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In the first phase of this study, data from eight laboratory-scale diffusion experiments 

performed on five samples of the Culebra (dolomite) Member of the Rustler Formation, New 

Mexico, are examined for evidence of variability in effective diffusion coefficients. Modeling is 

performed under the assumption of a lognormal distribution of D, The estimated standard 

deviation (6d) of ln(De) within each sample is found to range from 0 to 1, with most values lying 

between 0.5 and 1. The variability over all samples leads to a combined ad in the range of 0.9 to 1.2. 

Formation factors measured on Culebra samples are found to be well-described by a lognormal 

distribution with a standard deviation of approximately 0.7. As formation factor is linearly related to 

D this implies: (1) the assumption of a lognormal distribution of De is appropriate; (2) our estimates 

of ad are reasonable; and (3) formation factors may provide an inexpensive means of characterizing 

variability in De. A comparison of our estimation results to other rock properties suggests that, at the 

lab-scale, the geometric mean of D, increases with bulk porosity and the quantity of macroscopic 

features such as vugs and fractures. However, ad appears to be determined by variability within such 

macroscopic features and/or by micropore-scale heterogeneity. In addition, comparison of 

experiments at several spatial scales suggests that increasing sample volume results in an increase in 
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In the second phase of the study, deterministic and stochastic simulations of one-dimensional 

advective-dispersive transport in the Culebra dolomite are performed at the field- and regional-scales 

using a variety of diffusive mass transfer models. Single-rate nonequilibrium mass transfer is found 

to result in increases in tailing and dispersion, a decrease in maximum plume concentration, and 

faster initial solute arrival relative to equilibrium processes. A distribution of diffusion rates greatly 

accentuates these phenomena, and results in nonequilibrium mass transfer under conditions for 

which single-rate diffusion would approach equilibrium. These effects are generally present at greatly 

differing time- and space-scales and under uncertainty in mass transfer and flow parameters, although 

for narrow distributions of De the multirate model behaves similarly to a single-rate model at the 

regional-scale, attaining LEA. Scaling of mean diffusion rate coefficients with experimental time-

scale may result in both extreme tailing and initial solute arrival times approaching those found for 

nonreactive transport, with significant implications for remediation design and waste repository risk 

assessment. 
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Single and Multiple Rates of Nonequilibrium Diffusive Mass Transfer at the
 
Laboratory, Field, and Regional Scales in the Culebra Member of the Rustler
 

Formation, New Mexico
 

1. INTRODUCTION 

Accurate description of rate-limited transfer of mass from regions of advective porosity to 

regions dominated by diffusion and/or sorption is critical to making reliable predictions of solute 

transport in geologic media. Instantaneous diffusion and sorption and single rates of nonequilibrium 

mass transfer are well-accepted concepts in research and industry. However, recent work (e.g., 

Haggerty et 41998; Haggerty et al., in preparation; Cunningham and Roberts, 1998) has demonstrated that 

multiple mass transfer rates due to pore-scale heterogeneity may play a significant role in solute 

transport, particularly when longer time scales are considered or if results obtained at one time scale 

are applied to a longer time scale. These multirate mass transfer processes may have strong 

implications for aquifer remediation design and assessment of the risk associated with hazardous 

waste repositories. 

The purpose of this study is to further our understanding of single-rate and, in particular, 

multirate diffusive mass transfer in the Culebra dolomite Member of the Permian Rustler Formation, 

the primary transport pathway of radionuclides from the Waste Isolation Pilot Plant (WIPP), a 

proposed nuclear waste repository in New Mexico (Holt, 1997). Detailed analysis of core clearly 

shows a multitude of scales of heterogeneity in the Culebra, interpreted to yield multiple rates of 

diffusive mass transfer (Holt, 1997). In addition, the presence of multirate mass transfer in the 

Culebra has been confirmed by analysis of field-scale tracer tests (Meigs and Beauheim, in preparation; 

Haggerty et al., in preparation; McKenna et al., in preparation). However, a comprehensive understanding of 

the linkages between observable geology at the WIPP site and mathematical descriptions of single­
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rate and multirate matrix diffusion has not yet been developed, and fundamental questions regarding 

the scaling of mass transfer parameters across time- and space-scales remain unanswered. 

Key questions addressed in this study are as follows: 

1) How do single-rate and multirate mass transfer parameters correlate to the observable geology of 

the Culebra dolomite? 

2) How do multirate mass transfer parameters scale from the laboratory-scale to the field-scale? 

3) What might be the regional-scale effects of single-rate and multirate mass transfer as 

parameterized by laboratory- and field-scale studies? 

These questions are addressed by: 

1) inverse modeling of laboratory static diffusion data acquired by Sandia National Laboratories, 

using single-rate and multirate techniques; 

2) interpretation of the static diffusion modeling results in terms of the observable geology of the 

hand specimens used in these experiments; 

3) comparison of the static diffusion modeling results to multirate mass transfer parameters obtained 

at the field-scale; 
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4) use of one-dimensional, deterministic contaminant transport simulations to investigate the effects 

of a number of mass transfer regimes at the field- and regional-scales, and of temporal scaling of 

multirate mass transfer parameters; 

5) use of one-dimensional Monte Carlo simulation techniques to investigate the effects of single-rate 

and multirate mass transfer at the field- and regional-scales in the presence of both spatial scaling of, 

and statistically described uncertainty in, mass transfer parameters. 
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2. GEOLOGIC BACKGROUND
 

2.1 Mass Transfer 

Mass transfer refers to the movement of a constituent from one phase or region to another 

along a concentration gradient (e.g., Welty et al., 1984). In the context of contaminant hydrogeology, 

this involves transfer of solute mass from zones of advective (kinematic) porosity into diffusive 

porosity within the rock matrix or onto sorption sites on the surface of the matrix during advective­

dispersive transport. This phenomenon has two well-recognized and significant implications for 

contaminant transport. First, transport of solute away from its source is continuously slowed 

through time as mass is removed from advective pathways (e.g., Roberts et al., 1986; Quinodo and 

Vallochi, 1993). This effect partly determines how far and how fast a solute may be transported from 

its source, and is particularly important to evaluation of the environmental risk incurred in the event 

of a breaching of a nuclear waste repository. Secondly, remediation of a contaminated aquifer by 

pump-and-treat, soil vapor extraction, and bioremediation techniques is slowed if transfer of mass 

back from immobile zones to advective porosity is rate-limited (Steinberg et al, 1987; Golt and Oxley, 

1991; Gierke et al, 1992; Armstrong et al, 1994; Fry and Istok, 1994; Harmsen et al, 1994; Harvey et al, 

1994; Rabideau and Miller, 1994; Haggerty and Gorelick, 1995). The process manifests itself as tailing and 

rebound effects in observed concentrations at the pumping well. Diffusive mass transfer processes 

in geologic media also have implications to petroleum migration (e.g., Mann, 1994), evaluation of 

residual oil saturation in hydrocarbon reservoir studies (e.g., Tomich et al, 1973; Deans and Carlisle, 

1986), determination of 40Ar/39Ar cooling histories in geochronology studies (Lovera et al., 1989; 

Lovera et al., 1993), and evaluation of the relationship between fluid and melt inclusions and magma 

chemistry (Qin et al, 1992). 

Instantaneous or equilibrium mass transfer refers to mass transfer that is very fast relative to 

the observation time-scale (e.g., the duration of a column experiment or tracer test). This condition 
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is known as the local equilibrium assumption (LEA) The Damkohler Type I number (Dal), a 

measure of the time-scale of exposure of a rock matrix to solute relative to the time-scale at which 

sorption or matrix diffusion occurs, is commonly used to assess the importance of mass transfer (see 

Bahr and Rubin, 1987; Golk and Roberts, 1987; Haggerty and Gorelick, 1995; and McKenna et al, in 

preparation): 

D / L
Dal = +1) (Eqn.1)

a Vpw 

for the case of no sorption within the advective flowpaths and layered geometry. The capacity 

coefficient, 13, is equal to the ratio of diffusive porosity to advective porosity [-]; L is the length scale 

of the experiment [L]; and Vp, is the pore water velocity within the advective porosity [LI]. De/ a2 

is the diffusion rate coefficient [1/T], where a is the length of the diffusion pathway [L] and D. is the 

effective or pore diffusion coefficient [L2/1], which is some fraction of the aqueous diffusion 

coefficient of the solute in water, Dag [L2/T]. A simple expression for the effective diffusion 

coefficient is (e.g, Bear, 1972): 

De =1 Dal (Eqn. 2) 

where 'r, the tortuosity [-], is defined as ///e, where lis the straight-line distance from one end of the 

pore to the other [L] and 4 is the actual length along the winding pore [L]; ///, < 1. De may be 

reduced if sorption occurs within the pore, or if restrictivity is significant (i.e., if the pore radius is 

similar to the ionic or molecular radius of the solute; e.g., Satteield et al, 1973). 

For Dal greater than about 100, the rate of mass transfer is sufficiently high that it may be 

considered instantaneous. An upper limit on the observable rate of matrix diffusion is therefore: 
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(De 100V 100 
(Eqn. 3)

a 2 3L(/3 + 1) 3T(/3 + 1) 

where T is the time-scale of the experiment. The effects of mass transfer may then be described by a 

retardation factor which simply scales down the advective velocity of solute transport. 

If Dal-is less than approximately 0.01, the characteristic time-scale of mass transfer is 

sufficiently slow relative to the time scale of the experiment that it cannot be observed. A lower limit 

on the measurable rate of matrix diffusion is: 

(De 0 .01V 0.01 
(Eqn. 4) 

a 2 3L(/3 + 3T(/3 + 1) 

Rate-limited or nonequilibrium mass transfer is non-negligible for 0.01 < Da/ < 100. In this 

case, the time-scale of mass transfer is comparable to the time-scale of the experiment. Its effects, 

therefore, are significant but cannot be simplified through the use of a retardation factor, and the 

detailed physics of the mass transfer process must be incorporated into the model of contaminant 

transport. This requires a coupled system of differential equations and (in general) additional 

physical parameters, complicating computation and interpretation significantly. 

A simplifying assumption made in most treatments of nonequilibrium mass transfer to date is 

that a single rate of sorption or diffusion is present. The physical meaning of this assumption is that 

the rock matrix is homogeneous. However, a natural rock matrix (and even many manufactured 

materials) is not homogenous at the microscopic scales at which mass transfer processes operate. 

This pore-scale heterogeneity in aquifer characteristics may, in general, be due to: (1) spatial variation 

in mineralogy (Pignatello, 1990; Wood et aL, 1990; Ball and Roberts, 1991 a,b; Barber et al., 1992); (2) the 

geometry and chemistry of coatings on the surfaces of aquifer particles (Weber et al., 1991; Barber et al., 
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1992); (3) the volume, size, and geometry of macroporosity or microporosity in aquifer particles and 

aggregates of particles (Rao et al., 1980; Pignatello, 1990; Wood et al., 1990; Ball and Roberts, 1991 a, b; 

Harmon et al., 1992; Harmon and Roberts, 1994); (4) the external and internal geometry of small clay 

lenses or other low-permeability material, and the proportions of this material (Shackelford, 1991; 

Wilson, 1995); (5) the quantity and distribution of organic material (Karickhoff, 1984; Grathivohl, 1990; 

Barber et al., 1992); and (6) the chemistry of the water and solute (Curtis et al., 1986; Brusseau and Rao, 

1989a; Weber et al., 1991). As these factors control rates of sorption and matrix diffusion, and as they 

are heterogeneous at the pore scale, mass transfer rates should also be heterogeneous at the pore 

scale. That is, in a given volume of rock, many rates of mass transfer are generally present, and 

multirate mass transfer should thus be invoked to adequately describe solute transport within that 

medium (see Wu and Gschtvend, 1988; Haggerty and Gorelick, 1995). Haggerty and Gorelick (1995) show 

how the conventional one-dimensional advection-dispersion equation may be re-written to 

incorporate multirate mass transfer. 

The effects of multirate mass transfer have been observed in column experiments (e.g., 

Haggerty and Gorelick, 1998) and in integrated and comprehensive studies of the transport properties 

of the Culebra dolomite at the WIPP site, the study area of this thesis. Detailed analysis of core 

clearly shows a multitude of scales of heterogeneity in the Culebra, interpreted to yield multiple rates 

of diffusive mass transfer (Holt, 1997). Analysis of single-well injection-withdrawal (MXTINV) and two-

well tracer tests in the Culebra with long pumping durations (up to 1100 hours) and high 

concentration measurement accuracy have confirmed the field-scale effects of the multirate matrix 

diffusion process (Meigs and Beauheim, in preparation; Haggery et al., in preparation; McKenna et al., in 

preparation). 

It is important to note that because it incorporates information about the time-scale of the 

experiment, the value of Dal for a short-duration, laboratory-scale tracer test, for example, may be 
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significantly different from that for a longer-duration, field-scale tracer test or remediation design. If 

multiple rates of mass transfer are present, the values of the mass transfer parameters estimated from 

the shorter-duration test regardless of whether we choose to interpret the data using a single-rate or 

multirate model may not be appropriate for use in the longer-duration remediation design (e.g., 

Haggerty and Harvey, 1997; Cunningham and Roberts, 1998). 

2.2 The Waste Isolation Pilot Plant (WIPP) 

2.2.1 General 

The WIPP is a proposed repository for defense-generated transuranics located about 20 miles 

northeast of Carlsbad, New Mexico. Plans call for the repository to be placed approximately 655 m 

below ground surface in the Salado Formation, which is an interbedded Permian sequence of 

extremely low-permeability halite, anhydrite, polyanhydrite, dolomite, and clay. The repository, 

which is scheduled to begin operations in the near future with recertification every 5 years, consists 

of a series of drifts within the Salado into which drums of waste will be placed. When full, a given 

drift will be sealed off from the rest of the mine and the evaporites will flow inward under lithostatic 

pressure to form an impermeable seal about the waste. More complete descriptions of the WIPP are 

given in Holt and Powers (1988), Beauheim and Holt (1990), Holt (1997), and Meigs and Beauheim (in 

preparation). 

One risk associated with the WIPP is the possibility that at some time in the future, the 

repository will be breached by human activity. For example, hydrocarbon deposits exist in the 

vicinity of the WIPP; it is conceivable that some future generation, unaware of the presence of the 

repository, might penetrate the WIPP while drilling for oil or gas. Radionuclides could then travel 

some distance up the borehole and into an overlying formation. If that formation is both conductive 
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and laterally extensive, it could provide a mechanism for transport of contaminants beyond the 

regulatory boundary of the site. 

The Culebra Member of the Rustler Formation, an approximately 7 m thick dolomite which 

overlies the Salado Formation, has generally large transmissivities (about <1x10-7 to >1x10-3 m2/s; 

La Venue et al, 1990) and covers an area of greater than 25,000 km2, far larger than the WIPP site 

(Holt, 1997). Most flow is believed to occur in the lowermost 4.4 m (see Meigs and Beauheim, in 

preparation). The Culebra is considered to be the most transmissive laterally continuous 

hydrogeologic unit in the WIPP area and the most likely pathway of radionuclide transport from the 

repository in the event of human intrusion (Holt, 1997; Meigs and Beauheim, in preparation). It has, 

therefore, been the focus of much of the hydrogeologic work completed at the WIPP site. 

2.2.2 Geologic History 

The following summary is taken from reviews by Holt (1997), Jones et al. (1992), and Hanford 

(1991) unless otherwise noted. The reader is referred to these publications for further details and for 

references to original works regarding the geology of the Delaware Basin, the WIPP site, and the 

Culebra dolomite. 

2.2.2.1 The Delaware Basin 

The Delaware Basin was one of three early Permian, relatively deep marine basins in 

southeastern New Mexico and west Texas collectively known as the Permian Basin. The Delaware 

Basin spanned the border between New Mexico and Texas, and was bordered on the northwest by 

the Capitan reef complex. The limestone of the Capitan reef now forms the Guadalupe Mountains 

and the well-known peak of El Capitan. Behind the reef lay a shallow, sheltered carbonate platform. 
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The Delaware Mountain Group, which includes the Brush Canyon, Cherry Canyon, and Bell 

Canyon Formations (Figures 1 and 2), is an early Permian sequence of fine-grained clastic rocks and 

represents the fore-reef facies of the Capitan reef. In late Permian time, the Delaware Basin was 

quickly (over a period of perhaps 200,000 years) largely filled by the evaporites (principally halite and 

anyhdrite) of the Castille Formation. Transformation of the deep marine basin into a shallow 

platform salina presumably required a dramatic lowering of relative sea level, followed by a 

progressive overall rise to permit continuing deposition of about 600 m of evaporites. 

The Castille Formation is overlain by the evaporites of the Salado Formation. The Salado was 

deposited in a similar environment to that of the Castille, and consists principally of thick halite beds. 

Deposition of the Salado completed the infilling of the Delaware Basin, and extended to the 

northwest to overlap the Capitan limestone and the shallow platform that lay behind the reef. 

Overlying the Salado are the evaporites of the Rustler Formation, which are subdivided into five 

members: an unnamed lower member consisting of siltstone overlain by bedded halite, siltstone, and 

anhydrite; the Culebra Member, discussed below; the Tamarisk Member, consisting primarily of 

anhydrite; the Magenta Dolomite Member; and the Forty-Niner Member, which is similar to the 

Tamarisk. 

The Rustler Formation is overlain by the interbedded siltstones and sandstones of the Dewey 

Lake Red Beds, which form the uppermost part of the Permian section. In the eastern portion of the 

WIPP site, the Dewey Lake Red Beds are unconformably overlain by Triassic fluvial, deltaic, and 

lacustrine deposits collectively known as the Dockum Group. Deposition of the Permian Dewey 

Lake Red Beds and, where present, the Triassic Dockum Group was followed by a very long period 

of non-deposition and/or erosion. Only Quaternary sediments overlie these rocks. The Quaternary 

deposits consist of the sandstones and conglomerates of the early to middle Pleistocene Gatuna 

Formation, the middle to late Pleistocene Mescalero Caliche, and Holocene surficial deposits. 
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System Series 
Age 
(Ma) 

DepthDep 
(m) 

Group Formation 

cl. 
Holocene surficial deposits 

Pleistocene 

0.01 
Mescalero Caliche 

0'10' 1.6 Gatuna 
208 

Triassic Dokum undivided 
245 75 

Dewey Lake 
Red Beds 

175 

Rustler 

Ochoan 
275 

Salado 
Permian 

850 

Castile 

270? 1350 
Bell Canyon 

a. 

1 

ru 0 
34 

1 i 
4.) 

Cherry Canyon 

Brushy Canyon 

Figure 1: Stratigraphic chart for the WIPP site (adapted from Jones et al., 1992). 
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Figure 2.a 

New Mexico 

WIPP 

1
 

Figure 2.b 

NW SE 
Northwestern Shelf !Reef Zone Delaware Basin 

Dewey Loke redbeds 

Rustier Fm§ 
Solado Fat ... 

Bedded deposits 

..........
 

ra 

On) 

Polyhalite - -- Soluble saltsIS 

Figure 2: Location map and cross section. Figure 2.a: Map giving location of the WIPP site. H-19 is 
the hydropad (suite of wells) from which samples used in the static diffusion experiments were 
retrieved. Field-scale tracer tests have previously been conducted at hydropads H-11 and H-19. 
Figure 2.b: Geologic cross section in the vicinity of the WIPP site (from Kyle, 1991). 
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2.2.2.2 The Culebra Dolomite 

The Culebra Member of the Rustler Formation consists primarily of evaporitic dolomite 

deposited in a lagoonal environment formed when marine waters transgressed over pre-existing salt-

pan and saline-mudflat sediments. As the Culebra was deposited, the sediments immediately beneath 

it were dissolved and reworked. Consequently, this substrate was mechanically unstable and 

underwent frequent gravitational shifting and slumping, causing shearing, disruption, and 

deformation of the lower portion of the Culebra. The lower Culebra is also characterized by 

bioturbation. The upper portion of the Culebra was deposited following stabilization of the 

substrate, and formed planar, undisrupted strata. Deposition of the upper Culebra also coincided 

with a decrease in water depth of the lagoon, resulting in salinities too high to support organisms, 

and bioturbation ceased. Eventually, lagoon salinity increased to the point of gypsum saturation. 

Formation of the Culebra dolomite ended and deposition of overlying gypsum beds was initiated. 

Pore water within the Culebra reached gypsum saturation as well, resulting in precipitation of 

gypsum nodules and cements. Depth of the lagoon continued to decrease and its salinity, and that of 

pore water within the Culebra, thus increased further until halite saturation was achieved. At these 

concentrations, anhydrite is more stable than gypsum and gypsum cement and nodules were partially 

replaced by anhydrite. A halite cement may also have been precipitated, but this has not been 

confirmed. In spite of the variety of cements, not all of the Culebra was well-indurated. 

Overburden continued to accumulate, and by the end of the Cretaceous the Culebra may have 

been buried beneath up to 800 m of sediments. However, a large anticline formed to the north of 

the WIPP site, probably during the Cretaceous, and the western edge of the Delaware Basin as a 

whole was uplifted by the middle Tertiary. These uplift events had a number of important effects 

upon the Culebra dolomite. 



14 

Unloading of the Culebra through erosional removal of much of the overburden (the Culebra 

currently lies no deeper than about 250 m at the WIPP site) resulted in stress-release fracturing. The 

upper part of the Culebra was deposited in well-defined bedding planes; fracturing followed the 

principal zones of weakness formed by these planar interfaces. The lower Culebra, in contrast, was 

mechanically heterogeneous due to syndepositional deformation and bioturbation. As a result, this 

lower portion is characterized by shorter, more distributed fractures. 

Moreover, uplift and erosion exposed both the Culebra and the highly soluble halite and 

anhydrite of the underlying Salado formation to meteoric waters. Exposure of the Culebra to 

meteoric waters first resulted in re-conversion of anhydrite to gypsum, and then partially removed 

this gypsum to reopen pre-existing fractures and vugs which had been filled by sulfate mineral 

cements and nodules. Some of the resulting open vugs collapsed under lithostatic pressure, reducing 

vuggy porosity but increasing the already substantial degree of fracturing in the Culebra. In addition, 

where the Salado underwent substantial dissolution (beyond what are now the regulatory boundaries 

of the WIPP), the Culebra suffered partial collapse into these karst features, resulting in brecciation. 

2.2.3 Multirate Mass Transfer in the Culebra Dolomite 

Due to a complex history of deposition, diagenesis, and fracturing, the Culebra dolomite is 

characterized by a high degree of heterogeneity (Figure 3). Multiple scales of fracturing have been 

observed in core (Holt and Powers, 1988; Beauheim and Holt, 1990), along with spatially variable degrees 

of vuggy porosity and gypsum-filling of vugs and fractures; poorly cemented, silt-size dolomite 

interbeds are also common (Holt, 1997). The presence of multirate diffusive mass transfer has been 

inferred from this observed pore- and larger-scale heterogeneity (Holt, 1997), and its effects have 

been confirmed by field-scale tracer tests (see Section 2.1). In addition to the potential plume-

slowing effects of matrix diffusion, work done to date suggests that sorption of radionuclides to the 
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Figure 3: Scales and types of Culebra matrix porosity (from Holt, 1997). 
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Culebra matrix is strong and would result in partial removal of solute from advective transport 

pathways (e.g., Lucero et al., 1998). 



17 

3. MODELING OF STATIC DIFFUSION DATA
 

3.1 Experiment and Data 

A brief summary of the static diffusion experiments conducted by researchers at Sandia 

National Laboratories, which constitute the primary data set for this work, is given below. The 

innovative x-ray imaging technique used in these experiments is fully described in Tidwell and Glass 

(1994), and details of the experimental set up and results are given in Christian-Frear et al. (1997) and 

Tidwell et al. (in preparation). 

Five small (approximately 6 cm by 4 cm by 2.5 cm) rectangular blocks of Culebra core 

retrieved from the H-19 b4 and H-19 b7 boreholes at the WIPP site were selected for the diffusion 

experiments to represent a distinctive suite of Culebra matrix porosity types (see Sections 2.2.2.2 and 

2.2.3). Each block was attached to a tracer reservoir at one end and sealed along its other edges to 

form no-flux boundaries. The tracer consisted of a 0.79 molar solution of potassium iodide (KI) 

dissolved in a 0.8 molar solution of sodium chloride (NaC1). The iodide ion was selected due to its x-

ray absorption qualities, and the NaCl solution was used to simulate naturally-occurring Culebra pore 

fluids (brine). Each block was initially saturated with 0.8 molar brine solution. Tracer was then 

allowed to diffuse from the reservoir into the block for approximately 1000 hours (in-diffusion). At 

the end of the in-diffusion experiment, a head gradient was established across the block and tracer 

was forced across it to attain saturation (i.e., until the KI concentration within the pore space was 

equal to that in the reservoir). After the blocks were fully saturated with the iodide tracer, the 

reservoir fluid was replaced with pure NaC1 solution, and the tracer within the block was permitted 

to diffuse out into the reservoir (out-diffusion). The out-diffusion experiment was of longer duration 

than the in-diffusion phase (approximately 3000 hours). 
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X-ray images of each block were taken at intervals during the in- and out-diffusion 

experiments, including under fully KI-saturated and fully KI-unsaturated conditions. As the 

presence of the iodide ion alters the amount of x-ray energy transmitted through the sample, these 

images provide maps of KI concentration in the rock as a function of time. After development, the 

x-ray films were digitized and underwent a number of processing steps. The digital images of x-ray 

film density were converted using linear x-ray absorption theory into maps of normalized solute 

concentration within the block. An example of such an image is given in Figure 4. The spatial 

distribution of porosity within each block was determined using images of tracerless and tracer-

saturated samples. These porosity maps were then combined with the images of normalized 

concentration at intermediate times to provide the data set used in our modeling: total mass diffused 

into or out of each block as a function of time, normalized by the total solute mass that the block can 

hold given the concentration of tracer within the reservoir (i.e., the initial mass for out-diffusion or 

the mass at infinite time for in-diffusion). These data are illustrated in Figure 5. A method for 

estimating measurement error in the concentration and mass data obtained using the x-ray imaging 

technique has not yet been developed. It is important to note that a fundamental advantage of the 

technique over conventional through-diffusion approaches is that it permits measurement of mass 

uptake into dead-end pores open only to the reservoir. 

A number of difficulties were encountered during the course of the experiments. Tracer 

concentration in the reservoir was accidentally varied during the earliest phases of the in-diffusion 

study, requiring that our analysis make use of a time-dependent input boundary concentration (see 

Section 3.2). Sufficient dissolution of pore-filling gypsum in sample RC6-G occurred during the in-

diffusion phase that its porosity was significantly increased; this block was omitted from the out-

diffusion experiment. Significant gypsum dissolution probably also took place in sample B33-H, but 

this may have occurred while it was being saturated with KI tracer in preparation for the out-

diffusion phase (V. Tidwell, personal communication, 1998). If so, the in-diffusion data for B33-H should 
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Figure 4: Out-diffusion x-ray images for sample B33-H. The image provides a map of normalized 
concentration within a slab of Culebra dolomite at 6 times. A reservoir of tracer-free brine is located 
at the top of the slab in these figures; tracer is diffusing out of the iodide-saturated block toward the 
reservoir. The spatial distribution of porosity within the block is given at the right. Interparticle and 
vug porosity predominate, with minor fracture porosity. Some vugs are gypsum-filled. Spatial 
resolution is about 0.0625 mm2. The image illustrates that the sample is heterogeneous, and solute 
diffuses into different regions of the rock at different rates. Maps of solute concentration generated 
using the x-ray imaging technique for other samples also clearly show multirate diffusion. I3ata 
provided by V. Tidwel4 see Christian-Frear et al. (1997) and Tidwell et al. (in preparation). 
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Figure 5: Mass uptake and recovery data. Figure 5.a: in-diffusion. Vertical axis gives the value of 1­
M(t)/M(t=0.); see Section 3.2. Figure 5.b: out-diffusion. Vertical axis gives M(t)/M(t=0). Out-
diffusion experiments were not conducted for samples RC4-D and RC6-G. 
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be unaffected by gypsum dissolution. It proved impossible to fully saturate sample RC4-D with 

tracer, so it was also omitted from the out-diffusion phase. 

In addition to examining each data set separately, we combined the data from the individual 

samples for each phase of the experiment to form bulk in- and out-diffusion data sets. This was 

done in such a manner that the bulk data are what would be obtained experimentally if all the blocks 

were arranged next to each other in parallel along a single reservoir, and normalized mass diffused in 

or out was measured for all blocks at once (i.e., through a single x-ray image of all the blocks, 

processed to give to total mass within all the blocks). The bulk mass ratio curve is the weighted 

arithmetic mean of the individual mass ratio curves, and is given for the example of in-diffusion: 

A 1 JO Ci(t =00)
 

Mb (t) i=1 M (t = °°) h C reservoir
 (Eqn. 5) 
Mb (t =00) LLI Ci(t =co)L 

1=1 reservoir 

where i is an index corresponding to the particular block; n is the number of blocks (i.e., 5 for in-

diffusion); h is the length, measured away from the reservoir, of the irh block [1]; Ci(t=0°)/G. is the 

normalized, late-time concentration in the ith block, equal to unity and included in the above 

expression only for completeness H; ei is the bulk porosity of the ith block H; and Mi(t)/Mi(t=co) is 

the normalized mass H diffused into the ilh block at time t (i.e., the original static diffusion mass ratio 

data). Note that the widths of the individual slabs do not appear in Eqn. 5, as we treat diffusion into 

or out of the samples as a one-dimensional problem; this implicitly assumes that all samples have 

equal widths, which is approximately true. Use of the bulk diffusion data sets is intended to simulate 

a slightly larger-scale scenario, more representative of field-scale work, in which an extended 

reservoir of solute (e.g., an advective flow pathway) encounters a variety of matrix types, as 
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represented by the different blocks of varying porosity scales and types used in the static diffusion 

experiments. 

3.2 Mathematical and Code Development 

In this section, we derive an expression describing one-dimensional multirate diffusion into or 

out of a rock matrix. The conceptual physical model is similar to that used in a number of previous 

mathematical developments (e.g., Haggerty and Gorelick, 1995), but the derivation presented here is 

original and proceeds along significantly different lines. It is worthwhile to note, however, that our 

final expressions describing mass uptake and recovery in the presence of a continuous distribution of 

effective diffusion coefficients (Eqn. 25 and Eqn. 28) are very similar in form to an expression for 

diffusional mass uptake in the presence of a continuous distribution of grain sizes that was presented 

in the chemical engineering literature over a quarter of century ago (Ruthven and Loughlin, 1971). 

Consider a sample of Culebra dolomite of porosity, 0, bounded at x = l by a reservoir of 

solute (potassium iodide in our case) with a time-varying concentration, Ci(t), and at x = 0 by a no-

flux boundary, and having an initial arbitrary but uniform KI concentration, Co. The boundary and 

initial conditions are shown in Figure 6. 

Conventional, single-rate diffusion of KI tracer into or out of the pore space of the slab is 

given by the diffusion equation subject to the boundary and initial conditions stated above: 

ac a2cDe (Eqn. 6)
at axe 

where De is the effective diffusion coefficient in the rock slab (Eqn. 2). 
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porousKI impermeabledolomitereservoir boundaryslab 

dC(x=0,t) = 0
C(x =l, t) =C1(t) C(x,t=0)=Co dx 

x=1 x=0 

Figure 6: Boundary conditions for static diffusion experiments. 
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Taking the Laplace transform and rearranging, we obtain: 

a2C p C 0 
C (Eqn. 7) 

axe De De 

where E' is the Laplace transform of concentration within the pore space andp is the Laplace 

parameter. The boundary conditions are now: 

a C (x = 0 
0 (Eqn. 8) 

ax 

and: 

C(p, x = C1 p) (Eqn. 9) 

Eqn. 7 is a second order ordinary differential equation, which may be solved using the method of 

undetermined coefficients subject to Eqn. 8 and Eqn. 9 to obtain: 

lex7iy, 
C(p, x)=[C,(p) (Eqn.10)p 

The 0th spatial moment of the concentration profile gives a measure of the mass, M(t), within the slab 

at time, t 

M (t) = 0 A TC(x, t)dx (Eqn.11) 
x=o 

where A is the cross-sectional area of rock exposed to the solute reservoir, and which is required if 

C(x,t) is given conventional (three-dimensional) units of mass/unit volume. Taking advantage of the 



25 

fact that the Laplace transform is a linear operator, substituting Eqn. 10 into Eqn. 11, and integrating, 

we obtain: 

co 1 
F C1(p)-- -1,13,11 

M =(60 A)E-1 (Eqn.12)VpID: +ee-1.571d± P 

where the symbol L-/ indicates the inverse Laplace transform. Recognizing the definition of the 

hyperbolic tangent, we may rewrite Eqn. 12 as: 

1 

Ci(P) 
Col 

Col 
M (t, De)= (9A)L-1 ITanh(111p I De )+ (Eqn.13)

VpIDe 

For notational convenience later in the derivation, we will define M'in the following manner: 

_C°1 
Cl(P) C1}n 

MV,De)= A L-1 P iTanh(1 111:)e)+= (Eqn. 14)
[ VpIDe P 

Eqn. 13 may then be rewritten: 

M(t,De)= 6 M'(t,De) (Eqn.15) 

Now consider a simple model of pore-scale heterogeneity in which porosity in the rock matrix 

consists of N non-intersecting tubes (Figure 7). The effective diffusion coefficient within each tube 

(pore), Do, may be different due to, at a minimum, differing tortuosities (see Section 2.1). As a 

result, a different mass of solute, M,;(t) will have diffused into (or, equivalently, out of) each tube at a 
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i=1 

i=2 

i=N 

Figure 7: Schematic illustration of pore-scale heterogeneity. Heterogeneity in pore geometry gives 
rise to multirate diffusion. Dead-end pores are shown, but for the purpose of analyzing the lab-scale 
diffusion experiments any pore may completely span the sample. Pores are shown in a parallel 
arrangement, aligned normal to the surface of the sample. A distribution of diffusion coefficients 
interpreted from data under this assumption should be considered a lumped distribution, 
representing what may be diffusion in parallel and series in a more complex geometry (Haggerty and 
Gorelick, 1998). This model and our one-dimensional (in Cartesian coordinates) mathematical 
treatment are appropriate to interpretation of diffusion into the samples used in the static diffusion 
experiments, and is also representative of diffusive mass transfer into a rock matrix exposed to 
discrete advective pathways, such as fractures. 
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given time, t. That is, the ith tube has a corresponding D, and Mdt). D, (and Mi.J(t)) may or may 

not be equal to De, , =k (and Mi.k(t)), for k..As different effective diffusion coefficients have different 

frequencies (probabilities) of occurrence, each effective diffusion coefficient will make a different 

contribution to the total mass of solute diffused into the matrix. 

Consider the case where there exist Z discrete values of the effective diffusion coefficient (D,1 

for j = 1, Z; ZI-); many pores may share a particular value of D. Say we make many measurements 

of D, in many individual pores and record their frequencies (i.e., probabilities) of occurrence, 

NJ/NT, where Nj is the number of pores having the jth value of De, J and NT is the total number of 

pores in the rock. While thinking of statistical distributions of effective diffusion coefficients in 

terms of the probability of finding a pore with a particular geometry is more intuitive, it is ultimately 

both more tractable and more consistent with previous work to recast this result in terms of 

porosities: 

9i V Vi NT 
(Eqn.16) 

VT j type pore VT 

where A, /AT is the proportion of the total porosity consisting of pores having the jth value of De H; 

J// VT is the ratio of the pore volume occupied by pores with the? De to the total pore volume of 

the rock H; T/J/(1j-Opepore) is simply the average volume occupied by a single pore with the jth De 

[L3/pore]; and NJ/NT is the aforementioned frequency of occurrence of pores with the? De H. For 

j = 1, Z, ej/ AT therefore gives the probability mass function (PMF),fi, J, of the discrete random 

variable, Ded, and thus describes the probability that (or frequency of) De = De, 
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6 
P(De = j)= fir (1),)= e;" (Eqn.17) 

Note that although capacity coefficients, strictly speaking, are not defined for a system in which only 

diffusion takes place and no advective porosity is therefore present, ei/OT is equal to 131/13T, the ratio 

of the capacity coefficient of the jth immobile zone to the total capacity coefficient. 131/13T is 

frequently used to describe the relative contributions of different matrix diffusion rates to mass 

transfer in an advective transport system (e.g., Hogged), and Gorelick, 1995). 

The total mass diffused into the pore space at a given time, t, is the sum of the masses in the 

N individual pores at that time: 

m(t).Emi(t) (Eqn.18) 

However, we may equally well consider M(t) to be the sum of the contributions to diffusive mass 

uptake or release of Z classes of pores; each class of pores is characterized by its frequency of 

occurrence, P(De = D) and by a discrete effective diffusion coefficient, D,J. If we recognize that 

Eqn. 15 describes the mass diffused into the jth class of pores at time t, M(t), it may be recast as: 

M j(t)= 6 j M 1(0 (Eqn.19) 

where O is the porosity constituted by the /11' class of pores; that is, is the ratio of the volume 

occupied by all pores having the jth value of De,j to the total volume of the rock. MAO is as defined in 
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Eqn. 14, with De set to theib value of D,J. If there are Z classes of pores, and the mass contributed 

by each class is given by Eqn. 19, then M(t) is given by: 

m(t).E19;m;,(t) (Eqn. 20) 
i=1 

Rearranging Eqn. 17 and substituting into Eqn. 20 gives: 

M(t) OT P(De = De, i)M i'(t) (Eqn. 21) 
J.1 

Now consider De to be a continuous random variable. Say we again make many 

measurements of De in many individual pores, but this time we plot up the frequencies in a histogram 

consisting of Z bins of width AD, (Figure 8). The heavy line on Figure 8 gives a probability density 

function (PDF) for D fc(Dd. In the case presented, the PDF is piecewise linear and consists only of 

vertical and horizontal segments; thus, the PDF may be represented for the time being by the 

discrete notation,fip In general, if De is a continuous random variable, the probability that it takes on 

a value falling within a certain (possibly very narrow) range is: 

P(a 5_ De b) = IL (Dc )dDe (Eqn. 22) 
a 

For the case shown in Figure 8, Eqn. 22 therefore shows that the probability that De lies within the jth 

bin is: 

P(De, j=k < De 5_ De, j_4)= fc,j=kAD, (Eqn. 23) 
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frequency 

j =1 j=2 j=Z 

value of De 

Figure 8: Hypothetical distribution of effective diffusion coefficients. Many measurements are made 
of De in many individual pores and frequencies of occurrence are plotted in the above histogram, 
consisting of Z bins of width ADe. For the example presented, heavy line gives a PDF which is 
piecewise linear and consists only of vertical and horizontal segments. 
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where l = k +1. Now substitute Eqn. 23 into Eqn. 21 to obtain the Riemann sum: 

M (t) = 07.1, fc MiTt)AD, (Eqn. 24) 
j=i 

If we take the limit of Eqn. 24 as Z approaches infinity, we obtain from the fundamental theorem of 

calculus: 

M (0= OT (De)111 (t,De)dDe (Eqn. 25) 
a 

The mass diffused into a pore with effective diffusion coefficient, D is now a continuous, rather 

than discrete, function of De (i.e., M(t,De) rather than MA). Note that if probability is to be a 

dimensionless quantity, the definition of the probability of a continuous random variable (Eqn. 18) 

requires that the probability density function,f(a), have dimensions equal to the inverse of the 

dimensions of the random variable, De. Given this fact, Eqn. 25 is dimensionally correct. 

Substituting Eqn. 14 into Eqn. 25 yields: 

Co­
C1(P) 

M (t)= OT A {f c(De)L-1 Tanh(11 I p / De ) + 11-c}dDe (Eqn. 26) 
a VpID, P 

which gives the total mass diffused into or out of the slab at time, t, in the presence of a continuous 

distribution of diffusion coefficients. The integration limits, a, b, represent the minimum and 

maximum possible values of D, and may therefore be taken in general to be 0, 
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fc(De) may be any continuous distribution. A number of general considerations suggest that a 

lognormal distribution may be appropriate (Haggerty, 1995; Haggerty and Gorelick, 1998). Discrete 

distributions and alternative continuous PDFs have also been used, such as gamma and piece-wise 

linear distributions (for discussion see Hollenbeck et al., 1998), but available formation factor data for 

the Culebra dolomite support the assumption of a lognormal PDF. Formation factor, a measure of 

the electrical properties of a rock, is commonly taken to be inversely proportional to De (e.g., Kelley 

and Saulnier, 1990). Formation factors for 21 samples of Culebra dolomite retrieved from the H-19 

hydropad (a hydropad is a cluster of wells) were determined by TerraTek (TerraTek contractor's report, 

1997). The samples were sourced primarily from borehole H-19 b4, from which samples for the 

static diffusion experiments were also obtained. An empirical CDF of these data is shown in Figure 

9. Also shown is a lognormal distribution fitted by manual calibration to the data; the match is quite 

good. Earlier work at other locations at the WIPP site by Kelley and Saulnier (1990) also suggested that 

formation factors in the Culebra dolomite are lognormally distributed. Thus, there is considerable 

evidence that a lognormal distribution is a reasonable approximation to the true distribution of 

effective diffusion coefficients in the Culebra. 

In practice, we normalize Eqn. 22 by the maximum possible total solute mass present in the 

rock, MT. In the case of diffusion into the rock, this is the mass at t = co; for diffusion out of a 

saturated rock, this is the mass at t = 0. This maximum total mass is given by: 

M T = 6T A / C E (Eqn. 27) 

where the /is the length of the rock slab as measured perpendicular to diffusion and CE is the 

concentration in the rock at t = 0 for diffusion out of the slab or at t = co for diffusion into the slab. 
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Figure 9: Empirical and best-fit CDFs of formation factor. Data is for Culebra samples analyzed by 
TerraTek (TerraTek contractor's report, 1997). Samples were taken from the H-19 hydropad, primarily 
borehole H-19 b4 (R. Beauheim, personal communication, 1997); samples used in static diffusion 
experiments were taken from the same location. Best-ft lognormal CDF was determined by manual 
calibration and has a geometric mean of 4.5 (corresponding to a formation factor of 90) and a 
standard deviation of 0.7. Formation factors are inversely proportional to effective diffusion 
coefficients (see text), so reasonably good quality of the fit suggests that use of a lognormal 
distribution to approximate the true distribution of De in the Culebra is appropriate. Calculations of 
De from formation factors tend to be unreliable, due to the dependence of formation factor 
measurements on the properties of the ions present in the pore fluid and uncertainty in the precise 
form of the relationship between formation factor and De (see Kelley and Saulnier, 1990 for discussion). 
However, the standard deviation of the lognormal distribution of formation factors should be a good 
approximation to ad in the distribution of De; this will be further discussed in Section 3.3.4. 
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If normalized concentrations are used, CE = 1. Making the appropriate substitution for/ (De) 

into Eqn. 26 and normalizing by Eqn. 27 gives our final expression: 

co 1 
r _ (p)Un(De )PdM (t) 1 I 1 2ad2 Col 

P ITanh(1. p I De ) + dDe
MT l CE 2tcDe6a VpID,

(Eqn. 28) 

where 1.1d and ad are the mean and standard deviation, respectively, of ln(Dd and a and b are as 

discussed above. 

A FORTRAN77 code (MRSD; see Appendix 1) was written to implement Eqn. 28 as a 

simulation and parameter estimation routine. The purpose of the code was to obtain estimates of the 

values of gd and ad from the diffusion data discussed in Section 3.1. Several subroutines from the 

IMSL (International Mathematics and Statistics Libraries) Version 3.0 package were used. These 

subroutines use the deHoog algorithm to numerically evaluate the inverse Laplace transform (deHoog 

et 41982), Gauss-Kronrod rules to perform numerical integration, and a modified Levenberg-

Marquardt algorithm and a finite-difference Jacobian to solve the nonlinear least-squares 

optimization problem. The lower and upper limits of integration were set to the 0.0000001th and 

99.9999999th percentile values of De, respectively, for a given lid and ad. Capability to use Eqn. 13 

and Eqn. 27 to estimate a conventional, single-rate effective diffusion coefficient from the 

normalized mass data was also incorporated into the code. Log-space root mean square error 

(RMSE) was used as a measure of fit, as log-transformed data shows a greater sensitivity to the late-

time, low mass ratios at which multirate effects are greatest (e.g., Haggerty, 1995; Haggerty et al., in 

preparation; see also Ruthven and Loughlin, 1971). Similar concerns led us to convert the in-diffusion 

mass ratio curves, which are large-valued at late times, to: 



1 

35 

(t) 
(Eqn. 29)

MT 

which is small-valued at late times. When the data is then log-transformed, small relative changes in 

the raw late-time mass ratio data give rise to significantly larger relative changes in the converted and 

transformed data set. The conversion described by Eqn. 29 was also used by Ruthven and Loughlin 

(1971) for single-rate and multirate modeling of diffusive mass uptake data. 

Difficulties were encountered in evaluating the hyperbolic tangent for very small times (very 

large values of the Laplace parameter,p). Consider, for notational simplicity, the hyperbolic tangent 

of a complex variable, : 

eZ -e-Z
Tanh(z)= (Eqn. 30)

eZ + e' 

By noting the following relationships: 

z=a+ib, i=m1-7 

Re(ez) = ea Cos(b) 

Im(ez) = ea Sin(b) 

Re(e-z)= e'Cos(-b) 

Im(e-z )= e- a Sin( -b) 

Cos( -b) = Cos(b) 

Sin(-b) = -Sin(b) 
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we can rewrite Eqn. 30 as: 

ea Cos(b) + iea Sin(b) e' Cos(b) + ie' Sin(b)

Tanh(z) (Eqn. 31)


ea Cos(b) + iea Sin(b) + e-a Cos(b) ie' Sin(b) 

After some algebra, we obtain: 

2a e-2a 
Re[Tanh(z)] = _2" (Eqn. 32) 

e e 2+ 2[2Cos (b) -1] 

Note that the value of the 3rd term in the denominator of Eqn. 32 never exceeds 2. The value of the 

real part of the hyperbolic tangent at large z may therefore be found by omitting the terms in Eqn. 28 

containing b and considering the expression's value at large a : 

e2a
Re[Tanh(z)] - 2a =1 for high values of z and a (Eqn. 33) 

e 

Eqn. 31 also gives: 

2Sin(b)Cos(b)
Im[Tanh(z)] = 2 (Eqn. 34) 

e a e' + 2[2Cos 2 (b) -1] 

The values of both the numerator and the 3rd term in the denominator of Eqn. 34 never exceed 2. 

The value of the imaginary part of the hyperbolic tangent at large z is therefore its value at large a, 

neglecting the terms in Eqn. 30 containing b : 

1 

Im[Tanh(z)] = 0 for high values of z and a (Eqn. 35) 
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For large values of the Laplace parameter, p, the value of the hyperbolic tangent in Eqn. 28 may thus 

be set to [1,0]. Eqn. 33 and Eqn. 35 are valid for values of a in excess of approximately 21, but the 

precise value depends on the value of b. The critical combinations of a, b are difficult to specify in a 

straightforward manner conducive to computer coding due to the periodic nature of the dependence 

of Tanh() on b. In practice, the hyperbolic tangent is set to [1,0] when the function to evaluate the 

hyperbolic tangent returns the value NaN (Not a Number). 

3.3 Results 

Log-space plots of mass ratio data and best-fit curves calculated using both single-rate and 

multirate models (see Section 3.2) are given in Figures 10 through 15. Tables 1 and 2 summarize the 

results, giving the best-fit value of the effective diffusion coefficient, D,, for each sample and for bulk 

diffusion (see Section 3.1) obtained using a single-rate model, as well as the corresponding best-fit 

multirate parameters. As discussed in Section 3.2, a lognormal distribution of effective diffusion 

coefficients was used in the multirate model, which is parameterized by a geometric mean, p.d, and a 

standard deviation, ad. A larger value of lid indicates faster diffusion, on average, for a given block 

length and a larger value of ad indicates that a wider range of diffusion coefficients is present (i.e., 

that multirate effects are more significant). Log-space RMSE between the data and mass ratio curves 

calculated using the best-fit single-rate and multirate parameters are also given in Tables 1 and 2. 

3.3.1 Parameter Estimation Statistics 

Confidence limits are provided in Tables 1 and 2 for the fitted parameters. This type of 

information is a very useful statistical estimate of the reliability of the modeling results, and is the 

primary advantage of using formal parameter estimation techniques as opposed to conventional 

manual calibration of the model to the data. 
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Figure 10.a 
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Figure 10: Mass ratio data and model responses for B33-H. Best-fit curves were calculated using a 
conventional single effective diffusion coefficient and a lognormal distribution of effective diffusion 
coefficients, for both in-diffusion and out-diffusion experiments. Figure 10.a: in-diffusion. Vertical 
axis gives the value of 1-M(t)/M(t=00); see Section 3.2. Figure 10.b: out-diffusion. Vertical axis is 
MO/M(t=0). 
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Figure 11.a 
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Figure 11: Mass ratio data and model responses for RC1-A. Best-fit curves were calculated using a 
conventional single effective diffusion coefficient and a lognormal distribution of effective diffusion 
coefficients, for both in-diffusion and out-diffusion experiments. Figure 11.a: in-diffusion. Vertical 
axis gives the value of 1-M(t)/M(t =00); see Section 3.2. Figure 11.b: out-diffusion. Vertical axis is 
M(t)/M(t=0). 
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Figure 12.a 
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Figure 12: Mass ratio data and model responses for RC2-B. Best-fit curves were calculated using a 
conventional single effective diffusion coefficient and a lognormal distribution of effective diffusion 
coefficient, for both in-diffusion and out-diffusion experiments. Figure 12.a: in-diffusion. Vertical 
axis gives the value of 1-M(t)/M(t=00); see Section 3.2 text for explanation. Figure 12.b: out-
diffusion. Vertical axis M(t)/M(t=0). 
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Figure 13: Mass ratio data and model responses for RC4-D. Best-fit curves were calculated using a 
conventional single effective diffusion coefficient and a lognormal distribution of effective diffusion 
coefficients, for in-diffusion. Out-diffusion experiment was not conducted for this sample due to 
difficulty in saturating the block with tracer. The vertical axis gives the value of 1-MO/M(t=00); see 
Section 3.2. 
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Figure 14: Mass ratio data and model responses for RC6-G. Best-fit curves were calculated using a 
conventional single effective diffusion coefficient and a lognormal distribution of effective diffusion 
coefficients, for in-diffusion. Out-diffusion experiment was not conducted for sample RC6-G due to 
extensive dissolution of pore-filling gypsum. The vertical axis gives the value of 1-M(t)/M(t=00); see 
Section 3.2. 
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Figure 15.a 
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Figure 15: Mass ratio data and model responses for bulk diffusion. Best-fit curves were calculated 
using a conventional single effective diffusion coefficient and a lognormal distribution of effective 
diffusion coefficients, for both in-diffusion and out-diffusion. Figure 15.a: in-diffusion. Vertical axis 
gives the value of 1-M(t)/M(t=c0); see Section 3.2. Figure 15.b: out-diffusion. Vertical axis is 
MN/M(t=0). 
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Test De [m2/hr] [tdi± 26 ad RM S EsR RMSEMR 
ln(De) ± 2 cr ln(o-d) ± 2 o­

range range range 
B33-H 4.78E-06 -12.0 ± 0.242 0.598 0.730 0.510 

-12.2± 0.230 -0.514± 0.0610 
3.80E-06, 6.02E-06 -11.8, -12.2 0.563, 0.636 

RC1-A 1.22E-06 -13.5 ± 0.344 0.958 0.245 0.169 
-13.6± 0.196 -0.0429± 0.892 

1.00E-06, 1.51E-06 -13.2, -13.8 0.393, 2.34 
RC2-B 1.49E-06 -13.4 ± 0.334 0.666 0.161 0.157 

-13.4± 0.195 -0.407± 2.08 
1.25E-06, 1.84E-06 -13.1, -13.7 0.0832, 5.33 

RC4-D 9.75E-07 -13.9 ± 0.622 0.988 0.241 0.239 
-13.8± 0.340 -0.0121± 2.06 

7.23E-07, 1.43E-06 -13.3, -14.5 0.126, 7.75 
RC6-G 3.66E-06 -12.5 ± 0.496 0.0369 0.516 0.517 

-12.5± 0.274 -3.30± 472 
2.83E-06, 4.90E-06 -12.0, -13.0 0, 00 

bulk 2.15E-06 -13.0 ± 0.194 0.976 0.253 0.152 
-13.1± 0.198 -0.0243± 0.0178 

1.68E-06, 2.49E-06 -12.8, -13.2 0.959, 0.994 

Table 1: In-diffusion results for single-rate and multirate parameter estimations. D, is the effective 
diffusion coefficient estimated using a conventional single-rate model. lid and ad are parameters of 
the lognormal distribution used in the multirate inversion. td may be compared to ln(D,). Quality of 
the fits to the data are described by the log-space root mean square errors for both single-rate (SR) 
and multirate (MR) inversions. 
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Test De [m2/hr] gd ± 26 ad RMSEsa RMSEMR 
ln(De) ±26 ln(o-d) ±2o­

range range range 
B33-H 2.64E-06 -11.7 ± 3.14 0.946 5.78 3.01 

-12.8± 1.15 -0.0555± 2.12 
8.74E-07, 8.72E-06 -8.56, -14.8 0.114, 7.88 

RC1-A 4.96E-07 -14.5 ± 0.276 0.560 0.218 0.163 
-14.5± 0.178 -0.580± 1.73 

4.22E-07, 6.03E-07 -14.2, -14.8 0.0997, 3.16 
RC2-B 1.30E-06 -13.5 ± 0.240 0.00590 0.275 0.274 

-13.6± 0.161 -5.13± 2.22E+04 
1.06E-06, 1.46E-06 -13.3, -13.7 0.00, 00 

bulk 1.15E-06 -13.2 ± 0.552 1.20 1.02 0.495 
-13.7± 0.496 0.182± 0.652 

6.84E-07, 1.84E-06 -12.6, -13.8 0.625, 2.30 

Table 2: Out-diffusion results for single-rate and multirate parameter estimations. De is the effective 
diffusion coefficient estimated using a conventional single-rate model. Rd and ad are parameters of 
the lognormal distribution used in the multirate inversion. 1.td may be compared to ln(D,). Quality of 
the fits to the data are described by the log-space root mean square errors for both single-rate (SR) 
and multirate (MR) inversions. 
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The parameter estimation statistics are calculated from the Jacobian, or sensitivity, matrix. 

This is a n by nt matrix, where n is the number of parameters to be estimated (1 for a single-rate 

model, 2 for multirate) and nt is the number of data points in the mass ratio curves (i.e., the number 

of times at which a data point was collected), which gives a measure of how sensitive the calculated 

curve is to perturbations in the fitted parameters. If a small change in a parameter value yields a large 

change in the calculated mass ratio curve, then the model is sensitive to that parameter and it will be 

well-estimated. The entries of the Jacobian, J, consist of the derivative of the calculated mass ratio at 

the ith time, M= /MT , with respect to the jth parameter, pi (e.g., Knopman and Voss, 1987; Harvey et al., 

1996): 

m/vIT) 
_ (Eqn. 36)ap, 

The sensitivity matrix is automatically returned by the parameter estimation subroutine used in our 

code (see Section 3.2). 

The covariance matrix is a n by n matrix estimated by taking the inverse of the square of the 

Jacobian and multiplying each entry by the variance of the random error in the observed data (e.g., 

Knopman and Voss, 1987). The information in the Jacobian with respect to the sensitivity of the 

model to its parameters is presented in the covariance matrix in a more concise form. As we have no 

direct measure of the error in the data (see Section 3.1), we follow the common approach of using 

the mean square error between the data and the calculated curves (the square of the RMSE values 

given in Tables 1 and 2) as a surrogate for the replicate variance. This is a viable alternative provided 

that the model is an accurate representation of the physical processes responsible for the observed 

system response and that (similarly) error in the measurements is random. In our case, this requires 

that the single-rate or multirate models employed adequately describe those mechanisms within the 
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samples responsible for the observed mass ratio curves (note that if only a single rate of diffusion is 

present, the multirate model implemented in the parameter estimation routine will "collapse" into a 

physically correct single-rate model by returning a near-zero value for O'd ) However, external effects 

that occurred during the static diffusion experiments (such as gypsum dissolution; see Section 3.1), 

which likely affected the some of the mass ratio curves, have not been incorporated into our 

mathematical model. Nonetheless, for most of the samples, use of the mean square error between 

the data and the calculated curves as an approximation to the true variance in the random error in the 

data is appropriate. For those cases where some additional effects clearly took place (such as out-

diffusion in B33-H; see below), it seems likely that this approximation leads to an underestimate of 

the entries in the covariance matrix. 

The square roots of the entries along the diagonal of the covariance matrix give, in turn, the 

standard deviations or 68% confidence intervals (a or CI, respectively) of normally-distributed error 

about the best-fit values of the estimated parameters. For example, ± 26 gives the region about the 

best-fit value of the parameter within which it can be said with 95% confidence that the actual value 

resides. Note that our code estimated the natural logarithms of D, and ad, so the confidence 

intervals shown in Tables 1 and 2 are calculated with respect to the arithmetic value of gd but the 

natural logarithms of De and 6d. The resulting actual ranges in D j.ta, and ad, within which the true 

value can be known to exist with 95% confidence, are explicitly given in the tables. 

3.3.2 Sources of Error 

3.3.2.1 Experimental Error 

While the quality of the fits of the calculated curves to the data is generally good, both 

qualitative consideration of Figures 10 through 15 and the quantitative estimates of error given in 
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Tables 1 and 2 indicate that these matches are inferior to those obtained from analysis of field-scale 

tracer tests using a multirate mass transfer model (Haggerty et al., in preparation; McKenna et al., in 

preparation). This is probably attributable to the quality of the data. Scatter in a number of the static 

diffusion data sets is significant relative to that seen in the extremely high-quality data collected 

during the field experiments, and as mentioned in Section 3.1, no means of providinga quantitative 

measure of uncertainty in these data currently exists. It is likely that this scatter results from some 

combination of failure to maintain a constant-concentration boundary condition, gypsum dissolution, 

and perhaps a lack of precision in the x-ray imaging technique, which is still under development. 

Moreover, systematic error appears to be present in some of the static diffusion data, 

particularly that for B33-H out-diffusion. This mass ratio curve shows a distinct break at about 200 

hours, but the in-diffusion data for the same sample shows no such irregularities. A possible 

explanation for this behaviour relates to the dissolution of gypsum that is believed to have occurred 

during saturation of sample B33-H with tracer following the in-diffusion phase (see Section 3.1). If a 

significant amount of gypsum dissolved, creating a new, open pore network, the distribution of 

diffusion coefficients could conceivably have been transformed from approximately lognormal to 

bimodal. One peak in the new bimodal distribution would be located roughly at the value of the 

diffusion coefficient given by the geometric mean of the lognormal distribution operative during the 

in-diffusion phase, whereas the second would correspond to the new porosity created by gypsum 

dissolution. If the two peaks were sufficiently far apart, this could result in a distinct break in the 

mass recovery curve. It is believed that such behavior has been observed in through-diffusion 

experiments conducted in samples of crystalline rock from the Aspo Hard Rock Laboratory in 

Sweden, which was tentatively interpreted to possess two discrete, or a bimodal continuous 

distribution of diffusion coefficients (Johanson et al., in preparation). 
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An additional source of systematic error in the in-diffusion data for sample RC4-D arises from 

the fact that it was not fully saturated with solute at the end of the in-diffusion experiment. Recall 

from Section 3.1 that the value of M(t=.0) used to normalize the mass uptake data was calculated 

from the x-ray image of the fully saturated sample. If the sample was not fully saturated, inflated 

values of normalized mass diffused into the sample as a function of time would result. Such data 

would suggest faster mass uptake and a steeper late-time slope than are true. Modeling of this data 

could conceivably give overestimates of D, and lid (Tidwell et al, in preparation) and an underestimate 

of Yd (e.g., Haggerty, 1995). It is possible that similar effects were present to a lesser degree in the 

other samples (Tidwell et al, in preparation). 

3.3.2.2 Concentration-Dependent Diffusion 

Concentration-dependent diffusion may have occurred during the experiments (V. Tidwell, 

personal communication, 1998). Aqueous diffusion coefficients increase with increasing concentration 

(e.g., Cussler, 1997); as the tracer concentration in the samples varied as a function of time, the 

diffusion coefficients might have as well. It is not unreasonable to conjecture that such a 

concentration- (or equivalently, time-) dependence of the aqueous, and therefore effective, diffusion 

coefficients could lead to some of the observed irregularities in the data. 

However, while the aqueous diffusion coefficients probably varied somewhat over the course 

of the experiments due to progressive changes in tracer concentration, a review of the chemical 

engineering literature (Cussler, 1976) revealed that concentration-dependence of the aqueous diffusion 

coefficient has a negligible effect on concentration profiles and breakthrough curves determined for 

systems similar to that in the static diffusion experiments. As the mass ratio curves used in our 

analysis are simply integrated concentration curves, concentration-dependence should not, therefore, 

contribute to the irregularities in our data sets. 
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Moreover, we were permitted to test whether concentration-dependent diffusion was a 

significant effect by observing that the in-diffusion experiments did not progress to saturation of the 

samples with tracer, and the out-diffusion phase did not end with full unsaturation (see Figures 10 to 

15). As a result, average tracer concentration within a given sample was significantly higher during 

the out-diffusion phase than during in-diffusion. If concentration-dependence of the aqueous 

diffusion coefficients was present and had a significant effect upon the mass curves, then the out-

diffusion experiments would show consistently faster diffusion coefficients than those obtained for 

the same sample for the in-diffusion phase. This was not observed. Tables 1 and 2 show that the 

best-fit values of both De and vt.d for a given sample are identical within measurement error for the in-

diffusion and out-diffusion experiments. The only exception to this is sample RC1-A, which actually 

shows slightly larger De and lid for the in-diffusion phase (note that in all cases, estimates of ad for a 

given sample are statistically identical for in- and out-diffusion). It was mentioned in the discussion 

on Damkohler numbers in Section 2.1 that the estimated values of mass transfer parameters may 

depend on the duration of the experiment. The out-diffusion experiments were approximately three 

times as long as the in-diffusion phase; while an order of magnitude or more increase in duration of 

the experiment is likely required to give such time-scaling effects, it is nonetheless conceivable that 

the longer duration of the out-diffusion phase resulted in a decrease in estimated Dr and Rd relative to 

those found for in-diffusion, counteracting the effects of concentration-dependent diffusion. 

However, truncating the out-diffusion data set for a given sample to the length of the corresponding 

in-diffusion experiment and rerunning the parameter estimations yielded results comparable to those 

found for the full data set. 

3.3.23 Multicomponent Diffusion 

Comparison of the aqueous diffusion coefficient of the KI tracer to the estimated distribution 

of diffusion coefficients (for the multirate model) and the estimated Dr (for the single-rate model) 
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could provide a means of confirming the reasonableness of the static diffusion results, because D, 

can never exceed Dag. However, three considerations show that such comparisons are both 

problematic and unnecessary. First, although De and Rd are well-constrained, the confidence intervals 

about the best-fit values are nonetheless sufficiently wide to accommodate any reasonable value of 

Dag for this system. Second, judging the entire distribution against the aqueous diffusion coefficient 

presumes that the tails of the distribution should be reliable. However, as discussed previously, the 

lognormal distribution is only an approximation to the true distribution of diffusion coefficients in 

the rock. Moreover, the sensitivity of any experiment to diffusion rates in the tails of the 

distributions is lower than that to rates of diffusion closer to the mean (Haggerty et al., in preparation). 

And third, the aqueous diffusion coefficient for the iodide tracer imaged in the static diffusion 

experiments is, in fact, unknown. The concentration-dependence of Dag was alluded to in Section 

3.3.2 and shown not to have any significant bearing upon the data and the modeling process, but this 

problem presents itself again if we wish to choose one particular value against which to compare our 

results. More fundamentally, however, the static diffusion experiments consisted of a quaternary 

diffusion system containing Na+, Cl-, K+, and I- ions. Some other species might also have been 

present, such as calcium and sulphate ions produced by gypsum dissolution. The implications of this 

are as follows (taken largely from Cussler, 1997). 

Although each ion has, in theory, its own diffusion coefficient, maintaining electrical neutrality 

in a binary diffusion system (e.g., potassium iodide dissolved in pure water) requires that the cation 

and anion diffuse at the same rate. The net aqueous diffusion coefficient of both ions is the 

harmonic mean of their individual aqueous diffusion coefficients. As a result, diffusion coefficients 

for strong electrolytes are expressed similarly to molecular diffusion coefficients in spite of the fact 

that the salt may completely dissociate. If additional ions are present in the solution, however, the 

electrical neutrality requirement may be partially satisfied by movement of the other ions. The fact 

that no concentration gradient may exist for those additional ions is irrelevant. In fact, under certain 
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conditions, an ion in a greater-than-binary system may actually diffuse against its own concentration 

gradient (obviously no longer classical Fickian diffusion). For a ternary system, it is still possible to 

calculate the diffusion coefficient of a particular ion from those of the salts involved, and a number 

of theoretical and measured values are tabulated in the chemical engineering and oceanography 

literature (e.g., Cuss ler, 1997; Li and Gregory, 1974). For a quaternary system, however, theoretical 

determination of the aqueous diffusion coefficient of a particular ion is extremely difficult. The 

number of diffusion coefficients required to characterize a system is (n-1)2, where n is the number of 

components. For quaternary diffusion, the diffusion coefficient is actually a 3 by 3 tensor. If 

sufficient gypsum dissolution occurred in a particular sample to affect diffusion (the necessary degree 

of dissolution might not be macroscopically noticeable), the diffusion coefficient would be a 5 by 5 

tensor. Expressions exist which describe Dal under such conditions, but the information necessary 

to evaluate these equations is not available for the diffusion system represented by the static diffusion 

experiments. In general, aqueous diffusion coefficients for particular species in such complex 

systems are determined experimentally, but this work has not been performed for the diffusion 

system in question. 

3.3.3 Single-Rate Versus Multirate Models 

Qualitative examination of Figures 10 through 15 suggests that in general, for a given sample, 

model curves calculated using best-fit single-rate and multirate parameters are similar. In a superficial 

sense, this is attributable to the facts that De and gd are identical within one confidence interval or 

less, and the best-fit values of ad, excluding those interpreted from the bulk diffusion data, are small 

(<1). As a result, the best-fit distribution of diffusion coefficients is both relatively narrow and 

centered on the best-fit single-rate diffusion coefficient. The multirate model in this case appears, 

therefore, similar to a single-rate model for many of the samples. 
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Difficulty in distinguishing single-rate from multirate processes during the analysis of these 

data was encountered by Christian-Frear et al. (1997), who attempted to use the type-curve method for 

estimating multirate mass transfer parameters of Haggerty (1995). While the method permitted 

quantification of the mean diffusion coefficient (as in our case, the mean estimated under the 

assumption of multirate diffusion corresponded closely to the best-fit single-rate value), they found 

that ad could not be uniquely identified. This failure was due to the fact that the method could only 

be reliably applied if approximately two orders of magnitude of variation in the mass ratio data were 

present. Multirate effects are typically clearly visible only at late times, when a large proportion of the 

tracer mass has been taken up or removed (see also Ruthven and Loughlin, 1971). In contrast, most of 

the static diffusion data sets offer a range of one order of magnitude or less in the mass ratio. 

Use of numerical modeling and the resulting parameter estimation statistics, however, permits 

us to extract more information from the data than is possible using the type-curve approach. As 

shown in Tables 1 and 2, the 95% confidence ranges for ad are, proportionately, much larger than 

for De and Rd due to the aforementioned problems with insufficient dynamic range in the data. 

However, it is clear that the 95% confidence ranges in ad for B33-H, RC1-A, and RC4-D do not 

approach 0. It is also clear from the RMSEMR and RMSEsR values provided in Tables 1 and 2 that 

the multirate model provides a quantifiably superior fit. Multirate diffusion, therefore, occurs in 

these samples. In contrast, conservative consideration of the in-diffusion and out-diffusion results 

taken together suggests that multirate diffusion was not detected in sample RC2-B. It is also clear 

that multirate diffusion was not detected in sample RC6-G. 

It would be incorrect to conclude from the small estimated values of od , and from the fact 

that two of the five samples can not be proven from this data to show multirate effects, that multiple 

simultaneous rates of diffusion are not significant at the lab-scale. There are three reasons for this. 

First, ad describes the standard deviation of a lognormal distribution of diffusion coefficients. As a 
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result, a ad value of only 0.5, for example, indicates that diffusion coefficients present within that 

sample show, at a minimum, more than half an order of magnitude variation. Second, while the 

visible effects of multirate mass transfer upon calculated mass ratio curves for single samples 

generally do not appear to be large for the small values of ad estimated from these data, the single-

rate and multirate curves diverge at larger times (e.g., Ruthven and Loughlin, 1971; Haggerty, 199 5 ; 

Hagger0 and Gorelick, 1998). Thus, even a small value of ad (<1) may have significant implications for 

long-term solute transport. Third, the above discussion regarding whether multirate mass transfer 

was detected in particular samples made use of a conservative approach to hypothesis testing which, 

although justified, does not fully reflect the physics of the problem. We rejected the hypothesis that 

multiple rates of diffusion are present in a given sample if we could not prove that they were that is, 

if the 95% confidence range in estimated ad included or very nearly included 0, and if the RMSE 

values did not show that the multirate model provided a significantly better fit than the single-rate 

model. However, these statistical tests do not indicate that a single-rate model is preferred, either. 

Any ad range which included 0 also included infinity; the inversion statistics in such a case simply tell 

us that it is impossible to infer from the available data whether multirate effects are present in that 

sample. This is due to a high degree of insensitivity of the calculated result for that block, over the 

dynamic range of the data and for a given value of gd (which is well-estimated in all cases), to the 

value of ad . If a single-rate model was clearly superior, the multirate inversion would return a value 

of ad near 0, with narrow confidence bounds. In addition, multirate and single-rate curves are, as 

mentioned above, similar for early-time data (i.e., prior to uptake or removal of a large proportion of 

the solute mass). This is true even for somewhat larger values of ad (e.g., Haggery and Gorelick, 1998). 

Thus, failure to detect multirate effects in two of the five data sets is attributable primarily to lack of 

dynamic range in the mass ratio data, and it can not be stated with confidence whether distributed 

diffusion does or does not occur in those samples. It is also important to note that while we have 

described this approach as being conservative, this is only true in relation to historical treatments of 
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diffusive mass transfer. In fact, the most cursory examination of any geologic media reveals it to be 

highly heterogeneous. The use of some form of multirate diffusion model is, therefore, a 

conservative treatment of mass transfer in naturally-occurring porous media; application ofa single-

rate model requires the simplifying assumption of homogeneity, which must be justified. 

The bulk diffusion data clearly show multirate effects. A multirate model provides both a 

qualitatively and quantitatively superior fit (Figure 15 and Tables 1 and 2). This is to be expected, as 

the bulk data sets combine the diffusion responses of individual blocks which are seen to give 

different values of De and Rd. It is useful to compare the results from the bulk diffusion data to that 

from the individual samples. Using in-diffusion as an example, it can be seen from Table 2 that the 

arithmetic average of all the best-fit De (and j.td) values for the individual blocks is equal, within much 

less than one confidence interval, to the best-fit De (and lid) found for the bulk data. In addition, the 

16th and 84th percentile values in the cumulative distribution function (CDF) of effective diffusion 

coefficients for the bulk data, as parameterized by the best-fit ji.d and ad, correspond quite closely to 

the minimum (RC4-D) and maximum (B33-H) best-fit values of D, and Rd found for individual 

blocks. Of course, neither the five single-rate diffusion coefficients nor the five lognormal 

distributions from the individual slabs combine additively, in a rigorous sense, to form a new 

lognormal distribution corresponding to the bulk experiment. However, it is clear that the best-fit 

lognormal distribution estimated solely from the bulk diffusion data provides a reliable 

representation of the range of diffusion coefficients known to exist within the individual slabs. 

3.3.4 Comparison to Other Culebra Modeling Results 

Our best-fit values for single-rate effective diffusion coefficients are consistent with those 

found by Christian-Frear et al. (1997), who modeled the in-diffusion mass ratio data for three samples 

by manual calibration using a single-rate code. For RC2-B and RC6-G, reported D, values are 
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statistically identical to our best-fit values. Their value of De for B33-H is very slightly smaller than 

the -2 CI value we obtained. 

Christian -Frear et al. (1997) also attempted to interpret the mass ratio data in terms of multirate 

diffusion using the type-curve method of Haggerty (1995), as discussed in Section 3.3.3. Although 

they were not able to determine values for ad using this simple technique due, primarily, to 

insufficient dynamic range in the data, they determined values for [id for a number of samples. 

Values were not reported, but they indicated that interpreted 1.td values corresponded well to De 

values found using a single-rate model. We observed similar behaviour in our modeling (Section 

3.3.3). As their De estimates are similar to ours, their estimated lid values are probably also consistent 

with those we found. For both single-rate and multirate models, we assign more validity to our 

results due to the superior ability of formal inversion techniques to identify a best-fit value and 

provide a quantitative measure of the degree of confidence that can be held in those results. 

Of greater interest is how our multirate modeling of the laboratory-scale experiments 

compares to that completed for field-scale tracer tests. Figure 16 shows best-fit lognormal 

distributions of the diffusion rate coefficient, De/a2, for a number of static diffusion and field-scale 

experiments, where a is the diffusion path length within the matrix (Section 2.1). Distributions of 

diffusion rate, rather than effective diffusion coefficient, were estimated from the field-scale tracer 

tests because the diffusion path length represents an additional form of pore-scale variability in 

diffusion processes not experienced at the lab-scale. We converted our estimates of the distributions 

of De to distributions of De/a2 using: 

Cdr = ftd ln(a2) (Eqn. 37) 
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Figure 16: CDFs from lab- and field-scale experiments. All are best-fit lognormal distributions of 
diffusion rates. Distributions of effective diffusion coefficients estimated from lab-scale work 
(individual samples and bulk diffusion) have been converted to diffusion rate coefficients using the 
length of the sample perpendicular to the reservoir as a measure of diffusion path length. This 
conversion is completed so as to render the CDFs from the lab- and field-scale work amenable to 
presentation on the same plot, but the resulting Rd, for the lab-scale work cannot be taken to be 
reliable; the displayed widths of the distributions, however, are robust. H-11 field-scale data from 
Haggerty et al. (in preparation); H-19 field-scale data from McKenna et al. (in preparation). 
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where lid, is the geometric mean of the lognormal distribution of diffusion rates, lid is the geometric 

mean of the lognormal distribution of effective diffusion coefficients estimated in our static diffusion 

work, and a, the diffusion path length, is taken to be the length of the sample in the static diffusion 

experiment measured perpendicular to the reservoir. This choice is discussed below. od does not 

require adjustment, as the length of a given sample is constant and all variability in diffusion 

processes thus results from heterogeneity in the effective diffusion coefficient. 

1.1,1, values from the static diffusion experiments appear to correspond very closely to those 

estimated for single-well and two-well field-scale tracer tests conducted at the H-11 hydropad, and at 

the H-19 hydropad, from which the static diffusion samples were collected. A number of 

independent interpretations of several different types of experiment would thus seem to provide 

estimates of gar that converge upon a narrow range of values. However, taking the length of the 

sample as the value of a in Eqn. 37 is likely inappropriate. The values of p,d estimated from the lab-

scale work are independent of the length of the sample, and much larger or smaller samples would 

therefore give the same result. Thus, the values of lid, derived from the lab-scale work and 

presented graphically in Figure 16 reflect, in part, an arbitrarily chosen sample length which has no 

effect on the diffusion process. The fact that these lid, values correspond very closely to those 

directly estimated in the field-scale work may be explained in two ways. First, it may suggest that the 

mean diffusion path length in the Culebra, in situ, may be roughly similar to the lengths of the 

samples used in the static diffusion experiments. Second, it may be a coincidence; we will adopt this 

more conservative interpretation. Note that we have not adjusted it for the difference (perhaps a 

factor of 2) between the aqueous diffusion coefficient of the K1 tracer used in the lab-scale 

experiments and that for the benzoic acid tracers used in the field-scale experiments, on account of 

these significant uncertainties in the appropriate value of a and the uncertainty in the aqueous 

diffusion coefficient of the K1 tracer (see Section 3.3.2.3). 
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In contrast to Rd, the values of ad corresponding to the distributions given in Figure 16 are 

robust and show a great deal of variability between the experiments. In general, the distributions are 

narrow for individual samples, somewhat larger for the bulk diffusion experiment, and considerably 

larger for the field-scale tests; that is, as the spatial scale of the experiment increases, greater 

variability in diffusion rate is encountered by the solute. Distributions estimated from both multiwell 

and SWIW (not shown) tracer tests at H-19 are wider than those from the H-11 hydropad. This has 

been attributed to the more distributed nature of advective porosity at H-19 relative to H-11 (Haggerty 

et al., in preparation). 

When comparing the results from lab-scale diffusion experiments to those from field-scale 

tests which involve advective tracer transport, it is important to consider the effects that different 

types of porosity have upon each. In the field-scale SWIW and two-well convergent flow tests, 

advective porosity acts as a distinct entity from diffusive porosity. In contrast, in the static diffusion 

experiments all porosity present in the rock acts as diffusive porosity including interconnected pore 

networks which could contribute to advective transport rather than mass transfer in the field-scale 

tests. In the absence of a hydraulic gradient, the addition of such nominally advective porosity to the 

total diffusive porosity would not produce dramatic effects. Nonetheless, it seems likely that well-

connected, and perhaps less restricted, pore space would give rise to higher bulk effective diffusion 

coefficients than the dead-end pore space which functions as the immobile zone in a test involving 

advective transport. 

This may be an important consideration in some rocks, but it is unlikely to have much effect 

upon our interpretation of diffusion processes in the Culebra dolomite for two reasons. First, the 

diffusive porosity (i.e., matrix or dead-end porosity) in the Culebra dolomite is typically about one to 

two orders of magnitude larger than the advective porosity (Haggerty et al., in preparation; McKenna et al., 

in preparation). As a result, interconnected pore networks that would act as advective porosity in an 
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active tracer test generally represent a negligible addition to the total porosity sampled in the static 

diffusion experiments. In addition, a pore network or fracture that spans the entire sample used in 

the static diffusion experiment might, in situ, have terminated some short distance away. This 

feature would behave as advective porosity in the sample if a hydraulic gradient had been established 

across it, and might be described as interconnected, advective-type porosity if viewed in hand 

specimen. However, it would act as dead-end pore space within the formation. As a result, the 

contribution it makes to diffusion within the sample is an accurate representation of the role it would 

play in diffusive mass transfer during a field-scale, advective-flow tracer test. 

Another data set against which results from the static diffusion modeling can be compared is 

the CDF of formation factors introduced in Section 3.2 (Figure 9). As D, is inversely proportional to 

formation factor, the distribution of one should be equivalent to that of the other. Unfortunately, 

calculations of De from formation factors may be unreliable due, for example, to the dependence of 

formation factor measurements on the properties of the ions present in the pore fluid (see Kelley and 

S aulnier, 1990 for discussion). It is therefore difficult to directly convert the fitted CDF of formation 

factors to a CDF of D. However, the standard deviations of the lognormal distributions should be 

similar if both sets of data were obtained from the same rock. These formation factors were 

determined for 21 samples of Culebra dolomite by TerraTek (TerraTek contractor's report, 1997) 

retrieved from the H-19 hydropad, primarily from borehole H-19 b4 (R. Beauheim, personal 

communication, 1997); this is the same location from which the samples used in the static diffusion 

experiments were sourced. The standard deviation in the best-fit lognormal CDF of formation 

factors determined from all 21 samples should, therefore, be similar to ad estimated from the bulk 

static diffusion experiments. 6 for the formation factors was found to be roughly 0.7, which 

corresponds closely to the values found for bulk diffusion data. Failure of the values to be exactly 

equal is not troublesome. Effective diffusion coefficients may be a function of rock properties other 

than tortuosity, such as the restrictivity of the pores (see Section 2.1), which may not be reflected in 
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the formation factor data. Moreover, formation factor determinations were not performed on the 

same samples used in the static diffusion experiments. This second issue may be of particular 

significance as samples used in the diffusion experiments were selected to represent a distinctive suite 

of Culebra matrix porosity types. As a result, analyses of the diffusion data might lead to slightly 

higher estimated values for Gd than obtained from the formation factor data. 

The reasonably close correspondence between the standard deviations of these two 

distributions serves as supporting evidence for our interpretation of the static diffusion experiments. 

It also raises the possibility that formation factors which are much easier and cheaper to obtain 

than laboratory diffusion data might provide an indirect but reasonably reliable means of estimating 

pore-scale heterogeneity at many locations in the Culebra dolomite. 

3.4 Discussion 

3.4.1 Correlation of Modeling Results to Observable Geology 

One objective of the study was to determine whether the quantitative information provided by 

single-rate and, in particular, multirate modeling could be correlated to macroscopically visible 

features in the samples. Figures 17 through 24 give plots of a ranking of the samples in terms of the 

relative presence of 4 types of features against estimated values of Rd and Gd Degrees of vugginess, 

gypsum-filling, and fracturing, in addition to bulk porosity, are considered. Qualitative rankings of 

the blocks in terms of the relative abundances of these features were provided by V. Tidwell (personal 

communication, 1998), except for porosity, which was determined using gravimetric methods (Christian-

Frear et al., 1997). Best-fit and ± 1 CI values for p,d and ad are shown for both in-diffusion and out-

diffusion. Note that only 3 samples were used in the out-diffusion experiment. As Rd and ln(De) are 

identical within ± 2 CI or less for all tests, plots of Rd also address possible correlation of single-rate 



62 

Figure 17.a 

10 

-12 ­

vid 

-13 

I 
-14 

-15 

'RC2-B 'RCI-A "IIC4-D RC6-G B33-H 

increasing vuggyness 

Figure 17.b 

10 

-11 

-12 

1-td 

-13 

I 

-14 

-15 

*RC2-B "RCI-A 'RC4-D RC6-G 1333-H 

increasing vuggyness 

Figure 17: Correlation of Rd to degree of vugginess. Figure 17.a: in-diffusion. Figure 17.b: out-
diffusion. Best-fit and ± 1 CI values of [td are shown. Rankings of the blocks in terms of degree of 
vuggyness were provided by V. Tidwell (personal communication, 1998). *Samples RC1-A, RC2-B, and 
RC4-D were observed to contain almost no vugs (V. Tidwell, personal communication, 1998). 
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Figure 18: Correlation of I..td to degree of gypsum-filling. Best-fit and ± 1 CI values of ptd are shown. 
Figure 18.a: in-diffusion. Figure 18.b: out-diffusion. Rankings of the samples in terms of the degree 
of gypsum present were provided by V. Tidwell (personal communication, 1998). *Samples RC1-A, RC2­
B, and RC4-D were not observed to contain gypsum (V. Tidwell, personal communication, 1998). 
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Figure 19.a 
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Figure 19: Correlation of µd to bulk porosity. Figure 19.a: in-diffusion. Figure 19.b: out-diffusion. 
Best-fit and ± 1 CI values of td are shown. Ranking of the blocks in terms of increasing bulk 
porosity was taken from Christian-Frear et al. (1997). 
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Figure 20.a 
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Figure 20: Correlation of j.td to degree of fracturing. Figure 20.a: in-diffusion. Figure 20.b: out-
diffusion. Best-fit and ± 1 CI values of Rd are shown. Rankings of the samples in terms of 
increasing fracturing were provided by V. Tidwell (personal communication, 1998). *Samples RC1-A and 
RC4-D were not observed to contain fractures (V. Tidwell, personal communication, 1998). 
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Figure 21.a 
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Figure 21: Correlation of 6d to degree of vugginess. Best-fit and ± 1 CI values of od are shown. 
Figure 21.a: in-diffusion. Figure 21.b: out-diffusion. Ranking of the blocks in terms of increasing 
vugginess was completed by V. Tidwell (personal communication, 1998). *Samples RC1-A, RC2-B, and 
RC4-D were observed to contain almost no vugs (V. Tidwell, personal communication, 1998). 
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Figure 22: Correlation of ad to degree of gypsum-filling. Best-fit and ± 1 CI values of O'd are shown. 
Figure 22.a: in-diffusion. Figure 22.b: out-diffusion Ranking of the blocks in order of increasing 
gypsum presence was completed by V. Tidwell (personal communication, 1998). *Samples RC1-A, RC2-B, 
and RC4-D were not observed to contain gypsum (V. Tidwell, personal communication, 1998). 
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Figure 23.a 
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Figure 23: Correlation of 6d to bulk porosity. Best-fit and ± 1 CI values of Gd are shown. Figure 
23.a: in-diffusion. Figure 23.b: out-diffusion. Ranking of the blocks was taken from Christian-Frear et 
al. (1997). 
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Figure 24: Correlation of ad to degree of fracturing. Best-fit and ± 1 CI values of ad are shown. 
Figure 24.a: in-diffusion. Figure 24.b: out-diffusion. Rankings of the blocks were provided by V. 
Tidwell (personal communication, 1998). *Samples RC1-A and RC4-D were not observed to contain 
fractures (V. Tidwell, personal communication, 1998). 
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estimation results to geologic characteristics of the samples. ± 1 CI, rather than ± 2 CI, results are 

shown because the latter confidence bounds are very large for some samples, particularly in Gd . The 

± 1 CI range in (Yd values for RC6-G in-diffusion and RC2-B out-diffusion is 0 to infinity; the upper 

limit is represented simply by a point at the upper border of the graph. In addition, a plot of the 

number of types of features (vugginess, fracturing, and gypsum-filling) observed macroscopically in 

the sample against estimated od is given in Figure 25. Confidence bounds are omitted from this 

figure for simplicity, but results from the bulk in- and out-diffusion experiments are included. 

There appears to be a correlation between bulk porosity and j..td (Figure 19). As the porosity 

factors cancel in the expression for the mass ratio curves (Eqn. 28) from which Rd is estimated, 

porosity should not directly affect the value of lid. In addition, our definition of De does not include 

porosity (Section 2.1). However, as the proportion of the rock volume occupied by pore space 

increases, it becomes more likely that individual pores will intersect. Interconnected pore space likely 

leads to faster average rates of diffusion, relative to dead-end pores in which solute becomes trapped 

(e.g., Dykhuken and Casey, 1989). Another, related, explanation for this observed behaviour is 

suggested by the apparent correlations between jid and degrees of fracturing and vugginess (Figures 

17 and 20), and between the relative presence of these features and bulk porosity (Figure 26). 

Obviously, the presence of major, macroscopically visible porosity features could contribute to 

increased porosity and, as a result, to faster diffusion rates. In addition, though, fractures and vugs, 

being large features tend to span considerable portions of the sample or even the sample in its 

entirety (note that many vugs are associated with fracturing; refer to Section 2.2.2.2). Consequently, 

these particular types of porosity are especially effective at providing the extended pore networks that 

could increase mean diffusion rates. A correlation also appears to exist between the amount of 

gypsum present and both Rd and porosity. This is likely because gypsum presence is diagenetically 

related to fracturing and vugginess. Gypsum occurs in the Culebra as a fracture- and vug-filling 
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Figure 25: Correlation of Gd to number of types of features observed. Features considered are 
vugginess, fracturing, and gypsum-filling (V. Tidwell, personal communication, 1998). Our best-fit values 
of ad for in-diffusion and out-diffusion are shown, but confidence bounds are omitted from this 
figure for simplicity. Results from the bulk in- and out-diffusion experiments are included. 
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Figure 26: Correlations between porosity and macroscopic features. Figure 26.a: degree of fracturing 
against porosity. Figure 26.b: degree of vugginess against porosity. Figure 26.c: degree of gypsum-
filling against porosity. Rankings of samples in terms of relative abundance of macroscopic features 
provided by V. Tidwell (personal communication, 1998). Porosities are from Christian-Frear et al. (1997). 
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cement. However, considerable gypsum dissolution has taken place in the Culebra, forming 

secondary porosity (see Sections 2.2.2.2 and 2.2.3). It is likely that, although gypsum cementation 

remains in these samples, some interconnected porosity has been reopened along the long, 

continuous diffusion pathways that the gypsum inhabits. It is possible, then, that the presence of 

gypsum simply serves as a marker for the presence of fracture and vug porosity. 

In contrast, best-fit values of sjd do not appear to correlate with porosity, fracturing, 

vugginess, gypsum-filling, or the number of types of features present in the samples. Much of the 

difficulty with evaluating the presence of correlations between (d and such geologic characteristics, 

apart from the scarcity of data, lies in the large confidence bounds in estimated (d (see Section 3.3.3). 

In general, a line of positive, negative, or zero slope can be drawn through any of the available data 

such that it passes through the ± 1 CI range for estimated ad (see Figures 21 through 24), but this 

clearly can not be taken as evidence of a relationship. However, the apparent absence of a 

correlation between best-fit ad and fracturing, gypsum-filling, and vugginess, or the variety of such 

features present in a sample (Figure 25), may be an indication that such macroscopic characteristics 

of the rock contribute less to the establishment of a distribution of diffusion rates than does 

variability in much smaller-scale porosity, such as intergranular or intercrystalline porosity. 

Macroscopically highly homogeneous soils, for example, have been shown to possess orders of 

magnitude in variation in diffusion rates, corresponding to heterogeneity at the micropore-scale (e.g., 

Haggerty and Gorelick, 1998). An alternate explanation for the apparent absence of a correlation is that 

the magnitude of ad may be reflective of variations in pore geometry within a macroscopic feature. 

A third possibility is that ad could be a function of additional macroscopic features within the sample 

that are not externally visible. However, it seems likely that such features would also help to control 

P,d; this is inconsistent with the observed correlations between and the presence of externally 

visible macroscopic features. 
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Due to the small number of samples considered and the large confidence bounds on ad, firm 

conclusions regarding the correlation of mass transfer parameters to readily observable geologic 

features can not be drawn. Nonetheless, available information does suggest that the mean diffusion 

rate in the Culebra dolomite may be strongly influenced by large-scale features such as fractures and 

vugs, but the breadth of the distribution of diffusion rates may be more strongly controlled by 

variability in pore geometry within such macroscopic features and/or by micropore-scale variability. 

3.4.2 Development of Spatial Scaling Relationships 

Another main goal of the work is to evaluate relationships between mass transfer parameters 

determined from laboratory experiments and those inferred from field-scale tracer tests. We briefly 

broached the subject in Section 3.3.4, where we noted that as the spatial scale of an experiment 

increases, the distribution of rates grows broader (Figure 16). We now consider the matter in more 

detail. 

Best-fit values of ad are plotted on Figure 27 against sampling volumes for 14 experiments. 

Three classes of spatial scale are considered: individual samples in the static diffusion experiments, 

bulk static diffusion data, and SWIW and two-well tracer tests at the field-scale. All experiments 

were conducted at the H-19 hydropad or on samples taken from that location, so any inferred 

relationships should be reflective only of sampling volume, rather than being a product of major 

regional-scale changes in Culebra hydrogeology. Best-fit values of gar are also plotted on Figure 27 

against sampling volumes for the 10 experiments from the lab-scale work. Field-scale results are not 

included for gar due to the uncertainty in conversion between the effective diffusion coefficients 

estimated from the static diffusion experiments and diffusion rates estimated from the field-scale 

experiments (see Section 3.3.4). ad does not require this conversion. 
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Figure 27: Correlation between mass transfer parameters and spatial scale of experiment. Figure 27.a: 
correlation between ad and sampling volume. Figure 27.b: correlation between gar and sampling 
volume. Note logarithmic horizontal axes on both plots. 
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Sampling volume for an individual sample in the static diffusion experiments was taken to be 

the full volume of the sample. For the bulk diffusion experiments, the sum of the volumes of the 

constitutive blocks was used. Sampling volumes for the SWIW and multiwell tests, respectively, were 

taken to be itr'h and 0.57ch-Fiph (J. Ogint personal communication, 1998), where h is the thickness of 

the formation (4.4 m; see Section 2.2.1) and p is the distance from the injection to the pumping well 

in the multiwell case. The radial distance from the injection well at which a normalized 

concentration of approximately 10-5 is found at the end of injection, r, was determined from 

intermediate output files produced by the STAMMT-R modeling runs used in Haggery et al. (in 

preparation) and McKenna et al. (in preparation). Confidence intervals have been omitted from the figures 

for simplicity. However, uncertainty in the parameter values is implicitly reflected by incorporating 

results from both the in-diffusion and out-diffusion phases of the lab-scale experiments, and from 

two SWIW and two multiwell tests conducted at the same hydropad. In theory, in-diffusion and out-

diffusion results for a given sample should be the same, as should two tracer tests of the same type 

(SWIW or two-well) conducted at the same location. The fact that they are not is a reflection of 

uncertainty in the parameter estimates, and by including all experimental results we introduce an 

indirect measure of that uncertainty into the plot. It should also be noted that all experiments have 

time-scales of the same order of magnitude, an issue to which we will return later in this section. 

Best-fit gar values from individual samples in the static diffusion experiments show a large 

degree of scatter. As confidence bounds for these parameter estimates are fairly narrow, this should 

be taken to represent true variation in the mean diffusion rate from one sample to the next. 

Estimated liar values for the bulk diffusion experiments are mutually nearly identical, and are 

approximately equal to the arithmetic mean of 1..td, values estimated for their constitutive individual 

samples (refer to Section 3.3.3). Although the mean diffusion rates estimated from the field-scale 

work are not directly comparable to gar from the lab-scale experiments, it is worth noting that the 
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best-fit Rd, values for the multiwell tests at the H-19 hydropad and the SWIW and multiwell tests at 

the H-11 hydropad are all mutually similar. 

Best-fit ad values from individual samples in the static diffusion experiments show a smaller 

degree of scatter than seen in lick, though it must be remembered that confidence intervals for these 

ad estimates are generally large. Estimated Gd for the bulk diffusion experiments are mutually similar, 

well-constrained, and larger than the arithmetic average of ad values determined from individual 

samples. Recall also from Section 3.3.3 that 1 ad in the distribution of rates estimated for the bulk 

diffusion experiments corresponds very closely to the range in best-fit De and gd, measured for 

individual, constitutive samples. At the field-scale, ad estimates from the H-19 hydropad are greater 

than those found at H-11 (Haggerty et al., in preparation; McKenna et al, in preparation), but all field-scale 

ad values are much larger than those found from smaller-scale experiments. Although data are 

available for essentially only 3 sampling volumes, it is clear that ad scales with sampling volume, and 

it appears to do so in a roughly logarithmic fashion: the best-fit curve through the points on the 

semi-log plot given in Figure 27.a is a straight line (not shown). 

We interpret these results in the following manner. The geometric mean varies as a function 

of spatial scale in a manner similar to that in which many other geologic properties do. Very small 

sampling volumes yield point estimates of [tar, with quite different values from one measurement 

location to the next. Each small sampling volume has a different distribution of rate coefficients 

characterized by a different geometric mean or, if diffusion processes within those small sampling 

volumes are essentially single-rate, a different D, This spatial scale corresponds to the individual 

samples in the static diffusion experiments. A somewhat larger sampling volume (the representative 

elementary volume, REV) yields an average value of gdr, as local heterogeneities are integrated. The 

distribution at the REV-scale has grown broader, incorporating the fluctuations in the point 
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estimates, and the corresponding mean rate is approximately the arithmetic average of the point 

estimates of Rd, from the smaller spatial scale. This corresponds to the bulk diffusion experiments. 

We might hypothesize that larger experimental scales (the field-scale tracer tests) may give rise to 

perturbations about the mean rate coefficient obtained at the REV-scale, as more aquifer 

heterogeneities are encountered at the progressively farther reaches of the sampling volume. 

However, there would be no systematic increase or decrease in lid, with increasing spatial scale and 

the value of jad, obtained at the REV-scale would remain a reasonable estimate, provided that no 

major, large-scale changes in the nature of the aquifer occur. This is consistent with, although not 

required by, the observation that the values of j_id from the field-scale experiments, at two different 

hydropads and following different flow paths at a given hydropad, are mutually similar (Haggerty et al., 

in preparation; McKenna et al., in preparation). 

In general, geologic materials are heterogeneous, and the larger the region considered, the 

greater the degree of heterogeneity. ad is a measure of heterogeneity in mass transfer rate coefficients 

within the volume of rock sampled. as thus increases with spatial scale as a result of an increase in 

the heterogeneity in rate coefficients encountered over the larger sampling volume. This occurs in a 

manner closely analogous to that in which macrodispersivity increases with spatial scale as a result of 

an increase in the heterogeneity in hydraulic conductivity encountered over the larger sampling 

volume (Gelhar et al., ,,Quinodoand Valocchi, 1993). At the smallest spatial scales (i.e, individual 

samples in the static diffusion experiments), mass transfer rates may vary considerably from one 

point in the formation to the next, but there is relatively little heterogeneity within each small 

sampling volume. At a larger spatial scale, a range of mass transfer rates the point values found at 

the smaller spatial scale - will simultaneously exist within that sampling volume, resulting in an 

increase in ad. This corresponds to the bulk diffusion experiments. As the spatial scale continues to 

increase, a greater variety of mass transfer rates are encountered, leading to further increases in ad. 
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This corresponds to the field-scale tracer tests, although it should be noted that the increase in ad 

estimates for the field-scale experiments relative to those for the diffusion work may be partly 

attributable to the effects of slow advection. Unless large and abrupt changes in mass transfer 

characteristics are encountered, the increase in ad might be expected to level off, reflecting the fact 

that all mass transfer rates in the aquifer observable at the time-scale of the experiment have been 

sampled. This may account for the roughly logarithmic form of the relationship. Note that an 

analogous decrease in the rate of change of macrodispersivity with spatial scale also occurs at larger 

sampling volumes (Gelhar, 1985). 

It would appear that the logarithmic form of the scaling relationship would permit a 

conservative extrapolation of ad to the regional-scale. For example, a continuous-source plume 50 m 

wide and 500 m long and distributed over the full 4.4 m thickness of the lower Culebra (for a total 

sampling volume of 110,000 m3, over 500 times that of the field-scale tests) gives, using a best-fit line 

to the data in Figure 27.a, an extrapolated ad of about 8. This value is not dissimilar to those found 

from a number of the field-scale tests. As a result, use of such roughly logarithmic spatial scaling 

relationships does not give radically large ad estimates. 

However, applying these relationships at scales significantly larger than the field-scale requires 

that no major, large-scale changes in geologic properties is encountered by the expanding sample 

volume (see above). That is, the relationship must be valid for any suite of samples of different 

volumes from anywhere within that larger-scale region of interest. This is untrue. While no lab-scale 

data are available and it is not, therefore, possible to develop another scaling relationship, a number 

of SWIW and multiwell tracer tests at the H-11 hydropad (Haggerty et al., in preparation; McKenna et al, 

in preparation) have given values of ad significantly smaller than those from the field-scale at H-19. 

Clearly, the local degree of heterogeneity in mass transfer characteristics changes from one region in 

the Culebra to another. 
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It is possible, nonetheless, to hypothesize what effect this larger scale of variability might have 

by considering the simple case of advection of a solute plume in series through two adjacent regions 

with different mass transfer characteristics. From both theoretical considerations and scoping runs 

performed using a code capable of modeling one-dimensional advective- dispersive transport with 

multirate mass transfer (Haggerty and Reeves, 1998), it appears that: 1) the net effect of different lid, 

values across the two regions, but a shared ad value, is a bulk gd, value roughly equal to the average 

of the two individual ones and a bulk ad that is somewhat, but not drastically, increased; and 2) the 

net effect of a shared gd, value, but different ad values, is the original gd, value and an average of the 

two ad values. Thus, if a large plume were to transect both the H-11 and H-19 hydropads (tests 

from which have yielded similar values for p.d, but different values for ad), the scaling relationships 

inferred from Figure 27.a would provide an overestimate of ad over that larger sampling volume. On 

the other hand, there may be other locations in the Culebra characterized by a higher degree of 

heterogeneity than seen at H-19; in that case, our scaling relationship would give an underestimate of 

the regional ad. Similarly, if other locations exhibit different field-scale 1-td, values (even if ad is 

identical to that at H-19), the regional value of ad extrapolated from this relationship would again 

provide an underestimate. 

A corollary regarding the distinction between temporal and spatial scales is in order. In 

Section 2.1, we indicated that the rates of mass transfer estimated from experimental data may 

depend, in part, on the time-scale of the experiment. For a given velocity, the spatial-scale of an 

experiment clearly determines its time-scale. Insofar as the influence of Damkohler numbers upon 

mass transfer rate estimates are concerned, however, the controlling factor (all other things being 

equal) is the duration of exposure of a clean rock matrix to solute, or of a contaminated rock matrix 

to clean advecting pore water, relative to the time-scale of mass transfer. The spatial scale is only 

significant in that it determines, together with velocity, the ratio of these time-scales. All the 
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parameter estimates discussed in this section, however, were determined from experiments of 

roughly similar time-scales. For these experiments, spatial scale controls mass transfer parameter 

estimates by controlling the volume of aquifer sampled and, therefore, the degree of spatial 

heterogeneity in mass transfer characteristics encountered by the solute. 

3.4.3 Suggestions for Future Laboratory-Scale Diffusion Work 

Continued study of multirate diffusion processes at the laboratory-scale is desirable given the 

fundamental importance of these effects to both aquifer remediation and evaluation of the risk 

associated with hazardous waste repositories. Specific suggestions to be considered in future 

experimental design and modeling in the Culebra dolomite, which could also be used as a checklist 

for work in other geologic media, might include the following: 

1) increase the dynamic range of the data to at least 2, or preferably 3 or more, orders of magnitude. 

Greater range in the mass ratio data (i.e., collection of data over a longer experimental duration) is 

desirable for any modeling effort, and is of particular significance to multirate modeling; 

2) increase the number of samples in the study. The ability to reliably draw or dismiss correlations 

between mass transfer parameters and easily recognized or measured geologic properties of the 

samples, such as porosity and the degree of fracturing or vugginess, would be greatly improved if 

more samples were available. Moreover, by combining the mass ratio data from a greater number of 

samples in the manner described in Section 3.1 to form a bulk data set, a significantly larger-scale 

experiment may be simulated. In addition, if a sufficiently large number of samples were available, 

the sampling volume could be carefully controlled by varying the number of individual slabs included 

in the bulk data set. This would compliment efforts to identify and describe spatial scaling 

relationships; 
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3) perform diffusion experiments for samples from other hydropads. This would help to ascertain 

whether results from the study are generally applicable over the WIPP site. H-11 would be an 

appropriate choice, as parameter estimates from the static diffusion experiments could be compared 

to those obtained from multirate modeling of the field-scale tracer tests conducted at this hydropad; 

4) measure the formation factor and construct one or more thin sections for each sample. 

Comparison of detailed observations from thin section to estimated mass transfer parameters would 

be likely to greatly expand our understanding of the relationships between mathematical mass 

transfer models and observable geology. In addition, the details of the relationship between diffusion 

coefficients and formation factors are not fully understood. As a result, comparison of formation 

factors to mass transfer parameters measured for the same sample might enhance the ability to use 

electrical rock properties as an inexpensive and simple surrogate for laboratory diffusion 

experiments; 

5) reduce experimental error by ensuring that a constant-concentration boundary condition is 

maintained, that gypsum dissolution does not occur, and that the sample is fully saturated with solute 

between the in- and out-diffusion experiments; 

6) develop a method for calculating measurement error in the mass ratio data. This would permit the 

modeler to determine with certainty whether the modeling result is consistent with the data, and 

would also permit more accurate calculation of parameter estimation statistics. 
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4. REGIONAL-SCALE SIMULATIONS 

4.1 General 

The effects of multirate mass transfer upon solute transport at very large time- and spatial-

scales, such as the 10,000 year period considered for WIPP certification and the approximately 3 km 

distance from the center of the WIPP site to its regulatory boundary, have been the subject of 

conjecture but remain unclear. In this second phase of the study, we address these issues by 

performing one-dimensional simulations of advective-dispersive solute transport in presence of a 

variety of mass transfer regimes. 

Two approaches are used. First, a series of five deterministic scoping simulations are 

completed to evaluate the effects of the following mass transfer models upon breakthrough curves 

(BTCs) of both solute concentration and mass: 1) no mass transfer (A-D); 2) equilibrium mass 

transfer (LEA); 3) a single rate of diffusive mass transfer (SR); 4) a log-normal distribution of 

diffusion rate coefficients (MR); and 5) a similar multirate model wherein the geometric mean of the 

distribution is shifted significantly toward slower rates, in accordance with the hypothesis that mass 

transfer rates scale temporally (MR-S). These simulations are performed for transport distances of 

both 3000 m and 1 m for purposes of comparison. 

Second, for each of these column lengths, four Monte Carlo simulations are performed: 1) 

single-rate diffusive mass transfer with statistically-described uncertainty in Vp,, the pore water 

velocity [L /T]; (3tot, the capacity coefficient; and Dc/ a2, the diffusion rate coefficient (SR); 2) single-

rate mass transfer with uncertainty only in De/ a2 (SR-MT); 3) multirate mass transfer incorporating 

uncertainty in Vim, Pt., the geometric mean (td) of the lognormal distribution of diffusion rate 

coefficients, and the standard deviation (ad) of the diffusion rate distribution (MR); and 4) multirate 
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mass transfer with uncertainty only in Rdr and ad (MR-MT). This permits comparison of the 

consequences of the different mass transfer models in the presence of uncertainty in their 

parameterization, and also allows investigation the effects of variation in mass transfer rates and 

regimes to be compared with those due to uncertainty in the combination of Darcy velocity, 

advective porosity, and diffusive porosity. 

For simplicity, 1),/ a2 (in the single-rate model) and gar and ad (in the multirate model) will 

hereafter be collectively referred to as the mass transfer parameters. The pore water velocity and 

capacity coefficient will be referred to as flow parameters, although these parameters do, of course, 

control in part the nature of mass transfer experienced by an advecting solute plume. 

4.2 Model Parameterization 

4.2.1 Monte Carlo Input Distributions 

Input distributions of Vi,,, and otot (Figure 29) were constructed from available distributions of 

travel time, advective porosity (ea), and diffusive porosity (0d) (Figure 28). The travel time 

distribution represents the time required for a particle of solute to travel an average distance of 

3682 m within the Culebra dolomite in the absence of mass transfer and assuming an advective 

porosity of 0.16, and was provided by M. Wallace (personal communication, 1998). These travel times 

were calculated using a two-dimensional particle tracking groundwater flow code, for realizations of 

heterogeneous transmissivity fields developed using the pilot point method of La Venue et al. (1990) 

and generated using the GRASP-INV code (M. Wallace, personal communication, 1998; S. McKenna, 

personal communication, 1998). The piece-wise linear travel time distribution was converted to a 

distribution of Darcy velocities, q, by dividing the travel distance of 3682 m by the travel time and 

multiplying by the advective porosity of 0.16 which was assumed in their simulations. A piece-wise 
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Figure 28: Indirectly utilized input distributions. Figure 28.a: travel time distribution (M. Wallace, 
personal communication, 1998). Figure 28.b: distribution of diffusive porosity (Meigs and McCord, 1996). 
Figure 28.c: distribution of advective porosity (Meigs and McCord, 1996). 
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Figure 29.a 
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Figure 29: Flow parameter input distributions. Figure 29.a: pore water velocity distribution, 
calculated from distributions of travel time and advective porosity. Figure 29.b: distribution of 
capacity coefficient, calculated from advective and diffusive porosity distributions. 
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linear distribution of Culebra diffusive porosity and a log-uniform distribution of Culebra advective 

porosity, both developed by Meigs and McCord (1996), were also used. 

In a given Monte Carlo realization, single values of q, Oa, and Od are independently and 

randomly drawn from their respective distributions. Corresponding values of and 13,0, are then 

calculated for use in the transport simulation. Note that the distributions of Vp, and N., used in the 

simulations are not independent, as both are a function of Oa. For Monte Carlo simulations in which 

only the mass transfer variables are treated stochastically (MR-MT and SR-MT), Vp,, is set to 81.54 

m/yr (the product of the 50th percentile values of q and Oa) and IL, is set to 160 (the quotient of the 

50th percentile values of ed and 9a). 

The input distribution of gar for the multirate simulations (MR, MR-MT) is constructed 

primarily from nine field-scale tracer tests conducted in the Culebra dolomite at two locations 

(Haggerty et al., in preparation; McKenna et al., in preparation). Field-scale estimates of liar are used rather 

than those from the static diffusion work (Section 3) because they directly incorporate variability in 

the diffusion path length, and because they represent sampling volumes more similar to that of the 

regional-scale transport considered here. We use a uniform CDF to describe uncertainty in regional-

scale gar. This is the most appropriate distribution to use when little is known about the true 

distribution but minimum and maximum reasonable values of the random variable can be specified 

with some confidence (e.g., Jensen et 41997). The smallest estimated value of fid, estimated from 

field-scale tracers tests conducted in the Culebra, in units of ln(yr1), is -0.372. The parameter 

estimation routine used to obtain this best-fit value also provides quantitative information regarding 

the degree of uncertainty associated with that estimate, expressed in terms of 68% and 95% 

confidence limits (± 1 CI and ± 2 CI, respectively). The -2 CI value corresponding to this minimum 

estimate of liar is -1.51; this is the smallest possible value of gar that can be interpreted from the 
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available tracer test data. Similarly, the +2 CI value corresponding to the largest estimated value of 

gar from these field-scale experiments is 3.01; this is the largest possible value of pd, that can be 

interpreted from the available field-scale data. Comparison of lab-scale and field-scale analyses 

(Section 3) does not provide evidence of a systematic scaling of gar with increasing sampling volume, 

so use of these field-scale estimates in regional-scale simulations is not likely to result in systematic 

error. We therefore use values of pd, of -1.51 and 3.01 as the upper and lower limits of the uniform 

distribution which, following the method of Jensen et al. (1997), gives the expression for the CDF of 

[tar (Figure 30.a): 

fldr +1.51 
(Eqn. 38)//dr 4.52 

There are two important caveats to be made with regard to this input distribution for gar. 

First, the field-scale tracer tests used to construct the CDF were conducted at only two sites. It is 

possible that tests performed at other locations on the WIPP site, through which regional-scale 

transport of solute might occur, could yield different values of gar However, the distribution we use 

is quite broad, incorporating two orders of magnitude variation in the mean rate of diffusion; this 

range seems likely to include most physically reasonable values of Rd, that might be estimated from 

field-scale tests at other locations. Moreover, interpretations of lab- and field-scale analyses suggest 

that the increased heterogeneity in diffusion rates encountered by a solute plume as the transport 

distance (and hence sampling volume) increases is in part accounted for by increases in Gd (Section 3; 

see also below, this section). Thus, variations in lad, from one field-scale location to the next will at 

least partially be absorbed by changes in ad. 
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Figure 30.a 
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Figure 30: Mass transfer parameter input distributions. Figure 30.a: distribution of [id, the geometric 
mean of a lognormal distribution of De/ a2. This also gives the input distribution of ln(D,) used in the 
single-rate models. Figure 30.b: distribution of ad, the standard deviation of a lognormal distribution 
of De/ a2. A wider ad distribution is used for the regional-scale simulations (see text for details). 
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Second, for a given pore water velocity, the duration of exposure of a rock matrix to solute is 

much longer for the regional-scale simulations than for the field-scale tracer tests. From the 

Damkohler number arguments presented in Section 2, it is clear that modeling of data obtained from 

an experiment conducted at the regional-scale would yield significantly slower mass transfer rate 

estimates than those that were conducted at the field-scale, provided that a distribution of rates is 

present. Thus, application of a lick value estimated from a field-scale test may not be appropriate to 

simulations of regional-scale transport. However, no means currently exists for scaling multirate 

mass transfer parameters from one time-scale to another, and we omit these potentially very 

important effects from the distributions used in our Monte Carlo simulations. The consequences of 

time-scaling of lid, are, however, tentatively explored in the scoping runs. 

The input CDF of gar is also used to describe the uncertainty in DI a2 for single-rate 

simulations (SR and SR-MT; refer again to Figure 30.a). That is, the geometric mean of the 

lognormal distribution of diffusion rate coefficients is used to describe the rate coefficient in a single-

rate model, and uncertainty in the geometric mean is used to describe uncertainty in the single-rate 

De/ a2. In a given Monte Carlo realization, a value of ln(De/a2) is drawn randomly from the CDF of 

gar; exp[ln(De/az)] is then used in the transport simulation. We take this approach to constructing a 

CDF of uncertainty in De/ a2, rather than incorporating best-fit values of the diffusion rate coefficient 

estimated from the field-scale data using a single-rate model, for two reasons. First, single-rate fits to 

the tracer test data were generally very poor (Haggerty et al., in preparation; McKenna et al., in preparation). 

Second, the approach used permits more direct comparison of the effects of single-rate and multirate 

models. It should be noted that recent work (Haggerty and Gorelick, 1995; Cunningham and Roberts, 

1998) suggests that if a distribution of rates is to be approximated by a single-rate model, use of the 

harmonic mean may be more appropriate than the geometric mean. However, use of either method 

requires that the true form of the distribution is known. In general, this is not the case; any 

continuous statistical distribution of diffusion rate coefficients is only an approximation to the actual 
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distribution in the rock. Moreover, the CDF of De/ a2 used in this study is very broad and therefore 

incorporates uncertainty that may arise from the issue of selecting the appropriate mean. 

A uniform distribution is also used to describe uncertainty in ad for the multirate simulations 

(MR, MR-MT). Unlike [id however, ad increases with spatial scale, reflecting the incorporation of 

additional heterogeneities in pore geometry into the increasing sampling volume (Section 3). Thus, 

regional-scale values are likely to be larger than those obtained from the field-scale experiments. In 

addition, as the simulations are performed for transport distances of both 1 m and 3000 m, two input 

distributions for ad are therefore necessary. By fitting the steepest reasonable line to the plot of ad as 

a function of sampling volume given in Section 3 (Figure 27), we obtain: 

od = 4.446 + 0.4574 ln(sampling volume) (Eqn. 39) 

Extrapolating this relationship to a sampling volume of 13200 m3 (3000 m column length, 4.4 m 

Culebra thickness, and unit aquifer width in the one-dimensional simulation) gives a maximum 

reasonable value of ad of 8.79 at the regional-scale. Note that such a large value of ad effectively 

gives rise to a uniform distribution of diffusion rates. For a 1 m column length, the maximum 

predicted value of ad is 5.12. Eqn. 39 is based on a small number of data points obtained from only 

one location, and it is possible that field-scale ad values may be inflated relative to those from the 

lab-scale diffusion experiments due to the effects of slow advection, so this relationship can not be 

considered to be highly reliable and universally applicable over the WIPP site. Nonetheless, the 

values of ad predicted by Eqn. 39 are suitable for the heuristic purposes of the simulations 

performed here, and are used as upper limits on the distributions of ad. It should also be noted that 

a ad value of 8.79 is not much greater than the largest best-fit value obtained from the field-scale 

experiments (Haggerty et al., in preparation). 
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For a lower bound on the regional-scale CDF of Gd, we use 1.11, the smallest estimated value 

from the field-scale experiments (McKenna et al., in preparation). Applying this low value at the 

regional-scale implies a very high degree of homogeneity in immobile zone pore geometry over the 

entire 3000 m transport distance and that, as a result, ad is both small and scale-invariant. Note that 

exploratory calculations (not included here) using a ad of approximately 1 for a 3000 m column 

length gave concentration and mass breakthrough curves indistinguishable from those predicted by a 

single-rate model (i.e., ad of 0), suggesting that if the minimum value of ad is small, the precise value 

is unimportant. The uniform CDF of ad at the regional-scale is then: 

(Eqn. 40)
P(erd* < crd ) 0d7.61811 

For the CDF of ad corresponding to a 1m column length, the lower limit is set to 0.976, the 

smallest value estimated from the bulk static diffusion experiments (Section 3). The CDF of ad used 

in these smaller-scale simulations is given by: 

ad 0.976 
P (ad* 5- ad) (Eqn. 41)

4.14 

Plots of these CDFs are given in Figure 30.b. 

For all simulations, dispersivity (al) is taken to be 5% of the travel distance, and the 

retardation factor for the advective porosity, R [-J, is set to 1. A square wave input pulse at a 

normalized concentration of 1.0 was used for all simulations, with pulse lengths of 2000 yr for the 

3000 m simulations and 0.5 yr for the 1 m simulations. 
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4.2.2 Deterministic Simulations 

In all simulations, Vp, was set to 81.45 m/yr, the 50th percentile value from the distribution 

discussed in Section 4.2.1. For the A-D simulations (see Section 4.1 for nomenclature), ptot was set 

to 0 and R was set to 1. In the LEA simulations, Ptot was again set to 0 but the retardation factor was 

calculated using: 

R=1+ &,t (Eqn. 42) 

For a Ptot of 160, the 50th percentile value discussed in Section 4.2.1, R is then 161. For the SR 

simulations, Ptot was set to 160, R was taken to be 1, and a diffusion rate coefficient of 2.117 yr-I was 

used, corresponding to the 50th percentile µat value of 0.75 (see Eqn. 38). The same [tat value was 

applied in the MR simulations, but two values of as were used. For the 1 m column, ad was set to 

3.05, the 50th percentile value given by Eqn. 41; for a transport distance of 3000 m, ad was taken to 

be 4.95, the 50th percentile value given by Eqn. 40. This value is also similar to the arithmetic average 

of best-fit as values (4.01) for all nine field-scale Culebra tracer tests at both WIPP locations (Haggerty 

et al., in preparation; McKenna et al., in preparation). 

In the MR-S simulations, ptot was again taken to be 160, R was set to 1, and Od was set to the 

values described above for the different column lengths. However, Rd, was decreased substantially to 

investigate the potential effects of time-scaling of mass transfer parameters (see Section 4.1). A 

tentative empirical relationship between estimated first-order rate coefficients and experimental time-

scale taken from a literature review was used as a very rough guide to the scaling of [td suggesting 

values of -3.06 for the 1m transport distance and -12.1 for the 3000 m column. However, no time-

scaling relationship for multirate mass transfer parameters has yet been formally developed, and these 
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figures should be viewed as arbitrary values adopted only to explore the possible consequences of 

time-scaling. The very slow diffusion rates implied by such time-scaled distributions may 

correspond, for example, to diffusion into and out of low-permeability layers lying above and below 

that lower section of the Culebra in which advective transport takes place. Although some 

preliminary work consisting of performing parameter estimations on truncated data sets suggests that 

ad may increase with experimental duration (Fleming, unpublished data, 1997), this may in fact be 

reflective of variability in sampling volume and we assume here that ad does not scale with time. 

Longitudinal dispersivity and solute input pulse durations for the deterministic simulations are 

identical to those used in the Monte Carlo runs (see Section 4.2.1). 

4.3 Code Development 

The scoping simulations were performed using STAMMT-L (Solute Transport And Multirate 

Mass Transfer, Linear coordinates; Haggerty and Reeves, 1998), a FORTRAN code which applies the 

multirate series approach of Haggerty and Gorelick (1995) to calculate concentration and mass BTCs 

for one-dimensional advective-dispersive contaminant transport in the presence of single-rate or 

multirate matrix diffusion. A FORTRAN code consisting essentially of STAMMT-L with pre- and 

post-processors (STAMMT-LMC; see Appendix 2) was written to perform the Monte Carlo 

simulations. A flow chart illustrating the basic steps involved in performing these simulations is 

given in Figure 31. Several thousand (5000 to 160,000) realizations were preformed for a given 

Monte Carlo simulation. Output distributions were returned for six variables: the maximum 

normalized concentration in the BTC (G.); the times required for 1% and 90% of the input solute 

mass to break through at the end of the column (TAII% and TA490%, respectively); the mean solute 

arrival time (TmsA); the standard deviation of the concentration BTC (6)3Tc); and the skewness of the 

concentration BTC (SKr). 
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STEP 1: generate random number between 0 and 1 

STEP 2: set value of CDF to number generated in step 1; find 
corresponding value of stochastic input variable (e.g., advective porosity) 

CDF 

0
 

value of stochastic variable 

STEP 3: run computer simulation using value of 
the stochastic input variable selected in step 2 

STEP 4: calculate and write to a file the value of a parameter 
which describes the output (e.g., peak concentration in BTC) 

STEP 5: First realization is complete. Repeat procedure many
 
times to create CDF of output parameter (e.g., peak concentration)
 

Figure 31: Flowchart delineating steps in performing Monte Carlo simulations. Note that if several 
stochastic input parameters are used, steps 1 and 2 are completed independently for each of those 
variables during a given realization. In the MR-MT simulations, for example, two random numbers 
are generated (step 1); one is used to determine a value of .td from its CDF for that realization, and 
the other is used to determine a value of 6d (step 2). These values of lid and csd are then used in a 
single computer simulation (step 3). 
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Peak concentration is read directly from the concentration BTC. This variable is useful for 

determining, for example, whether a maximum contaminant level (MCL) will be exceeded at any time 

downgradient from a contaminant source. As the normalized mass BTC returned by STAMMT-L 

gives data points at specified times rather than at specified masses, TvrI% and TM90% were found by 

linear interpolation between the times of arrival of normalized masses lying just above and below the 

desired values. A useful estimate of the time required for removal of most of the solute mass in a 

contaminated aquifer is given by TWO , and TM, , which gives a measure of the time required for a 

significant amount of solute mass to arrive at the end of the column, is of particular importance to 

addressing the risk associated with breaching of a hazardous waste repository. 

Temporal moment methods were used to calculate TMSA, 613TC, and SBTC from concentration 

BTCs (e.g., Harvey and Gorelick, 1995). The nth temporal moment, m, is given by: 

r.r 
nin = J tnC(t)dt Eqn. 43 

t=0 

where t is time and C(t) is concentration. The temporal moments are calculated by numerical 

integration of the simulated BTCs of normalized concentration. As STAMMT-L output has been 

found to be free of numerical error for concentrations of greater than approximately 10-7, simulated 

concentrations less than this value are omitted from the integration. 

The mean arrival time of the solute at a given location (the end of the column, in our case) is 

given by the following relationship: 
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ml 
TMSA = (Eqn. 44) 

m0 

Mean solute arrival time is clearly a very useful parameterization of the characteristics of solute 

transport. However, provided that some form of mass transfer occurs at the time-scale of the 

experiment (as opposed to pure advective-dispersive transport), the value of TMSA is predicted from 

theory to be independent of the particular mass transfer regime invoked (e.g., Valocchi, 1990; Harvey 

and Gorelick, 1995; Cunningham and Roberts, 1998) and therefore should be the same for single-rate and 

multirate Monte Carlo simulations. The standard deviation of the concentration BTC is given by: 

11/2
Fn/2 

(Eqn. 45)CrBTC TMSA2 
m0 

and gives a measure of plume spreading, which may be due to nonequilibrium mass transfer or 

dispersion. The skewness of the concentration BTC is calculated from: 

F m3 
3

3 min122 + 2TmsA
 
mo
 

(Eqn. 46)S BTC 3 

aBTC 

and gives a measure of tailing in the breakthrough curve. A positive value indicates tailing, whereas a 

null value is indicative of a Gaussian BTC. Tailing is a well-recognized consequence of 

nonequilibrium mass transfer, but may also result from other mechanisms (Section 4.5.1). suBrc and, 

in particular, Siyrc are useful parameters for evaluating the effects of rate-limited mass transfer upon 

the efficiency of aquifer remediation. 
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4.4 Results 

Concentration and mass BTCs from the deterministic scoping simulations are presented in log 

and arithmetic space in Figures 32 to 35. Arithmetic plots are generally more intuitive, whereas the 

log-space figures more effectively illustrate some of the effects of nonequilibrium mass transfer, such 

as late-time, low-concentration tails. Note that the LEA and SR models produce identical 

concentration and mass BTCs for a 3000 m column, and therefore can not be distinguished on the 

plots. 

Output distributions from the Monte Carlo simulations are given in Figures 36 to 41. It was 

mentioned in Section 4.3 that multirate and single-rate models should provide identical values of 

TMSA. The MR-MT and SR-MT simulations should, as a result, produce identical single-valued 

output distributions for a given column length. Similarly, the MR and SR output distributions of 

TMSA should also be identical, although not single-valued as Vp, and otot (which help to control the 

value of TMSA) are not held constant in these runs. However, Figures 37.b and 40.b suggest that for 

some small proportion of the total number of realizations, TMSA for the multirate model is smaller 

than that for the single-rate model. The effect is most noticeable when comparing the SR-MT and 

MR-MT runs. 

The divergence between the TMSA distributions for the single-rate and multirate models is due 

to numerical error. By tracing individual realizations from the output distributions back to the 

corresponding input parameter values, it was determined that the small number of lower TMSA values 

returned by the multirate simulations for both column lengths corresponded to realizations 

performed using some of the largest values of ad permitted by this variable's input CDFs. In 

addition, Rd, values for these realizations tended to be small. For very large values of ad, tailing 

becomes extreme. This effect is exacerbated by small values of Ildr, as a smaller proportion of the 
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Figure 32: Arithmetic-space plots of concentration BTCs. Figure 32.a: 1 m column length. Figure 
32.b: 3000 m column length. 
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Figure 33.a 
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Figure 33: Log-space plots of concentration BTCs. Figure 33.a: 1 m column length. Figure 33.b: 
3000 m column length. 
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Figure 34.a 
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Figure 34.b 
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Figure 34: Arithmetic-space plots of mass BTCs. Figure 34.a: 1 m column length. Figure 34.b: 3000 
m column length. 
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Figure 35.a 
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Figure 35: Log-space plots of mass BTCs. Figure 35.a: 1 m column length. Figure 35.b: 3000 m 
column length. 
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Figure 36.a 
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Figure 36: Output CDFs of Cmox and TM, y, 1 m column. Figure 36.a: Peak concentration in 
concentration BTC, Go,. Figure 36.b: Time required for 1% of input mass to be removed, TM,,. 
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Figure 37.a 

CDF [-] 

0 

1 10 100
 

time to 90% mass recovery [yr]
 

Figure 37.b 

10
 

mean solute arrival time [yr] 

Figure 37: Output CDFs of TM90% and TMSA, 1 m column. Figure 37.a: time required for 90% of 
input mass to be recovered, TM9O %. Figure 37.b: mean solute arrival time, TMSA. 
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Figure 38.a 
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Figure 38: Output CDFs of 6Bir and SBTC, 1 m column. Figure 38.a: standard deviation of 
concentration BTC, Om. Figure 38.b: skewness of concentration BTC, SBTC. 
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Figure 39.a 
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Figure 39: Output CDFs of C. and TM/%, 3000 m column. Figure 39.a: Peak concentration in 
concentration BTC, C. Figure 39.b: time required for recovery of first 1% of input mass, TM/%. 
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Figure 40.a 

104 105 

time to 90% mass recovery [yr] 

Figure 40.b 

CDF [-] 

103 104 105 

mean solute arrival time [yr] 

Figure 40: Output CDFs of TM90% and YMSA, 3000 m column. Figure 40.a: time required for recovery 
of 90% of input mass, Tm90 %. Figure 40.b: mean solute arrival time, TmsA. 
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Figure 41.a 
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Figure 41: Output CDFs of 6BTC and SBTC, 3000 m column. Figure 41.a: standard deviation of 
concentration BTC, SZT BTC. Figure 41.b: skewness of concentration BTC, SBTC. 
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distribution of diffusion rates is at equilibrium (see Sections 4.5.1 and 4.5.2 for discussion of these 

effects). The net result is that a comparatively large proportion of the plume mass lies within 

extensive tails of very low concentration. However, the concentration BTCs were truncated prior to 

numerical integration for values of normalized concentration less than 10-7 (Section 4.3). Temporal 

moment calculations for realizations with very large 6d values and slow mean diffusion rates are 

consequently beset by a small degree of numerical error. A number of conventional transport 

simulations using such values for the multirate mass transfer parameters, coupled with manual 

calculations of the corresponding temporal moments, revealed that by lowering the cutoff 

concentration in the numerical integrations this effect is minimized and the values of TMSA converge 

upon those for the other realizations. This sensitivity to imperfections in the concentration BTC is 

of little significance to the present work, but it does suggest that use of temporal moment methods to 

analyze experimental data - which are rarely collected to normalized concentrations as low as 10-7, 

and which are often subject to appreciable measurement error - might be problematic. 

4.5 Discussion 

4.5.1 Deterministic Simulations 

For a 1 m column length (Figures 32.a, 33.a, 34.a, and 35.a), solute is predicted by the A-D 

model to arrive at the end of the column very quickly; all input mass is recovered by 0.6 yr. In 

addition, the concentration BTC shows little dispersion, appearing very similar in form to the input 

pulse. This is due to the combination of short travel time and long pulse duration. For the case of 

no mass transfer, the standard deviation of a concentration BTC is given by (e.g., Domenico and 

Schivart 1990): 
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2D Lt 
6BTC (Eqn. 47)

v 2
Pw 

where DL, is the longitudinal dispersion coefficient [L2/11 (note that in the case of equilibrium mass 

transfer, Vp, is scaled by the retardation factor). As the time-scale is small and velocity is large, 

spreading of the plume is marginal. Moreover, as the time-scale of the experiment is almost equal to 

the duration of the square-wave input pulse, the small amount of dispersion that takes place results in 

little qualitatively apparent alteration of the plume shape from a square wave to a more Gaussian 

form. 

In contrast, the LEA model for the 1 m column (Figures 32.a, 33.a, 34.a, and 35.a) predicts 

that solute arrives much more slowly (full mass recovery does not occur until 5.5 yr). Additionally, a 

much higher degree of dispersion is observed in the shape of the BTC in spite of the fact that the 

transport distance is identical to that of the A-D model described above. Eqn. 47 reveals this is due 

to the fact that the time required for solute to pass through the column is approximately an order of 

magnitude larger and the effective linear velocity, VpdR, is approximately two orders of magnitude 

smaller. 

Moreover, tailing is observed in the concentration BTC for the LEA model. Such tailing is 

often taken to be an indication of the presence of rate-limited mass transfer, but this model invokes 

only equilibrium processes. Using temporal moment methods, Valocchi (1985) demonstrated that for 

a Dirac or pulse input, tailing is present in any arithmetic-space plot of a concentration BTC when 

the dispersion coefficient is large relative to the pore water velocity and the length scale of the 

experiment, in spite of the fact that the corresponding concentration profile is symmetric. A more 

intuitive understanding of this phenomenon may be obtained by considering macrodispersion to be a 
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simple measure of heterogeneity in hydraulic conductivity (e.g., ,Quinodoand Valocchi, 1993). In this 

case, our results are simply reflective of the well-known fact that heterogeneity in conductivity can 

also result in skewing of the concentration BTC (e.g., Li et al., 1994). In addition, the inherent 

asymmetry of concentration BTCs in the presence of significant dispersion is suggested by Eqn. 47. 

Consider for simplicity a Dirac input pulse of solute, as in this case all mass initially enters the 

formation simultaneously. As it travels through the aquifer, this Dirac pulse will disperse; again for 

simplicity, let us assume that this results in a symmetric, Gaussian plume. Then allow the plume to 

travel farther. As spreading of the plume is a function of time (Eqn. 47), it follows that the later-

arriving half of an initially symmetric plume will have undergone more dispersion by the time it 

reaches a given observation point some distance downgradient than its earlier-arriving half, resulting 

in tailing. Nonequilibrium mass transfer processes, then, simply give rise to a (potentially much) 

greater degree of tailing than would be seen otherwise. 

The LEA model gives the slowest initial arrival of mass at the end of the 1m column of all the 

regimes considered because at equilibrium, all solute in the plume experiences mass transfer, 

effectively slowing the rate of advective-dispersive transport by a factor of 161 (the retardation factor 

used; see Section 4.2.2). However, the time required for recovery of 90% or more of the solute mass 

is shortest of all the models other than pure advective-dispersive transport, as mass is transferred 

from the matrix back into advective pathways instantaneously following passage of the input pulse. 

For the 1 m column, the SR simulation yields concentration and mass BTCs similar but not 

identical to those from the LEA run (Figures 32.a, 33.a, 34.a, and 35.a ). This result is consistent 

with a calculated DaI number of 12.5 for the parameters used, which suggests that mass transfer is 

rate-limited but not far from equilibrium. The initial arrival of solute occurs sooner than for the 

LEA model, which appears to be a frequent effect of rate-limited mass transfer (e.g., Valocchi, 1985). 

This is because the time-scale of mass transfer is comparable to that of solute transport across the 
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column: slower (rate-limited) matrix diffusion is less efficient than instantaneous mass transfer at 

removing mass from the mobile zone over the time available. However, greater tailing is observed in 

the concentration BTC and the time required for all mass to be recovered is longer, as the solute 

requires some finite amount of time to diffuse back out of matrix after the injection pulse has passed. 

Maximum concentration is lower than that seen in the LEA simulation (see also Valocchi, 1985) 

because mass has been shifted away from the peak to both the leading edge and tail of the plume. 

The combination of increased tailing and earlier initial solute arrival also results in increased 

longitudinal spreading of the plume. This effect was termed kinetic dispersion by ,Quinodaz and 

Valocchi (1993) and is clearly visible, for example, in the field data presented by Roberts et al. (1986). 

The MR simulation for the 1m column length shows a significantly faster initial breakthrough 

than that predicted by either the LEA or SR models (Figures 32.a, 33.a, 34.a, and 35.a ). Higher 

degrees of tailing and dispersion are also observed, which are consistent with theoretical 

considerations (e.g., Valocchi, 1990; Harvey and Gorelick, 1995; Cunningham and Roberts, 1998). Late 

arrival of 90% or more of total mass is also seen. The time required for 99% of the input mass to be 

recovered is approximately 11.2 yr, about twice as long as for the LEA and SR models, and well over 

100 yr is required for full mass recovery . A multirate model thus affects the concentration history in 

a manner qualitatively similar to, but more pronounced than, a single-rate regime. 

Given that the SR simulation uses a rate identical to the geometric mean of the mulitrate 

distribution used in the MR simulation, and that this rate is observed to lead to near-equilibrium mass 

transfer for a 1 m column length (see above), diffusion rates in the multirate distribution faster than 

the mean are probably at or near LEA. Thus, some portion of the matrix porosity experiences 

instantaneous diffusion. However, the lognormal distribution used in this model is heavily skewed 

toward slow diffusion rates. Very slow rates of mass transfer imply that relatively little mass is 

removed from the advective porosity over the time-scale of the experiment. That is, such a 
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substantial proportion of the matrix operates at such slow diffusion rates that the total capacity 

coefficient is effectively reduced some portion of the matrix porosity does not appear, from the 

plume's point of view, to exist. This leads to faster initial mass recovery. What mass is removed, 

however, is then returned to the mobile zone very slowly, resulting in extensive tailing and slow 

recovery of the full input mass. Peak concentration is higher than seen in the SR simulation because, 

although some mass is shifted into the tail, a substantial proportion effectively bypasses the mass 

transfer process and is not shifted away from the center of the plume. Redistribution of mass to the 

front and rear of the plume also results in the observed increase in dispersion relative to the single-

rate model. 

We turn now to an evaluation of the potential effects of time-scaling of gar. The MR-S model 

predicts faster initial solute arrival at the end of the 1m solute column than seen with any other 

model incorporating mass transfer, but extreme tailing is also observed (Figures 32.a, 33.a, 34.a, and 

35.a). Specifically, mass breakthrough is much faster relative to the other models for up to 

approximately 95% recovery and is then far slower, with 99% mass recovery not occurring until 

about 21 yr and full mass recovery occurring only after several hundred years. The explanation for 

this behaviour is similar to that for the distinctions between the SR and MR models, except that here 

the distribution of diffusion rate coefficients is shifted several orders of magnitude toward slower 

rates. As a result, it is unlikely that any of the rates are at LEA, a larger proportion of the solute in 

the advective porosity effectively bypasses mass transfer processes over the time-scale of the 

experiment, and what mass transfer occurs does so at very low rates, resulting in extremely slow 

return of solute to the advective pathways. The much higher observed peak concentration results 

from the fact that a sizable portion of the plume mass is travelling through the formation without 

being substantially affected by mass transfer. 
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Results of simulations conducted for a column length of 3000 m are qualitatively very similar 

to those for a 1 m travel distance, with two important exceptions (Figures 32.b, 33.b, 34.b, and 35.b). 

First, the concentration and mass BTCs given by the SR and LEA simulations are identical. This 

suggests that for the larger transport distance, the diffusion rate coefficient used in the SR model 

results in instantaneous mass transfer. This is consistent with the calculated DaI number of 3.76x104, 

which is far in excess of the value of approximately 100 at which rate limitations no longer arise. 

Second, results from the MR model are much more similar to those from the SR and LEA 

models. Although the distribution of diffusion rates used in the 3000 m simulation is broader 

(Section 4.2.2), the time-scale of the experiment has increased sufficiently relative to the time-scales 

of mass transfer described by the multirate distribution that a larger proportion of the rates are 

effectively at equilibrium. Thus, the multirate model more closely approaches the SR and LEA 

models, both of which are at equilibrium. More importantly, the rates of mass transfer lying at the 

slow end of the lognormal distribution and to which the distribution is heavily skewed grow more 

comparable to the time-scale of transport over a 3000 m distance. As a result, it is likely that no 

portion of the solute mass is passed through the system without encountering mass transfer 

processes, and the faster initial solute arrival seen for the MR model in the 1 m simulation is no 

longer apparent. Nonetheless, a large degree of tailing is still seen in the concentration BTC, 

reflecting the fact that much of the multirate distribution remains in the domain of nonequilibrium 

mass transfer. 

4.5.2 Monte Carlo Simulations 

In general, comparison of the SR and MR CDFs in Figures 36 through 41 to those from the 

SR-MT and MR-MT simulations indicates that for most of the output variables, the effects of 

variability in flow parameters overshadow those of uncertainty in the mass transfer parameters. This 

is to be expected, as the effective advective velocity of the plume is controlled largely by the pore 
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water velocity and the capacity coefficient, which determines the total amount of mass transfer that is 

capable of taking place and, therefore, the degree of retardation of the plume. Nonetheless, the 

effects of variation in mass transfer parameters are significant, particularly with respect to the amount 

of spreading and tailing in the concentration BTC. 

For a 1 m column, peak concentrations in the concentration BTC are consistently somewhat 

lower for the SR-MT model than for the MR-MT simulations, which is consistent with the results 

from the scoping runs (Section 4.5.1). The difference between the models remains significant in the 

presence of uncertainty in Vp, and Piot. For both mass transfer models, the distribution is fairly wide, 

indicating that the values of the mass transfer parameters are a significant control over observed C.. 

For a 3000 m column length, however, maximum concentrations are similar for the two mass 

transfer models considered, which is again consistent with the results and interpretations of the 

scoping runs. The distribution of C. is very narrow for the regional-scale MR-MT simulations, and 

is single-valued for the SR-MT run. This suggests that the values of the mass transfer parameters, 

regardless of the model used, are not critical for prediction of maximum concentrations at longer 

time-scales. This is only true, however, if time-scaling of the mass transfer parameters is not 

significant, as indicated by the large increase in peak concentration given by the MR-S scoping 

simulation (Section 4.5.1). 

For a 1 m column length, Tivy% occurs significantly sooner for the multirate model than for the 

single-rate model, due to the earlier initial solute breakthroughs seen in Section 4.5.1. The same is 

true for a 3000 m transport distance, but the effect is more subtle. However, note that this still 

results in a difference in TA,H% between the single-rate and multirate models of several hundred years. 

The effect remains when uncertainty in the flow parameters is present. The TAD% distributions are 

fairly broad in the case of a 1 m column for both mass transfer models, but the distribution predicted 

by the MR-MT simulation at 3000 m is very narrow and the distribution given by the corresponding 
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SR-MT run is single-valued. This suggests that selection of correct parameter values for a given mass 

transfer regime is important at short time- and space-scales, but of less significance at larger scales. 

Again, this is true only if gar does not scale with experimental duration: the MR-S scoping simulation 

for a 3000 m column length (Section 4.5.1) shows anomalously fast recovery of the first 1% of input 

mass. 

The TM90% distributions are very similar for the single-rate and multirate models. This is seen 

for both 1 m and 3000 m column lengths. Although the more extensive tailing resulting from 

multirate mass transfer might be expected to give rise to larger TM90% values, concentrations in the tail 

are low and represent a small proportion of the total mass. However, TM90% does occur slightly 

sooner at 1 m for the single-rate model than for the multirate simulations because differences 

between the mass transfer models are greater at the smaller time-scale (Section 4.5.1). The TM90% 

distribution is narrow at both column lengths for MR-MT and SR-MT, suggesting that TA490% is 

insensitive to the values of the mass transfer parameters, as only a small proportion of the total mass 

is carried in the extended concentration tail predicted by either model. Nonetheless, the potential for 

time-scaling of Rd, may again play an important role. As shown in Section 4.5.1, time to 90% mass 

recovery occurs significantly sooner for the MR-S simulation than for any other mass transfer model 

considered, and time to greater than 95% mass recovery occurs much more slowly. 

The TMSA distributions for a given column length are the same for both models and 

independent of the values of the mass transfer parameters within the numerical capabilities of the 

code, as expected (see Sections 4.3 and 4.4). The mean solute arrival time is thus controlled by the 

effective advective velocity (i.e., the combination of pore water velocity and capacity coefficient). 

Unlike the Monte Carlo results for the other output variables considered, this result was also 

confirmed to hold true within the numerical capabilities of the code in the case of time-scaling ofgdr. 
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Spreading of the concentration BTC is far greater for the multirate model than for the single-

rate model at both column lengths, which is also consistent with theoretical calculations (e.g., 

Valocchi, 1990; Harvey and Gorelick, 1995; Cunningham and Roberts, 1998). This reflects the fact that in 

the multirate model, tailing is more severe (corresponding to the presence of slower rate-limited 

diffusion than seen in the single-rate model), but some mass also passes through the system more 

quickly (corresponding to very slow diffusion rates, which are not operative over the time-scale of 

the experiment). This leads to increased spreading of the plume. For the 1 m transport distance, 

comparison of the MR-MT and SR-MT distributions to those from the MR and SR runs reveals that 

cYBTc is controlled largely by the values of the mass transfer parameters rather than the flow 

parameters, particularly in the case of multirate diffusion. Uncertainty in the multirate parameters 

(MR-MT) also gives rise to a greater degree of potential variability in OBR, than uncertainty in the 

single-rate parameter (SR-MT). 

Similar behavior is seen for a transport distance of 3000 m, but the awrc distribution predicted 

by the SR-MT simulation is single-valued. This indicates that at the regional-scale, spreading of the 

concentration BTC is independent of the value of the diffusion rate used in the single-rate 

simulation, implying that the system is at equilibrium for all reasonable values of this parameter. This 

is consistent with the results of the deterministic simulations at 3000 m (Section 4.5.1), and with the 

fact that the output distributions for all other variables are also found to be single-valued for the 

regional-scale SR-MT simulations. That the MR-MT simulations continue to give rise to broad 

output distributions for this and other variables illustrates that the distribution of diffusion rates in 

the multirate model is generally not at equilibrium at the regional-scale. However, the CDF predicted 

by the MR-MT simulations does become single-valued and equal to that given by the SR-MT 

simulations for small values of CYBT.c This region of the CDF was found to correspond to small 

values of 6a and large values of Rd. This indicates that at the regional-scale, for a fast, narrow 

distribution of diffusion rates, equilibrium is indeed reached by the entire multirate distribution (or 
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some dominant portion of it) and the effects of multirate mass transfer could simply be accounted 

for by use of the conventional advective-dispersive equation with the appropriate retardation factor. 

The distribution of OBTC at both scales in the presence of variability in flow parameters (MR 

and SR runs) is observed to be wider than that predicted by the MR-MT and SR-MT simulations, 

because 13,o, and Vi,, control the duration of the experiment and therefore lead to further increases or 

decreases in the degree of dispersion beyond those resulting from variability in the mass transfer 

parameters alone (Eqn. 47). If time-scaling ofi.td, occurs, OBTC for either column length would 

increase accordingly due to both increased tailing and earlier initial solute breakthrough (Section 

4.5.1) 

Values of SBTC given by the multirate simulations are greater than those predicted by a single-

rate model, again consistent with theoretical considerations. Comparison of the MR and MR-MT 

simulations shows that in a multirate model, SBTC is dominated by the mass transfer parameters rather 

than the flow parameters at both spatial scales, and the broadness of the distributions indicates that 

SBTC is sensitive to the values of those parameters. The distribution of SBTC is again single-valued for 

the SR-MT simulation at 3000 m because mass transfer is not rate-limited and the value of De/ a2 

therefore does not affect the skewness, or any other properties, of the concentration BTC. The 

aforementioned general sensitivity of SBTC to multirate mass transfer parameters, and the fact that the 

3000 m, MR-MT CDF becomes single-valued and equal to the SR-MT CDF for small values of SBTC 

(corresponding again to large values of [td, and small values of ad), together show that the multirate 

distribution is in most cases not at equilibrium at the regional-scale, but LEA is indeed attained for 

fast, narrow rate distributions. 

As was the case with aBTC, a somewhat broader distribution of SBTC is found when variability 

in flow parameters is incorporated into the simulations, because this results in variation in the 
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duration of transport and therefore the degree of tailing seen in the concentration BTC due to 

dispersion (see Section 4.5.1). If time-scaling in Rd, occurs, skewness should increase significantly to 

reflect the greater degree of tailing (Section 4.5.1). 
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5. CONCLUSIONS 

A range of effective diffusion coefficients, D is implied by the high degree of pore-scale 

heterogeneity observed in core samples of the Culebra (dolomite) Member of the Rustler Formation, 

NM. Earlier field-scale tracer tests have suggested significant heterogeneity in diffusion rate 

coefficients (the combination of D, and matrix block size); however, it has not been possible to 

separate the contribution to variability from each of the two parameters. In addition, the effects of 

such multirate matrix diffusion processes over large time- and space-scales, and of uncertainty in 

multirate mass transfer parameters, have not previously been ascertained. 

In the first phase of this study, data from eight laboratory-scale diffusion experiments 

performed on five Culebra samples are examined for evidence of variability in effective diffusion 

coefficients. Modeling is performed under the assumption of a lognormal distribution of D. The 

estimated standard deviation (ad) of ln(De) within each sample ranged from 0 to 1, with most values 

lying between 0.5 and 1. The variability over all samples leads to a combined ad in the range of 0.9 

to 1.2. Formation factors measured on Culebra samples are found to be well-described by a 

lognormal distribution with a standard deviation of approximately 0.7. As formation factor is linearly 

related to D this implies the following: (1) the assumption of a lognormal distribution of De is 

appropriate; (2) our estimates of ad are reasonable; and (3) formation factors may provide an 

inexpensive means of characterizing variability in D. A comparison of our estimation results to other 

rock properties suggests that, at the lab-scale, the geometric mean of De increases with bulk porosity 

and the quantity of macroscopic features such as vugs and fractures. However, ad appears to be 

determined by variability within such macroscopic features and/or by micropore-scale heterogeneity . 

In addition, comparison of experiments at several spatial scales suggests that increasing sample 

volume results in an increase in ad. 
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In the second phase of the study, a suite of deterministic and stochastic simulations of one-

dimensional advective-dispersive contaminant transport using a variety of diffusive mass transfer 

models are completed at the field- and regional-scales. Comparison of nonreactive, equilibrium, and 

single-rate nonequilibrium regimes yields results consistent with previous work. Most notably, rate-

limited mass transfer results in increases in tailing and dispersion, a decrease in maximum plume 

concentration, and faster initial solute arrival relative to equilibrium processes. A distribution of 

diffusion rates is found to greatly accentuate these phenomena, and results in nonequilibrium mass 

transfer under conditions for which single-rate diffusion would approach equilibrium. These effects 

are generally present at greatly differing time- and space-scales and under statistically-described 

uncertainty in mass transfer and flow parameters, although for narrow distributions the multirate 

model behaves similarly to a single-rate model at the regional-scale, attaining LEA. Scaling of mean 

diffusion rate coefficients with experimental time-scale may result in both extreme tailing and initial 

solute arrival times approaching those found for nonreactive transport, with significant consequences 

to remediation design and waste repository risk assessment. 
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APPENDIX 1: FORTRAN77 code MRSD 

program MRSD 

implicit none 

c remember to change dimensions of mass and boundary conditions 
c for each data set. 

C procedure for SINGLE-RATE parameter estimations: 
c change dimensions in all variables from 2 to 1 
c - change everything with SINGLE-RATE comment preceding it 
c no changes necessary for forward single-rate run, except in 
c parameter file (input.prm) 

c general variables: 
double precision mu,sig,F,CO,Deff,1,M0,t,Dmax,Daq,Mdata(15) 
double precision M,Mratio(15),time(15),C1(7),concin(7) 
integer i,TN,inout,k,q,est,mode,TC,TNB,TCB 
double precision timeC(7),sqerr 

c inversion/statistics variables: 
double precision xguess(2),xscale(2),fscale(15),serr(15) 
double precision fiac(15,2),xf(2),rmse,mse 
integer iparam(6),nx 
double precision rparam(7) 

c to deal with itinerant estimation routine (used by ERSET): 
integer iersvr,ipact,isact 

common/c/CO,C1,1,TN,TC
 
common/f/inout
 
common/g/time,timeC
 
common/h/Mdata
 
common/thing1/concin
 
common/thing2/mode
 
common/thing3/M0
 

c uncomment for SINGLE-RATE parameter estimations: 
c common/z/sig 

external massratio,obj,DU4LSF,DUNLSF,statistics
 
external ERSET
 

o p en (10, file = 'input.prm)
 
op en(11,file= 'boundary. dat')
 
open(12,file='massratio.dat')
 
o p en(13,file = 'mas sratio. out') 

C ** READING IN PARAMETERS: ** 

read(10,*) mu !geometric mean of lognormal dist. of Deff 
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read(10,*) sig !standard dev. of lognormal dist. of Deff 
read(10,*) CO !initial conc. in slab 
read(10,*) 1 !length of slab 
read(10,*) TN !number of (t,Mratio) data/output points 
read(10,*) TC !number of (t,C1) data points 
read(10,*) inout !inout=0: diffusion in; inout=1: diffusion out 
read(10,*) mode !1:continuous multirate; 2: single rate 
read(10,*) est !1:forward only; O:parameter estimation 

c ** READING IN TIME-VARIANT BOUNDARY (RESERVOIR) CONCENTRATIONS **
 
c There should be a (arbitrary, but obviously reasonable) value for
 
c the boundary concentration at very small time. This first data point
 
c is to give Laplace transform a "place to start from". There should
 
c also be boundary concentrations at at least one very late time, because
 
c taking Laplace transform of boundary conditions requires (t,C1)
 
c pair at the next value of t [i.e., C1bar(n) requires value for C1(n+1)].
 
c timeC's need not correspond to time's and TN doesn't need to equal TC.
 

do 20,k=1,TC 
read(11,*) timeC(k),concin(k) 

20 continue 

C ** READING IN OBSERVED MASS CURVES ** 
c note: if Mdata(k) at the first or last time is =1, this may cause 
c problems with the inversion routine for mass in; numerical error in 
c the code calculations combined with the fact that 1-M/M0 is used 
c can result in negative values in the mass breakthrough curve, which 
c doesn't seem to be good. 

do 22,k=1,TN 
read(12,*) time(k),Mdata(k) 

22 continue 

c ****START OF ESTIMATION SECTION ******* 

c ** Set number of unknown parameters: ** 
c change to nx=1 for SINGLE-RATE parameter estimation: 

nx=2 

c set initial guesses for parameter values: 
if (est.eq.0) then 
xguess(1) = mu 

c comment out following line if SINGLE-RATE parameter estimation: 
xguess(2) = log(sig) 

c weighting parameters: 
do 40,i=1,nx 

xscale(i) = 1.d0 
40 continue 

c weighting data: 
do 70,i=1,TN 

fscale(i)=1.d0 

http:fscale(i)=1.d0
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70 continue 

call DU4LSF(iparam,rparam)
 
iparam(2) = 4
 

c If you wish to force "convergence" (i.e. make the inversion stop gracefully 
c at a certain point), set iparam(4) equal to the maximum number of 
c iterations desired. One iteration is a forward run for a "base" set of 
c parameters (initial parameters or the ones estimated in the last iteration) 
c plus one forward "perturbation" run for each of the parameters 
c being estimated. Note that parameter estimation statistics will not be 
c calculated unless the inverse run stops gracefully (on its own). 

iparam(4)=12 

c making it so that inversion routine stops "nicely" when iparam(4) 
c is reached: 

iersyr=4 
ipact=1 
isact=0 
call ERSET(iersvr,ipact,isact) 

c calling inversion routine: 
call DUNLSF(obj,TN,nx,xguess,xscale,fscale,iparam,rparam,xf, 

& serr,ac,TN) 

mu = xf(1) 
c comment out following line if SINGLE-RATE parameter estimation: 

sig = exp(xf(2)) 

endif 

C ***END OF ESTIMATION SECTION*** 

c ** CALCULATE MASS IN OR MASS REMAINING CURVE: ** 
call massratio(mu,sig,Mratio) 

c ** COMPUTE RMSE: ** 
c Compute mean square error: 

mse = 0.d0 
do 110,k=1,TN 
sqerr=log(abs(Mdata(k)/Mratio(k)))*log(abs(Mdata(k)/Mratio(k))) 
mse = mse + sqerr 

110 continue
 
rmse = sqrt(mse)
 

c ** COMPUTE PARAMETER ESTIMATION STATISTICS, IF APPLICABLE: ** 
if (est.eq.0) then 
call statistics(fjac,nx,TN,rmse) 

endif 

c ** WRITE RESULTS TO FILE: ** 
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if (inout.eq.0) then
 
write(13,*) "
 
write(13,*) 'M(t) /M(t= infinity) (mass in curve):'
 
write(13,*) "
 
write(13,160) 'M(infnty)=1,M0
 

else
 
write(13,*) "
 
write(13,*) 'M(t)/M(t=0) (mass remaining curve):'
 
write(13,*) "
 
write(13,160) 'M(t=0)=',M0
 

endif 
if (mode.eq.2) then
 

write(13,160) 'Deff= ',exp(mu)
 
write(13,160) 'RMSE = ',rmse
 
write(13,*) "
 

endif
 
if (mode.eq.1) then
 
write(13,160) 'mu = ',mu
 
write(13,160) 'sig = ',sig
 

write(13,160) 'RMSE = ',rmse
 
write(13,*) "
 

endif
 
160 format(A,d12.5,A,d12.5)
 

write(13,*) '1st column = time [IT
 
write(13,*) '2nd column = calculated mass ratio Er
 
write(13,*) '3rd column = observed mass ratio Er
 
write(13,*) "
 
do 200,k=1,TN
 

write(13,180) time(k),Mratio(k),Mdata(k) 
180 format(3e21.13) 
200 continue 

close(13) 

stop
 
end
 

************************************************************************ c
 
c ****Subroutine to calculate M/M(t=0) or M/M(t=infinity)*****************
 
c *********(This subroutine also "drives" everything else) ***************
 

************************************************************************ c 
subroutine massratio(mu,sig,Mratio) 

implicit none
 
double precision mu,sig,F,CO,Deff,I,M0,t,Dmax,Daq,origC0
 
double precision M,Mratio(15),time(15),C1(7),concin(7)
 
double precision timeC(7),Dmin
 
integer i,TN,inout,k,q,TC,mode
 

c mu and sig can't be both an argument to the subroutine and within a 
c a common block inside of it. Want mu and sig to be passed directly 
c from main program and from objective function to massratio as a 
c subroutine argument; but need mu and sig in common block to pass to 
c function FdM, which can have as an argument only (Deff). So, define 

http:format(3e21.13
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c mus and sigs identical to mu and sig and use in common block: 
double precision mus,sigs,pi 
double precision Plow,Phigh,DNORIN 

common/b/t,Dmax,Dmin
 
common/c/CO,C1,1,TN,TC
 
common/e/mus,sigs
 
common /f /inout
 
common /g /time,timeC
 
common/thing1/concin
 
common/thing2/mode
 
common/thing3/M0
 
external MASS,DNORIN
 

pi=3.141592654 

mus=mu
 
sigs=sig
 

if(mode.eq.1) then 

Plow=0.000000001
 
Phigh=0.999999999
 
Dmin= exp (mus + sigs*DN ORIN (Plow))
 
Dmax= exp(mus + sigs*DN ORIN (Phigh))
 

print*, 'mus=',mus,' sigs=',sigs 
print*, 'Dmin=',Dmin,' Dmax=',Dmax 

endif 

c ** Calculate mass in slab at time = infinity or 0: ** 
c **NOTE: this causes serious problems when inverting diffusion-in data; 
c however, code is retained (but commented out) because it can serve 
c as a usefull check: MO calculated by code should be equal to 1, the 
c length of the slab** 
c print*, 'starting mass calculations' 
c 
c if (inout.eq.0) then 
c for diffusion in, find mass at time=infinity: 
c do 15,q=1,TC 
c C1 (q) =1.d0 
c 15 continue 
c else 
c for diffusion out, find mass at time=0 by finding mass at time = 
c infinity for diffusion in problem. Store initial concentration in 
c slab in origCO variable, and temporarily set initial conc to 0. Setting 
c all reservoir conc's to 1 ensures that as much mass as possible is 
c stuffed into slab. 
c origC0=C0 
c CO=0.d0 

do 17,q=1,TC c 
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c C1(q)=1.d0 
c 17 continue 
c endif 
c 
c set time for which inverse Laplace transform will be calculated (i.e.
 
c time at which mass in slab is being evaluated):
 
c t=time(TN)
 
c call subroutine to calculate total mass in slab:
 
c call MASS(M0)
 

c Use maximum mass in slab = (porosity) *(C /Co) *l: 
c porosity cancels out with porosity in the denominator for mass ratio 
c C/C0=1 at t=0 for mass out and at t=infinity for mass in 

MO=1 

c print update to screen and store info: 
if (inout.eq.0) then 

print*, 'M(t=infinity) / porosity =WO 
else 

print*, 'M(t=0) / porosity =WO 
endif 

c ** Calculate mass in slab at time, t: * 

c following commented-out section required only if routine to calculate 
c MO (above) is used: 
c set boundary concentrations to those from input file: 
c if (inout.eq.1) then 
c CO=origC0 
c endif 

do 25,k=1,TC 
Cl (k) = concin(k) 

25 continue 

c start loop to evaluate mass at successive times: 

do 30,i=1,TN 

c set time for which inverse Laplace transform (i.e. mass in slab) 
c will be evaluated: 

t=time(i) 

call MASS(M) 
c calculating M/Minfinity (mass in) or M/MO (mass remaining) at time, t: 

Mratio(i)=M/M0 
c FOR MASS IN, USE 1-Mratio: 

if (inout.eq.0) Mratio(i)=1-Mratio(i) 
c NOTE: FOR MASS IN, DATA MUST ALSO BE 1-Mratio 

c print update to screen: 
if (inout.eq.0) then 
write(*,500) 'time, M(t)/M(infinity) =',t,Mratio(i) 
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else 
write(*,500) 'time, M(t)/M(0) =',t,Mratio(i)
 

endif
 
500 format(A,d14.5,d14.5)
 

30 continue 

c print update to screen: 
print*, 'Finished computing mass ratios' 

return
 
end
 

C **************************************************************************** 

C **********Subroutine to calculate mass, M, in slab at some time, t ********
 
C ****************************************************************************
 

subroutine MASS(M) 

implicit none
 
double precision M,FdM,t,Dmax,mus,sigs,Deffs,alpha
 
double precision relerr,kmax
 
double precision errabs,errrel,errest,Dmin
 
complex*16 SMbar
 
integer irule,mode,l,q,intery
 
common/b/t,Dmax,Dmin
 
common/e/mus,sigs
 
common/thing2/mode
 
common/a/Deffs
 
external FdM,DQDAG,DINLAP,SMbar
 

c integration parameters for DQDAG (if continuous multirate): 
errabs=1.d-4 
errre1=1.d-2 
irule=2 

c inverse Laplace transform parameters for DINLAP (if single rate): 
alpha=0.d0 !(set to 0 if unknown, according to IMSL literature) 
kmax=1000.d0 !maximum number of function evaluations 
relerr=1.d-3 

c For single rate of diffusion: 
if (mode.eq.2) then 

c single effective cliff. coeff. from [ln(Deffs)- mus =0]: 
Deffs =exp(mus) 

c call inverse Laplace transform function: 
call DINLAP(SMbar,1,t,alpha,relerr,kmax,M) 

endif 

c For continuous multirate: 
if (mode.eq.1) then 

c Integrate FdM from Deff=Dmin to Deff=Dmax, obtaining M: 

http:kmax=1000.d0
http:alpha=0.d0
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call DQDAG(FdM,Dmin,Dmax,errabs,errrel,irule,M,errest) 

endif 

return
 
end
 

c *************************************************************************** 

c **********Function to evaluate mass in slab at some time, for some value of 
c **********Deff dictated by DQDAG******************************************* 
c *************************************************************************** 

double precision function FdM(Deff) 

implicit none
 
double precision Deff, F ,dM,alpha,relerr,kmax,pi,t,Dmax
 
double precision mus,sigs,Deffs,Fpart1,Fpart2,Dmin
 
complex*16 SMbar
 
common/b/t,Dmax,Dmin
 
common/e/mus,sigs
 

c DQDAG automatically passes its dictated value of Deff on to the function which 
c it is integrating (FdM), but a common statement is required to get this value 
c of Deff (copied to Deffs) to the function which must be inverse Laplace transformed 
c before the integration can be completed (dMbar): 

common/a/Deffs 

external SMbar,DINLAP 

Deffs=Deff 

alpha=0.d0 !(set to 0 if unknown, according to IMSL literature)
 
kmax=1000.d0 !maximum number of function evaluations
 
pi=3.141592654
 
relerr=1.d-2
 

call DINLAP(SMbar,l,t,alpha,relerr,kmax,dM) 

Fp art1 =1 / (sqrt(2*pi)*sigs*Deff)
 
Fp art2 = -((log (De ff)-mus)* (log(D e ff)-mu s)) / (2*sigs*sigs)
 
F = Fp art1* exp (Fp art2)
 

c DEBUGGING: 
c for edirac delta' with Deff=1.1d-5; use FdM=F*dM and result should be 
c almost the same as for single-rate: 
c F=0.5d6 
c for lognormal distribution alone (comment out FdM=F*dM below); result 
c should be very close to 1.0: 
c FdM=F 
c using a square wave for probability distribution: 
c if ((Defilt.Dmin).or.(Deff.gt.Dmax)) then 
c F=0.0d0 
c else 

http:kmax=1000.d0
http:alpha=0.d0
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c F=1/(Dmax-Dmin) 
c endif 

FdM=F*dM 

return
 
end
 

*********************************************************************** 

******** Function for Laplace transform of mass in/out at some time *** 
******************for a given single rate of diffusion **************** 
*********************************************************************** 

complex*16 function SMbar(p) 

implicit none
 
complex*16 p,C1bar,aa,bb,cc,dd,ee
 
double precision C0,1,C1(7),time(15),dc,dt,Deffs
 
double precision timeC(7)
 
integer i,j,TN,TC
 
common/c/CO,C1,1,TN,TC
 
common/g/time,timeC
 
common/a/Deffs
 
logical difnan
 
external difnan
 

C1bar = 0.d0 
c take Laplace transform of boundary conditions at value of p handed 
c by DINLAP: 

do 5,j=1,TC-1
 
dc = C1(j+1)-C1(j)
 
dt = timeC(j+1)-timeC(j)
 
C1bar = C1bar + ((dc+C1(j)*dep)*exp(-p*timeC(j))
 

& (dc+C1(j+1)*dt*p)*exp(-p*timeC(j+1)))/(p*p*dt)
 
5 continue
 

c compute singlemass (mass diffused in/out by time t) bit by bit: 
aa=C1bar-(CO/p) 
bb=1*cdsqrt(p/Deffs) 
cc=cdsqrt(p/Deffs) 
ee=CO*1/p 

c express hyperbolic tangent in terms of exponentials: 
dd= (cdexp(bb)-cdexp(-bb))/ (cdexp(bb)+ cdexp(-bb)) 

c alternate expression for small times; at large p and therefore large 
c bb (for which dd and thus SMbar are nan), dd=tanh(bb)=(1,0): 

if (difnan(dd)) dd = (1,0) 

SMbar=((aa/cc)*dd)+ee 

return 
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end 

****************************************************************** 

c *****Objective function to be minimized by estimation routine***** 
****************************************************************** 

subroutine obj(TN,nx,xf,serr) 

implicit none 
integer TN,nx,k,inout 
double precision mu,sig,xf(2),serr(15),Mratio(15),sqerr 
double precision Mdata(15),mse,rmse,time(15) 
double precision timeC(7) 
common/f/inout 
common/g/time,timeC 
common/h/Mdata 

c uncomment for SINGLE-RATE inversions: 
c common/z/sig 

external massratio 

c Copy param. est. variables to mu, sig for use in mass calculations: 
mu = xf(1) 

c comment out for SINGLE-RATE inversion: 
sig = exp(xf(2)) 

c Perform mass calculations: 
call massratio(mu,sig,Mratio) 

c Calculating mean errors: 
mse = 0.d0 
do 10,k=1,TN 
sqerr=log(abs(Mdata(k)/Mratio(k)))*log(abs(Mdata(k)/Mratio(k))) 
mse = mse + sqerr 
serr(k)=sqrt(sqerr) 

10 continue
 
rmse = sqrt(mse)
 

c writing intermediate results to file: 
open(41,file=iprogress.mss') 
if (inout.eq.0) then 

write(41,*) 'M(t)/M(t=0), parameter estimation:' 
else 

write(41,*) 'M(t)/M(t=infinity), parameter estimation:' 
endif
 

write(41,160) 'mu = ',mu
 
write(41,160) 'sig = ',sig
 

write(41,160) 'RMSE = ',rmse 
160 format(A,d12.5,A,d12.5)
 

write(41,*) '1st column = time [I]'
 
write(41,*) '2nd column = calculated mass ratio [-]'
 
write(41,*) '3rd column = observed mass ratio Er
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do 200,k=1,TN 
write(41,180) time(k),Mratio(k),Mdata(k)
 

180 format(3e21.13)
 
200 continue
 

close(41) 

c Writing intermediate parameter estimates and residuals to file: 
open(30,file='progress.sts',access=tappend') 
write(30,*) 'mu,sig,rmse:' 
write (30,' (7 d15. 8)') mu,sig,rmse 
close(7) 

return
 
end
 

c **************************************************************************** 

c ***************Subroutine to calculate parameter estimation statistics****** 
**************************************************************************** 

subroutine statistics(fjac,nx,TN,rmse) 

integer nx,TN 
double precision XTX(2,2),covariance(2,2),eigenval(2),
 

& fjac(15,2),numerator,denominator,corcoef(2,2),
 
& inverse(2,2),rmse
 

open(29,file=lestimation.sts) 

c compute square of sensitivity matrix: 
call dmxtxf(TN,nx,fjac,TN,nx,XTX,nx) 

c compute inverse of square of sensitivity matrix: 
call dlinrg(nx,XTX,nx,inverse,nx) 

c calculate correlation coefficients: 
do 33,i=1,nx 

do 34,j=1,nx
 
numerator=inverse(i,j)
 
denominator=sqrt(inverse(i,i)*inverse(j,j))
 
corcoef(i,j) =numerator/denominator
 

34 continue 
33 continue 

c compute covariance matrix: 
do 340,i=1,nx 

do 350,j=1,nx 
covariance(i,j)=rmse*rmse*inverse(i,j)
 

350 continue
 
340 continue
 

c compute eigenvalues of covariance matrix: 
call devlsf(nx,covariance,nx,eigenval) 

c write stats to file: 
write(29,*) 'PARAMETER ESTIMATION STATISTICS' 
write(29,*) 'sensitivity matrix (Jacobian), X:' 
do 76,i=1,TN 

write(29,41) (fjac(i,j),j=1,nx) 

http:format(3e21.13
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76	 continue 
41	 format(5e12.4) 

write(29,*) 'XtX (information matrix), square of sensitivity matrix:' 
do 77,i=1,nx 
write(29,41) (XTX(i,j),j=1,nx) 

77	 continue 
write(29,*) 'covariance matrix,(RMSE^2)*(inverse of XtX):' 
do 78,i=1,nx 
write(29,41) (covariance(i,j),j=1,nx) 

78	 continue 
write(29,*) 'correlation coefficients:' 
do 36,i=1,nx 
write(29,41) (corcoef(i,j),j=1,nx) 

36	 continue 
write(29,*) 'eigenvalues of covariance matrix:' 
do 79,i=1,nx 
write(29,*) eigenval(i) 

79 continue 

close(29) 

return
 
end
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APPENDIX 2: FORTRAN77 code STAMMTLMC 

program STAMMTLMC 

c Sean W. Fleming 
c Department of Geosciences 
c Oregon State University 
c Corvallis, OR 97331 
c March 1998 

implicit none 

c double precision meanmu,stdevmu,meansig,stdevsig,outmu,outsig 
c double precision rannum(1),DNORIN 
c integer NR 

c The following comment block describes the meaning of the above variables 
c IF a normal distribution of error about a mean value is used for 
c the mass transfer parameters (e.g. confidence intervals about an estimate); 
c this has been replaced with uniform distributions. Comment block and 
c corresponding code operations (commented out below) are maintained here for 
c future reference: 
c meanmu is the value of mu estimated by STAMMT-R or by MRSD (and converted 
c to the geometric mean of *rate* coefficients) (input) 
c stdevmu is the uncertainty in the estimated value of mu (square root of the 
c appropriate diagonal from the covariance matrix), assuming error in the 
c estimate is normally distributed about the mean estimated value (input) 
c meansig is the natural logarithm of the value of sig estimated by 
c STAMMT-R or MRSD (input) 
c - stdevsig is the uncertainty in the estimated value of ln(sig) (i.e. the 
c square root of the appropriate diagonal from the covariance matrix), 
c assuming error is normally distributed about the mean estimated value; 
c as the estimate is ln(sig), this is equivalent to a lognormal distribution 
c of error about the esimated value of sig (input) 
c outmu is the value of mu which the Monte Carlo routine will feed to STAMMT-L 
c outsig is the value of sig which the Monte Carlo routine will feed to STAMMT-L 
c rannum(1),DNORIN used in pulling a value from the cdf. 

double precision outmu,outsig 
double precision advporos,PWvel,difporos,capcoef,Dvel 

c outmu is mu, pulled from its distribution and fed to STAMMT-L 
c outsig is sig, pulled from its distribution and fed to STAMMT-L 
c advporos is the advective porosity, pulled from its distribution 
c difporos is the diffusive porosity, pulled from its distribution 
c Dvel is the Darcy velocity, pulled from its distribution 
c PWvel is the pore water velocity, calculated from Dvel and advporos, 
c and fed to STAMMT-L 
c capcoef is the capacity coefficient, Btot, calculated from advporos and 
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c difporos, and fed to STAMMT-L 

double precision time(300),M(300),cncntrtn(300) 
double precision Mten,Mfifty,Mninety,peakC,tpeakC 
double precision tmpmnt3,tmpmnt0,tmpmnt1,tmpmnt2,tailt,Mone 
double precision mss,mnrrvltm,stdBTC,skwnss 
double precision stdBTC1,stdBTC2,skwnss1,skwnss2,skwnss3 
integer i,j,count,TN,flag3,count0,k 

common/moments/tmpmnt0,tmpmnt1,tmpmnt2,tailt 

external STAMMTL,PERCENTILE,PEAKCONC
 
external MTDIST,TRANSPORTDIST
 

c For normal distributions of error about mean values, for mass transfer 
c parameters; no longer used: 
c external DNORIN,DRNUN 

open(unit=12,file='montecarlo.MT-MR-3000.outt,access='append') 
c write header: 

write(12,*) 'column 1 = count' 
write(12,*) 'column 2 = mu' 
write(12,*) 'column 3 = sig' 
write(12,*) 'column 4 = advective porosity' 
write(12,*) 'column 5 = pore water velocity' 
write(12,*) 'column 6 = Darcy velocity' 
write(12,*) 'column 7 = diffusive porosity' 
write(12,*) 'column 8 = capacity coefficient' 
write(12,*) 'column 9 = Mone, time at which 1% of mass is removed' 
write(12,*) 'column 10 = Mten, time at which 10% of mass is removed' 
write(12,*) 'column 11 = Mfifty, time at which 50% of mass is removed' 
write(12,*) 'column 12 = Mninety, time at which 90% of mass is removed' 
write(12,*) 'column 13 = peakC, maximum C/CO in the BTC' 
write(12,*) 'column 14 = tpeakC, time at which peakC occurs' 
write(12,*) 'column 15 = tailt, simple tailing measure' 
write(12,*) 'column 16 = mss, mass in the plume' 
write(12,*) 'column 17 = mnrrvltm, mean arrival time of solute' 
write(12,*) 'column 18 = stdBTC, standard deviation of the BTC' 
write(12,*) 'column 19 = skwnss, BTC skewness coefficient;(+)=tailing' 
close(12) 

c For normal distribution of error about a mean value for mass transfer 
c parameters; no longer used: 
c setting values for MC simulation (see above): 
c meanmu=-7.689d0 
c meansig=1.271d0 
c stdevmu=0.598d0 
c stdevsig=0.1285 
c for random number generator: 
c NR=1 

c initializing variables used to keep track of Monte Carlo simulation: 
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count=0
 
count0=0
 

do 20,i=1,10000 

c For normal distribution of error about a mean value for mass transfer
 
c parameters (mean mu and mean ln(sig); no longer used:
 
c randomly pluck a value of mu from the cdf of errors about the estimate of mu:
 
c call DRNUN(NR,rannum(1))
 
c outmu=meanmu+stdevmu*DNORIN(rannum(1))
 
c randomly pluck a value of sig from the cdf of errors about the estimate of sig:
 
c call DRNUN(NR,rannum(1))
 
c outsig=exp(meansig+stdevsig*DNORIN(rannum(1)))
 

c OBTAINING VALUES FOR STOCHASTIC VARIABLES FROM THEIR CDFs: 
call MTDIST(outmu,outsig) 
call TRANSPORT DIST(advporos,PWvel,difporos,capcoef,Dvel) 

c feed these values to modified STAMMT-L and get back a mass BTC, a concentration 
c BTC, and a the value for TN (# of points in BTC; TNS in STAMMT-L) to be used in 
c subroutine PERCENTILE: 

call STAMMTL(outmu,outsig,PWvel,capcoef,TN,time,M,cncntrtn) 

c cleaning up numerical error in curves returned by STAMMT-L; results from 
c forward scoping runs suggest results are not reliable below C/CO or M/MO 
c of 1.0D-7: 

do 500,k=1, TN
 
if (M(k).1t.(1.0d-7)) then
 
M(k)=0.0d0
 

endif
 
if (cncntrtn(k).1t.(1.0d-7)) then
 
cncntrtn(k)=0.0d0
 

endif
 
500 continue
 

c find times in the mass curve at which 1%, 10%, 50%, 90% of the mass is 
c removed: 

call PERCENTILE(time,M,TN,Mone,Mten,Mfifty,Mninety,flag3) 
c respond to bad numerical error in mass curve if present ("wavy" mass curves 
c seen in some runs completed using weird input parameter values): 

if (flag3.eq.1) then
 
print*,'This mass BTC does not monotonically increase'
 
print*,'mu=',outmu
 
print*,'sig=',outsig
 
print*,'Skipping to next parameter combination'
 
goto 20
 

endif 

c find peak concentration, time to peak conc., and temporal moments of BTC: 
call PEAKCONC(time,cncntrtn,TN,peakC,tpeakC,tmpmnt3) 

c turn temporal moments into meaningful quantitiies, following Harvey and 
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c Gorelick, WRR 31(8), 1995: 
c find contaminant mass in plume: 

mss=Dvel*(4.4d0)*(1.0d0)*tmpmntO/advporos 
c find mean arrival time of solute: 

mnrrvltm= tmpmnt1 / tmpmnt0 
c find standard deviation of BTC: 

stdBTC1=tmpmnt2/tmpmnt0 
stdBTC2=(tmpmnt1/tmpmnt0)*(tmpmnt1/tmpmnt0) 
stdBTC=sqrt(stdBTC1-stdBTC2) 

c find skewness coefficient of BTC; positive skewness coefficient means tailing: 
skwnss1=tmpmnt3/tmpmnt0 
slownss2=3*((tmpmnt1*tmpmnt2)/(tmpmnt0 *tmpmnt0)) 
slownss3=2*(tmpmnt1/tmpmnt0)*(tmpmnt1/tmpmnt0)*(tmpmnt1/tmpmnt0) 
skwnss=(skwnss1-skwnss2+skwnss3)/(stdBTC*stdBTC*stdBTC) 

c increment simulation counter: 
count=count+1 

c write key input parameters and results from i th. simulation to a file: 
open(unit=12,file=imontecarlo.MT-MR-3000.oue,access='append') 
write(12,80) count,outmu,outsig,advporos,PWvel,Dvel,difporos, 

& capcoef,Mone,Mten,Mfifty,Mninety,peakC,tpeakC,tailt,mss,mnrryltm,
 
& stdBTC,skwnss
 

80 format(I7,18e13.5)
 
close(12)
 

c keep track of simulation, write progress report every 100th iteration: 
if (count.eq.(count0+100)) then
 

open(unit=15,file='MCprogress.MT-MR-3000.out')
 
write(15,*) 'This is run # ',count,':'
 
write(15,*) 'mu=',outmu
 
write(15,*) 'sig=',outsig
 
write(15,*) 'advporos=',advporos
 
write(15,*) 'PWvel=',PWvel
 
write(15,*) 'Dvel=',Dvel
 
write(15,*) idifporos=',difporos
 
write(15,*) 'capcoef=',capcoef
 
write(15,*) 'Mone=',Mone
 
write(1 5,*) 'Mten=',Mten
 
write(15,*) 'Mfifty=',Mfifty
 
write (15,*) 'Mninety=',Mninety
 
write(15,*) 'peakC=',peakC
 
write(15,*) 'tpeakC=',tpeakC
 
write(15,*) 'tailt=',tailt
 
write(15,*) 'mss=',mss
 
write(15,*) imnrryltm=1,mnrryltm
 
write(15,*) 'stdBTC=',stdBTC
 
write(15,*) 'skwnss =',skwnss
 
close(15)
 
count0=count
 

endif 
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c 

20 continue 

stop
 
end
 

***************************************************************************** 

c ***** subroutines to randomly select values of mass transfer parameters******* 
c ***************************from their cdfs**** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 

***************************************************************************** 

subroutine MTDIST(outmu,outsig) 

implicit none
 
double precision rannum(1),outmu,outsig,amu,bmu,asig,bsig
 
integer NR
 

external DRNUN 

NR=1 

c Obtain a value for mu from its cdf: 

c define uniform distribution of MU: 
c minimum value = smallest estimated value of mu from field-scale studies, 

2 confidence intervals from parameter estimation statistics (H11 MW b3 R1 
c "low", from McKenna et al., WRR, in prep.): 

amu=-1.51d0 
c maximum value = largest estimated value of mu from field-scale studies, 
c excluding H19 SWIW results (probably contaminated by slow advection), 
c - 2 confidence intervals (H19 MW b7 R1 "high", from McKenna et al., WRR, 
c in prep.): 

bmu=3.01 dO 
c generate a random number between 0 and 1: 

call DRNUN(NR,rannum(1)) 
c pick a value off the cdf of mu: 

outmu=(bmu-amu)*rannum(1)+amu 

c Obtain a value for SIG from its cdf: 

c define uniform distribution of sig: 
c minimum value = smallest value of sig obtained from field-scale studies 
c (H11 MW b3 R2 "high" from McKenna et al., WRR, in prep.): 

asig=1.11 
c maximum value = from steepest curve that can be fitted to (sampling volume 
c vs. estimated sig) data; i.e., sig=4.446+0.4574*ln[sampling volume in m^3], 
c from volume3JNB on topaz. This uses best-fit sig values from parameter 
c estimations performed on static diffusion-in/out, bulk static diffusion 
c in/out, all SWIW tracer tests performed at H19 except 2nd preliminary 
c test (Haggerty et al., WRR, in prep.), all MW tracer tests performed at 
c H19 (McKenna et al., WRR, in prep.). Sampling volume is volume of slab, 
c total volume of constitutive slabs (for bulk), pi*r*r*h for SWIW, and 
c 0.5*pi*r*r*h+r*p*h for MW G. Ogintz fax, 3/11/98), where h is thickness of 

http:asig=1.11
http:bmu=3.01
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c Culebra (4.4 m), and r is radial distance from injection well to point at 
c which C/Co-1e-5 in end-of-pumping concentration profile files produced by 
c STAMMT-R (my SWIW runs, S. McKenna March 14/98 e-mail). Sig extrapolated to 
c regional scale using above empirical curve, taking regional sampling volume 
c to be [travel distance, 3000m] x [formation thickness, 4.4m] x [width of 1D 
c model column, lm]: 

bsig=8.79 
c generate a random number between 0 and 1: 

call DRNUN(NR,rannum(1)) 
c pick a value of sig off the cdf: 

outsig=(bsig-asig)*rannum(1)+asig 

return
 
end
 

c ***************************************************************************** 

c ********* subroutine to randomly select values of pore water velocity ******* 
c ********* and capacity coefficient from their consitutive cdfs ************** 
c ***************************************************************************** 

subroutine TRANSPORTDIST(advporos,PWvel,difporos,capcoef,Dvel) 

implicit none 
double precision rannum(1),advporos,PWvel,difporos,capcoef,Dvel 
double precision dp(7),pdp(7),dpslope,v(101),pv(101),vslope 
double precision aap,bap 
integer NR,i 

external DRNUN 

NR=1 

c porosity distributions come from Mike Wallace (samp.xls spreadsheet 
c attachment to March 24(but labelled 11th)/98 e-mail) in Sandia PA group; 
c originally produced by Sandia geohydrology group (M. Wallace, telephone 
c conversation, March 24/98; S. McKenna, April 1/98 e-mail -> memo from L. 
c Meigs and J. McCord, 7/11/96). 

c travel time distribution came from Mike Wallace (samp.xls spreadsheet 
c attachment to March 24(11)/98 e-mail) in Sandia PA group. He developed it 
c using a 2D particle-tracking GW flow code for the case of no mining and 
c no climate change (M. Wallace, March 24/98 telephone conversation, March 
c 26(13)/98 e-mails #1 and #2), and T-fields developed over the 
c years by Sandia and Interra (pilot point method of LaVenue et al., 
c WRR 25(7), 1989) (M. Wallace, March 26(13)/98 e-mail #2; S. McKenna, April 
c 1/98 e-mail). Code called GRASP-INV was used to generate actual T-fields 
c (M. Wallace, March 26(13)/98 e-mail #2). Travel times are for mean travel 
c distance of 3682 metres, and use constant advective porosity of 0.16 
c (M. Wallace, March 26(13)/98 e-mail #1). I converted travel time dist. to 
c to pore water velocity dist. assuming 0.16 adv. poros. to Darcy velocity 
c dist. in Excel by: Darcy vel. = (3682m/travel time)*0.16 (procedure 
c confirmed by M. Wallace, March 26(13)/98 e-mail #1). 

http:time)*0.16
http:bsig=8.79
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c in STAMMT-LMC3mt.f, only mass transfer parameters are varied in Monte Carlo 
c simulations; all transport parameters set equal to 50th percentile values 
c from aforementioned distributions: 

Dvel=0.08154d0
 
PWvel= 81.54d0
 
difporos =0.16d0
 
advporos =0.001
 

c calculate a value of CAPACITY COEFFICIENT: 
capcoef=difporos/advporos 

return
 
end
 

***************************************************************************** 

c ******** finding ten and ninety percentile times of each mass BTC ********* 

c ***************************************************************************** 

subroutine PERCENTILE( time, M, TN ,Mone,Mten,Mfifty,Mninety,flag3) 

implicit none
 
double precision time(300),M(300),Mone,Mten,Mfifty,Mninety
 
double precision xdata(2),ydata(2),invslope,err
 
integer TN,flag1,i,flag2,flag3,flag4,flag5
 

c flags 1,2,4, and 5 have to do with whether the 10th, 50th, 90th, and 1st
 
c percentile masses within the mass BTC have been reached.
 
c flag 3 has to do with whether the mass BTC is screwed up by numerical
 
c error.
 

flag1 =0
 
flag2=0
 
flag3=0
 
flag4=0
 
flag5=0
 

do 200,i=1,TN 
c testing for whether BTC monotonically increases (within some tolerance): 

if (M(i).gt.0.075) then 
err=M(i)-M(i-1) 

c if M (mass removed) significantly increases with time, err=positive 
if (err.lt.(-0.025)) then
 

flag3=1
 
goto 210
 

endif 
endif 

c finding times at which 1%, 10%, 50%, and 90% of the injected mass has been 
c removed from the system. Linear interpolation is used to find the 
c 'exact' time: 

if ((M(i).gt.0.01).and.(flag5.eq.0)) then
 
xdata(1)=time(i-1)
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ydata(1)=M(i-1)
 
xdata(2)=time(i)
 
ydata(2) =M(i)
 
invslope=(xdata(2)-xdata(1))/(ydata(2)-ydata(1))
 
Mone=xdata(1)+invslope*(0.01-ydata(1))
 
flag5=1
 

endif 
if ((M(i).gt.0.10).and.(flag1.eq.0)) then
 

xdata(1)=time(i-1)
 
ydata(1)=M(i-1)
 
xdata(2)=time(i)
 
ydata(2)=M(i)
 
invslope=(xdata(2)-xdata(1))/(ydata(2)-ydata(1))
 
Mten=xdata(1)+invslope*(0.1-ydata(1))
 
flag1=1
 

endif
 
if ((M(i).gt.0.50).and.(flag2.eq.0)) then
 
xdata(1) =time(i-1)
 
ydata(1)=M(i-1)
 
xdata(2)=time(i)
 
ydata(2)=M(i)
 
invslope=(xdata(2)-xdata(1))/(ydata(2)-ydata(1))
 
Mfifty=xdata(1)+invslope*(0.5-ydata(1))
 
flag2=1
 

endif 
if ((M(i).gt.0.90).and.(flag4.eq.0)) then
 

xdata(1)=time(i-1)
 
ydata(1)=M(i-1)
 
xdata(2)=time(i)
 
ydata(2)=M(i)
 
invslope=(xdata(2)-xdata(1))/(ydata(2)-ydata(1))
 
Mninety=xdata(1)+invslope*(0.9-ydata(1))
 
flag4=1
 

endif 
200 continue 
210 continue 

return
 
end
 

****************************************************************************** 

c **** subroutine to find peak concentration, time to peak concentration, ****** 
c ****and tailing measure in each concentration BTC calculated by STAMMT-L ***** 

****************************************************************************** 

subroutine PEAKCONC(time,cncntrtn,TN,peakC,tpeakC,tmpmnt3) 

implicit none
 
double precision time(300),cncntrtn(300),peakC,tpeakC,tmpmnt3
 
double precision integrand(300),tinitial,tend
 
double precision xl,x2,y1,y2,slope,lowC,tlowC,tailt
 
double precision tmpmnt0,tmpmnt1,tmpmnt2
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integer TN,i,j,number,IERR,index 

common/moments / trnpmnt0,tmpmnt1,tmpmnt2,tailt 

external AVINT 

c finding maximum concentration in BTC (peakC) and time at which it occurs 
c (tpeakC): 

peakC=0.0d0 
do 200,i=1,TN 
if (cncntrtn(i).gt.peakC) then
 

peakC=cncntrtn(i)
 
tpeakC=time(i)
 
index=i
 

endif
 
200 continue
 

c finding difference between tpeakC and the time at which concentration 
c decreases to 0.01% of peakC; a simple measure of tailing: 

lowC=0.0001*peakC
 
do 204,i=index,TN
 
if (cncntrtn(i).1t.lowC) then
 

y1 =time(i)
 
x1=cncntrtn(i)
 
y2=time(i-1)
 
x2=cncntrtn(i-1)
 
slope=(y2-y1)/(x2-x1)
 
tlowC=y1+slope*(lowC-x1)
 
goto 308 

endif
 
204 continue
 
308 continue
 

tailt=tlowC-tpeakC 

c Finding temporal moments: 

c n.b. AVINT requires at least 3 abscissas between limits of integration 
c lower limit of integration = 1st time in BTC: 

tinitial=time(1) 
c upper limit of integration = last time in BTC: 

tend=time(TN) 
c number of points=TN: 

number=TN 

c Finding 0th temporal moment of the BTC, a measure of mass under the BTC
 
c (i.e., duration of pulse if square wave input):
 
c calculating quantity to be integrated, C:
 

do 270,j=1,TN 
integrand(j)=cncntrtn(j) 

270 continue 
c perform the integration: 
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call AVINT(time,integrand,number,tinitial,tend,tmpmntO,IERR) 

c Finding 1st temporal moment of the BTC, a measure of the mean
 
c breakthrough time:
 
c calculating quantity to be integrated, C * t:
 

do 280,j=1,TN 
integrand(j)=cncntrtn(j)*time(j) 

280 continue 
c perform the integration: 

call AVINT(time,integrand,number,tinitial,tend,tmpmntLIERR) 

c Finding 2nd temporal moment of the BTC, a measure of its variance: 
c calculating quantity to be integrated, C * t^2: 

do 275,j=1,TN 
integrand(j)=cncntrtn(j)*time(j)*time(j) 

275 continue 
c perform the integration: 

call AVINT(time,integrand, number ,tinitial,tend,tmpmnt2,IERR) 

c Finding 3rd temporal moment of the BTC, a measure of its skewness; gives
 
c an indication of how much tailing exists:
 
c calculating quantity to be integrated, C * t^3:
 

do 210,j=1,TN 
integrand(j)=cncntrtn(j)*time(j)*time(j)*time(j) 

210 continue 
c perform the integration: 

call AVINT(time,integrand,number,tinitial,tend,tmpmnt3,IERR) 

return 
end 

c*******************************************************************************
 

C*************SUBROUTINE AVINT (CALLED BY SUBROUTINE
 
PEAKCONC)******************
 
C************ performs numerical integration of discrete input *****************
 
c*******************************************************************************
 

*DECK AVINT 
SUBROUTINE AVINT (X, Y, N, XLO, XUP, ANS, IERR) 

C***BEGIN PROLOGUE AVINT 
C***PURPOSE Integrate a function tabulated at arbitrarily spaced 
C abscissas using overlapping parabolas. 
C***LIBRARY SLATEC 
C***CATEGORY H2A1B2 
C***TYPE SINGLE PRECISION (AVINT-S, DAVINT-D) 
C***KEYWORDS INTEGRATION, QUADRATURE, TABULATED DATA 
C***AUTHOR Jones, R. E., (SNLA) 
C***DESCRIPTION 
C 
C Abstract 
C AVINT integrates a function tabulated at arbitrarily spaced 
C abscissas. The limits of integration need not coincide 
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C with the tabulated abscissas. 
C 
C A method of overlapping parabolas fitted to the data is used 
C provided that there are at least 3 abscissas between the 
C limits of integration. AVINT also handles two special cases. 
C If the limits of integration are equal, AVINT returns a result 
C of zero regardless of the number of tabulated values. 
C If there are only two function values, AVINT uses the 
C trapezoid rule. 
C 
C Description of Parameters 
C The user must dimension all arrays appearing in the call list 
C X(N), Y(N). 
C 
C Input-
C X real array of abscissas, which must be in increasing 
C order. 
C Y real array of functional values. i.e., Y(I)=FUNC(X(I)). 
C N the integer number of function values supplied. 
C N .GE. 2 unless XLO = XUP. 
C XLO real lower limit of integration. 
C XUP real upper limit of integration. 
C Must have XLO .LE. XUP. 
C 
C Output- ­
C ANS - computed approximate value of integral 
C IERR - a status code 
C --normal code 
C =1 means the requested integration was performed. 
C --abnormal codes 
C =2 means XUP was less than XLO. 
C =3 means the number of X(I) between XLO and XUP 
C (inclusive) was less than 3 and neither of the two 
C special cases described in the Abstract occurred. 
C No integration was performed. 
C =4 means the restriction X(I+1) .GT. X(I) was violated. 
C =5 means the number N of function values was .LT. 2. 
C ANS is set to zero if IERR=2,3,4,or 5. 
C 
C AVINT is documented completely in SC-M-69-335 
C Original program from "Numerical Integration" by Davis & 
C Rabinowitz. 
C Adaptation and modifications for Sandia Mathematical Program 
C Library by Rondall E. Jones. 
C 
C***REFERENCES R. E. Jones, Approximate integrator of functions
 
C tabulated at arbitrarily spaced abscissas,
 
C Report SC-M-69-335, Sandia Laboratories, 1969.
 
C***ROUTINES CALLED XERMSG
 
C***REVISION HISTORY (YYMMDD)
 
C 690901 DATE WRITTEN
 
C 890831 Modified array declarations. (WRB)
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C 890831 REVISION DATE from Version 3.2
 
C 891214 Prologue converted to Version 4.0 format. (BAB)
 
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 
C 900326 Removed duplicate information from DESCRIPTION section.
 
C (WRB)
 
C 920501 Reformatted the REFERENCES section. (WRB)
 
C***END PROLOGUE AVINT
 
C 

DOUBLE PRECISION R3,RP5,SUM,SYL,SYL2,SYL3,SYU,SYU2,SYU3,X1,X2,X3 
1,X12,X13,X23,TERM1,1'ERM2,TERM3,A,B,C,CA,CB,CC 

DOUBLE PRECISION X(300),Y(300),XLO,XUP,ANS 

C***FIRST EXECUTABLE STATEMENT AVINT 

IERR=1
 
ANS =0.0
 
IF (XLO-XUP) 3,100,200
 

3 IF (N.LT.2) GO TO 215
 
DO 5 I=2,N
 
IF (X(I).LE.X(I -1)) GO TO 210
 
IF (X(I).GT.XUP) GO TO 6
 

5 CONTINUE
 
6 CONTINUE
 
IF (N.GE.3) GO TO 9
 

C 
C SPECIAL N=2 CASE 

SLOPE = (Y(2)- Y(1)) /(X(2) -X(1)) 
FL = Y(1) + SLOPE*(XL0-X(1)) 
FR = Y(2) + SLOPE*(XUP-X(2)) 
ANS = 0.5*(FL+FR)*(xup-xLo) 
RETURN 

9 CONTINUE
 
IF (X(N-2).LT.XL0) GO TO 205
 
IF (X(3).GT.XUP) GO TO 205
 
I = 1
 

10 IF (X(I).GE.XL0) GO TO 15
 
I = I+1
 
GO TO 10
 

15 INLFT = I
 
I =N
 

20 IF (X(I).LE.XUP) GO TO 25
 
I = I-1
 
GO TO 20
 

25 INRT = I
 
IF ((INRT-INLP 1).LT.2) GO TO 205
 
ISTART = INLFT
 
IF (INLFT.EQ.1) ISTART = 2
 
ISTOP = INRT
 
IF (INRT.EQ.N) ISTOP = N-1
 

C 
R3 = 3.0D0 
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C 

RP5= 0.5D0
 
SUM = 0.0
 
SYL = XLO
 
SYL2= SYL*SYL
 
SYL3= SYL2*SYL
 

DO 50 I=ISTART,ISTOP
 
X1 = X(I-1)
 
X2 = X(I)
 
X3 = X(I+1)
 
X12 = X1-X2
 
X13 = X1-X3
 
X23 = X2-X3
 
TERM1 = DBLE(Y(I-1))/(X12*X13)
 
TERM2 =-DBLE(Y(I)) /(X12*X23)
 
TERM3 = DBLE(Y(I+1))/(X13*X23)
 
A = TERM1+TERM2+TERM3
 
B = -(X2+X3)*TERM1 (X1 +X3)*TERM2 - (X1 +X2)*TERM3
 
C = X2*X3*TERM1 + X1*X3*TERM2 + X1*X2*TERM3
 
IF (I-ISTART) 30,30,35
 

30 CA = A
 
CB = B
 
CC = C
 
GO TO 40
 

35 CA = 0.5*(A+CA)
 
CB = 0.5*(B+CB)
 
CC = 0.5*(C+CC)
 

40 SYU = X2 
SYU2= SYU*SYU 
SYU3= SYU2*SYU 
SUM = SUM + CA*(SYU3-SYL3)/R3 + CB*RP5*(SYU2-SYL2) + CC*(SYU-SYL) 
CA =A 
CB = B 
CC = C 
SYL = SYU 
SYL2= SYU2 
SYL3= SYU3 

50 CONTINUE
 
SYU = XUP
 
ANS = SUM + CA*(SYU**3-SYL3)/R3 + CB*RP5*(SYU**2-SYL2)
 
1 + CC*(SYU-SYL)
 

100 RETURN
 
200 IERR=2
 

write(28,*) 'AVINT error type',IERR
 
RETURN
 

205 IERR=3
 
write(28,*) 'AVINT error type',IERR
 

RETURN
 
210 IERR=4
 

write(28,*) 'AVINT error type',IERR
 
RETURN
 

215 IERR=5
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write(28,*) 'AVINT error type',IERR
 
RETURN
 
END
 

****************************************************************************** 

c *********** subroutine STAMMT-L to calculate breakthrough curves ************* 
****************************************************************************** 

subroutine STAMMTL( outmu, outsig, PWvel ,capcoef,TN,time,M,cncntrtn) 

c STAMMT-L = Solute Transport and Multirate Mass Transfer in Linear coordinates 
c Version 1.0 

c Roy Haggerty, November, 1997 
c 

c modified to subroutine for program STAMMT-LMC, Sean Fleming, February, 1998 
c 

c Dept. of Geosciences 
c Oregon State University 
c Corvallis, OR 
c 97331-5506 
c haggertr@ucs.orst.edu 

implicit none
 
include "stammtL.incl"
 
integer i,j,kmax,opt,Ltime,Lz,TNS,idef,lcom,mrct,ic,
 

& bc,TNI,iparam(6),ocm
 
double precision rP,X,tfac,disc,relerr,Rm,btot,mse,rmse,tp,sig,
 

& derf,sum,dnorin,dnordf,mu,L,xx,alphaL,vx,Tmax,Tmin,ts,msin
 
double precision bet(nm),omega(nm),dp(nt),tdp(nt),
 

& xguess(nx),fiac(nt,nx),xscale(nx),fscale(nt),rparam(7),
 
& xf(nx),serr(nt),cov(nx,nx),invcov(nx,nx),T(nt),C(nt),
 
& eig(nx),tdi(ni),cdi(ni),Ms(nt),sim(nt)
 
character*40 parameterfile,datafileOUT,multirateseriesOUT,
 

& covariance_matrix,outconc,multirateseriesIN,datafileIN,
 
& outmass,lsq_progress
 
complex*16 fc0,fc1,fm0,fm1 

c my change: declare input from Monte Carlo: 
double precision outmu,outsig,PWvel,capcoef 

c my change: declare output to Monte Carlo: 
double precision time(300),M(300),cncntrtn(300) 
integer TN 

external fc0,fc1,obj,dnorin,dnordf,derf,fm0,fm1,msin
 
common/stuff/rP,X,Rm,tfac,bet,omega,btot,tp,vx
 
common/other/dp,tdp,relerr,disc
 
common/int/ kmax, TNS, lcom ,idef,mrct,ic,bc,TNI,ocm,opt
 
common/cinit/ tdi,cdi
 
common/name/ lsq_progress
 

mailto:haggertr@ucs.orst.edu
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c*********************************************************************** 
mrct = 0 

c Open necessary files: 
open(10,file='STAMMT-L.prjp 
read(10,10) parameterfile 
read(10,10) datafileIN 
read(10,10) datafileOUT 
read(10,10) multirateserieslN 
read(10,10) multirateseriesOUT 
read(10,10) outconc 
read(10,10) outmass 
read(10,10) covariance_matrix 
read(10,10) lsq_progress 

10 format (A) 

open(9,file=1ERRORS)
 
open(21,file=parameterfile)
 
open(23,file=datafileIN)
 
open(24,file=datafileOUT)
 
open(25,file=multirateseriesOUT)
 
open(26,file=multirateseriesIN)
 
open(27,file=covariance_matrix)
 
open(30,file=outconc)
 
open(31,file=outmass)
 

c Read in initial variables and parameters: 
read(21,*) L !Length of system 
read(21,*) xx !Distance from Injection to Measurement 
read(21,*) alphaL !Longitudinal dispersivity 
read(21,*) vx !velocity 
read(21,*) Rm !retardation factor for mobile zone 
read(21,*) btot !total capacity coefficient 
read(21,*) mu !nat. log of geometric mean of Da/a^2 (or alpha, if idef=2) 
read(21,*) sig !std. dev. of logs of Da/a^2. Ignored if idef=1,2,or3 
read(21,*) Ltime !use (t,C) input file to determine sim. times (set=0) or generate times 

(set=1) 
read(21,*) Lz !if Ltime=1: constant time (set=0) increment, or constant ln(time) 

increment (set=1) 
read(21,*) Tmin !if Ltime=1: min. sim. time (i.e., first simulated time) 
read(21,*) Tmax !if Ltime=1: max. sim. time (i.e., last simulated time) 
read(21,*) is !Initial condition. Zero conc. (ic=0); Equilibrium, saturated (ic=1) 
read(21,*) be !Boundary condition. No input (bc=0); Dirac pulse (bc=1); Square pulse 

(bc=2); Time-varying bdy. conc. (bc=3) 
read(21,*) tp !If bc=1, then 0th temp. moment; If bc=2, then time (length) of conc. 

pulse. 
read(21,*) TNI !Number of input conc. data points (needed ONLY if bc=3). Max = 100. 
read(21,*) TNS !number of time vs. conc. data points (or number of simulated times 

desired). Max = 300 
read(21,*) idef !idef, 0=Lognormal distribution of diffusion coefs;1=spherical 

diffusion;2=single-rate first-order mass transfer; 3=Read in distribution of rate coefficients; 4=User­
defined distribution 
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read(21,*) disc !max. expected discontinuity in Laplace 
read(21,*) kmax !max. number of iterations in Laplace 
read(21,*) relerr !relative error desired 
read(21,*) opt !run an optimization or simulation 
read(21,*) ocm !compare concentrations (ocm=0) or mass (ocm=1) 
read(21,*) lcom !compare arithmetic values (set = 0) or logs of values (set=1) in estimation 

c my change: override input from input parameter file, replace with values 
c sent from the calling program: 

mu=outmu 
sig=outsig 
btot=capcoef 
vx=PWvel 

c Do some checks on parameters: 
call error(xx,L,Ltime,Lz) 

c Create nondimensional variables to be used later. 
rP = L/alphaL 
X = xx/L 
tfac = vx/L 

c Read in output concentration vs. time data if Ltime = 0 
if (Ltime.eq.0) then 

do 20,i=1,TNS 
read(24,*,end=500),tdp(i),dp(i) 

20 continue 
goto 501 

500 write(9,*)'Either the value of TNS is incorrect or the file',
 
& datafileOUT,' has an error. Apparently TNS should be',(i-1),
 
& 'If this number is not correct, please halt the simulation.
 
& Please correct TNS or the file before the next run.'
 

TNS = i-1
 
501 continue
 

elseif (Ltime.eq.1) then
 
if (Lz.eq.0) then
 

ts = (Tmax-Tmin)/dble(TNS-1)
 
do 21,i=1,TNS
 

tdp(i) = Tmin+ts*dble(i-1) 
21 continue 

do 22,i=(rNS+1),nt 
tdp(i) = Tmax 

22 continue 
elseif (Lz.eq.1) then
 
ts = (log(Tmax)-log(Tmin))/dble(TNS-1)
 
do 23,i=1,TNS
 

tdp(i) = exp(log(Tmin)+ts*dble(i-1)) 
23 continue 

else
 
write(9,*)'Lz is neither 0 nor 1. Please set and restart.'
 
stop
 

endif 
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else 
write(9,*)'Ltime is neither 0 nor 1. Please set and restart.' 
stop 

endif 

c Fill in extra time-slots with the last time. 
do 24,i=(TNS+1),nt 

tdp(i) = tdp(TNS) 
24 continue 

c Read in input concentration vs. time data if be = 3 
if (bc.eq.3) then 

do 520,i=1,TNI 
read(23,*,end=530),tdi(i),cdi(i) 

520 continue 
goto 540 

530 write(9, *)'Either the value of TNI is incorrect or the file', 
& datafilelN,' has an error. Apparently TNI should be',(i-1), 
& 'If this number is not correct, please halt the simulation. 
& Please correct TNI or the file before the next run.' 

TNI = i-1 
if (TNI.le.1) then 

write(9, *)' 
write(9,*)'There appears to be only',TNI,' input conc.' 
write(9,*)'There must be at least 2 input concentrations.' 
write(9, *)'Simulation stopped.' 
stop 

endif
 
540 continue
 

endif
 

c If an estimation run is being done, then set up the necessary 
c arrays and do the estimation: 

if (opt.eq.0) then 

c Set up initial guesses for estimation in log-space: 
xguess(1) = log(btot) 
xguess(2) = mu 
xguess(3) = log(sig) 
xguess(4) = log(Rm) 
xguess(5) = log(rP) 

c Set up scaling and other optimization parameters (see 
c IMSL): 

do 27,i=1,nx 
xscale(i) = 1.d0 

27 continue 
do 28,i=1,nt 

fscale(i) = 1.d0 
28 continue
 

call du4lsf(iparam,rparam)
 
iparam(2) = 4
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c 

c Write headers to least squares progress file: 
open(28,file=lsq_progress) 
write(28,'(6A15))%tot',1mu','sig','Rm','rP','Sum of Err^2' 
close(28) 

c Go to nonlinear least squares routine: 
call dunlsf(obj,nt,nx,xguess,xscale,fscale,iparam, 

rparam,xf,serr,fjac,nt) 

call dbclsf (obj,nt,nx,xguess, ITP, XLB, XUB, XS, FSCALE, 
IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC) 

c Calculate values of covariance matrix and its eigenvalues 
c (note that these are not yet covariances, and that when 
c they are below, several important assumptions are involved): 

call dmxtxf(nt,nx,fiac,nt,nx,invcov,nx)
 
call dlinrg(nx,invcov,nx,cov,nx)
 
call devlsf (nx,cov,nx,eig)
 

btot = exp(xf(1))
 
mu = xf(2)
 
sig = exp(xf(3))
 
Rm = exp(xf(4))
 
rP = exp(xf(5))
 

endif 

c Set up the multirate series: 
call multirate(mu,sig) 
mrct = mrct+1 

c Write out mass transfer rate coefs. 
write(25,'(3A15)) 'alpha(i) [1 /T] ','beta(i) H','Cum. Sum H' 
sum = 0.d0 
do 40,i=1,nm 

sum = sum + bet(i) 
write(25,45) omega(i)*tfac/Rm,bet(i),sum
 

40 continue
 
45 format(3d15.7)
 

c Make nondimensional times. 
do 64,i=1,nt 
T(i) = tdp(i)*tfac/Rm 

64 continue 
do 65,i=1,ni 
tdi(i) = tdi(i)*tfac/Rm 

65 continue 

c Do inverse Laplace transform at times needed to calculate 
c concentrations: 

if (ic.eq.0) then 
call dinlap (fc0,nt,T,disc,relerr,kmax,C) 
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else 
call dinlap (fc1,nt,T,disc,relerr,kmax,C)
 

endif
 

c Do inverse Laplace transform at times needed to calculate 
c mass fraction: 

if (ic.eq.0) then
 
call dinlap (fm0,nt,T,disc,relerr,kmax,Ms)
 
do 300,i=1,TNS
 
Ms(i) = Ms(i)/msin() 

300 continue 
else
 

call dinlap (fm1,nt,T,disc,relerr,kmax,Ms)
 
do 310,i=1,TNS
 
Ms(i) = 1.d0-Ms(i)
 

310 continue
 
endif
 

c If optimization run: 
if (opt.eq.0) then 

c Load the simulated values of mass OR concentration into 
c an array called "sim". The array loaded in depends on 
c whether the estimation was done from mass or concentration 
c data. 

if (ocm.eq.0) then
 
do 320,i=1,TNS
 

sim(i) = C(i)
 
320 continue
 

else
 
do 330,i=1,TNS
 

sim(i) = Ms(i)
 
330 continue
 

endif
 

c Calculate mean squared error and root mse. Calculate final 
c covariance values: 

mse = 0.d0 
if (lcom.ne.1) then 

do 70,i=1,TNS
 
mse = mse + (dp(i)-sim(i))*(dp(i)-sim(i))
 

70 continue
 
else
 
do 72,i=1,TNS
 
if ((dp(i).ne.0.d0).and.(sim(i).gt.0.d0)) then
 
mse = mse + (log(dp(i)/sim(i)))**2
 

endif
 
72 continue
 

endif
 
rmse = sqrt(mse/(dble(TNS-nx)))
 
mse = rmse*rmse
 

http:dp(i).ne.0.d0).and.(sim(i).gt.0.d0
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if (opt.eq.0) then
 
do 76,i=1,nx
 

do 74,j=1,nx
 
cov(i,j) = cov(i,j)*mse
 

74 continue
 
76 continue
 

endif 

c Print out results on covariance matrix: 
write(27,80) 'RMSE = ',rmse 
write(27,'(/)') 
write(27,'(A9,2A15))1Param.1,1Std. Error' 
write(27,80) 'btot = ',btot,sqrt(cov(1,1)) 
write(27,80) 'u* = 1,mu,sqrt(cov(2,2)) 
write(27,80) 'sig = ',sig,sqrt(cov(3,3)) 
write(27,80) 'Rm = 1,Rm,sqrt(cov(4,4)) 
write(27,80) 'rP = ',rP,sqrt(cov(5,5)) 
write(27,'( / /)') 

80 format(A,2d15.5)
 
write(27,'(A)') 'Covariance Matrix. nx x nx.'
 

write(27,'(A)')'Diagonals contain the square of the std. error.' 
do 90,i=1,nx 
write(27,110) (cov(i,j),j=1,nx) 

90 continue 
110 format(7d15.5)
 

write(27,'(//)')
 
write(27,'(A)') 'Eigenvalues of Covariance Matrix'
 
write(27,110) (eig(j),j=1,nx)
 

c Print out results on conc. and mass. Print data with 
c the associated simulated values (i.e., if data are conc., 
c print with simulated conc.; if data are mass, print with 
c simulated mass: 

if (ocm.eq.0) then
 
write(30,80) 'RMSE = ',rmse
 
write(30,80) 'btot = ',btot
 
write(30,80) 'u* = ',mu
 
write(30,80) 'sig = ',sig
 
write(30,80) 'Rm = ',Rm
 
write(30,80) 'rP = ',rP
 

write(30,'(3A15)') 'Time','C /Co Sim.','C /Co Data' 
do 130,i=1,TNS 
write(30,120) tdp(i),C(i),dp(i)
 

120 format(3d15.5)
 
130 continue
 

write(31;(2A15)) 'Time','Mass Frac.'
 
do 135,i=1,TNS
 
write(31,120) tdp(i),Ms(i)
 

135 continue
 
else
 
write(31,80) 'RMSE = ',rmse
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write(31,80) 'btot = ',btot
 
write(31,80) '1.1* = ',mu
 
write(31,80) 'sig = ',sig
 
write(31,80) 'Rm = ',Rm
 
write(31,80) 'rP = ',rP
 
write(31,'(3A15)') 'Time','M Frac. Sim.','Mass Frac. Data'
 
do 140,i=1,TNS
 
write(31,120) tdp(i),Ms(i),dp(i) 

140 continue
 
write (30,' (2A15)') 'Time','C/Co'
 
do 145,i=1,TNS
 
write(30,120) tdp(i),C(i)
 

145 continue
 
endif
 

c If forward run only: 
else
 
write (30,' (2A15)') 'Time','C/Co'
 
do 150,i=1,TNS
 
write(30,120) tdp(i),C(i)
 

150 continue
 
write(31,'(2A15)') 'Time','Mass Frac.'
 

do 160,i=1,TNS
 
write(31,120) tdp(i),Ms(i)
 

160 continue
 
endif
 

c my change: write calculated tdp(i),Ms(i),C(i) to time(i),M(i),cncntrtn, 
c and TNS to TN: 

do 204,i=1,TNS
 
time(i)=tdp(i)
 
M(i)=Ms(i)
 
cncntrtn(i)=C(i)
 

204	 continue
 
TN=TNS
 

close(10)
 
close(21)
 
close(23)
 
close(24)
 
close(25)
 
close(26)
 
close(27)
 
close(30)
 
close(31)
 
close(9)
 

return
 
end
 

c*********************************************************************** 
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c This subroutine calculates the residuals (the difference 
c between the data value and the model value) for a given 
c set of parameters. 

c dinlap IMSL inverse Laplace routine 
c nd dummy variable 
c np dummy variable 
c sct - sum of squares of residuals 

subroutine obj(nd,np,xf,serr)
 
implicit NONE
 
include "stammtL.incl"
 
integer kmax,np,nd,i,TNS,lcom,idef,mrct,ic,bc,TNI,ocm,opt
 
double precision rP,X,tfac,disc,relerr,Rm,btot,sct,tp,
 

& sig,mu,vx,msin
 
double precision sim(nt),T(nt),bet(nm),omega(nm),dp(nt),
 

& tdp(nt),xf(nx),serr(nt)
 
complex*16 fc0,fc1,fm0,fm1
 
logical difnan
 
character*40 lsq_progress
 
external fc0,fc1,fm0,fm1,dinlap,difnan,msin
 
common/stuff/rP,X,Rm,tfac,bet,omega,btot,tp,vx
 
common/other/dp,tdp,relerr,disc
 
common/int/ kmax,TNS,lcom,idef,mrct,ic,bc,TNI,ocm,opt
 
common/name/lsq_progress
 

c Set parameters to values called for by IMSL routine: 
btot = exp(xf(1)) 
mu = xf(2) 
sig = exp(xf(3)) 
Rm = exp(xf(4)) 
rP = exp(xf(5)) 
do 20,i=1,nt 
T(i) = tdp(i)*tfac/Rm
 

20 continue
 

c Set up the multirate series : 
call multirate(mu,sig) 
mrct = mrct+1 

c Do inverse on mass or concentration? Do inverse Laplace transform 
c at times needed: 

c If CONCENTRATION and zero intial conc., then: 
if ((ic.eq.0).and.(ocm.eq.0)) then 

call dinlap (fc0,nt,T,disc,relerr,kmax,sim) 

c If CONCENTRATION and equilibrium initial conditions, then: 
elseif ((ic.eq.1).and.(ocm.eq.0)) then 

call dinlap (fcl,nt,T,disc,relerr,kmax,sim) 

c If MASS and zero intial conc., then: 



162 

elseif ((ic.eq.0).and.(ocm.eq.1)) then
 
call dinlap (fm0,nt,T,disc,relerr,kmax,sim)
 
do 30,i=1,TNS
 
sim(i) = sim(i)/msinO
 

30 continue
 

c If MASS and equilibrium initial conditions, then: 
elseif ((ic.eq.1).and.(ocm.eq.1)) then
 
call dinlap (fm1,nt,T,disc,relerr,kmax,sim)
 
do 40,i=1,TNS
 
sim(i) = 1.d0-sim(i)
 

40 continue
 

else 
write(9,*)'ic and ocm are not set properly. Must be 0 or 1.' 
stop 

endif 

c Calculate values of residuals and sum of squared residuals: 
sct = 0.d0 
if (lcom.ne.1) then 

do 70,i=1,TNS
 
serr(i) = sim(i)-dp(i)
 

if(difnan(serr(i))) then 
serr(i) = 1.d2 
write(9,*)'Simulation value #',i,' returned as NaN,', 

& 'continuing'
 
endif
 

sct = sct + serr(i)*serr(i)
 
70 continue
 

else
 
do 80,i=1,TNS
 
if (dp(i).ne.0.d0) then
 

serr(i) = log(sim(i))-log(dp(i))
 
else
 

serr(i) = 0.d0
 
endif
 

if(difnan(serr(i))) then 
serr(i) = 1.d2 
write(9,1Simulation value #',i,' returned as NaN,', 

& 'continuing'
 
endif
 

sct = sct + serr(i)*serr(i)
 
80 continue
 

endif
 
do 90,i=(TNS+1),nt
 
serr(i) = 0.d0
 

90 continue
 

c Write status of run to screen: 
open(28,file=lsq_progress,access='append') 
write(28,'(8d15.5)) btot,mu,sig,Rm,rP,sct 

http:dp(i).ne.0.d0
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close(28) 

return
 
end
 

c*********************************************************************** 
complex*16 function fc0 (s) 
implicit NONE 
include "stammtL.incl" 
integer i,kmax,TNS,lcom,idef,mrct,ic,bc,TNI,ocm,opt 
double precision rP,X,Rm,tfac,bet(nm),omega(nm),btot,tp,tdi(ni), 

& cdi(ni),dc,dt,vx
 
complex*16 s,cb0,r,rr,rnum,rden,front
 
common/stuff/rP,X,Rm,tfac,bet,omega,btot,tp,vx
 
common/int/ kmax,TNS,lcom,idef,mrct,ic,bc,TNI,ocm,opt
 
common/cinit/ tdi,cdi
 

c Laplace-domain initial conditions (Dirac input): 
if (bc.eq.1) then 

cb0 = tp*tfac/Rm 

c Laplace-domain initial conditions (step input): 
elseif (bc.eq.2) then 
cb0 = (1.d0-exp(-s*tp*tfac/Rm))/s 

c Laplace-domain initial conditions (general input): 
elseif (bc.eq.3) then
 
cb0 = 0.d0
 
do 5,i=1,TNI-1
 

dc = cdi(i+1)-cdi(i)
 
dt = tdi(i+1)-tdi(i)
 
cb0 = cb0 + ((dc+cdi(i)*dt*s)*exp(-s*tdi(i))
 

& (dc+cdi(i+1)*des)*exp(-s*tdi(i+1)))/(s*s*dt)
 
continue
 

endif
 

c Calculate value of reaction term (r) and total reaction 
c term (rr): 

r = 0.d0 
do 10,i=1,nm 

r = r + bet(i)*omega(i)/(s+omega(i))
 
10 continue
 

rr = sqrt(rP*(rP+4.d0*s*(1.d0+r)))
 

c Calculate value of Laplace-domain solution (f) for 
c particular value of s. If the real part of rr is greater 
c than 37.0, use approximation: 

if (dble(rr).1t.37.d0) then
 
mum = rP*(exp(rr)-exp(rr*X)) + rr*(exp(rr)+exp(rr*X))
 
rden = (exp(rr)-1.d0)*(rP+rr)*(rP+rr)
 

else
 
mum = rP*(1.d0-exp(re(X-1.d0))) +
 

http:rP*(1.d0-exp(re(X-1.d0
http:dble(rr).1t.37.d0
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rr*(1.d0+exp(re(X-1.d0))) 
rden = (rP+rr)*(rP+rr)
 

endif
 
front = cb0 *2.d0*rP*exp((rP-rr)*X/2.d0)
 

fc0 = front*rnum/rden 

return
 
end
 

c*********************************************************************** 
complex*16 function fc1 (s) 
implicit NONE 
include "stammtL.incl" 
integer i 
double precision rP,X,Rm,tfac,bet(nm),omega(nm),btot,tp,vx 
complex*16 s,r,rr,rnum,rden,front 
common/stuff/rP,X,Rm,tfac,bet,omega,btot,tp,vx 

r = cmplx(0.d0,0.d0)
 
do 10,i=1,nm
 

r = r + bet(i)*omega(i)/(s+omega(i))
 
10 continue
 

rr = sqrt(rP*(rP +4. dO* s*(1 .d0 +r)))
 
front = 1.d0/s
 
if (dble(rr).1t.37.d0) then
 

mum = 2.d0*rP*(4P-rr)*exp((rP+rr)*X*0.5d0)
 
& + (rP+rr)*exp(rr+(rP-rr)*X*0.5d0))
, 

rden = (rP-rr)*(rP-rr) - (rP+rr)*(rP+rr)*exp(rr)
 
else
 
mum = 2.d0*rP*((rP-rr)*exp(-rr+(rP+rr)*X*0.5d0)­

& (rP+rr)*exp((rP-rr)*X*0.5d0))
 
rden = (rP+rr)*(rP+rr)
 

endif
 
fc1 = front*(1.d0 + rnum/rden)
 

return
 
end
 

c*********************************************************************** 
complex*16 function fm0 (s) 
implicit NONE 
include "stammtL.incl" 
integer i,kmax,TNS,lcom,idef,mrct,ic,bc,TNI,ocm,opt 
double precision rP,X,Rm,tfac,bet(nm),omega(nm),btot,tp,tdi(ni), 

& cdi(ni),dc,dt,vx
 
complex*16 s,cb0,r,rr,rnum,rden,front
 
common/stuff/rP,X,Rm,tfac,bet,omega,btot,tp,vx
 
common/int/ kmax,TNS,lcom,idef,mrct,ic,bc,TNI,ocm,opt
 
common/cinit/ tdi,cdi
 

c Laplace-domain initial conditions (Dirac input): 

http:front*(1.d0
http:dble(rr).1t.37.d0
http:cmplx(0.d0,0.d0
http:2.d0*rP*exp((rP-rr)*X/2.d0
http:rr*(1.d0+exp(re(X-1.d0
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if (bc.eq.1) then 
cb0 = tp*tfac/Rm 

c Laplace-domain initial conditions (step input): 
elseif (bc.eq.2) then 
cb0 = (1.d0-exp(-s*tp*tfac/Rm))/s 

c Laplace-domain initial conditions (general input): 
elseif (bc.eq.3) then
 
cb0 = 0.d0
 
do 5,i=1,TNI-1
 

dc = cdi(i+1)-cdi(i)
 
dt = tdi(i+1)-tdi(i)
 
cb0 = cb0 + ((dc+cdi(i)*dt*s)*exp(-s*tdi(i))
 

& (dc+cdi(i+1)*dt*s) *exp(-s*tdi(i+1)))/(s *dt)
 
continue
 

endif
 

c Calculate value of reaction term (r) and total reaction 
c term (rr): 

r = 0.d0 
do 10,i=1,nm 

r = r + bet(i)*omega(i)/(s+omega(i))
 
10 continue
 

rr = sqrt(rP*(rP+4.d0*s*(1.d0+r)))
 

c Calculate value of Laplace-domain solution (f) for 
c particular value of s. If the real part of rr is greater 
c than 37.0, use approximation: 

if (dble(rr).1t.37.d0) then
 
mum = rP*(exp(rr)-exp(rr*X)) + rr *(exp(rr) +exp(rr *X))
 
rden = (exp(rr)-1.d0)*(rP+rr)*(rP+rr)
 

else
 
mum = rP*(1.d0-exp(re(X-1.d0))) +
 

rr*(1.d0+exp(re(X-1.d0)))
 
rden = (rP+rr)*(rP+rr)
 

endif
 
front = cb0 *2.d0*rP*exp((rP-rr)*X/2.d0)
 

fm0 = front*rnum/(rden*s) 

return
 
end
 

c*********************************************************************** 
complex*16 function fm1 (s) 
implicit NONE 
include "stammtL.incl" 
integer i 
double precision rP,X,Rm,tfac,bet(nm),omega(nm),btot,tp,vx 
complex*16 s,r,rr,rnum,rden,front 
common/stuff/rP,X,Rm,tfac,bet,omega,btot,tp,vx 

http:2.d0*rP*exp((rP-rr)*X/2.d0
http:rr*(1.d0+exp(re(X-1.d0
http:rP*(1.d0-exp(re(X-1.d0
http:dble(rr).1t.37.d0
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r = cmplx(0.d0,0.d0)
 
do 10,i=1,nm
 

r = r + bet(i)*omega(i)/(s+omega(i))
 
10 continue
 

rr = sqrt(rP*(rP+4.d0*s*(1.d0+r)))
 

front = 1.d0/(s*s*(1.d0+btot))
 
if (dble(rr).1t.37.d0) then
 

mum = 2.d0*rP*(-(rP-rr)*exp((rP+rr)*X*0.5d0)
 
+ (rP+rr)*exp(rr+(rP-rr)*X*0.5d0))
 

rden = (rP-rr)*(rP-rr) - (rP+rr)*(rP+rr)*exp(rr)
 
else
 

mum = 2.d0*rP*((rP-rr)*exp(-rr+(rP+rr)*X*0.5d0)­
& (rP+rr)*exp((rP-rr)*X*0.5d0))
 

rden = (rP+rr)*(rP+rr)
 
endif
 
fm1 = front*(1.d0 + rnum/rden)
 

return
 
end
 

c*********************************************************************** 
c This subroutine defines the zeroth moment of the injected concentration, 
c to be used in constructing the normalized mass fraction removed. This 
c is only applicable in the case of a non-zero boundary condition (bc>0). 

double precision function msin()
 
implicit NONE
 
include "stammtL.incl"
 
integer kmax,i,TNS,lcom,idef,mrct,ic,bc,TNI,ocm,opt
 
double precision rP,X,tfac,Rm,btot,tp,vx,dc,dt
 
double precision bet(nm),omega(nm),tdi(ni),cdi(ni)
 
common/ stuff/ rP ,X,Rm,tfac,bet,omega,btot,tp,vx
 
common/int/ kmax,TNS,lcom,idef,mrct,ic,bc,TNI,ocm,opt
 
common/cinit/ tdi,cdi
 

msin = 0.d0 
c If Dirac input or step input: 

if ((bc.eq.1).or.(bc.eq.2)) then 
msin = tp*tfac/Rm 

c If general input: 
elseif (bc.eq.3) then 

do 5,i=1,TNI-1
 
dc = cdi(i+1)+cdi(i)
 
dt = tdi(i+1)-tdi(i)
 
msin = msin + dc*dt/2.d0
 

continue
 
endif
 

return 

5 

http:dc*dt/2.d0
http:front*(1.d0
http:dble(rr).1t.37.d0
http:cmplx(0.d0,0.d0
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end 
c*********************************************************************** 

c This subroutine fills in the multirate series. If idef=0, the series 
c corresponds to a lognormal distribution of diffution rate coefficients. 
c If idef = 1, the series corresponds to spherical diffusion. If idef = 2, 
c the multirate series corresponds to single-rate first-order mass transfer. 
c If idef=3, the multirate series is read in from a file (unit 26). If 
c idef=4, the series definition is user-defined in the subroutine mrdef. 

subroutine multirate(mu,sig)
 
implicit NONE
 
include "stammtL.incl"
 
integer kmax,i,j,TNS,lcom,idef,mrct,ic,bc,TNI,ocm,opt
 
double precision rP,X,tfac,Rm,btot,tp,
 

& step,sig,dnorin,stepov,up,low,b,derf,sum,jjpp,sq2sig, 
& jjpp4,mu,mud,vx
 
double precision bet(nm),omega(nm),alpha(nm)
 
external dnorin,derf
 
common/stuff/rP,X,Rm,tfac,bet,omega,btot,tp,vx
 
common/int/ kmax,TNS,lcom,idef,mrct,ic,bc,TNI,ocm,opt
 

if (idef. eq.0) then 

mud = mu - log(tfac/Rm) 

omega(nm)=Log(50.66059182d0)
 
omega(1) =mud+sig*dnorin(1.d-8)
 
step = (omega(nm)-omega(1))/dble(nm-1)
 
do 30,i=2,(nm-1)
 
omega(i) = omega(1)+step*dble(i-1)
 

30 continue
 
do 35,i=1,nm
 
omega(i) = pi*pi*exp(omega(i))
 
bet(i) = 0.d0
 

35 continue 

step = exp(step*0.5d0)
 
stepov = 1.d0/step
 
sq2sig = 1.d0/(sqrt(2.d0)*sig)
 
do 50,j=1,1000
 
jjpp = dble(21-1)*dble(2I-1)*pi*pi
 

jjpp4 = 4.d0/jjpp
 
do 40,i=2,(nm-1)
 

up = Log(jjpp4*omega(i)*step)
 
low = Log(jjpp4*omega(i)*stepov)
 

b = jjpp4*(dErf((mud-low)*sq2sig)­
& dErf((mud-up)*sq2sig))
 

bet(i) = bet(i) + b
 
40 continue
 

up = Log(jjpp4*omega(1)*step)
 
b = jjpp4*(1.d0 dErf((mud-up)*sq2sig))
 

http:jjpp4*(1.d0
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bet(1) = bet(1) + b
 
low = Log(jjpp4*omega(nm)*stepov)
 
b = jjpp4*(dErf((mud-low)*sq2sig) + 1.d0)
 
bet(nm) = bet(nm) + b
 

50 continue 

sum = 0.d0 
do 60,i=1,nm
 
bet(i) = btot*bet(i)
 
sum = sum+bet(i)
 

60 continue 
bet(nm) = bet(nm)+btot-sum 

elseif (idef.eq.1) then
 
mud = mu log(tfac/Rm)
 
sum = 0.d0
 
do 70,i=1,nm
 
omega(i) = exp(mud)*dble(i*i)*pi*pi
 
bet(i) = 6.d0*btot/(dble(i*i)*pi*pi)
 
sum = sum + bet(i)
 

70 continue 
bet(nm) = bet(nm) + (btot-sum) 

elseif (idef.eq.2) then
 
mud = mu log(tfac/Rm)
 
do 80,i=1,nm
 

omega(i) = exp(mud) 
bet(i) = btot/dble(nm) 

80 continue 

elseif ((idef.eq.3).and.(mrct.eq.0)) then 
do 100,i=1,nm
 
read(26,*,end=101) alpha(i),bet(i)
 
omega(i) = alpha(i)*Rm/tfac
 

100 continue 
goto 102 

101 write(9,*)'It appears that the file containing the multirate' 
write(9,*)'series to be read in does not contain enough' 
write(9,*)'values. This file should contain',nm,' lines.' 
write(9,*)'Please either (1) correct this error; or (2)' 
write(9,*)'change idef such that the multirate series is' 
write(9,*)'not read in.' 
write(9,*)" 
write(9,*)'Simulation stopped.' 
stop 

102 continue 

elseif (idef.eq.4) then
 
call mrdef(mu,sig)
 

endif
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return
 
end
 

c*********************************************************************** 

c This subroutine fills in the multirate series if the user wishes to 
c define it. This allows for possibilities for any multirate series that 
c the user wishes to define, and it may be defined on each iteration during 
c estimation. If the user wishes to define a parametric distribution, the 
c parameters mu and sig may be used (normally these are the parameters of the 
c lognormal distribution, but they could be used to define, for example, a 
c gamma distribution of first-order rate coefficients). This subroutine 
c is only activated if idef=2. Note that common blocks have already been 
c set up to import some of the most important information the Peclet 
c number (rP), the rate of transport (tfac), the mobile-zone retardation 
c factor (Rm), the total capacity coefficient (btot), the length of the 
c input concentration pulse (tp), the vector of capacity coefficients (bet) 
c and the vector of nondimensional rate coefficients (omega). 

subroutine mrdef(mu,sig)
 
implicit NONE
 
include "stammtL.incl"
 
integer kmax,i,TNS,lcom,idef,mrct,ic,bc,TNI,ocm,opt
 
double precision rP,X,tfac,Rm,btot,tp,sig,mu,vx
 
double precision bet(nm),omega(nm),alpha(nm)
 
common/stuff/rP,X,Rm,tfac,bet,omega,btot,tp,vx
 
common/int/ kmax,TNS,lcom,idef,mrct,ic,bc,TNI,ocm,opt
 

c If idef=4, the user must define the vectors bet(i) and one of either 
c omega(i) or alpha(i). alpha(i) is dimensional (1/I) and omega(i) is 
c nondimensional. 

c An example of such definition is given here, where the 
c values of alpha(i) and bet(i) are simply read in from file # 26. 

do 20,i=1,nm
 
read(26,*) alpha(i),bet(i)
 

20 continue
 

c A second example of defining alpha(i) and bet(i) is given. In this case, 
c we define all rate coefficients to be the same value (equal to the rate of 
c solute transport, such that the Damkohler number is on the order of 1). 
c Defining all rate coefficients with the same numerical value is equivalent 
c to using a standard first-order model with a single rate coefficient: 

c do 30,i=1,nm 
c alpha(i) = tfac/Rm 
c bet(i) = btot/dble(nm) 
c30 continue 
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c If the user defines alpha(i), the user MUST use the following loop to 
c define omega(i): 

do 1000,i=1,nm 
omega(i) = alpha(i)*Rm/tfac 

1000 continue 

return
 
end
 

c*********************************************************************** 
c This subroutine checks for errors and inconsistencies within the 
c input file. If it finds an error it prints an error message. In 
c some cases, it is possible to recover from the error; in other cases 
c the simulation must be halted. 

subroutine error(xx,L,Ltime,Lz)
 
implicit NONE
 
include "stammtL.incl"
 
integer kmax,TNS,lcom,idef,mrct,ic,bc,TNI,Ltime,Lz,ocm,opt
 
double precision xx,L,rP,X,Rm,tfac,bet(nm),omega(nm),btot,tp,vx
 
common/int/ kmax,TNS,lcom,idef,mrct,ic,bc,TNI,ocm,opt
 
common/ stuff/ rP ,X,Rm,tfac,bet,omega,btot,tp,vx
 

if ((ic.eq.0).and.(bc.eq.0)) then
 
write(9,*)'You have set the intitial conditions to zero'
 
write(9,*)'(ic=0) AND have set the input boundary'
 
write(9, *)'condition to have zero input (bc=0). The'
 
write(9,*)'solution is therefore zero output.'
 

write(9,*)"
 
write(9,*)'Simulation stopped.'
 
stop
 

endif 

if ((ic.eq.1).and.(bc.ne.0)) then
 
write(9,*)'You have set the intitial conditions to'
 
write(9, *)'equilibrium, saturated conditions (ic=1)'
 

write(9, *)'and have requested a non-zero input at'
 
write(9,*)'the boundary (bc>0). Currently these are'
 
write(9,*)'not compatible options in STAMMT-L 1.0.'
 
write(9, *)'Please choose either a zero initial condition'
 
write(9,*)'(ic=0) or an input at the boundary of zero'
 
write(9,*)'(bc=0) and restart.'
 
write(9,*)"
 

write(9,*)'Simulation stopped.'
 
stop
 

endif
 

if ((bc.eq.0).and.(tp.gt.0.d0)) then 
write(9,*)'You have requested a zero input boundary'
 

write(9,*)'condition (bc=0), but you have chosen to'
 
write(9,*)'make the length of the injection period'
 
write(9,*)'greater than zero. (tp =',tp,').'
 

http:bc.eq.0).and.(tp.gt.0.d0
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write(9,*)'The simulation will ignore this value of 
write(9,*)'tp.' 
write(9,*)" 

write(9,*)'Simulation continuing.' 
endif 

if (xx.gt.L) then 
write(9,*)'xx cannot be larger than L.' 
write(9,*)'Simulation stopped.' 
stop 

endif 

if ((ic.ne.0).and.(ic.ne.1)) then 
write(9, *)'ic not set properly. Must be 0 or 1.' 

write(9,*)" 
write(9,*)'Simulation stopped.' 
stop 

endif 

if ((bc.gt.3).or.(bc.lt.0)) then 
write(9,*)'bc not set properly. Must be 0,1,2, or 3.' 

write(9,*)" 
write(9,*)'Simulation stopped.' 
stop 

endif 

if ((Ltime.ne.0).and.(Ltime.ne.1)) then 
write(9,*)'Ltime not set properly. Must be 0 or 1.' 

write(9, *)' 
write(9,*)'Simulation stopped.' 
stop 

endif 

if ((Ltime.eq.1).and.(Lz.ne.0).and.(Lz.ne.1)) then 
write(9,*)'Lz not set properly. Must be 0 or 1.' 

write(9,*)" 
write(9,*)'Simulation stopped.' 
stop 

endif 

if ((TNI.gt.ni).and.(bc.eq.3)) then 
write(9,*)'TNI is',TNI,'. TNI must not be more than',ni,'. 

write(9, *)' 
write(9,*)'Simulation stopped.' 
stop 

endif 

if ((TNI.le.1).and.(bc.eq.3)) then 
write(9,*)'TNI must be greater than 1.' 

write(9, *)' 
write(9,*)'Simulation stopped.' 
stop 
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endif 

if (TNS.gt.nt) then 
write(9,*)'TNS is',TNS,'. TNS must not be more than',nt,'. 

write(9,*)"
 
write(9,*)'Simulation stopped.'
 
stop
 

endif 

if ((ocm.ne.0).and.(ocm.ne.1)) then 
write(9,*)'ocm not set properly. Must be 0 or 1.' 

write(9,*)"
 
write(9,*)'Simulation stopped.'
 
stop
 

endif 

if ((lcom.ne.0).and.(lcom.ne.1)) then 
write(9, *)'lcom not set properly. Must be 0 or 1.' 

write(9,*)"
 
write(9,1Simulation stopped.'
 
stop
 

endif 

if ((opt.ne.0).and.(opt.ne.1)) then 
write(9,*)'opt not set properly. Must be 0 or 1.' 

write(9, *)'
 
write(9,*)'Simulation stopped.'
 
stop
 

endif 

if ((idef.gt.4).or.(ideflt.0)) then 
write(9,*)'idef not set properly. Must be between 0 and 4.' 

write(9,*)"
 
write(9, *)'Simulation stopped.'
 
stop
 

endif 

return 
end 
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