2

sin(θ2 − θ1)
cos z

= d sin θ2 +
d cos θ2

sin(θ2 − θ1)
cos(90◦ − θ1 − y)

= d sin θ2 +
d cos θ2

sin(θ2 − θ1)
cos(−(θ1 + y − 90◦))

= d sin θ2 +
d cos θ2

sin(θ2 − θ1)
cos(θ1 + y − 90◦)

= d sin θ2 +
d cos θ2

sin(θ2 − θ1)
sin(θ1 + y)

= d sin θ2 +
d cos θ2

sin(θ2 − θ1)
sin(θ1 + 90◦ − θ2)

= d sin θ2 +
d cos θ2

sin(θ2 − θ1)
cos(θ1 − θ2)

(3.15)

The difference in distances travelled between R1 and R2 can be expressed as

∆d = R1 −R2

= d
cos θ2

sin(θ2 − θ1)
− d sin θ2 − d

cos θ2
sin(θ2 − θ1)

cos(θ1 − θ2)

=⇒ ∆d = d [
cos θ2 (1− cos(θ1 − θ2))

sin(θ2 − θ1)
− sin θ2].

(3.16)

Using the above expressions to get the phase difference between the received signals at

each receiver and the reference receiver Rx1 using the relationship below:

∆φ = 2πf∆τ

= 2πf
∆d

u

=
2π

λ
∆d

(3.17)
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Thus, the received signals at each receiver can be written in the following vector form

g = h(θ) + w. (3.18)

For the example with three receivers,

g =

g1g2
g3

 =

 1

a(θ1, θ2)

a(θ1, θ3)

[F1

]
+

w1

w2

w3

 (3.19)

where F1 is the transmitted signal. The AOAs that need to be estimated, i.e., vector θ,

is written as

θ =

θ1θ2
θ3

 (3.20)

and a(θ1, θ2) is the phase difference between the received signals at g1 and g2 and a(θ1, θ3)

is the phase difference between the received signals at g1 and g3 expressed as

a(θ1, θ2) = e
j 2π
λ
d [

cos θ2
sin(θ2−θ1)

(1−cos(θ2−θ1))−sin θ2] (3.21)

a(θ1, θ3) = e
j 2π
λ
2 d [

cos θ3
sin(θ3−θ1)

(1−cos(θ3−θ1))−sin θ3] (3.22)

Since the first element of steering vector, a1, equals one, it carries no information

about θ1, which mandates having more than one reference receiver to be able to get the

corresponding AOA at each receiver. Accordingly, vector the g will be updated as:

g =

 g2g3
g23

 =

a(θ1, θ2)

a(θ1, θ3)

a(θ2, θ3)

[F1

]
+

w2

w3

w3

 . (3.23)

Receiver 2 was used as a reference too to add a(θ2, θ3) in the steering vector. g23 is the
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received signal at antenna 3 with a phase difference calculated with respect to receiver

2 as

a(θ2, θ3) = e
j 2π
λ
d [

cos θ3
sin(θ3−θ2)

(1−cos(θ3−θ2))−sin θ3]. (3.24)

The maximum likelihood estimator can be used for the above vector equation. The obser-

vation vector g is the received vector. The steering vector multiplied by the transmitted

signal F1 equals h(θ). Just like the case in TDOA, the error has a normal distribution

of zero mean and variance which equals σ2. Then, the PDF of g1 is pg1(g1), which have

the same distribution with a shifted mean and can be written as

pg1(g1) =
1√

2πσ2
e
−(g1−h1)

2

2σ2 . (3.25)

Similarly, the conditional probability can be expressed as

pg1(g1|θ) =
1√

2πσ2
e
−(g1−h1)

2

2σ2 . (3.26)

Since, the observations are independent, the PDF of the observation vector g can be

written as

pg(g|θ) =
N∏
i=1

pgi(gi|θ)

=
1

(2πσ2)
N
2

e
−

∑N
i=1(gi−hi(θ))

2

2σ2 , N = 3. (3.27)

For the ML estimator, the logarithm of the previous equation is expressed as

LAOA = log pg(g1 g2 g3| θ) = −N
2

log (2πσ2)−
∑N

i=1(gi − hi(θ))2

2σ2
. (3.28)
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The angles of arrival that yield the maximum of the log-likelihood equation above cor-

respond to the transmitter coordinate.

θ̂ = argθ max LAOA (3.29)

3.4 TDOA and AOA Hybrid Solution

The AOA approach will yield the angles of arrival at each receiver while the TDOA

approach will yield the time delays. These two pieces of information can be exploited

together to to yield points that are closer to the transmitter P13 and P12 as shown in

Fig. 3.5. With antenna 1 being the reference, P13 and P12 along with antenna 1 lies on

an arc whose center would be the transmitter in the ideal case. The three are equidistant

from the transmitter as shown in Fig. 3.5.



29

d d
Antenna #3 Antenna #2 Antenna #1

Transmitter

θ 1θ 1θ 2θ 2θ 3θ 3

Points on 

the arc

P13

P12

Figure 3.5: Illustration of the hybrid approach.

The coordinates of P13 and P12 are calculated by using the estimated AOAs and

the TDOAs as in the following equations: x-coordinate of P12:

P12x = Antenna 2 x+ | ∆d12 | sin θ2. (3.30)

y-coordinate of P12:

P12y = Antenna 2 y+ | ∆d12 | cos θ2. (3.31)
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x-coordinate of P13:

P13x = Antenna 3 x+ | ∆d13 | sin θ3. (3.32)

y-coordinate of P13:

P13y = Antenna 3 y+ | ∆d13 | cos θ3. (3.33)

The point at which the 3 distances to it are almost the same or have the least

difference between one another is the transmitter coordinates. In other words the point

that results in the minimum of of the following equation will be the estimated transmitter

location:

f =| d1t − d2t | + | d1t − d3t | + | d2t − d3t | . (3.34)

ˆxgrid, ˆygrid = argx,y min f (3.35)
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Figure 3.6: Equal radii arc
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Chapter 4: Simulation Results

This chapter presents simulation results of the three implemented approaches. The

TDOA approach, AOA approach and the hybrid approach. It also includes the system

parameters and assumptions.

4.1 System Related Assumptions

The implemented 2D system is assumed to have three collinear antennas with a spacing

d=3 m between each two adjacent antennas. The coordinates of the receivers and the

transmitter are placed as shown in Fig. 4.1. The coverage area of this 2D system is a

180◦ plane; that is, the transmitted is assumed to be on half of the plane (the transmitter

y-axis is non-negative).

The initial transmission time is assumed to be unknown but the input signal is

assumed to be known at the receivers.
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Figure 4.1: System coordinates.

4.2 Channel Assumptions

An ideal channel is assumed where the signal propagates via only a line-of-sight path

with attenuation; that is, multipath fading effects are not considered. Additive white

gaussian noise (AWGN) with zero mean and a standard deviation of σ = 0.02 is added

to the signal.
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4.3 TDOA Approach

The TDOA Approach baseband signal is assumed to be a sequence of ones and negative

ones inTDOAseq as shown in Fig. 4.2. The input signal to the TDOA block is a double

sideband with carrier that is represented by equation (4.1) for which an example is shown

in Fig. 4.3.

vTDOAin = A cos(2 π fc t) inTDOAseq (4.1)

Figure 4.2: TDOA Approach baseband signal.
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Figure 4.3: TDOA Approach input signal at SNR=5.3.

The received signals by each of the three receivers at SNR=5.3 are shown in Fig. 4.4,

Fig. 4.5 and Fig. 4.6, respectively.

SNR =
ARx
σ

(4.2)

ARx is the amplitude of the received signal.
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Figure 4.4: Signal received at Rx1 at SNR = 5.3.

Figure 4.5: Signal received at Rx2 at SNR = 5.3.



37

Figure 4.6: Signal received at Rx3 at SNR = 5.3.

The TDOA approach is implemented as a two-step algorithm. First, an area of

50m×50m around the true transmitter position is divided into 100×100 grid points as

shown in Fig. 4.7. For each grid, point, the TDOAs were calculated using:

τ12 =
1

u
× (
√

(x1 − xgrid)2 + (y1 − ygrid)2 −
√

(x2 − xgrid)2 + (y2 − ygrid)2). (4.3)

τ13 =
1

u
× (
√

(x1 − xgrid)2 + (y1 − ygrid)2 −
√

(x3 − xgrid)2 + (y3 − ygrid)2). (4.4)
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Transmitter

Positive y-axis only

Positive x-axisNegative x-axis

Figure 4.7: Sweeping area grid.

Since, the transmitted signal is known at the receiver side. These TDOAs are used

to generate time shifted versions of the pre-determined input sequence for each receiver.

Those time shifted signals and received signals are used to substitute in the log-likelihood

equation LTDOA.

LTDOA = −3

2
log (2πσ2)−

∑3
i=1(ri − as(t− τ1i)grid)2

2σ2
. (4.5)

The grid point that yielded the maximum LTDOA is the estimated transmitter position.

The results are obtained from 500 Monte carlo simulations.

Figs. 4.8 and 4.9 show the estimated transmitted coordinates at SNR=5.3.
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Figure 4.8: Estimated transmitter x-coordinate vs. iterations at SNR=5.3.

Figure 4.9: Estimated transmitter y-coordinate vs. iterations at SNR=5.3.

The MSE versus SNR curves for both x- and y-coordinates are shown in Fig. 4.10
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and Fig. 4.11.

Figure 4.10: TDOA approach: MSE vs. SNR for x-coordinate.

Figure 4.11: TDOA approach: MSE vs. SNR for y-coordinate.
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If a whole 360◦ plane is to be covered, i.e., the negative part of the y-axis is in-

cluded, then LTDOA will have two equal maximum points. The corresponding x- and

y-coordinates at these two points are the transmitter estimated locations as shown in

Fig. 4.12. One of them is the true position and the other is its mirrored location on

the x-axis as the TDOA depends on the absolute time difference only, and thus the two

locations will yield the same maximum for LTDOA. Because the transmitter is restricted

to be on the positive part of the y-axis only, this ambiguity does not exist in this research

results.

Transmitter estimated 

location #1

Transmitter estimated 

location #2

 y-axis

 x-axis 

Figure 4.12: Estimated transmitter coordinates with a 360◦ sweep.

In prior work, TDOA approach showed better MSE than AOA approach in short

ranges (i.e. when transmitter true position is close to the receiving antennas array) whilst
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in longer ranges AOA approach showed better MSE results than TDOA approach. In

Figs. 4.13 and 4.14, the transmitter was located at different distances from the receivers

array.

Figure 4.13: TDOA approach range − x-coordinate.
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Figure 4.14: TDOA approach range − y-coordinate.

It is obvious from Figs. 4.13 and 4.14 that TDOA has quite a small range. It yielded

the least MSE when the transmitter was located at (35,37). As the transmitter is moved

further, its MSE leveled off at higher MSE values showing non robust results.

4.4 AOA Approach

The input signal for the AOA block is the carrier signal concatenated with a sequence

of zeros expressed as

vAOAin = A cos(2 π fc t) inAOAseq . (4.6)

An example is shown in Fig. 4.15. Concatenation of a carrier with a period when no

signal is transmitted means that inAOAseq is a sequence of ones and zeros. Selection of

this special input signal is to make sure that the periodicity of the carrier signal does
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not cause any problems in detecting the phase difference between the received signals,

since in this modified AOA algorithm, the spacing between the antennas is not restricted

to a maximum of one wavelength as in prior related work. The spacing in the modified

AOA approach can be multiples of the wavelength, which could cause a phase difference

of more than 2π.

Figure 4.15: AOA input signal at SNR=5.3.

The received signals at each of the three receivers are shown in Fig. 4.16, Fig. 4.17

and Fig. 4.18, respectively.
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Figure 4.16: AOA received signal at Rx1 at SNR = 5.3.

Figure 4.17: AOA received signal at Rx2 at SNR = 5.3.



46

Figure 4.18: AOA received signal at Rx3 at SNR = 5.3.

Just like the TDOA approach, the AOA approach is also implemented as a two-step

algorithm. In the first step, a 50m × 50m area around the true transmitter coordinates

is split into 100 × 100 grid points. At each point the corresponding angles of arrival are

calculated using:

θ1grid = arctan

(
xgrid − x1
ygrid − y1

)
(4.7)

θ2grid = arctan

(
xgrid − x2
ygrid − y2

)
(4.8)

θ3grid = arctan

(
xgrid − x3
ygrid − y3

)
. (4.9)

The corresponding phase difference elements of the steering vector are calculated using

these equations.
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a(θ1grid , θ2grid)=exp

{
j

2π

λ
d

[
cos θ2grid

sin(θ2grid−θ1grid)
(1−cos(θ2grid−θ1grid))−sin θ2grid

]}
(4.10)

a(θ1grid , θ3grid)=exp

{
j

2π

λ
2d

[
cos θ3grid

sin(θ3grid−θ1grid)
(1−cos(θ3grid−θ1grid))−sin θ3grid

]}
(4.11)

a(θ2grid , θ3grid)=exp

{
j

2π

λ
d

[
cos θ3grid

sin(θ3grid−θ2grid)
(1−cos(θ3grid−θ2grid))−sin θ3grid

]}
.(4.12)

Then each element of the steering vector is used to compute the input signal. Since,

the transmitted signal is known at the receiver, multiplying each of the steering vector

elements by the transmitted signal will generate the corresponding input signal. For

example, a(θ1grid , θ2grid) multiplied by transmitted signal yields the first input signal.

LAOA = −3

2
log (2πσ2)−

∑3
i=1(gi − higrid(θ))2

2σ2
. (4.13)

The grid that will yield the maximum of LAOA is the transmitter location.

Fig. 4.19 and Fig. 4.20 show a sample of the estimated x- and y-coordinates at each

iteration when SNR=5.3.
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Figure 4.19: AOA approach: Estimated x-coordinate of the transmitter vs. iterations at
SNR=5.3.

Figure 4.20: AOA approach: Estimated y-coordinate of the transmitter vs. iterations at
SNR=5.3.
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The results of MSE versus SNR for the x- and y-coordinates are shown in Fig. 4.21

and Fig. 4.22, respectively.

Figure 4.21: AOA approach: MSE vs. SNR for x-coordinate.
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Figure 4.22: AOA approach: MSE vs. SNR for y-coordinate.

As in the TDOA case, the transmitter is restricted to be on half of the plane, that

is, the positive y-axis, to eliminate the ambiguity of the mirrored position estimate as

discussed for the TDOA case.

Simulation results are obtained for different values of d to show the modified AOA

approach performance in each case. The below fig. Figs. 4.23 and 4.24 show the MSE

versus SNR when d is set equal to integer multiples of λ.
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Figure 4.23: Effect of spacing on AOA MSE − x-coordinate.

Figure 4.24: Effect of spacing on AOA MSE − y-coordinate.

Figs. 4.23 and 4.24 show that the modified AOA approach implemented does not
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require a small spacing between the antennas as the MSE decreases as the antennas

spacing increases.

The maximum operating range that AOA approach could cover is another area to be

assessed. For this, simulation results are obtained by changing the transmitter location

as in TDOA. Figs. 4.25 and 4.26 show the MSE versus SNR for the x- and y-coordinates,

respectively.

Figure 4.25: AOA approach range − x-coordinate.
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Figure 4.26: AOA approach range − y-coordinate.

Figs. 4.25 and 4.26 show that AOA approach has a wider coverage range than the

TDOA approach. The performance is more robust (less MSE) than TDOA when the

transmitter is located at the same locations.

4.5 TDOA and AOA Hybrid Solution

Exploiting both schemes to form a hybrid system could potentially extend the coverage

range and positioning accuracy. The hybrid method combines the AOAs and TDOAs

obtained from the two stand alone systems to get the transmitter coordinate as explained

in Sec. 3.4.

Using the two arc points and the coordinates of the first receiver, we sweep an area

of 50m × 50m surrounding the true transmitter position as previously done. For each
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grid, the three distances to the transmitter are calculated as

d1tgrid =
√

(xgrid − x1)2 + ((ygrid − y1)2 (4.14)

d2tgrid =
√

(xgrid − P12x)2 + (ygrid − P12y)2 (4.15)

d3tgrid =
√

(xgrid − P13x)2 + ((ygrid − P13y)2. (4.16)

Then, we substitute these distances in the following equation: The grid point that yielded

the minimum is the estimated transmitter location. (see Fig. 4.27)

f =| d1tgrid − d2tgrid | + | d1tgrid − d3tgrid | + | d2tgrid − d3tgrid | . (4.17)

Fig. 4.28 and Fig. 4.29 show examples of the estimated transmitter coordinates at

all iterations when SNR=5.3.

Figure 4.28: Hybrid solution: Estimated x-coordinate of the transmitter vs. iterations.
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Figure 4.27: Illustration of the distance of transmitter to arc points.

Figure 4.29: Hybrid solution: Estimated x-coordinate of the transmitter vs. iterations.



56

The MSE versus SNR for each coordinate using the hybrid method is calculated and

presented in Fig. 4.30 and Fig. 4.31.

Figure 4.30: Hybrid scheme MSE vs. SNR for x-coordinate.
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Figure 4.31: Hybrid scheme: MSE vs. SNR for y-coordinate.

The MSE versus SNR values of the three approaches are also presented on a single

plot for the transmitter placed at (12,5) in Figs. 4.32 and 4.33.
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Figure 4.32: All approaches: MSE vs. SNR for x-coordinate for Tx placed at (12,5).

Figure 4.33: All approaches: MSE vs. SNR for y-coordinate for Tx placed at (12,5).

It can be concluded from Fig. 4.32 and Fig. 4.33 that the TDOA approach has the
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best MSE when the transmitter was placed at (12,5).

We run the same set of simulations after changing only the transmitter location to

(60,70). The results of the MSE versus SNR for all the three approaches are shown in

Figs. 4.34 and 4.35.

Figure 4.34: All approaches: MSE vs. SNR for x-coordinate for Tx placed at (60,70).
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Figure 4.35: All approaches: MSE vs. SNR for y-coordinate for Tx placed at (60,70).

Figs. 4.34 and 4.35 show that the hybrid approach generates a lower MSE than

any of the stand alone approaches when transmitter is far away from the transmitter at

(40,40).



61

Figure 4.36: Hybrid approach range − x-coordinate.

Figure 4.37: Hybrid approach range − y-coordinate.

Fig. 4.36 and 4.37 show the results of the same study TDOA and AOA approaches.



62

These results show that the hybrid method has better MSE when the transmitter is

placed far from the antennas array than when it is close to it.

4.6 Reconfigurability

On of the advantages of the proposed system is that it is easily reconfigurable. In order

to increase the coverage range, we can add an appropriate number of receiving antennas,

and it is unnecessary to change any of the existing components.

The simulation results in Figs. 4.38 and 4.39 provide a comparison between the MSE

versus SNR plots when the transmitter is located at (20.5,8.5) in two scenarios: with

three receiving antennas and with four receiving antennas.

Figure 4.38: Comparison between 3 receivers and 4 receivers at d = 3 and Tx location
(20.5,8.5) − x-coordinate.
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Figure 4.39: Comparison between 3 receivers and 4 receivers at d = 3 and Tx location
(20.5,8.5) − y-coordinate.

These results show that adding receivers will increase the system coverage range as

expected.
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Chapter 5: Conclusion and Discussion

A hybrid TDOA-AOA positioning system is proposed, aiming to provide a very simple

structure with a single linear array of receivers while still maintaining a good perfor-

mance. The TDOA scheme has the best MSE results for small ranges AOA has the best

MSE results for medium ranges. They are best used for ‘near field’ systems. The hybrid

method has the best MSE results when the transmitter is far away from the receiver

array. The proposed system is efficient as it has a large coverage range with low com-

putation required. It is flexible, there is no limitation on the transmitter location. It

can be easily reconfigured without having to change existing installation and it is cost

effective.

In summary, a reconfigurable positioning system that can use three different approaches−

TDOA, AOA, and hybrid scheme has been implemented. The spacing between the an-

tennas on the receiver array can be flexibly chosen. Coverage area and performance can

be flexibly traded-off with the number of receiving antennas on the array.

More work needs to be done by including a good model of the multipath fading

channel. Additionally new methods that do not rely on area sweeping to find the solutions

will reduce the computational complexity.



65

Bibliography

[1] R. Ye, S. Redfield, and H. Liu, “High-precision indoor UWB localization: Technical

challenges and method,” in Proc. IEEE ICUWB’10, Nanjing, China, Sep. 2010.

[2] Y. Zou, H. Liu, W. Xie, and Q. Wan, “Semidefinite programming methods for

alleviating sensor position error in TDOA localization,” IEEE Access, vol. 5,

pp. 23111–23120, Sep. 2017.

[3] T. Qiao and H. Liu, “Improved least median of squares localization for non-line-of-

sight mitigation,” IEEE Communications Letters, vol. 18, no. 8, pp. 141-144, Aug.

2014.

[4] T. Qiao and H. Liu, “An improved method of moments estimator for TOA based

localization,” IEEE Communications Letters, vol. 17, no. 7, pp. 1321–1324, Jul.

2013.

[5] T. Qiao, S. Redfield, A. Abbasi, Z. Su, and H. Liu, “Robust coarse position estima-

tion for TDOA localization,” IEEE Wireless Communications Letters, vol. 2, no. 6,

pp. 623–626, Dec. 2013.

[6] Z. Su, G. Shao, and H. Liu, “Semidefinite programming for NLOS error mitigation

in TDOA localization,” IEEE Communications Letters, vol. 22, no. 7, pp. 1430-1433,

July 2018.



66

[7] Y. Zou, H. Liu, and Q. Wan, “Joint synchronization and localization in wireless

sensor networks using semidefinite programming,” IEEE Internet of Things Journal,

vol. 5, no. 1, pp. 199–205, Feb. 2018.

[8] Y. Zou, H. Liu, and Q. Wan, “An iterative method for moving target localization

using TDOA and FDOA measurements,” IEEE Access, vol. 6, pp. 2746-2754, Feb.

2017.

[9] Y.-T. Chang, “Simulation and implementation of an integrated TDOA/AOA mon-

itoring system for preventing broadcast interference,” Journal of Applied Research

and Technology, vol. 12, no. 6 pp. 1051–1062, 2014.

[10] Y. T. Chang and Y.-C. Lin, “Implementation and experiments of TDOA monitoring

techniques for broadcasting interferences,” Applied Mechanics and Materials, vol.

479, pp.996–1000, 2014.

[11] M. A. C. Duran, A. A. D’Amico, D. Dardari, M. Rydström, F. Sottile, E. G. Ström,

and L. Taponecco, “Terrestrial network-based positioning and navigation,” Satellite

and Terrestrial Radio Positioning Techniques, pp. 75-153, 2012.

[12] P. Gupta and S. P. Kar, “Music and improved music algorithm to estimate direc-

tion of arrival,” in Proc. 2015 Int. Conf. Communications and Signal Processing

(ICCSP), pp. 757-761, Apr. 2015.

[13] S. M. Kay. Fundamentals of statistical signal processing. Prentice Hall PTR, 1993.

[14] R. Qiu, H. Liu, and S. Shen, “Ultra-wideband for multiple-access communications,”

IEEE Communications Magazine, vol. 43, no. 2, pp. 80-87, Feb. 2005.



67

[15] H. Liu, “Error performance of a pulse amplitude and position modulated ultra-

wideband system in lognormal fading channels,” IEEE Communications Letters,

vol. 7, no. 11, pp. 531-533, Nov. 2003.

[16] H. Liu, R. Qiu and Z. Tian, “Error performance of pulse-based ultra-wideband

MIMO systems over indoor wireless channels,” IEEE Transactions on Wireless

Communications, vol. 4, no. 6, pp. 2939-2944, Nov. 2005.

[17] H. Liu, “Multicode ultra-wideband scheme using chirp waveforms,” IEEE Journal

on Selected Areas in Communications, vol. 24, no. 4, pp. 885-891, Apr. 2006.

[18] S. Zhao, H. Liu, and Z. Tian, “Decision directed autocorrelation receivers for pulsed

ultra-wideband systems,” IEEE Transactions on Wireless Communications, vol. 5,

no. 8, pp. 2175-2184, Aug. 2006.

[19] S. Zhao, H. Liu, and Z. Tian, “A decision-feedback autocorrelation receiver for

pulsed ultra-wideband systems,” in Proc. IEEE Radio and Wireless Conf., pp. 251-

254, Sep. 2004

[20] S. Zhao and H. Liu, “On the optimum linear receiver for impulse radio systems

in the presence of pulse overlapping, IEEE Communications Letters, vol. 9, no. 4,

pp. 340-342, Apr. 2005.

[21] S. Zhao and H. Liu, “Transmitter-side multipath preprocessing for pulsed UWB

systems considering pulse overlapping and narrow-band interference,” IEEE Trans-

actions on Vehicular Technology, vol. 56, no. 6, pp. 3502-3510, Nov. 2007.



68

[22] S. Zhao, P. Orlik, A.F. Molisch, H. Liu, and J. Zhang “Hybrid ultrawideband modu-

lations compatible for both coherent and transmit-reference receivers,” IEEE Trans-

actions on Wireless Communications, vol. 6, no. 7, pp. 2551-2559, July 2007.

[23] S. Zhao and H. Liu, “Prerake diversity combining for pulsed UWB systems con-

sidering realistic channels with pulse overlapping and narrow-band interference,” in

IEEE Global Telecommunications Conference, Nov. 2005.

[24] R. Ardoino and F. Capriati. “DTOA estimation of pulse trains by means of cross-

correlation technique,” in Proc. 2008 IEEE Radar Conference, pp. 1–6, 2008.

[25] A. Patwari and G. R. Reddy, “1D direction of arrival estimation using root-music

and esprit for dense uniform linear arrays,” in Proc. 2017 2nd IEEE Int. Conf.

Recent Trends Electronics, Information Communication Technology (RTEICT), pp.

667–672, May 2017.

[26] M.P. Priyadarshini and R. Vinutha, “Comparative performance analysis of music

and esprit on ULA,” in Proc. 2012 IEEE Int. Conf. Radar, Communication and

Computing (ICRCC), pp. 120–124, 2012.

[27] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE

Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, Mar. 1986.

[28] B. Tay, W. Liu, and D. H. Zhang, “Indoor angle of arrival positioning using biased

estimation,” in Proc. 2009 7th IEEE Int. Conf. Industrial Informatics, pp. 458–463,

2009.



69

[29] D. J. Torrieri, “Statistical theory of passive location systems,” IEEE Transactions

on Aerospace and Electronic Systems, vol. AES-20, no. 2, pp. 183–198, Mar. 1984.

[30] N. Vankayalapati, S. Kay, and Q. Ding. “TDOA based direct positioning maximum

likelihood estimator and the cramer-rao bound,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 50, no. 3, vol. 1616–1635, Jul. 2014.




