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PREFACE 

This paper shows a method of implementing master/slave processing. In the 

interest of implementing a prototype, a low cost, off-the-shelf approach was taken. A 

large part of the work was finding how the tools and resources available could be used to 

implement the goal. 

There are various reasons for this pursuit. One of which is that as an 

undergraduate I was captivated by Mandelbrot and other fractal image generation. The 

idea of offloading the compute intensive work from the 25MHz 80386 processor onto 

slave processors for a faster solution would reduce the generation time. This idea also 

held for ray tracing images. Another was that one of the OSU professors, James 

VanVecten, was using 25MHz 80386 PCs to study gold atom implants in silicon. His 

research assistant would take control of 20 PCs and start jobs with different parameters 

that would run overnight. VanVecten's position was that this effort was similar to access 

to a costly supercomputer. This manner could also be compared to the recent Internet 

activity in Mersenne prime search. This effort uses volunteers who take certain number 

ranges and use their computing resources to eliminate existence of Mersenne primes 

within those ranges. 

These efforts, along with the expandability of the PC (many older PCs have 7 ISA 

slots, of which perhaps one or two are used) contributed to the idea of putting the 

expandability to good use in a cost-effective manner. 



MASTER/SLAVE PARALLEL PROCESSING
 

1 Introduction
 

1.1 Research Objectives 

This work demonstrates a method to implement master/slave parallel 

programming using conventional off-the-shelf components and tools. Essentially the 

master processor sends commands to the slave processors and retrieves results. 

Parallelism is achieved by the fact that the slave processors can be executing tasks 

simultaneously. Off-the-shelf components and tools are commercially available and 

allow prototypes and improvements to be implemented economically, quickly and easily. 

There are various goals that are attempted in this effort as described below. 

1.2 Motivation 

The main purpose is to find a manner of increased performance of certain tasks by 

dividing the task into parts that can be done at the same time. In this master/slave 

implementation, only certain tasks make sense to be divided, such as the calculation of Tc. 

In addition, other purposes exist such as cost, flexibility, and ease of use as described 

below. 

1.2.1 Performance Improvement 

There will be tradeoffs between doing a task in a conventional uniprocessor 

manner and a task split in a single master multiple slave scenarios. A uniprocessor is 

better suited to heavily interconnected tasks such as software compilers or user 

interaction. A master/slave configuration sacrifices the overhead used in interprocessor 

communication with the ability to do multiple tasks simultaneously. This method is 
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advantageous where interprocessor communication is limited, where task granularity is 

large. This paper takes the task of computing digits of It and comparing performance of a 

uniprocessor and multiprocessor configuration. 

1.2.2 Flexible Resources 

In the interest of prototyping the design and using physical hardware and software 

to compare results, standard off-the-shelf components and tools were used. This 

approach certainly does not optimize comparison of the master/slave configuration since 

currently powerful uniprocessor systems are inexpensive and depending on the task under 

comparison, different slave processors would be needed. A major advantage is that a 

commonly used hardware solution allows for easy extension of the solution to more 

complex and specialized solutions based on the same common architecture. 

1.2.3 Flexible Slave Processor 

A popular 8051 based controller is used which allows for extension into either 

embedded controllers with added features or more fully standalone processors that are 

designed for more general purposes. This is discussed in more detail in the slave 

processor section. 

1.2.4 Links to High Level Software 

Specific emphasis is made to ensure links to upper level software that will allow 

general applications to make use of this hardware configuration. This allows for 

portability of the hardware to different tasks within the same physical design constraints 

(no hardware modification) or extension of the hardware (i.e. addition of an analog to 

digital converter to the slave processor) 
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1.2.5 Cost Considerations 

For a product to succeed in the marketplace, cost is always a concern. The 

prototype is implemented with this in mind. The expandable aspect of the design allows 

for faster slave processors and faster bus interaction. This would require expensive and 

time consuming implementation techniques (wire wrapped connections would not be an 

option) and also expensive development tools would be needed, such as faster FIFOs for 

faster bus interaction. 

1.3 Chapter Organization 

The first two chapters are an overview of the thesis, discussing objectives, 

literature sources and general implementation. The following four chapters are on the 

specific details about the slave processor, bus interface logic, master processor interface, 

and the pi digit calculation example. The concluding three chapters discuss the benefits, 

disadvantages, and conclusions of the implementation. 

1.4 Literature Review and Credits 

Very little literature is available on this particular topic of parallel processing. 

Much of the literature available is on symmetric processors defined by a common bus or 

crossbar switch where all the processors are identical and have supporting software that 

utilize each with equanimity. Another form that can be described as tightly coupled 

parallel processing can be found in platforms that use parallel processors for emulation of 

instructions on the "slave" processor. This is demonstrated with x86 processors in Sun 

Sparc or Apple Mac platforms used to increase the speed of x86 applications. 

Significant research and design has gone into task specific master/slave 

processing such as video controllers. This is of little use since one of the goals is to allow 
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for multiple slaves to be added to the master control. With this in mind, there are 

documentation and resources that are useful in defining and understanding the interfaces 

to the master and slave processors as discussed below. 

Eggebrecht [8] gives a practical explanation of the ISA bus functionality and 

example implementations interfacing it. This was useful in programming the Altera 

10K20 logic. The FIFOs in the Altera glue logic (and device characteristics, pinouts, 

programming requirements) are described in the Altera databook [1] and on 

www.altera.com. 

The slave processor, an Atmel 89C52 8051 variant, is described in the Atmel data 

book [3], and the Keil C Compiler User's Guide describes how to program the 89C52 in 

C. An example C source listing of the pi hexadecimal digit calculation is on 

http://www.mathsoft.com/asolve/plouffe/plouffe.html. 

On the master processor, MS Visual C++ V1.52 was used with aid from the 

online C++ manual, and Mueller's book [13]. Special thanks to David Frame for 

providing the embeddable assembly commands to access the I0 ports from MS Visual 

C++, see appendix C. 

http://www.mathsoft.com/asolve/plouffe/plouffe.html
http:www.altera.com
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2 General Implementation 

This chapter provides a top-level description of the major components: 

communication model, master processor, slave processor, and glue logic. Additionally, 

previous efforts are discussed which describe advantages of the current implementation. 

Finally, a limited comparison is made to other parallel processing implementations. 

The term master/slave is used instead of server/client to describe this architecture. 

This is because server/client is too generic a description. The term server/client tends to 

allow the client to do various tasks if the server is not immediately available. An 

example is a network with a server for document files and another server for database 

transactions. The networked client could work on the database if there were no tasks 

from the document server. The master/slave configuration has the slave processor more 

closely tied to the master processor such that the slave processor idles when there are no 

tasks issued. The slave is less flexible in that although it can do different tasks, it cannot 

multitask between them and executes tasks sequentially. 

Figure 1 is a block diagram of master/slave processor configuration' implemented. 

The arrows represent the flow of data. In this case the ISA bus is a bi-directional 8 bit 

bus and the slave processors have two distinct 8 bit channels to communicate with the 

glue logic. The glue logic incorporates the ISA interface and FIFO buffering that enables 

communication between the master and slave processors. 
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Slave Slave Slave Slave

If It It It
 
ISA bus 

Fig 1 Master/slave block diagram 

Figure 2 is a photograph of the prototype built to run program tests of this 

configuration. Wirewrapped connections between the chips exist on the other side of the 

protoboard. To run, the card is inserted into an ISA slot, and after programming the 

Altera glue logic chip, and resetting the slave processors, the slave processors are ready to 

execute commands from the master processor. 



t 

"LA*11,1 
I*1 0114A.
At* 
*t 

2,111.,r ": 



8 

2.1 Communication Model 

The basic mode of operation is that the master processor sends a one byte 

command to the idle slave processor defining which type of task is to be done. The task 

type defines the task and type of parameters that will be following and can be as simple 

as adding two 8 bit values or calculating a specified digit of pi. Once the slave processor 

knows the type of task, the program switches to the appropriate subroutine and after the 

appropriate parameters are gathered, executes and returns results to the FIFO. 

The master processor controls the access on the ISA bus. This is typically an x86 

processor with access to the IO ports that are used to communicate to the slave 

processors. The IO ports function as status and communication channels to the slave 

processors. These are implemented in an FPGA that interfaces to the slave processor as 

well. 

2.1.1 Slave Processor Implementation 

The Atmel 89C52 was used for various reasons. The FLASH 8Kbyte code area 

makes the prototype program easy to do code modifications. The simple 8 bit interface 

allows the same data format as the 8 bit ISA interface used. Eight pins are used for the 

input data from the ISA bus and another 8 pins are used for the output data. Although 

this could be compressed into a total of 8 bi-directional pins, the 16 pin implementation 

allows for the FIR/IIR filter option where separate input and output data paths are 

beneficial. Control signals are used to implement reads and writes to the ISA interface. 

Additional signals are used to indicate incoming ISA commands/parameters, and slave 

processor status to the status IO port. 

The code is structured in an infinite loop (see figure 5). When a command from 

the master is detected, the main loop switches to the task that is read. Based on the task, 
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the appropriate parameters are read and then executed. Resulting output is sent to the 

output FIFO in the FPGA. 

2.1.2 FPGA Implementation 

An Altera 10K20 with 208 pins is used to interface between the ISA bus and the 

slave processor. Since it is SRAM based, it is a fast way to prototype logic changes. The 

configuration can be downloaded in-circuit in less than five seconds through a serial 

interface that is isolated through an LS244 buffer connected to the PC programmer's 

parallel port. 

The majority of the logic cells used are the FIFO for buffering between the slave 

and the ISA bus. Since this FPGA supports four slave processors there are subsequently 

four FIFO blocks that have associated logic to decode reads and writes to the FIFO. In 

addition to the FIFO there is a register that is written by the slave processor to provide 

status to the ISA bus. Both the FIFO and the status register appear as IO ports in the 

standard PC memory address space. 
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M
 a 
t .4111.1.1 FIFO (Slave response) 144111M1111 

immi Commandsr 
Meccar Tneliratnr 

Slave status Slave. prnreccnr idle 
414-1 

Fig 3 FPGA block diagram for one slave processor 

The FIFO IO port address is writeable by the ISA bus and is used to pass 

commands and parameters from the master processor. This is implemented in the FPGA 

as an 8 bit register. The slave processor knows there is an incoming message byte by 

monitoring a message indicator that gets cleared when the slave processor reads the 

incoming message byte. An example is if the slave is in the idle loop, it will poll (wait) 

on the interrupt of the message indicator signal. Upon assertion, the processor reads the 

command byte, and if parameters are required for the task, waits until they are delivered 

before processing and generating the task output. 

2.1.3 Master Processor Implementation 

The master processor on the ISA bus has access to two I0 ports for each slave 

processor. One port is used to pass commands and parameters to the slave processor. 



11 

This same port, when read, returns the results of tasks given to the slave processor. The 

second port for each slave processor defines the state of the slave processor. This allows 

the master processor to know when to pass more commands to the slave processor. 

2.2 Pre-Prototype History 

The eventual incarnation of the prototype was the result of 3 major changes that 

occurred over the past two years. The reasons for the changes show how different 

options were considered and rejected based on the objectives described previously in the 

motivation section. 

2.2.1 Motorola 68302 

The initial version of the slave processor was intended to be the Motorola 68302 

and was selected for the wide range of options and expandability available to the 

processor. This proved to be too complex in the 132 pin PGA package that required 

external RAM and ROM for each slave processor. The goal of the thesis was not to 

explore a large number of possible applications, but to demonstrate how a master/slave 

processor architecture could be implemented. The Cross Code C compiler available did 

not easily allow port pin toggling on the 68302. This function is very useful allowing pin 

control to be mixed with standard C functions and was another reason to use a different 

processor. 

2.2.2 Philips 87C576 

After being exposed to the widespread selection of Intel 8051 variants of 

processors, the 87C576 option was explored. This has a built-in ISA interface such that 

external decoding would not be needed. This seemed to be an optimal solution until price 

($100 for a UV erasable part) and availability (8 week lead time) were determined. The 
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high cost is a function of volume and manufacturability since the UV-erasable window 

needs to be sealed properly. Since this was not an option, the Atmel 89C52 controller 

(8Kb/256byte) selection was made at the cost of $10 per part. 

2.2.3 Discrete Glue Logic 

To initially test the ISA interface HCT374s (8 bit edge triggered D type flip-flops) 

were used to test read/write capabilities as shown in figure 3. To test the 89C52, the 374s 

were connected to two port buses. Simple tasks, such as reading a written byte, were 

done to test the data path to and from the slave controller from the ISA bus. This 

implementation could be expanded to demonstrate master/slave processing, but the 

availability of Altera 10K2Os allowed a much better way to prototype. The SRAM based 

FPGA and the fact that all pins went into the 208 pin part, easily allowed pin functions 

and logic to be changed. 
89C52 
additional test 

Initial test 

ISA bus 

Fig 4 Prototype tests of the ISA bus 
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2.3 General Parallel Architecture Overview 

As with uniprocessor cache-based serial systems, similar data movement 

principles apply for a high performance solution[9]: 

Locality of data reference 

Minimization of data movement 

To achieve this goal, various different approaches are made. 

The SIMD/MIMD classification of parallel architectures proposed by Flynn [2] 

divides most parallel architectures into two groups, Single Instruction Multiple Data 

(SIMD) and Multiple Instruction Multiple Data (MIMD). Considering more general-

purpose architectures, solutions that address a wide variety of tasks, MIMD seems to be 

gaining in popularity. This is greatly aided by the availability of processors that are 

designed for symmetric parallel implementations such as the Intel Pentium ProTM and 

Intel Pentium II ZeonTM. The bus between the processors is pipelined such that processor 

A can be fetching a memory instruction while processor B snoops the cache and 

processor C retrieves a cache line from processor D. Currently bandwidth between four 

directly bussed processors and shared memory is supported as viable solutions. The 

primary reason more processors are not directly bussed is the tradeoff between fast bus 

speeds and bus signal integrity. One solution for more processors is to implement a 

bridge between two quad-processors and allow two separate busses that still share 

memory. This solution then drives the requirement for pipelined memory bus access 

such as that proposed by the Rambus corporation to satisfy the greater shared memory 

needs. Another solution for more processors is the Sequent NUMA-Q architecture by 

connecting quads with high-speed data busses. This sacrifices directly bussed processor 

architecture for more of a tree architecture. This solution is applicable for database 
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applications residing in long-term memory (hard disk drive) that is accessible by all 

processors. 

Although symmetric bus parallel processing is gaining in popularity mainly due to 

the generic applications it addresses, there are still tasks where simple but effective slave 

processors are useful. As previously stated, one of the motivations is to provide a cost-

effective solution. Instead of an expensive symmetric parallel architecture that addresses 

generic applications such as a multi-user database server, if the application can be 

addressed by a master/slave architecture, the solution could be less expensive. 

Networks of workstations (NOW) have become popular with the use of Linux on 

multiple inexpensive computers with such projects as Beowulf, GAMMA, and 

PARMA.[6] The intent is to connect computers running a common operating system into 

groups connected by Ethernet. While the computers connect with the Ethernet protocol 

the TCP/IP stack is not used, but project related protocols that enhance the movement of 

data from one node to another. There is much flexibility in this configuration and the 

idea of harnessing unused personal computer cycles is appealing. This type of parallel 

configuration seems to be suited more for large granularity functions. There is a master 

process running on one of the nodes, which is analogous to the master processor. The 

disadvantage from the presented master/slave solution is that the master process needs to 

talk to each and every participant which could be several network "hops" away. With the 

master/slave implementation, the slaves are on a common bus that enables more direct 

access. 

2.4 Previous Similar Architectures 

Much of the previous research resulting in architectures similar to the 

master/slave implementation presented here has image processing as a common theme. 

Although the slave processors used are fairly weak in areas traditionally used in image 

processing [17] (i.e. floating point calculations), the flexibility of the slave processor used 
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allows for a wide degree of experimentation at the overall cost of performance. For this 

reason, the ILLIAC IV and PASM architectures were chosen as most appropriate to 

compare and contrast as similar master/slave parallel architectures. 

2.4.1 ILLIAC IV 

The ILLIAC IV was one of the pioneering 2-D mesh vector parallel SIMD (Single 

Instruction Multiple Data) architectures. It consisted of a supervisory computer system 

that would pass commands to the mesh of processing units. Each processing unit 

consisted of a processing element (PE) and processing memory (PM) and could connect 

to four neighboring processing units. The PM running at 25MHz could do a 64 bit 

floating-point multiply in 400ns and direct access to 8 megabits arranged in 2048 64 bit 

words. This was implemented on 210 PCB cards for the PE and 512 16-pin DIPs for the 

PM. [2] 

The architecture being presented is similar in that there is a supervisory computer 

system, the x86 processor, that controls the function of the individual processing units, 

8051 based controllers with 256 bytes RAM. (The RAM could be expanded by mapping 

memory elements in the Altera FPGA). The slave units are organized in a tree rather than 

a mesh with the root being the master processor. Since there are two 8 bit busses to each 

slave unit, this could be changed into a 1-D mesh with the master still accessing each and 

every slave unit individually through the Altera FPGA. This could be useful in the case 

of a multiple tap filter. For example, the incoming data stream would be averaged over 

three datapoints on the first processor. The second processor would multiply by two and 

the third would normalize the data stream. 

In the previous example, only three processors were used which allowed the 

fourth processor to do an unrelated task. This is a flexibility not available in the ILLIAC 

IV, where all processing elements are required to do the SIMD task, and easily supported 

in the master/slave tree structure. 
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One of the learnings of the ILLIAC IV was quoted by Hord [10] "future systems 

will have modular configurations for improved problem matching and will be able to 

switch ailing PEs out and good PEs into the configuration all under software control" 

This is feasible to some extent in the master/slave tree structure. Should one slave 

processor fail, the SRAM based FPGA can be reprogrammed to allocate a different 

processor for the task. This would interrupt the task at hand, resetting the FPGA and 

slave processors, but would not require manual intervention. 

2.4.2 PASM 

The Partitionable SIMD/MIMD (PASM) designed at Purdue consists of a bus of 

microcontrollers acting as the master processors and each having a fixed set of processing 

elements which acts as the parallel computation unit(PCU). The PCU is configured in a 

circuit switched extra stage network. [15] 

Although currently not organized as a multistage switching network, this could be 

done within the FPGA with no hardware change. Each slave processor would maintain 

the 8 bit input and 8 bit output, and when sending messages to another of the four slave 

processors with the target address indicated by the signals currently used as status signals. 

The FPGA would internally control the communication network, and with internal 

combinatorial delays of 0.6ns max and internal routing delays of 0.4ns max should not be 

a bottleneck for the 8MHz slave processor. 

A principle feature of PASM is the ability to partition SIMD and MIMD tasks. In 

the prototype version 16 Motorola 68010 processing elements each with 256KB are 

controlled by 4 master processors, also Motorola 68010 based. [2] 

This is similar to the master/slave configuration presented, though with only one 

master 80x86-based master. Multiple SIMD parallel tasks can be done as in the instance 

of computing digits of pi. Each of a given group of slave processors can be given a 

section of calculation for a given digit of pi and after the calculation is done, return the 
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result. Concurrently, another group of slave processors can be doing floating point 

multiplications. Multiple MIMD tasks can be accomplished by extending the previously 

described multiple SIMD example. The processor group calculating pi digits, will have 

some slave processors that complete faster than others. The ones that complete faster can 

be assigned new pi digit calculation parameters. (This assignment can be done directly 

by the master processor, or a task FIFO could be implemented in the FPGA). Likewise, 

the slave processors calculating floating point multiplications can be tasked with new 

parameters as each individual multiplication is finished. Multiple MIMD can be 

accomplished since each slave processor has individual code and memory space. This 

allows the slave processor to be addressed individually and with individual tasks. The 

FPGA could be modified to allow for the more traditional SIMD implementation where 

tasks are broadcast to the slave processors. In this case, a task such as a 4x1 matrix 

multiplication would be done where each slave processor took a predefined segment of 

the task. This implementation would decrease the time required to pass tasks to the slave 

processors, but would inhibit the ability to do multiple SIMD/MIMD tasks. 
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3 Slave Processor Definition 

The Atmel 89C52 was selected as a slave processor for a variety of reasons. After 

discussing the suitability and requirements, the C compiler and code is described. 

3.1 Suitability of Atmel 89C52 

One primary advantage of the 89C52 is the 8KB FLASH reprogrammable 

memory. FLASH technology is a method of nonvolatile storage that in the Atmel 

controller implementation can sustain 1,000 erasures. This allows rapid prototyping to be 

done without waiting for UV erasure or using new one-time-programmable (OTP) parts. 

8KB is well within the program boundaries since the code consumes 1253 bytes and 

allows for expandability. The reason the C code compiles into such a small size is that 

the code itself is simple and does not use complex functions such as printf(). 

Another major advantage is the 8051 core processor, which is a commonly used 

controller. The widespread use of this processor has made available such things as C 

compilers and sample code easily available on the web. Also there are dozens of variants 

that allow hardware modifications such as adding A/D channels, additional IO ports, 

UARTs, EEPROM, as well as the conventional footprint, temperature, and speed 

selection. This selection allows for straightforward changes should the target application 

change. 

The 89C52 comes in flavors up to 24MHz. Operation is fully static such that any 

operation from 0+Hz to the max specified rating is supported. This is useful when using 

the onboard RS-232 UART allowing a multiple of the baud rate to be used as a crystal. 

Since the prototype is wirewrapped with sockets, an 8MHz crystal is used to keep 

potential wire noise problems at a minimum. 
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Cost for the 24MHz commercial temperature 40 pin DIP package version is 

$10.00. This cost is much more reasonable than a multiple package option such as the 

68302 described above or the UV erasable 87C576 with its more expensive packaging. 

Pricing for these processors can be as low as $1.50 in masked parts. 

Pin count is a major issue with wirewrapping. Since the RAM/ROM is internal to 

the processor, the 40-pin DIP package is suitable for the IO signals that are used for ISA 

communications and status definition. 

3.2 Slave Processor External Interface 

Below is the pin description of the slave processor: 

P0.7..0 SLAVEx_IN7..0 INPUT Input from ISA interface 

P2.7..0 SLAVEx_OUT7..0 OUTPUT Output to the ISA buffer 

P1.0 LED_TEST OUTPUT Test LED output signal: LED on = 1 

P1.1 INPUT_RDYx OUTPUT Slave status: ready for input = 1 

P1.2 Sx IDLE OUTPUT Slave status: slave idle = 1 

P3.2 (INTO*) MSG_BIT_Sx INPUT Message from ISA bus = 1 

P3.6 (RD*) SLAVEx_OEN OUTPUT Read ISA buffer from FPGA to 

P0.7..0 

P3.7 (WR*) WR_REQ_Sx OUTPUT Write ISA buffer from P2.7..0 to 

FPGA 

Table 1 Slave processor pin assigment 



20 

This interface is simple and yet allows flexibility to be used in different 

configurations as described below. 

PO and P2 are totally different data channels. Although only one 8 bit interface 

could be used and the input data stream could be multiplexed with the output data stream, 

there are advantages to this method. The primary one is that input commands and 

parameters can be retrieved at the same time that processed data is being sent to the 

output FIFO. This is very useful in bandwidth intensive tasks such as FIR/IIR filtering 

where FIFOs are used on both inputs and outputs to the slave processor. Of possible 

advantage is the fact that PO and P2 are used for external memory access. The FPGA can 

then be used either for internal RAM access or control to a RAM or ROM with a 

maximum size of 641(13. One other advantage is that the pins are available, on the slave 

processor and the FPGA and if more IO pins are needed, the can easily be incorporated 

into the FPGA logic assuming there is no FPGA routing contention. 

P1.0, P1.1, and P1.2 are used as status pins. P1.0 is dedicated to an LED output 

and is useful to debug controller code. The most common method is to have the LED 

turn on or off at key points in the in the code to ensure that the proper routine was 

executed or code had entered a certain area. This was advantageous in the absence of a 

logic analyzer or in-circuit emulator. At certain points an oscilloscope was needed to 

debug suspect waveforms, and ensure proper pulse widths and edge rates. P1.1 and P1.2 

are delivered to the FPGA for the odd I0 port associated with the slave processor such 

that the master processor can determine what the slave processor is doing. 

P3.2 is read in the main loop to determine if there is a message from the 

processor. If a message is present, a byte is read and in the function of reading the byte 

the bit in the FPGA that asserts the MSG_BIT_Sx is cleared which deasserts the signal. 

P3.2 can also be used as an interrupt source and can be configured with no hardware 

change to do so. The software implementation is complicated and the benefits of an 
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interrupt driven messaging system are debatable. In the case of a filter task, the data 

stream is buffered and is more advantageously utilized as polled/looped input and an 

interrupt driven implementation would only cause unnecessary CPU cycle loss and 

consume more code space. On the other hand, an interrupt driven method would be more 

conventional and useful if the slave processor had various levels of possible tasks. For 

instance a background IIR filter could be overridden by a pi digit calculation. This is 

beyond the scope of this work. 

P3.6 and 3.7 are also used as the external memory read and write pins respectively 

and appropriately function as FPGA read and write control signals. For the write action, 

the correct data is put on P2 and the write line, P3.7, is toggled to provide the pulse used 

by the FPGA to write the byte to the outgoing FIFO. To do a read, once the slave 

processor knows a message is available, the processor pulses P3.6 while latching PO as 

the byte read. Pulsing P3.6 enables the output of the FPGA bits and clears the previously 

mentioned MSG_BIT_Sx signal. The method of using these two pins clearly costs 

processor cycles, but in the interest of being flexible in timing, and safe from extraneous 

memory reads/writes (the External Access, EA*, pin is tied high), this manner is used 

over the normal external read/write usage. 

3.3 89C52 FLASH Programmer 

A Xeltek Super Pro programmer is used to program the 89C52. Commercial 

programmers are available for $200.00, or they can be built around a parallel port 

interface for less than $50.00 (An application note with schematic and software is 

available at www.atmel.com) 

Since the program is contained in the internal 8KB FLASH, the erasure and 

programming takes about 30 seconds which is much easier to use than UV-ROM. 

3.4 89C52 Keil C Compiler 

http:www.atmel.com
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The Keil C compiler is closely tied to hardware available on the 89C52. Port pins 

are easily addressable and manipulated using P3, P2, P1, PO for byte manipulation and 

P3.7, P3.6, etc for bit manipulation. Other special function registers(SFRs) are likewise 

addressable from C, but are not directly used in this project. 

Standard data types char, int, float are available. The type double is not available 

probably since the 8051 controller is not well suited for floating point calculations in 

general. 

Part of the compiler package is a code simulator. This is useful in the very early 

stages of code development to verify that compiled C-code is executing and 

reading/writing to the registers properly. Due to the nature of the processor having a lot 

of input and output requirements, this became difficult to use. Once a test LED was 

installed, it proved much easier to trigger the LED on or off in code areas of interest. 

This did require a few more iterations of programming the 89C52, but ensured the code 

was working properly by not risking simulation errors. 

One major advantage of this compiler is that for code size under 2KB, the 

compiler is free on the Keil web site, www.keil.com. 

3.5 Code Implementation 

The 89C52 code has a main loop where it idles for tasks. Once a task description 

has been received, a case statement is executed transferring control to the proper routine. 

The routine then retrieves the proper parameters and then proceeds executing the task. 

The block diagram below shows how the code executes on the slave processor. 

http:www.keil.com
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Slave processor idle:
 
Poll on MSG_BIT_Sx
 
for task description
 

ADD: Get parameters, add, and
 
write to FIFO.
 

MULTIPLY: Get parameters,
 
multiply and write to FIFO.
 

PI: Get parameters, find given
 
digit of pi, write to FIFO.
 

Fig 5 Slave processor code diagram 

3.5.1 Addition Task 

When the controller receives the task Ox01, the 8 bit addition task is initiated. 

After fetching the two 8 bit operands, the sum is sent to the FPGA FIFO buffer. If the 

sum is greater than 256, the carry bit is ignored. This is useful in quick debugging of the 

program and any data path changes that occur in the prototype development. The code is 

shown below where after the addition is performed, the P3_6 pulse latches the result on 

P2. 

void add () {
 

unsigned char getbyte();
 
unsigned char rbytel, rbyte2;
 

rbytel = getbyte();
 
rbyte2 = getbyte();
 
P2 = rbytel + rbyte2;
 
P3_6 = 1; // write the byte
 
P3_6 = 0;
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3.5.2 Multiplication Task 

The multiplication task, defined as 0x02, is a useful test of multi-byte parameters 

and multiplies two 16 bit values after retrieving them from the FPGA buffer. After 

generating the 16 bit multiplier and multiplicand from the 8 bit values, the 16 bit result is 

passed back to FPGA FIFO in big endian format. As in the addition routine, results 

larger than OxFFFF are not supported since this routine is used mainly for debug 

purposes. Little endian parameter/results format could be easily implemented as the 

mult() below shows. 

void mult() {
 

int m1, m2, m3;
 
unsigned char getbyte();
 
unsigned char mlbl, mlb2, m2b1, m2b2, m3bl,m3b2;
 
mlbl = getbyte();
 
mlb2 = getbyte();
 
m2b1 = getbyte();
 
m2b2 = getbyte();
 
m1 = mlbl * 256 + mlb2;
 
m2 = m2b1 * 256 + m2b2;
 
m3 = ml * m2;
 
m3b1 = (int) (m3 / 256);
 
m3b2 = m3 % 256;
 
P1_0 = 0;
 
P2 = m3b1;
 
P3_6 = 1; // write the byte
 
P3_6 = 0;
 
P2 = m3b2;
 
P3_6 = 1; // write the byte
 
P3_6 = 0;
 

} 

3.5.3 Pi Calculation Task 

Task code 0x03 indicates the calculation of a portion of a digit of pi. This is 

discussed in greater detail in the Pi Hex Digit Calculation chapter. 
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4 Altera 10K20 Interface Logic 

The Altera 10K20 interface is a versatile chip that allows many different functions 

to be incorporated into a single package. Instead of needing separate components for 

FIFOs, logic gates, and flip-flop memory components, one package with an associated 

program or logic control file is used. 

To allow for quick prototype design changes, almost all signals from the ISA bus 

and the slave processors are routed to the Altera 10K20 SRAM based FPGA. When a 

signal needs to be rerouted or logic needs to be modified/corrected, rather than re

wirewrap or add additional logic, the FPGA circuit is changed, recompiled and 

downloaded. 

4.1 Altera 10K20 FPGA Definition 

The Altera Corporation considers all their components to be complex 

programmable devices (CPLDs), but the FLEX1OK family of products seems to cross the 

gray line to be considered a field programmable gate array (FPGA). The Altera 

definition of an FPGA is a programmable device that has multiple segmented 

interconnects for logic connection, such as the Actel anti-fuse families. In other words, 

there is almost 100% interconnectivity between the logic elements for any given logic 

design. Based on previously used terminology, simple PLDs normally has one or two 

flip-flops per IO pin as in the Lattice implementations. When the device can incorporate 

FIFOs and controller cores, an arguably more general description should be used. The 

term FPGA seems more appropriate to describe a device that has a considerable number 

of internally programmable blocks that are freely associated such as the FLEX1OK family 

of products. Although the Actel anti-fuse families can fit highly interconnected logic 
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design better than the Altera FLEX1OK family, FLEX1OK components allow for very 

complex integrated logic and memory designs due to the hierarchical routing paths. [1] 

The EPF101C20 device is estimated by Altera to be the equivalent of 20,000 PLD 

gates, which includes 144 logic array blocks and 6 embedded array blocks (EAB). The 

144 logic array blocks allow for 1,152 logic elements. The 6 embedded array blocks of 

flexible RAM allow for a total of 12,288 bits of RAM. Each EAB can be configured 

differently such that a memory block of 256x8 bits or 2048x1 bits will consume a single 

EAB. Maximum IO pin count is for the 10K20 is 189. For the 208PQFP package used 

in the prototype, only 147 are available. 

Timing between logic elements is typically 2Ons max with a setup time of 6ns min 

and hold of Ons min. Clock-to-Q on an external pin is 8.9ns max with an output data hold 

of 1 ns min. These types of times made the design much more straightforward since the 

slower 14.7MHz ISA bus and 8MHz 89C52 are easily accommodated. 

4.2 Applicability of 10K20 Selection 

The Altera 10K20 was selected primarily for the SRAM reprogrammability and 

in-circuit programmability. Not having to throw away the part or do a lengthy UV erase 

when a design change is needed, reduces development cost and time. This eliminated 

standard one time programmable FPGAs such as Actel and Cypress. The complexity 

needed to interface to four slave processors and high pin count needed for a total of 5 

busses, eliminated enhanced PLDs such as Lattice. Xilinx SRAM based parts remained 

the last contender, but with the availability of Altera parts from Field Applications 

Engineers (FAE), and the good web support available, the Altera option was taken. 

The one disadvantage with all SRAM based parts is the reduced routability of 

logic elements compared to that of standard FPGAs. For this reason, the pin designation 

must be kept floating as long as possible to allow the place and routing algorithm 

flexibility. Once the pins are fixed, there is little that can be done to provide more routing 
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other than consume unnecessary logic resources for routing paths. In this design, once 

the major blocks had been defined for 4 sets of FIFOs with related controls and registers, 

the pins were set, and with 33% of memory used and 30% of logic used, flexibility 

remains for routing changes to be made. The standard rule is to have 10-20% of capacity 

reserved for potential logic/routing corrections, though in Actel FPGAs, this can be 

reduced to 3-5%. 

4.3 10K20 Design Interface 

The Altera supplied Max Plus II V8.1 programming interface is used for the FPGA 

development. Once a design is done, the project is compiled, placed, and routed to the 

device specified, and made available to program. 

Various programming interfaces can be used, but the passive serial method is easy 

to use and the schematic and cable pinouts are available on www.altera.com. This 

connects to the parallel port of the host computer through an LS244 buffer to a lOpin 

JTAG-like interface on the Altera device target. When power is applied to the 10K20, the 

I0 pins are all tri-stated, until programming is done. The programmer serially defines the 

logic configuration, and once done, the Altera device sends a completion signal back to 

the host computer to indicate a successful programming. 

Having one interface for the entire process is useful in that the similar commands 

are used throughout. One drawback is a unique schematic entry front end that needs to be 

learned. It does not correspond to various common drawing tools or other schematic 

tools, but once learned it is effective. 

4.4 10K20 208pin PQFP Package Considerations 

In general, as logic complexity increases, pin count increases in CPLDs and 

FPGAs. Although an 84pin package exists for the 10K20, concern for I0 constraint leads 

to the 208pin package. Pin grid array (PGA) versions are available, but the cost is 

http:www.altera.com
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prohibitive due to lower volume and more complicated packaging requirements. With a 

0.5mm pin pitch, this was difficult to interface to a wirewrap board. The easiest solution 

other than soldering it to a PCB board and running delicate 30AWG wires, was to use an 

Aries quad flat pack (QFP) to pin grid array (PGA) adapter (part number 92-208M50), 

and wirewrap to the PGA pins. This is advantageous in that once the QFP is soldered 

down, JO pin changes can be made on the PGA adapter and signal probing can be done 

on the 0.1" spaced PGA. 

4.5 10K20 Design definition 

The 10K20 basically has two interfaces, one to the ISA bus and one to each of the 

slave processors that are identical. Below is the top-level diagram showing the internal 

address decoder and the 4 slave processor modules: 
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Inside each of the identical slave processor modules is a 128 bit FIFO along with 

a slave processor status register and a slave processor messaging register as shown in 

figure 2. The FIFO has the disadvantage of being a cycle shared FIFO where one clock is 

used to determine the reads and writes. With the bit-banged slave processor write 

implementation, the slave processor is slow enough to use the ISA bus clock for the 

FIFO. For both FIFO reads and writes, three DFFs are used to implement an edge 

detector synchronous to half the ISA clock to generate a two ISA clock pulse on every 

read/write to the FIFO. This is needed to prevent missed or multiple reads/writes. 

For each of the four FIFO blocks, there is a test pin, currently connected to the 

MSG_BIT signal that can be used for debug purposes. It is useful to have a permanent 

test pin at this second level since editing symbol pin changes in the schematic editor is 

time consuming. 
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4.5.1 ISA Bus Interface 

The 10K20 is connected directly to the ISA connector with the exception ofan 

LS32 OR gate and an LS688 comparator. The comparator selects the IO address space 

from Ox03E0 to 0x03E7 and two OR gates are used to AND together the qualified 

address space with the ISARDN and ISAWRN signals. This provides a clean signal to 

the Altera part. The comparator selection is used as ISA_CS_N along with the lower 

address bits to generate the eight separate register selects, two for each slave processor. 

The even numbered I0 port chip select for each slave processor is reserved for sending 

commands/parameters and retrieving FIFO results. The odd numbered I0 port chip 

select is used to read slave processor status. Each IO register chip select controls the 

tristate of the FIFO or status register respectively to drive the appropriate data onto the 

ISA bus to avoid driver conflicts. 

4.5.2 Slave Processor Interface 

As described in the slave processor interface, PO on the slave processor is used to 

read data from the ISA interface. This is implemented as an 8 bit DFF that is clocked in 

on the rising edge of an ISA IO write assertion. The output is tristate controlled by the 

SLAVE_OEN signal which functions as a read signal. 

Additionally a DFF, with output MSG_BIT is used to indicate to the slave 

processor a write has occurred. The D input is tied high such that on an ISA write, Q 

goes high. When the slave processor does a read from the 8 bit DFF, SLAVE_OEN also 

clears the DFF that clears the MSG_BIT signal. This is routed to a bit in the status 

register to allow the master processor checking before sending messages to the slave. 

The two slave processor status bits are direct inputs to the status register. They 

are double inverted since the Max Plus II software that is used to compile the design 

requires distinct net names that reduce schematic readability. 
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5 Master Processor Configuration 

A Visual C++ based program is used to interface to the ISA bus. Although text 

based for demonstrating the prototype, this allows for expansion into a graphical user 

interface (GUI) should the need arise at a later time. 

5.1 ISA Bus Communication 

The master processor communicates to the Altera 10K20 through the I0 ports. 

These are similar to the I0 ports on serial and parallel ports found on standard PCs. 

Table 1 shows the I0 port mapping and function for the master processor 

Port address Function 

3E0 Slave processor 1 (write commands / parameters, read results) 

3E1 Slave processor 1 status byte 

3E2 Slave processor 2 (write commands / parameters, read results) 

3E3 Slave processor 2 status byte 

3E4 Slave processor 3 (write commands / parameters, read results) 

3E5 Slave processor 3 status byte 

3E6 Slave processor 4 (write commands / parameters, read results) 

3E7 Slave processor 4 status byte 

Table 2 Input/Output ports for master processor 
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Table 2 shows the definition of bits in the slave processor status byte. These are 

used by the program running on the master processor to determine if the slave processor 

is idle, finished with a job, or has a FIFO full problem. 

Status bit Definition 

7 Byte buffer to slave processor full 

6 Slave processor busy 

5 

4 

3 

2 

1 

0 

Table 3 Slave processor status register 

One of the simplest and the most direct access to the JO ports is through the usage 

of the DOS program debug.exe. This allows byte values to be read and written to the port 

access with simple commands. I.e. "0 3E0 AA" does an ISA JO port write of OxAA to 

address Ox03E0, and "I 3E0" does an ISA bus read of IO address Ox03E0. 

This approach, though simple, is not usable when controlling multiple tasks on 

multiple slave processors. For this reason, task.c was developed to allow a modifiable 

interface with a user-friendly front end. 

5.2 Program Overview 
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As in the slave processor interface, this program has a non-exiting main loop. 

After testing the slave processors for an idle state, the user is prompted to send a task to a 

slave processor. The user can enter processor "0" to repeat the processor idle check. If a 

processor is idle after completing a task, the task retrieval routine is call. This switches 

on the global task type variable used to define the type of task associated with a given 

slave processor. Depending on the task type, different actions are taken on the data 

available through the FIFO. 

When the user assigns a task, first the processor number is defined. The task 

number is then assigned based on table 4. 

Task Number Description 

01 8 bit addition of subsequent two bytes 

02 16 bit multiplication of subsequent four bytes (not supported in 

task.c) 

03 Portion of pi digit calculation in subsequent 3 bytes. 

04-FF Reserved expansion for other tasks 

Table 4 Task type list 

After the task type has been sent, the parameters are sent depending on the task 

type. For the 8 bit addition, the requirement for user entry is sufficient to ensure the 

adder bytes are sent properly to the slave processor. For multibyte parameters, possible 

delay is inserted based on the INPUT_RDYx bit of the status register. This is to ensure 

that the slave processor has time to retrieve each byte. Once the parameters are 

successfully passed to the Altera FPGA, control returns to the main loop to check for 

processors coming out of an idle state. 
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Appendix C shows the task.c source that is run on the master to communicate 

with the slave processors. 
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6 Pi Hex Digit Implementation 

The primary example of this design is the usage of the Bailey-Borwein-Plouffe Pi 

algorithm to determine a portion of a given hex digit of pi. 

6.1 Mathematical Theory 

The basic formula is: 

4 2 1 1 1 
= 

k=0 (8k+1 8k+4 8k+5 8k+616) 

This formula and associated sample C code is available at 

http://www.mathsoft.com/asolve/plouffe/plouffe.html. This was generated using PSLQ 

lattice reduction [4] and allows for an easily computable method of generating a given 

hexadecimal digit of it based on the following excerpt from Bailey and Plouffe[4]: 

Let S' be the first of the sums in the above formula for 7C. Then we 
can write 

16 d-kfrac( 16d SO= y (mod 1)
708k+1
 

± 16 " (mod 8k +1) 16d-k
 
(mod 1) 

k=0 8k +1 k=d+1 8k + 1 

The first sum can be rapidly evaluated by means of the binary 
algorithm for exponentiation, where each operation is performed 
modulo the integer 8k + 1. These calculations can be done with 
either integer or floating-point arithmetic, provided the format 

http://www.mathsoft.com/asolve/plouffe/plouffe.html
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being used has enough accuracy to exactly represent the integer d2. 
Once an individual exponentiation operation is complete, the 
resulting integer value is divided by 8k+1, using floating-point 
arithmetic and added to the sum modulo 1. Only a few terms are 
required of the second, since the terms rapidly become smaller than 
the "machine epsilon" of the floating-point arithmetic system being 
used. The resulting fractional value, when expressed in base 16 
notation, gives the hexadecimal digits of IC beginning at position 
d+1. 

Based on this explanation, the sample code can be adapted as shown in Appendix 

A to show the slave processor code implementation. It should be noted that target of the 

operation is to find a given hex digit of 7C. Although this operation requires a summation 

up to the given digit, this summation is much more easily done in a distributed manner 

that having a processor find a complete solution for a given number of digits of it. 

An interesting sidenote is the pihex project on 

http://www.cecm.sfu.ca/projects/pihex/pihex.html where similar to the Mersenne prime 

distributed effort, individual contributors can post results on ranges of pi hexadecimal 

digits. 

6.2 Slave Processor Implementation 

The slave processor implements the series function above based on the m and ic 

parameters. The series function does a sum_k 16^(ic-k)/(8*k+m) and returns the 

floating-point value. Calculation time increases linearly as ic is increased. 

The slave processor first receives the m byte and then the 16 bit ic parameter. 

After reconstructing ic into an int data type, the series routine is called that returns a float 

with a range 0.0-0.999999. The result is sent back to the FIFO buffer one decimal digit at 

a time as follows: 

void sendfloat(out)
 
float out;
 

float tmp = 0.0;
 
unsigned char i=0, a = 0;
 
tmp = out;
 

http://www.cecm.sfu.ca/projects/pihex/pihex.html
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for (i = 0; i < 6; i++) (
 

tmp = tmp*10 a*10;
 
a = tmp;
 
P2 = a;
 
P3_6 = 1; // write the byte
 
P3_6 = 0;
 
)
 

} 

After each 6-digit result, an OxAA is written to the FIFO. This serves as an 

additional check to the master processor. The master can determine that the task results 

ranging in value from Ox00 to 0x09 are done when the OxAA is read. This would be 

useful for when multiple series functions are queued up. Additionally the TEST_LED is 

toggled for each expm() function call which iterates ic times. This is a useful indicator to 

determine that the slave processor is not in a hung state. 

6.3 Master Processor Implementation 

As discussed above, the slave processor expects the m parameter in 8 bit format 

and the ic parameter in 16 bit big endian format. Returned is the 6 bytes representing the 

float value calculated in big endian format. After the return bytes are retrieved, they are 

divided according to position and summed to present a float value. 

6.4 Limitations of the 89C52 

The series function listed above is not followed precisely for two reasons. First 

the Keil C compiler does not support the double precision data class. This is probably 

due to the fact that few 8051 variants have floating point math capabilities, and doing 

floating point calculations is generally very time consuming. Using the floating class of 

32 bit precision, introduces errors. These errors are replicated when the same routine 

with float data class precision is used on another machine. The implemented routine then 

shows how it would be done were the float data of data type double. 
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Secondly, for memory constraints, the tp[ntp] array of float values is reduced 

from 25 to 15. This reduces the range of possible accurate hexadecimal digits computed 

from 2/%21 to 2^11 (=2048). 

6.5 Limitations of the ISA Bus Implementation 

Passing 6 bytes and the OxAA spacer for a 32 bit value could greatly be improved. 

The main reason this was not implemented was the Keil C compiler does not support a 

ftoa(), the float to ASCII data transfer function. Again, the reason for this is probably due 

to the small demand for 8051 floating point tasks. Passing a total of seven bytes each 

series function execution does demonstrate how the FIFO can be used for multiple calls 

and have the responses queue up easily in the FIFO. 

6.6 Timing Results of calculations 

6.6.1 Basic timing 

The task.c program was used to pass parameters for pi digit calculations to the 

slaves. The master I0 port write cycle is 560ns based on the 14.7MHz ISA bus. (This 

bus is very noisy with up to 2V undershoot on the 5V clock) The slave read cycle is 

3.04us because the read bit is actually toggled to read the incoming byte as shown below. 

// get a byte from PO
 
unsigned char getbyte() {
 

while (1) {
 

if (P3_2 == 1) // test for masterwrite
 
P3_7 = 0; // enable Altera to P0, RD_L line
 

// also clear msg_bit
 
A = P0;
 
P3_7 = 1; // tristate Altera bus
 
return (A);
 

}
 

}
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The write cycle is is 1.44us, half the read cycle, since the write signal is simply 

toggled. This corresponds properly with the 12 cycles needed to do one machine 

language instruction on all classic 8051 variants. At 8MHz, each cycle is 125ns, with 12 

cycles being 1.5us. 

Basic addition is done after the last byte is passed to the slave from the master 

from the task.c program. An average of 5.7us is passed between the master write to the 

FPGA and the read from the slave processor. This is mainly due to the idle loop 

described in the slave implementation section, and corresponds to roughly 5.7/1.5=4 

machine language instructions of delay. This could possibly be optimized in assembly 

language coding or interrupt driven control, but would remove the flexibility of using the 

C language to control the slave processor. Addition of any two 8 bit values takes 13.6us 

between the time the slave reads the second adder parameter and the slave writes the 

result to the FPGA. Task.c has an idle loop after the second addition parameter is 

written, for debug purposes such that the result can be returned with no user intervention. 

This results in a 6.48ms delay between the time the slave processor writes the addition 

result to the FPGA FIFO and the time the master processor reads the result. 

6.6.2 Pi digit calculation results 

Since the digit specified by the master processor can be multibytes, a delay is 

placed between the high and low bytes. This results in a forced 6.44ms between the two 

bytes that are always passed as parameters to the pi digit calculation. This delay is 

needed since the buffer between the master processor and the slave processor is only one 

byte deep and the assurance that the slave retrieved the first byte is needed. The master 

monitoring the slave processor status could easily optimize this. 

The first parameter passed for the pi digit calculation is m, or the quarter of the 

digit to be generated as discussed above. Valid values are 1, 4, 5, and 6 and vary the time 

required for calculation slightly. Of more interest is the second parameter passed, ic, or 
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the pi digit to be calculated. This increases calculation delay linearly as shown in the 

table below. The linear increase is entirely expected as seen in the code. 

Pi hex digit=IC (m=1) Calculation delay 

10 160ms 

50 1.50s 

100 3.04s 

150 5.12s 

200 7.20s 

Table 5 Pi calculation delays for various digit positions 

The calculation delay was measured on an oscilloscope by monitoring the LED 

toggling during the pi digit calculation as shown in the slave processor code below. 

getpiparam();
 
P1_0 = 0;
 
for (k = 0; k < ic; k++)
 
ak = 8 * k + m;
 
p = ic k;
 
P1_0 = 0; // turn LED on
 
t = expm (p, ak);
 
P1_0 = 1; // turn LED off
 
s = s + t / ak;
 
s = s (int) s;
 

}
 

P1_0 = 1;
 
sendfloat(s);
 

// break it up
 
P1_0 = 1;
 
P2 = Oxaa; // spacer byte
 
P3_6 = 1; // write the byte
 
P3_6 = 0;
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7 Advantages of Implementation 

There are various methods to do master/slave processing. This particular 

implementation has several advantages. 

7.1 Flexibility of the architecture 

By keeping the interfaces simple there is considerable flexibility in the 

architecture. For instance, connecting as much as possible through the Altera 10K20 

allows essentially two generic 8bit pathways to and from the slave controllers. One 

possible application that would take advantage of this would be a multitap infinite 

impulse response (IIR) filter and could function as in the following diagram: 

Pi digit calc IIR step 3 IIR step 2 IIR step 1 

Fig 8 IIR filter example application 
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In this case, with FIFOs between all the transacting agents, the IIR step 1 could be 

a three point averaging function: (x,+xn,+x)/3, DR step 2 could be a normalizing 

function and IIR step 3 could be a comparing function with some external signal. The 

fourth slave processor is not needed for the filter and can be used for pi digit calculations. 

The above example can be extended to discrete Fourier transforms (DFT) in the 

case where butterfly operations need to exchange data. In this case, processors 1 and 2 

could exchange data at the same time as 3 and 4. If the DFTs are pipelined, the two 

processor results can be FIFOed until it is appropriate for the four slave processors to do 

the next step butterfly operations. 

The examples above are numerical and memory intensive and would greatly 

benefit from more capable processors. Since the interface to the slave processors is 

straightforward, it would be a minor effort to substitute faster and more specialized 

processors. For the present purposes, the 89C52 slave processor was adequate as 

described in the chapter on the slave processor definition. 

7.2 Standard PC Interface 

The fact that the ISA interface is so widely accepted and used made 

documentation and other sources of information readily available. The cost of a platform 

with an ISA interface is low, and allows for experimentation. Should this effort be 

expanded to more than 4 slave processors, adding more cards to a PC based computer and 

allocating more IO addresses can easily do it. Different slave processors that have better 

capabilities (floating point operation) in other areas can easily be adapted to the FPGA 

interface described above. The FPGA then interfaces to the ISA bus and does not need to 

be changed due to a slave processor change. 

7.3 Simple Board to Prototype 



45 

The 0.1" pin pitch XT expansion board was commercially available and with the 

exception of the Altera 10K20 all parts were placed directly into wirewrap sockets. 

Additionally, by using an FPGA with 147 IO pins, four slave processors could be 

implemented on one ISA card. 

7.4 Reprogranunability of Processor and Interface Logic 

With the Atmel 89C52 FLASH programmable processor and the Altera 10K20 

which had almost all the interface pins, it was straightforward to implement design 

changes and bug fixes when they occurred. Design changes frequently were in the form 

of adding features, such as FIFOs, message control logic, and code additions. Bug fixes 

were frequently in the manner of errors in oversight that once detected with such devices 

as the 10K20 test pin or TEST_LED signal were quickly fixed. 

7.5 Low Slave Processor Pin Count 

Using a 40 pin DIP 8051 variant allowed a lot of control over the IO pins. With 

the RAM and ROM internal to the processor, numerous parts and wires were not needed 

to support the processor code 

7.6 Extensibility in speed/data width 

This design was done with the intent of allowing extensions to be made to 

improve performance. 

7.6.1 Calculation Speed 

The 8 MHz slave processor can be increased in frequency to improve response 

time linearly. Other 8051 variant processors can be used that have a floating point unit 

(Seimens) or do instructions in fewer than the standard 12 oscillator cycles (Dallas). 
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Additionally, since the FPGA interface is simple, a conventional processor could 

be used and the FPGA mapped into the slave processor memory map. For instance, if a 

DSP application were mainly being used, a DSP processor could be the slave processor. 

7.6.2 Data Width 

The simplest approach would be to make the ISA bus a 16 bit interface instead of 

the current 8 bit. The slave processors could remain at 8 bits and depending on the tasks, 

the 8 bit data pipes would be buffered by the FPGA FIFOs for transfer to the bigger and 

faster 16 bit ISA data pipe. This would be useful since the current 8 bit ISA interface 

must pass parameters and data to all four slave processors. 

The slave processors could also be expanded to 16 bits. This would be useful in 

high bandwidth tasks. The bottleneck would then become the ISA bus interface, and 

FIFO full control monitoring would be needed. 

7.7 Future possibilities and development 

Possible future expandability is listed below: 

Dual FIFOs for each slave processor. The current implementation is optimal for low 

traffic task/parameters to the slave processor and high traffic results that are buffered 

in the FIFO. Dual FIFOs would allow ability to do digital filter functions on streams 

of data. 

Pipeline the processors. Since each processor has two 8 bit channels that can function 

bidirectionally to the FPGA, the processors can be pipelined to do a task on a stream 

of data coming from the ISA bus, through the processors and back to the ISA bus. 

Do A/D sampling with external ADCs or 8051s with onchip ADCs. 
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8 Disadvantages of Implementation 

8.1 Controller vs. Standard Microprocessor 

A controller allows more flexibility in programming direct pins on the slave 

processor. The disadvantage is that flexibility is reduced and the programmer is often 

limited to the on chip RAM and ROM. Also, since controllers are often used for non-

floating point functions, there is little selection for good floating point ability in 

monolithic RAM/ROM controllers. 

8.2 I0 port versus DMA Implementation 

IO port access is simpler to implement than designing a DMA interface. Though 

generally the DMA ability would save transfer time, in some applications the savings are 

negligible. The pi hex digit calculation can run hours, therefore a few microseconds 

saved in transfer of parameters and results would not be relevant. Large data transfers 

would benefit though, as in the case of digital filters and video processing. 

One argument against ISA DMA is that with the decline of ISA bus, it would be 

more appropriate to use a PCI interface than make the effort to implement an ISA DMA 

interface. 

8.3 Wirewrapping and ISA Prototype Board 

Wirewrapping induces a signal noise at higher frequencies due to noise induced 

from other nearby wires and the antennae effect of the wirewrap sockets. Running the 

slave processor at a slower speed reduces this. Better reduction would occur with power 

planes, but would require a custom PCB to be built. 
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The fact that each wirewrap is manually connected to two pins induces errors. In 

a custom PCB, this could be checked by design rule check software 
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9 Conclusion
 

9.1 Major learnings 

The main software evaluation tool was the pi hex digit calculation. To compare 

the slave processor implementation, the Bailey C code was modified to display the 

series() function output on a Pentium 166MHz computer. This included using the float 

data type instead of the double data type such that identical floating-point values were 

returned. This also served as a validation mechanism that the slave processor code was 

correct. Based on this measurement, one slave processor is approximately 2,000 times 

slower than the Pentium 166MHz. 

This is understandable considering the floating point unit, cache and the fact the 

Pentium is running at 166Mhz, or twenty times faster than the slave processor. Though 

not encouraging, faster slave processors with floating point units can be added fairly 

straightforwardly and multiplied quickly based on the number of available slots in a PC. 

From these results, extrapolations can be made for more general multi-

SIMD/MIMD tasks. When comparing to the ILLIAC IV the 89C52 has a wide 

performance gap. The ILLIAC IV processing elements were designed for a 400ns 64-bit 

floating-point multiplication. A simple 8-bit addition takes 13.6us on the 8MHz 89C52. 

This is mainly due to the time overhead needed to transfer data on the slow ISA bus and 

the fact the 89C52s are running at a slower 8MHz. 

9.2 Real world product 

Based on the performance data, this is not a financially viable product. However, 

the implementation presented could be easily modified for such applications as described 

below where it would find a marketable niche. 
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There are a variety of applications that use controllers to monitor and log traffic 

statistics and patterns in telecommunications. The bulk of the traffic gets handled in the 

FPGA and network interface while the controller is used for sideband or monitoring 

control. With multiple processors, the data path could be divided between the processors 

and such things as compression, encryption and datastream filtering could be done on 

received or transmitted data. 

This type of application could be done on more than digital telecommunications 

networks. The product could be modified to do on the fly video compression by dividing 

the incoming or outgoing video signal between the controllers and doing a parallel 

compression. 
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Appendix A: Slave processor program and compile report
 

Below is the final listing of the Atmel 89C52 slave processor. Following it is the 

compile report. 

// split possible jobs between jobs sent by master
 
// 01 = A + B
 
// 02 = A * B
 
// XX = AA
 
#include <stdio.h>
 
#include <at89x52.h>
 
#include <math.h>
 
#include <stdlib.h>
 

// P3_2 = msg_bit input, INTO input
 
// P3_7 = slavel_oen_l output
 
// P1_0 = test LED, 0 = on
 
// P1_1 = slave input busy/ready for input: 1 = ready
 
// P1_2 = slave idle/slave busy: 1 = idle
 
// P3_6 = write request, WR_L output
 

unsigned int ic;
 
unsigned int m;
 

main()
 

void add ();
 
void mult();
 
void pi();
 
P3 = Ox00;
 
P3 = OxFF;
 
P3_6 = 0;
 
PO = OxFF; //set PO for input
 
P1_0 = 1;
 

while (1) (
 

P1_1 = 1;
 
if (P3_2 == 1) // test for masterwrite
 
P3_7 = 0; // enable Altera to P0, RD_L line
 
P1_1 = 0; // also clear msg_bit and slave not ready
 
A = P0;
 
P3_7 = 1; // tristate Altera bus
 
switch (A) (
 

case Ox01:
 
add() ;
 
break;
 

case 0x02:
 
mult();
 
break;
 

case 0x03:
 
Pi();
 
break;
 

default:
 
P2 = OxAB;
 

}
 

}
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}
 

}
 

// get A and B, add, and write back
 
void add ()
 
unsigned char getbyte();
 
unsigned char rbytel, rbyte2;
 
// P1_0 = 0;
 
rbytel = getbyte();
 

// if (rbytel > 1) {
 

// P1_0 = 0;
 
// }
 

rbyte2 = getbyte();
 
P2 = rbytel + rbyte2;
 
P3_6 = 1; // write the byte
 
P3_6 = 0;
 

// P2 = rbytel + rbyte2 + 1;
 
// P3_6 = 1; // write the byte
 
// P3_6 = 0;
 
// P2 = Oxff;
 
// P3_6 = 1; // write the byte
 
// P3_6 = 0;
 

// get rbytel and rbyte2, multiply, and write back
 
void mult() {
 

int ml, m2, m3;
 
unsigned char getbyte();
 
unsigned char mlbl, mlb2, m2b1, m2b2, m3bl,m3b2;
 

mlbl = getbyte();
 
mlb2 = getbyte();
 
m2b1 = getbyte();
 
m2b2 = getbyte();
 

ml = mlbl * 256 + mlb2;
 
m2 = m2b1 * 256 + m2b2;
 
m3 = ml + m2;
 
m3b1 = (int) (m3 / 256);
 
m3b2 = m3 % 256;
 
P1_0 = 0;
 
P2 = m3b1;
 
P3_6 = 1; // write the byte
 
P3_6 = 0;
 
P2 = m3b2;
 
P3_6 = 1; // write the byte
 
P3_6 = 0;
 

// find pi digit, borrowed from David H. Bailey 960429
 
void pi()
 

void getpiparam();
 
void sendfloat(float);
 
float expm(float, float);
 
float s=0.0, ak=0.0, t=0.0;
 
unsigned long k=0, p=0;
 
ic = 0; // initialize variables
 
m = 0;
 
getpiparam();
 
P1_0 = 0;
 
for (k = 0; k < ic; k++) {
 

ak = 8 * k + m;
 
p = ic k;
 
P1_0 = 0; // turn LED on
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t = expm (p, ak);
 
P1_0 = 1; // turn LED off
 
s = s + t / ak;
 
s = s (int) s;
 

}
 

P1_0 = 1;
 
// s = 0.123456;
 
sendfloat(s);
 

// break it up
 
P1_0 = 1;
 
P2 = Oxaa; // spacer byte
 
P3_6 = 1; // write the byte
 
P3_6 = 0;
 

}
 

float expm (p, ak)
 
float p, ak;
 
/* expm = 16^p mod ak. This routine uses the left-to-right binary
 

exponentiation scheme. It is valid for ak <= 2^24. */
 

int i, j;
 
float pl, pt, r;
 

/* ntp was 25 */
 
#define ntp 15
 

static float tp[ntp];
 
static int tpl = 0;
 

/* If this is the first call to expm, fill the power of two table tp.

*/
 

if (tpl == 0) {
 

tpl = 1;
 
tp[0] = 1.;
 
for (i = 1; i < ntp; i++) tp[i] = 2. * tp[i-1];
 

}
 

if (ak == 1.) return 0.;
 
/* Find the greatest power of two less than or equal to p. */
 

for (i = 0; i < ntp; i++) if (tp[i] > p) break;
 
pt = tp[i-1];
 
pl = p;
 
r = 1.;
 

/* Perform binary exponentiation algorithm modulo ak. */
 
for (j = 1; j <= i; j++){
 

if (p1 >= pt){
 
r = 16. * r;
 
r = r (int) (r / ak) * ak;
 
pl = p1 pt;
 

}
 

pt = 0.5 * pt;
 
if (pt >= 1.){
 

r = r * r;
 
r = r (int) (r / ak) * ak;
 

} 
return r;
 

}
 

// get a byte from PO
 
unsigned char getbyte() {
 

while (1) {
 

if (P3_2 == 1) { // test for masterwrite
 
P3_7 = 0; // enable Altera to P0, RD_L line
 

// also clear msg_bit
 
A = PO;
 
P3_7 = 1; // tristate Altera bus
 
return (A);
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}
 

}
 

// get a float from PO
 
void getpiparam() {
 

unsigned char in[2], i = 0;
 
while (i < 3) ( //get three parameters
 

if (P3_2 == 1) { // test for masterwrite
 
P3_7 = 0; // enable Altera to P0, RD_L line
 

// also clear msg_bit
 
in[i] = P0;
 
P3_7 = 1; // tristate Altera bus
 
i++;
 

m = in[0];
 
is = in[1]*256 + in[2];
 

}
 

}
 

// send a float character representation to P3
 
void sendfloat(out)
 
float out;
 

float tmp = 0.0;
 
unsigned char i=0, a = 0;
 
tmp = out;
 
for (i = 0; i < 6; i++) {
 

tmp = tmp*10 a*10;
 
a = tmp;
 
P2 = a;
 
P3_6 = 1; // write the byte
 
P3_6 = 0;
 

}
 

MODULE INFORMATION: STATIC OVERLAYABLE
 
CODE SIZE = 1253
 
CONSTANT SIZE
 
XDATA SIZE
 
PDATA SIZE =
 
DATA SIZE = 66 61
 
IDATA SIZE =
 
BIT SIZE
 

END OF MODULE INFORMATION.
 

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)
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Appendix B: FPGA compilation report 

Below is a listing of the report on the final FPGA compilation. 

***** Project compilation was successful
 

** DEVICE SUMMARY **
 

Chip/ Input Output Bidir Memory Memory 
LCs 
POF Device Pins Pins Pins Bits % Utilized LCs % Utilized 

top EPF10K20RC208-3 56 47 8 4096 33 % 374 32 %
 

User Pins: 56 47 8
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Appendix C: Master program listing
 

Below is a listing of the master processor using Visual C++ V1.52. (The older 

version is used to allow generation of a 16 bit DOS executable). 

// prompt for tasks and respond with results.
 
// Steen Larsen 7-18-98
 

#include <process.h>
 
#include <stdio.h>
 

unsigned int c, aspn, m, ic, i, tasktype[4], TASKED[4];
 
void main( void )
 

unsigned int spn; // slave processor number
 
unsigned int status[4];
 
unsigned int input();
 
void output();
 
void assigntask();
 
void respond();
 

// introduction
 
printf("Task dispenser V02\n");
 
for (i=1;i<5;i++) TASKED[i] = 0;
 
while (1) {
 

for (i=1;i<5;i++) {
 

aspn = 0x3e0 + (i-1)*2;
 
status[i] = input(aspn+1)%256;
 
if ((status[i] == 3) && (TASKED[i] == 1))
 

respond (i);
 

// printf("stat1=%d\n",input(0x3e1)%256);
 
printf("Enter slave processor number(0 for none):");
 
scanf("%d", &spn);
 
if (spn > 0)
 

assigntask(spn);
 

}
 

}
 

// respond to a slave processor coming out of a nonidle state
 
void respond (unsigned int rsn)
 
{
 

unsigned int sum;
 
float sfloat, s[6];
 
aspn = Ox3e0+(rsn-1)*2;
 
switch (tasktype[rsn]) {
 

case 1:
 
sum = input(aspn)%256;
 
sum = sum%256;
 
printf("Processor %d responds with %d\n", rsn, sum);
 
break;
 
case 3:
 
s[5] = input(aspn)%256;
 
s[4] = input(aspn)%256;
 
s[3] = input(aspn)%256;
 
s[2] = input(aspn)%256;
 
s[1] = input(aspn)%256;
 
s[0] = input(aspn)%256;
 



60 

sfloat =
 
s[5]/10+s[4]/100+s[3]/1000+s[2] /10000+s[1]/100000+s(0]/1000000;
 

printf("Processor %d returns std for digit %d with
 
%f\n",rsn,m,ic,sfloat);
 

break;
 
default:
 
printf("invalid response code\n");
 

}
 

TASKED[rsn] = 0; // detask processor rsn
 
}
 

// get and pass parameters of task to slave processor
 
void assigntask (unsigned int spn)
 

unsigned int stat, task,al,a2,i,ichi, iclo;
 
aspn = Ox3e0 + (spn-1)*2;
 

// if idle send task
 
stat = input(aspn +l) %256;
 
if (stat && 0x02 > 1) {
 

printf("Enter task type: ");
 
scanf("%d", &task);
 

// send task type
 
output(aspn, task);
 

// for (i=0;i<3000;i++);
 
switch (task) {
 

case Ox01:
 
printf("Addition task\n");
 
printf("Enter adder 1: ");
 
scanf("%d", &al);
 
output(aspn, al);
 
printf("Enter adder 2: ");
 
scanf("%d", &a2);
 
output(aspn, a2);
 
for (i=0;i<3000;i++);
 
tasktype[spn] = 1;
 
TASKED[spn] = 1;
 
break;
 

case 0x03:
 
printf("Pi digit calculation task\n");
 
printf("Enter m of digit: ");
 
scanf("%d", &m);
 
output(aspn, m);
 
printf("Enter digit: ");
 
scanf("%d", &ic);
 
ichi = ic/256;
 
iclo = ic%256;
 
output(aspn, ichi);
 
for (i=0;i<3000;i++);
 
output(aspn, iclo);
 
for (i=0;i<3000;i++);
 
tasktype[spn] = 3;
 
TASKED[spn] = 1;
 
break;
 

default:
 
printf("Bad task number\n");
 
// switch
 

} // if idle
 
else
 

printf("Slave processor is busy\n");
 
// while loop
 

// get a byte from I0 port
 
#pragma warning( disable 4035) //kill "no return..."
:
 

unsigned int input(unsigned int port)
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_asm {
 
xor ax, ax;
 
mov dx, port;
 
in ax, dx; //return in eax 

} 

} 

:
#pragma warning( default 4035)
 

// send a byte to 10 port
 
void output(unsigned int port, unsigned char data)
 
{
 

_asm {
 
xor ax, ax;
 
mov al, data;
 
mov dx, port;
 
out dx, al;
 

}
 

}
 




