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Abstract 

Nicholas S. Flann and Thomas G. Dietterich 
Department of Computer Science 

Oregon State University 
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This technical report reprints two articles that appeared in Proceedings of the 
Third International Machine Learning Workshop at Skytop, Pennsylvania, June 
24-26, 1985. The first paper, The EG Project: Recent Progress, summarizes 
work on the EG project, which is investigating the role of active experimentation 
in aiding machine learning programs . The second paper, Exploiting Functional 
Vocabularies to Learn Structural Descriptions describes work on the problem of 
developing computer programs that automatically construct their own repre­
sentational vocabulary . 



The EG Project: Recent Progress 

1 Introduction 

Thomas G. Dietterich 
Department of Computer Science 

Oregon State University 
Corvallis, OR 97331 

The long term goal of the EG project is to construct, implement, and evaluate a model of scientific 
inquiry. Figure 1 shows the model of scientific inquiry that we have developed to date. 
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Figure 1: Simple model of scientific inference 

According to this model, the goal of a scientist is to construct an accurate theory of an unknown 
system. There are three main processes that work together to achieve this goal: data interpretation, 
theory formation, and experiment design. The data interpretation process takes observed behavior 
of the unknown system (i.e., "raw" data) and applies the current theory (or theories) to develop 
a set of interpretations of the data. The theory formation process modifies the current theory ( or 
theories) so that they are consistent with this interpreted data. During the data interpretation 
and theory formation processes, whenever ambiguity is encountered the scientist faces a choice. He 
or she may either proceed with data interpretation and theory formation-maintaining alternative 
interpretations and theories as necessary-or the scientist can design an experiment that would 
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resolve the ambiguity. It is the task of the experiment design process to design and carry out such 
experiments. 

In order to investigate and refine this model, we are implementing it in a specific task domain. 
The specific learning task is the problem of forming theories about the file system commands of the 
UNIX operating system. The goal is to develop a computer program that starts with knowledge 
of two of the UNIX commands ( the directory listing command and the command to display the 
contents of a file) and proceeds, through experimentation and observation, to develop theories of 
how thirteen different commands work. This task has been discussed in detail elsewhere [2,3], so we 
will simply describe how the components of Figure 1 are instantiated in this domain. The unknown 
system, of course, is the UNIX operating system. It accepts typed text as inputs and produces 
strings of text as outputs . It also contains state information (e.g., the file system, current working 
directory, etc.). A theory in this domain consists of 13 procedures-one for each UNIX command. 
The task of data interpretation is to apply existing theories about some of the commands to infer 
as much as possible about the current state of UNIX (see below). This can be viewed as applying 
the current (partial) theory to "parse" the raw data. From the parsing process, EG obtains an 
input/output pair (training instance) for each command that was executed. The theory formation 
process takes these input/output pairs and uses them to guide the modification of the current set 
of theories . Hence, it constitutes a kind of procedure induction from I/0 pairs . The experiment 
design process can be invoked whenever ambiguities arise during data interpretation and theory 
formation. It designs and executes experiments to gather additional data. 

Since the start of this project (in 1983), we have focused our efforts primarily on the process 
of data interpretation. The data interpretation task can be formally defined by reference to the 
deductive-nomological (D-N) model of scientific explanation. According to this model, a body of 
data D can be explained by a theory T and a set of initial conditions C if from T and O you can 
deductively infer D. Data interpretation is the process of finding a set of initial conditions C given 
theory T and data D. It can be shown that C is a deductive consequence of T and D, so data 
interpretation can be be performed by a deductive process. 

For example, suppose that the EG program wants to form a theory of the rm command. It 
might have the following interaction with UNIX in which a directory listing is obtained for the 
/csm/eg directory before and after the execution of the unknown rm command: 

1: ls /csm/eg 
file1 
file2 
file3 
2: rm /csm/eg/file2 
3: ls /csm/eg 
file1 
file3 
4: 

By applying its theory of the directory listing (ls) command, EG can make the following 
inferences based on the first ls invocation: (a) the root directory contains a directory named csm; 
(b) the csm directory contains a directory named eg; (c) the eg directory contains three files file1, 
file2, and file3. Similarly, the second ls command can be interpreted to infer that after the rm, 
the eg directory contains only two files: file1 and file2. To obtain each of these interpretations, 
EG takes its given theory T of ls and finds a set of initial conditions C (i.e., facts about the 
existence of various files and directories) such that the observed data D (the printed output of the 
ls) can be explained as a deductive consequence of T and C. 

Once these interpretations have been constructed, EG has a complete I/0 pair for the unknown 
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rm command. This 1/0 pair is passed to the theory formation process, which will construct one or 
more theories to explain how file2 could have disappeared. 

From this example, we can see that data interpretation plays a role in scientific inquiry analogous 
to the role of goal regression in planning-both techniques support the incremental development of 
composite structures (either theories or plans). The fundamental idea behind incremental planning 
is to "break off" a piece of the overall goal and construct a plan for that piece. Once this is done, 
goal regression techniques [11] can be applied to "push" the original goal "through" the part of the 
plan that has already been constructed . This regressed version of the goal specifies the subgoals 
that remain to be achieved . 

In an analogous fashion, data interpretation serves to "push" the observed data through the 
parts of the theory that have already been developed. The interpreted data then serve to guide 
further theory formation. This residual theory formation problem is easier to solve than the original 
task of inferring a theory based on the raw data alone. 

Dietterich [3] describes the implemented system PRE that applies constraint propagation tech­
niques to the data interpretation problem. PRE (Program Reasoning Engine) employs the "deep 
plans" representation developed in the Programmer 's Apprentice project to represent theories as 
constraint networks . The observed printed output from UNIX is asserted on these networks, and 
then constraint propagation methods are applied to propagate the outputs backwards through the 
theory to infer possible input states that would have caused the outputs. Hence, PRE solves 
the data interpretation problem by "backwards execution" of programs. PRE is implemented in 
Interlisp-D on the Xerox 1108 lisp machine. 

Now that we have implemented the data interpretation component of our model, we are now 
focusing on the experiment design component. Previous work in this area has included a series 
of "idea" papers that discuss the value of experimentation ( e.g., [1,4,10]) and a collection of com­
puter programs that perform some kind of instance selection or experimentation (e.g., [5,6,7,8,9]). 
We are extending this work in two directions . First, we are investigating experimentation and 
theory formation in domains where the "unknown system" under study is a system that con­
tains state information . Second, in addition to developing effective experiment design methods, 
we are attempting to understand the space of possible methods and strategies . In particular , we 
are exploring the ways in which experimentation strategies introduce additional biases into the 
theory-formation process. 
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Exploiting Functional Vocabularies to Learn 
Structural Descriptions 

1 Introduction 

Nicholas S. Fiann and Thomas G. Dietterich 
Department of Computer Science 

Oregon State University 
Corvallis, OR 97331 

In the idea paper entitled "Learning Meaning," Minsky [3] stresses the importance of maintain­
ing different representations of knowledge, each suited to different tasks. For example, a system 
designed to recognize examples of cups on a table would do well to represent its knowledge as 
descriptions of observable features and structures. In contrast, a planning system employing cups 
to achieve goals would require a representation describing the purpose and function of cups. When 
we turn from the issue of employing a description of a cup to the task of learning such a description, 
it is not immediately obvious what vocabulary should be used. One approach might be to choose 
the vocabulary appropriate for the performance task (i.e., structural descriptions for recognition, 
functional descriptions for planning, etc.). This approach has been pursued, e.g., by Winston [10], 
Buchanan & Mitchell [1], Quinlan [7], and Minton [4]. In the case of Winston's ARCH learner and 
Buchanan & Mitchell's Meta-DENDRAL system, this approach worked well because good struc­
tural vocabularies were available. However, Quinlan and Minton confronted much more difficult 
problems in constructing structural vocabularies that concisely captured the desired game-playing 
concepts. Quinlan, for example, spent two man months developing the vocabulary for the concept 
of "lost-in-3-ply." 

The difficulty that these researchers encountered is that in addition to considering the represen­
tation requirements of the performance task, one must consider the representation requirements of 
the learning process. By their very nature, inductive learning systems must operate on the syntactic 
form of the descriptions being learned. The biases of such systems are stated in syntactic-hence, 
vocabulary-specific-terms. To meet the combined requirements of the performance task and the 
learning process, the vocabulary must be very carefully engineered! 

An alternative to this "single-vocabulary" approach is to employ two different vocabularies: one 
for learning and one for performance. In many domains, the desired concept can be expressed very 
succinctly in one vocabulary, and yet this vocabulary cannot be efficiently employed to perform 
the desired task. For example, Winston et al. [9] have shown that the concept of "cup" can be 
expressed very succinctly in a functional vocabulary, and yet it is difficult to use such a description 
to recognize pictures of cups. Figure 1 summarizes this approach to acquiring an efficient structural 
description by first learning a succinct functional description. In this approach, the given examples 
(presented in a simple structural vocabulary) are converted into functional examples through a 
process of "envisionment ." Then the functional examples are inductively generalized to obtain a 
functional concept description. Finally, this concept description is converted to a structural concept 
description through a compilation process. 

We have developed a program (named Wyl) that learns simple concepts in chess and checkers 
via this "two-vocabulary" approach. We have chosen board games such as chess and checkers 
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because there are many interesting concepts that have simple functional characterizations (e.g., 
"trap," "skewer ," "fork," "lost-in-2-ply") and yet have quite complex structural definitions. Wyl 
has been applied to learn definitions for "trap" and "move-to-trap" in checkers and "skewer" in 
chess. We illustrate Wyl's functioning with "trap". 

2 An Example : "Trap" 

2 .1 Envisionment 

Wyl starts with a given structural training instance (i.e., board position), which it is told is an 
instance of "trap" (Figure 2). To convert this into a functional instance , it conducts a forward 
minimax search according to the rules of checkers looking for "interesting" positions (e.g ., win, 
loss, draw, loss of important piece, etc .) . The result of this search process is a game tree (A) in 
which each move is tagged with its computed consequences, returned from the min/max search. 
The tree is then traversed to construct a proof of the backed-up value of the root. The "theorem" 
to be proved always takes the form of a series of nested quantifiers ( e.g., for a win, the proof states 
that "there exists a move for me such that for all of my opponent's moves . . . I win." For a loss, the 
proof states that "for all moves I make there exist moves for my opponent such that . . . I lose."). 
The nodes of the tree are labeled with the appropriate quantifiers, and branches of the tree that 
do not contribute to the proof are eliminated. This yields tree (B), which in Mitchell's terms [6] 
could be called an "explanation tree" for the computed result . 

2.2 Generalization 

Tree (B) can be viewed as providing two positive functional training instances of a loss for the 
first player . The generalization step "compresses" these two parallel branches of the tree to obtain 
tree ( C). Two biases are applied to drive this generalization. The first bias is the familiar bias 
toward maximally specific conjunctive generalizations . The final functional concept definition must 
be a conjunction (with interspersed nested quantifiers as dictated by tree (B)). To implement 
this bias, two generalization rules are applied: (i) constants are changed to variables and (ii) the 
alternative branches of the tree are changed to a universal quantifier. This second generalization 
rule is equivalent to the inverse-enumeration rule: 

P(Cl) I\ P(C2) I\ . .. I\ P(Cn) ⇒ VcP(c) 

The second bias employed by Wyl states that "There are no coincidences." More concretely, if 
the same constant appears at two different points within a single training instance, it is asserted 
that those two different points are necessarily equal. Figure 2 demonstrates this bias . In the left 
branch of tree (A), the white piece first moves to square s6. Then the red piece in square slO 
captures the piece in square s6 . The "no coincidences" bias says that these two occurances of s6 
were necessarily identical. Hence, when they are matched against the right branch of tree (A) to s7, 
they are both generalized to the same variable square1 . The final functional concept description 
states that a "trap" is a situation in which your opponent has a single piece (at slO) that is able 
to capture your piece ( at s2) no matter what move you make. This is an overly specific version of 
trap. A second structural training instance must be presented to Wyl before the correct definition 
of "trap" is found. 

2.3 Compilation 

The third stage of the learning process is termed "operationalization" by Mostow and Keller. 
Several techniques have been developed for performing this process . Keller [2] and Mostow [5] 
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apply program transformation methods to transform the functional description into a structural 
description. Utgoff [8] and Minton [4] apply constraint back-propagation. An alternative approach 
of enumeration and compaction was explored in Wyl as no structural language was available. 
First, an intelligent generator is applied to generate all possible board positions consistent with 
the generalized functional description. In the "trap" case, 146 possible positions are generated . 
Second, two algorithms are applied to compress this set of 146 positions into a disjunction of 
12 general descriptions. One algorithm identifies common internal disjunctions over squares and 
move directions to define terms such as "center," "north," and "double-corner side." The second 
algorithm invents relational terms as compositions of primitive relationships. For example, the term 
north-2-squares(square1 square£) is defined as a conjunction of nw(square1 squares) and ne(squareS 
square£). 

3 Conclusion 

The approach of employing two vocabularies (structural and functional) and performing induction 
only in the functional vocabulary has significant advantages for acquiring efficient structural de­
scriptions of concepts that have succinct functional descriptions. First, fewer examples are required 
to learn the concept. Second, the bias built into the learning program is very simple (maximally­
specific conjunctive generalization). Third and last, the learning system starts with less builtin 
knowledge and hence requires less domain-specific engineering. 

4 References 

[1] Buchanan, B. G. and Mitchell, T. M., Pattern-Directed Inference Systems, Waterman, D. A. 
and Hayes-Roth, F. (Eds.), Academic Press, New York, 1978. 

[2] Keller, R. M., AAAI-89, 1983. 

[3] Minsky, M. "Learning Meaning", Unpublished manuscript, Massachusetts Institute of Technol­
ogy, (1982). 

[4] Minton, S. AAAI-84, 1984. 

[5] Mostow, D. J., Machine Learning, Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.), 
Tioga Press, Palo Alto, 1982. 

[6] Mitchell ·, T., IJCAI-89, 1139-1151, 1983. 

[7] Quinlan, J. R., Machine Learning Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.), 
Tioga Press, Palo Alto, 1982. 

[8] Utgoff, P. E. and Mitchell, T. M., AAAI-8£, 1982 

[9] Winston, P.,Binford, T., Katz, B. and Lowry, M. AAAI-BS , 1983. 

[10] Winston, P.H., The Psychology of Computer Vision, Winston, P.H . (Ed.), McGraw Hill, New 
York, ch. 5, 1975. 

3 



.. 

STRUCTURAL SPACE FUNCTIONAL SPACE 

Instance------'• ( envisionment )"-------• Instance 

generalization 

Concept ... • ------i( compilation )i...• ----- Concept 

Figure 1: Functional Learning Scheme 

Figure 2: Checkers concept trap 

4 

Dkind=move 
from=s2 
to=square1 

kind=take 
from=sl0 
over=square1 

result=loss 

(C) 


	Flann_Dietterich1
	Flann_Dietterich2

