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Abstract approved:

Recent advances in DNA vaccine technology has brought about a promising

strategy for the control of viruses that contain surface membrane glycoproteins. This type

of vaccine involves the intramuscular injection of a bacterial plasmid containing a gene

encoding a viral protein. The strategy uses eukaryotic processing of the protein as would

naturally occur during a viral infection. In this study, plasmid DNA encoding the

glycoproteins of infectious hematopoietic necrosis virus (pcDNA3-IHNV-g), snakehead

rhabdovirus (pcDNA3-SHRV-g), or spring viremia of carp virus (pcDNA3-SVCV-g) was

injected into the skeletal muscle of rainbow trout fry. At 30 days post-vaccination, fish

were challenged with IHNV. Protection against IHNV was observed among all DNA

vaccinated groups. Fish injected with plasmid pcDNA3-IHNV-g, pcDNA3-SHRV-g, or

pcDNA3-SVCV-g had relative survival rates of 93.2%, 98.3% and 94.9%, respectively.
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The mechanisms for the viral mediated resistance induced by these glycoprotein based 

DNA vaccines is unknown. A parallel study conducted by Dr. Carol Kim on the 

production of Mx proteins in these fish indicates that the observed protection might be a 

consequence of the stimulation of interferon. 
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CHAPTER 1
 
INTRODUCTION
 

Recent advances in DNA vaccine technology has brought about a promising 

strategy for the control of viruses that contain surface membrane glycoproteins. This type 

of vaccine involves the intramuscular injection of a bacterial plasmid containing a gene 

encoding a viral protein. The strategy uses eukaryotic processing of the protein as would 

naturally occur during a viral infection. 

Our lab has developed a glycoprotein based DNA vaccine for rainbow trout 

against infectious hematopoietic necrosis virus (IHNV) (Anderson, E.D. et a1.1996). The 

vaccine is composed of the bacterial plasmid pcDNA3 and the complete gene sequence 

for the glycoprotein of IHNV. As would occur during a normal viral infection, the 

glycoproteins are synthesized and incorporated into the plasma membrane. Part of the 

glycoprotein projects out of the infected cell, appearing as spikes observed through 

electron microscopy. 

Immunization experiments with this DNA vaccine followed by IHNV challenge 

produced relative survival rates of 75 percent or greater, even in fish as small as 0.3-0.4 g 

average weight (Anderson, E.D. et a/.1996). These findings were very encouraging and 

we assumed that protection was based on neutralizing antibodies specific for IHNV. 

However, studies within the last decade in mammalian systems have shown that viral 
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glycoproteins can stimulate the production of interferon which could be the basis for the 

protection (Ito, Y. 1994; Ito, Y. et al. 1994; Ito, Y. & Y. Hosaka, 1983). The results of the 

mammalian studies led to a model where viral glycoproteins, in general, can act as 

mitogens to stimulate lymphoid cells into producing interferon and subsequently leading 

to non-specific protection. This stimulation is based on a membrane-membrane 

interaction between lymphoid cells and cells containing the protruding transmembrane 

glycoproteins. 

On the basis of this model, we sought to examine the specificity of the IHNV 

response induced by the IHNV DNA vaccine by treating fish with several different 

plasmid vectors containing glycoprotein genes from different rhabdoviruses. In this 

study, we present evidence that glycoprotein-based DNA vaccines induce an immune 

response that protects trout through production of non-specific factors. All of the 

glycoprotein vaccines in the test group provided protection against IHNV infection. 

Plasmid DNA encoding the glycoproteins of IHNV (pcDNA3-IHNV-g), SHRV 

(pcDNA3-SHRV-g), or SVCV (pcDNA3-SVCV-g) was injected into the skeletal muscle 

of rainbow trout fry. After 30 days, the fish were challenged with IHNV. Results clearly 

indicated that the glycoproteins of these different viruses all induced a protective immune 

response in fish. The mechanisms for the viral mediated resistance induced by these DNA 

vaccines is unknown, but a parallel study conducted by Dr. Carol Kim, who examined the 

production of Mx proteins in these fish, suggests that the protection observed might be a 

consequence of the stimulation of interferon. 
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CHAPTER 2
 
LITERATURE REVIEW
 

Rainbow trout, Oncorhynchus mykiss, is a member of the family Salmonidae and 

is an important aquaculture food product worldwide. Europe, Japan, South America, and 

the United States are the major producers of farmed reared trout (Parsons, J. 1998). In 

1997, the United State Department of Agriculture reported $78 million worth of trout 

sold (Aquaculture Magazine Buyer's Guide 1998). There are 18 states that commercially 

farm trout and in 1997, Idaho was the leading producer with 75% of the United States 

production (Trout Production report, 1997) 

The success of trout farming can be attributed to the ease in which trout can be 

cultured in a variety of captive environments. But as in any situation where animals are 

placed in high-density regimes, susceptibility to infectious diseases is a devastating 

problem. In the United States, approximately 5 million pounds of trout during 1997 were 

lost to disease (Aquaculture Magazine Buyer's Guide 1998). Clearly, the trout industry 

must develop control strategies for disease at trout rearing facilities. Efforts to develop 

an understanding of the trout immune system and to use this understanding to develop 

better vaccines are important for the industry. 

DNA Vaccines for Fish Aquaculture 

The goal of any vaccine is the stimulation of an immune response that resolves 

infection and provides long lasting protection. In mammals, this primarily involves the 

activity of B and T lymphocytes and subsequently, the production of antibodies (humoral 
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response). In addition, vaccines prime immune cells such as cytotoxic T lymphocytes, 

natural killer cells, and macrophages (cellular response). 

For the past 100 years, vaccine development has been limited to vaccines 

consisting of live-attenuated virus, killed virus, or purified viral protein (subunit 

vaccines). Most recently, advancements in vaccine technology introduced the DNA 

vaccine. This type of vaccine involves the intramuscular injection of a bacterial plasmid 

containing a gene of an appropriate viral protein. This strategy enables eukaryotic 

processing of the protein as would naturally occur during a viral infection. The advantage 

of DNA vaccines is the stimulation of both humoral and cellular immune responses 

(Donnelly, J.J. et al. 1997). DNA vaccines not only induce the production of antibodies 

but also stimulate cytotoxic T cells and helper T cells, which can be regarded as 

necessary components of a truly effective vaccine (Leung, K.N. & Ada, G.L. 1982; 

Taylor, P.M. & Askonas, B.A. 1986). 

With regard to fish aquaculture, the ability of a vaccine to provide protection is 

not sufficient. Other factors such as route of administration, protection against 

heterologous strains, safety, and expense contribute to the difficulties in the development 

of effective vaccines for high-density fish farming. Cost effectiveness is the number one 

issue. Typically, the production of a viral vaccine is expensive and any requirement for 

the administration of the vaccine to individual fish can dramatically heighten costs to the 

fish farmer. In many cases, the expense of replacing the diseased fish is less costly than 

administrating a vaccine. 

If DNA vaccines are to become a viable alternative in aquaculture it is necessary 

to overcome the cumbersome task of individual inoculations, which is labor intensive and 
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difficult to administer to small fish. Although laboratory experiments show that DNA 

vaccines are very effective and rather inexpensive to produce, unless an easy vaccination 

procedure is developed, the adoption of a fish DNA vaccine is uncertain. 

Fish Immune System 

Our understanding of the immune system in fish is not as extensive as it is for the 

mammalian immune system. Nevertheless, we can point out the important differences 

between the immune response in fish versus mammals. One of the most conspicuous 

differences is the tissue location of the progenitor cells. In mammals, all of the cellular 

elements of blood arise from hematopoietic stem cells in the bone marrow. There is no 

bone marrow in fish and the hematopoietic stem cells are believed to reside in the 

anterior portion of the kidney. Also, fish do not possess lymph nodes. The spleen, liver, 

and kidneys are the primary organs in fish where substances are eliminated from the 

blood. Regardless of this difference, the immune components in the circulating blood of 

fish are basically the same as in mammals. Granulocytes and macrophages are present in 

fish and function in a similar manner. In addition, fish contain sub-populations of "1

and "B" lymphocytes, although specific markers for these distinct cell types have not 

been identified. Components of the non-specific defense system such as complement and 

interferon have also been described in fish. These components appear to perform the 

equivalent functions as those described in mammals. 
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Fish Antibody 

In comparison to mammals, the fish acquired immune response is quite restricted. 

Fish do produce an antigen-specific antibody response; however, the response is directed 

towards fewer epitopes on complex molecules and there does not seem to be a 

progression in the antibody response to yield antibodies with tighter binding affinities. 

There appears to be a secondary antibody response in fish, which would confirm the 

presence of memory cells (Kaattari, S.L. 1994). The magnitude of the secondary response 

is not logarithmic and is dramatically lower than in mammals There is also no 

substantive evidence for isotype switching. (Lobb & Olson, 1988; Killie et al., 1991) 

The absence of affinity maturation is striking and may be due, in part, to the fact that fish 

only produce a single class of tetrameric IgM like immunoglobulin. The humoral 

response in fish is also considerably slower than in mammals and is temperature 

dependent. 

Within the last decade, researchers have identified the cDNA sequences for 

major histocompatibility complex (MHC) class II 13, class II a, and 132 microglobulin 

(132m) genes in teleost fish (Godwin, U.B. et al. 1997; Antao, A.B. et al. 1997). 

Additional studies have detected 132m on periphereal blood lymphocytes (PBL) as well as 

on clonal B and T cell lines of catfish (Antao, A.B. et al. 1997). Also, the T cell receptor 

in teleost fish has been described (Hordvik, I. et al. 1996). These discoveries would 

indicate that although there are some structural differences in the components of the fish 

immune system, the function and immunological pathways leading to protection are 

similar to that in the mammalian system. 
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Fish Cellular Immune Response 

The key cells in the non-specific cellular immune response in fish are 

granulocytes and monocytes/macrophages. In mammals, granulocytes are comprised of 

three distinct cell types: eosinophils, neutrophils, and basophils. Neutrophils are present 

in teleost fish, but whether the other two cell types are present has not been clearly 

determined (Ellis, A.E. 1977; Ainsworth, A.J. 1992). The functional role of mammalian 

macrophages is the elimination of invading microorganisms by phagocytosis, and this 

role is no different in fish. These macrophages are located in most tissues and are present 

as monocytes in circulating blood. Macrophages also play an enormous role in the 

specific cellular response by regulating T and B cell function (Seljelid R. & T. Eskeland, 

1993). One population of cells that are regulated by macrophage activity is the cytotoxic 

T cells. These cells are involved in killing targeted cells in a specific manner by 

recognizing antigen in the context of MHC class I. Even though these cells have been 

well documented in fish, the nature and development of these cells is undefined because 

of the difficulties in efficiently thymectomizing fish at early developmental stages 

(Partula, S et al. 1995). 

Interferon 

The host responds in many ways to a virus infection. One response is the 

production of interferons (IFN). Interferon are proteins that inhibit virus replication by 

inducing a series of antiviral and other proteins which can block the spread of virus to 

uninfected cells by controlling cellular regulation (White, D. 1994) (Janeway, C. 1996). 
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The interferon released from a virus-infected cell binds to specific receptors on the 

plasma membrane of neighboring cells and its original host cell and up-regulates the 

expression of over 20 cellular genes called interferon-regulated proteins. These proteins 

can directly or indirectly interfere with viral replication. In mammals, there are two types 

of interferon (Stewart, W.E. 1980). Both function in a similar manner, but are structurally 

and genetically dissimilar and bind to different receptors. Type I interferons includes 

IFN-a and IFN-13. These interferons are produced by leukocytes and fibroblasts 

(Alexander, J.B. and G.A. Ingram 1992). Type II interferon is called IFN-y and is 

produced by T-lymphocytes (Kiener, P.A. & Spitalny, G.L. 1987). This type of 

interferon, which is considered a cytokine, activates immune cells such as natural killer 

cells and macrophages. IFN-y is also known to control the expression of MHC class I and 

class II genes and was discovered to be a macrophage activating factor, (MAF) 

(Alexander, J.B. & Ingram, G.A. 1992). 

Even though the gene for any interferon protein has not been successfully cloned 

from fish, there have been many studies indicating that fish cells have interferon activity. 

The first demonstration of interferon activity in fish was shown in 1965 when Gravell and 

Malsberger observed the inability of infectious pancreatic necrosis virus to replicate in a 

fathead minnow (Pimephales promelas) culture cell line (Gravell, M. & Malsberger, R.S. 

1965). Many other studies have been conducted on rainbow trout that were 

experimentally infected with viral hemorrhagic septicemia virus (VHSV) (De Kinkelin, 

P. & Dorson, M. 1973; Dorson, M. et al. 1975) and on rainbow trout cell lines (DeSena, 

J. & Rio, G.J., 1975; Okamoto, N. et al. 1983; Graham, S. & Secombest, C.T. 1988). 



9 

It has not been possible to precisely determine what types of interferons are 

produced by fish. DNA hybridization experiments using probes from human DNA 

interferons suggest that fish possess IFN-p but not necessarily IFN-a (Wilson, V. et al. 

1983). Also, experiments using rainbow trout leukocytes stimulated with the mitogen 

concanavalin A secrete a soluble MAF which is characteristic of IFN-y (Graham, S. & 

Secombes, C.J. 1990). Until a fish interferon gene is cloned, there can be no definitive 

statement on fish interferons. 

Viral Pathogens 

In 1898, Martinus Beijerinck, who repeated the experiments of Dimitrii 

Ivanovsky, showed that a filterable agent separable from bacteria could cause disease, 

and introduced the term "virus". Since that first discovery, the number of viruses that 

have been described has increased. The viruses have since been classified into two main 

groups, DNA and RNA viruses. Viruses have been discovered and isolated from infected 

hosts of every Kingdom, and have been shown to infect nearly every cell type within 

multi-cellular organisms. In the late 1950's it was discovered that viruses were important 

pathogens of fish, and IHNV and IPNV were described. Since then, over 75 different 

viruses that infect fish have been isolated and partially characterized. Of these, one 

important family is Rhabdoviridae. 
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Taxonomy 

The family Rhabdoviridae is comprised of viruses that infect invertebrates, plants, 

and animals Included in the family is an important human pathogen, rabies. The 

taxonomic structure of the family consists of 5 genera: Vesiculovirus (Vesicular 

stomatitis virus), Lyssavirus (Rabies serogroup), Ephemerovirus, Cytorhabdovirus, 

Nucleorhabdovirus, and a newly designated genus, Novirhabdovirus. The classification 

is based on serological cross reactivity and N gene similarity. 

Rhabdoviruses of fish 

Infectious hematopoietic necrosis virus (IHNV), Spring viremia of carp virus 

(SVCV), Viral hemorragic septicemia virus (VHSV), Hirame rhabdovirus (HIRRV), and 

Snakehead rhabdovirus (SHRV) are the only fish rhabdoviruses for which sequence 

information is available. 

Previously, SVCV had been considered as most closely related to vesiculoviruses 

and VHSV and IHNV as most closely related to lyssaviruses (Hill, B.J. 1975). More 

recent studies comparing the glycoprotein sequence from SVCV, IHNV, VHSV, and 

HIRRV with other rhabdoviruses indicated that the relationships might be different. 

While SVCV is more closely related to vesiculoviruses, the other three fish rhabdoviruses 

are most closely related to each other and do not group with any of the mammalian virus 

glycoprotein genes (Bjorkland, H.V. et al. 1996). This and other genetic similarities 

based on the NV gene have led the Rhabdoviridae study group to petition the 

International Committee on the Taxonomy of Viruses (ICTV) for the adoption of a new 
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genus, Novirhabdovirus (Walker, P. 1998). The genus will contain HIRRV, IHNV, and 

VHSV, and the prototypic member will be IHNV. 

Genomic Structure 

A rhabdovirus virion contains a single-stranded, negative sense RNA genome that 

makes up approximately 2% of the virion weight. The genome typically encodes five 

structural proteins: nucleoprotein (N), polymerase (L), phoshoprotein (P), matrix protein 

(M), and glycoprotein (G). However, there are several genera in the family 

Rhabdoviridae that have genomes encoding six and seven genes (Bjorkland, H.V. et al. 

1996). IHNV, for example, contains an additional gene that encodes a nonstructural 

protein (NV) whose function remains unknown. Similarly, the Ephemeroviruses also 

contain an additional gene, which is nonfunctional. 

Morphology 

The virion of most rhabdoviruses has an average size of 170 x 70nm and a distinct 

bullet shape morphology that is hemispherical at one end and planar at the other end. 

The virion is enclosed by a lipid bilayer envelope, which is obtained when the virus buds 

through the plasma membrane of the infected host cell. Glycoprotein peplomexs 

surround the helical wound nucleocapsid and protrude through the lipid envelope. The 

matrix proteins are located on the inner side of the envelope and have been shown to 

interact with both the N and G proteins. 
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Infectious hematopoietic necrosis virus 

IHNV is a viral pathogen of salmonid fishes. It is enzootic to Western North 

America but has spread throughout countries of the Northern Pacific Rim and Europe by 

the movement of infected fish and eggs (Winton, J.R. 1991). Young fish are the most 

susceptible to disease and resistance increases with age, where adults tend to be lifelong 

carriers. Extensive mortality is seen in hatchery reared fry where losses due to disease 

can exceed 90% (Leong, J.C. et al. 1988). 

The first report of this viral disease was in 1953 in sockeye salmon 

(Oncorhynchus nerka) at two fish hatcheries in the state of Washington, USA (Rucker, 

R.R. et al. 1953). In 1958, a similar viral disease was isolated from juvenile sockeye 

salmon at the Oakridge Salmon Hatchery, Oregon. The virus was propagated in cell 

culture and was given the name Oregon Sockeye Virus (OSV). In the same year, chinook 

salmon (Oncorhynchus tshawytscha) fry at hatcheries along the Sacramento River in 

California were infected with a similar viral disease and was named Sacramento River 

Chinook Disease (Ross, A.J. et al. 1960; Parisot, T.J. & J. Pelnar 1962). Finally in 1967, 

rainbow trout and sockeye salmon in British Columbia, Canada were reported to have a 

viral disease, which revealed extensive necrosis of the hematopoietic tissue of the 

anterior kidney and spleen. This disease was named infectious hematopoietic necrosis 

disease (Amend, D.F. et al. 1969). The viruses isolated from all of these geographic 

regions showed the same bullet shape morphology as seen by electron microscopy, the 

same mortality rate and pathology in diseased fish, and the same cytopathic effect on 

cultured cell lines. It was proposed that the same virus caused these geographically 

distinct diseases and Amend and Chambers declared the common name, IHNV, inl 970. 
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Salmonids Susceptible to IHNV are sockeye salmon, chinook salmon, rainbow/ 

steelhead trout and Atlantic salmon (Salmo salar), while coho salmon (Oncorhynchus 

kisutch) appear to be resistant (Fryer, J.L. et al. 1996). Brown trout (Salmo trutta) and 

cutthroat trout (Oncorhynchus clarki) have been experimentally infected. The route of 

infection is probably through the gills, skin, (Yamamato et al. 1992; Drolet et al. 1995; 

Lapatra et al. 1989) and gastrointestinal tract. Transmission of IHNV occurs both 

horizontally and vertically. Traxler in 1993, demonstrated transmission in water from 

infected spawning adults to uninfected fry. Also, IHNV has been demonstrated to have 

high affinity binding for salmon sperm (Mulcahy, D. & R.J. Pascho, 1984) and that 

IHNV-infected cells are present in the ovarian fluid (Mulcahy & W.N. Batts, 1987). 

Like most virus diseases, there is a characteristic pathology. External clinical 

signs of disease include abdominal distention, exopthalmia, and darkened coloration of 

the body, hemorrhaging throughout the musculature and at the base of fins, fecal casts, 

and lethargy. Internally, the liver, spleen, and kidney appear pale and the stomach and 

intestine are filled with a milky or watery fluid (Fryer, J.L et al. 1996) 

Spring viremia of carp 

Spring viremia of carp (SVC) is a disease among cultured cyprinid fishes. The 

virus Rhabdovirus carpio or more commonly referred to in the literature as SVC virus 

(SVCV) causes this disease. The disease is most serious in Europe and the Soviet 

Republics where cyprinid aquaculture is intense. Carps are the primary fishes that are 

infected. This includes crucian carp (Carassius carassius), grass carp (Ctenopharyngon 

idella), bighead carp (Hypophthalmichthys molitrix), and silver carp (Aristichthys nobilis) 
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(Fijan, N. 1993). Natural infection and subsequent mortality have also been observed in 

other fish such as the fry of sheatfish (Silurus glanis). Also, experimental infections 

induced by injection or immersion have been shown in pike (Esox lucius) and guppies 

(Poecilia sp). SVCV is not pathogenic for rainbow trout (Haenen, OLM, & A. Davidse 

1993) and goldfish (Carassius auratus) appear to be resistant to infection. 

Both juvenile and adult fish are susceptible to disease but once infected, fish are 

not subject to reinfection (Fijan et al. 1971; Wolf, 1988). Ambient water temperature 

plays an important role in the incubation and progression of the disease (Avtalion, R.R. 

1969; Cone, RE. & J.J. Marchalonis, 1972). Outbreaks of disease primarily occur during 

April through June when water temperatures are commonly between 11 and 17°C. It is 

thought that the lower water temperatures have a marked effect on antibody production, 

which increases the susceptibility to SVCV (Cone & Marchalonis, 1972). 

Clinical signs of fish affected with SVCV include exopthalmia, petechial 

hemorrhages of skin and gills, abdominal distention, and trailing pseudofecal casts 

(Fryer, J.L et al. 1996) 

Snakehead rhabdovirus 

SHRV was first isolated in 1986 from Snakehead fish (Ophicephalus striatus) in 

Thailand (Wattanavijarn, W. 1986). The virus is enzootic to Southeast Asia and is 

associated with, but is not necessarily the causative agent of an ulcerative disease in both 

wild and cultured Snakehead fish (Boonyaratpalin, S. 1989). Even though the 

rhabdovirus has been frequently isolated from snakehead that show clinical signs of the 
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ulcerative disease, laboratory challenge with a characterized SHRV isolate did not induce 

disease (Frerichs et al. 1993). 

SHRV has bacilliform morphology, which is more characteristic of plant 

rhabdoviruses (Kasomchandra, J. et al. 1992). On the other hand, sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) protein profiles closely resemble that of 

IHNV, VHSV, HRRV, and rabies (Kasomchandra, J. et al. 1992). 

Rhabdovirus Glycoproteins 

The glycoproteins (G protein) of rhabdoviruses, are homotrimeric trans

membrane-associated proteins that appear as spikes on the surface of the virion (Gaudin, 

Y. et a/.1992). These spikes are responsible for the initiation of infection, facilitate the 

fusion of the endocytic vesicle membrane with the viral envelope, and effect the process 

of budding and release of the virion by exocytosis (Burger, S.R. et al. 1991; Gaudin, Y. et 

a/.1992; Coll, J. 1997;Xiang, Z. et al. 1994). 

Glycosylation is important for proper folding, transport, and function of the G 

protein (Burger, S.R. et al. 1991). Synthesis of the G protein in the host cell follows the 

typical pathway of cellular membrane proteins via exocytosis. The addition of sugar 

moieties is N-linked and in rabies accounts for 10% of the final mass of the protein 

(Reading, C.L. et al. 1978). Failure to properly glycosylate the G protein inhibits 

transport to the plasma membrane of the infected cell. Rabies has three possible acceptor 

sites for glycosylation of which two are glycosylated (Wunner, W.H. et al. 1985). This 

pattern of glycosylation is typical of Rhabdoviruses. Studies on VSV indicate that 

glycosylation at both sites is necessary for transport (Bergmann, J.E. et al. 1981). In all 
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rhabdoviruses studied, the basic structure of the G protein is highly conserved (Coll, J.M. 

1995). 

Rhabdoviral glycoproteins initiate infection 

Rhabdoviral glycoproteins act as the ligand that targets cell receptors foithe 

initiation of infection. Previous studies have shown that certain phospholipids inhibit the 

attachment function of rabies and VSV (Conti, C. et al. 1988; Mastromarino, P. et al. 

1987). The phospholipid, phosphatidylserine, strongly inhibits the attachment and 

infection of VSV and VHSV by binding to a site on the amino terminal end of the 

glycoprotein (Coll, J. 1997). The phosphatidylserine-binding domain has also been 

shown on the glycoproteins of IHNV as well. Studies on the rabies virus indicate that an 

amino acid substitution at arginine-333 of the glycoprotein abrogates virulence 

(Dietzschold et al. 1983), indicating that the glycoprotein is an important controlling 

factor for the initiation of infection. 

The effects of pH on Rhadboviral glycoprotein 

Rhabdovirus glycoproteins are profoundly affected by pH. In order for the virus 

nucleocapsid to enter the cytoplasm of the target cell, it is necessary for the virion to be 

endocytosed where the glycoprotein and membranes of the virion and the endocytic 

vesicle fuse. It is well established that this interaction is highly dependent on pH 

(Gaudin, Y. et al. 1995; Brown, J.C. et al. 1988). During acidification in the endocytic 

vesicle of a rabies infection, a pH 6 changes the conformation of the glycoprotein of 
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rabies to an activated state, which initiates the fusion process (Gaudin, Y. et al. 1993; 

Konieczko, E.M. et al. 1994). Studies on VSV show that a lower pH aggregates the 

glycoproteins to the ends of the virion, which may be the preformed sites for the fusion 

process (Brown, J.C. et al. 1988). Unlike other viral families, the fusion properties of 

rhabdoviruses appear to be reversible where the loss of fusion activity at low pH can be 

reinstalled by bringing the pH to 7 (Gaudin, Y. et al. 1995). 

Rhabdoviral glycoproteins augment budding 

During the final stages of the replication cycle of rhabdoviruses, the 

transmembrane glycoprotein spikes target the host plasma membrane where the N-

terminus protrudes outside the membrane and the C-terminus is located on the inside as 

an anchor. Matrix proteins of the viral core target the glycoproteins in the plasma 

membrane and budding occurs (White, D.O., and F.J. Fenner 1994; Duffer, P. et al. 

1995). This process is called exocytotic budding. The induction of the budding process 

is totally dependent on the glycoproteins for hepadnaviruses and alphaviruses (Bruss, V. 

and D. Ganem 1991). The glycoprotein of rabies was also believed to have a similar role 

but in 1996 Mebatsion showed that the rabies virus was able to bud from infected cells in 

the absence of the spike glycoproteins (Mebatsion, T. et al. 1996). These studies 

indicated that the budding process of rhabdoviruses is not dependent on the presence of 

the glycoproteins. Even though the glycoproteins do augment the ability to bud, they are 

not absolutely dependent on the spike glycoproteins. Currently, it appears that the 

budding process for rhabdoviruses is more dependent on the interactions of the M protein 

of the virus with the plasma membrane proteins of the infected target cell. 
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Viral glycoproteins induce neutralizing antibodies 

The glycoproteins of rhabdoviruses are also capable of stimulating an immune 

response in the organisms they infect. Glycoproteins of all rhabdoviruses, whose 

immuni7ation properties have been examined, are the only major structural protein that 

stimulates neutralizing antibodies (Benmansour, H. et al. 1991; Kelly, J. et al. 1972). 

Immunoblotting and enzyme-linked immunosorbant assays (ELISAs) of antisera from 

rainbow trout surviving an infection of IHNV show that these fish produce binding 

antibodies to the glycoprotein. They also produce neutralizing antibodies to the 

glycoprotein, which subsequently helps protect fish from the lethal effects of IHNV 

infections (Ristow, S.S. & J. Arnzen de Avila 1991; Lapatra, S. et al. 1993; Engelking, 

M. & J.C. Leong 1989). Similarly, rainbow trout injected with plasmid vectors 

containing the glycoprotein of IHNV generated glycoprotein specific antibodies that 

neutralized IHNV (Anderson, E.D. et al. 1996). Research on rabies also shows virus-

neutralizing antibodies to the rabies glycoprotein. When rabbits and mice are injected 

with a vaccinia-rabies glycoprotein recombinant virus, neutralizing antibodies in the sera 

are detected and these animals are protected from subsequent challenge of rabies (Wiktor, 

T. et al. 1984). In addition to neutralizing antibodies, research from Ertl's group has 

shown that intramuscular injection of a plasmid vector containing the glycoprotein gene 

of rabies in mice induces glycoprotein-specific cytolytic T-cells and lymphokine

secreting T-helper cells (Xiang, Z. et al. 1994). The glycoprotein of VHSV is also the 

target of neutralizing antibodies in fish. Neutralizing antibodies specific for VHSV 

glycoprotein are detected from sera of rainbow trout that are injected intraperitoneally 
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with a VHSV-glycoprotein recombinant subunit vaccine (Lecocq- Xhonneux, F. et al. 

1994). 

The glycoproteins of viruses also induce stimulation or inhibition of host cellular 

functions. When purified VSV glycoprotein is placed onto Syrian hamster kidney 

(BHK21-F) cell monolayers, an early inhibition of macromolecular synthesis was 

observed. Specifically, there was a decline in the incorporation of nucleosides into 

cellular DNA and RNA (McSharry, J.J. & P.W. Choppin 1978). Similarly, an inhibition 

of cellular RNA synthesis was observed in murine lymphoma cell lines (EL4) in the 

presence of isolated glycoproteins of disrupted mumps virus (Yamada, A. et al. 1984). 

Glycoproteins induce interferon 

As described earlier, interferon is an antiviral protein that is produced in animals 

and cells when there is a viral infection. It is well known that virus nucleic acid, 

especially double-stranded RNA, induce the production of interferon. Furthermore, 

studies mimicking virus nucleic acid by using synthetic homopolymers such as 

polyriboinosinic-polyribocytidylic acid (poly I:C), has confirmed the production of an 

interferon-like cytokine in fish (Congelton, J. & B. Sun, 1996; Eaton, W.D. 1990;). 

While dsRNA is the best-understood inducer of interferon, it has been shown that 

viral glycoproteins also induce interferon. Many studies by Yasuhiko Ito have described 

this phenomenon. In one experiment, mouse spleen cells that were cocultured with 

primary monkey kidney cells (PMK cells) infected with formaldehyde treated human 

parainfluenza type 4A (HPIV-4A) virus produced interferon. This finding suggests that a 

double-stranded RNA intermediate of virus infection was not required to induce 
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interferon production. Similarly, a recombinant plasmid containing the sequence of 

hemagglutinin-neuraminidase (HN) glycoprotein transfected into COST cells and 

cocultured with mouse spleen cells produced interferon (Ito, Y. et al. 1994). In another 

experiment, Ito showed, in vitro, that contact of isolated HN glycoproteins of Sendai 

virus with the cell surface of mouse spleen cells stimulated the production of interferon. 

Each of these experiments provides evidence that viral glycoproteins are capable of 

stimulating lymphoid cells into synthesizing interferon. The model for this stimulation of 

interferon production is a membrane-membrane interaction between the lymphoid cells 

and the cells protruding glycoproteins. Ito proposes that virus glycoproteins act as lectins 

similar to concanavalin A and phytohemagglutinin, which have mitogenic properties that 

induce interferon in lymphoid cells (Ito, Y. 1994). 

Mx proteins 

One class of regulated proteins that are induced by interferon is the Mx proteins. 

All Mx proteins contain a conserved guanosine triphosphate (GTP)- binding domain, 

which is essential to their functional activity (Bourne, H.R. et al. 1991; Nakayama, M. et 

al. 1991; Pavlovic, J. et al. 1990). Located either in the nucleus or the cytoplasm, they 

appear to act directly by GTP- binding activity on the viral polymerase and/or indirectly 

by modifying cellular functions along the replication pathway of some viruses during an 

infection (Pavlovic, J. et al. 1993; Horisberger, M.A. 1995). In mice, the mRNA 

synthesis of influenza virus is inhibited by Mxl within the nucleus of infected cells 

(Staeheli, P. 1986). Similarly in humans, MxA proteins located in the cytoplasm inhibit 

the cytoplasmic replication steps of VSV at the transcription level (Horisberger, M.A. 
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1992). The conferred resistance is thought to be the result of the direct interaction of 

GTPase activity on the viral polymerase (Pavlovic, J. et al. 1993). 

These proteins have also been shown to have intracellular anti-viral activity in 

other vertebrate cells. For example, expression of murine Mxl inhibits the 

orthomyxoviruses, Thogoto virus, and Dhori virus (Haller, 0. et al. 1995; Thimme, R. et 

a/. 1995). The MxA in humans has antiviral activity against bunyaviruses, phleboviruses, 

and hantaviruses (Frese, M. et al. 1996). Mx-like proteins have been identified in a 

number of vertebrates as well as fish (Rothman, J.H. et a/. 1990)(Trobridge, G.D. et al. 

1997). Our lab has previously described the presence of Mx proteins in rainbow trout 

injected with poly I:C. Under these conditions, the synthesis of Mx is induced following 

IHNV vaccination or infection. This induction could be an indicator that an interferon-

like protein is produced in fish. 
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Introduction 

The recent advances in DNA vaccine technology allows for a great strategy in the 

control of viruses that contain surface membrane glycoproteins. This type of vaccine 

involves the intramuscular injection of a bacterial plasmid containing a gene encoding a 

viral protein. This strategy enables eukaryotic processing of the protein as would 

naturally occur during a viral infection. The advantage of DNA vaccines is the 

stimulation of both humoral and cellular immune responses (Donnelly, et al. 1997). 

DNA vaccines not only induce the production of antibodies but also stimulate cytotoxic T 

cells and helper T cells, which can be regarded as necessary components of a truly 

effective vaccine (Leung, K.N. & G.L. Ada, 1982; Taylor, P.M. & B.A. Askonas, 1986). 

There have been many recent studies that show glycoprotein based DNA vaccines 

stimulate these kinds of immune responses in the hosts that receive them (Anderson, E.D. 

et cd.1996; McClements, W.L. et al. 1996; Xiang, Z.Q. et al. 1994; Manickan, E. et al. 

1995; Xu, D. & F.Y. Liew, 1995; Cox, G.J.M. et al. 1993; Bourne, N. et al. 1996). 

Our lab has developed a glycoprotein based DNA vaccine for rainbow trout 

against IHNV (Anderson, E.D. et al. 1996). Immunization experiments followed by 

IHNV challenge produced relative survival rates of 75 percent or greater, even in fish as 

small as 0.3-0.4 g average weight. These findings were very encouraging and we 

assumed that protection was specific for IHNV. Earlier studies by Anderson et al. 1996 

had shown that fish injected with the DNA vaccine do produce neutralizing antibodies to 

IHNV at eight weeks post vaccination. However, Yasulnico Ito had shown that viral 

glycoproteins could stimulate the production of interferon, which could be the basis for 

the protection. According to Ito, viral glycoproteins, in general, can act as a mitogen to 
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stimulate lymphoid cells into producing interferon. This stimulation is based on a 

membrane-membrane interaction between the lymphoid cell and the cell containing the 

protruding transmembrane glycoprotein (Ito, Y. 1994; Ito, Y. et al. 1994; Ito, Y. & Y. 

Hosaka, 1983). We sought to examine the specificity of the IHNV response induced by 

the IHNV DNA vaccine by treating fish with several different plasmid vectors containing 

glycoprotein genes from different rhabdoviruses. 

In this study, we present evidence that glycoprotein based DNA vaccines injected 

into rainbow trout induce an immune response which is similar to that described by Ito. 

All of the tested glycoprotein vaccines provided non-specific protection against IHNV 

infection. Plasmid DNA encoding the glycoproteins of IHNV (pcDNA3-IHNV-g), 

SHRV (pcDNA3-SHRV-g), or SVCV (pcDNA3-SVCV-g) was injected into the skeletal 

muscle of rainbow trout fry. After 30 days, the fish were challenged with IHNV. Results 

clearly indicate that the glycoproteins of these different viruses all induced a protective 

immune response in fish. The mechanisms for the viral mediated resistance induced by 

these DNA vaccines is unknown, but a parallel study conducted by Dr. Carol Kim, who 

examined the production of Mx proteins in these fish, suggests that the non-specific 

protection observed might be a consequence of the stimulation of interferon. 
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Materials and Methods 

Cell line and virus 

The chinook salmon embryo (CHSE-214) cell line was obtained from J.L. Fryer, 

Oregon State University, Corvallis. These cells were propagated in minimum essential 

medium (MEM) supplemented with 10% fetal bovine serum, 1% antibiotic-antimycotic 

(GibcoBRL; 10,000 units/ml penicillin G sodium and 10,000 µg/ml streptomycin sulfate 

and 25 µg/ml of amphotericin B), 1% 200 mM L-glutamine, and buffered with 7.5% 

sodium bicarbonate to pH 7.4. 

The IHNV isolate (IHNV-RA) used in this study was obtained from Rangen 

Research Laboratories, Idaho, USA. Virus was propagated in CHSE-214 cells grown in a 

ten-layer cell factory (Nunc Company) at a multiplicity of infection of 0.01 at 16°C. At 

Day 7 complete cytolytic effect (CPE) was confirmed by microscopy and the culture 

fluid was harvested and centrifuged in a sorvall GS-3 rotor at 10,825 x g for 30 minutes 

at 4°C. The Supernatant was then filtered through a 0.2 gm bottle top filter (Schleicher 

& schvell), alloquoted, and stored in -80°C. 

Plaque assay 

Virus titer was determined by plaque assay (Burke, J.A. and D. Mulcahy 1980). 

A sub sample taken from -80°C was thawed and 10 fold serial dilutions were performed 

in MEM media. Dilutions were plated onto CHSE-214 monolayers in six well plates and 

incubated for one hour by hand rocking the plates every ten minutes. After incubation, 3 
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mis of methylcellulose were placed over the monolayers and incubated for 10 days in 6% 

CO2 at 16°C. At day 10, cell monolayers were fixed and stained with crystal violet in 

formalin (25% formalin, 10% ethanol, 5% acetic acid, 1% w/v crystal violet) for 24 

hours. Cell monolayers that contained between 25-250 plaques were used to determine 

virus titer. IHNV-RA strain was determined to be 1.24 x 108 pfu/ml. 

Plasmid constructs 

Plasmid vectors encoding the glycoprotein gene sequences of IHNV, SHRV, and 

SVCV were constructed for this experiment. All of these glycoprotein gene sequences 

were previously cloned in our laboratory. The gene for the glycoprotein of IHNV 

(IHNV-g) was originally cloned into the plasmid pCMV. The glycoprotein genes of 

SHRV (SHRV-g) and SVCV (SVCV-g) were originally cloned into the plasmid 

pcDNA3. IHNV-g was removed from pCMV by restriction enzyme digest and inserted 

into pcDNA3 by ligation. DNA sequencing of the first 400 nucleotides verified correct 

nucleotide sequence and orientation. In vitro translation of the plasmids pcDNA3-IIINV

g, pcDNA3-SHRV-g, and pcDNA3-SVCV-g determined the correct protein product. 

Amino acid sequence analysis 

Glycoprotein amino acid sequences of IHNV, SHRV, and SVCV were compared 

for homology. The sequences were imported into a genetic data environment where the 

initial amino acid alignments were created using CLUSTAL. Conserved amino acids 
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were identified among these three glycoproteins and were used to determine percent 

amino acid identity. 

Purification of plasmids 

The resulting Plasmids, pcDNA3, pcDNA3-IHNV-g, pcDNA3-SHRV-g, and 

pcDNA3-SVCV-g were grown in transformed Escherichia coli, JM109 competent cell 

strain, in the presence of Ampicillin. Using the Qiagen purification plasmid kit according 

to the manufacturer's protocol, large-scale purification of each plasmid was performed. 

The concentration of purified plasmids was determined by optical density (OD) at 260 

nm. 

Plasmid injection of rainbow trout 

Rainbow trout used in this research were a cross between Klamath strain 

(Klamath hatchery, Oregon) and Cape cod strain (Roaring river hatchery, Oregon). Both 

strains were spawned at their corresponding hatcheries and then fertilized at the Oregon 

State University, Salmon Disease Laboratory, Corvallis, Oregon. Fry were held in 100 

liter tanks until fish mean weight was 0.5 grams. 

The previously described plasmids, pcDNA3-IHNV-g, pcDNA3-SHRV-g, 

pcDNA3-SVCV-g, pcDNA3 and phosphate saline buffer (PBS) were used in the 

injection. Plasmid DNA concentrations were adjusted to 10 jAg/251.11 by diluting in PBS, 

pH 7.4 and confirmed by spectrophotometry. Five groups of 200 fish (.56 grams mean 

wt) per group were anesthetized in 0.1% Tricane methanesulfonate (MS-222, Finquel) 

http:jAg/251.11


28 

and injected intramuscularly with the corresponding plasmid or PBS and placed in 25 

liter tanks, 50 fish per tank. A total of twenty tanks were used: four for pcDNA3, four for 

pcDNA3-IHNV-g, four for pcDNA3-SHRV-g, four for pcDNA3-SVCV-g, and four for 

PBS injected fish. Tanks were interspersed amongst each other to eliminate possible tank 

effects. The injection of PBS was the positive control for the injection procedure and the 

injection of pcDNA3 was the negative control of the immune response to the plasmid 

without the glycoprotein insert. 

Challenge of Rainbow trout to IHNV 

At 30 days post injection fish were challenged, by immersion, with IHNV-RA 

strain. Mean fish weight was 1.33g. Fish were challenged with two viral doses: 103 and 

105 pfu/ml. In both challenge doses, two tanks (fifty fish per tank) of each group were 

exposed to IHNV-RA in two liters of water at 15°C for 5 hrs. Post-challenge fish 

mortality from each tank was removed and recorded daily for 30 days. 
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Results 

Plasmid Construction 

The different plasmids used in the study are shown in Figure 1. Each plasmid 

contains a glycoprotein gene from each of three rhabdoviruses. The plasmid pcDNA3

IHNV-g contains the gene encoding 1HNV glycoprotein. Similarly, the plasmid 

pcDNA3-SHRV-g contains the gene encoding SHRV glycoprotein and pcDNA3-SVCV

g contains the gene encoding SVCV glycoprotein. 

DNA sequence analysis, restriction enzyme analysis, and in vitro translation 

confirmed each plasmid construct. The sizes of the proteins produced by in vitro 

translation correlate well with the expected size for a non-glycosylated protein for each 

plasmid (Figure 2). These findings indicated that the viral glycoprotein genes used in the 

study were complete, in the correct orientation, and contained no nucleotide sequence 

changes. 
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Figure 1. Plasmid vectors encoding the glycoprotein gene sequences of IHNV, SHRV 
and SVCV. Restriction enzymes used in ligation and analysis are shown. 
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Figure 1. 
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Figure 2. Autoradiograph of the proteins produced in vitro translation reactions of RNA 
synthesized from pcDNA3-IHNV-g, pcDNA3-SHRV-g, and pcDNA3-SVCV
g. The glycoproteins were produced using TNT® coupled reticulocyte lysate 
system. T7 polymerase was used to drive transcription from the T7 promoter. 
The proteins synthesized off those transcripts were labeled by incorporating 
[35S] methionine. Products were electrophoresed on a 10% denaturing SDS 
PAGE gel. Lane 1, pcDNA3-IHNV-g, lane 2, pcDNA3-SHRV-g, and lane 3, 
pcDNA3-SVCV-g. Molecular weights for the glycoproteins of IHNV, SHRV, 
and SVCV correlate well with the expected size for non-glycosylated g-
proteins. (Autoradiograph Performed by Marc Johnson, 1998) 
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Figure 2. 
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Glycoprotein amino acid sequence analysis 

Glycoprotein amino acid sequence analysis of MNV, SHRV, and SVCV were 

aligned with each other to determine homology. The alignment shows that there are no 

large conserved amino acid motifs among the three glycoproteins (Table 1). 

Furthermore, only a single motif exists in which three consecutive amino acids are 

conserved. A total of 61 sites of a possible 560 are identical between the three 

glycoproteins, resulting in an eleven percent amino acid identity. 
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Table 1 Amino acid sequence analysis of the glycoproteins of IIHNV, SHRV, and 
SVCV. Proteins were aligned using CLUSTAL (GDE version 2.1) protein 
alignment program. Highlighted, are the amino acids conserved among all 
three proteins. 
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Table 1. 

Amino acid sequence analysis of the glycoproteins used in this study 

SVCV- RSIIS YIAALLIDSNLGIPIFVPSGR NISWQPVIQPFDYcL4PIH--
SHRV- MTLPNMKPKRIVLAVFLNAWVSNAQVTHKPRPDSIVEYSE-E*ENPIYTTPSHtFEDTFA
 
IHNV- TCGANSQTVKPDTASESDQPTWSNPLFTYPEGTLDKLS
 

4
 

SVCV- ----GNLP NT SATKLTKSPSVFSTD---KVSWICAAAEWKTTaDYRWYE
 
iJ+, ?b 

SHRV- PVKPEKLRCPHIFDDQN TASKAKXLHMDLKPEDTHFEAKPRLLpKVTYQVLPSTGFF0
 
IHNV- KVNASQLRCPRIFDDENR IAYPTSRSLSVGNDLGDIHTQONHIKVLYRTIOSTGFF0
 

11
 

SVCV- PQYITHSIHPISPTIDICRRIIQRIASGTDEDLIPPQS77GOASVTTVSNTNYR-VVPHSi
 
SHRV- GRTVTRKVLETPMGDNO----AQAYKAVDREFPYOEPLOF*LRDNVAAERVFHFSTPKTY
 
IHNV- GQTIEKALVEMKLST4----AGAYDTTTAAALYOPAPROO4YTDNVQNDLIFYYTTQKS#
 

17
 

SVCV- HLEqGGHWIDHEi3 EaREKV7dEMKGNHSI#ITEETVQHEAKHIEEVEGIMYGNVPRG
 
SHRV- TVDLSRKYISP' AKSPOPTHWPNVYJOGETQSP-EgPS-IDTEGGHIFTKKDTH
 
IHNV- LRDP*TRDFLDSDE TKSPOQTHWSNVV$MGDAGIP-AODS-SQEIKGHLFVDKISN
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SVCV- DVMYANNFIIDRHRVYRFGGSQMKtONKDGIKFARGDOVEKTATTTIHDO
 
, 

SHRV- RITKAVVH----G0HPWGLTKAWIqcNEQ WIRTDI4DtIRIEPODGTSSLT
 
IHNV- RVVKATSY----GOHPWGLHQAMIEfOGKQ WIRTDLGDLISVEYNSGAEILS
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SVCV- VWVDGTLVSGHRPG00----t?IDTVFNLENVVtYTLEGTKREINKQEKLTSVDt*LA
 
SHRV- T44#KENVV--QMRGN4DFPYLNHAIVNMAQRS---PLEAHSSIVAQQKVSPYLOKFR
 
IHNV- FOOOEDKTV--GMRGNODFAYLDDLVKASESREE---lcLEAHAEIISTNSVTPY4$KFR
 

44
 

SVCV- PRIG&FGSVFRVRNGTLER'OSTTYIRIEVEGPIVDSLNGTDPRTNASRVFWDDOELD-GNI
 
SHRV- PPHPOLGKAHYLQNNTIMR0--DCIYEGVAEISENRTTYRNLKGE WKKWSLSRGGK
 
IHNV- SPHPOINDVYAMHKGSIYg0--MCMTVAVDEVSKDRTTYRAHRATS FTKWERPFGDE
 

48
 

SVCV- YQTGFNVYKGKDGKIHtLNMIESGIIDDELQHAFQADIIPHPH----YDDDEIREDDtFF
 
SHRV- --GYDGMTVGN--KIVODLEKYQSIYDNGMFIPKLLGEVPHRSIVITYNQTDSIETGtF

-

IHNV- WEGFHGLHGNN--TTItPDLEKYVAQYKTSMMEPMSIKSVHPSILALYNETDVSGISTR

57
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SVCV DNTGENGNPVDAVVEWVS4GTSLKFFGMTLVALILI FLLI ROTCVACTYLMKRSKRPATES 
SHRV T DGKLLNMGV4- TLOPS --LSGI SLFTVASLI L IWYOOC-- -RVT PQALNYS I PM 
I HNV ----KLDSFDLQSLHg-S F*PT I SALGGI PFALLLAVAAcCCWSGRRRT PSASQS I PM 

61 

SVCV HEM- -RSL-V 
SHRV HT I TSRGVE I 

I HNV YHLANRS--
61 

Total alignment between the three glycoproteins = 61 
560 amino acids : 61 alignments 

(61/560) x 100 = 11% alignment relationship 
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Effect of DNA immunization against challenge to IHNV 

Immunized and control (PBS and pcDNA3) fish were challenged by immersion in 

water containing different concentrations of IHNV (Rangen isolate). The fish were 

observed daily for signs of disease and dead individuals were removed. Figure 3 shows 

the effect of pcDNA3-IHNV-g, pcDNA3-SHRV-g, or pcDNA3-SVCV-g immunization 

on survival against a challenge dose of 105 pfu/ml. Significant protection was observed 

with relative percent survivals of 93.2% (pcDNA3-IHNV-g), 98.3% (pcDNA3-SHRV-g), 

and 94.9% (pcDNA3-SVCV-g) (Table 2). The control fish that received either PBS or 

pcDNA3 had percent cumulative mortalities of 55% and 57%, respectively. The results 

observed for fish challenged with 103 pfu/ml are similar to that observed at 105 pfu/ml, 

i.e. all glycoprotein-vaccinated fish were protected as compared to the controls (Figure 

4). As expected, the mortalities that were observed in the 103 pfu/ml challenge dose was 

lower (Table 3). 
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Figure 3. The effect of intramuscular DNA immunization on survival against IHNV (105 
pfu/ml). DNA vaccines consisted of pcDNA3-IHNV-g, pcDNA3-SHRV-g, 
and pcDNA3-SVCV-g. Trout in the control groups were injected with PBS and 
pcDNA3. 
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Table 2. Survival of fish challenged with IIINV (105 pfu/ml) after injection with plasmid 
DNA. 100 fish per group was obtained by the sum of 50 fish in duplicate for 
each treatment. Dead fish were removed from each tank and recorded daily 
for cumulative mortality results. Percent cumulative mortality is based on the 
100 fish from both tanks (50 per tank) for each treatment group. 
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Table 2. Survival of fish challenged with IHNV (105 pfu/ml) after injection with plasmid 
DNA. 

No. of fish Total no. % Cumulative 
Treatment per group of deaths mortality RPS* 

PBS 100 56 56 
pcDNA3 100 59 59 
pcDNA3-IHNV-g 100 4 4 93.2 
pcDNA3-SHRV-g 100 1 1 98.3 
pcDNA3-SVCV-g 100 3 3 94.9 

Fish (mean wt .5g) were injected the phosphate-buffered saline (PBS) or each respective plasmid as
 
indicated. 30 days after injection, fish (mean wt. 1.13g) were challenged with 105 pfu/liter of IHNV
 
(Ranger). The challenge trial was conducted for 30 days.
 
*RPS indicates relative percent survival, calculated as described by Johnson et al. (1982):
 

RPS = [1-(% mortality of vaccinated fish/ % mortality of control fish, pcDNA3)] x 100. 
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Figure 4. The effect of intramuscular DNA immunization on survival against IBNV (103 
pfu/ml). DNA vaccines consisted of pcDNA3-IFINV-g, pcDNA3-SHRV-g, 
and pcDNA3-SVCV-g. Trout in the control groups were injected with PBS and 
pcDNA3. 
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Figure 4: Percent cumulative mortality of fish injected with DNA and challenged with 
IHNV (10"3PFU/ML) 
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Table 3. Survival of fish challenged with IHNV (103 pfu/ml) after injection with plasmid 
DNA. 100 fish per group was obtained by the sum of 50 fish in duplicate for 
each treatment. Dead fish were removed from each tank and recorded daily for 
cumulative mortality results. Percent cumulative mortality is based on the 100 
fish from both tanks (50 per tank) for each treatment group. 
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Table 3. Survival of fish challenged with IHNV (103 pfu/ml) after injection with plasmid 
DNA. 

No. of fish Total no. % Cumulative 
Treatment per group of deaths mortality RPS 

PBS 100 33 33 
pcDNA3 100 16 16 
pcDNA3-IHNV-g 100 0 0 100 
pcDNA3-SHRV-g 100 1 1 93.8 
pcDNA3-SVCV-g 100 2 2 87.5 

Fish (mean wt .5g) were injected the phosphate-buffered saline (PBS) or each respective plasmid as
 
indicated. 30 days after injection, fish (mean wt. 1.13g) were challenged with 103 pfu/liter of IHNV
 
(Rangen). The challenge trial was conducted for 30 days.
 
*RPS indicates relative percent survival, calculated as described by Johnson et al. (1982):
 

RPS = [14% mortality of vaccinated fish/ % mortality of control fish, pcDNA3)] a 100. 
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Summary of statistical fmdings 

In the challenge dose of 105 pfu/ml, there is strong evidence that the mean 

mortalities of fish in the DNA vaccinated groups differ from that of the PBS control 

group (two-sided p-value < .0001, t-test). Conversely, There is no evidence that the 

mortalities of fish in the pcDNA3 control group are different from that of the PBS control 

group (two-sided p-value = .30, t-test). 

In the challenge dose of 103 pfu/ml, there is similar evidence that mortalities 

between the DNA vaccinated groups and the PBS control group are different (two-sided 

p-value < .001, t-test). However, there is no evidence that the PBS control group and the 

pcDNA3 control group are the same (two-sided p-value < .001, t-test). All statistical 

findings were based on the comparison of means using a pooled estimate of the standard 

deviation and five degrees of freedom (Table 4 and Table 5). 
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Table 4. Data from fish challenge dose 105 pfu/ml used to derive statistical significance 
between treatment groups. The data represents the actual mortalities in each 
tank. 
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Table 4. Data for statistical findings for Challenge dose 105 pfu/ml. 

Average mortalities Standard 
Treatment group fish per tank Mortalities within group deviation 

PBS 50 30 28 2.83 
PBS 50 26 

pcDNA3 50 30 29.5 0.71 
pcDNA3 50 29 

pcDNA3-IHNV-g 50 2 2 0 
pcDNA3- IHNV -g 50 2 

pcDNA3-SHRV-g 50 0 0.5 0.71 
pcDNA3-SHRV-g 50 1 

pcDNA3-SVCV-g 50 2 1 0.71 
pcDNA3-SVCV-g 50 1 

Pooled estimate of the standard deviation (Sp) = 1.90 
Sp2 = Rni-1)s12+ (n2-1)s22 + + (n1-1)s][2]/ Kni-1) + (n2-1) + + (n1-1)] 
Degrees of freedom = 5 
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Table 5. Data from fish challenge dose 103 pfu/ml used to derive statistical significance 
between treatment groups. The data represents the actual mortalities in each 
tank. 
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Table 5. Data for statistical findings for Challenge dose 103 pfu/ml. 

Average mortalities Standard 
Treatment group fish per tank Mortalities within group deviation 

PBS 50 18 16.5 2.12 
PBS 50 15 

pcDNA3 50 8 8 0 
pcDNA3 50 8 

pcDNA3-IHNV-g 50 0 0 0 
pcDNA3-IHNV-g 50 0 

pcDNA3-SHRV-g 50 0 0.5 0.71 
pcDNA3-SHRV-g 50 1 

pcDNA3-SVCV-g 50 2 1 1.41 
pcDNA3-SVCV-g 50 0 

Pooled estimate of the standard deviation (Sp) = 1.40 
Sp2 = [(n1-1)s12 + (n2-1)s22 + ... + (ni-1)0/ Rni -1) + (n2-1) + ... + (n-1)] 
Degrees of freedom = 5 
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Discussion 

In this study, we show that DNA vaccines encoding the glycoproteins from 

different fish viruses stimulate a protective immune response to IHNV challenge. 

Injection of plasmid vectors containing the glycoprotein gene sequences of IHNV 

(pcDNA3-IHNV-g), SHRV (pcDNA3-SHRV-g), or SVCV (pcDNA3-SVCV-g) into the 

skeletal muscle of rainbow trout induced protection against an IHNV lethal challenge. 

The viral glycoproteins used in this experiment belong to viruses that are 

members of the family Rhabdoviridae, and are serologically distinct Amino acid 

sequence identity indicates that SVCV is similar to vesicular stomatitis virus (VSV), 

which is the prototype virus of the Vesiculovirus genus (Bjorklund, H.V. et al. 1996). 

The protein profile of IHNV is more similar to the Novirhabdovirus genus (Bjorklund, 

H.V. et al. 1996). Sequence homology for the SHRV glycoprotein also indicates that this 

virus is a member of the Novirhabdovirus genus, but is distinct from IHNV (Johnson, M. 

unpublished results, 1997). In addition to these differences in protein structure, cross 

neutralization experiments show that these viruses are not related serologically. Eight fish 

rhabdoviruses were examined for cross neutralization (Kasomchandra, J. et al. 1992). 

These tests using polyclonal antibodies derived from mice and rabbits injected with 

IHNV, SHRV, and SVCV, were negative according to the alpha method of Rovozzo and 

Burke (Rovozzo, G.C. and C.N. Burke 1973). 

The non-specific protection observed in these fish could be attributed to the 

production of interferon by immune cells such as macrophages and nonspecific cytotoxic 

cells or by other lymphoid cells. When a DNA vaccine is injected into the skeletal muscle 

of fish, the plasmid DNA is delivered inside the cells by a mechanism that is still 
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unknown. Once inside the cell, the cDNA of the viral glycoproteins, gets transcribed, 

translated, glycosylated, and then transported to the plasma membrane. The 

glycoproteins protrude through the membrane, comparable to a normal viral infection, 

and are detected by an immune cell (Figure 5). Ito's hypothesis is that lymphoid cells 

detect these glycoproteins by membrane-membrane interactions and produce interferon 

(Ito, Y. 1994). Thus, the rainbow trout injected with the glycoprotein based DNA 

vaccines thirty days prior to virus challenge remain in an antiviral state upon challenge 

with IHNV or possibly any other virus. Subsequently, these fish became less susceptible 

to the lethal effects of virus infection. Production of a Mx protein was observed in a 

parallel study of these fish conducted by Dr. Carol Kim. Preliminary results showed that 

Mx was detected in fish injected with the DNA vaccines but not in the control fish (data 

not published). Mx is an interferon-regulated protein that is stimulated by the induction of 

interferon in mammals (Staeheli, P. 1990; Sammuel, C.E. 1991). Collectively, these 

observations support Ito's model that glycoproteins induce interferon synthesis. 

There are many arms of the immune system in fish and undoubtedly there is a 

specific immune response to the glycoproteins, which would induce neutralizing 

antibodies specific for epitopes on the glycoproteins. One could imagine that either the 

plasmid vectors themselves are transfected into macrophages or alternatively, that the 

glycoproteins are phagocytosed and processed. Either would be presented in the context 

of MHC class II for the stimulation of antibody production. Previous experiments using 

the glycoprotein of IHNV as a DNA vaccine provides evidence that neutralizing 

antibodies are produced (Anderson, E.D. et al. 1996). In addition to the detection of Mx 

in the treatment groups upon injection, the very opposite occurs in fish vaccinated with 
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pcDNA3- IHNV -g upon challenge with IHNV. The loss of the ability to detect Mx in this 

group might be accountable by the stimulation of other arms of the immune system 

leading to neutralizing antibodies and cytotoxic cells. With the stimulation of interferon 

production as the first line of defense against virus infection, followed by the synthesis of 

antibodies specific for the IHNV glycoprotein and the activation of cytotoxic T cells, the 

virus is cleared before the infection process can be amplified. Roers et al. 1994 studying 

the induction of Mx proteins in vaccinated and unvaccinated individuals upon infection 

with the 17-D strain of yellow virus, reported that unvaccinated individuals produced 50

fold more Mx protein than vaccinated individuals. They suggested that the vaccinated 

individuals had enough circulating antibody to clear the virus before interferon was 

induced. The same model might account for the clearance of IHNV in fish injected with 

pcDNA3-IHNV -g. The virus is reproductively inhibited by interferon, neutralized and 

opsonized by antibodies, and cytotoxic T cells destroy infected cells leading to virus 

clearance. However, the fish vaccinated with pcDNA3- SHRV -g and pcDNA3-SVCV-g 

most likely produced specific immune responses against their respective glycoproteins, 

which may not have influenced the protection against IHNV that was observed. 

Virus-specific immune responses other than neutralizing antibodies also provide 

protection. Xiang, et al. 1994, has characterized the protective immunity in mice 

vaccinated against rabies with a plasmid vector carrying the rabies glycoprotein. This 

study showed that cytotoxic T leukocytes were activated specifically to the rabies 

glycoprotein expressed by target cells in the context of MHC class I (Xiang, Z.Q. 1994). 

Although specific immune responses have been observed for rabies, there may still be an 

alternative explanation for protection. Xiang, Z.Q. 1994, did not consider non-specific 
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immune factors. We show in this report that all three unrelated viral glycoproteins 

induced protection to IHNV and that the DNA induced a non-specific protective 

response. 

Although numerous questions remain to be answered about the specific 

mechanisms that are involved with the induction of the observed protection, this study 

has shown that non-specific, non-humoral protective immune responses in rainbow trout 

plays an important role in controlling an IHNV infection. Understanding the relationship 

between viral glycoproteins and the stimulation of a non-specific immune response will 

provide important information for the development of vaccines in rainbow trout fry, 

which will focus on cell-mediated immunity. It is generally accepted that the humoral 

response in trout fry is relatively poor or non-existent and is not the controlling factor 

leading to protection. This study reinforces the notion that glycoprotein based DNA 

vaccines stimulate non-specific immune responses, which leads to sufficient protection 

during the time when trout fry are most susceptible to IHNV. The use of this technology 

will improve our understanding of the immune system of trout, viral pathogenesis of 

IHNV, and may subsequently improve the development of vaccines. 
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Figure 5. Proposed illustration on the pathway of glycoprotein based DNA vaccines 
leading to the stimulation of interferon by a lymphoid cell. When the DNA 
vaccine is injected into the muscle of trout, the plasmids are transfected into 
muscle cells. This results in the production of transmembrane glycoproteins 
and a membrane-membrane interaction between the lymphoid cell and the 
muscle cell containing the protruding glycoproteins. 
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Figure 5. 
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CHAPTER 4
 
SUMMARY
 

Intramuscular injection of glycoprotein-based DNA vaccines into rainbow trout 

induces protective immunity against an IHNV lethal challenge. This study shows that the 

different plasmid vectors encoding the gene sequences of serologically distinct 

glycoproteins from different fish rhabdoviruses all protect trout fry against IHNV. The 

differences between the DNA vaccinated treatment groups and the control groups are 

statistically significant and clearly show that some kind of protection mechanism is 

induced by the DNA vaccines. Although the exact mechanism is unknown, this study 

coupled with the additional studies by Dr. Kim suggest that interferon may be 

contributing to the protective immune response. Collectively, these two studies suggest 

that the model developed by Ito regarding the synthesis of interferon by viral 

glycoproteins can be applied to teleost systems as well. 

Undoubtedly, this study presents an important finding in understanding the of 

immune response in fish and much more research will have to be done in characterizing 

the mechanism(s) involved with this type of observed protection. Cloning of trout 

interferon will be a major advancement for this type of research. Once cloned, research 

can be directed to how interferon is stimulated, how much interferon is needed to 

ascertain biochemical functions leading to protection, and what other components of a 

viral infection leads to the production of interferon. 

Even though there are important differences between the immune response in 

fish versus mammals, much of the immune components and functions are similar. In 

mammalian and teleost systems, the paradigm in developing vaccines for controlling viral 
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pathogens has been focused on stimulating the humoral immune response for the 

production of neutralizing antibodies. Within the last decade, researchers have come to 

an understanding that although neutralizing antibodies play an important role, a truly 

effective vaccine also needs to induce the cellular-mediated immune response, especially 

during the early stages of an infection. The results of this study are not only important in 

furthering our understanding of the trout immune system, but also provides the 

development of a future vaccine strategy for the use in trout aquaculture. In these high 

density-rearing facilities, fish at early life stages are most susceptible to viral pathogens 

and mortality can be extremely high. It is generally accepted that the humoral response 

in trout fry is relatively poor or non-existent. Thus, the development of a vaccine that 

stimulates other arms of the immune system that leads to protection is of great 

importance. 



60 

LITERATURE CITED
 

Ainsworth, A.J. (1992). Fish granulocytes: morphology, distribution, and function.
 
Annual Review of Fish Diseases 2:123 148.
 

Alexander, J.B. and G.A. Ingram (1992). Noncellular nonspecific defense mechanisms 
of fish. Annual Review of Fish Diseases 2:249 279. 

Amend, D.F. and V.C. Chambers (1970). Morphology of certain viruses of salmonid 
fishes. I. In vitro studies of some viruses causing hematopoietic necrosis. Journal 
of Fisheries Board, Canada 27:1285 1293. 

Amend, D.F., W.T. Yasutake, and R.W. Mead (1969). A hematopoietic virus disease of 
rainbow trout and sockeye salmon. Trans American Fisheries Society 98:796 
804. 

Anderson ED., S.C. Mourich Fahrenkrug, S. Lapatra, J. Shepherd, and J C Leong 
(1996). Genetic immunization of rainbow trout (Oncorhynchus mykiss) against 
infectious hematopoietic virus. Mol Mar Biol Biotechnol 5:114122. 

Antao, A.B., M.B. Wilson, T.W. Stuge, U.B. Goodwin, M.F. Criscitiello, T.J. 
McConnell, N.W. Miller, L. William Clem, and V. Gregory Chinchar (1997). 
Expression of major histocompatibility genes in the channel catfish. Abstracts of 
the 7th Congress of the ISDCI: Developmental and Comparative Immunology 
21(2):109. 

Aquaculture Magazine Buyer's Guide (1998). Status of World Aquaculture. pp 6 31. 

Avtalion, R.R. (1969). Temperature effect on antibody production and immunological 
memory in carp (cyprinus carpio) immunized against bovine serum albumin 
(BSA). Immunology 17:927 931. 

Benmansour, IL, H. Leblois, P. Coulon, C. Tuffereau, Y. Gaudin, A. Flamand, and F. 
Lafay (1991). Antigenicity of rabies virus glycoprotein. Journal of Virology 
65:4198 4203. 

Bergmann, J.E., K.T. Tokuyasu, and S.J. Singer (1981). Passage of an integral 
membrane protein, the vesicular stomatitis virus glycoprotein, through the golgi 
apparatus en route to the plasma membrane. Proc. Natl. Acad. Sci. USA 78:1746 

1750. 

Bernard J., P. de Kinkelin, and M. Bearzotti-Le Berre (1983). Viral Hemorrhagic 
Septicemia of Rainbow Trout: Relation between the G Polypeptide and Antibody 
Production in Protection of the Fish After Infection with the F25 Attenuated 
Variant. Infection and Immunity 39(1): 7-14. 



61 

Bjorklund, H.V., K.H. Higman, and G. Kurath (1996). The Glycoprotein genes and gene 
junctions of the fish rhabdoviruses spring viremia of carp virus and hirame 
rhabdovirus: analysis of relationships with other rhabdoviruses. Virus Research 
42:65 80. 

Boonyaratpalin, S. (1989). Bacterial pathogens involved in the epizootic ulcerative 
syndrome of fish in southeast Asia. Journal of Aquatic Animal Health 1:272 
276. 

Bourne, N., L.R. Stanberry, D.I. Bernstein, and D. Lew (1996). DNA immunization 
against experimental genital herpes simplex virus infection. The Journal of 
Infectious Diseases 173:800 807. 

Brown, J.C., W.W. Newcomb, and S. Lawrenz-Smith (1988). pH-dependent 
accumulation of the vesicular stomatitis virus glycoprotein at the ends of intact 
virions. Virology 167:625 629. 

Bruss, V. and D. Ganem (1991). The role of envelope proteins in hepatitis B virus 
assembly. Proc. Natl. Acad. Sci. USA 88:1059 1063. 

Burger, S.R., A.T. Remaley, J.M. Danley, J. Moore, R.J. Muschel, W.H. Wunner, and 
S.L. Spitalnik (1991). Stable expression of rabies virus glycoprotein in chinese 
hamster ovary cells. Journal of General Virology 72:359 367. 

Burke, J.A. and D. Mulcahy (1980). Plaguing procedure for infectious hematopoietic 
necrosis virus. J. Appl. Environ. Microb. 39:872 876. 

Coll, J.M. (1995). The glycoprotein G of rhabdoviruses. Arch. Virol. 140:827 851. 

Coll, J.M. (1997). Synthetic peptides from the heptad repeats of the glycoproteins of 
rabies, vesicular stomatitis and fish rhabdoviruses bind phosphatidylserine. Arch. 
Virol. 142:2089 2097. 

Cone, RE., and J.J. Marchalonis (1972). Cellular and humoral aspects of the influence 
of environmental temperature on the immune system of poikilothermic 
vertebrates. Journal of Immunology 108:952 957. 

Congleton, J. and B. Sun (1996). Interferon-like activity produced by anterior kidney 
leucocytes of rainbow trout stimulated in vitro by infectious hematopoietic 
necrosis virus or Poly I:C. Diseases of Aquatic Organisms 25, 185-195. 

Conti, C., B. Hauttecoeur, M.J. Morelec, B. Bizzini, N. Orsi, and H. Tsiang (1988). 
Inhibition of rabies virus infection by a soluble membrane fraction from the rat 
central nervous system. Arch. Virol. 98:73 86. 

Cox, G.J.M., T.J. Zamb, and L.A. Babiuk (1993). Bovine herpesvirus 1: Immune 
responses in mice and cattle injected with plasmid DNA. Journal of Virology 
67(9):5664 5667. 



62 

Dalmo RA., K. Ingebrigtsen, and J. Bogwald (1997). Non-specific defense mechanisms 
in fish, with particular reference to the reticuloendothelial system (RES). Journal 
of Fish Diseases 20: 241-273. 

De Kinkelin, P., and M. Dorson (1973). Interferon production in rainbow trout (Salmo 
gairdneri) experimentally infected with egtved virus. Journal of General 
Virology 19:125 127. 

De Sena, J., and G.J. Rio (1975). Partial purification and characterization of RTG-2 fish 
cell interferon. Infect. And Immun. 11:815 822. 

Dietzschold, W.H., T.J. Wikir, A.D. Lopes, M. Lafon, C. Smith, and H. Koprowski. 
(1983). Characterization of an antigenic determinant of the glycoprotein that 
correlates with pathogenicity of rabies virus. Proc. Natl. Acad. Sci. USA 80:70 
74. 

Donnelly, J.J., J.B. Ulmer, J.W. Shiver, and J.C. Liu (1997). DNA Vaccines. Annu. 
Rev. Immunol. 15:617 648. 

Dorson, M., A. Barde, and P. De Kinkelin (1975). Egtved virus induced rainbow trout 
serum interferon: Some physicochemical properties. Ann. Microbiol. Inst. 
Pasteur 126:1315 1318. 

Drolet, B.S., P.P. Chiou, J. Heidel, and J.C. Leong (1995). Detection of truncated virus 
particles in a persistent RNA virus infection in vivo. Journal of Virology 69:2140 

2147. 

Durrer, P., Y. Gaudin, R.W. Ruigrok, R Graf, and J. Brunner (1995). Photolabeling 
identifies a putative fusion domain in the envelope glycoprotein of rabies and 
vesicular stomatitis viruses. J. Biol. Chem. 270:17575 17581. 

Eaton, W.D. (1990). Antiviral activity in four species of salmonids folloeing exposure to 
poly(I)-poly(C). Diseases of Aquatic Organisms 9:193 198. 

Ellis, A.E. (1977). The leucocytes of fish: a review. Journal of Fish Biology 11:453 
491. 

Emmenegger E., M. Landolt, S. LaPatra, and J. Winton (1997). Immunogenicity of 
synthetic peptides representing antigenic determinants on the infectious 
hematopoietic necrosis virus glycoprotein. Diseases of Aquatic Organisms 28: 
175-184. 

Engelking, H.M., and J.C. Leong (1989). The glycoprotein of infectious hematopoietic 
necrosis virus elicits neutralizing antibody and protective responses. Virus 
Research 13:213 230. 



63 

Estepa A. and J.M. Coll (1997). Temperature and pH requirements for viral 
haemorrhagic septicemia virus induced cell fusion. Diseases of Aquatic 
Organisms 28: 185-189. 

Fijan, N. (1993). Viral diseases of cyprinids in European pond culture. In: Fijan, N., 
Cvetnic, S., Wikerhauser, T. (eds) Ichthyopathology in aquaculture. JAZU, 
Zagreb. 

Fijan, N., Z. Petrinec, D. Sulimanovic, and L.O. Swillenberg (1971). Isolation of the 
viral causative agent from the acute form of infectious dropsy of carp. Veterinary 
Archives 41:125 138. 

Frerichs, G.N., S.D. Millar, and Supranee Chinabut (1993). Clinical response of 
snakeheads (Ophicephalus striatus) to experimental infection with snakehead fish 
rhabdovirus and snakehead cell line retrovirus. Aquaculture 116:297 301. 

Frese, M., G. Kochs, H Feldmann, C Hertkorn, and 0. Haller (1996). Inhibition of 
bunyaviruses, phleboviruses, and hantaviruses by human MxA protein. Journal of 
Virology 70:915 923. 

Fryer, J.L., J.L. Bartholomew, and P.W. Reno (1996). Lecture notes: Diseases of fish. 
Department of Microbiology, Oregon State University. 

Gaudin, Y., R.H. Ruigrok, C. Tuffereau, M. Knossow, and A. Flamand (1992). Rabies 
Virus Glycoprotein Is a Trimer. Virology 187:627 632. 

Gaudin, Y., R.W.H. Ruigrok, and J. Brunner (1995). Low-pH induced conformational 
changes in viral fusion proteins: implications for the fusion mechanisms. Journal 
of General Virology (76:1541 1556. 

Gaudin, Y., R.W.H. Ruigrok, M. Knossow, and A. Flamand (1993). Low-pH 
conformational changes of rabies virus glycoprotein and their role in membrane 
fusion. Journal of Virology 67:1365 1372. 

Godwin, U.B., A. Antao, M.R. Wilson, V.G. Chinchar, N.W. Miller, L.W. Clem, and T.J. 
Mcconnell (1997). MHC class II B genes in the channel catfish (Ictalurus 
punctatus). Dev. Comp. Immunol. 21(1):13 23. 

Graham, S. and C.J. Secombes (1988). The production of macrophage-activating factor 
from rainbow trout (Salmo gairdneri) leucocytes. Immunology 65:293 297. 

Graham, S. and C.J. Secombes (1990). Do fish lymphocytes secrete interferon-y? 
Journal of Fish Biology 36:563 573. 

Gravell, M., and R.S. Malsberger (1965). A permanent cell line from the fathead 
minnow (Pimephales promelas). Ann. N.Y. Acad. Sci. 126:555 565. 



64 

Haenen, O.L.M., and A. Davidse (1993). Comparative pathogenicity of two strains of 
pficefry rhabdovirus and spring viremia of carp virus for young roach, common 
carp, grass carp, and rainbow trout. Diseases of aquatic organisms 15(2):87 92. 

Haller, 0., M. Frese, D. Rost, P.A. Nuttall, and G. Kochs (1995). Tick-borne Thogoto 
virus infection in mice is inhibited by the orthomyxovirus resistance gene product 
Mxl. Journal of Virology 69:2596 2601. 

Hill, B.J. (1975). Physico-chemical and serological characterization of five 
rhabdoviruses infecting fish. Journal of General Virology 27:369 378. 

Hordvik, I., A.L.J. Jacob, J. Charlemagne, and C. Endresen (1996). Cloning of T-cell 
antigen receptor beta chain cDNAs from Atlantic salmon (Salmo salar). 
Immunogenetics 45(1):9 16. 

Horisberger, M.A. (1992). Interferon-induced human protein MxA is a GTPase which 
binds transiently to cellular proteins. Journal of Virology 66:4705 4709. 

Horisberger, M.A. (1995). Interferons, Mx genes, and resistance to influenza virus. Am. 
J. Respir. Crit. Care Med. 152(4 pt2):S67 S71. 

Ito Y.(1994). Induction of interferon by virus glycoprotein(s) in lymphoid cells through 
interaction with the cellular receptors via lectin-like action: An alternative 
interferon induction mechanism. Arch. Virol. 138(3-4)187-198. 

Ito, Y. and Y. Hosaka (1983). Component(s) of sendai virus that can induce interferon in 
mouse spleen cells. Infection and Immunity 39(3):1019 1023. 

Ito, Y., H. Bando, H. Komada, M. Tsurudome, M. Nishio, M. Kawano, H. Matsumura, S. 
Kusagawa, T. Yuasa, H. Ohta, M. Ikemura, and N. Watanabe (1994). HN 
proteins of human parainfluenza type 4A virus expressed in cell lines transfected 
with a cloned cDNA have an ability to induce interferon in mouse spleen cells. 
Journal of General Virology 75:567 572. 

Janeway, C.A., and P. Travers (1996). Immuno Biology: the immune systen in health 
and disease 2I'd Edition. Garland Publishing Inc. pp 9:21. 

Johnson, K.A., J.K. Flynn, and D.F. Amend (1982). Onset of immunity in salmonid fry 
vaccinated by direct immersion in Vibrio anguillarum and Yersinia ruckeri 
bacterins. Journal of Fish Diseases 5:197 205. 

Kaattari, S.L. (1994). Development of a piscine paradigm of immunological memory. 
Fish and Shellfish Immunology. 4: 447 457. 

Kasornchandra, J., H.M. Engelking, C.N. Lannan, J.S. Rohovec, and J.L. Fryer (1992). 
Characteristics of three rhabdoviruses from snakehead fish Ophicephalus striatus. 
Diseases of Aquatic Organisms 13:89 94. 



65 

Kelly J.M., S.U. Emerson & R.R. Wagner (1972). The glycoprotein of vesicular 
stomatitis virus is the antigen that gives rise to and reacts with neutralizing 
antibody. Journal of Virology 10: 1231-1235. 

Killie, J.K., S. Espelid, and T.O. Jorgensen, (1991). The humoral immune response in 
Atlantic salmon (Salmo salar L.) against the hapten carrier antigen NIP-LPH; the 
effect of determinant (NIP) density and the isotype profile of anti-NIP antibodies. 
Fish and Shellfish Immunology 1:33 46. 

Kim C., J. Winton and J.C. Leong (1994). Neutralization-resistant variants of 
infectious hematopoietic necrosis virus have altered virulence and tissue tropism. 
Journal of Virology 68(12): 8447-8453. 

Konieczko, E.M., P.A. Whitaker-Dowling, and C.C. Widnell (1994). Membrane fusion 
as a determinant of the infectibility of cells by vesicular stomatitis virus. Virology 
199:200 211. 

LaPatra, S.E., J.S. Rohovec, and J.L. Fryer (1989). Detection of infectious hematopoietic 
necrosis virus in fish mucus. Fish Pathology 24:197 202. 

LaPatra, S.E., T. Turner, K.A. Lauda, G.R. Jones, and S. Walker (1993). 
Characterization of the humoral response of rainbow trout to infectious 
hematopoietic necrosis virus. Journal of Aquatic Animal Health 5:165 171. 

Lecocq-Xhonneux F., M. Thiry, I. Dheur, M. Rossius, N. Vanderheijden, J. Martial and 
P. de Kinkelin (1994). A recombinant viral haemorrhagic septicaemia virus 
glycoprotein expressed in insect cells induces protective immunity in rainbow 
trout. Journal of General Virology 75: 1579-1587. 

Leong, J.C., J.L. Fryer, and J.R. Winton (1988). Vaccination against Infectious 
hematopoietic necrosis virus. In: Ellis AE (ed) Fish vacinination. Academic Press, 
New York, p 193 203. 

Leung, K.N. and G.L. Ada (1982). Different functions of subsets of effector T cells in 
murine influenza infection. Cell. Immunol. 67:312 324. 

Lobb, C.J. and M.O.J. Olson (1988). Immunoglobulin heavy H chain isotypes in a 
teleost fish. Journal of Immunology. 141:1236 1245. 

Manickan, E., R.J.D. Rouse, Z. Yu, W.S. Wire, and B.T. Rouse (1995). Genetic 
immunization against herpes simplex virus protection is mediated by CD4+ T 
lymphocytes. The Journal of Immunology 155:259 265. 

Mastromarino, P., C. Conti, P. Goldoni, B. Hauttecouer, and N. Orsi (1987). 
Characterization of membrane components of the erythrocyte involved in 
vesicular stomatitis virus attachment and fusion at acidic pH. Journal of General 
Virology 68:2359 2369. 



66 

Mc Clements, W.L., M.E. Armstrong, RD. Keys, and M.A. Liu (1996). Immunisation 
with DNA vaccines encoding glycoprotein D or glycoprotein B, alone or in 
combination, induces protective immunity in animal models of herpes simplex 
virus-2 disease. Proc. NatL Acad Sci. USA 93:11414 11420. 

McSharry, J.J., and P.W. Choppin (1978). Biological properties of the VSV glycoprotein 
I. Effects of the isolated glycoprotein on host macromolecular synthesis. Virology 
84:172 182. 

Mebatsion, T., M. Konig, and K. -K. Conzelmann (1996). Budding of rabies virus 
particles in the absence of the spike glycoprotein. Cell 84:941 951. 

Mulcahy, D., and RJ. Pascho (1984). Adsorption to fish sperm of vertically transmitted 
fish viruses. Science 225(4659):333 335. 

Mulcahy, D., and W.N. Batts (1987). Infectious hematopoietic necrosis virus detected by 
separation and incubation of cells from salmonid cavity fluid. Canadian Journal 
of Fisheries and Aquatic Sciences 44(5):1071 1075. 

Oberg L., J. Wirkkula, D. Mourich, and J.C. Leong (1991). Bacterially Expressed 
Nucleoprotein of Infectious Hematopoietic Necrosis Virus Augments Protective 
Immunity Induced by the Glycoprotein Vaccine in Fish. Journal of Virology 
65(3): 4486-4489. 

Okamoto, N., T. Shirakura, Y. Nagakura, and T. Sano (1983). The mechanism of 
interference with fish viral infection in the RTG-2 cell line. Fish Pathol. 18:7 
12. 

Parisot, T.J., and J. Pelnar (1962). An interim report on Sacramento River Chinook 
Disease: A virus like disease of chinook salmon. Prog. Fish. Cult. 22:51 55. 

Parsons, J. (1998). Status of genetic improvement in commercially reared stocks of 
rainbow trout. World Aquaculture (March) 1998. pp 44 47. 

Partula, S., J.S. deGuerra, Fellah and J. Charemagne (1995). Structure and diversity of 
the T cell antigen receptor beta-chain in a teleost fish. Journal of Immunology 
155(2):699 706. 

Pavlovic, J., A. Schroder, A. Blank, F. Pitossi, and P. Staeheli (1993). Mx proteins: 
GTPases involved in the interferon-induced antiviral state. Ciba. Found. Symp. 
176:233 243. 

Reading, C.L., E.E. Penhoet, and C.E. Ballou (1978). Carbohydrate structure of vesicular 
stomatitis virus glycoprotein. J. BioL Chem. 253:5600 5612. 



67 

Ristow, S.S., and J. Armen de Avila (1991). Monoclonal antibodies to the glycoprotein 
and nucleoprotein of infectious hematopoietic necrosis virus (IHNV) reveal 
differences among isolates of the virus by fluorescence, neutralization and 
eletrophoresis. Diseases of Aquatic Organisms 11:105 115. 

Roers, A., H.K. Hochkeppel, M.A. Horisberger, A. Hovanessian, and 0. Haller (1994). 
MxA gene expression after live virus vaccination: a sensitive marker for 
endogenous type I interferon. The Journal of Infectious Diseases 169(4):807 
813. 

Ross, A.J., J. Pelnar, and R.R. Rucker (1960). A virus-like disease of chinook salmon. 
Trans American Fisheries Society 89:160 163. 

Rothman, J H , C.K. Raymond, T. Gilbert, P.J. O'Hara, and T.H. Stevens (1990). A 
putative GTP binding protein homologous to interferon-inducible Mx proteins 
performs an essential function in yeast protein sorting. Cell 61:1063 1074. 

Rovozzo, G.C. and C.N. Burke (1973). A manual of basic virological techniques. 
Prentice-Hall, New Jersey. 

Rucker, R.R., W.J. Whipple, J.R. Parvin, and C.A. Evans (1953). A contagious disease 
of salmon, possibly of viral origin. U.S. Fish and Wildlife Service Bulletin 54:35 

46. 

Samuel, C.E. (1991). Antiviral actions of interferon. Interferon-regulated cellular 
proteins and their surprisingly selective antiviral activities. Virology 183(1):1 
11 . 

Seljelid, R., and T. Eskeland (1993). The biology of macrophages: I. General principles 
and properties. Eur. J. Haematol. 51(5):267 275. 

Staeheli, P. (1990). Interferon-induced proteins and the antiviral state. Advances in 
Virus Research 38:147 200. 

Staeheli, P., 0. Haller, W. Boll, J. Lindemann, and C. Weissmann (1986). Mx protein: 
constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers 
selective resistance to influenza virus. Cell 44:147 158. 

Stewart, W.E. (1980). Interferon nomenclature. Nature (London) 286:110. 

Tamai T., S. Shirahata, N. Sato, M. Kimura, M. Nonaka, and H. Murakami (1993). 
Purification and characterization of interferon-like antiviral protein derived from 
flatfish (Paralichthys olivaceus) lymphocytes immortalized by oncogenes. 
Cytotechnology 11: 121-131. 

Taylor, P.M., and B.A. Askonas. (1986). Influenza nucleoprotein-specific cytotoxic T-
cell clones are protective in vivo. Immunology 58:417 420. 



68 

Thimme, R., M. Frese, G. Kochs, and 0. Haller (1995). Mx1 but not MxA confers 
resistance against tick-borne Dhori virus in mice. Virology 211:296 301. 

Traxler, G.S., J.R. Roome, and M.L. Kent (1993). Transmission of infectious 
hematopoietic necrosis virus in sea water. Diseases of Aquatic Organisms 16:111 

114. 

Trobridge G.D., P.P. Chiou, and J.A.C. Leong (1997). Cloning of the rainbow trout 
(Oncorhynchus mykiss) Mx2 and Mx3 cDNAs and characterization of trout Mx 
protein expression in salmon cells. Journal of Virology 71: 5304-5311. 

Walker, P. (1998). Personal communication. Chair of the Rhabdoviridae study group of 
(ICTV) 

Wattanavijarn, W., J. Tangtronpiros, and K. Wattanadom (1986). Viruses of Ulcerative 
diseased fish in Thailand, Burma, and Laos. In: First International Conference on 
the Impact of Viral Diseases on the Development of Asian Countries. WHO. 
(Abstract) p. 121. 

White, D.O., and F.J. Fenner (1994). Medical Virology 4th Edition. Academic Press. pp 
82 86. 

Wiktor T., R. Macfarlan, K. Reagan, B. Dietzschold, P. Curtis, W. Wunner, M. Kieny, 
R. Lathe, J. Lecocq, M. Mackett, B. Moss, and H. Koprowski (1984). Protection 
from rabies by a vaccinia virus recombinant containing the rabies virus 
glycoprotein gene. Immunology 81: 7194 - 7198. 

Wilson, V., A.J. Jefferys, P.A. Barrie, P.G. Boseley, P.M. Slocombe, A. Easton, and D.C. 
Burke (1983). A comparison of vertebrate interferon gene families detected by 
hybridization with human interferon DNA. Journal of Molecular Biology 
166:457 475. 

Winton, J.R. (1991). Recent advances in detection and control of infectious 
hematopoietic necrosis virus in aquaculture. Annual Review of Fish Diseases 
1:83 93. 

Wunner, W.H., B. Dietzchold, C.L. Smith, and M. Lafon (1985). Antigenic variants of 
CVS rabies virus with altered glycosylation sites. Virology 140:1 12. 

Xiang Z., S. Spitalnik, M. Tran, W. Wunner, J. Cheng, and C. Ertl (1994). Vaccination 
with a Plasmid Vector Carrying the Rabies Virus Glycoprotein Gene Induces 
Protective Immunity against Rabies Virus. Virology 199: 132 -140. 

Xiang, Z.Q., S. Spitalnik, M. Tran, W.H. Wunner, J. Cheng, and H.C.J. Ertl (1994). 
Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene 
induces protective immunity against rabies virus. Virology 199:132 140. 



69 

Xu, D. and F.Y. Liew (1995). Protection against leishmaniasis by injection of DNA 
encoding a major surface glycoprotein, gp63, of L. major. Immunology 84:173 
176. 

Yamada, A., M. Tsurudome, M. Hishiyama, and Y. Ito (1984). Inhibition of host cellular 
ribonucleic acid synthesis by glycoprotein of mumps virus. Virology 135:299 
307. 

Yamamoto, T., W.N. Batts, and J.R. Winton (1992). In vitro infection of salmonid 
epidermal tissues by infectious hematopoietic necrosis virus and viral 
hemhorrhagic septicemia virus. Journal of Aquatic Animal Health 4:231 238. 




