
Wood Engineering Research
Forest Products Laboratory
Madison, Wis. 53705

11111111 "4
FENNOlige l ifflownn Hi ll ill

FOREST PRODUCTS LABORATORY

MADISON 5 , WISCONSIN

UNITED STATES DEPARTMENT OF AGRICULTURE

FOREST SERVICE

in Cooperation with the University of Wisconaln

ELASTIC !BUCKLING Of A SIMPLY

SUPPORTED RECTANGULAR

SANDWIC11 PANEL SUBJECTED TO

COMBINED EDGEWISE PENDING,

COMPRESSION, AND SITAR

No. 1859

November 1950

INFORMATION REVIEWED
AND REAFFIEMED

1962

This Report is One of a Series
Issued in Cooperation with the

ANC-23 PANEL ON SANDWICH CONSTRUCTION
of the Departments of the
AIR FORCE, NAVY, AND COMMERCE



ELASTIC BUCKLING OF A SIMPLY SUPPORTED

RECTANGULAR SANDWICH PANEL SUBJECTED TO 

COMBINED EDGEWISE BENDING, COMPRESSION, AND SHEAR-

By

W. R. KIMEL, Engineer

Forest Products Laboratory, ? Forest Service
U. S. Department of Agriculture

Summary

This paper presents a theoretical analysis of the problem of the elastic
buckling of simply supported rectangular sandwich panels acted upon by
combinations of edgewise bending, compression, and shear. The mathe-
matical solution of the problem is based upon the Rayleigh-Ritz energy
method. Design curves are presented for determining the buckling cri-
teria for panels loaded in combined edgewise bending and shear.

Introduction

The problem of the elastic buckling of simply supported rectangular sand-
wich panels subjected to combined edgewise bending and compression was
solved in Forest Products Laboratory Reports Nos. 1857 and 1857-A.

-This—This report is one of a series (ANC-23, Item 56-5) prepared and dis-
tributed by the Forest Products Laboratory under U. S. Navy, Bureau
of Aeronautics Nos. NAer 01684 and NAer 01593 and U. S. Air Force
No. DO 33(616)-56-9. Results here reported are preliminary and may
be revised as additional data become available.

?Maintained—Maintained at Madison, Wis. , in cooperation with the University of
Wisconsin.
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It is the purpose of this paper to present an analysis for the problem of
the elastic buckling of simply supported rectangular sandwich panels
subjected to combined edgewise bending, compression, and shear.

Many aircraft structural components that are constructed of sandwich
are required to carry combinations of edgewise bending, compression,
and shear loading. Examples of such components are the division bulk-
heads in cellular-type wing structures, and trailing edge wing panels.
Data useful for the design of such components are presented in this paper
by curves. These data are for use in calculating buckling loads on panels
subjected to combinations of edgewise bending and shear. Formulas are
developed from which buckling criteria for any combination of edgewise
bending, compression, and shear may be calculated.

The solution utilizes the same assumptions used in Forest Products
Laboratory Reports Nos. 1857 and 1857-A. The sandwich panel is as-
sumed to be composed of isotropic thin plate facings of either equal or
unequal thickness and of either an isotropic or an orthotropic core. The
core is assumed to be in a state of antiplane stress. The mathematical
analysis employed here is also identical in principle with that used in
Forest Products Laboratory Reports Nos. 1857 and 1857-A. More spe-
cifically, the mathematical solution is based on a Rayleigh-Ritz energy
method using double Fourier series with configuration parameters ob-
tb.ined from solutions of the core equilibrium equations. The configura-
tion parameters are constants of integration obtained from solution of
the core equilibrium equations. The general literal solution to this prob-
lem is in the form of a characteristic determinant of order infinity, ex-
cept in the special case of pure edgewise compression, in which case the
determinant is of order six.

Evaluation of an order 48 minor from the determinant of order infinity is
made to obtain data for design curves. These design curves, based on
the additional assumption of an infinite transverse modulus of elasticity
of the core, E c , and on a modified flexural rigidity of the spaced facings,±

are compiled for the case of combined edgewise bending and shear. The
transverse modulus of elasticity of the core refers to the modulus of

-This—This determinant is given in equation (179) of reference (2). Underlined
numbers in parentheses refer to Literature Cited at the end of this
report.

4
—These assumptions, E c = 00 and D T = D, were used to obtain the literal

solutions from whiEF-the data for the design curves in references (2)
and (3) were computed.
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elasticity of the core in a direction perpendicular to the facings. The de-
sign curves are believed sufficiently accurate for use in the design of
many sandwich panels. The design curves are limited to panel ratios

< a <
0.4 = — = 2.0 and to values of the parameter W depending on values of both

a	 xzthe ratios — and	 . Accurate design curves for additional ranges of
yz—

parameters, —a and W, can be obtained from consideration of a larger set

of equationsl from the infinite set 6—presented in this paper.

Notation

x, y, z	 rectangular coordinates (fig. 1)

a	 length of panel in direction of loading (figs. 1, 3)

b	 width of panel in direction perpendicular to loading (figs.
1, 3)

a
b

c	 thickness of core (fig. 1)

t	 thickness of upper facing (fig. 1)

t'	 thickness of lower facing (fig. 1)

Poisson's ratio of facings

E	 modulus of elasticity of facings

Ec	modulus of elasticity of core in z direction -- transverse
modulus of elasticity of core

modulus of rigidity of core in xz plane

5In this paper 48 linear, homogeneous equations in 48 unknowns were
solved.

6
Equations 20, 21, 22, 23, 24, and 25 constitute this set.

b

Gxz
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yz
	 modulus of rigidity of core in yz plane

G
xz

r	
Gyz

N
b
	maximum value of normal edgewise loading (load per unit

width, b, of panel) due to pure edgewise bending (fig. 4)

Nc
	value of normal edgewise loading (load per unit width, b,

of panel) due to pure edgewise compression (fig. 4)

No	Nb
 + N

c
 (fig. 4)

N s
	value of edgewise shear load (load per unit length of edges,

a and b, of panel)(fig. 3)

value of No at buckling
ocr	 N

o
b2

critical value of edgewise bending moment,
ocr 

value of N s at bucklingscr

2N
b

(figs. 3, 4)

u, v, w	 displacements of upper facing in x, y, and z directions,
respectively

u' , v' , w'	 displacements of lower facing in x, y, and z directions,
respectively

u vc , w	 displacements of core in x, y, and z directions,
c c	 c

m, n, p, q, i	 integers

configuration parameters -- alsoAmn , Bmn , C mn
, Dmn , Emn , Grnn
constants of integration from core equations

V	 elastic potential energy of panel with respect to undeflected
configuration of panel

a
No

respectively
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Nocr

E
IF +D'mn
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A ( 1 + A	 = 2 r)mn	 mn

2
W mn

1 +	 Amn W

I
T

T	 potential energy of system of edgewise loads with respect
to undeflected configuration of panel

Ew
2

5	

c (1-p.2)

2	 2m n-
MIT a 2 +

b2

mn	m
2 + n2 [32

mn
2 n

m	
2 13 2

A	 m + r

I

mn

Jrnn

2 [1,2 Jmn mn 
3213	

i3
2

1
2 2	 1 2

Wmn 	 n m rW (1 - —)r 
1 +	 A	 +	

W 1-g mn Amn (1 + Amn	 2 r)

_ rn 2 k (1 -
a
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ka
	critical load factor corresponding to loading defined by a,

N	 b
2

ocr

D T n2

k 2
	critical load factor corresponding to pure edgewise bend-

N
ocr

D
T 

w2

ks
	critical load factor corresponding to pure edgewise shear,

N b
2

scr

D T Tri-

P

	

	 elements of determinant
,p,q

t
3 

+ (t')
3

I
F	12

tt'	 t + t' 
2

,
IT 	 (c +t + t'	 2

I	 IF + IT

EI
D	 2

1-p.

EIT
D T

1-p.
2

2
ctt'	 TT	 E	 1
t + t' 

b
2
 1-4

2 Gxz

ing,
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Mathematical Analysis 

The sandwich panel with its relation to the coordinate axes x, y, and z
is shown in figure 1. The sandwich core is assumed to be in a state of
stress distribution that has been defined as antiplane stress.' A free
body diagram of an element of the core is shown in figure 2. The facings
are treated in accordance with isotropic thin plate theory.

Displacement functions which satisfy equilibrium of the core were de-
rived in detail in reference (2) and are as follows:

00	 00 3

c = / a	
z

[Ai= 7 + Bmn 2ti c 	 Fmn z + G
mni

> 
m=1 n=1

	

irxm	 nyry
X cos —a—,  sin b

CO

_v.>  7 b
nw

m=1 n=1

3	 2
[A zmn 6 + Bmn 2 + Dmn z + E mn

and

X

oo

1M TX	 niry

sin

(2)

(3)

sin

oo

cos
a

z 2
A	 — + B

mn 
z + C

mnimn 2
>w =

m 7rX	

nba	
sin

m=1. n=1

(26)
where the constants Amn , Cmn , Dmn , and Fmn are related by equation

of reference (2).

These displacement functions permit a derivation of the elastic energy,
V, of the simply supported sandwich panel associated with a small

7
—Antiplane stress is defined in reference (2).

( 1)

Report No. 1859	 -7-



N o aw
t (—)

2

ax

aw'
+ t' (—

ax

2
dx dy

t	 ti	 ( 1	 -

a q

0 0

deflected configuration of the panel. This elastic (potential) energy, V,
of the simply supported panel is given by equation (154) of reference (2).

The potential energy, T, of the edge loads with respect to the undeflected
configuration of the panel is derived in the same manner as in reference

(-2). The expression for normal edge load , No
	ay
(1 - —) (load per unit

width, b, of panel), makes possible a general solution for critical load of
a panel subjected to any combination of edgewise bending and compres-
sion. The numerical value of a defines the nature of the normal edgewise
loading. The shear edge load is denoted by N s (load per unit length of

edges a and b of the panel). a, N, and Ns
 arTiurther defined in figures

o
3 and 4. The core has been assumed to be incapable of carrying loads in
directions parallel to the facings, 8 therefore the edge loads must be
mathematically applied to the facings. The stresses in both facings will
be the same for facings of like materials. Thus the potential energy, T,
is given by the equation

2N
s 8w 8w 8w' 8w'

dx dy (4)
t + t'

t
ax	 ay 8x ay

8w8	 8w
where	 and 

ay refer to the slopes of the upper facing in the xz and yz
ex 8w'	 8w'

planes, respectively, and -- and 	 refer to the slopes of the lower8x
facing in the xz and yz planes, respectively.

Equation (4) is now written as

T = T
1 + T 2
	 (5)

8	 .–This follows directly from the assumption that the stress distribution in
the core is antiplane.
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(6)

(7)

= >
co >...,. cmn 

— cosmar 	 mwx	 nnysin
a	 bm=1 n=1

a w awc— -
ax 8x

z=

(8)

where

a
T1 . 2-

1	 N o	aw 2	 aw'	 2(1 - txr. )[t (—)	 + t' (—)	 1 dx dyt + ti	 b	 ax	 ax..,0 0

and

2Ns [ aw aw	 8w' aw'
t ax 	 t 	 dt + t'	 8x ay	 8x ay	 dx y

The integrated form of T1 is given in equation (166) of reference (2). The
integrated form of T 2 can be written by noting that

a

5 sin minx cos PI"(a dx = 0,a 
0

when m ± p is even, that

7. m rx	 'arm	 2a 	 m sin	 cos	 dx -a	 a	 w	 2	 2
m- p_

when m ± R. is odd, and from equations (1), (2), and (3) that

8wc8w
8y - ay

00	 00

=>  >_
z=0 m=1 n=1

nnCmn b sin
mirx	 Lacosa	 b (9)
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aw'
8w

z=c

Do

—2— + BAmn c
2

mn c
mw

= >	8x 8x Cmn ) a
m=1 n=1

mwx	 niryx cos — sin
a (10)

and

8w
c

8y	 ay

00

>
z =c m= n=1

c 2 nir—+ B c + C )Amn 2 mn	 mn b

m rrx	 nwy X sincosa

Therefore,

4N 00
mnpq T = -	 2°°	 .°° 200	 [Cmn Cpq t2	 t + t'

mnpq (m2 - p2 )(q2 -

22
+ (A — + Bmn c + Cnin )(Apqmn 2

where m p and n q are odd.

+B c + C )	 t' (12)(
Pq Pq

The complete expression for T can now be written as follows:
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For a condition of instability, the total energy of the system, V - T,
must have a stationary value with respect to any arbitrary change in con-
figuration of the system. The configuration of this system is defined by
the parameters Arnn , Bmn ,	 , Gmn . These parameters also serve

as constants of integration and were obtained from solutions of the core
equilibrium equations. 9 Thus, at the incipience of buckling, it is nec-
essary that

8V 	 aT - 0
DAmn DAmn

8V 
8B	 a8aBmn

= 0	 (15)

8V 	 aT 	 -0
8Cran acmn

av 	 a T 	 = 0
8Dmn 8Dmn

and

a y 	 DT 
aE	 aE

mnrnn
= 0	 (18)

8V 
8Gmn

8T 	 - o
aGmn

(19)

-The constants Amn , Bmn ,	 , Gmn are all identically zero, for the

loadings congraeieiririthis paper, prior to the incipience of buckling.

(14)

(16)

(17)
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Values of No and Ns which satisfy the linear, homogeneous set of equa-

tions (20), (21), (22), (23), (24), and (25) are called the buckling or
critical loads on the panel and are noted as N ocr and N	 , respectively.

SCT

If all of the configuration parameters, A ,B	 ,C	 ,D ,E ,
mn mn mn mn mn

and Gmn are identically equal to zero, the set of equations (20) through

(25) is satisfied, but this is a trivial solution associated with the non-
buckled state of the sandwich. The solution of practical interest is that
which satisfies the set of equations (20) through (25) in which at least
one of the configuration parameters A	 through Gmn 

assumes a value
mn

other than zero. Such a solution can17e obtained by equating to zero the
determinant of the coefficients of the parameters A

mn
, B	 C ,

mn
,
 mn

D 	 E 	 and Gmn in the set of equttions (20) through 25 	 Since
mn 

there is an infinite number of equations which constitute this set, the re-
sulting determinant is of order infinity unless a = 0 and Ns = 0, in which

case the determinant is of order 6.10 	cases in which a k 0 and/or
Ns / 0, a satisfactory approximate solution for determining combina-

tions of critical load can be obtained from a consideration of a finite sub-
set from the infinite set of equations (20) through (25).

In the analogous homogeneous plate analysis by Way (see reference (10),
a linear, homogeneous set consisting of 8 equations in 8 unknowns was
solved. To obtain the comparable mathematical accuracy for the sand-
wich panel (when W = 0), that is to say, the comparable degree of con-
vergence in the Rayleigh-Ritz process, necessitates the solution of a
set of 48 equations in 48 unknowns from the set of equations (20) through
(25). This is because 6 configuration parameters are required for each
separate mode of deflection defined by the separate terms in the Fourier
expansions in equations (1), (2), and (3). The reduction of this determi-
nant of order 48 to a form usable for design presents a formidable
problem.

In references (2) and (3), the further assumption that Ec = oo at this point

in the analysis introduced simplifications which permitted literal reduc-
tions of the characteristic determinant. In the aforementioned references, a

10
—The equation which defines the buckling load for pure edgewise com-

pression is given in equation (179) of reference (2). In the case of
Ec = oo, this equation reduces to equation (180) of reference (2).
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characteristic determinant of order 18 was reduced to a determinant of
order 3 by the expedient of adding multiples of rows and columns. The
resulting determinant of order 3 was seen to be identical to the deterrrai-

i 1nant of order 3 obtained in the analogous homogeneous plate analysis,—
except that instead of a common rigidity factor D, there appeared a
"modal rigidity" factor D' (see equation (30)). The phrase "modalmn

rigidity" introduced here seems to describe the fact that the simply sup-
ported sandwich panel exhibits a specific rigidity corresponding to each
mode defined by specific values of m and n. Thus, a characteristic de-
terminant of, say order 48, formed from the coefficients of Arian , Bmn,

, Gmn in equations (20) through (25), may be simplified 3-2- to a de-

terminant of order 8 by the simple expedient of replacing D in the anal-
ogous homogeneous plate analysis by D rin . Therefore, the equation

formed by equating to zero the determinant (of order 48) of the coeffi-
cients 

A 11 ,
	

A13,
	

A22, 	 A31,
	 BB	

B13,11'	 12'	 13'	 21'	 22'	 23'	 31'	 33' B 11 ,	 12'	 13' B21,
B ,

 
B
23' 

B
31' 

B
33' • 

.. , G
11' 

G
12	 3	 1	 22	 23	 31' 

G
1' 

G
2' 

G
' G ' G ' G 33 

in equations (20), (21), (22), (23), (24), and (25) can be reduced to the
formi3

11
—Compare equation (35) of reference (3) with the analogous solution for

the homogeneous plate given in reference (9), pp. 353, 354, and 355.
12
—It is again emphasized that this simplification is based on the assump-

tion that the transverse modulus of elasticity, E c , of the core is
infinite.	 —

13
—The corresponding equation, which represents the solution of the anal-

ogous homogeneous plate problem, is given in reference (10), pp.
A-134 and A-135.
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5
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0	 0	 0	 0	 . - — B .	 . C2

3325

where

= 0

(26)

0   

z
TT

mn 32/3

2a)
mn 	2

N	 b
2
 (1Dinn	 0 C r

RP2
2 (27)   

b2 
aB = N — —ocr 2 13

w
(28)
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Q = N	
b2

scr	 7r2

E
I
T

(29)

D I 	-mn
1-p.

2
I	 +
F

W .T,2
m n

n
2
m

2
rW (1

1	 2
- 7)

1 +	 +

f3
2 Amn

W 1-p.,
(30)Amn (1 + Amn

0
2

r
2	 )

nl,mn = m
2 

+ n 2
13

2 (31)

2	 n 2 p2
(32)A	 = m +mn	 r

t
3 

+ (t')3 (33)IF - 12

2tt'	 t + t',
(34)IT 	t + tI	

(c +	 )2

Gxz

E	 1

(35)

(36)

r -
G

yz

ctt'	 -rr
2

W =
t + t'	 b 2	 1-11 2	 Gxz
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and

gg_ a
(37)

A further assumption concerning the bending stiffness of the individual facings
about their own neutral axes is now made to enable further reduction of the de-
terminant in equation (26). This assumption is that I F = O. The division of

each element of this determinant by the factor D T gives

11 . kaf 1	 0	 0 0	 0	 0

• 4kf
1	W12	 . k

a
f

2 . 
9 k

s
0 4

5 s
•

0	 0

0	 . k
a

f
2	4

. W13
	

0	 . — k	 0	 0	 05 s

4
0	 . — k	 09 s

•

1	 •

W
21 

. k
a

f
3	

0	 0	 0

4
9

ks 0	
• 4	 j	 4. 5 kg . ka f3 . W 22	 . k f	 .	 k

a 4	 s
36
25 s

4
0	 - ks	 0	 0

	

kf
4 . ''23	

0

0	 0	 0	 04 ,
l`• j s	 0

•
W

31	 •	 0

360	 0	 0	 0	 0	 0	 W3325 s

= 0

(38)
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TD =

f 1

f
2

f
3

f 4 =

f 5 =

f 6

k
a -

k
s

11
2

Jmn	 2-
-) (39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

3zp

1	 a
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a 

(1

13
2

18	 13

3	 a
50	 13

2 a
9 p

6	 a
- 25

1	 a
-	 3-

27 a
- 50	 11

2
N	 bocr

D T Tr
2

N	 b
2

scr

D T

EI
T
2

Report No. 1859	 -24-



and

1

ran.	 2	 1 2
W 

t.
mn	 n

2
m

2
rW (1 - –

r7	
)

1 +	 A	 +

The determinant in equation (38) can be further reduced by addition of
rows and columns 1A-- as described in the following successive operations:

C( 2 ) = c( 1 ) 4. 36 k s	 (1)

5	 5	 25 Nif
33

 C8

The resulting determinant of order 8 may be expanded by row 8, that is

by R(2) leaving a determinant of order 7, which is denoted by superscript
8

(3). Now,

(4)	 (3)	 4 
k

s	 (3)
C 5 = C 5 - –5	

C
7

31

(
Expansion of this determinant of order 7 by R 7

4) 
leaves a determinant of

order 6, which is denoted by superscript (5). Now,

14
—R signifies "row" and C signifies "column." The numerical subscript

denotes the particular row or column involved. The numerical
superscript denotes a specific determinant formed by adding rows

and columns. Thus R(2) denotes row 3 of a second determinant
3

formed from additions of rows and/or columns.

(49)

W -p mn	 Amn (1 + Amn –2- 1 11
 r)

(50)

(51)
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(6)	 (5) + —4 ks	 (5)C 2 = C	 C2	 5 W
23 

6

and

(6)	 (5)	 ka f4	 (5)
C

5
 = C	 -	 C

65	
W23

Expansion of this determinant of order 6 by R (6) 
leaves a determinant of

order 5, which is denoted by superscript (7). Now,

C (8)
2 = 

C (7)
2

4
- 9

s	 (7)
C

Nif	 4
21

(52)

and (53)

(8)	 (7)	
k
a f3 c(7)

C 5 = C 5 -
W

21	
4

(Expansion of this determinant of order 5 by R 48) leaves a determinant of

order 4, which is denoted by superscript (9). Now,

=C
(10)	 (9)	

k
a f2 

c
(9)C	 -2	 2	 W

13	
3

and

c(lO) ,(9)	 4 k	 r (9) I
4	 '4	 -5- W	 —3

13

(Expansion of this determinant of order 4 by R 101  leaves a determinant of
3

order 3, which is denoted by superscript (11). Now,

(54)
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k
a f l c (11)(12) _ ,(11)

'2 '2	
W11 

1

and
	

(55)

(12)	 (ii)	 4 k
s	 (11)

C	 = C	 +	 C3	 3	 9 Nif
11

Expansion of this determinant of order 3 by R
12)

leaves a determinant of
2

order 2. Thus, equation (38) can now be written as follows:

r-
2	 2

16	 16 	 2	
f 2	f1	 2

W12 - ( 25W	 + 8 11-1, ) k s	 ) ka
23	 21	 13	 11   

1296

'22 - (
625W

33   

2	 2
16	 16	 16

1 4 	 f3
) k 2 - (— +

25W
13
	s 

25'1' 31
	8 Hi

ll	 23	 2 1   

- k
2 

k
2
s

4 14	 4 1 2	 4 1 3	 4 
f 

I
5 W

23 
-	 7—

13	 2 1	 11
= 0 .	 (56)

Equation (56) was used to obtain the data from which the design curves
(figs. 6 to 32 inclusive) were constructed.

Results and Discussion

The magnitudes of arbitrary combinations of edgewise bending, compres-
sion, and shear loads which will cause a simply supported rectangular
sandwich panel to buckle may be found from numerical solution of the
following equation:
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P
1,1	

P
1,2 1,03

	

P2,1	 P2,2	 .	 P2.03

= 0	 (57)

	

P	 Poo, 2	 .	 P00,0000,1

where the elements P	 are the coefficients of the configuration
13 , q 

parameters A	 B	 in equations (20), (21), (22), (23),nn	 mn' " • , Grrin
(24), and (25).

An approximation to the buckling criteria can be obtained from consider-
ation of a minor of finite order from the determinant of infinite order in
equation (57). Since the problem at hand involves a layered system in
which 6 parameters are necessary to satisfy the equilibrium equations
for each specific mode of panel configuration (each value of m and/or n
in equations (20) through (25) defines a separate mode), the approximat-
ing determinant (minor of determinant in equation (57)) must be selected
in multiples of 6. Thus, a first approximation 15 can be obtained by
equating to zero the determinant of order 6 with elements formed from
the coefficients of All' B11'	 ' Gll 

in equations (20) through (25). A

second (more accurate) approximation can be obtained by equating to
zero the determinant of order 24 with elements formed from the coeffi-
cients of AB	 , G	 A	 B	 , G	 A	 B	 , G

	

11 	 11 	 11 	 12 	 12 	 12 	 21 	 21 *	 21'
and A22 , B 22 ,	 • , G 22 . 

A third approximation (still more accurate)

can be obtained by equating to zero the determinant of order 54 with ele-
ments formed from the coefficients of All' 

B11'	 • 
, G11' Al2' B 12'

. , G13 , A21, B21,	 , G	 A22, B ,
13'	 21'	 21' ...	 21'	 22'	 22	

...

G	 A	 B	 G	 A	 B31,	 , G	 A	 B	 . . , G
32

,
22'	 23' 	 23'	 23'	 31'	 31' •	 31' 	 32'	 32'

15
—This approximation is equation (179) of reference (2). Note that equa-

tion (179) of reference (2) is exact for pure edgewise compression.
For other more general types of loading, this approximation will
often be far in error.

, G
12

, A
13

, B
13

, .
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• 36
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25

0	 .	 0
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25	 23

• 4	 •
'

0	 .

and A 33 , B 33 ,	 , G 33 . The accuracy of any approximation can be esti-

mated by determining a result from a larger determinant following the scheme
of order of approximation discussed above.

The assumption that the transverse modulus of elasticity of the core is infi-
nite,-16 that is, E

c 
= oo, introduces welcome simplifications in equation (57)

and in all approximate forms of equation (57). In the case of E c = on, the

equation formed from the "third approximation" referred to above is as
follows:

16—See page 77 of reference (2).
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where C2mn, B , and Q are defined in equations (27), (28), and (29).

The assumed configuration involved in this approximation is sufficiently
"flexible" to assure convergence adequate for design purposes for certain

a
values of — and W. To obtain more accurate approximations (for any

17)
avalues of	 and W) to the buckling loads, and hence to estimate the ac -

curacy of any given calculation, requires consideration of a larger num-
ber of equations from the infinite number given in equations (20) through
(25). When the load on the panel is primarily bending, the accuracy of
any approximation can be estimated from a comparison with the values for
critical load obtained for pure edgewise bending in reference (2), figure
6, and reference (3), figures 4, 5, and 6. When the load on the panel is
primarily shear, the accuracy in any approximation often cannot be esti-
mated so readily. However, for panels with isotropic cores (r = 1.0),
accuracy can be estimated for edgewise loading which is primarily shear
from results obtained in reference (4).

The numerical results presented as design curves in this report were ob-
tained from a modified form of equation (58). Specifically, the configura-
tion defined by m = 3 and n = 2 was deleted from equation (58) to give
equation (26). The assumption that the bending rigidities of the individual
facings about their own middle planes is negligible permits equation (26)
to be simplifiedil to equation (56). Equation (56) was used to prepare all
design curves in this paper. For r = 1.0, the curves are independent of
Poisson's ratio, µ, of the facings. In the curves for r = 0.4 and for r =
2.5, p. was taken equal to 1/3..1'6 The results of several comparison cal-
culations made for both p. = 1/4 and for = 1/3 produced no discernible
differences in the design curves. Some of the design curves are shown
as solid lines and others are shown as dashed lines. The solid lines in-
dicate computed data that are estimated to be accurate to within 10 per-
cent of the limit value that could be approached by using additional equa-
tions and configuration parameters. The dashed lines indicate computed
data that are estimated to be more than 10 percent too high with respect
to limit values. These estimates are based on studies of the more ac-
curate data in references (2) and (3) for the critical load associated with

—17Details of this simplification are given in the section entitled
Mathematical Analysis.

18
= 1/ 3 was used for computation of numerical results in references

(3) and (5) when r k 1.0.
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pure edgewise bending and in reference (4) for the critical load associ-
ated with pure edgewise shear. Convergence of the numerical results
is best when /3 does not vary significantly from unity and when W is
small. For example, the convergence accuracy of the results for the
square panel 13 = 1, r = 2.5, and W 5 0.150 is believed closer than 2 per-
cent. An idea of the behavior of the convergence can be obtained by
studying the pattern of solid to dashed lines that occurs in figures 5 to
32 inclusive. The dashed lines, which represent data with convergence
accuracy of less than 10 percent, are presented for two reasons. First,
these data will be of interest to the analyst who wishes to compare with
results obtained from consideration of a larger number of configuration
parameters, and who is thus able to estimate rapidity of convergence.
Second, in the absence of better results, these data are believed to be
of practical use to the designer. The designer is perhaps aided by the
knowledge that convergence errors always cause the prediction of criti-
cal load to be too high.

Excellent discussions of convergence in the Rayleigh-Ritz process as ap-
plied to analyses of homogeneous plates are presented in references 1,
6, 7, 8, and 9.

Use of Design Curves 

The design curves in this paper are presented by means of interaction
curves, that is, curves that can be used to obtain the value of Nocr

(the maximum value of the unit loading on the panel associated with edge-
wise bending) required to produce buckling when a given value of Nscr 20

(the maximum value of the unit loading on the panel associated with edge-
wise shear) is also present.

The notation used with the design curves is presented in figure 5.

19

	

—The edgewise buckling moment, M , corresponding to Nocr 	 be
ocr	 ocr

computed from the equation
2

Mocr = N
ocr —6

20
—The edgewise shear force on a panel edge may be computed by multi-

plying Nscr by the length of panel edge.
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First, calculate the ratio, p = 
b
_
a
, of the panel. The curves in this report

are for use with panel ratios —

<
0.4

<
=	 = 2.0

Calculate the ratio, r =
Gyz

Select the proper curve sheet that corresponds to the closest values of
13 and r. Now, calculate the value of W from the equation

ctt'	 I2
	

E
	

1
W =

t + ti 
b 2 1-11

2 G
xz

On the curve sheet that has been selected, identify which one of the fam-
ily of curves most closely corresponds to the value of W that has just
been computed. This curve will now provide numerical values of criti-
cal load factors from which buckling loads may be found. Thus, if a de-
signer knows the magnitude of edgewise bending which a panel must
carry, he may calculate the buckling factor k 2 from the equation

b
2

ocr= 
Tr

2
D T

where N	 may be obtained from the edgewise moment, 	 by the
ocr	 Mocr'

equation

= —Nocr 
b 2

	ocr2 
M

Knowing the factor, k 2 , it is possible to determine the factor k s from

the curve previously selected. The value of the unit edgewise shear load,
which together with the value of N	 will cause the panel to

Nscr'	 OC r

G
xz
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buckle, may now be calculated from the equation

Nscr =

w
2

D T

b
2

1

kscr

The curves are believed to be prepared in such a manner as to facilitate
interpolative procedures that will occur to the designer.
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