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Abstract
Producing precise and helpful error messages for type inference is
still a challenge for implementations of functional languages. Cur-
rent approaches often lack precision in terms of locating the origins
of type errors. Moreover, suggestions for how to fix type errors that
are offered by some tools are also often vague or incorrect.

To address this problem we have developed a new approach to
identifying type errors that is based on delaying typing decisions
and systematically gathering context information to support the
delayed decision making. Our technique, which we call lazy typing,
is based on explicitly representing conflicting types and type errors
in choice types that will be accumulated during the typing process.
The structure of these types is then analyzed to produce error
messages and, in many cases, also type-change suggestions.

We will demonstrate that lazy typing is often more precise in
locating type errors than existing tools and that it can also produce
good type-change suggestions. We do not consider lazy typing as
a replacement for other techniques, but rather as an addition that
could help improve other approaches.

1. Introduction
One of the major challenges faced by current implementations of
type inference algorithms is the production of error messages that
help programmers fix mistakes in the code. Typical problems in-
clude the reporting of error messages in terms of internal compiler
representations, or showing error messages at locations that are dis-
tant from the source of the error.

Quite a few solutions have been proposed to locate type errors.
One approach is to eliminate the left-to-right bias of type infer-
ence [13, 14, 17] by viewing the subexpression symmetrically or
traversing the expressions in a top-down manner. Another approach
is to report several program sites that most likely contribute to the
type inconsistency [23, 24, 27, 28] instead of committing to only
one error location. A related approach is to use program slicing
to determine all the positions that are related to the type errors
[5, 6, 9, 22, 25].

The need for improving type-error diagnosis was recognized
soon after the original Hindley-Milner type system was pro-
posed [11, 18, 26]. However, despite the considerable research

∗ This work is supported by the the National Science Foundation under the
grants CCF-0917092 and CCF-1219165.

[Copyright notice will appear here once ’preprint’ option is removed.]

efforts devoted to this problem, and the improvements that were
achieved, each of the proposed solutions has its own shortcomings
and performs poorly for certain programs.

Consider, for example, the following function that splits a list
into two lists by placing elements at odd positions in the first list
and those at even positions into the second.

split xs = case xs of
[] -> ([], [])
[x] -> ([], x)
(x:y:zs) -> let (xs, ys) = split zs

in (x:xs, y:ys)

Even though the type error in this definition is not hard to spot, ex-
isting type inference systems have a hard time locating it precisely.
In the following we will show the error messages from several
tools. For presentation purpose, we have edited the outputs slightly
by changing their indentation and line breaks.

The Glasgow Haskell Compiler (GHC) 7.6,1 which is the most
widely used Haskell compiler, prints the following message.

Occurs check: cannot construct the infinite type: a0 = [a0]
In the first argument of ‘(:)’, namely ‘y’
In the expression: y : ys
In the expression: (x : xs, y : ys)

The problem with GHC (and also with Hugs982) is that the gen-
erated error message does not directly point to where the source
of the error is or how it could be fixed. The error message talks
in terms of the compiler, using the internal representation of types
and giving reasons why unification fails in compiler jargon. Even
for experienced programmers, such error messages require some
effort to manually reconstruct some of the types and solve unifica-
tion problems.

The idea of error slicing tools is to find all program positions
that contribute to a type error. A typical problem with the slicing
approach is that the produced error messages are too general and
cover too many locations. A programmer still has to find the real
cause of the type error, which again may require a lot of effort.
This issue has been addressed by pursuing techniques to minimize
the possible locations contributing to a type error. As an example,
the Chameleon Type Debugger3 shows the following output.

1 www.haskell.org/ghc/
2 www.haskell.org/hugs/
3 ww2.cs.mu.oz.au/~sulzmann/chameleon/
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ERROR: Type error
Problem : Case alternatives incompatible
Types : [a] -> (b,a)

[a] -> (c,[a])
Conflict: split xs = case xs of

[] -> ([],[])
[x] -> ([],x)
(x:y:zs) ->

let (xs, ys) = split zs
in (x:xs, y:ys)

Chameleon is a clear improvement over other error slicing tools.
It achieves this by transforming programs into CHR and through
the use of a constraint solver to extract minimal unsatisfiable con-
straints, from which involved program locations are derived. Still, a
programmer must investigate several places to precisely locate the
type error. This approach is very useful when the error locations are
very close, but less helpful when they are far apart. Moreover, de-
ciding which types should be at specific locations to solve the type
conflict still requires some effort.

The Helium compiler4 was especially developed to support the
teaching of typed functional programming languages and has a
focus on generating good error messages [10]. It produces the
following message.

(5,36): Type error in constructor
expression : :

type : a -> [a] -> [a]
expected type : [b] -> [b] -> [b]

because : unification would give infinite type
probable fix : use ++ instead

Compilation failed with 1 error

Although the proposed change from (:) to (++) fixes the type
error, this change also causes the types of the other two alternatives
to change. In general, it seems preferable to change the definition
rather than the use, and, if possible, to minimize the effect of the
change.

As another example, consider the following function to compute
Fibonacci numbers. This program contains a type error since the
return types of case alternatives for the function f are different.

f x = case x of
0 -> [0]
1 -> 1

fib x = case x of
0 -> f x
1 -> f x
n -> fib (n-1) + fib (n-2)

GHC produces the following message.5

Couldn’t match expected type ‘[t0]’ with actual type ‘Int’
In the expression: fib (n - 1) ‘plus‘ fib (n - 2)
In a case alternative: n -> fib (n - 1) ‘plus‘ fib (n - 2)
In the expression:

case x of {
0 -> f x
1 -> f x
n -> fib (n - 1) ‘plus‘ fib (n - 2) }

The Helium compiler shows the following error message.

4 www.cs.uu.nl/wiki/bin/view/Helium/WebHome
5 GHC 7.6 will give fib the type (Eq a, Num a, Num [t], Num t)
=> a -> [t], which is not what we want. To avert this problem, we can
define a function plus that has the type Int -> Int -> Int and use that
instead of +.

Compiling ./Fib.hs
(3,13): Type error in right-hand side
expression : 1

type : Int
does not match : [Int]

Compilation failed with 1 error

Seminal6 is a tool that searches for type-error messages [15, 16] in
ML programs. It attributes the type error to the expression 1 and
suggests the following possible fixes. We observe that neither the
suggested error location is accurate, nor will the proposed change
fix the type error.

File "fib.ml", line 3, characters 11-12:
This expression has type int but is here used
with type int list
Relevant code: 1
----------------------------------------
File "fib.ml", line 3, characters 11-12:
Try replacing

1 with 1; [[...]]
of type

int list
within context

let f x = (match x with
| 0 -> [0]
| 1 -> (1; [[...]])) ;;

The problem with change-suggesting tools is that sometimes the
messages are misleading by pointing to the wrong error location(s),
and the suggested program repairs don’t fix the type error. For both
of the above examples, the change-suggesting tools Helium and
Seminal fail to point to the erroneous source code and will not fix
the type error.

1.1 Delayed Type Constraint Solving
How can we improve the low precision of error localization? It
turns out that better exploiting the context of expressions containing
type errors are detected can support error localization and also lead
to better change suggestions. Specifically, context information can
be exploited by delaying the decision about a type of an expression
and making it dependent on the type information gathered from the
context. In cases when the expression turns out to exhibit a type
error, the availability of the type information for the context can
help to decide what is wrong with the expression and point more
precisely to the source of the type error.

The basic idea of the delaying strategy is to turn an equality
constraint between types, such as τ = τ′, into a choice between the
two types, which we write as A⟨τ,τ′⟩ (we’ll explain this notation
in more detail shortly). Instead of enforcing the constraint, which
potentially causes an immediate failure of type checking, we con-
tinue the type inference process with the two possibilities τ and τ′.
If τ ̸= τ′, the inference will eventually fail too, but at a later point
when additional context information is available. We call this strat-
egy lazy typing.

In this paper we restrict the application of the lazy typing strat-
egy to the typing of conditionals and case expressions. This is suffi-
cient to illustrate the technique and its potential for improving type
error localization.

In general, lazy typing works as follows. Consider an expression
e that is required by some typing rule to have the type τ1 as well as
the type τ2. If τ1 ̸= τ2, we know that the expression is not type
correct, but we generally do not know which of the two types
is the “wrong one” that is the cause of the type error. Now let’s
assume that the context E in which e occurs expects the type τ1,

6 cs.brown.edu/~blerner/papers/seminal_prototype.html
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that is, E[e] is type correct when e is of type τ1 and type incorrect
if e is of type τ2. This indicates that e’s type really should be τ1
and that the expression responsible for requiring e’s type to be τ2
is to be blamed for the type error and should be reported as the
error location. This works because in general it is unlikely that
E accidentally works with τ2 while in fact it only works with
τ1. The confidence in such context-derived judgments increases
when e occurs in several different E’s that all agree on their type
expectation.

In the fib example, the function f has a type conflict because
the two alternatives return different types. By only looking at f we
can’t tell which type is preferable over the other. However, when
examined in the context of the function fib, we recognize that f is
type correct when the case alternatives have the type Int. Thus, we
can conclude that the first branch that gives rise to the type [Int]

causes the type error.

1.2 Lazy Typing Using Choice Types
To set up the technical development in the rest of this paper we
illustrate how the technique of lazy typing with choice types works
with the examples presented earlier.

In the fib example, the typing rule for the case expression
requires the case expression in f to have the type [Int] as well
as Int. Instead of reporting a type error right away, we delay the
resolution of this discrepancy by temporarily keeping both types
and assigning the case expression the following choice type [2].

A⟨[Int],Int⟩

A choice type consists of a dimension name for naming a variation
point (here A) and all the types that constitute the alternatives of
the choice (here [Int] and Int). Each dimension represents a deci-
sion that can be made about a type. A choice type of n alternatives
represents n types, and a plain type can be obtained by eliminating
choices through the selection of particular alternatives. Note that
choice types can occur as subexpressions of type expression. For
example, the type of f in the fib example is given by the follow-
ing type expression, which describes the two type Int→ [Int],
obtained when the first alternative of A is selected, and Int→ Int,
obtained as the second alternative.

Int→ A⟨[Int],Int⟩

In general, type expressions will contain multiple variation points.
While for each newly delayed decision a choice type with a fresh
dimension name will be created, the sharing of types through type
assumptions in the type environment as well as the propagation of
choice types through typing rules can lead to separate choice types
that share the same dimension. The alternatives in those choice
types are synchronized in the sense that the selection of the kth
alternative in the dimension A will cause all kth alternatives of all
choices labeled A to be selected.

Since fib is a recursive function, the typing process will involve
the finding of fixpoints. For the case expression in fib, we create
a choice type in a new dimension B with three alternatives that
represent the types of the three branches. The first two alternatives
are A⟨[Int],Int⟩ because applying f to an Int value yields a
value of type A⟨[Int],Int⟩. Thus we obtain the following tentative
typings, where β is a fresh type variable.

fib : Int→ B⟨A⟨[Int],Int⟩,A⟨[Int],Int⟩,β⟩
fib (n-1) : B⟨A⟨[Int],Int⟩,A⟨[Int],Int⟩,β⟩

Now partially applying + to fib (n-1) leads to the need to unify
Int and B⟨A⟨[Int],Int⟩,A⟨[Int],Int⟩,β⟩. This unification prob-
lem can be solved by extending unification across choice types

[2, 3]. The process can be illustrated as follows.

Int≡? B⟨A⟨[Int],Int⟩,A⟨[Int],Int⟩,β⟩
= B⟨Int≡? A⟨[Int],Int⟩,Int≡? A⟨[Int],Int⟩,Int≡? β⟩
= B⟨A⟨Int≡? [Int],Int≡? Int⟩,A⟨. . .⟩,Int≡? β⟩

At this point we can see that the two instances of the unification
problem Int≡? [Int] will fail (the other problems all result in the
type Int). Since we use choice types to delay typing decisions, we
will represent this failure explicitly using the notion of an error
type, written as ⊥, instead of aborting the type inference process.
In fact, the explicit representation of the unification failure will later
help us with the localization of the source of the type error. Thus
we obtain the following type as a result of the unification problem.

τB = B⟨A⟨⊥,Int⟩,A⟨⊥,Int⟩,Int⟩

Therefore, we obtain the following type for (+) (fib (n-1)).

(+) (fib (n-1)) : B⟨A⟨⊥,Int⟩,A⟨⊥,Int⟩,Int⟩ → Int

Conceptually, we can view that the unification process refines the
type for fib to change to Int→ B⟨A⟨⊥,Int⟩,A⟨⊥,Int⟩,Int⟩ (we
can also achieve this by iterating the typing of fib for several
times). The application of (+) (fib (n-1)) to fib (n-2) requires
the unification of τB, the type for fib (n-1), with itself, which does
not lead to any further instantiations or changes, that is, fib has the
following type.

fib : Int→ B⟨A⟨⊥,Int⟩,A⟨⊥,Int⟩,Int⟩

Note that the type A⟨⊥,Int⟩ is a refinement of the choice type
originally created for f, which already indicates that the source of
the type error is in the first branch of the case expression for f.

A variational type derived by lazy typing contains information
about the location of the type error and, in addition, also often
allows the generation of change suggestions.

In the fib example the occurrence of the error type suggests
that the first alternative of choice A causes the type error, which
is the type for the first case alternative for f. We thus report [0]
as the cause of the type error. Moreover, we can also suggest that
the expected type should be Int, the same as the type for the
second case alternative, because it is compatible with the rest of
the program.

Our prototype implementation reports the type error and the
change suggestion in the following way.7

(2,13): Type error in expression:
[0]

Of type: [Int]
Should have type: Int

In cases when the type of the erroneous expression is ambiguous,
we report the different alternative types to illustrate the conflicts in
the program. For example, for a top-level conditional with incom-
patible branches (see also program if1 in Appendix B), we produce
the following error message. Also, in this example, since we cannot
confidently suggest a type change, we do not produce a suggestion.

(1,4): Type error in expression:
if True then (\f-> f (f 2)) else (\g-> g (g True))

Of type: (Int->Int)->Int
or: (Bool->Bool)->Bool

7 The line and column numbers have been added by hand since our pro-
totype currently works on abstract syntax and doesn’t have access to the
information from the parser.
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For the split example lazy typing proceeds in a very similar way
and produces a ternary choice type for the case expression. The
initial type assumption for split is the following.

split : [α]→ A⟨([α1], [α2]),([β1],α),([α], [α])⟩
Matching the recursive call split zs against the pair (xs,ys)

causes, through unification and the introduction of a type error, the
refinement of the type to the following.

split : [α]→ A⟨([α], [α]),([α],⊥),([α], [α])⟩
This is also the result type. The location of the error type in the
choice type puts the blame for the type error on the second alterna-
tive of the case expression. The suggested change is derived from
the other alternatives in the choice type.

(3,31): Type error in expression:
x

Of type: a
Should have type: [a]

The idea of lazy typing seems to be similar to the concept of
discriminative sum types [19, 20], in which two types are combined
into a sum type when an attempt to unify them fails. However, there
are several important differences. First, the choice types are named
and thus provide more find-grained control over the grouping of
types, unification, and unification failures. Sum types are always
unified componentwise, whereas we do this only for choice types
under the same dimension name. For choice types with different
dimension names, each alternative of a choice type is unified with
all alternatives of the other choice type. Second, the two type
systems impose different orders for unifications. For sum types,
different branches are unified before unification with the context,
whereas for choice types, branches are unified with the context first,
followed by the unification of all result types. Finally, in choice
types we make the occurrences of type errors explicit through ⊥-
types, which makes it easier to locate errors. As will be discussed
in Section 6, all these differences lead to significant differences in
the behavior and results of the two type systems.

1.3 Contributions
In Section 2 we review the notion of choice types [2, 3] and their
unification plus the required background of the formal underpin-
ning, the choice calculus [8]. This will set the stage for the use of
choice types as an underlying representation for lazy typing. The
organization of the rest of the paper is described based on the con-
tributions made in the paper.

• We define a type system for lambda calculus with let polymor-
phism that realizes lazy typing in Section 3. The use of choice
and error types allows us to delay the resolution of type equal-
ity constraints. We show that the type system is correct in the
sense of being a conservative extension of the standard Hindley-
Milner system (Theorem 1, Corollary 1, and Corollary 2).

• In Section 4 we present an algorithm for the localization of type
errors and the derivation of change suggestions. The algorithm
works by analyzing the structure of choice types and delayed
decisions that have been produced by the type system. Error
localization finds the most likely error locations by identify-
ing minimal incompatibility with context. Suggestion of type
changes shows a very high success rate since each suggestion
is guaranteed to remove at least one type error. (In cases where
not enough information is available to achieve this, we refrain
from making any suggestion.)

• We evaluate the potential impact and benefits of lazy typing
in Section 5 by comparing the results produced by our type
system and error localization algorithm with existing systems.

We find that lazy typing correctly reports error locations in most
cases, and all of its type suggestions are correct. There are some
situations in which lazy typing is unable to find a suggestion.
The comparison with other tools shows that lazy typing adds
new value to the reporting of type errors.

2. Variational Partial Types for Program Families
This section provides the technical background required for the def-
inition of the type system for lazy typing. Specifically, we introduce
the notions of variational types, partial types, and their equivalence.

In our previous work, we have introduced variational types to
type variational programs [3]. Variation in expressions and types
is represented by named choices that represent decision points in
expressions and types. Decisions about variations are made by ap-
plying a selection operation that picks the kth option in a particu-
lar dimension D, which causes the replacement of each dimension
named D by its kth alternative.

For example, the variational expression e = λx.A⟨x+1,[x-1]⟩
represents two expressions that can be obtained by selecting A.1
and A.2, respectively. The type of e varies for the two alternatives
and can also be expressed using a choice as Int→ A⟨Int,[Int]⟩.

Next consider the following slight extension of e to e′ =
λx.A⟨x+1,[x-1]⟩*2. Here only the first alternative of e′ is type cor-
rect, which is reflected in the partial type e′ : Int→ A⟨Int,⊥⟩.

In this paper we are in a sense inverting the direction of this
view: First, given a plain expression e, we try to infer a plain
type for it. If this fails, we introduce choice types to account for
discrepancies in types that are expected to be equal. These choice
types essentially “hypothesize” choices in e that would lead to
the generated choice types. Consider again the type τf = Int→
A⟨[Int],Int⟩ that was inferred for f. We can imagine a changed
definition for f in which the expression [0], the identified source of
the type error, is replaced by a choice expression A⟨[0],e⟩ where e
is of type Int. For this definition, the variational type system would
infer exactly the type τf. The type system presented in this paper
infers τf and uses the type and error information to interpret the
hypothesized choice A⟨[0],e⟩ as a suggestion to replace [0] by an
expression e of type Int.

The syntax of variational types is as follows.

τ ::= α | τ→ τ | D⟨τ,τ⟩ | ⊥
Here α ranges over type variables, and τ→ τ represents the usual
function types. The choice type D⟨τ,τ⟩ has an associated dimension
name D, and ⊥ represents type errors.

We have already explained that choice types can be arbitrarily
nested and choice types in the same dimension are synchronized
through the selection operation, which takes the kth alternative
from each choice in the same dimension.

Choice types pose a challenge to the unification algorithm since
choices are subject to equivalence rules that requires the unification
to work modulo an equational theory (shown in Figure 1). We
illustrate the equivalences with a few examples here, but defer a
full exposition of this topic to [3]. A simple example is the choice
type A⟨Int,Int⟩, which is the same as Int since either decision in
A yields Int. Thus A⟨Int,Int⟩ and Int are equivalent, a fact that is
written as A⟨Int,Int⟩ ≡ Int. This relationship is expressed by the
rule C-IDEMP, which says that a choice type can be replaced by one
of its alternatives if they all are equivalent.

Type equivalence is symmetric, reflexive and transitive, and it is
inductive over choices constructor and the function type construc-
tor. The rule F-C shows that the arrow constructor can be pushed
down over choice types, and vice versa. The rules C-C-SWAP1 and
C-C-SWAP2 show that choice nestings can be reordered. The rules
C-C-MERGE1 and C-C-MERGE2 express the idea of choice dom-
inance, which essentially means to remove dead alternatives in
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REFL

τ≡ τ

SYMM
τ≡ τ′

τ′ ≡ τ

TRANS
τ≡ τ′ τ′ ≡ τ′′

τ≡ τ′′

CHOICE
τ1 ≡ τ′1 τ2 ≡ τ′2

D⟨τ1,τ2⟩ ≡ D⟨τ′1,τ′2⟩

FUN
τ′l ≡ τ′r τl ≡ τr

τ′l → τl ≡ τ′r→ τr

F-C
D⟨τ1,τ2⟩ → D⟨τ′1,τ′2⟩ ≡ D⟨τ1→ τ′1,τ2→ τ′2⟩

C-IDEMP
τ1 ≡ τ τ2 ≡ τ

D⟨τ1,τ2⟩ ≡ τ

C-C-SWAP1
D′⟨D⟨τ1,τ2⟩,τ3⟩ ≡ D⟨D′⟨τ1,τ3⟩,D′⟨τ2,τ3⟩⟩

C-C-SWAP2
D′⟨τ1,D⟨τ2,τ3⟩⟩ ≡ D⟨D′⟨τ1,τ2⟩,D′⟨τ1,τ3⟩⟩

C-C-MERGE1
D⟨D⟨τ1,τ2⟩,τ3⟩ ≡ D⟨τ1,τ3⟩

C-C-MERGE2
D⟨τ1,D⟨τ2,τ3⟩⟩ ≡ D⟨τ1,τ3⟩

Figure 1: Variational type equivalence.

choice types. For example, A⟨A⟨Int,Bool⟩,Char⟩ is the same as
A⟨Int,Char⟩ because the Bool alternative can never be selected.

The most important component of variational type inference is
variational unification, which is unification modulo the type equiv-
alence rules shown in Figure 1. One major challenge in solving the
unification problem is to find a normal form for types that allows
the comparisons of types, see [3] for details.

The error type ⊥ was later introduced to make the variational
type system more robust [2], because in the original system, if one
program variant contains a type error, type inference fails for the
whole program family. The addition of an error type allows the
inference of partial types in which some alternatives may contain
⊥, which means that program alternatives selected by decisions that
lead in the variational type to⊥ contain a type error. The function f

and its type τf provide a simple example. The addition of the error
type creates another challenge to the unification, because we not
only have to compute the most general unifier, but also the unifier
that will result in the least number of type errors possible. Consider
for example the following unification problem.

A⟨Int,Bool⟩ ≡? B⟨Int,α⟩

We can observe that there is one unavoidable type error because the
second alternative of choice A is in conflict with the first alternative
of choice B. Yet, the question is what should α be mapped to in or-
der to make the result both most general and least problematic? We
have proved that the variational unification problem is decidable
and unitary [1, 3]. We also developed a unification algorithm that
produces most general unifiers. Moreover, in presence of ⊥, they
also lead to minimum number of type errors. For the unification
problem shown above, {α 7→ B⟨β,A⟨Int,Bool⟩⟩} is such a unifier,
where β is a fresh type variable.

3. A Type System for Lazy Typing
This section presents a type system for lambda calculus, extended
by let bindings and data types. The type system realizes the idea of
lazy typing by maintaining an additional environment with choice
types that are analyzed after the typing is completed.

3.1 Syntax
The syntax of the expressions, types, and environments is shown
in Figure 2. We use a bar to denote a sequence of elements, for
example, ϕ stands for ϕ1, . . . ,ϕn.

Most of the definitions are as in other versions of lambda cal-
culus, except for the addition of variational types, which introduce
choices and error types. We could treat the conditional as a spe-
cial case of case expressions, but the simpler syntactical structure
simplifies some of the following discussions. As usual, the type
environment Γ maps term variables to type schemas and is imple-
mented as a stack. We use θ to denote unifiers, which are a subset

Term variables x, y, z Data constructors C
Type variables α, β Type constructors T

Dimension names A, B, D

Expressions e ::= C e | x | λx.e | e e | let x = e in e
| case e of p -> e | if e then e else e

Patterns p ::= C x

Monotypes τ ::= α | τ→ τ | T τ
Variational types ϕ ::= τ | ⊥ | D⟨ϕ⟩ | ϕ→ ϕ
Type schemas σ ::= ϕ | ∀α.ϕ
Selectors s ::= D.i

Type environments Γ ::= ∅ | Γ,x 7→ σ
Substitutions η, θ ::= ∅ | η,α 7→ ϕ
Delayed typings ∆ ::= ∅ | ∆,D⟨ϕ⟩

Figure 2: Syntax of Expressions, Types, and Environments

of the type substitutions. We use ∆ to gather choice types that are
generated during the typing process. These choice types represent
type errors whose processing is delayed until the whole expression
is typed.

Finally, some auxiliary notation. We write η/S for {α 7→ ϕ ∈
η| α /∈ S}. We also stipulate the conventional definition of FV,
which computes the set of free type variables for a type, a type
environment, and a substitution.

The type substitution η(σ) substitutes the free type variables in
σ with the corresponding images in η is defined as follows.

η(⊥) = ⊥
η(T τ) = T η(τ)

η(D⟨ϕ⟩) = D⟨η(ϕ)⟩

η(ϕ1→ ϕ2) = η(ϕ1)→ η(ϕ2)
η(∀α.ϕ) = ∀α.η/α(ϕ)

η(α) =
{

α if α /∈ dom(η)
ϕ if α 7→ ϕ ∈ η

Note that we only define universally quantified variational types,
and not variational polymorphic types since we can always
transform the latter ones to the former ones. For instance,
D⟨∀α.ϕ1,∀β.ϕ2⟩ can be transformed to ∀α1β1.D⟨ϕ′1,ϕ′2⟩, where
α1 /∈ FV(ϕ1) and β1 /∈ FV(ϕ2), and ϕ′1 = {α 7→ α1}(ϕ1) and ϕ′2 =
{β 7→ β1}(ϕ2).

3.2 Typing Rules
Figure 3 presents the typing rules for the expressions and types
shown in Figure 2. Except for the case alternatives, the typing has
the judgment Γ ⊢ e : ϕ|∆, which has two unusual features: (A) the
result type is a variational type, and (B) the environment ∆ collects
all generated choice types. The latter facilitates the delay of com-
puting type equivalence among case alternatives and conditional
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Γ ⊢ e : ϕ|∆

VAR
Γ(x) = ∀α.ϕ

Γ ⊢ x : {α 7→ ϕ′}(ϕ)|∅

CON
Γ(C) = ∀α.τ→ T α

Γ ⊢C : {α 7→ τ′}(τ→ T α)|∅

UNBOUND-V
x /∈ dom(Γ)
Γ ⊢ x :⊥|∅

UNBOUND-C
C /∈ dom(Γ)
Γ ⊢C :⊥|∅

ABS
Γ,x 7→ ϕ ⊢ e : ϕ′|∆
Γ ⊢ λx.e : ϕ→ ϕ′|∆

LET
Γ,x 7→ ϕ ⊢ e : ϕ|∆

α = FV(ϕ)−FV(Γ) Γ,x 7→ ∀α.ϕ ⊢ e′ : ϕ′|∆′

Γ ⊢ let x = e in e′ : ϕ′|∆∪∆′

APP
Γ ⊢ e1 : ϕ1|∆1 Γ ⊢ e2 : ϕ2|∆2

ϕ′2→ ϕ′ = ↑(ϕ1) π = ϕ′2 ▷◁ ϕ2 ϕ = π◁ϕ′

Γ ⊢ e1 e2 : ϕ|∆1∪∆2

IF

(Γ ⊢ ei : ϕi|∆i)
i:1..3 π = ϕ1 ▷◁ Bool

D is fresh ϕ23 = D⟨ϕ2,ϕ3⟩ ϕ = π◁ϕ23

Γ ⊢ if e1 then e2 else e3 : ϕ|∆1∪∆2∪∆3∪{ϕ23}

CASE
Γ ⊢ e : ϕ|∆ Γ ⊢ pi -> ei : τi→ ϕi|∆i

πi = ϕ ▷◁ τi ϕ′i = πi◁ϕi D is fresh ϕ′ = D⟨ϕ′i⟩
Γ ⊢ case e of pi -> ei : ϕ′|

∪
i

∆i∪∆∪{ϕ′}

Γ ⊢ p -> e : τ→ ϕ|∆

PAT
Γ(C) = ∀α.τ→ T α α∩ (FV(Γ)∪FV(τ)∪FV(ϕ)) =∅

η = {α 7→ τp} Γ∪{x 7→ η(τ)} ⊢ e : ϕ|∆
Γ ⊢C x -> e : T τp→ ϕ|∆

Figure 3: Lazy Typing Rules

branches, and consequently, only the rules IF and CASE produce
new choice types; all other rules simply thread through or accumu-
late choice types from their premises.

Rules VAR, CON, ABS, and LET are all simply conservative
extensions (that is, adding the threading of ∆) of the well-known
rules. The rules UNBOUND-V and UNBOUND-C generate type errors
for unbound variables and constructors, but such type errors are
explicitly represented and threaded through the typing rules to
support the lazy typing strategy.

Rule APP is different from the traditional rule and requires some
explanation. The first two premises type function (e1) and argument
(e2) independently of one another. The remaining three premises
account, in a structured way, for the two possible ways in which the
rule can fail and type errors can occur. First, the constraint that e1’s
type ϕ1 must be a function type is expressed in the third premise
that calls an auxiliary function ↑, which tries to transform ϕ1 into a
function type. It is defined as follows (see [2] for more details).

↑(ϕ1→ ϕ2) = ϕ1→ ϕ2

↑(D⟨ϕ1→ ϕ′1,ϕ2→ ϕ′2⟩) = D⟨ϕ1,ϕ2⟩ → D⟨ϕ′1,ϕ′2⟩
↑(D⟨ϕ1,ϕ2⟩) = ↑(D⟨↑(ϕ1),↑(ϕ2)⟩)

↑(ϕ) =⊥→⊥ (otherwise)

Typing patterns π ::= ⊥ | ⊤ | D⟨π⟩

▷◁ : ϕ×ϕ→ π

ϕ ▷◁ ϕ = ⊤
⊥ ▷◁ ϕ = ⊥
ϕ ▷◁ ⊥ = ⊥
ϕ ▷◁ ϕ′ = ⊥

ϕ1→ ϕ2 ▷◁ ϕ′1→ ϕ′2 = (ϕ1 ▷◁ ϕ′1)⊗ (ϕ2 ▷◁ ϕ′2)
D⟨ϕ1⟩ ▷◁ D⟨ϕ2⟩ = D⟨ϕ1 ▷◁ ϕ2⟩

D⟨ϕ⟩ ▷◁ ϕ′ = D⟨ϕ ▷◁ ϕ′⟩
D⟨ϕ′⟩ ▷◁ ϕ = D⟨ϕ′ ▷◁ ϕ⟩

T τ1 ▷◁ T τ2 = T τ1 ▷◁ τ2

◁ : π×ϕ→ ϕ

⊥◁ϕ =⊥ ⊤◁ϕ = ϕ D⟨π⟩◁ϕ = D⟨π◁ϕ⟩

Figure 4: Typing patterns, matching, and masking

For example, ↑(A⟨Int→ Bool,Bool→ Int⟩) lifts the function type
out of the choice type and yields A⟨Int,Bool⟩ → A⟨Bool,Int⟩,
while ↑(A⟨Int→ Bool,Int⟩) can succeed only by introducing an
error type: A⟨Int,⊥⟩→ A⟨Bool,⊥⟩.

The second constraint is that the type of e2 matches the argu-
ment type of ϕ1, which is expressed in the fourth premise. Match-
ing two types results in a typing pattern (defined in Figure 4) that
captures the common structure of the two types matched and also
which parts of the structure match (represented by ⊤) and which
don’t (represented by a type error ⊥).

Matching plain types is obvious and always results either in⊤ or
⊥. For example, Int ▷◁ Int=⊤ and Int ▷◁ Bool=⊥. Matching is
more interesting for variational types that contain choices, because
it produces partial matches, which provide a more detailed view
on where type errors occur. For example, A⟨Int,Bool⟩ ▷◁ Int =
A⟨⊤,⊥⟩. When matching two function types, we first match the
corresponding argument types and result types. Based on the re-
turned typing patterns, we use ⊗ to build a new typing pattern each
of whose alternative is ⊤ if and only if that alternative in both typ-
ing patterns is ⊤. Consider, for example, Int→ A⟨Bool,Int⟩ ▷◁
B⟨Int,⊥⟩→ Bool. Matching the arguments produces B⟨⊤,⊥⟩, and
matching the return types produces A⟨⊤,⊥⟩. Thus the final result
for matching the two types is A⟨B⟨⊤,⊥⟩,⊥⟩, because only the first
alternative in both A and B is ⊤. Matching is defined in Figure
4. The definition contains overlapping cases and assumes that the
most specific rules that match are applied first (see [2]).

In the third step, we mask the return type of e1, if which is
a function type over the typing pattern we computed before. Es-
sentially, this step makes the return type to go through for the al-
ternatives where argument type matches the type of the argument
and makes it blocked, thus get the type ⊥ for other situations. The
masking operation is defined in Figure 4, which replaces all the
occurrences of ⊤ by ϕ, the type under the masking operation.

While rule APP can introduce type errors, it will not itself pro-
duce choice types. This happens in the rules IF and CASE. Let’s
consider rule IF first. After independently typing all three argument
expressions, a typing pattern is created for the condition, which
must be of type Bool. Then we create a choice type (ϕ23) for the
types of the two branches, which is added to the ∆ environment
as a delayed typing decision. It is also returned as the type of the
conditional if the condition is of type Bool (this constrained is ex-
pressed through the masking with the computed typing pattern π).
As an example consider the following expression e1.

e1 = let f = if True then odd else not in 3

The application of the IF rule yields Bool for ϕ1, which
means matching returns the typing pattern ⊤. Further we ob-
tain ϕ2 = Int → Bool for the then branch and ϕ3 = Bool →
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Bool for the else branch. The generated choice type is thus
D⟨Int→ Bool,Bool→ Bool⟩, which will be placed into the ∆ en-
vironment. Since masking with the typing pattern ⊤ has no effect
on this type, the return type ϕ is the same. Now applying the rule
LET we obtain as a result for e1 the following type plus delayed
typing decision.

Int|{D⟨Int→ Bool,Bool→ Bool⟩}
Since D⟨Int→ Bool,Bool→ Bool⟩ can’t be simplified to a mono-
type, this expression is not well-typed. The type simplification is
discussed shortly in Section 3.3.

The CASE rule works in a similar way. First, a function type
τi→ ϕi is derived for each case, and a corresponding typing pattern
πi is computed by matching the type of the pattern τi against the
type ϕ of the scrutinized expression e. With this typing pattern we
mask the return type ϕi of each case and gather all return types in a
choice type ϕ′ that is the result type for the case expression, which
is also placed into the ∆ environment for later analysis.

Finally, the PAT rule describes how to infer the function type for
patterns that are used in the rule CASE. The type is obtained by ex-
tending the type environment Γ with an assumption for each pattern
variable that is taken from the argument type of the constructor C.
With this extended environment the expression on the RHS of the
pattern is checked. This is a fairly standard rule, and there are no
interesting aspects from the perspective of lazy typing.

3.3 Correctness of Lazy Typing
Since lazy typing produces results in more cases than traditional
type systems do, the question is whether (A) it produces the same
results for type-correct programs, and (B) whether in all other cases
the result is interpreted as a type error. Taken together, (A) and (B)
express that lazy typing is a conservative extension of traditional
type systems. In this section we will demonstrate that this is indeed
the case. This is done in several steps.

The first observation is that the lazy type system will always
produce a result.

LEMMA 1. For any given e and Γ, there exist a type ϕ and a
delayed typing environment ∆ such that Γ ⊢ e : ϕ|∆.

PROOF SKETCH. The proof is based on the fact that for any ex-
pression one of the typing rules in Figure 3 is applicable and has,
by induction, all of its premises succeed. □
Next, we show that the lazy typing system is a conservative exten-
sion of the Hindley-Milner type system. We prove this by showing
that the two type systems produce the same result for well-typed
programs. But before we can formally talk about this property, we
have to first define how to characterize what well typing means in
the lazy typing system. We provide the necessary definitions in Fig-
ure 5. The judgment Γ ⊢∆ e : τ says that e is well typed and has the
type τ under lazy typing, which is the case when the variational re-
turn type as well as all delayed typing decisions in ∆ (if any) can
be reduced to monotypes.

The reduction of types is defined as the reflective, transitive clo-
sure of the rewrite relationship⇝ defined in Figure 5, which sim-
plifies type expressions. Simplification reduces function types that
contain type errors to type errors, replaces choices whose alterna-
tives are all equal (but not a type error) with one of these alterna-
tives, and applies choice domination by replacing nested choices in
the same dimension with the corresponding nested alternative. Oth-
erwise, simplification descends recursively into function and choice
types and pushes function types down into choice types. The sim-
plification rule for choice dominance makes use of the selection
operation ⌊ϕ⌋D.i, also defined in Figure 5, which replaces each oc-
currence of a D choice with its ith alternative.

We observe that the simplification relationship is confluent.

Γ ⊢∆ e : τ ∆ ⇓

Γ ⊢ e : ϕ|∆ ϕ⇝∗ τ ∆ ⇓
Γ ⊢∆ e : τ

∅ ⇓
∆ ⇓ D⟨ϕ⟩⇝∗ τ

∆,D⟨ϕ⟩ ⇓

ϕ⇝ ϕ

ϕl ⇝ ϕ′l
ϕl → ϕr⇝ ϕ′l → ϕr

ϕr⇝ ϕ′r
ϕl → ϕr⇝ ϕl → ϕ′r

ϕi⇝ ϕ′i
D⟨ϕ⟩⇝ D⟨[ϕ′i/ϕi]ϕ⟩

⌊ϕi⌋D.i = ϕ′i ϕi ̸= ϕ′i
D⟨ϕ⟩⇝ D⟨[ϕ′i/ϕi]ϕ⟩

⊥→ ϕ⇝⊥ ϕ→⊥⇝⊥ ϕ ̸=⊥
D⟨ϕ, . . . ,ϕ⟩⇝ ϕ

ϕ1→ D⟨ϕ⟩⇝ D⟨ϕ1→ ϕ⟩ D⟨ϕ⟩ → ϕ1⇝ D⟨ϕ→ ϕ1⟩

D1⟨ϕ1⟩ → D2⟨ϕ2⟩⇝ D1⟨ϕ1→ D2⟨ϕ2⟩⟩

⌊ ⌋ : ϕ× s→ ϕ

⌊τ⌋s = τ ⌊ϕ1→ ϕ2⌋s = ⌊ϕ1⌋s→ ⌊ϕ2⌋s
⌊⊥⌋s =⊥ ⌊B⟨ϕ⟩⌋A.i = B⟨⌊ϕ⌋A.i⟩ if A ̸= B

⌊B⟨ϕ⟩⌋B.i = ϕi

Figure 5: Well typing, simplification, and selection

LEMMA 2 (⇝ is confluent). For any ϕ, if ϕ⇝∗ ϕ1 and ϕ⇝∗ ϕ2,
then there exists some ϕ′ such that ϕ1⇝∗ ϕ′ and ϕ2⇝∗ ϕ′.

PROOF SKETCH. The proof is based on the fact that ⇝ is both
locally confluent and terminating. First, the relation is locally con-
fluent because when simplifying a function type, the ordering of
simplifying the argument and the return type does not matter. The
same is true for simplifying choice types, that is, which alternative
is simplified first doesn’t matter. For pushing function types down
over choice types, the ordering is specified in the rewriting rela-
tions. Second, the relation is also terminating because no rule is
applicable when there are no nested choices in the same dimension
and when function return and argument types are monotypes, and
the rules make steady progress toward that situation. □
Now we can relate our type system to the Hindley-Milner type
system, which is represented by the judgment Γ ⊢ e : τ.

THEOREM 1 (Correctness of Lazy Typing). For any given e and
Γ, Γ ⊢∆ e : τ⇐⇒ Γ ⊢ e : τ.

PROOF. First, we show Γ ⊢ e : τ implies Γ ⊢∆ e : τ. We observe that
when Γ ⊢ e : τ holds, there are no unbound variables or constructors
in e, that is, the rules UNBOUND-V and UNBOUND-C will not be
applicable, and no ⊥ will be introduced. Since both type systems
are syntax-directed, we can build a proof based on an induction
over typing derivations that shows that the two type systems behave
in the same way. Specifically, we can observe that any additional
premises in the lazy typing system are not applicable in the absence
of type errors.

We only show here the case for function applications. The
construction for other rules is quite similar. First, we need the
following two auxiliary lemmas.
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LEMMA 3 (↑ preserves⇝). If ϕ⇝∗ ϕ1→ ϕ2, then ↑(ϕ) = ϕ3 →
ϕ4 with ϕ3⇝∗ ϕ1 and ϕ4⇝∗ ϕ2.

LEMMA 4 (⇝ preserves ▷◁). If ϕ1⇝ ϕ2, then ϕ1 ▷◁ ϕ3 = ϕ2 ▷◁ ϕ3.
In particular, if ϕ1⇝∗ ϕ2 and ϕ3⇝∗ ϕ4, then ϕ1 ▷◁ ϕ3 = ϕ2 ▷◁ ϕ4.

Returning to the proof, from Γ ⊢ e1 e2 : τ we know that the
premises Γ ⊢ e1 : τl → τ and Γ ⊢ e2 : τl hold. Based on the induc-
tion hypothesis, we know Γ ⊢∆ e1 : τl → τ and Γ ⊢∆ e2 : τl , which
translates into Γ ⊢ e1 : ϕ1|∆1 where ϕ1⇝∗ τl → τ and ∆1 ⇓, and
Γ ⊢ e2 : ϕ2|∆2 where ϕ2⇝∗ τl and ∆2 ⇓. Based on Lemma 3, there
exist ϕll and ϕlr such that ϕll → ϕlr = ↑(ϕ1) and ϕll ⇝∗ τl and
ϕlr⇝∗ τ. Based on Lemma 4, ϕll ▷◁ ϕ2 = τl ▷◁ τl = ⊤. Moreover,
⊤◁ϕlr = ϕlr. Thus following the rule APP, Γ ⊢ e1 e2 : ϕlr|∆1∪∆2.
Since ∆1 ⇓ and ∆2 ⇓, it follows ∆1∪∆2 ⇓. Also, we have seen that
ϕlr⇝∗ τ, proving that Γ ⊢∆ e1 e2 : τ.

The proof for the other direction is performed similarly. □
From this theorem it follows directly that lazy typing does neither
produce false positive or false negative type errors, which can be
summarized in the following two corollaries. We use the notation
∆ ̸⇓ to express that ∆, in case it is not empty, cannot be reduced to
a monotype.

COROLLARY 1. Given e and Γ, if Γ ⊢ e : ϕ|∆ and there is no τ such
that ϕ⇝∗ τ or ∆ ̸⇓, then there is no τ′ such that Γ ⊢ e : τ′.

On the other hand, if an expression is not typeable in the Hindley-
Milner system, then our type system will report a type error for that
expression as well.

COROLLARY 2. Given e and Γ, if there is no type τ such that
Γ ⊢ e : τ, then Γ ⊢ e : ϕ|∆ implies that there is no τ′ such that
ϕ⇝∗ τ′ or ∆ ̸⇓.

The type system is implemented in two steps. The first step is a
variant of algorithm W [7] that returns a variational type, a unifier
that maps type variables to variational types, and an environment
that contains all the delayed constraints. The second step consists
of a post-unifying process, in which we try to resolve all variational
types by unifying all the alternatives in each choice type. The
technical details can be found in the Appendix A.

4. Localizing and Reporting Type Errors
The lazy typing system produces a variational type ϕ and an en-
vironment ∆ containing delayed decisions represented as choice
types. This information has yet to be turned into a type error mes-
sage. In this section we describe a method that exploits the type
information to derive an as precise as possible pointer to the loca-
tion of the type error in the source code. Moreover, in some cases
we will also derive a suggestions for a new type for that expression.

Our approach to reporting type errors and suggestions is con-
servative in the sense that we only report in the cases that we can
track the type error down to a single expression. In practical terms
this means, if the expression is a case alternative or a branch of a
conditional, then removing that expression will fix the correspond-
ing type error. Moreover, when we also present an expected type
for that expression, then the type error will be really fixed if the
expression is changed to the reported expected type.

To map types to their originating expressions, we employ a
mapping γ that maps from dimension names (that occur in ϕ or
∆) or selectors to nodes in the abstract syntax tree whose expres-
sion caused the generation of the choice type or the corresponding
alternative. Such a mapping can be constructed as follows. When-
ever we generate a fresh choice type (in rule IF or CASE), we can
actually produce a pair consisting of the choice type and an ex-
pression. For example, in the rule IF, we create the pairs (ϕ2,e2)

and (ϕ3,e3) to establish the links from the selectors D.1 and D.2
to the respective expressions e2 and e3. We also create the pair
(D⟨ϕ2,ϕ3⟩,if e1 then e2 else e3) to establish the link from the
choice D to the conditional expression. In a similar way, we create
pairs (ϕ′i,ei) and (ϕ′,case e of pi -> ei) to track the selectors and
choice type in the CASE rule.

We also track applied expressions in rule APP whenever ϕ
(which results from masking with the typing pattern π) results in
type D⟨⊥⟩ or ⊥, because either of these types indicates that the ap-
plied function does not work under any circumstance and is thus
the source of a type error. We record this information in a separate
mapping µ by adding a pair (D⟨⊥⟩,e1) (or (⊥,e1)) in such situa-
tions. Note that we create at most one such entry for any path along
the left spine from the leaf of an expression to the root to locate the
most nested violating function application only.

From the previous section (specifically, Corollary 2) we know
that a type error occurs only if ϕ cannot be reduced to a monotype or
if ∆ is not empty and some of its choice types cannot be reduced to
monotypes. Thus, we analyze these two pieces of type information
to find out about the source of the error. We describe how the
algorithm works on a high level, illustrating it with examples as we
go along. Some of the examples are taken from the table in Figure
6 and will be discussed in more depth after the algorithm has been
presented.

(1) Type Normalization
First, we normalize ϕ and the types in ∆ using the simplification⇝
defined in Figure 5. This will eliminate gratuitous choices such as
A⟨Int,Int⟩ and allows us to consider fewer patterns in the analysis.

For the fib example, we first simplify the result type Int→
B⟨A⟨⊥,Int⟩,A⟨⊥,Int⟩,Int⟩ to

ϕ = B⟨A⟨⊥,Int→ Int⟩,A⟨⊥,Int→ Int⟩,Int→ Int⟩
The delayed decisions represented as choice types are already in
simplified form.

∆ = {A⟨[Int],Int⟩,B⟨A⟨⊥,Int⟩,A⟨⊥,Int⟩,Int⟩}
The next step localizes errors and (potentially) creates suggestions.
It consists of two parts. Step (2.1) determines whether or not the
error is contained in an alternative of a choice type, and step (2.2)
actually performs error localization in nested types. Given ϕ and
∆ = {ϕ1, . . . ,ϕn}, steps (2.1) and (2.2) are iterated over all types ϕ,
ϕ1,. . . ,ϕn, while the results are accumulated.

(2.1) Stop or Refine
Next we have to determine whether the inferred type ϕ indicates a
type error and whether it is located where choice types have been
generated or where choice types (or ⊥) are used. Specifically, we
first check whether ϕ⇝ τ, in which case there is no occurrence
of a type error at this point and we can stop. (There might be
errors in ∆, and these will be processed in different iterations of
this step.) If ϕ⇝ ⊥, there is a type error at position µ(ϕ). Finally,
if ϕ ⇝ D⟨. . .⟩, we have to determine if e′ = γ(ϕ), the source of
the choice type, or its use µ(ϕ) contains a type error, in which
case we can’t determine a more refined location in, say, one of the
alternatives γ(D.i). Specifically, e′ contains a type error if it satisfies
any one of the following three conditions. From now on we assume
ϕ⇝ D⟨ϕ1, . . . ,ϕn⟩, and we write more shortly D ∈ ∆ if there is a
choice type D⟨. . .⟩ ∈ ∆.

(i) When ∃i, j : ϕi = τ ̸= τ′ = ϕ j. In this case there is not enough
contextual information to further refine the type error to γ(D.i)
for a specific alternative. Case (b) in Figure 6 provides a
simple example.

(ii) When ∀i : ϕi =⊥ and D ∈ ∆. In this case, we know that all the
alternatives or branches in γ(D) have different types. Case (g)
in Figure 6 is such an example.
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(iii) When ∃i, j : ϕi = B⟨ϕB⟩ ̸= B⟨ϕ′B⟩ = ϕ j. In this case, γ(D.i)
and γ(D. j) have different types, and there is no indication
about which of the two should be the correct type. Case (i)
in Figure 6 provides such an example where we report γ(A) as
a source of some type error.

When all the monotypes of ϕ1, . . . ,ϕn are identical, we report γ(D.i)
as an error source if ϕi = ⊥. Case (c) and (h) in Figure 6 are such
examples. In all other cases, neither γ(D) nor γ(D.i) can be said to
contain type error. Cases (d), (j), (k) and (l) in Figure 6 are such
examples.

In the case of fib, none of the conditions applies. We therefore
do not report a type error for γ(B).

The use of the expression with type D⟨⊥⟩ can also be the source
of the type error, in which case the algorithm also has to stop. This
is the case when ∀i : ϕi =⊥ and D /∈ ∆. We report µ(ϕ) as the error
location.

(2.2) Reporting Nested Type Errors
Next, we have to decide how to report type errors for the choice
types nested in D. If all the alternatives that do not contain ⊥ are
identical, then we will suggest that type alternative as a replacement
for all⊥-containing types. This works because we can simplify the
choice type into a monotype after that replacement. For example,
D⟨Int,⊥,Int⟩ can be transformed to Int if we replace⊥ with Int.
On the other hand, this does not work for D⟨Int,⊥,Bool⟩. In the
case of fib we find exactly this is the situation since all non-⊥
alternatives are given by the type Int→ Int. If we find different
non-⊥ alternatives, we cannot suggest a type since we have no basis
to pick one of the alternatives.

More specifically, we have to perform the following two steps.

(1) Let p be a sequence of selectors with which we can extract the
common non-⊥ type from ϕ. In the fib example, we find p =
[B.1,A.2]. For each type ϕi (that is, ⌊ϕ⌋D.i), do the following.

(2) (a) If ϕi = ⊥, report γ(D.i) as the source of type error. In the
fib example, no ⊥ is directly nested in B, so there is no
γ(B.i) reported as a type error.

(b) If ϕi is a monotype, we don’t have to do anything since the
type does not contain a type error.

(c) If ϕi is itself another choice type, say D′⟨. . .⟩, we recur-
sively apply the current method. In the fib example, this
leads to recursively visiting A⟨⊥,Int→ Int⟩. If we repeat
steps (1) and (2) on A⟨⊥,Int→ Int⟩, we find p = [A.2].
For step (2), we encounter ⊥ when we visit the first alter-
native of A, which means case (2a) applies, and we report
γ(A.1), that is, [0] as a type error and ∆(p) = Int as the
suggested type.

(3) Conflict Resolution
By analyzing the result type ϕ of e, we report all the potential
errors of the expressions used by e, which is a reflection of our
key idea: We detect type errors for expressions by analyzing how
they are used. One question that remains is how we can aggregate
the type information resulting from the potentially many uses of an
erroneous expression, and what conclusion about the type error in
that expression can be drawn? Suppose e is the expression which
generated D⟨. . .⟩, and ei is the subexpression in e that generated
D.i. We can distinguish between the following different cases.

(1) If all the uses suggest that e is the source of some type error,
then we report e as the source of the type error.

(2) If some use indicates that ei is the source of a type error, and
if the suggestion is that ei have the same type as e j, then we
report that ei is erroneous and that it should be changed so that
it has the same type as e j.

ϕ #Errors Location(s) Suggestion
(a) τ♣ 0
(b) D⟨τ1,τ2⟩♢ 1 γ(D) none
(c) D⟨τ,⊥⟩ 1 γ(D.2) ∆(D.1)
(d) B⟨A⟨⊥,τ⟩,τ⟩ 1 γ(A.1) ∆(A.2)
(e) A⟨τ1,B⟨⊥,τ2⟩⟩ 1 γ(B) none
(f) D⟨⊥,⊥⟩♡ 1 µ(D) none
(g) D⟨⊥,⊥⟩♠ 1 γ(D) none
(h) A⟨⊥,B⟨τ,⊥⟩⟩ 2 γ(B.2) ∆(B.1)

γ(A.1) ∆([A.2,B.1])
(i) A⟨B⟨τ,⊥⟩, 2 γ(B) noneB⟨⊥,τ⟩⟩ γ(A)
(j) A⟨B⟨τ,⊥⟩, 2 γ(B.2) ∆(B.1)

D⟨⊥,τ⟩⟩ γ(D.1) ∆(D.2)
(k) A⟨B⟨τ1,⊥⟩, 2 γ(B) noneD⟨⊥,τ2⟩⟩ γ(D)
(l) A⟨B⟨⊥,

3
γ(B.1) ∆([B.2,D.1])

D⟨τ,⊥⟩⟩, γ(D.2) ∆(D.1)
E⟨⊥,τ⟩⟩ γ(E.1) ∆(E.2)
♣∆ =∅ ♢∆ ̸=∅ ♡D /∈ ∆ ♠D ∈ ∆

Figure 6: Examples of Result Types and Reported Error Locations

(3) If some use suggests that ei is the source of some type and
it should have the type of expression e j, and at the same time,
some other use suggests that e j contains a type error and should
have the same type of ei, the context reveals a conflict of
preference about the type for e. Thus, we report e as the source
of the type error. Case (i) in Figure 6 is such an example.
For B⟨τ,⊥⟩, γ(B.2) is suggested to have type ∆(B.1) and for
B⟨⊥,τ⟩, γ(B.1) is suggested to have the type ∆(B.2). As a
result, γ(B) is the source of the type error.

In the remainder of this section we will first illustrate the algorithm
on several (small) example cases to illustrate how different nestings
of choice types, ⊥, and monotypes can be interpreted to localize
type errors. We conclude with an argument for the correctness
of the algorithm. The examples are collected in Figure 6, where
we show the result types for expressions (ϕ), the number of type
errors, the location of each type error and the expected type for each
expression to correct that type error. To simplify the presentation,
each choice has two alternatives only. In cases we can’t suggest a
type for the erroneous expression, we use none in the last column.

We assume that ϕ and ∆ are most simplified. We also assume
that τ1 ̸= τ2. For cases (a), (b), (f) and (g) we have attached an ad-
ditional condition on ∆. Finally, if ϕ is a choice type in ∆ whose
outermost choice is D, we define ∆(D) = ϕ and ∆(D.i) = ⌊ϕ⌋D.i.
Moreover, we extend selection to paths (that is, sequences of selec-
tors) as follows: ∆([s1, . . . ,sn]) = ⌊· · ·⌊ϕ⌋s1 · · · ⌋sn .

In case (a), the expression is well typed, and thus there is
nothing to report. In case (b), the result type is a choice with two
different alternatives. We report γ(D) as the source of the type error,
because neither of the two alternatives is obviously better than the
other, which is also why we cannot generate a suggestion.

Cases (c) and (d) are typical for expressions that have one
type error. In both cases, we report the branch that corresponds
to ⊥ as the error location, and we suggest as the the correct type
the corresponding other alternative. Case (d) is basically the same
result as for the fib, except for the third alternative. Case (e) is more
interesting. Here we find a type error at γ(B). (Note that it can’t be
γ(B.1) since changing γ(B.1) to have the type of γ(B.2) would not
eliminate the type error in γ(A).) There also must be a type error
at γ(A) since the two alternatives of the final type are different.
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Similarly, we can’t suggest a type since no single suggestion would
eliminate that type error.

Cases (f) and (g) show that with the same type but different
environments ∆, the reported error locations can be different. In
case (f), the caller of γ(D) very likely contains a type error because
γ(D) itself is type correct, witnessed by the fact that D /∈ ∆. In case
(g), γ(D) has a high probability of being type incorrect while there
may or may not be a type error in µ(D).

In case (h), the suggested type for γ(A.1) is the type
∆([A.2,B.1]), which means to find in ∆ the choice type ϕi with di-
mension A, and then make the selection ⌊⌊ϕi⌋A.2⌋B.1.

In case (i), the context yields conflicting information about the
use of choice B, which is why we cannot provide a precise error lo-
cation for an alternative of B and can produce no suggestion. There
is also a type error in γ(A) because changing either alternative of
B will not fixed the error in A. For example, if γ(B.1) gets the type
∆(B.2), the result type will change to A⟨B⟨⊥,⊥⟩,τ⟩. On the other
hand, suppose γ(B.2) gets the type ∆(B.1), then the result type will
be A⟨τ,B⟨⊥,⊥⟩⟩. Although case (j) is quite similar to case (i), the
error locations and suggested types differ significantly. It is clear
that there are type errors in γ(B.2) and γ(D.1). However, we don’t
report that there is a type error in γ(A) because the type error can be
fixed by letting γ(B.2) to have the type ∆(B.1) and letting γ(D.1) to
have the type ∆(D.2).

Case (k) again illustrates how a minor difference in the result
type can lead to differences in error reporting. The error locations
are the same as for the case (j), but we have no types to suggest
because, whatever the type suggested, the type error in γ(A) will
persist. Finally, case (l) illustrates a slightly bigger example.

We claim that the reported error locations are correct in the
following counterfactual sense:

If the reported expression is not changed, then some type
error will not be removed, or more involved changes at other
places will be required to remove that type error.

Moreover, type-change suggestions are correct in the following
sense.

At least one type error will be removed if the blamed ex-
pression will be changed to have the suggested type.

We will not formalize these two points, but rather present some
informal reasons for why we believe they are true.

First, whenever a conditional or a case expression is blamed to
have a type error, we do this only when one of the three conditions
in step (2.1) is satisfied. Any of these conditions implies that at
least two branches or case alternatives have different types. To fix
the type error, the conditional or the case expression must changed.

Second, when the use of a function that has multiple branches,
all with the same result type, leads to a type error, we report the
use of the function as the source of the type error. This is because
if we assumed the use to be correct, we would have to change the
type for the function, which very likely would lead to changes in
all branch of the function, a larger change.

Third, consider the case when the reported error location is ei
whose type is τi and which is a branch in a larger expression e.
According to the cases (2) and (3) in step (3), some context has
favored the type of ei to be changed to the type of e j , say τ j. If
we make the suggested change, then according to the beginning of
step (2.2), a type error will be eliminated. Now assume we don’t
make the suggested change and instead change the expression e j to
have type τi. In that case the context that works with e j won’t work
anymore because e j will have a type τi, which is does not work with
that context. So we have to change that context to make it work
with ei, which can cause other potential cascading changes. At the
same time, the change of e j to have type τi will not work with some

other context since otherwise that context would have suggested e j
to have type τi and a conflict would have been detected according to
case (3) in step 3, which in turn would have caused the suggestion
not to be made in the first place. Thus, if the located expression
is not changed, other changes will cause more type errors. If that
expression is not changed to the suggested type, the type error will
not be fixed.

5. Evaluation
To evaluate the usefulness of our approach, we have selected a set
of examples that were previously introduced in the relevant litera-
ture to illustrate the behavior of the different approaches and also
reveal important challenges. Most of the programs that we have se-
lected involve conditionals or case expressions since these are the
constructs that demonstrate the effects of the lazy typing technique.
(This is not a severe restriction since pattern matching and case ex-
pression are pervasive in functional programs.) As mentioned be-
fore, we do not consider lazy typing as a replacement for other tech-
niques, but rather as an addition that could help improve other ap-
proaches. Therefore, our evaluation is focused on finding out how
well lazy typing could contribute in those relevant cases. Since few
examples introduced in the literature contain more than one type
errors, we have also added a few example programs containing two
type errors. All the programs are shown in the Appendix B.

We have implemented a Haskell prototype for the lazy typing
system and ran the prototype on the set of examples. To compare
the results with previous approaches, we also ran GHC, the de facto
standard, and the change suggesting tools Helium and Seminal on
the examples.

We have evaluated the output produced by each tool in two re-
gards. First, we judged how accurate the reported location of the
type error was and classified it as either correct when it was spot
on, relevant if it was closely related but not quite exact, and in-
correct when the error message was actually pointing at a wrong
part of the code. Second, we judged the accuracy of type sugges-
tions. Here there were basically only two possibilities, either the
suggested type was correct, or the suggestion was incorrect. In
some cases, when not enough information is available to reliably
generate a type suggestions, lazy typing will withhold judgment
and refrain from making a (potentially incorrect) suggestion. (He-
lium and Seminal always make a statement about an expected type
and thus commit to a suggestion even in cases when not enough ev-
idence is available. GHC makes suggestions sometimes.) We con-
servatively grouped this case of a missing suggestion together with
the incorrect outcome.

Figure 7 shows the evaluation result for different tools and
example programs. We represent the evaluation for a particular tool
and example using an overlay of two more or less filled half circles.
The left half of the circles represents the quality of reported error
location, and the right half represents the presence and correctness
of suggested types.

We can observe that lazy typing correctly reports error locations
in every single program and only lacks type suggestions in four
programs, for three of which suggestions shouldn’t be produced
anyway. Whenever a type is suggested by lazy typing, it is a correct
suggestion. Only in the map example are two other tools (Helium
and GHC) able to correctly suggest a type when lazy typing fails to
do so. In all other cases, lazy typing performs just as well or better
than all other approaches.

Why do Helium and GHC perform better than lazy typing in
the map example? When the APP rule fails, lazy typing only records
the error locations and dones’t track unification failures. Thus when
Bool fails to unify with a -> b, lazy typing is unable to exploit this
information, unlike Helium and GHC that do this very well.
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Example Lazy Typing Seminal Helium GHC
fib . . . .

split[27] . . . .

map[27] . . . .

add3[12] . . . .

insert[23] . . . .

strlist[15] . . . .
strlist1 . . . .

if1[23] . . . .
if2 . . . .

plus[15] . . . . . . . .
fibbool . . . . . . . .
condfun . . . . . . . .
fiblist . . . . . . . .

Error Location Suggested Type
. correct . correct
. relevant
. irrelevant . incorrect or absent

Figure 7: Evaluation Results for Different Tools

6. Related Work
The challenge of accurately reporting type errors and producing
helpful error messages has received considerable attention in the
research community. Improvements for type inference algorithms
have been proposed that are based on changing the order of unifi-
cation, suggesting program fixes, and using program slicing tech-
niques to find all program locations involved in type errors. Lazy
typing can pinpoint the most likely error locations and suggest
expected types when enough contextual information is available.
Thus our approach can be used to complement most of the previ-
ously proposed approaches. Heeren [10] and Yang et al. [29] have
nicely summarized and discussed much of the older work in this
area. We will therefore instead focus our discussion on compar-
isons on the technical level as well as on the work that was not
covered by their summaries.

Methods that are based on changing the order in which uni-
fication problems are solved include the algorithm M [13], the
algorithm G [14], the algorithm W SYM [17], and the algorithm
I EI [28]. Our proposed lazy typing is also a unification reorder-
ing approach in the sense that conditional branches and case alter-
natives are typed independently and their unification problems are
solved at the end of type inference process. A major difference,
however, is that we generally handle a set of alternative typings by
separately typing conditional or case branches with the rest of the
program. Another difference is that our type system introduces er-
ror types to allow expressions to be typed completely rather than
aborting the typing process when a type error is encountered.

Whatever the ordering, unification-based approaches suffer in
principle from a bias that results from the order in which substi-
tutions are constructed and refined. Thus one can always find pro-
grams for which any particular approach performs rather poorly.
Type error slicing tries to avert this problem by showing all the
locations that contribute to type errors. A problem with this ap-
proach is that the wealth of provided information might become
overwhelming. A number of different slicing techniques have been
proposed [5, 9, 12, 22, 25], These all differ in their details, the fea-
tures of type systems addressed (for example, [5] does not deal with
let polymorphism), and the efficiency of the implemented methods.
Otherwise, the produced slicing results are all very similar.

From a technical perspective, Kustanto and Kameyama’s
unification-based slicing approach [12] is most closely related to

lazy typing. They use special unification variables ψ to record the
conflicts between the types that ought to be unified. Thus their uni-
fication algorithms, like ours, doesn’t terminate in presence of non-
unifiable type equations. An important difference, however, is that
when two types can’t be unified, they are merged into a ψ vari-
able in their approach, whereas in our approach a typing pattern
is derived that represents the location of type errors and that can
introduce appropriate ⊥ types into the result type.

Lazy typing is also related to the work on discriminative sum
types (also called soft typing) to locate type errors [19, 20]. The
technical differences discussed in Section 1.2 lead to different typ-
ing behaviors for the two approaches. First, soft typing extracts all
locations involved in type errors and is thus essentially a type-error
slicing approach, whereas lazy typing blames the most likely error
location when the context supports such a judgment. Second, lazy
typing provides change suggestions in some cases, whereas soft
typing, like all error-slicing approaches, does not. Finally, error lo-
cations reported by soft typing may contain program fragments that
have nothing to do with type errors. For example, a variable used
for passing type information only will be reported as a source of
type errors if it is unified once with some sum types during the type
inference process. In lazy typing, on the other hand, only locations
that contribute to type errors are reported.

Since lazy typing finds most likely error locations and suggests
expected types for erroneous locations, the question arises how
our method compares to program repairing approaches [10, 11,
15, 17]. McAdam built an algorithm on top of the algorithm W
to suggest program changes by designing a unification algorithm
modulo linear isomorphism [17]. Heeren [10] has pointed out the
potential problems with that approach, including that the suggested
fix may lead to the transfer of type inconsistency to some other
place. Lazy typing does not suffer from this problem; it guarantees
that one type error will be eliminated if the error source is changed
to an expression of the suggested type.

The Top framework [10] suggests program changes in several
steps. First, the type constraints for expressions are collected and
ordered. Second, the constraints are solved to decide the types
for expressions. If there are type errors, heuristics are employed
to find the error locations. Instead of changing type checkers or
compilers, Seminal [15, 16] improves error reporting by search-
ing for a well-typed program that is similar to the ill-typed pro-
gram. Seminal mainly consists of two steps. First, it locates a type
error through top-down removal. Specifically, if a program is ill
typed, Seminal tries to remove each top-level expression to check
whether the removal of that expression will eliminate the type er-
ror. If this succeeds for a top-level expression, then seminal re-
cursively searches within that expression. Second, for the located
expressions, it performs constructive changes at that location. Ex-
amples of such changes are the removal of an argument from a
function call, swapping the ordering of arguments to function calls,
and so on. After new expressions are constructed, each one is type
checked. Seminal then suggests changes to the users by ordering
all the programs that passed type checking using some heuristics.
When a suggested change becomes too large, for example chang-
ing the whole program to a variable, this indicates that there are
multiple type errors in the program, and Seminal will enter the so-
called “triage mode”, in which when a top-level expression is re-
moved together with its sibling expressions to remove some type
constraints. This will improve the likelihood that the program will
be well-typed. Seminal tries to find as many errors as possible.

Top and Seminal use heuristics to order program-change sug-
gestions. We argue that contextual information is a very good
heuristic to finding errors since contexts reflect how erroneous
functions or expressions will be used. Thus lazy typing works best
and produces good results when the contextual information is avail-
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able. This is particularly true in cases when there is more than one
type error. Our algorithm is also more efficient for the interactive
use because variational type inference, by design, exploits common
code parts and can work very efficiently with choice types [2]. In
contrast, Seminal has to type each generated program separately.

Similarly to lazy typing, Johnson and Walz’s unification-based
approach also uses contextual information to help find more accu-
rate error locations [11]. However, the two approaches use context
information differently. In their approach, when a type variable has
to be unified with two conflicting types, the type variable is mapped
to a disjunction of these two types, and the typing process contin-
ues. The conflict is eventually resolved by something like “usage
voting”, that is, whatever type a variable is unified with most often,
will be selected. In contrast, lazy typing will map a type variable
to whatever type will cause the whole program to be well-typed,
because that is the ultimate goal of type checking and type-error
recovering. The use of choice types allows us to explore the com-
binations of different possibilities efficiently.

Finally, various methods have been proposed to explain the type
inference process. Chameleon can generate explanation about why
there is a type error, why a function or expression has a specific
type and so on [23, 24]. Chitil observed that the primary obstacle to
understanding why a program has a type error or why an expression
has a specific type is the lack of compositional explanations [4].
Since computing principal types is not compositional but principal
typing is, Chitil proposed the concept of compositional explanation
graphs, based on which programmers can freely navigate between
different parts of the typing tree and gain a better understanding of
the types for particular expressions.

7. Conclusions
We have presented lazy typing, a new approach to generating type
error messages. Our method is based on delaying unification and er-
ror decisions of the type system through the use of choice and error
types. Choice types represent delayed decisions in alternatives, and
the nesting of choice types provides rich context information that
can be effectively exploited for error localization. Choice types are
analyzed at the end of the typing process. In many cases the struc-
ture of choice types also facilitates the derivation of type-change
suggestions for expressions containing type errors.

We have shown the correctness of lazy typing with regard to the
traditional Hindley-Milner system by demonstrating that the sys-
tems produce the same results in the case of type-correct programs,
and that lazy typing will neither report type errors for correct pro-
grams, nor report type-incorrect programs as type correct. The
practical evaluation and comparison with related tools has showed
that lazy typing is very effective and can report errors in most cases
with high precision. In most tested cases, lazy typing performed as
well or better than other tools.
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A. Type Inference
The type inference for the lazy typing system consists of two
steps. The first step is a minor modification of algorithm W [7],
which returns a variational type, a unifier that maps type variables
to variational types, and an environment which contains all the
delayed constraints. The second step consists of a post-unifying
process, in which we try to resolve all variational types by unifying
all the alternatives in each choice type.

The algorithm for the first step deviates from algorithm W in
three aspects:

(1) Instead of using the traditional robinson [21] unification algo-
rithm, it uses the partial variational unification algorithm devel-
oped in [2], which has been shown to compute most general
and most defined types, which means that in the case of that
two variational types don’t unify, as few as possible type errors
are introduced into the type.

(2) The conditional branches and case alternatives are types “sym-
metrically”, that is, type constraints introduced in the earlier
branch or alternative will not affect the typing for a later branch
or alternative.

(3) Instead of unifying types among conditional branches and case
alternatives eagerly, we delay these unification problems and
collect them in an environment ∆, which will be resolved in the
second step.

The algorithm is almost a literal translation from the typing rules
in Figure 3. An excerpt of the algorithm is shown at the top in
Figure 8. We use pvunify to denote the partial variational unification
algorithm. We use θ2θ1 to denote the composition of two unifiers
θ2 and θ. The operation θ = θ2 ⊎D θ3 computes θ1 by combining
θ2 and θ3 as follows. If α 7→ ϕ appears only in θ2 or θ3, then it is
copied into θ. If α 7→ ϕ2 occurs in θ2 and α 7→ ϕ3 occurs in θ3, then
θ will have α 7→ D⟨ϕ2,ϕ3⟩.

To infer the type for an if expression, we first infer the type for
the condition and the two branches under the updated environment.
Note that the types for two branches are inferred independently.
To avoid the unifiers for these two branches to interfere with each
other, we create a new unifier that encapsulates the conflicts of type
mapping with choice types. We then unify the type for the condition
with Bool, which returns a unifier and typing pattern, to indicate
which alternatives are unifiable and which aren’t. We then mask
the type for the branches, represented by a choice type with two
alternatives for the corresponding branches, with the typing pattern,
which will replace all ⊤s with that particular type and leave all
⊥s unchanged. The result of the masking is returned as the result
type for the if expression. The delayed constraint environment and
unifiers are composed appropriately and returned.

For example, consider inferring the type of the following ex-
pression with Γ = {x 7→ α}.

e1 = if x then odd x else not x

After typing the condition x, we have ϕ1 = α, θ1 =∅, and ∆ =∅.
After typing the first branch odd x, we get ϕ2 = Bool, θ2 = {α 7→
Int}, and ∆2 =∅. After typing the second branch not x, we have
ϕ3 = Bool, θ3 = {α 7→ Bool}, and ∆3 =∅. Assuming a fresh D, we
obtain θ = θ2⊎D θ3 = {α 7→D⟨Int,Bool⟩}. Variational unification
of θ(ϕ1)=D⟨Int,Bool⟩with Bool gives the typing pattern D⟨⊥,⊤⟩
and θ4 = ∅. Now the return type is D⟨⊥,⊤⟩◁D⟨Bool,Bool⟩ =
D⟨⊥,D⟨Bool,Bool⟩⟩, which is D⟨⊥,Bool⟩ by eliminating dead al-
ternatives. Likewise, the result delayed constraint environment is
{D⟨⊥,Bool⟩}. Inspecting the result type shows that there is a type
error in the left branch of the if statement.

In the second step, we compute a unifier that maps type vari-
ables to monotypes, while trying to eliminate choice types as much

infer1 : Γ× e→ ϕ×θ×∆

infer1(Γ,if e1 then e2 else e3) =
(ϕ1,θ1,∆1)← infer1(Γ,e1)
(ϕ2,θ2,∆2)← infer1(θ1(Γ),e2)
(ϕ3,θ3,∆3)← infer1(θ1(Γ),e3)
D is fresh
θ← θ2⊎D θ3
(π,θ4)← pvunify(θ(ϕ1),Bool)
return (θ4(π◁D⟨ϕ2,ϕ3⟩),θ4θθ1,

θ4(θ(∆1)∪∆2∪∆3∪ (π◁D⟨ϕ2,ϕ3⟩)) )

infer2 : ϕ×θ×∆→ ϕ×θ×∆

infer2(ϕ,θ,∆) =
ζ← uni(ϕ .

= ϕ∪{ϕ1
.
= ϕ1|ϕ1 ∈ ∆}∪{ϕ2

.
= ϕ2|α 7→ ϕ2 ∈ θ})

return (ζ(ϕ),ζ(θ),ζ(∆))

uni : R → ζ R = {ϕ .
= ϕ} ζ = {α 7→ τ}

uni(τ1
.
= τ2∪R ) =

{
uni(ζ(R ))ζ robinson(τ1,τ2) = ζ
uni(R ) robinson fails

uni(⊥ .
= ϕ∪R ) = uni(R )

uni(ϕ .
=⊥∪R ) = uni(R )

uni(ϕ1
.
= D⟨ϕ⟩∪R ) = uni(ϕ1

.
= ϕ∪R )

uni(D⟨ϕ⟩ .= ϕ1∪R ) = uni(ϕ .
= ϕ1∪R )

uni(T τ1
.
= T τ2∪R ) = uni(τ1

.
= τ2)

uni((ϕ1→ ϕ2
.
=

= uni({ϕ1
.
= ϕ3,ϕ2

.
= ϕ4}∪R )ϕ3→ ϕ4)∪R )

uni(α .
= ϕ) =

{
uni(ζ(α) .

= τ∪ζ(R ))ζ ∃τ =↓ ζ(ϕ)
uni(ζ(R ))ζ otherwise

where ζ = uni(ϕ .
= ϕ)

uni(ϕ1
.
= ϕ2∪R ) = uni(R )

uni(∅) = ∅

Figure 8: Type Inference and Post Unification Algorithm

as possible. We are now essentially deciding which of the delayed
type constraints can be solved. If all the constraints can be solved
and the choice types can be simplified to monotypes, there is no
type error in the expression. Otherwise, we will call the error re-
porting algorithm to generate type error messages. The algorithm
for the second step, infer2 is presented in the middle of Figure 8,
where ζ denotes a unifier whose codomain are only monotypes.

The algorithm uni plays a fundamental role in the second step
of type inference. For the unification problem ϕ1

.
= ϕ2, uni returns

a unifier ζ such that ζ(ϕ1) = ζ(ϕ2) so that they can be reduced
to monotypes. We use the notation ϕ1

.
= ϕ2 ∪R to single out the

unification problem ϕ1
.
= ϕ2 and bind all others to R .

Most of the computation rules are straightforward. When uni-
fying two monotypes, we call the robinson algorithm to proceed.
If it succeeds, we just use that result; otherwise we simply ignore
the current unification problem. Unification problems with ⊥on ei-
ther side are ignored because we can’t derive any constraint from
them. When unifying a type against a choice type, then that type
will be unified against each alternative of the choice type. Unify-
ing type constructors T and→ results in the unifying of all corre-
sponding type pairs. There is a subtlety in unifying a type variable
against a variational type ϕ. The unification succeeds if we can sim-
plify ϕ to a monotype, which is realized by unifying ϕ with itself
and then simplify the result. We write ↓ ϕ for the reduction of
a variaitional type to its normal form using the ⇝ reduction rela-
tion. For example, given α .

= D⟨β,Int⟩, we first solve the problem
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D⟨β,Int⟩ .= D⟨β,Int⟩ as follows.

ζ = uni({D⟨β,Int⟩ .= D⟨β,Int⟩})
= uni({β .

= D⟨β,Int⟩,β .
= D⟨β,Int⟩})

= uni({β .
= β,β .

= Int,β .
= D⟨β,Int⟩})

= uni({β .
= Int,β .

= D⟨β,Int⟩})
= uni({β 7→ Int}({β .

= D⟨β,Int⟩})){β 7→ Int}
= uni({Int .

= D⟨Int,Int⟩}){β 7→ Int}
= uni({Int .

= Int,Int
.
= Int}){β 7→ Int}

= uni({Int .
= Int}){β 7→ Int}

= {β 7→ Int}
Now since ↓ ({β 7→ Int}D⟨β,Int⟩) = Int, we have uni(α .

=
D⟨β,Int⟩) = uni({α .

= Int}){β 7→ Int}= {α 7→ Int,β 7→ Int}.
With uni we can decide if a type ϕ can be turned into a

monotype by simply testing if ↓ (uni(ϕ .
= ϕ)(ϕ)) is a mono-

type. For example, if ϕ = D⟨β,Int⟩, then as we have seen before
uni(D⟨β⟩Int .

= D⟨Int,α⟩) = {β 7→ Int}. Applying the result to ϕ,
it can be simplified to Int.

Now we illustrate the whole type inference process for the
following expression.

e2 = (if True then f else g) x

We use the following assumptions.

f : Int→ β
g : α→ Bool

x : α

Following the type inference algorithm for the if construct, we
can do a similar analysis as we did for e1 and obtain the following
result.

ϕ = D⟨β,Bool⟩
∆ = {D⟨Int→ β,χ→ Bool⟩}
θ = {α 7→ D⟨Int,χ⟩}

Here χ is a fresh type variable.
In the second step, we first try to bring all the variational types

to monotypes. Using the algorithm in Figure 8, we will solve the
following unification algorithm.

uni({ D⟨β,Bool⟩ .= D⟨β,Bool⟩,
D⟨Int→ β,χ→ Bool⟩ .= D⟨Int→ β,χ→ Bool⟩,

D⟨Int,χ⟩ .= D⟨Int,χ⟩ })
We obtain the following monounifier ζ = {β 7→ Bool,χ 7→ Int}.
Applying ζ to ϕ ∆, and θ, followed by simplification, we know
the result type is Bool, ∆ becomes empty, and the unifier becomes
{α 7→ Int,β 7→ Bool,χ 7→ Int}. Thus, we conclude there is no type
error in e2.

B. Programs Used in the Evaluation
The fib example.

f x = case x of
0 -> [0]
1 -> 1

plus :: Int -> Int -> Int
plus = (+)

fib x = case x of
0 -> f x
1 -> f x
n -> fib (n-1) ‘plus‘ fib (n-2)

The split example.

split xs = case xs of
[] -> ([],[])
[x] -> ([], x)
(x:y:zs) -> let (xs, ys) = split zs

in (x:xs, y:ys)

The map example.

map1 f [] = []
map1 f (x:xs) = f x : map1 f xs
test = map1 True "abc"

The add3 example.

(\x->x+3) (if True then False else 1)

The insert example.

insert x [] = x
insert x (y:ys) | x > y = y : insert x ys

| otherwise = x : y : ys

The strlist example.

add str lst
| str ‘elem‘ lst = lst
| True = str:lst

v = add ["error"] "location"

The strlist1 example.

add str lst
| str ‘elem‘ lst = [lst]
| True = str:lst

v = add "error" ["location"]

The if1 example.

h = if True then (\f-> f (f 2))
else (\g-> g (g True))

The if2 example.

v = let h = if True then (\f-> f (f 2))
else (\g-> g (g True))

in h not

The plus example.

let x = 3 + true in 4+"hi"
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The fibbool example.

f x = case x of
0 -> [0]
1 -> 1

plus :: Int -> Int -> Int
plus = (+)

fib x = case x of
0 -> f x
1 -> True
n -> fib (n-1) ‘plus‘ fib (n-2)

The condfun example.

f x = if True then not x else x + 1
g x = if True then not x else 2
v = f 3 + g True

The fiblist example.

f x = case x of
0 -> [0]
1 -> 1

fib x = case x of
0 -> f x
1 -> f x
n -> head (f x)
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