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Abstract ap 
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The accurate simulation of snowpack deposition and ablation beneath forested 

areas is confounded by the fact that the vegetation canopy strongly affects the snow 

surface energy balance. The canopy alters the radiation balance of the snowcover, and 

reduces the wind speed at the snow surface. Data collected as part of the BOREAS 

experiment are used to analyze the effects of a variety of forest canopies on the climate at 

the snow surface. Simple algorithms are developed and used to adjust climate data 

collected above forest canopies to the snow surface. A 2-layer coupled energy- and 

mass-balance snowmelt model is used to simulate the deposition and ablation of the 

snowpack at five forested sites within the Canadian boreal forest for the 1994-1995 snow 

season. Results of the snowcover simulations indicate that the net snowcover energy 

balance remains close to zero for the winter months, but exhibits a sharp increase in the 

spring months. The rapid energy gain in the spring is strongly controlled by canopy 

cover, and is dominated by net radiation fluxes, with minor contributions from sensible, 

latent, soil, and advected energy fluxes. Net snowcover irradiance dominates during the 

spring months due to increased solar intensity and longer day lengths, coupled with 

increased radiation transmission through canopies at high sun angles, and reduced 
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snowcover albedo resulting from the deposition of fine organic debris. Turbulent 

(sensible and latent) energy fluxes comprise a relatively minor portion of the net 

snowcover energy exchange, indicating that the sub-canopy snowcover is relatively 

insensitive to the meteorological parameters controlling these fluxes. The low thermal 

conductivity of organic-rich boreal soils must be considered for studies focusing on 

snowcover development when soil heat flux comprises a large portion of the snowcover 

energy balance. Model outputs at all sites generally show good agreement with measured 

snow depths, indicating that the techniques used in these investigations accurately 

simulate both the deposition and ablation of seasonal snowcovers. Results indicate that 

snowcovers in the boreal environment may be more sensitive to land-use transitions, 

rather than climate shifts, due to the strong control exerted by vegetation canopies on 

radiation transfer processes. The results also suggest that simple canopy adjustment 

algorithms may be effectively applied to spatially distributed snowcover simulations. 

More data is required to evaluate the accuracy of these methods for computing energy 

transfer within canopies having significantly different structures than the sites used in 

this study. 
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Sg above-canopy global solar radiation (W m ). 
S,, snowcover net solar radiation (W m-2). 
S,,f sub-canopy snowcover net solar radiation (W m ). 

Ty, air temperature (K or °C). 
Tnj. sub-canopy air temperature (K or °C). 
T, canopy temperature (K or °C). 
Tg soil temperature (K or °C). 
T,,,, precipitation temperature (K or °C). 
T, snow surface temperature (K or °C). 
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Seasonal Snowcover Dynamics Beneath Boreal Forest Canopies 

Introduction 

The boreal forest is the largest terrestrial biome, covering approximately 15% of 

the surface of the Earth (Pomeroy and Dion, 1996). Recent studies indicate that climate 

changes occurring as a result of increased atmospheric CO, will be most pronounced at 

higher latitudes (45° 65° N), leading to warming and drying of the boreal regions 

(Schlesinger and Mitchell, 1987, Bonan et al., 1992). There is evidence that these 

regions currently function as a sink for carbon released by fossil fuel combustion and 

land-use changes (Tans et al., 1990), but climate change may substantially alter carbon 

dynamics in the boreal regions (Sellers et al., 1995). The seasonal onset of carbon 

assimilation and soil respiration in the boreal forest is strongly controlled by the timing 

of snowpack ablation and subsequent soil warming (Sellers et al., 1995). An 

understanding of the geophysical processes controlling snowcover deposition and 

ablation is therefore critical to the quantification of water and carbon dynamics within 

the boreal ecosystem. 

The Boreal Ecosystem-Atmosphere Study (BOREAS) was undertaken in 1993, as 

a multi-disciplinary, international field investigation to improve the scientific 

understanding of the mass and energy transfer processes between boreal forests and the 

lower atmosphere (BOREAS Explan, 1995). An associated objective of the project is to 

improve process models describing these dynamics, and to develop techniques for 

applying the models over large spatial scales. These developments will ultimately lead to 

improved land surface parameterizations (LSPs), which will be used to drive atmospheric 

general circulation models (AGCMs), in order to improve global climate change analyses 

(Sellers et al., 1997). 

Seasonal snowcover dynamics respond to climate conditions at the snow surface, 

which are locally controlled by topographic and vegetation variations. Topographic 

relief is relatively subtle in many boreal regions, therefore climate conditions at the snow 
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surface are primarily controlled by variations in the overlying vegetation canopy. The 

accurate adjustment of climate data collected at open sites for the presence of various 

vegetation canopies is therefore critical for the numerical modeling of snowcover 

processes in the boreal environment, to understand the seasonal dynamics of mass- and 

energy-transfer in this system. 

This study approaches the problem of simulating snowcover processes beneath 

forest canopies by developing a series of simple canopy adjustment algorithms which can 

be applied to time-series meteorological data collected above forest canopies, or at open 

sites. The algorithms are designed to require a minimum of commonly available spatial 

data products, so that the techniques may be readily applied in areas where detailed 

canopy measurements are not available. The algorithms are tested in conjunction with a 

2-layer mass- and energy-balance snowmelt model (SNOBAL) to simulate the 

development and ablation of seasonal snowcovers beneath a range of forest canopies. 

The resulting techniques represent one approach which may ultimately be used to 

simulate snowcover processes within heterogeneous forested regions. This approach may 

therefore help to assess the potential effects of altered land-use patterns and climate 

conditions on hydrologic processes and ecosystem dynamics. 
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Objectives 

The primary goal of this investigation is to accurately simulate the energy- and 

mass -balance of the seasonal snowcover over an entire snow season at several locations 

beneath a range of boreal forest canopies. The specific objectives of this investigation 

are to: 

1.) Use above- and below-canopy climate data from the BOREAS study to analyze how 

forest canopies modify climate conditions at the snow surface, relative to above-canopy 

climate conditions. 

2.) Develop a series of simple algorithms based on the analyses of canopy effects to 

adjust climate conditions measured above forest canopies, or in open areas to conditions 

at the forest floor. 

3.) Use canopy-corrected meteorological data to drive a 2-layer mass- and energy-

balance snowmelt model (SNOBAL) developed by Marks, (1988), to simulate the 

development and ablation of the seasonal snowpack beneath boreal forest canopies. 

4.) Validate the model results using both automatically and manually collected snow 

depth measurements. 

5.) Develop an understanding of the sub-canopy snowcover dynamics within the boreal 

forest, based on modeled and measured snowpack properties. 

6.) Determine the data required to spatially distribute the canopy adjustment algorithms, 

and identify potential problems associated with using simple canopy adjustment over 

heterogeneous areas. 
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Background 

Canon)/ Effects 

The presence of a forest canopy overlying a seasonal snowcover alters the 

processes of mass and energy transfer and snowpack properties relative to open sites 

(Figure 1). During snowpack deposition, the canopy intercepts a portion of the incoming 

snow (Schmidt and Gluns, 1991; Sturm, 1992; Troendle and King, 1985), which later 

may fall to the ground, increasing the snowpack density, or it may sublimate, melt or 

evaporate from the canopy depending on climate conditions (Golding and Swanson, 

1986; Lundberg and Halldin, 1994). 

Forest canopies strongly influence the snowcover energy balance, by absorbing 

and reflecting incoming solar radiation (0.3 2.8 !..tm), and by altering the emission of 

thermal radiation (2.8 1001,m) (Male and Granger, 1981; Lafleur and Adams, 1986). 

The relative importance of shading and emissivity alteration is a function of the canopy 

height and density, and of the optical transmissivity of the individual trees. The forest 

canopy is also a source of fine organic debris which contaminates the snowcover, thereby 

decreasing the albedo relative to less contaminated open areas (Pomeroy and Dion, 

1996). Previous studies (Marks and Dozier, 1992; Male and Granger, 1981), noted that 

net radiation is the most important component controlling snowpack ablation, therefore 

the accurate quantification of canopy effects on radiative transfer processes are critical to 

modeling snowcover processes beneath forest canopies. 

Forest canopies reduce wind velocities relative to above-canopy and open sites 

(Jones, 1992). Air temperature and vapor pressure beneath a forest canopy can also vary 

relative to open, or above-canopy locations. A forest cover shelters the snowcover from 

wind, and alters the temperature and humidity gradients, greatly reducing the efficiency 

of turbulent energy transfer (Berris and Harr, 1987; Ohta et al., 1993, Marks et al., in 
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press). It is important to consider such alterations of micrometeorological conditions 

beneath forest canopies when simulating snowcover dynamics in forested systems. 

Prior Work 

A 50-day snowcover ablation period was successfully simulated beneath a variety 

of boreal forest canopies using the multi-layer mass and energy balance snowmelt model 

SNTHERM (Jordan, 1991) driven with data collected during the BOREAS experiment 

(Hardy et al., 1997). The solar radiation above the canopies was adjusted to the snow 

surface using a hybrid geometric-optical and radiative transfer (GORT) model (Ni et al., 

1997). The GORT model treats the forest canopy as an assemblage of randomly 

distributed ellipsoidal crowns, and is parameterized by a horizontal to vertical crown 

ratio, foliage area volume density (FAVD), stem density, and crown depth. The model 

explicitly treats the transmission of beam radiation through canopy gaps, diffuse 

radiation through gaps, and radiation scattered by the canopy elements to provide 

accurate estimates of radiation within discontinuous canopies. The GORT model also 

accounts for the optical anisotropy of tree crowns arising from the horizontal branch 

whorls, to accurately simulate radiation transfer at all solar elevation angles. 

In the simulations completed by Hardy et al. (1997), between- and within-crown 

openness factors determined by GORT were summed to estimate the proportion of 

hemispherical area composed of sky and canopy above the snow surface. Thermal 

radiation at the snow surface was then determined from measured open values, and 

canopy emission values calculated from measured within canopy air temperature, each 

adjusted by the appropriate proportion of canopy and sky. 

Results from the SNTHERM simulations agreed with observations that complete 

ablation occurs first in open areas, followed by areas beneath individual trees, and finally 

by small gaps between trees. During the ablation period, net radiation was found to be 

the primary energy balance component, with counteracting sensible and latent energy 

fluxes similar in magnitude, but opposite in direction. A parametric study of snowcover 

ablation beneath boreal conifer forest canopies of varying densities revealed that net 

radiation dominates the energy balance at all canopy densities (Davis et al., 1997). 
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However, the timing of the radiation shift from negative to positive fluxes was strongly 

dependent on the canopy characteristics. Consequently, modeled melt rates varied by a 

factor of five between the minimum and maximum density classes, when using the 

median tree height. A delay of approximately 10 days in the onset of seasonal snowmelt 

between the northern and southern BOREAS study areas was both observed and 

simulated using SNTHERM. 

SNOBAL was successfully used to simulate the ablation of seasonal snowcovers 

in a variety of alpine environments (Marks, 1988; Susong et al., 1996; Garen and Marks, 

1996). SNOBAL also successfully simulated both the development and ablation of 

snowcovers in both open and forested areas under a wide range of climate conditions 

(Marks et al., in press, Risley et al., 1997). The simulation of snowcover development is 

advantageous because no knowledge of snowpack properties are required to initialize the 

model run; snowcover properties are computed by the model from standard 

meteorological data. 

Several key differences exist between the modeling approach presented herein, 

and previous modeling investigations in the boreal forest. These investigations focus on 

the dynamics of snowcovers over an entire season, rather than on solely the ablation 

period. Snowcover processes are investigated beneath a variety of canopy structures, 

ranging from deciduous, through mixed deciduous/conifer, to dense conifer. 

Meteorological adjustments for the forest canopies are very simple, spatially distributable 

techniques, which are parameterized with commonly available or easily derivable spatial 

data, rather than specialized empirical measurements. SNOBAL is a relatively simple 2

layer snowcover model, which can be driven using commonly available climate data. 

Although these techniques may not be as accurate as the more complex radiative transfer 

and snowcover models used in other studies, the ability to easily simulate an entire 

season beneath a variety of land cover types, represents a valuable step towards assessing 

the hydrologic effects of land use and climate change on forested systems. 
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Approach 

Seasonal mass and energy-balance snowcover simulations beneath boreal forest 

canopies with a range of structures were completed using the following procedure: 

1.) Identify point locations at which to complete simulations. 

2.) Identify and evaluate the data to be used for the development of canopy adjustments 

algorithms, model forcing and validation. 

3.) Use basic environmental physics theory to develop a series of simple canopy 

correction algorithms that can be applied to canopies of differing structures. 

4.) Adjust the continuous time-series meteorological data records using both the canopy 

algorithms, and existing numerical models. 

5.) Simulate the mass- and energy-balance dynamics of the seasonal snowcover at each 

site using the numerical model SNOBAL developed by Marks (1988) and later improved 

and refined by Marks and Dozier (1992), Garen and Marks (1996), Susong et al., (1996), 

and Marks et al., (in press). 

Site Descriptions 

The BOREAS study region is an area 1000 km x 1000 km in size, which 

comprises most of Saskatchewan and Manitoba (Figure 2). This region contains a 

northern and southern study area (NSA and SSA) which are 100 km x 80 km and 130 km 

x 90 km, respectively. The NSA is close to the northern limit of the closed crown boreal 

forest, and is typical of extreme northern boreal forests. The forest is predominantly 

composed of Black Spruce, with some stands of Jack Pine, and some stands of mixed 

deciduous and conifer species. The SSA is located approximately 780 km south-west of 

the NSA, near the southern extent of the boreal forest. The SSA is mainly composed of 

Aspen groves, Black Spruce and Jack Pine stands, open meadows and grasslands. 
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Figure 2. Location of the BOREAS study region. 

Two sites in the NSA, and three sites in the SSA were selected for snowcover 

mass and energy balance simulations. The locations were chosen to cover the range of 

canopy characteristics (i.e deciduous through dense conifer) found in the boreal regions, 

and upon the completeness and availability of meteorological data for both model forcing 

and validation. In the NSA, sites beneath a mature Jack Pine (NSA-OJP) and a mixed 

Spruce / Poplar (NSA-YTH) canopy were selected. In the SSA, sites located beneath 

mature Aspen (SSA -OA), mature Jack Pine (SSA-OJP) and mature Black Spruce (SSA

OBS) forest canopies were selected. Each site is flat, with a laterally continuous (up to 

-11(m) and homogeneous canopy with respect to species composition, stand age, and 

stem density. Site locations and elevations are listed in Table 1. Site locations within the 

NSA and SSA are shown in Figures 3 and 4. 

Data Collection 

Climate data records within the BOREAS study region consist of continuous 

measurements collected both above and below a range of forest canopy covers. In 

addition, climate and snowcover conditions beneath several canopy types were monitored 

during several week long intensive field campaigns (IFCs). These unique, vertically 
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Table 1. Site Locations 

Site Latitude Longitude Elevation (m) 

SSA 

OJP 53.916° N 104.69° W 511 

OA 53.629° N 106.20° W 587 

OBS 53.985° N 105.12° W 629 

NSA 

OJP 55.927° N 98.62° W 282 

YTH 55.750° N 97.87° W 221 
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Figure 4. Location of Southern Study Area (SSA) sites. 

distributed and temporally extensive data records permit both the derivation and 

validation of canopy adjustment algorithms, and provide the necessary forcing and 

validation data for mass- and energy-balance snowcover simulations in the boreal 

environment. 

Continuous meteorological data for the NSA-YTH, NSA-OJP, SSA-OJP, and 

SSA -OA sites were obtained from automated meteorological stations (AMS) maintained 

by the Saskatchewan Research Council (SRC) to support BOREAS investigations 

(Shewchuk, 1997). At each site, the suite of parameters listed in Table 2 were recorded 

as 15 minute averages of sensor scans completed every 5 seconds. Above-canopy sensor 

suites are located from 3 to 6 m above the top of the canopy, and below-canopy 

instrumentation is located at 2 m above ground level. Although no continuously 

monitored sensors were installed at the SSA-OBS stand, this location was included in the 

analyses, due to the large proportion of area represented by this canopy type, and 

availability of sub-canopy radiation data. Meteorological data for SSA-OBS was 

substituted from the nearest AMS, located at the SSA-OJP site, approximately 30 km to 

the east, for all calculations and model runs. 



Table 2. BOREAS Instrumentation Summary 

Parameter Sensor Location Sites 

Forcing Data 

Net Solar Radiation above-canopy 

Diffuse Solar above-canopy 
Radiation 

Incoming Thermal above-canopy 
Radiation 
Canopy Temperature above-canopy 

Wind Velocity 

Relative Humidity 

Air Temperature 

Soil Temperature 

Precipitation 

above-canopy 

above-canopy 

within-canopy 

0.5 m depth 

small clearing 

NSA: OJP, YTH 
SSA: OJP, OA 
NSA: OJP 
SSA: OJP, OA 

NSA: OJP 
SSA: OJP, OA 
NSA: OJP, YTH 
SSA: OJP. OA 
NSA: OJP, YTH 
SSA: OJP, OA 
NSA: OJP, YTH 
SSA: OJP, OA 

NSA: OJP, YTH 
SSA: OJP, OA 
NSA: OJP, YTH 
SSA: OJP, OA 
NSA: OJP, YTH 
SSA: OJP, OA 

Period of 
Record 
Resolution 

continuous 
15 minute 
continuous 
15 minute 

continuous 
15 minute 
continuous 
15 minute 
continuous 
15 minute 
continuous 
15 minute 

continuous 
15 minute 
continuous 
15 minute 
continuous 
15 minute 

Manufacturer 
Model 

Eppley PSP 
Precision Spectral Pyranometer 
Eppley PSP Precision Spectral 
Pyranometer with 
Eppley Shadow Band Stand 
Eppley PIR 
Precision Infrared Radiometer 
Everest Interscience 
4000AL Infrared Thermometer 
R.M. Young 
05103-10 Wind Monitor 
Campbell Scientific 
HMP35CF Temperature/Relative 
Humidity Probe 
Campbell Scientific 
107F Temperature Probe 
Campbell Scientific 
107BAM Temperature Probe 
Belfort Instrument Company 
Rainfall Transmitter 



Table 2. BOREAS Instrumentation Summary (continued) 

Parameter Sensor Location Sites Period of Record Manufacturer 
Resolution Model 

Validation Data 

Snow Depth small clearing NSA: OJP, YTH continuous Campbell Scientific 
SSA: OJP, OA 15 minute UDG01 Ultrasonic Depth Gauge 

Snow Depth open and below *SSA: Aspen, Black bi-monthly ESC-30 snow sampler 
canopy Spruce, Jack Pine 

Net Solar Radiation below-canopy SSA: OJP 2/7 2/11, 1994 10 Eppley PSPs 
10 minute 

SSA: OBS 2/28 3/4, 1996 
1 minute 

SSA: OA 3/4 3/8, 1996 
1 minute 

Incoming Thermal below-canopy SSA: OBS 2/28 3/4, 1996 2 Eppley PIRs 
Radiation 1 minute 

SSA: OA 3/4 3/8, 1996 
1 minute 

Wind Velocity below-canopy SSA: OJP 2/7 2/11, 1994 R.M. Young 
10 minute 05103-10 Wind Monitor 

*NOTE: Manual snow depth measurements were located in areas deemed to be representative of typical land covers, and were not 
co-located at sites where continuous meteorological parameters were recorded. 
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Sub-canopy solar radiation measurements were made during winter IFCs 

completed in 1994 and 1996, according to procedures described in detail by Hardy et al., 

(1997). An array of 10 Eppley pyranometers were randomly located beneath the forest 

canopies, so that some radiometers were adjacent to stems, and others were located in 

canopy gaps, to achieve a spatially integrated measure of global solar radiation at the 

snow surface. Measurements were made over periods of three to four clear days, with 

radiometers randomly relocated once a day. Ten minute averages of 1 minute readings 

were recorded at SSA-OJP, and 1 minute readings were recorded at SSA -OA and SSA

OBS. Measurements at SSA-OJP, SSA -OA, and SSA-OBS were completed over 

February 7-11, 1994, March 4-8, 1996, and February 28-March 3, 1996, respectively. 

During these time periods, the maximum solar elevation angle at the sites was 

approximately 22° for SSA-OJP, and 29° for SSA -OA, and SSA-OBS. 

Measurements of sub-canopy thermal radiation were completed using two Eppley 

pyrgeometers, during the 1996 IFCs at the SSA -OA and SSA-OBS sites. In addition, at 

SSA -OA, two measurements of tree trunk temperatures near the snow surface, and one 

measurement of the snow surface temperature was recorded using an infrared 

thermometer. At SSA-OBS, 2 measurements of canopy temperature, and 1 measurement 

of trunk temperature was completed using the infrared sensors. At the SSA-OJP site, 

sub-canopy wind speed measurements were completed with an R.M. Young wind 

monitor located 2 m above the snow surface concurrently with the collection of solar 

radiation data. Manual snow course depth, density, and SWE measurements were also 

completed within 4 land cover types (open, Aspen, Black Spruce, and Jack Pine) in the 

SSA, and 1 land cover type (Jack Pine/Poplar) in the NSA. Each snow course consisted 

of 5 stations approximately 100 m apart, where snow measurements were repeated near 

the 1st and 15th of the winter and spring months. All density measurements were 

completed with a large diameter ESC-30 snow sampler with a 30 cm2 cutter area, and a 

spring balance. The snow depths at each site were recorded to the nearest 0.5 cm, and 

the 5 sites averaged to obtain a mean snow depth for each land cover type. 
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Development of Canopy Adjustment Algorithms 

SNOBAL numerically describes the physics of energy transfer at the snow 

surface, given meteorological measurements taken at, or near the snow surface. The 

presence of a vegetation canopy over a snow surface alters the climate conditions at the 

snow surface relative to open, or above-canopy locations as described above (Figure 1). 

The presence of a forest canopy necessitates the modification of the raw meteorological 

data streams required to drive SNOBAL. The above-canopy solar radiation data must be 

adjusted to account for shading of the snow surface by the vegetation canopy, and for 

snowcover albedo, to obtain the net solar radiation absorbed by the snowpack. The 

above-canopy thermal radiation data must also be adjusted to account for the 

modification of incoming thermal radiation by the forest canopy. Windspeeds measured 

above the forest canopy must be modified to account for the sheltered conditions present 

at the forest floor, in order to accurately calculate the turbulent energy fluxes. Basic 

environmental physics theory is combined with measurements taken above and below the 

various canopy covers to analyze how forest canopies alter climate conditions at the 

snow surface, and provide information for the development of simple algorithms to 

adjust climate data for the presence of variable canopy covers. 

Net Solar Radiation 

The transmission of solar radiation through a vegetation canopy is dependent on 

the relative proportions of the beam and diffuse components, spectral characteristics of 

incoming radiation, and the physical structure and reflectance of the vegetation (Monteith 

and Unsworth, 1990). The adjustment algorithms for solar radiation use basic canopy 

characteristics to calculate the contribution of the different radiation components. 

Transmission through individual canopy elements (e.g. gaps, crowns, stems), and spectral 

properties of transmitted solar radiation are not explicitly considered, in order to limit 

both the driving and validation data required for the algorithms. 
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Theory 

Global solar radiation (SR) is composed of a diffuse (S,), or non-directional 

component, and a collimated, or beam (S,,) component, expressed as: 

Sg = Sd ± Sb [1] 

The diffuse radiation at the snow surface is expressed: 

Sd,f =T d X Sd [2] 

where: 
Sdf is the diffuse radiation at the snow surface (W m-2), 
Sd is the diffuse radiation at the top of the canopy (W m-2), and 
td is the optical transmissivity of the canopy to diffuse radiation (dimensionless). 

This equation assumes that all diffuse radiation at the snow surface originates as diffuse 

radiation at the top of the canopy. However, a proportion of the diffuse radiation at the 

snow surface may result from forward scattering of beam radiation by the canopy 

elements. The above equation can be expanded: 

Sdf = (t d X Sd 0) ± (a b x Sb, ) [3] 

where: 
She, is the beam radiation at the top of the canopy (W m2), and 
sab is the proportion of beam radiation scattered toward the snow surface by the 
canopy (dimensionless). 

For the purposes of describing radiation transmission for modeling snowcover 

processes, we usually assume that the canopy elements scatter a negligible proportion of 

the beam radiation due to the highly absorptive nature of the canopy elements. However, 

accurate derivation of optical canopy constants for relatively reflective canopy types such 

as Aspen, requires the consideration of forward radiation scattering. 

If it is assumed that the forest canopies present at the study locations are 

homogeneous and continuous, the transmission of beam radiation can be approximated 

using the Beer-Bouger-Lambert Law, which describes the exponential decay of radiation 
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through an isotropic, homogeneous medium (Peixoto and Oort, 1992). By applying this 

law, the beam radiation at a sub-canopy location (S,,i) can be written as: 

[4]Sbj = Skoe 111 

where: 
/ is the path length of the incoming solar beam through the canopy (m), and 
t is the extinction coefficient (m-I), which is inversely proportional to the optical 
transmissivity of the canopy to beam radiation. 

Since we assume that the canopy is uniform and infinite in all directions, / can be 

described by the trigonometric relationship: 

1 = hsec(0) [5] 

where: 
h is the canopy height (m), and 
0 is the solar zenith angle (°) 

The beam solar radiation at the snow surface can be described by combining Equations 

[4] and [5]: 

ialisec(0) [6] 
b,f 

Multiple scattering is not explicitly considered in these formulations, but is 

inherently accounted for in the empirical derivations of 'r and 1..t. Studies of radiation 

transfer in snow-covered boreal forests indicate that intercepted snow has a negligible 

effect on radiation extinction within boreal conifer canopies (Pomeroy and Dion, 1996). 

We therefore assume that no adjustment to the radiation transfer algorithms are necessary 

to account for intercepted snow load. 

In the above equations, S, and S,0 can be measured directly, and SbO can be 

obtained by computing the difference. The global solar radiation below the canopy (SR ) 

is much more difficult to measure continuously at a site, due to the high spatial 

variability of radiation beneath forest canopies, and the high cost and effort associated 
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with maintaining a large array of radiometers. Sgf can be calculated by summing 

Equations [3] and [6], given sufficient information regarding the physical characteristics 

of the canopy. The height of the canopy is easily measured, and 0 can be calculated 

based on solar geometry, leaving 't and 1,t to either be estimated, or determined 

empirically. At the SSA-OJP, SSA -OA, and SSA-OBS sites, the availability of high 

quality, high temporal resolution above- and below-canopy radiation measurements 

permits the accurate estimation of these two parameters. 

Calculation of id and scs, 

For conifer canopies, it is assumed that negligible forward scattering of beam 

radiation occurs, so that Equation [1] can be used to describe the transmission of diffuse 

radiation. This assumption is reasonable given the low albedo and texturally rough 

physical characteristics of the conifer canopies. Although Sdj. measurements were not 

completed at any of the sites, individual radiometers within the sub-canopy array are 

occasionally shaded by canopy elements over the course of a day, yielding sporadic 

measurements of sub-canopy diffuse radiation. When all radiation data from the sub-

canopy array is plotted synchronously, an approximate diffuse radiation curve is 

produced by the inverted peaks on the individual curves. td is determined graphically, by 

iteratively multiplying Sd by estimated values for td, until the resulting curve matches 

the approximate Sdf curve to within 5%. 

In the Aspen canopy, the assumption of minimal forward scattering of beam 

radiation may be invalid, due to the relatively smooth and reflective nature of the canopy. 

In this case, Equation [3] more accurately describes the transmission of diffuse radiation. 

The first partial day of sub-canopy radiation measurements at the Aspen site was cloudy, 

therefore all solar radiation measurements are composed entirely of diffuse radiation. In 

this case, td is determined by computing the ratio of Sd, to Sdj, integrated over the first 

partial day of measurements. The proportion of Sdf resulting from forward scattering of 

beam radiation is determined by subtracting TdS,, from Sdf for each measurement. a, is 
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then determined using a technique similar to the one described above, where iterative 

values for a, are multiplied by S until a graphical solution is obtained. 

Calculation of tt 

S,, for each time interval is computed by subtracting Sdf, calculated using 

Equation [1] from the mean Sgf measured by the sub-canopy radiometer array. The total 

shortwave beam energy incident at the snow surface beneath the canopy during the sub-

canopy measurement period is calculated by numerically integrating the S,,f over the 

measurement period, using the Simpson method. An iterative solution for tt is obtained 

for each canopy type by estimating values for tt, numerically integrating the calculated 

S,,f using Equation [6], until the resulting net incident energy matches the measured value 

to within 1%. 

Algorithm Validation 

Calculated Sgf values using Equations [3] and [6] over the period of sub-canopy 

radiation measurements are shown in Figures 5a-c. The average of the ten sub-canopy 

radiometers is depicted by the green line, and the calculated S,1 values are shown in red. 

The average radiometer traces exhibit some noise, indicating that the number of 

radiometers in the sub-canopy array is insufficient to completely average the sub-canopy 

spatial variability. Because the adjustment algorithm for solar radiation is calibrated to 

the measured SXf values, the magnitude of the calculated values closely match the 

measured values. The calculated values match closely at all sun angles, indicating that 

the canopy filters are robust across a variety of sun angles. The accurate quantification 

of radiation transmission as a function of zenith angle suggests that these algorithms will 

effectively account for seasonal variations in zenith angle, and will therefore be 

applicable throughout the entire snow season. 

Albedo Adjustments 

The net diffuse and beam radiation absorbed by the snowcover is a function of the 

respective spectrally-integrated albedoes for diffuse and beam radiation, and is written: 
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S.1 = (1 a d)Sdf + (1 a 1,)Sb,i [7] 

where: 
a, is the snowcover albedo for diffuse radiation (0.98, dimensionless), 
a, is the snowcover albedo for beam radiation (dependent on solar elevation 
angle), 
Sdf is the diffuse radiation at the snow surface, and 
Sbf is the beam radiation at the snow surface. 

The snowcover albedo is a function of the spectral characteristics of the incoming 

radiation, snowpack grain size, moisture content and impurities (Warren and Wiscombe, 

1980; Marks, 1988; Marks and Dozier, 1992). The albedo is also a function of solar 

zenith angle, such that the reflectance of solar radiation is greatest at high zenith angles. 

As a result, the diffuse albedo is typically slightly higher than the beam albedo due to the 

higher proportion of radiation reaching the surface from oblique angles (Male and 

Granger, 1981). 

A constant open location ad of 0.98 is applied to all calculated Sdf values to obtain 

the net diffuse radiation absorbed by the snowcover. The visible and near infrared beam 

albedoes (a and am respectively) at each measurement interval for an open site are 

calculated as a function of grain growth and sunangle using the empirical relationships 

described by Warren & Wiscombe (1980), Wiscombe and Warren (1980), and Marshall 

and Warren (1987). The a was estimated from the average of and am, At the 

forested sites, an additional albedo reduction function was applied to simulate the effects 

of organic debris accumulation within the snowpack. This function linearly decreases the 

albedoes from the time of maximum snowpack accumulation to the time of complete 

ablation. The function is optimized so that the sub-canopy snowcover albedo reaches a 

value of 0.55 just prior to complete ablation, consistent with observations from boreal 

forests (Pomeroy and Dion, 1996). 
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Thermal Radiation 

Theory 

The thermal radiation (0.7-2.8 p.m) beneath forest canopies (4) is altered relative 

to the thermal flux at open sites (L0) due to the blockage of sky thermal radiation, and 

emission of thermal radiation from the canopy elements. Lf is written: 

Lf = LL [8]L 

where: 
TL is the transmissivity of the canopy to thermal radiation (dimensionless), 
L, is the thermal radiation measured above the forest canopy (W m-2), and 
L is the thermal radiation emitted by the forest canopy (W m-2). 

If the canopy temperature is known, L. be calculated from the Stefan-Boltzman 

equation. 

Lc = E GT4c [9] 

where: 
E, is the emissivity of the canopy (0.96 dimensionless), 
6 is the Stefan-Boltzman constant (5.6697 xl0sW rn-2 K'), and 
T. the mean surface temperature of the canopy (K). 

Neglecting the negligible reflection of thermal radiation by the canopy, Equations [8] and 

[9] are combined to yield: 

+ (1 )E caT, [10] 

Diffuse solar and thermal radiation are both non-directional, therefore, it is 

assumed that ta, calculated from the sub-canopy radiation measurements, is equal to TL. 

Forest canopies behave as almost perfect black bodies having emissivity values of 

approximately 0.96 (Price and Petzold, 1984). Using the scalar values for TL and e 

Equation [10] can be used to calculate Lf given values for L0 and T, assuming that the 

measured T values are representative of all canopy elements. 
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Algorithm Validation 

Air and canopy element temperatures during the winter 1996 IFC at the SSA

OBS and SSA -OA sites are illustrated in Figures 6a and 7a. Corresponding measured 

above- and below-canopy radiation values and calculated canopy radiation values using 

Equation [10] are shown in Figures 6b and 7b. 

Canopy and trunk temperature measurements at the SSA-OBS site are very 

similar throughout the measurement period, suggesting that the vegetation layer is 

relatively isothermal. Conifer canopies are structurally similar, therefore we assume that 

OJP canopies exhibit similar thermal characteristics for the purposes of snowmelt 

modeling. The thermal radiation was calculated at the OBS site using canopy 

temperatures substituted from the SSA-OJP site, due to the absence of an AMS within 

the Black Spruce canopy. Measured and calculated Lf values show close agreement 

during the entire sub-canopy measurement period, indicating that the Lf formulation 

provides reasonable estimates, when data from the OJP site are used. Differences 

between above- and below-canopy thermal radiation values vary by up to 25%, 

indicating the importance of accounting for the modification of the open site thermal 

radiation by forest canopies. 

At the SA -OA site, the measured sub-canopy thermal radiation varies by 

approximately 30% relative to the above-canopy thermal radiation over the period of 

measurement. Initial calculated sub-canopy thermal radiation indicated good agreement 

with the measured sub-canopy thermal values for the daytime periods, but underpredicted 

radiation for the night periods by approximately 10%. Temperature measurements at this 

site indicate that trunk temperatures may exceed canopy temperatures by more than 10°C 

during night periods (Figure 7a). The observed departure between the calculated and 

measured values are most likely caused by the higher trunk temperatures, which may not 

be effectively viewed by the down-looking above-canopy IR thermometers. A simple 

correction for the emissivity enhancement by the Aspen trunks was implemented by 

increasing the measured canopy temperatures by 3°C. This adjustment provides a more 

accurate estimate of the diurnally integrated sub-canopy thermal radiation climate, by 
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slightly underpredicting nighttime radiation, while slightly overpredicting daytime 

radiation, as shown by the modeled radiation trend in Figure 7b. 

Wind Velocity 

Wind velocities below the forest canopy (u,), are typically lower than above-

canopy wind velocities (u0), due to sheltering effects of the forest canopies. Wind 

velocities control the snowcover turbulent energy fluxes, which are expected to comprise 

minor portions of the snowcover energy balance in the boreal environment (Hardy et al., 

1998). Errors in below-canopy windspeed calculations should therefore have a 

negligible effect on the net snowcover energy balance. A very simple algorithm was 

used to estimate the below-canopy wind velocities, where all values are in m s', and is 

written: 

uf = 0.2u u > 1 [11] 

uf = 0.2 uo 5_ 1. 

The thresholding at low windspeeds was incorporated to ensure stability of the turbulent 

transfer routine in SNOBAL. Measured above- and below-canopy wind velocities, and 

calculated sub-canopy wind speeds during the 1994 IFC at the SSA-OJP site are shown 

in Figure 8, indicating general agreement between the calculated and measured time 

series. 

Other Parameters 

Sub-canopy air (Tt) and soil temperatures (T,f) are included in the standard suite 

of measurements taken by the SRC AMS, therefore, canopy adjustment algorithms were 

not developed for these parameters. Relative humidity (rh) measurements were only 

recorded above the forest canopies during the winter months. Below-canopy vapor 

pressures (e) were calculated by assuming constant rh profiles, and using T to calculate 

e below the canopies. Although rh may be affected by the canopy, e during the winter 
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Figure 8. Above- and below-canopy wind speeds at the SSA OJP site. 
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and spring months is very low, such that calculated e values are not expected to be 

sensitive to small rh differences. 

In many environments, interception of snowfall by forest canopies and 

subsequent sublimation may result in a significantly reduced snowpack in forested areas, 

relative to open areas (Meng et al., 1995; Stegman, 1996; Lundberg and Halldin, 1994). 

Observations of intercepted snow in the boreal environment indicate that almost all of the 

intercepted snow falls to the ground during periods of slight wind, or increased air 

temperatures (Sturm, 1992). The precipitation gauges were located in small canopy 

gaps; therefore we assume that the gauges effectively measure below-canopy 

precipitation, and that there is negligible loss of measured snow mass due to canopy 

interception. 

Data Preprocessing 

SNOBAL requires net snowcover solar radiation, incoming thermal radiation, 

vapor pressure, wind speed and air temperature near the snow surface, and soil 

temperature. Where sub-canopy data were not present, meteorological data were 

adjusted using the canopy adjustment algorithms. Where certain parameters were absent 

or anomalous at a given site, appropriate measures such as linear interpolation, and 

substitution of data from similar nearby sites were taken to provide reasonable and 

complete data records. 

Meteorological Parameters 

The snowpack net solar radiation is calculated at each timestep from S, and Sh 

using the combined version of Equations [3], [6] and [7]: 

[th sec(6) [12]
Sn = (1 ad)(t dS,,, +a hSn,) + (1 a n)( ) 

td and 1..t values were calculated at sites where sub-canopy solar radiation data were 

collected, and estimated based on canopy characteristics (e.g. conifer vs. deciduous) at 
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sites where no paired above- and below-canopy radiation data were collected. Values 

used for td andia are listed in Table 3. Incoming sub-canopy thermal radiation is 

calculated from L TL, and T. using Equation [10], except at the SSA -OA site where a 

canopy temperature adjustment was applied, as discussed above. Wind velocity is 

adjusted to account for canopy effects using Equation [1 1]. Sub-canopy vapor pressures 

are calculated using above-canopy rh, and sub-canopy To to account for humidity 

differences resulting from above- and below-canopy temperature variations. Sub-canopy 

soil temperatures are fixed at 0°C from the melt period forward in time to prevent 

anomalous modeled soil heat fluxes in the event of a simulated snowcover persisting 

beyond the actual snowcover. Sub-canopy air temperatures are used without 

modification. 

Table 3. Canopy Parameters 

Site Cover Type height (m) td, TL t (m ) 
(dimensionless) 

SSA 

OJP Old Jack Pine 17 0.20 0.040 

OA Old Aspen 22 0.44 0.025 

OBS Old Black 10 0.16 0.074 
Spruce 

NSA 

OJP Old Jack Pine 13 0.20* 0.040* 

YTH Spruce / Poplar 13 0.30* 0.033* 

Notes: *id and i.t assumed to be equivalent to SSA-OJP canopy cover 
'Tel and p, estimated to be intermediate between SSA-OJP and SSA -OA values 

Precipitation properties are estimated from dewpoint temperature and 

precipitation records, according to the dewpoint temperature and density relationships 

listed in Table 4. Although SNOBAL is able to process mixed rain/snow events, mixed 

events are expected to comprise a minor portion of all precipitation events in the boreal 
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environment, therefore these simple relationships are used. Precipitation temperature is 

assumed to equal dewpoint temperature for all events. 

Table 4. Estimated Precipitation Properties 

Dewpoint Temperature p,,,, (kg/m1) Precipitation State 
Range(°C) 
> 0.5 1000 rain 

0.5 to 0.0 200 snow 

0.0 to -5.0 100 snow 

-5.0 to -10.0 75 snow 

< -10.0 60 snow 

Precipitation records were closely compared with the automated snow depth 

measurements, and were only corrected to the depth sensor where precipitation gauge 

readings appeared to be anomalous. This approach allows for the model inputs to be 

prepared almost exclusively from the precipitation record, thereby maintaining the 

integrity of the snow depth record as a model validation dataset. This approach also 

identified necessary adjustments to account for occasional undersampling of snow by the 

field instrumentation. 

Site Specific Preprocessing 

The AMS located at the NSA-YTH site did not include sensors for diffuse solar 

and thermal radiation. These parameters were therefore substituted from the NSA-OJP 

site located approximately 50 km to the west. As discussed above, an AMS was not 

located at the SSA-OBS site, therefore above-canopy data from the SSA-OJP site was 

used in conjunction with OBS canopy corrections for simulations at this site. 

Anomalous soil temperature readings from the SSA -OA site suggest instrumental 

inaccuracies for the entire 1994-1995 winter season. Soil temperatures from the SSA

OJP site were substituted for all SSA -OA simulations. The soil heat conduction routine 

used by SNOBAL currently assumes a well drained mineral soil. Boreal soils tend to 
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have a thick layer of organic material and mosses overlying the mineral soil (Larsen, 

1980), which effectively insulates the snowpack from the underlying soil. To account for 

the decreased thermal conductivity of organic-rich soils, the 10 cm soil temperatures 

were used instead of the default 50 cm soil temperatures to better approximate heat flow 

between the soil/snow interface. 

Mass and Energy Balance Snowmelt Model (SNOBAL) 

A detailed discussion of energy and mass transfer over a snow surface and 

development of SNOBAL was presented by Marks (1988), and is further discussed by 

Marks and Dozier (1992), Marks et al. (1992), and Marks et al., (in press). A complete 

description of the model, its input requirements, and output parameters is provided in 

Marks et al., (1998). SNOBAL was used without modification for all snowcover 

investigations presented here. An overview of the equations solved and model structure 

is presented to provide a basic description of the snowcover simulation approach. 

Seasonal snowcover dynamics are controlled by temperature and vapor gradients 

within the snowcover, which are caused by energy exchanges at the snow surface, and at 

the snow-soil interface (Colbeck et al., 1979; Male and Granger, 1981). SNOBAL is 

driven by net snowcover solar radiation, incoming thermal radiation, air temperature, 

vapor pressure, wind speed, soil temperature, and precipitation mass, temperature, 

density, and state (solid/liquid) fraction. The model determines the snowcover depth, 

density and thermal properties from the meteorological conditions throughout the 

duration of the simulation. The model approximates the snowcover as being composed 

of two layers, a basal layer, and a fixed-thickness surface layer. At each time-step, the 

model computes the energy balance of each layer, and adjusts the thickness, thermal 

properties, and measurement heights of the forcing data accordingly. 

The model calculates the energy balance of a snowcover at each time-step as: 

AQ=Rn+H+1,,E+G+M [13] 
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where: 

AQ is the change in snowcover energy (W rn-2),
 
R is the net radiative energy flux (W m-2),
 
H is the sensible energy flux (W m-2),
 
L E is the latent energy flux (W M2),
 
G is the soil energy flux (W M2), and
 
M is the advected energy flux (W m-2)
 

When the snowcover is in thermal equilibrium there is no change in the net snowcover 

energy (i.e. AQ=0). A positive change in snowcover energy will warm the snowpack, 

whereas a negative change in energy will cool the snowcover. Significant amounts of 

melt cannot occur until the entire snowcover reaches 0°C. When the entire snowpack is 

isothermal at 0°C, a positive energy balance will result in melt, and a negative energy 

balance will result in refreezing of any water contained within the snowpack. The model 

simulates each component of the energy balance, calculates the addition or depletion of 

mass by deposition, melt, evaporation, or runoff, and adjusts snowcover mass and 

thermal conditions at each time-step. Figure 9 provides a conceptual diagram of the 

model components. 

Net radiation (R,,) is calculated as: 

Rn = + L ( [14] 

where: 

S, is the net solar radiation (W m2), 
L is the incoming thermal radiation (W m2), 
c is the snow surface emissivity (0.99, dimensionless) 
a is the Stefan-Boltzmann constant (5.6697 x 10-8 J m-2 K4), and 
T. is the temperature of the surface layer (°C), which is calculated by the model, 
and updated at the end of each time-step. 

For the simulation of snowcover dynamics beneath the forest canopy, the net solar 

radiation sn, is given by Equation [12], and the incoming thermal radiation is LL, is given 

by Equation [10]. 

The general case of bulk energy transfer of sensible (H) and latent (L E) energy is 

described mathematically as: 
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Figure 9. Conceptual diagram of the energy- and mass-balance components simulated by 
SNOBAL. 

H= paCpKH(TiTs) [14] 

LvE = p .KwL,(q .4,5) [15] 

where: 

H is the sensible heat exchange (W m-2),
 
E is the mass vapor flux (kg in-2 s-1),
 
L, is the latent heat of vaporization of water (2.5x106J kg'),
 
pa is the density of air (kg m-3),
 
C is the specific heat of air (1005 J kg' IC1),
 
K,,, ICH, are the bulk transfer coefficients for heat and water vapor, respectively,
 
and are strongly dependent on wind speed (J m' IC-1 s-`),
 
Ts, T. are the potential temperatures of the snow surface and air, respectively (°C),
 
q,, q are the specific humidity at the snow surface and in the air, respectively (Pa).
 

The turbulent transfer terms, H and L,E are calculated using a method adapted from 

Brutsaert (1982) by Marks and Dozier (1992) as a system of non-linear equations that 
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simultaneously solve for the sensible heat flux (H), and mass flux by evaporation or 

condensation from the snow surface (LE). Under most conditions, H is usually directed 

towards the snow surface, and is balanced by LyE of similar magnitude away from the 

snowcover, hence the depiction of these fluxes as opposing arrows on Figure 9. 

In general, energy transfer by conduction and diffusion between the soil and the 

snowcover (G) is calculated: 

2K K (T T ) [16]
G= eg 

Kegz, + Kesz, 

where: 

Kei, Keg are the effective thermal conductivities for the snowcover and the soil,
 
respectively,
 
zg is the measurement depth (m) of the soil temperature,
 
Tg is the measured soil temperature (°C),
 
z, is the thickness of the snowcover (m), calculated by the model, and
 
T is the temperature of the snowcover (°C), calculated by the model.
 

The model also calculates the energy transfer by conduction and diffusion between the 

upper and lower snowcover layers, using a similar formulation. 

Advected energy (M) transfer to the surface snow layer, is only calculated during 

timesteps where precipitation occurs: 

CP P p, z ,(7'
PP 

[17]P PI T,) 

tstep 

where: 

C is the specific heat of precipitation, calculated as a function of precipitation
P_P 

state (solid or liquid), temperature and density, estimated proportionally during
 
mixed events,
 
ppp is the precipitation density (kg m-1),
 
zpp is the depth of precipitation (m),
 
T is the precipitation temperature (°C)


P

t 
T is the snowcover temperature of the surface layer (°C), and
 

%rep 
is the length of the timestep (s).
 

Precipitation properties are all calculated as discussed above, and in Table 4. 
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The individual energy balance components are summed as indicated by Equation 

[13] to determine the energy available for melt or re-freezing in each of the snow layers. 

If melt occurs during a time-step, the model adjusts the thickness of the snowcover 

layers, snow density, liquid water content, and relative saturation. The specific mass of 

the snowcover is also adjusted by the total mass of evaporative loss, or condensation 

gain. If the total liquid water content exceeds the adjusted liquid water capacity, the 

excess becomes snowcover runoff, and snow density and specific mass are adjusted. 



36 

Results 

Results of above- and below-canopy climate data analyses indicate that net 

snowcover solar radiation increases steeply in the spring months as a result of increased 

canopy penetration and snowcover absorption of solar radiation, and varies strongly as a 

function of canopy structure. In addition, net thermal radiation also increases during this 

period as a result of warmer air and canopy temperatures. Air temperatures, vapor 

pressures and windspeeds are very low during most of the snow season, and exhibit little 

variation between canopy types. The net snowcover energy balance is typically 

dominated by radiative fluxes, with minor contributions from turbulent and soil energy 

transfer. Net snowcover energy fluxes vary strongly with canopy type, primarily due to 

differences in radiative fluxes. Snowcover depth results indicate that simple canopy 

adjustment algorithms can be effectively used to estimate climate conditions beneath 

forest canopies for snowcover modeling investigations. 

Climate Analyses 

Observations of concurrent above- and below-canopy meteorological 

measurements illustrate the effect of the different canopy covers on the snow surface 

climate across the range of conditions encountered during an entire snow season. 

Analyses of above- and below-canopy climate differences improve our understanding of 

the processes controlling mass and energy transfer in forested systems. 

Solar Radiation 

Figure 10a depicts the seasonal solar and thermal radiation trends at the SSA-OJP 

site to illustrate the general trends observed at all sites. Figures 10b, c, and d illustrate 

the diurnal variations in radiation for five day periods ranging from low (-13°), mid 
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Figure 10. Above-canopy solar and thermal radiation at the SSA-OJP site. 
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(-28°), and high (-52°) maximum solar elevation angles. General seasonal and daily 

above-canopy solar radiation trends are illustrated by these figures, with slightly less 

radiation recorded at the NSA sites during most of the year. At the time when the 

permanent snowpack develops (-Nov. 1), clear sky radiation reaches a maximum of 

approximately 400 WM2 in both the NSA and SSA. At the lowest sun angles near the 

winter solstice, clear sky solar radiation decreases to a maximum of -200 Wm-2in the 

SSA, and -100 Wm-2in the NSA. During this time, days are approximately 6 hours 

long, resulting in very low daily shortwave energy fluxes. In early May, when the 

snowpack is actively melting, clear-sky noontime solar radiation values exceed 800 Wm' 

in both study areas. Solar energy flux is further maximized during this period by day 

lengths in excess of 15 hours, providing the dominant source of energy available for 

snowmelt over the diurnal cycle. 

The calculated sub-canopy solar radiation (So) exhibits larger variation both 

between sites, and over the course of seasonal and diurnal cycles, due to forest canopy 

effects. Canopy-controlled radiation variations are illustrated in Figure 11, which depicts 

mean sub-canopy climate parameters for 2 week intervals over the course of the snow 

season. During the midwinter period (Dec. 1 Feb. 1) mean solar radiation values are 

minimal, with values less than 20 WM2 beneath all canopies. The small mean radiation 

values occur due to strong radiation extinction by the canopies at the low solar elevation 

angles and short day lengths. Mean solar radiation beneath all canopies greatly increases 

during the late winter and early spring, as a combined result of increased transmittance 

through the canopy at higher sunangles and long days. During the period of maximum 

ablation rates, 2-week mean solar radiation values vary from approximately 90 to 200 

Wm-2, between the SSA-OBS and SSA -OA canopies, which represent the most optically 

dense (OBS) and most optically transparent (OA) canopy classes considered in these 

investigations. Mean sub-canopy radiation at the NSA-OJP sites exceeds the radiation at 

the SSA-OJP site as a result of increased canopy transmissivity due to the shorter canopy 

height. Similarly, the mean sub-canopy radiation at the SSA-OBS tends to be very 

similar to the SSA-OJP values because the shorter OBS canopy partially compensates for 

the lower optical transmissivity. 
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Figure 12 illustrates the net snowcover solar radiation trend at the SSA-OJP site, 

calculated using Equation [12]. The net snowcover solar radiation is negligible during 

most of the winter months, as a result of low solar intensity, short day lengths, and very 

high snowcover albedoes, resulting from both clean snowcovers and low sunangles. The 

net radiation increases sharply in the spring months, as a result of higher intensities, 

longer days, and lower albedoes resulting from snowcover aging, debris deposition, and 

higher sun angles. 

Thermal Radiation 

Above-canopy thermal radiation shows little seasonal variation, increasing 

slightly in the spring months, relative to the winter months (Figure 10a). Above-canopy 

thermal radiation varies diurnally by about 50 Wm Z, depending on local meteorological 

conditions, such as air temperature and degree of cloud cover. During the snow season, 

below-canopy thermal radiation is enhanced for all canopies by 13.5% on average, 

relative to above-canopy thermal radiation. The mean thermal radiation enhancement 

does not vary greatly between canopy types, ranging from approximately 11% for the 

relatively sparse Aspen canopy to 16% for the relatively dense Black Spruce canopy. 

Below-canopy diurnal variation is reduced relative to above-canopy conditions, and 

varies more regularly, as a result of canopy thermal inertia which tends to damp above-

canopy thermal radiation cycles. 

Net snowcover thermal radiation is also illustrated in Figure 12. The net thermal 

radiation was determined by the difference of the sub-canopy thermal radiation 

calculated using Equation [10], and of the thermal exitance of the snowcover, calculated 

using the modeled snow surface temperature in the Stefan-Boltzmann equation. Figures 

12a, b and c indicate that during the winter months, net daytime thermal radiation 

frequently exceeds net solar radiation. During the spring months, thermal radiation 

comprises a smaller portion of the radiation balance, as indicated in Figure 12d. Daytime 

snowcover thermal absorption is commonly equaled or exceeded by nighttime thermal 

emission, resulting in a net radiative loss of energy when integrated over time. 
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Within Canopy Air and Canopy Temperatures 

Within canopy air temperature trends for the 1994-1995 snow season at the SSA

OJP site are illustrated in Figure 13a. Variations between above-canopy air, within-

canopy air, and canopy surface temperatures for three periods during the snow season are 

shown in Figures 13b-d. Within canopy air temperatures during the 1994-1995 winter 

season at the SSA remained below 0°C from November through mid-March, with 

several exceptions. The period from March through complete ablation in early May is 

characterized by above freezing daytime temperatures, and consistently below freezing 

nocturnal temperatures, interspersed with extended periods of below 0°C temperatures. 

Within canopy air temperatures are consistently cooler than above-canopy air 

temperatures, particularly at night, during most of the snow season. 

Within canopy temperatures at the NSA were much cooler than at the SSA, 

remaining below -10°C for most of the period from mid-November through early March. 

Temperature variations from early March through complete ablation, are similar to the 

SSA sites, with above freezing daytime temperatures, and sub-freezing nocturnal 

temperatures. 

Canopy temperatures at the SSA-OJP site are elevated relative to within canopy 

temperatures by about 2-3 °C, during most of the snow season (Figures 13b & c). 

During the spring months, the temperature differences increase in magnitude, and can 

exceed 5 °C during the daytime, as a result of increased incident solar radiation. Canopy 

temperature fluctuations and differences are greatest during clear sky conditions, when 

radiant heating and cooling of the forest canopy is most efficient. During overcast 

conditions, air and canopy temperatures approach equality, with small diurnal 

fluctuations. In general, canopy and air temperature relationships are similar at the NSA 

sites, however the differences between the two temperatures tend to be much smaller 

during the entire snow season. 

Mean 2-week air temperature differences between sites are shown in Figure 11. 

Within canopy temperatures at the SSA -OA site tend to be slightly warmer during most 

of the snow season. Temperatures within both NSA canopy covers are very similar, and 
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are consistently colder than the SSA sites. SSA-OJP and SSA-OBS within canopy air 

temperatures are assumed to be equal, as discussed above. 

Other Forcing Parameters 

Vapor pressure measurements during the snow season are very low, as expected 

for extremely cold environments. Vapor pressures during spring melt at the SSA 

oscillate above and below 611 Pa (saturation vapor pressure at 0°C), and gradually 

increase over time. This indicates that during the ablation period, the direction of the 

vapor pressure gradient between the air and snow surface (and therefore potential latent 

heat flux) oscillates, while becoming increasingly positive over time. At the NSA sites 

however, vapor pressures remain below 611 Pa for almost the entire ablation period, 

indicating a vapor gradient directed away from the snow surface. In such an 

environment, the snowcover is expected to lose mass and energy by evaporation, thereby 

cooling the snowcover. Mean vapor pressure differences between sites appear to be due 

to air temperature differences between the sites (Figure 11). 

Fifteen minute mean above-canopy wind velocity measurements are observed to 

be high during most of the model simulation periods, frequently exceeding 5 m/s. The 

application of canopy and thresholding adjustments reduces the below-canopy wind 

velocities to between 0.2 and 1.0 m/s. Mean wind velocities are relatively stable 

throughout the snow season, with slightly higher velocities occurring at the northern sites 

(Figure 11). 

SSA-OJP soil temperatures at 10 cm exhibit strong diurnal fluctuations in the 

autumn months, until the first major snow event occurs. Following the first major event, 

soil temperatures steadily decrease to 0°C over approximately 3 weeks. After freezing, 

soil temperatures continue to decrease, eventually reaching an annual minimum 

temperature slightly less than -7°C. Soil temperatures increase to 0°C through the late 

winter and spring months, reaching and maintaining a temperature of 0°C for roughly 2 

weeks, as the soil thaws, and 0°C meltwater infiltrates through the soil profile. Soil 

temperatures at the NSA-OJP site freeze slightly earlier than at the SSA-OJP site, and 

decrease to a minimum of -14°C during midwinter. During soil warming, 0°C conditions 
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at the NSA-OJP site are maintained for a period of approximately 1 week. 10 cm soils at 

the NSA-YTH site freeze at the same time as the NSA-OJP soils, but only reach a 

minimum temperature of -5°C. Soils at NSA-YTH warm to 0°C approximately 1 week 

sooner than the OJP site, but maintain 0°C conditions for 2 weeks. 

Snowcover Energy and Mass Balance Simulations 

SNOBAL was run at a 15 minute time-step from October 1, 1994 through June 1, 

1995, using canopy-corrected meteorological data at the OJP, OA, and OBS sites in the 

SSA, and at the OJP and YTH sites in the NSA. Model results are validated using 

automatic and manual snow depth measurements from the various canopy covers. 

Results from the seasonal snowcover simulations serve to quantitatively describe the 

processes of snowcover mass and energy transfer beneath variable canopies in the boreal 

environment for an entire snow season, and to provide a means to evaluate the 

performance of simple canopy adjustment algorithms. 

Snowcover Energy Balance 

Figures 14a-f present the 15-minute average values for AQ, R,,, G, H, LE and, M 

for the SSA-OJP site, to illustrate snowcover energy flux trends beneath a moderately 

transmissive canopy. Figure 15 presents the relative contribution of the net all-wave 

radiation (R,,), soil heat (G), advected (M), and sum of the sensible and latent heat fluxes 

(H + LIE) to the total snowcover energy flux (AQ), at all sub-canopy sites. 

The sum of the energy balance terms (AQ) oscillates during the snow season, and 

is typically positive during the day and negative during the night (Figure 14a.). From the 

deposition of a permanent snowcover in November, through February, the 2-week mean 

monthly net snowcover energy remains at or near zero for all sites. From March through 

complete snowcover ablation early May, the mean net energy is consistently positive, and 

increases steeply at all sites. 
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During the autumn and winter months, the net snowcover radiation trend (Rn) is 

slightly negative, and closely mirrors the net thermal radiation, indicating radiative 

cooling of the snowcover (Figure 14b.). During the spring months, Rn more closely 

mirrors the net solar radiation trend, becoming increasingly positive during the day, but 

remaining slightly negative during the night. During the entire snow season, R,, typically 

dominates AQ at all sub-canopy locations in the BOREAS study region as indicated in 

Figure 15. The primary difference between sites is in the variation of Rn contribution, 

which is larger in the transmissive canopies and smaller in the optically dense canopies. 

Soil heat flux (G) comprises a major portion of the energy balance early in the 

snow season while the soil releases energy as it cools and freezes (Figure 14c.). Soil heat 

flux is slightly positive throughout most of the snow season, increasing slightly during 

the spring meltout. Although the relative contribution of G to the total energy flux is 

large early in the season, the mean AQ is very small during this time, as indicated in 

Figure 15. 

The net turbulent energy transfer (H + LE) comprises a minor portion of the 

energy balance at all sites (Figure 15). Sensible heat fluxes (H) oscillate in direction 

during the snow season, whereas latent heat fluxes (LIE) tend to be negative throughout 

the season, indicating evaporative cooling of the snowcover (Figure 14d. and e.). 

Beneath the conifer, and mixed canopies, H and LvE tend to both be slightly negative 

during most of the snow season due to extremely low air temperatures and vapor 

pressures. H within the OA canopy remains slightly positive during the course of the 

snow season, due to higher air temperatures, while latent exchanges are negligible 

throughout the winter. 

Advective energy transfer tends to be sporadic and positive during the winter 

months, as warmer snow is deposited on top of a cold snowpack during occasional 

precipitation events. (Figure 14f.) During spring meltout, small positive advective 

fluxes occur during several rain events. Advected energy fluxes are negligible, when 

averaged over 2 week periods, and are therefore not included in Figure 15. 
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Snowcover Mass Balance 

When snow is present, SNOBAL calculates runoff as the sum of melt, less the 

available liquid holding capacity of the snowcover, plus rain. Early in the spring, several 

minor melt events that do not exceed the water holding capacity of the snowcover occur 

at all sites. The production of runoff at all sites follows a distinctly diurnal trend driven 

by net radiation variability, with irregular runoff spikes resulting from isolated cold 

(-0°C) rain events. 

At the SSA sites, melt with associated runoff production starts at approximately 

April 16 and continues over a period of 3 weeks at the three sites, with both sites 

exhibiting complete ablation by approximately May 7. Maximum sustained melt rates 

beneath the Aspen canopy exceeded 1 mm/hr, whereas maximum sustained melt rates 

beneath the OJP and OBS canopies approached 0.7 mm/hr. The variation in melt rates, 

coupled with a larger snowpack beneath the OA canopy resulted in synchronous 

complete ablation observed both with the model results and with empirical 

measurements. 

The onset of spring meltout at the NSA sites occurs at close to the same time as at 

the SSA sites. Snowpack masses are very similar at both the SSA-OJP and NSA-OJP 

sites, however, slower melt rates in the NSA-OJP result in complete ablation 2-3 days 

later than at the SSA-OJP site. Melt rates at the NSA-YTH site are comparable to the 

NSA-OJP site, however a substantially larger snowpack results in an extended ablation 

period, with complete ablation occurring almost 1 week after the NSA-OJP site. 

Model Validation 

Continuous automatic depth measurements from small open areas within each 

canopy are used to validate the simulated snowcover depths. In addition, mean depth 

measurements recorded manually during bi-monthly snow course surveys within each 

canopy type are used to provide an additional validation dataset. Snow course 

measurements are not located in close vicinity to the sites where AMSs are located, but 

were chosen to be representative of conditions beneath the various land cover types. The 
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manual snow course measurements are useful to validate the SNOBAL results and to 

evaluate the performance of the canopy adjustment algorithms at other forested sites 

where detailed sub-canopy meteorological measurements are absent. 

Figures 16a-e show the automatic and manual measured and modeled snow 

depths for the SSA-OJP, SSA -OA, SSA-OBS, NSA-OJP, and NSA-YTH sites. No AMS 

was installed at the SSA-OBS site, therefore the manual snow course data for a black 

spruce canopy 43 km to the southeast is used to evaluate data preprocessing and model 

performance at this site. The simulated snow depths closely match the automated snow 

depth measurements over the entire snow season at all sites. The simulated snowpack 

completely ablates from 5 to 6 days later than the measured ablation at the three SSA 

sites. Modeled depths also agree closely with the manual measurements, and appear to 

more closely match the observed meltout dates. 

Modeled ablation dates occur approximately 2 days later than measured dates at 

the NSA sites. The modeled depths beneath the OJP canopy agree very closely to the 

measured depths, indicating that the preprocessing algorithm developed at the SSA-OJP 

site can be effectively applied to the NSA-OJP site. The measured and modeled depths 

for the NSA-YTH site exhibit the most divergence of any of the sites, apparently related 

to an early-season melt event, that caused substantial compaction of the snow cover. 

This divergence may be due to inaccurate assumptions which were made with regards to 

the nature of the forest canopy at this site. It is important to note however, that given 

limited knowledge of the canopy characteristics, close agreement between the two depth 

traces was obtained, accurately simulating the ablation delay at this site relative to the 

OJP site. 
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Discussion 

Results of the SNOB AL simulations clearly indicate that on average, the 

snowcover energy balance within the boreal forest is either negative or close to zero for 

the winter months, becoming increasingly positive throughout the spring (Figure 15). 

The springtime energy gain is dominated by net radiation fluxes with negligible 

contributions from turbulent, soil heat and advected energy fluxes. This suggests that 

relatively large errors in calculated turbulent, soil heat and advected energy may not 

adversely affect the simulated snowcover results. Highly accurate canopy adjustment 

algorithms for wind speed, vapor pressure, and air temperature are probably not essential 

to accurately simulate snowcover deposition and ablation beneath boreal forest canopies, 

given the minor turbulent flux components. Simple adjustments for sub-canopy wind 

speed reductions, and the assumption that relative humidities beneath the forest canopy 

are equivalent to above-canopy relative humidities, are therefore acceptable for modeling 

sub-canopy snowcover dynamics. Analyses of above- and below-canopy air 

temperatures indicate that the sub-canopy air temperature is usually colder than the 

above-canopy air temperature. Other investigations concerning sites where sub-canopy 

air temperatures are not measured should consider the potential alteration of canopy 

covers on surface climate conditions. 

The minor contribution of soil heat flux during the winter and spring (Figure 15) 

suggests that the thermal characteristics of soils need not be considered in great detail for 

studies focusing on just the spring meltout. The larger soil heat flux contribution 

observed early in the snow season indicates that the thermal characteristics of boreal soils 

must be considered in detail for snowcover simulations containing the period of 

snowcover development. These investigations identified that the inherent SNOBAL 

assumption of a well-drained mineral soil is not applicable to all sites in the boreal 

regions, probably due to the presence of organic materials in the soil profile. The lower 

rate of heat conduction within boreal soils can be accounted for by using relatively 

shallow soil temperature measurements to provide a more accurate estimate of 
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temperatures at the base of the snowpack. SNOBAL could be improved by including 

parameters identifying basic soil characteristics of a site, in order to more accurately 

calculate soil heat fluxes. Such improvements are only necessary for investigations 

which include the development of a seasonal snowcover, or the periodic deposition and 

ablation of transient snowcovers. 

The relative importance of radiation in this environment, where the forest canopy 

acts as the primary control on radiation at the snow surface (Figure 15) indicates the 

necessity of accurate canopy adjustment algorithms for solar and thermal radiation. 

Adjustment algorithms which can be driven with forest parameters easily derived from 

GIS or remote sensing products are therefore necessary to complete spatially distributed 

snowcover model runs in the boreal environment. The five snowcover simulations 

indicate that simple cover class and zenith angle-dependent correction factors can be 

applied to open site radiation data to describe radiation regimes beneath forest canopies 

for snow cover modeling, assuming homogeneous covers. 

The close agreement between the measured and simulated snow depths (Figure 

16) in canopies where no sub-canopy radiation measurements were completed (i.e. NSA

OJP, NSA-YTH, and sub-canopy snow course locations) suggests that canopy optical 

parameters may be estimated from limited knowledge of canopy cover classification and 

height. Radiation transfer theory suggests that the canopy structure parameters (pt, td) 

may not need to be known with a high degree of accuracy, since canopies modulate the 

radiative input by re-emitting absorbed solar radiation as thermal radiation. Errors in the 

transmitted solar radiation will therefore be partially compensated by opposing errors in 

thermal emission, reducing the sensitivity of the calculated below-canopy radiation to the 

canopy parameters. 

The radiation adjustment algorithms used in these simulations are effective at the 

5 relatively homogeneous sites, however, these techniques may not be adequate for 

rigorous spatially distributed snowcover modeling, requiring a high degree of accuracy 

for all land cover classes. Geometric optical radiative transfer studies of conifer canopies 

clearly indicate that simple Beers-Bouger-Lambert Law adjustments to open site 

radiation data, do not accurately describe the transfer of solar radiation beneath sparse, 
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short, or highly discontinuous canopies (Ni et al., 1997). More accurate adjustment 

algorithms for solar radiation should therefore be driven by a minimum of species type, 

height, stem density, and crown dimensions, to accurately describe radiation beneath 

highly variable canopy types. Application of the general techniques developed for 

radiation adjustments in forests by Price (1997), will provide more accurate distributed 

radiation fields beneath highly variable canopies. 

The adjustments for solar radiation include a series of simplifying assumptions 

that may be corrected or improved. The adjustments used in these investigations 

assumed the canopy to be an isotropic absorber, with iLt constant at all sun angles. 

Empirical and modeling studies indicate that a greater proportion of radiation is 

transmitted at relatively low sun angles than would be predicted if the canopy were to act 

as an isotropic absorber, due to the horizontal orientation of the branch elements (Ni et 

al., 1997, Pomeroy and Dion, 1996). The adjustments used in these simulations are 

therefore expected to underestimate sub-canopy solar radiation at low solar elevation 

angles. Validation data suggest that this underestimation may not significantly affect the 

simulated snowcover dynamics at the five sites. This is because low incident solar 

energy and high snow albedoes at low sunangles render canopy transmission errors 

insignificant. Conversely, the canopy transmittance parameters were derived from mid

winter measurements, and may inherently account for increased transmittance at low 

sunangles, potentially causing transmittance at high sun angles to be overestimated. 

Snowcover radiative energy transfer in forested systems is also affected by the 

spectral properties of the incoming radiation and canopy elements. Conifer canopies 

strongly absorb radiation in the visible portion of the electromagnetic spectrum, while 

preferentially reflecting and transmitting near infrared (NIR) radiation. NIR radiation 

may also be enhanced at low solar elevation angles typical of the high latitude boreal 

environment. The near infrared snowcover albedo is less than the visible snowcover 

albedo. The adjustment algorithms do not account for the spectral alteration and 

increased absorption of radiant energy in the near infrared portion of the electromagnetic 

spectrum. The omission of canopy spectral properties in the adjustment algorithms may 

therefore result in the underestimation of snowcover net solar radiation. 
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Measured and simulated snow depth values suggest that systematic or significant 

adjustment inaccuracies discussed above may be negligible. Underestimates of net solar 

radiation due to spectral characteristics of the canopy and snowcover may cancel 

overestimates of transmitted radiation. Similarly, any potential errors in sub-canopy 

radiation may be compensated by estimated variations in the snowcover albedo resulting 

from debris deposition. It is important to note however, that any errors in the individual 

radiation components should not siginificantly affect the overall energy and mass balance 

analysis of the seasonal snowcover, due to the dominance of net radiation in this system. 

The simulated snowcover at all five sites completely ablates from 1 to 6 days later 

than the observed ablation dates, consistent with SNTHERM simulations at the SSA-OJP 

site (Hardy et al., 1997). The discrepancies in the results presented here may be due to 

inaccuracies in the canopy adjustment algorithms or approximate debris deposition 

functions. The snowcover albedo calculations also neglect the albedo decrease resulting 

from the solar radiation penetration of very shallow snowcovers, which may delay 

simulated melt. The calculation of turbulent energy exchange assumes a continuous 

snowcover, which may not be present prior to complete ablation at a given point. 

Violation of this assumption is likely to slow the simulated snowmelt, due to the inability 

of the turbulent transfer routines to simulate small scale advection of warm, relatively 

humid air masses from patches of bare ground (Shook and Gray, 1997). 

Ablation dates for the three SSA sites were very similar despite differing canopy 

structures. The differences between sites are reduced due to a greater quantity of SWE 

and taller canopy at the OA site, and a relatively short OBS canopy, which partially 

offsets the lower optical transmissivity of the denser canopy. The northern and southern 

OJP sites also ablate at approximately the same time, apparently due to shorter canopy 

heights in the NSA, which permit greater transmittance of solar radiation, relative to the 

taller SSA-OJP canopy. Complete ablation is delayed at the NSA-YTH site, despite 

larger canopy transmissivity values due to greater amounts of SWE deposited at this site. 

Comparisons between the various sites and canopy covers illustrates how both 

depositional patterns and variations in canopy structures interact to control the rate and 

volume of melt water delivery to a given site. 
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The results suggest that snowcover ablation in the boreal forest may be more 

sensitive to shifts in land cover patterns, which strongly affect snowcover radiative 

fluxes, rather than more subtle climate changes which may affect the relatively minor 

turbulent fluxes. In general, land cover changes toward more open and deciduous 

canopies will increase the rate of snowmelt delivery, and advance the date of complete 

ablation. Predicted climate shifts toward drier conditions may similarly advance the date 

of complete ablation, due to reduced total snowcover and sunnier conditions. Advances 

in snowcover ablation dates will consequently advance and extend the seasonal warming 

and drying of the boreal regions. Hydrologic and energy-balance studies of the boreal 

regions must therefore consider expected changes in both land-use and depositional 

patterns, due to the strong role each exerts in controlling seasonal changes in the surface 

energy balance of a region. 

The dominance of the radiative energy component of the snowcover energy 

balance beneath forest canopies illustrates the importance of high quality above- and 

below-canopy radiation measurements, both to develop quantitative descriptions of forest 

canopies and to drive energy balance snowcover models for hydrological analyses. To 

fully characterize the radiative transfer processes within forest canopies, detailed above-

canopy global solar, diffuse solar, and thermal measurements should be taken over a 

minimum of 1 annual cycle. These measurements should be coupled with below-canopy 

global and thermal radiation measurements at several times during the year, to analyze 

transfer processes at a full range of sun angles and canopy conditions. The addition of 

forest element (e.g. canopy, branch, trunk) surface temperatures can provide valuable 

information regarding the thermal radiative characteristics of canopies. Detailed 

radiation measurements within and above a variety of canopy types as in the BOREAS 

investigation, yields valuable information which improves the understanding of energy 

transfer processes for hydrologic investigations, and assists in the analysis of the 

potential effects of changing land cover patterns. 
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Conclusions 

The results obtained by these investigations indicate that net radiation dominates 

the snowcover energy balance during seasonal ablation, with soil heat, turbulent, and 

advective fluxes each comprising a minor proportion of the net energy exchange. Land 

cover type exerts the strongest control on the snowcover energy exchange processes by 

decreasing the solar radiation at the snow surface, enhancing thermal radiation, and 

decreasing the snowcover albedo through the deposition of fine organic debris. These 

canopy effects result in higher rates of meltwater release to soils beneath the deciduous 

canopy, relative to the mixed and conifer canopies. The deeper snowpack beneath the 

OA canopy extends the period of melt, such that complete snowcover ablation and soil 

warming begins at approximately the same time as beneath the OJP canopy. Although 

melt at the NSA sites began at the same time as the SSA sites, slower melt rates and 

deeper snowcovers beneath some canopies delayed complete meltout from approximately 

4 to 14 days after the SSA sites. Between site analyses of simulated snowcover processes 

indicate that potential changes in both land cover and climate must be considered for 

investigations concerning responses of the boreal ecosystem to altered climate conditions. 

The modeling results indicate that where high-quality below-canopy radiation 

data exist, simple canopy adjustment algorithms can be developed and applied to open 

site meteorological data to drive snowcover energy balance models. These results also 

demonstrate the effectiveness of the algorithms within a wide variety of canopy types, 

ranging from the highly transmissive OA canopy to the optically dense OBS canopy, by 

accurately representing snowpack deposition, and both the timing and rate of seasonal 

melt. The relative simplicity of the algorithms suggests that these techniques should be 

effective for distributed snowcover modeling. The canopy adjustments do not explicitly 

consider individual canopy elements, and may not be as effective for other land covers 

with significantly different structures. Canopy adjustment algorithms for rigorous 

spatially distributed snowcover simulations should therefore contain parameterizations 
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for tree species, height, dimension, and stem density relationships, while operating within 

a framework of commonly available spatial data products. 
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