
86-30-3

Two Short Papers on Machine Learning

Nicholas S. Flann and Thomas G. Dietterich
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

Two Short Papers on Machine Learning

Abstract

Nicholas S. Flann and Thomas G. Dietterich
Department of Computer Science

Oregon State University
Corvallis, OR 97331

This technical report reprints two articles that appeared in Proceedings of the
Third International Machine Learning Workshop at Skytop, Pennsylvania, June
24-26, 1985. The first paper, The EG Project: Recent Progress, summarizes
work on the EG project, which is investigating the role of active experimentation
in aiding machine learning programs . The second paper, Exploiting Functional
Vocabularies to Learn Structural Descriptions describes work on the problem of
developing computer programs that automatically construct their own repre­
sentational vocabulary .

The EG Project: Recent Progress

1 Introduction

Thomas G. Dietterich
Department of Computer Science

Oregon State University
Corvallis, OR 97331

The long term goal of the EG project is to construct, implement, and evaluate a model of scientific
inquiry. Figure 1 shows the model of scientific inquiry that we have developed to date.

Unknown
System

Observed
Output

---System
Inputs

Experiment
Design

Data
Interpretation

Interpreted
Data

Theory
Formation

Theory

Figure 1: Simple model of scientific inference

According to this model, the goal of a scientist is to construct an accurate theory of an unknown
system. There are three main processes that work together to achieve this goal: data interpretation,
theory formation, and experiment design. The data interpretation process takes observed behavior
of the unknown system (i.e., "raw" data) and applies the current theory (or theories) to develop
a set of interpretations of the data. The theory formation process modifies the current theory (or
theories) so that they are consistent with this interpreted data. During the data interpretation
and theory formation processes, whenever ambiguity is encountered the scientist faces a choice. He
or she may either proceed with data interpretation and theory formation-maintaining alternative
interpretations and theories as necessary-or the scientist can design an experiment that would

1

resolve the ambiguity. It is the task of the experiment design process to design and carry out such
experiments.

In order to investigate and refine this model, we are implementing it in a specific task domain.
The specific learning task is the problem of forming theories about the file system commands of the
UNIX operating system. The goal is to develop a computer program that starts with knowledge
of two of the UNIX commands (the directory listing command and the command to display the
contents of a file) and proceeds, through experimentation and observation, to develop theories of
how thirteen different commands work. This task has been discussed in detail elsewhere [2,3], so we
will simply describe how the components of Figure 1 are instantiated in this domain. The unknown
system, of course, is the UNIX operating system. It accepts typed text as inputs and produces
strings of text as outputs . It also contains state information (e.g., the file system, current working
directory, etc.). A theory in this domain consists of 13 procedures-one for each UNIX command.
The task of data interpretation is to apply existing theories about some of the commands to infer
as much as possible about the current state of UNIX (see below). This can be viewed as applying
the current (partial) theory to "parse" the raw data. From the parsing process, EG obtains an
input/output pair (training instance) for each command that was executed. The theory formation
process takes these input/output pairs and uses them to guide the modification of the current set
of theories . Hence, it constitutes a kind of procedure induction from I/0 pairs . The experiment
design process can be invoked whenever ambiguities arise during data interpretation and theory
formation. It designs and executes experiments to gather additional data.

Since the start of this project (in 1983), we have focused our efforts primarily on the process
of data interpretation. The data interpretation task can be formally defined by reference to the
deductive-nomological (D-N) model of scientific explanation. According to this model, a body of
data D can be explained by a theory T and a set of initial conditions C if from T and O you can
deductively infer D. Data interpretation is the process of finding a set of initial conditions C given
theory T and data D. It can be shown that C is a deductive consequence of T and D, so data
interpretation can be be performed by a deductive process.

For example, suppose that the EG program wants to form a theory of the rm command. It
might have the following interaction with UNIX in which a directory listing is obtained for the
/csm/eg directory before and after the execution of the unknown rm command:

1: ls /csm/eg
file1
file2
file3
2: rm /csm/eg/file2
3: ls /csm/eg
file1
file3
4:

By applying its theory of the directory listing (ls) command, EG can make the following
inferences based on the first ls invocation: (a) the root directory contains a directory named csm;
(b) the csm directory contains a directory named eg; (c) the eg directory contains three files file1,
file2, and file3. Similarly, the second ls command can be interpreted to infer that after the rm,
the eg directory contains only two files: file1 and file2. To obtain each of these interpretations,
EG takes its given theory T of ls and finds a set of initial conditions C (i.e., facts about the
existence of various files and directories) such that the observed data D (the printed output of the
ls) can be explained as a deductive consequence of T and C.

Once these interpretations have been constructed, EG has a complete I/0 pair for the unknown

2

rm command. This 1/0 pair is passed to the theory formation process, which will construct one or
more theories to explain how file2 could have disappeared.

From this example, we can see that data interpretation plays a role in scientific inquiry analogous
to the role of goal regression in planning-both techniques support the incremental development of
composite structures (either theories or plans). The fundamental idea behind incremental planning
is to "break off" a piece of the overall goal and construct a plan for that piece. Once this is done,
goal regression techniques [11] can be applied to "push" the original goal "through" the part of the
plan that has already been constructed . This regressed version of the goal specifies the subgoals
that remain to be achieved .

In an analogous fashion, data interpretation serves to "push" the observed data through the
parts of the theory that have already been developed. The interpreted data then serve to guide
further theory formation. This residual theory formation problem is easier to solve than the original
task of inferring a theory based on the raw data alone.

Dietterich [3] describes the implemented system PRE that applies constraint propagation tech­
niques to the data interpretation problem. PRE (Program Reasoning Engine) employs the "deep
plans" representation developed in the Programmer 's Apprentice project to represent theories as
constraint networks . The observed printed output from UNIX is asserted on these networks, and
then constraint propagation methods are applied to propagate the outputs backwards through the
theory to infer possible input states that would have caused the outputs. Hence, PRE solves
the data interpretation problem by "backwards execution" of programs. PRE is implemented in
Interlisp-D on the Xerox 1108 lisp machine.

Now that we have implemented the data interpretation component of our model, we are now
focusing on the experiment design component. Previous work in this area has included a series
of "idea" papers that discuss the value of experimentation (e.g., [1,4,10]) and a collection of com­
puter programs that perform some kind of instance selection or experimentation (e.g., [5,6,7,8,9]).
We are extending this work in two directions . First, we are investigating experimentation and
theory formation in domains where the "unknown system" under study is a system that con­
tains state information . Second, in addition to developing effective experiment design methods,
we are attempting to understand the space of possible methods and strategies . In particular , we
are exploring the ways in which experimentation strategies introduce additional biases into the
theory-formation process.

2 References

[1] Buchanan, B., Mitchell, T., Smith, R., Johnson, C. in J . Belzer, A . Holzman, and A. Kent
(eds.), Encyclopedia of computer science and technology, New York: Marcel Dekker , 24-51,
1979.

[2] Dietterich, T . G., AAAI-8,1, 96-100, 1984.

[3] Dietterich, T. G., "Constraint propagation techniques for theory -driven data interpretation,"
Rep . No . STAN-CS-84-1030, Stanford Univ. , 1984.

[4] Dietterich, T ., Buchanan, B. in Rissland, E ., Arbib, M., and Selfridge, 0 ., Adaptive Control of
fll-defined Systems, Plenum, 1983.

[5] Kibler, D., Porter, B., JJCAJ-89, 415-418, 1983.

[6] Lenat, D., Art. Int ., 21:31-60, 1983.

3

[7] Mitchell, T., Utgoff, P., Banerji, R., in Michalski, R., Carbonell, J., and Mitchell, T. (eds.),
Machine Learning, Palo Alto: Tioga, 1983.

[8] Quinlan, J., in Michalski, R., Carbonell, J., and Mitchell, T. (eds.), Machine Learning, Palo
Alto: Tioga, 1983.

[9] Shapiro, E., Rep. No. 192, Yale University, 1982.

[10] Simon, H. A., Lea, G., in L. Gregg (ed.), Knowledge and Cognition, Hillsdale, N.J.: Lawrence
Erlbaum, 105-127, 197 4.

[11] Waldinger, R. J., in E. Elcock, D. Michie (eds.) Machine Intelligence 8, New York: Hal­
stead/Wiley, 1977.

4

Exploiting Functional Vocabularies to Learn
Structural Descriptions

1 Introduction

Nicholas S. Fiann and Thomas G. Dietterich
Department of Computer Science

Oregon State University
Corvallis, OR 97331

In the idea paper entitled "Learning Meaning," Minsky [3] stresses the importance of maintain­
ing different representations of knowledge, each suited to different tasks. For example, a system
designed to recognize examples of cups on a table would do well to represent its knowledge as
descriptions of observable features and structures. In contrast, a planning system employing cups
to achieve goals would require a representation describing the purpose and function of cups. When
we turn from the issue of employing a description of a cup to the task of learning such a description,
it is not immediately obvious what vocabulary should be used. One approach might be to choose
the vocabulary appropriate for the performance task (i.e., structural descriptions for recognition,
functional descriptions for planning, etc.). This approach has been pursued, e.g., by Winston [10],
Buchanan & Mitchell [1], Quinlan [7], and Minton [4]. In the case of Winston's ARCH learner and
Buchanan & Mitchell's Meta-DENDRAL system, this approach worked well because good struc­
tural vocabularies were available. However, Quinlan and Minton confronted much more difficult
problems in constructing structural vocabularies that concisely captured the desired game-playing
concepts. Quinlan, for example, spent two man months developing the vocabulary for the concept
of "lost-in-3-ply."

The difficulty that these researchers encountered is that in addition to considering the represen­
tation requirements of the performance task, one must consider the representation requirements of
the learning process. By their very nature, inductive learning systems must operate on the syntactic
form of the descriptions being learned. The biases of such systems are stated in syntactic-hence,
vocabulary-specific-terms. To meet the combined requirements of the performance task and the
learning process, the vocabulary must be very carefully engineered!

An alternative to this "single-vocabulary" approach is to employ two different vocabularies: one
for learning and one for performance. In many domains, the desired concept can be expressed very
succinctly in one vocabulary, and yet this vocabulary cannot be efficiently employed to perform
the desired task. For example, Winston et al. [9] have shown that the concept of "cup" can be
expressed very succinctly in a functional vocabulary, and yet it is difficult to use such a description
to recognize pictures of cups. Figure 1 summarizes this approach to acquiring an efficient structural
description by first learning a succinct functional description. In this approach, the given examples
(presented in a simple structural vocabulary) are converted into functional examples through a
process of "envisionment ." Then the functional examples are inductively generalized to obtain a
functional concept description. Finally, this concept description is converted to a structural concept
description through a compilation process.

We have developed a program (named Wyl) that learns simple concepts in chess and checkers
via this "two-vocabulary" approach. We have chosen board games such as chess and checkers

1

because there are many interesting concepts that have simple functional characterizations (e.g.,
"trap," "skewer ," "fork," "lost-in-2-ply") and yet have quite complex structural definitions. Wyl
has been applied to learn definitions for "trap" and "move-to-trap" in checkers and "skewer" in
chess. We illustrate Wyl's functioning with "trap".

2 An Example : "Trap"

2 .1 Envisionment

Wyl starts with a given structural training instance (i.e., board position), which it is told is an
instance of "trap" (Figure 2). To convert this into a functional instance , it conducts a forward
minimax search according to the rules of checkers looking for "interesting" positions (e.g ., win,
loss, draw, loss of important piece, etc .) . The result of this search process is a game tree (A) in
which each move is tagged with its computed consequences, returned from the min/max search.
The tree is then traversed to construct a proof of the backed-up value of the root. The "theorem"
to be proved always takes the form of a series of nested quantifiers (e.g., for a win, the proof states
that "there exists a move for me such that for all of my opponent's moves . . . I win." For a loss, the
proof states that "for all moves I make there exist moves for my opponent such that . . . I lose.").
The nodes of the tree are labeled with the appropriate quantifiers, and branches of the tree that
do not contribute to the proof are eliminated. This yields tree (B), which in Mitchell's terms [6]
could be called an "explanation tree" for the computed result .

2.2 Generalization

Tree (B) can be viewed as providing two positive functional training instances of a loss for the
first player . The generalization step "compresses" these two parallel branches of the tree to obtain
tree (C). Two biases are applied to drive this generalization. The first bias is the familiar bias
toward maximally specific conjunctive generalizations . The final functional concept definition must
be a conjunction (with interspersed nested quantifiers as dictated by tree (B)). To implement
this bias, two generalization rules are applied: (i) constants are changed to variables and (ii) the
alternative branches of the tree are changed to a universal quantifier. This second generalization
rule is equivalent to the inverse-enumeration rule:

P(Cl) I\ P(C2) I\ . .. I\ P(Cn) ⇒ VcP(c)

The second bias employed by Wyl states that "There are no coincidences." More concretely, if
the same constant appears at two different points within a single training instance, it is asserted
that those two different points are necessarily equal. Figure 2 demonstrates this bias . In the left
branch of tree (A), the white piece first moves to square s6. Then the red piece in square slO
captures the piece in square s6 . The "no coincidences" bias says that these two occurances of s6
were necessarily identical. Hence, when they are matched against the right branch of tree (A) to s7,
they are both generalized to the same variable square1 . The final functional concept description
states that a "trap" is a situation in which your opponent has a single piece (at slO) that is able
to capture your piece (at s2) no matter what move you make. This is an overly specific version of
trap. A second structural training instance must be presented to Wyl before the correct definition
of "trap" is found.

2.3 Compilation

The third stage of the learning process is termed "operationalization" by Mostow and Keller.
Several techniques have been developed for performing this process . Keller [2] and Mostow [5]

2

apply program transformation methods to transform the functional description into a structural
description. Utgoff [8] and Minton [4] apply constraint back-propagation. An alternative approach
of enumeration and compaction was explored in Wyl as no structural language was available.
First, an intelligent generator is applied to generate all possible board positions consistent with
the generalized functional description. In the "trap" case, 146 possible positions are generated .
Second, two algorithms are applied to compress this set of 146 positions into a disjunction of
12 general descriptions. One algorithm identifies common internal disjunctions over squares and
move directions to define terms such as "center," "north," and "double-corner side." The second
algorithm invents relational terms as compositions of primitive relationships. For example, the term
north-2-squares(square1 square£) is defined as a conjunction of nw(square1 squares) and ne(squareS
square£).

3 Conclusion

The approach of employing two vocabularies (structural and functional) and performing induction
only in the functional vocabulary has significant advantages for acquiring efficient structural de­
scriptions of concepts that have succinct functional descriptions. First, fewer examples are required
to learn the concept. Second, the bias built into the learning program is very simple (maximally­
specific conjunctive generalization). Third and last, the learning system starts with less builtin
knowledge and hence requires less domain-specific engineering.

4 References

[1] Buchanan, B. G. and Mitchell, T. M., Pattern-Directed Inference Systems, Waterman, D. A.
and Hayes-Roth, F. (Eds.), Academic Press, New York, 1978.

[2] Keller, R. M., AAAI-89, 1983.

[3] Minsky, M. "Learning Meaning", Unpublished manuscript, Massachusetts Institute of Technol­
ogy, (1982).

[4] Minton, S. AAAI-84, 1984.

[5] Mostow, D. J., Machine Learning, Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.),
Tioga Press, Palo Alto, 1982.

[6] Mitchell ·, T., IJCAI-89, 1139-1151, 1983.

[7] Quinlan, J. R., Machine Learning Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.),
Tioga Press, Palo Alto, 1982.

[8] Utgoff, P. E. and Mitchell, T. M., AAAI-8£, 1982

[9] Winston, P.,Binford, T., Katz, B. and Lowry, M. AAAI-BS , 1983.

[10] Winston, P.H., The Psychology of Computer Vision, Winston, P.H . (Ed.), McGraw Hill, New
York, ch. 5, 1975.

3

..

STRUCTURAL SPACE FUNCTIONAL SPACE

Instance------'• (envisionment)"-------• Instance

generalization

Concept ... • ------i(compilation)i...• ----- Concept

Figure 1: Functional Learning Scheme

Figure 2: Checkers concept trap

4

Dkind=move
from=s2
to=square1

kind=take
from=sl0
over=square1

result=loss

(C)

	Flann_Dietterich1
	Flann_Dietterich2

