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Software maintenance is an expensive part of the software lifecycle: estimates

put its cost at up to two-thirds of the entire cost of software. Regression testing,

which tests software after it has been modified to help assess and increase its

reliability, is responsible for a large part of this cost. Thus, making regression

testing more efficient and effective is worthwhile.

This thesis performs two experiments with regression testing techniques.

The first experiment involves two regression test selection techniques, Dejavu

and Pythia. These techniques select a subset of tests from the original test

suite to be rerun instead of the entire original test suite in an attempt to save

valuable testing time. The experiment investigates the cost and benefit tradeoffs

between these techniques. The data indicate that Dejavu can occasionally select

smaller test suites than Pythia while Pythia often is more efficient at figuring

out which test cases to select than De javu.

The second experiment involves the investigation of program spectra as a

tool to enhance regression testing. Program spectra characterize a program's
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behavior. The experiment investigates the applicability of program spectra to

the detection of faults in modified software. The data indicate that certain types

of spectra identify faults on a consistent basis. The data also reveal cost-benefit

tradeoffs among spectra types.
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REGRESSION TESTING EXPERIMENTS

Chapter 1

INTRODUCTION

Software plays an integral role in our everyday lives. With our increasing

reliance on software, it is important that software behave according to its spec-

ifications. A software malfunction may range from a nuisance (e.g., your word

processing program crashes while you are editing a trivial document) to a catas-

trophe (e.g., software responsible for navigating an airplane fails and causes an

accident). Therefore, the reliability of software is essential, and perhaps the

most important tool in helping increase and assess such reliability is software

testing [4].

After software is released, it will almost inevitably be modified. Such mod-

ification is referred to as software maintenance. While software maintenance is

obviously important, it also is expensive to perform. The budget allocated to

software maintenance can be up to 80% of the cost of the software throughout

its lifecycle according to some estimates [15]. Other studies place the cost of

software maintenance at up to two-thirds of the overall cost of software [16, 28].

All this maintenance requires retesting of the software and we call that

testing regression testing. Regression testing is testing that is performed after

modifications have been made, to help assess and increase the reliability of a

program. If the program exhibits failures under regression testing, the program
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is debugged to locate and correct the faults responsible for these failures. Then

the program undergoes regression testing again. This regression testing cycle

continues until the program has an adequate degree of reliability. The regression

testing strategy has two parts: first, it must verify that functionality that was

meant to be unchanged remains unchanged, and second, it must assess whether

faults have been introduced into modified areas of the program [35]. Regression

testing may account for up to 50% of software maintenance cost [4, 13]. Inves-

tigating techniques for improving the effectiveness and efficiency of regression

testing is the primary goal of this thesis.

Regression testing is different from other testing in that at regression test

time, a test suite has already been constructed for the program. One way to

regression test would be to simply rerun the entire test suite created for the

original program on the modified program. Rerunning all tests on the modified

program, however, may actually not be necessary. Instead, we can intelligently

select only the subset of tests that traverse modified sections of code [26]. This

test selection method will only be valuable if the combined costs of creating the

new subset of tests for retesting and running the newly created subset of tests

is less than the cost of simply rerunning the entire test suite.

A second area of research with potential impact for regression testing in-

volves program spectra. A program spectra is a signature of a program's dy-

namic behavior in which the frequency of execution of each program component

(e.g., statement, branch, path) is registered. Program spectra rely on path pro-

filing to characterize a program's behavior [17]. These spectra can be used to

characterize a program's execution on a set of tests. Regression testing may

potentially be made more effective and efficient through the use of program

spectra. Where a modified program's spectra differ from the original program's
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spectra, this may be an indication of the presence of a fault. Furthermore,

the spectra may point to the areas in the modified code most likely to contain

the fault. Essentially, program spectra might help software engineers find and

fix faults in modified program versions more quickly than they can presently

because spectra guide them to the faults.

A study done in 1998 [36] examined 612 papers out of all issues of three soft-

ware engineering journals published in 1985, 1990, and 1995. The researchers

found that one-third of these papers lacked any sort of empirical verification,

one-third provided only informal verification, and fewer than 10 percent offered

formal, rigorous empirical validation. Based on data such as this, it has been

argued that computer science must become like other scientific disciplines re-

garding its experimental approach in order to actively keep developing as a

discipline [29]. Too often in computer science, claims are made without being

empirically verified. Providing empirical validation of theories in a paper can

greatly enhance the results and support the plausibility of the ideas.

Understandably, there are difficulties in experimenting. Researchers may be

overwhelmed at the task of developing infrastructure that will support differ-

ent experiments. Representative software subjects may be impossible to find.

Nevertheless, computer scientists should experiment.

Therefore, this thesis performs two experiments to further our knowledge

about the efficiency and effectiveness of regression testing techniques presented

in the literature. The first portion of this thesis concentrates on two specific

regression test selection techniques: Dejavu and Pythia. Regression test selec-

tion techniques attempt to select a subset of tests from the original test suite

that expose differences in output between the orginal program and a modified

version. Dejavu is a test selection technique that uses control flow graphs as
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the basis for such selection [24]. In contrast, Pythia is a test selection tech-

nique that uses textual differencing for such selection [31]. The data show that

Dejavu can occasionally select smaller test suites than Pythia. With respect to

efficiency, however, Pythia usually outperformed Dejavu.

The second portion of this thesis involves the investigation of program spec-

tra as a tool to enhance regression testing. It investigates a question funda-

mental to the applicability of program spectra to detection of faults in modified

software. We found that certain spectra types exhibit spectral differences often

when there is a fault executed on a program. The data also reveal cost-benefit

tradeoffs among the various spectra types.

The rest of this paper proceeds as follows. Chapter 2 provides the requisite

background for understanding the rest of the paper. Chapter 3 presents the first

empirical study: the comparison between two separate test selection techniques.

Chapter 4 presents the second empirical study: the analysis of using program

spectra on a large scale, industrial program. Chapter 5 concludes the paper

giving a summary and suggestions for future work.
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Chapter 2

BACKGROUND

This chapter provides background information necessary to understand the

rest of the paper.

2.1 Control Flow Graphs

A control flow graph (CFG) is a directed graph in which each node represents

a statement or a basic block (single-entry, single-exit sequence of statements)

in a procedure [1]. The directed edges between nodes depict flow of control in

the program. A predicate node is a node where control flow has a choice of

outgoing edges based on the state of the program at the time. A control flow

graph has both entry and exit nodes, with an entry node being the first node in

the graph representing entry into the procedure and an exit node representing

control leaving the procedure. As an example, Figure 2.1 presents the CFG for

a program Sums [11].

2.2 Code Instrumentation

Code instrumentation is the process of inserting probes into code to discover

what sections of code are executed by a given test case. A primitive method

of code instrumentation is to insert print statements that write, to standard
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program Sums
1 read i
2 sum = 0
3 while i < 10
4 read j
5 sum = sum + j
6 i = i + 1

endwhile
7 print sum
end Sums

FIGURE 2.1: Program Sums and its control flow graph.

output, which statements, basic blocks, functions, and so forth are executed. A

more sophisticated method, the method we employ, is to have the instrumented

program record to a file which parts of code were executed by a test case. A

branch trace is a record of the branches in a CFG traversed by an instrumented

program. An edge trace is a record of the edges in a CFG traversed by an

instrumented program. Tracing is part of a larger idea entitled program profil-

ing. When profiling a program, we can track the behavior of it in a controlled

manner as it executes on a particular test case. Reference [3] discusses program

profiling more thoroughly.

2.3 Regression Testing

Regression testing is the testing of software after modifications have been made,

and is performed in order to assess and increase the reliability of that software.

Let P denote a program, P' a modified program and T the original test

suite created to test P. A typical regression testing process is as follows [26]:
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1. Select T' C T, a set of tests to execute on P'.

2. Test P' with T', establishing P"s correctness with respect to T'.

3. If necessary, create T ", a set of new functional or structural tests for P'.

4. Test P' with T", establishing P"s correctness with respect to T ".

5. Create T''', a new test suite and test history for P', from T, T', and T ".

Step 1 involves the regression test selection problem: the problem of select-

ing a subset of T' of T with which to test P'. Step 3 involves the coverage

identification problem: the problem of determining what sections of P' need

additional testing. Steps 2 and 4 address the test suite execution problem: the

problem of efficiently executing tests and checking test outputs for correctness.

Step 5 addresses the test suite maintenance problem: the problem of updating

and storing test information. Although each of these activities is important, in

this paper, we concern ourselves with Steps 1, 2, and 4.

Reference [24] describes two phases of regression testing: a preliminary phase

and a critical phase. The preliminary phase is the phase in which software engi-

neers are modifying the software before the new version is released. The critical

phase comes after the preliminary phase, and is the phase after modifications

are complete, in which testing must be performed so the software can be re-

released. Intelligent regression testing strategies attempt to schedule as many

regression testing activities as possible in the preliminary phase. Simply put,

this lessens the burden of testing during the critical phase. Doing this leads to

less time spent in the critical phase and helps prevent testing-related delays in

distribution of the software.
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There are two ways to fit a two-phase process into an overall regression

testing strategy. A big bang approach performs all the modifications and then

follows with regression testing. An incremental approach regression tests the

software as much as possible incrementally, whenever a change or group of

related changes is made [24].

While regression test selection techniques may vary widely in how they func-

tion, they have the same goal: to select an adequate subset of tests from the

original test suite to be rerun on the modified program. To rationally compare

such techniques, [22] presented a framework, consisting of the following four

categories: inclusiveness, precision, efficiency, and generality.

Inclusiveness is defined as the degree to which the regression test selection

technique chooses tests that reveal different behavior in the modified software.

A 100% inclusive technique is called a safe technique.

Precision is defined as the degree to which the regression test selection tech-

nique omits tests that do not reveal different behavior in the modified software.

In theory, we would like techniques to be 100% precise, but this is impossible

because the problem of identifying exactly these tests is undecidable. The retest

all strategy can be thought of as 100% imprecise or 0% precise because it essen-

tially chooses all of the tests and reruns all of them, omitting none of the tests

that do not reveal different behavior.

Efficiency is defined as the measure of the temporal requirements needed for

the technique and includes the time required for analysis and the time required

to execute selected test cases.

Generality is defined as the degree to which the regression test selection

technique can be applied to a broad range of programs, programming languages,

operating environments, and so forth.
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Chapter 3

EMPIRICAL STUDY 1: RTS TECHNIQUES

3.1 Introduction

As discussed in Section 2.3, regression test selection (RTS) techniques are tech-

niques that select a subset of an original test suite for rerunning on a modified

program. These techniques can be valuable if the cost of performing the regres-

sion test selection analysis and rerunning the selected subset of test cases on the

modified program is less than the cost of simply rerunning the whole original

test suite on the modified program.

Our attention in this study focuses on two safe regression test selection tech-

niques: techniques that select all of the test cases, from the original test suite,

that may reveal different output behavior'. To locate these existing test cases,

safe techniques select all of the test cases, from the original test suite, that

may traverse modified sections of code in the modified program. (These tech-

niques really seek to select only the test cases that will reveal different output

behavior, but that is impossible, so they select a superset of test cases, all the

modification-traversing test cases, to guarantee they have selected all the test

cases that may reveal different output behavior.) They may also inadvertantly

1 These techniques can only be safe if certain conditions are met. The parameters of the
regression test must remain constant and only the program versions may differ in the
controlled regression testing strategy necessary for these techniques to work properly.
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select some test cases that do not traverse modified sections of code, yet they

attempt to avoid doing this because rerunning and validating test cases is costly.

We investigated two safe techniques in particular: Dejavu and Pythia. The

Dejavu technique uses control flow graphs for its analysis and selection of test

cases from the original test suite [24]. Dejavu provides one of the most precise

safe techniques currently available. It has performed well regarding efficiency

and precision in empirical studies reported in [5, 18, 23, 24, 25, 26].

Pythia is an RTS technique, different from Dejavu, that uses textual differ-

encing for its test selection method [31, 32]. In [32], it is claimed that Pythia is

safe and nearly as precise as Dejavu. Also it is said that Pythia may be more

efficient than Dejavu.

There are many cost-benefit tradeoffs involved in using an RTS technique.

For example, if a technique spends a lot of time on analysis, it may be relatively

more precise but relatively less efficient than another technique. The converse

is also true: a technique that spends relatively little time on analysis may be

relatively more efficient and relatively less precise than another technique. An

RTS technique that lacks generality may be very precise and safe for a particular

type of software. (Refer to Section 2.3 for terminology definitions.)

This study explores these tradeoffs and the claims made in [32] through an

empirical study of Pythia and Dejavu. The chapter proceeds as follows. It

begins with a description of Dejavu and Pythia. Next, it describes in-depth

the experiment design, and presents data and analysis. Finally, it presents

conclusions.
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3.2 Background

3.2.1 Dejavu

Dejavu first builds control flow graphs (CFGs) for a given program P and a

modified program P'. It is assumed that the existing test suite T has previously

been executed on an instrumented version of P, and a record was made of which

test cases in T traverse which particular edges in the CFG for P. A depth-first

search follows simultaneously of both control flow graphs, comparing program

statements associated with CFG nodes of P and P'. If a pair of nodes N and N'

in the CFGs have associated code that is not lexicographically equivalent, the

algorithm selects all test cases from T that, in P, reached N [18, 21]. Dejavu

runs under UNIX and currently executes on C programs. Using Dejavu requires

Aristotle, a system for research on and development of program analysis based

tools [9, 10].

3.2.2 Pythia

Unlike Dejavu, which uses a control flow graph, Pythia uses textual differencing.

Textual differencing works by comparing the program source file text directly,

without utilizing an abstract representation of the program. This method uses

the compiler to instrument the base program and create history files of which

specific test cases traversed which basic blocks of the base program. It then

performs a comparison between the base program and the modified version and

selects all the test cases that traverse modified basic blocks in the modified

version. Frankl and Vokolos' goal in designing this tool was to create a tool

that was safe and balanced precision, efficiency and the ability to support large,
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industrial scale software systems. The tool functions under UNIX and executes

on C programs [30, 31, 32]. Pythia requires only standard UNIX utilities for

operation and a compiler that can perform instrumentation.

In selecting test cases, Pythia will always select a superset of test cases

compared to the set of test cases De j avu selects. The reason behind this is that

Dejavu functions on the statement level so it is provably more precise in selecting

test cases whereas Pythia functions on the level of basic blocks. De j avu's finer

granularity provides for more precision and guarantees that Pythia will select

a number of test cases greater than or equal to the number of test cases Dejavu

selects.

3.2.3 Related Work

There have been many different regression test selection techniques proposed.

Of those techniques proposed, however, few have been empirically studied. Some

studies [7, 19, 20, 24, 25, 34] have previously shown that RTS techniques can be

valuable, yet their costs and benefits can not be adequately compared through

these studies because each study used different programs, program versions,

and test suites. To accurately assess the relative costs and benefits of the RTS

techniques, it is necessary to hold other factors constant while varying only the

techniques. There have been only two comparative empirical studies reported

in the literature [8, 18]. Of the two, only one [18] compared safe techniques,

but that study considered only relative precision. This study compares two safe

regression test selection techniques for both precision and efficiency.
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3.3 The Experiment

3.3.1 Objectives

We are interested in the following research questions:

1. How do Dejavu and Pythia compare to one another in terms of precision:

is either tool more adept than the other at selecting smaller test suites?

2. How do Dejavu and Pythia compare to one another in terms of efficiency?

3.3.2 Measures

To address our first research question, we will measure the percentage of tests

selected by Dejavu and Pythia over a variety of programs and test suites. Then,

we will compare these numbers and base our answer to this question on that

analysis.

To address our second research question, we will measure the efficiency of

Dejavu and the efficiency of Pythia over a variety of programs and test suites.

For each tool, on each given program, modified version, and test suite, we will

record the time required to execute the tool, and the time required to run the set

of tests selected by the tool, and add these times. We will then compare these

times calculated for the two techniques and base our answer to this question on

that analysis.

3.3.3 Subjects

We used eight C programs in our experiment, including seven programs col-

lectively known as the "Siemens programs" and one program known as Space.

They are each described below.
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3.3.3.1 Siemens Subjects

The Siemens programs are known as such because they were initially assem-

bled for and used by Siemens Corporate Research in a study of dataflow and

controlflow-based test adequacy criteria [12]. For each subject base program,

the researchers at Siemens created a large test pool full of possible test cases

for the program. First, they created a set of black-box test cases, using the

category partition method and the Siemens Test Specification Language tool

[2, 14]. After creating these black-box test cases, the researchers manually cre-

ated white-box test cases to ensure coverage of each executable statement, edge,

and definition-use pair in the program or its control flow graph by at least thirty

test cases.

The researchers sought to introduce faults into the subject programs that

were as realistic as possible. Most seeded faults involve single line changes

while a few involve multiple lines. The researchers excluded faults that were

not detected by at least three test cases in the test pool and no more than 350

test cases. Table 3.1 includes information on the programs, including numbers

of functions, lines of code, numbers of versions, test pool size, average test suite

size and descriptions of functionality.

To support our experimentation, we used the Siemens test pools to generate

two different types of test suites: test suites that were edge-coverage-adequate2

and test suites that were randomly selected. The edge-coverage-adequate test

suite pool contained 1000 test suites. Each test suite within the edge-coverage-

adequate test pool covered all the edges of the CFG of the program. The

2 Edge-coverage-adequacy implies that all edges in a control flow graph of a program are
traversed by a test suite.
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Program

Name

Number of

Functions

Lines of

Code

Number of

Versions

Test Pool

Size

Average Test

Suite Size

Description

of Program

totinfo 7 346 23 1052 7.2 information measure

schedulel 18 299 9 2650 8.3 priority scheduler

schedule2 16 297 10 2710 7.8 priority scheduler

tcas 9 138 41 1608 5.7 altitude separation

printtokl 18 402 7 4130 16.3 lexical analyzer

printtok2 19 483 10 4115 11.8 lexical analyzer

replace 21 516 31 5542 18.8 pattern replacement

space 135 9126 38 13585 155 parses antenna-array

description language

TABLE 3.1: Subject programs.

random-coverage test suite pool also contained 1000 test suites. The random-

coverage test suites each had the same size as their counterparts in the edge-

coverage-adequate test suite pool but each random-coverage suite was generated

by randomly selecting the same number of test cases from the test universe as

the corresponding edge-coverage-adequate test suite. Average test suite sizes

for the programs are reported in Table 3.1.

The Siemens programs and their respective test suites have several advan-

tages. They were relatively easy to obtain because the Siemens group had made

the programs and test cases available to fellow researchers. Due to the manner

of their construction, the seeded faults within the programs do model real world

faults. By using subjects from an external source, we reduce the potential for

bias. The subjects have also been used previously in other studies [12, 27].
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3.3.3.2 Space Program

The Space program has 9,126 lines of C code (including comments), and was

developed for the European Space Agency. The purpose of the Space program

is to "provide a language-oriented user interface that allows the user to describe

the configuration of an array of antennas using a high level language" [6]. An

Array Definition Language was created and used within the program. It enables

the user to describe a particular antenna array through fewer statements instead

of writing the complete list of elements, positions, and excitations [35]. Three

subsystems comprise the Space program: parser, computation, and formatting.

Elaboration on the subsystems can be found in [6].

Space came to us with a test pool containing 10,000 test cases; these test

cases had been randomly generated for use in a previous study [32]. Unfortu-

nately, these test cases failed to cover all the code. Therefore, new test cases

were created until each reachable node and edge in the CFG of the program

was covered by at least 30 test cases. After this addition, the final test pool

contained 13,585 test cases. A greedy algorithm was then used to build 1000

edge-coverage-adequate test suites. The algorithm would select a test case and

if it added coverage, add it to the suite. Otherwise, it was discarded. The algo-

rithm executed until the test suite contained test cases that covered all edges of

the CFG of the program. The 1000 random coverage test suite pool was created

by selecting randomly a fixed number of test cases from the entire selection of

inputs corresponding to each edge-coverage-adequate test suite. The average

size of the test suites created by this method was 155.

Finally, we randomly sampled 500 of the test suites of each kind (edge-

coverage-adequate, random-coverage) to create smaller test suite pools. We did

this by randomly generating a number, then selecting that suite from both the
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larger test pools and putting those respective test suites into the smaller test

pools. We followed the same method in creating these test suites for Space as

we did with the Siemens subject programs.

An advantage of Space as a subject is that it was provided with 33 faulty

versions, discovered by the developers of the program during its creation. Our

new tests uncovered 5 additional faulty versions, giving us a total of 38 faulty

versions. However, we ultimately experimented with 34 faulty versions due to

problems with the Pythia tool.

3.3.4 Experiment Design

The experiment procedure is presented in Figure 3.1.

Experiment Procedure RTS experiment procedure

Input: Test Selection Techniques: Dejavu, Pythia

Test Pools: Edge-coverage-adequate, Random-coverage

Subject Programs: Print Tokens, Print Tokens2, Schedule, Schedule2, Replace, Tcas, Tot Info, Space

Output: Raw experiment results

1. begin

2. for each technique e Test Selection Techniques

3. for each subject c Subject Programs

4. for each suite c Test Pools

5. Run technique on subject with suite

6. endfor

7. endfor

8. endfor

9. end

FIGURE 3.1: RTS experiment procedure
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The experiment involved eight programs with two test pools (an edge-coverage-

based pool and a random-coverage pool), and two different test selection tech-

niques, Dejavu and Pythia.

We applied both RTS techniques to each subject program with each of the

test suites in the two test pools3.

The independent variables in this experiment are: the various subject pro-

grams, the test suites, and the two regression test selection techniques.

The dependent variables in this experiment are: the size of the selected test

suite, the running time (analysis time and time to select test cases) of the test

selection tools, and the time required to run selected test cases. We measure

each of these variables for each test suite, regression test selection technique,

and subject program.

3.34.1 Experiment Instrumentation

This experiment has the advantage of using the actual implementations of

Pythia and Dejavu created by the researchers who developed the techniques.

Rothermel provided an implementation of Dejavu for our use in this experi-

ment. Because Dejavu was already configured to execute in our operating en-

vironment, it did not require any modification to execute. Vokolos provided an

implementation of Pythia for our use. It required only a few system-dependent

modifications (e.g., path name to compiler) to make it functional.

3 In the case of Space, only edge-coverage-adequate suites were used, due to time constraints.
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To verify that these tools worked properly, we ran several smaller experiments

on each tool and verified that the results achieved were as expected.

3.3.4.2 Experiment Method

Below, we describe the methods used to run Dejavu and Pythia in our study.

To run Dejavu, we:

1. Used Aristotle to construct the control flow graph for P.

2. Used Arisotle to instrument P.

3. Ran all test cases T on P, collecting trace information, and capturing

outputs for use in validation.

4. Built test history H from the trace information.

5. For each version Pi, we

(a) Used Aristotle to build the control flow graphs of Pi.

(b) Ran Dejavu on P, Pi, and H.

(c) Ran and validated outputs for all test cases in T on Pi.

(d) Ran and validated outputs for all selected test cases on Pi.

To run Pythia, we:

1. Used Pretty (a program formatter) to translate the source files for the

old version of the program into canonical form.

2. Instrumented and compiled the canonical files, i.e., the source files in

canonical form.
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3. Ran all test cases in T on P and obtained their basic block execution

traces.

4. Used Pretty to translate the modified source files (i.e., source files for

all the P's) into canonical form.

5. Used Pythia to analyze the differences between the old and new canon-

ical files for P and each P' and select all the tests that exercised basic

blocks that had been modified in P'.

We automated the execution of the experiments via UNIX shell scripts. Both

the precision and efficiency information of the two RTS techniques were output

by the script. After running the techniques in this manner, we used an analysis

tool to transform our raw data files into a tabular summary of the results.

To perform the Pythia experiment, we first had to use a program format-

ting tool on the source code (steps 1 and 4). Ideally, the source code would

automatically go through the Pythia tool and be transformed into canonical

form. Unfortunately, some C code constructs could not be handled by the

pretty-printer so we had to resort to manually removing the constructs, run-

ning the source through the tool, then adding the constructs back. Thus, we

performed this step as a preprocess on all source files, rather than in the auto-

mated scripts. De j avu does not require any such pretty-printer tool. However,

to maintain consistency among the experiment, we performed both experiments

with "prettied" subject programs.

3.3.5 Threats to Validity

There are several threats to validity for this experiment that must be taken

into account when assessing its results. There are external threats to validity:
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factors that limit the ability to generalize the results of the study to a larger

set of software subjects. One external threat is that the subject programsthe

Siemens programs and the Space programare not necessarily representative of

a general class of programs4. Similarly, the faults within the subject programs

may not be representative of the types of faults that occur in most programs.

To reduce these threats, this study must be repeated with different subjects.

There are also internal threats to validity: influences that can affect the de-

pendent variables without the researchers' knowledge. The main internal threat

to validity is the threat of instrumentation effects. Stated another way, the soft-

ware tools used to instrument the subject programs could have unknowingly

changed the actual way the programs execute so that they behave differently,

and consequently bias the results of the study. To minimize internal threats

to validity, we performed several validity checks on our results, including ex-

amining results for conformance, and examining them to ensure that Pythia

selected more tests than Dejavu. No efforts were made, however, to control

for the structure of the source programs or for the area where changes in the

programs happened.

3.4 Data and Analysis

The strategy used to analyze the data generated from the experiment is to

calculate the efficiency and precision of each test selection tool (Dejavu and

Pythia). After calculating these, we will compare the data to assess which

4 Any chosen program would necessarily have this external threat to validity because the
software engineering research community has not established a benchmark suite of pro-
grams.
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Program

Name

Dejavu

Analysis Cost

Dejavu Test

Execution Time

Pythia

Analysis Cost

Pythia Test

Execution Time

Retest-all

Time

Dejavu Total

(Cols. 2+3)

Pythia Total

(Cols. 4+5)

totinfo 1.6 0.3 0.5 0.2 0.5 1.9 0.7

schedulel 1.1 0.3 0.8 0.3 0.5 1.4 1.1

schedule2 1.1 0.4 0.8 0.5 0.5 1.5 1.3

tcas 0.9 0.2 0.4 0.3 0.3 1.1 0.7

printtokl 1.5 0.6 1.8 0.6 1.1 2.1 2.4

printtok2 1.4 0.2 1.0 0.2 0.8 1.6 1.2

replace 1.5 0.5 1.0 0.4 1.2 2.0 1.4

space 18.0 9.7 5.6 3.5 28.6 27.7 9.1

TABLE 3.2: Dejavu vs. Pythia vs. Retest-all: Average time (seconds) com-
parison between methods for each program over its set of versions for Edge-
coverage-adequate test suites.

Program

Name

Dejavu

Analysis Cost

Dejavu Test

Execution Time

Pythia

Analysis Cost

Pythia Test

Execution Time

Retest-all

Time

Dejavu Total

(Cols. 2+3)

Pythia Total

(Cols. 4+5)

totinfo 2.0 0.4 0.5 0.2 0.6 2.4 0.7

schedulel 1.3 0.4 0.8 0.4 0.6 1.7 1.2

schedule2 1.3 0.6 0.8 0.6 0.6 1.9 1.4

tcas 1.1 0.3 0.3 0.1 0.5 1.4 0.4

printtokl 1.7 0.7 1.8 0.7 1.4 2.4 2.5

printtok2 1.6 0.3 1.0 0.3 1.0 1.9 1.3

replace 1.7 0.6 1.0 0.5 1.4 2.3 1.5

TABLE 3.3: Dejavu vs. Pythia vs. Retest-all: Average time (seconds) com-
parison between methods for each Siemens program over its set of versions for
Random-coverage test suites.

technique is relatively more efficient than the other and which technique is

relatively more precise than the other.

Tables 3.2 and 3.3 present efficiency results for Dejavu, Pythia, and the

retest-all technique for edge-coverage-adequate and random-coverage test suites,

respectively.

Pythia's efficiency was better than De j avu's in six of the seven Siemens pro-

grams for the edge-coverage-adequate test suites. The largest single difference
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between Pythia and De j avu was 1.2 seconds while the smallest single difference

between the two techniques was .2 seconds. The exception was when De javu

was more efficient than Pythia in the case of Print Tokens, with a difference

of .3 seconds. For the subject Tot Info, Pythia took less than half the time (.7

seconds) of De j avu (1.9 seconds). For Space, Pythia also outperformed De j avu

in terms of efficiency by a time of 9.1 seconds to 27.7 seconds respectively.

Pythia's efficiency was better than De j avu's in six of the seven Siemens

programs for the random-coverage test suites as well. The largest single differ-

ence between Pythia and De j avu was 1.7 seconds while the smallest difference

between the two techniques was .1 seconds. For the subject Tot Info, Pythia

took less than one-third of the time (.7 seconds) of De j avu (2.4 seconds). The

exception was when Dejavu was more efficient than Pythia in the case of Print

Tokens, with a difference of .1 seconds.

Among the three RTS techniques listed, the retest-all technique performed

more efficiently than both De j avu and Pythia for all seven Siemens subject

programs for the edge-coverage-adequate test suites. The time difference be-

tween retest-all and the other two RTS techniques ranged from .2 seconds to

1.4 seconds. In the case of Space, however, both RTS techniques outperformed

the retest-all technique for edge-coverage-adequate suites. Dejavu took 27.7

seconds, Pythia 9.1 seconds, and retest-all 28.6 seconds.

Among the three RTS techniques listed, the retest-all technique performed

more efficiently than both De j avu and Pythia for six of the seven Siemens

programs for the random-coverage test suites. The exception was when Pythia's

total execution time (.4 seconds) was less than the retest-all technique's time

(.5 seconds) for Tcas.
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Disregarding this exception, the time difference between retest-all and the other

two RTS techniques ranged from .1 seconds to 1.8 seconds.

The relationship of Dejavu and Pythia to retest-all is worth commenting

on. With test suites as small as the Siemens test suites, analysis cost is a

large percentage of the total cost of running the RTS techniques, so that is why

the RTS techniques are apparently not worthwhile at this small scale. If the

Siemens test suites were larger or if the tests required more time to execute

or validate, the RTS techniques would become more cost effective in terms of

efficiency than the retest-all technique. The fact that on Space, with larger test

suites, Dejavu and Pythia outperform retest-all, supports this suggestion, as

do empirical results for Dejavu presented elsewhere [8, 26].

Also, we believe that Dejavu's efficiency would eclipse the efficiency of the

current implementation of Pythia at some test suite size because that imple-

mentation is based on interpreted PERL [33] scripts whereas Dejavu is a binary

program. Implementation of a compiled version of Pythia could address this

problem, although that would be a departure from Pythia's design philosophy.

With respect to precision for the edge-coverage-adequate test suites, the two

RTS techniques almost always selected the same percentage of test cases for the

Siemens programs. However, for Space, the two RTS techniques always selected

the same percentage of test cases for each of the 34 measured versions. Figure

3.2 shows precision results for these test suites, plotting the average percentage

of tests selected by Dejavu against the average percentage selected by Pythia

over the edge-coverage-adequate test suites for all subject programs. Virtually

all points lie on the x=y line, indicating equivalent precision.

Altogether, there were only 4 modified versions of the entire 131 modified

Siemens versions used where Dejavu selected a smaller percentage of tests than
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Pythia. There were two versions of Print Tokens where Pythia selected 100.0

percent and 87.6 percent of the tests while De j avu selected only 63.8 percent

and 86.9 percent respectively. There were two versions of Tot Info where, on

average over the 500 test suites, Pythia selected 92.6 percent and 100.0 percent

of the tests while De j avu selected 85.3 percent and 99.5 percent, respectively.

None of the 34 Space versions had a difference in precision between De j avu and

Pythia.

With respect to precision for the random test suites, the two RTS techniques

also almost always selected the same percentage of tests for the Siemens pro-

grams'. Figure 3.3 shows these results in a manner similar to Figure 3.2. In this

case, there were 5 modified versions of the entire 131 modified Siemens versions

used where De j avu selected a smaller percentage of tests than Pythia. There

were the same versions of Print Tokens, as described above, where Pythia se-

lected 100.0 percent and 97.4 percent of the tests while De j avu selected only

53.3 percent and 96.0 percent. There were also the same two versions of Tot

Info where, on average over the 500 test suites, Pythia selected 91.8 percent and

100.0 percent of the tests while Dejavu selected 85.2 percent and 99.8 percent

respectively. Additionally, Pythia selected 8.1 percent of the tests on average

for a version of the subject program Tcas whereas De j avu selected 8.0 percent.

Obviously, the retest-all technique is excluded in discussing precision because

it always selects all the tests.

It is interesting to note the variability in number of tests selected. The aver-

age percentage of tests selected for both RTS techniques (De j avu and Pythia),

5 Sizes of selected tests were measured only for the Siemens programs due to time constraints.
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for the edge-coverage-adequate suites ranged from 5.5 percent up to 100 per-

cent. For the random-coverage suites, these averages ranged from 1.0 percent

of tests selected up to 100 percent of tests selected.
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FIGURE 3.2: Precision information graphs for edge-coverage-adequate test
suites. The horizontal axis represents the percentage of tests selected by Dejavu.
The vertical axis represents the percentage of tests selected by Pythia. Each
point represents the average percentage of test cases selected over a particular
version.
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FIGURE 3.3: Precision information graphs for random-coverage test suites.
The horizontal axis represents the percentage of tests selected by Dejavu. The
vertical axis represents the percentage of tests selected by Pythia. Each point
represents the average percentage of test cases selected over a particular version.
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3.5 Conclusion

In this study, we investigated two safe RTS techniques Dejavu and Pythia

and measured their degrees of efficiency and precision. We discovered that, in

the cases we examined, Pythia generally costs less than De j avu in terms of

total time to execute.

We also discovered that, for the cases we examined, Dejavu was occasionally,

but not often, more precise than Pythia. In the few cases in which De j avu

was more precise and selected a smaller percentage of tests, the difference in

percentage was not substantial.

Both De j avu and Pythia suffer in terms of efficiency on the Siemens pro-

grams, in comparison to retest-all; however this is a result of the small size of

the Siemens test suites. Had these test suites been of larger size or contained

tests that required more time to execute, both techniques would have made

gains in efficiency. However, the results on Space demonstrate that the two

RTS techniques can be more efficient than retest-all.

If these results generalize, the implication for testers doing regression testing

is that they must consider their testing situation before deciding on the appro-

priate RTS technique. If test suites are large or test cases require a lot of time or

human effort to execute and validate, it may behoove the tester to use Dejavu

for its superior precision. Otherwise, Pythia probably would be the preferred

method.
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Chapter 4

EMPIRICAL STUDY 2: INVESTIGATION OF PROGRAM SPECTRA

4.1 Introduction

A program spectra is a signature of a program's dynamic behavior in which

the frequency of each program component (e.g., statement, branch, path) is

registered. Program spectra were first proposed by Reps et al. [17] as a heuristic

for understanding differences in program executions. Specifically, Reps et al.

propose using path spectra to aid in the identification and correction of year

2000 faults. Given a program, run under different operating conditions (such

as different system dates), path spectra for the programs should be different

if execution is affected by the different operating conditions; identifying where

the spectra differ provides a software engineer with a starting point for locating

faults in the program. Use of this heuristic should allow software engineers to

find the code that cause faults more easily and quickly than otherwise.

The motivation for program spectra is to aid in the testing and debugging

of software by using various path profiling techniques to provide information.

After a program has been instrumented by a path profiler, the number of times a

program component such as a statement or partial path executes can be recorded

for a given run. Each execution of the program results in a path spectrum for

the execution of the program. This path spectrum provides the distribution of

program components traversed throughout the last execution of the program.



30

The primary application of spectra presented in [17] involves comparing

path spectra from different runs of the same program. If different runs generate

different spectra, the spectral differences may be used to identify paths in the

program where control diverges between the two runs. By selecting input data

to keep all factors constant but one, the divergence in control between the two

runs can be attributed to this varied factor. The point of divergence will be

where the software engineer looks first in the hunt for the cause of different

behavior.

Reference [17] also suggests, without further investigation, an application of

spectra to regression testing parts of a system affected by a modification. The

suggestion is to compare path spectra to provide information about the extent

of changes in behavior of a program. The notion is that doing a path-spectrum

comparison may allow the software engineer to realize the actual magnitude of

the behavior differences that a modification introduces.

In regression testing, theoretically all factors that affect program execution

will be held constant except the difference in the two programs. This means that

two different programs, a base version and its modified version, will each run

the same test suite and generate program spectra. Any difference in program

spectra will necessarily be a result of modifying the program. Reps et al. claim

[17] that the presence of such differences will indicate the presence of regression

faults, and that spectra differences can help software engineers locate these

faults.

For spectra to be useful in regression testing as suggested in [17], the pres-

ence of spectral differences must be a good indicator of the presence of faults.

Reps et al. [17] do not investigate this. Thus, in [11], Rothermel et al. described

an empirical study that investigated the application of program spectra. They
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found that for some spectra types, there was a high probablility that the spectra

would exhibit a difference if there was a failure under testing. Another conclu-

sion from [11] was that there were three types of program spectra that had

nearly equivalent capability in detecting failures.

The study reported in [11] utilized seven small programs (the Siemens pro-

grams). We wished to investigate whether the results of that study might gen-

eralize to other, larger programs. This led us to perform the same experiment

with a larger, industrial program with real faults.

4.2 Program Spectra

This section formally defines program spectra and outlines the different types

of spectra investigated in this study. A program spectrum is developed by

instrumenting the code and capturing traces of various test cases as they execute

the code. The precision of the information captured in the trace depends upon

which type of spectrum is generated. Figure 4.1 provides a graphic depiction of

the spectra subsumption hierarchy. Table 4.1 summarizes the program spectra

that we investigate. We provide an example of all spectra for two different

executions of program Sums in Table 4.2.

4.2.1 Branch Hit Spectra

Branch Hit Spectra (BHS) are spectra that in their method of profiling contain

whether or not particular branches were executed by a given test case or not.

Row 1 (Branch), columns 3 and 5 (Hit) of Table 4.2 provide an example.
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Abbreviation Name Description

BHS Branch hit spectrum conditional branches that were executed

BCS Branch count spectrum number of times each conditional branch was executed

PHS Path hit spectrum paths (intraprocedural, loop-free) that were executed

PCS Path count spectrum number of times each path (intraprocedural, loop-free) was executed

CPS Complete path spectrum complete paths that were executed

FRS Fault revealing spectrum spectra that compare outputs

ETS Execution trace spectrum execution trace that was produced

TABLE 4.1: A catalog of program spectra.

Spectrum Type Spectra

Execution 1

(input is 10)

Execution 2

(input is 8, 2, 4)

Hit Count Hit Count

Branch (1,2) Y 1 Y 1

(3,4) N 0 Y 2

(3,7) Y 1 Y 1

Path (1,2,3,7) Y 1 N 0

(1,3,7), (1,2,3,4,5,6,7), (1,3,4,5,6,7) N 0 Y 1

Complete-path (1,2,3,7) Y NA N NA

(1,2,3,(4,5,6,3)2,7) N NA Y NA

Fault-revealing sum is 0 Y NA N NA

(Output) sum is 6 N NA Y NA

Execution-trace (S1,S2,S3,S7) Y NA N NA

(S1,S2,S3,(S4,S5,S6,S3)2,S7) N NA Y NA

TABLE 4.2: Spectra for program Sums of Figure 2.1

4.2.2 Branch Count Spectra

Branch Count Spectra (BCS) are spectra that in their method of profiling con-

tain, for each branch in a program, the number of times that branch was
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executed. Whereas BHS contain a boolean "true" or "false" if a branch was hit,

BCS contain a nonnegative number specifying the number of times that branch

was hit. Row 1 (Branch), columns 4 and 6 (Count) of Table 4.2 provide an

example.

4.2.3 Path Hit Spectra

Path Hit Spectra (PHS) are spectra that in their method of profiling contain for

each loop-free, intraprocedural path' in a program, whether that path has been

executed by a given test case. Row 2 (Path), columns 3 and 5 (Hit) of Table

4.2 provide an example.

4.2.4 Path Count Spectra

Path Count Spectra (PCS) are spectra that in their method of profiling contain,

for each loop-free, intraprocedural path in a program, the number of times that

path has been executed by a given test case. Whereas PHS contain a boolean

"true" or "false" if a path was executed, PCS contain a nonnegative number

specifying the number of times each path was executed. Row 2 (Path), columns

4 and 6 (Count) of Table 4.2 provide an example.

1 A loop-free, intraprocedural path is a path through a single procedure where all con-
trol stays within that given procedure and for all the statements in the procedure, each
statement is executed at most once.
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4-2.5 Complete Path Spectra

Complete Path Spectra (CPS) are spectra that in their method of profiling con-

tain the entire path that is traversed as the program executes. Stated another

way, CPS tracks the individual nodes visited in the control flow graph repre-

senting the program. However, only the identifiers of nodes of the control flow

graph are recorded and not the text of specific statements executed. Row 3

(Complete-path), columns 3 and 5 (Hit) of Table 4.2 provide an example.

4.2.6 Fault Revealing Spectra

Fault Revealing Spectra (FRS) are spectra that compare the output between

an original and a modified program. FRS differ from other spectra because

instrumentation is not used to generate them. Instead, they involve comparing

the output of a base and a modified program. If a base program P and a

modified program P' generate different output for the same test case t, FRS

will indicate this difference in output. In the case of corrective maintenance,

where no specification changes have occurred, then the presence of an output

difference necessarily implies the presence of a fault. If all factors involving the

testing environment are held constant with respect to previous runs, this fault

must have been caused by modifications. Row 4 (Fault-Revealing), columns 3

and 5 (Hit) of Table 4.2 provide an example.

FRS are not practical spectra: we use them in our study to compare with

other spectra to determine the correlation between spectra differences and faults.
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ETS

CPS FRS

PCS/ \
BCS PHS\ /

BHS

FIGURE 4.1: Spectra subsumption hierarchy. The notation A --4 B indicates
that spectra of type A subsumes spectra of type B.

.4.2.7 Execution Trace Spectra

Execution Trace Spectra (ETS) are spectra that contain the entire sequence of

program statements encountered as the program executes. Row 5 (Execution-

trace), columns 3 and 5 (Hit) of Table 4.2 provide an example.

4.3 Previous Empirical Study

As mentioned in Section 4.1, Rothermel et al. empirically studied the relation-

ship between spectra and faults [11]. They discovered that ETS will always

exhibit spectral differences for inputs that cause faults to occur. Other spectral

(i.e., CPS, PCS, and BCS) differences very frequently correlate with fault oc-

currences. Also, the CPS, PCS, and BCS spectra less frequently display spectra

differences on inputs that do not cause faults than ETS does.

Another finding reported in [11] was that CPS, PCS, and BCS spectra were

nearly equivalent in their abilities to distinguish program differences. Thus,
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BCS would most likely be the most cost-effective of those three spectra because

it requires the least overhead to collect. This conclusion comes after analyzing

the costs of collecting each respective spectra.

In [11], the Siemens programs were used. The goal in this study, therefore, is

to see whether similar results occur with a much larger, industrial-based subject

Space.

4.4 The Experiment

Again, the goal of this experiment is to replicate the experiment reported in [11],

but on a substantially different subject. Thus, our study uses the objectives,

measures, and design used in [11]. We describe these here.

4.4.1 Objectives

We seek to investigate the following research questions:

1. Given a program P, faulty version P', and universe of inputs U for P,

what correlation exists between inputs that cause P and P' to produce

different spectra and inputs that reveal a fault in P? More precisely:

(a) How often does an input i e U that causes P' to fail produce different

spectra for P and P'?

(b) How often does an input i e U that produces different spectra for P

and P' cause P' to fail?
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2. What are the relationships between the various spectra types, both in

terms of their correlation with program-failure behavior, and in terms of

their correlation with one another?

4.4.2 Measures

Rothermel et al. [11] use two measures to quantify the degree to which the

presence of a spectral difference correlates with the presence of faulty behavior:

imprecision and unsafety.

Imprecision is a measure of how often there is a spectral difference that is

not correlated with a failure. If there is a spectral difference without a failure,

then that particular spectrum is imprecise because it identified a failure when

it should not have.

Unsafety is a measure of how often there is a failure that is not correlated

with a spectral difference. If there is a failure without a spectral difference, then

that particular spectrum is unsafe because it did not identify a failure when it

should have.

Ideally, a program spectrum would be perfectly precise and perfectly safe.

That would mean that if given a spectral difference there would definitely be a

fault and if given a failure, there would definitely be a spectral difference.

Another goal of this experiment is to compare spectra against each other

to discover which spectra are relatively more effective. So for each original

program, modified program, and test pool of inputs, and each pair of spectra

types Si and 82, we calculated the following:

1. The number of inputs in U that cause spectral differences of type S1.

2. The number of inputs in U that cause spectral differences of type S2.
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3. The number of inputs in U that cause spectral differences of type Si but

not of type 82.

4. The number of inputs in U that cause spectral differences of type S2 but

not of type S1.

4.4.3 Subjects

This study uses the Space program as described in Section 3.1. Rather than

use individual test suites to generate spectra, however, we used the entire test

pool of 13,585 test cases. Because execution of the experiment method on each

version required approximately 330 hours, we restricted our attention to 20 of

the 38 faulty versions.

4.4.4 Experiment Design

For this experiment, we calculated the spectra for each [program-modified ver-

sion] pair for each input of the universe of inputs (i.e., 13,585 test cases). Fol-

lowing this, the spectra were compared to the FRS results obtained on the

program, versions and universe of inputs.

The independent variable in this experiment is the spectra: BHS, BCS, CPS,

PHS, PCS, FRS, and ETS. The dependent variable measured is the set of inputs

in the universe input file that revealed spectral differences between the original

and modified programs. By using this data, both unsafety and precision can be

calculated.
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4.4.4.1 Instrumentation

We calculated BHS, BCS, PHS, PCS, CPS, FRS, and ETS spectra for each

modified version Space' of the original Space program. Numerous tools were

used. For generating the ETS spectra, we used the Dejavu [24] tool. For FRS

spectra, we compared outputs between Space and Space' for each given test

case in the universe to determine if the test case discovered a fault within the

modified program. Aristotle [9] provided tools for creating the BHS, BCS, PHS,

PCS, and CPS spectra. Throughout the experiment, we viewed Space as the

"correct" version and all other Space' versions as ill-fated attempts to modify

that version.

4.4.4.2 Experiment Method

To ensure proper replication of the experiment in [11], our experiment design

follows the process used in that study. The procedure involved first running the

base version on the test universe to obtain traces. Next, the paths for the base

version were generated. Then each version was executed to generate their traces

and paths by using the same test suite as input. Both the traces and the paths

from the base version and the modified versions were subsequently utilized to

generate the appropriate spectra. The spectra were then compared with each

other to determine how often they differed.

4.4.5 Threats to Validity

There are threats to validity of the experiment that must be taken into account

when assessing its results. There are external threats to validity: factors that

limit the ability to generalize the results of the study to a larger set of software
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subjects. One external threat is that the subject program, Space, is a single pro-

gram, and not necessarily representative of a general class of programs. This is

true for all programs because currently there are not any standard sets of rep-

resentative programs so any chosen program would have this threat. Similarly,

the faults within the Space program may not be representative of the kinds of

faults that occur in most programs. To reduce these threats, this study must

be repeated with different subjects. This study reduces the external threat to

validity of the previous study [11] because it is the same experiment with a

different subject. By considering these results together with those of the earlier

study, we begin the process of addressing this threat.

There are also internal threats to validity: influences that can affect the

dependent variables without the researchers' knowledge. The main internal

threat to validity is the threat of instrumentation effects. Stated another way,

the software tools used to instrument the Space program could have unknow-

ingly changed the actual way the program executes so that it behaves differently,

and consequently bias the results of the study. To minimize internal threats to

validity, we performed several validity checks on our results, including exam-

ining them for conformance with respect to the theoretical spectra hierarchy

relation. (Refer to Figure 4.1 for spectra hierarchy relation.) No efforts were

made, however, to control for the structure of the source programs or for the

area where changes in the programs happened.

4.5 Data and Analysis

The strategy used to analyze the data generated from the experiment is to

calculate both the degree of imprecision and the degree of inclusiveness for each
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FIGURE 4.2: Boxplot graphs showing the degrees of unsafety and imprecision
of spectra.

spectra type. For each spectra, the degree of imprecision is calculated for the

original program, the modified program, and the universe of inputs. Likewise,

for each spectra, the degree of unsafety is calculated for the original program,

the modified program, and the universe of inputs.

Figure 4.2 shows boxplots presenting the degrees of unsafety and imprecision

over the 20 different modified versions. The results shown in the figure are

similar to those shown in [11]. The vertical axes list degrees of unsafety and

precision, respectively; the horizontal axes list spectra types. In each boxplot,

the dashed line represents the median of the degree of imprecision or unsafety

that occurred for that spectra. The box indicates the interquartile rangethe

range in which the middle half of the data fallsand also indicates where those

data fall with respect to the median. The "whiskers" above and/or below boxes

indicate the percentages at which data above or below the interquartile range
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A B C D E

Spectra Number of Number of S1 differences not S2 differences not

(S1-S2) S1 differences S2 differences different in S2 different in Si

BHS-BCS 46131 49994 0 3863

BHS-PHS 46131 47655 0 1524

BHS-PCS 46131 49994 0 3863

BHS-CPS 46131 49994 0 3863

BCS-PHS 49994 47655 2339 0

BCS-PCS 49994 49994 0 0

BCS-CPS 49994 49994 0 0

PHS-PCS 47655 49994 0 2339

PHS-CPS 47655 49994 0 2339

PCS-CPS 49994 49994 0 0

FRS-BHS 47308 46131 2923 1746

FRS-BCS 47308 49994 925 3611

FRS-PHS 47308 47655 2235 2582

FRS-PCS 47308 49994 925 3611

FRS-CPS 47308 49994 925 3611

FRS-ETS 47308 201711 0 154403

ETS-BHS 201711 46131 155580 0

ETS-BCS 201711 49994 151717 0

ETS-PHS 201711 47655 154056 0

ETS-PCS 201711 49994 151717 0

ETS-CPS 201711 49994 151717 0

TABLE 4.3: Comparison of spectra summarized over all modified versions,
considering each for the entire input universe (271,700 inputs).

fell; however, data points at a distance of greater than 1.5 times the interquartile

range are considered outliers, and represented by small circles.

The unsafety data shown in Figure 4.2 indicates that we can expect to

see spectra differences when there are program failures under testing. All the

spectra types have a median degree of unsafety of 0%. Furthermore, three

spectra (CPS, PCS, and BCS) demonstrate a 0% degree of unsafety over the
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entire first, second, and third quartiles of their data. This means that CPS,

PCS, and BCS spectra identified faults for every input that caused a fault to

be executed on at least three-fourths of the modified versions. BHS and PHS,

in contrast, had a broader range of unsafety results. The BHS spectra had the

second and third quartiles of its boxplot span the entire percentile range from

0-100% unsafety. PHS displayed a similarly large second and third quartile,

with data ranging from 0-99% unsafety. Only the ETS spectra was found to

always be safe (i.e., 0% unsafe): for every input that exercised a fault, for every

(program, modified version) pair, there was an ETS spectral difference present.

No other spectra could make this claim although CPS, PCS, and BCS came

relatively close in terms of displaying a small degree of unsafety.

The imprecision data shown in Figure 4.2 indicates that no spectra are

perfectly precise; they all exhibit some degree of imprecision. As in [11], the

ETS spectra showed itself to be the most imprecise with a median degree of

imprecision of 91%. The median degree of imprecision for the other spectra

(PHS, PCS, BHS, BCS, and CPS) was 0%.

The CPS, PCS, and BCS spectra display exactly identical behavior regarding

imprecision and unsafety. Reps et al. [17] conjectured that PCS would be more

adept at identifying different program behavior than BCS but the results of this

experiment, similar to those found in [11], contradict that conjecture.

Table 4.3 lists the relationship between the various spectra. Column A

lists the spectra compared; Column B lists the total number of inputs that

cause spectra differences of type Si; Column C lists the total number of in-

puts that cause spectra differences of type 32; Column D lists the total num-

ber of inputs that cause spectra differences of type Si but not of type S2;
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Column E lists the total number of inputs that cause spectra differences of type

S2 but not of type Si.

Figure 4.3 provides a graphic depiction of some of the data in Table 4.3.

The six outer squares represent the comparison of the FRS spectra to the other

five spectra, respectively, as labeled. Each such square represents the entire

universe of input points over all modified versions. Within the outer squares,

the lightly shaded areas indicate the percentages of input points that caused

only XS-spectra differences (XS 0 FRS), the medium shaded areas represent

the percentages of input points that caused only FRS-spectra differences, and

the darkly shaded areas represent the percentages of input points under both

XS and FRS. Note that the medium shaded areas for FRS-CPS, FRS-BCS, and

FRS-PCS are so negligible that they are not visible. This figure shows another

view of the data given in the boxplots in Figure 4.2. For example, ETS is greatly

imprecise but safe.

Figure 4.4 provides a more in-depth perspective of the relationship of BHS,

BCS, CPS, PHS, and PCS, that displays, for each of those spectra, the number

of inputs for which spectral differences existed. Again, the figure shows that

CPS, PCS, and BCS demonstrate exactly the same behavior. Also, theoretically

neither PHS nor BCS subsumes one another but empirically BCS subsumed

PHS: BCS contained 2339 more spectral differences than did PHS. So whenever

there was a PHS spectral difference, there was also a BCS spectral difference.

Reference [11] observed a similar relationship.

Rothermel et al. [11] found PCS to never be more sensitive than BCS over

the 245,087 inputs in their experiment and discovered CPS to be more sensitive

than PCS on only 7 inputs. Similarly, we found in our study that CPS, BCS,

and PCS had identical sensitivities for all 271,700 inputs. This means that on
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FIGURE 4.4: Comparison of CPS, BCS, PCS, PHS, and BHS, showing, for
each spectra type (horizontal axis), the number of inputs for which spectra
differences occurred (vertical axis).

Space as in the earlier study, PCS, BCS, and CPS effectively collapsed into one

another and thus did not properly subsume one another as shown in Figure 4.1.



46

4.6 Conclusion

This experiment has been a replication of a previous experiment [11] with a

larger, industrial scale subject, Space, studying the correlation between spec-

tra and program failure behavior, along with the relationship between spectra

amongst one another. While the subject differed, the results ultimately showed

remarkable similarity to the previous results.

This experiment has studied spectra in one manner: running the same in-

puts over base, modified version pairs. Conclusions cannot be drawn as to the

validity of the application of spectra, suggested in [17], for the year 2000 prob-

lem. We caution that this is only the second empirical study of this nature and

more studies are needed to adequately assess spectra's applicability to software

regression testing. However, it is encouraging that these results are similar to

those found in [11].

There are some threats to validity in this experiment such as representative-

ness of the program and instrumentation effects. As a result, we took steps to

minimize these threats. More experiments with different subject programs will

lessen these threats.

Our results have the following implications for practice. Although ETS are

the only spectra that are not unsafe, the cost required to generate them may

be excessive, and they are very imprecise. The other spectra, PCS and BCS,

identify faults with high frequency and cost much less to generate. Keep in mind

that PCS and BCS will cost somewhat in unsafety: these spectra sometimes may

allow faults to go unnoticed in the testing process. Another advantage of CPS,

PCS, and BCS is that they are far less imprecise than ETS.
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Between CPS, PCS, and BCS, the most cost-effective spectra is BCS because

it has exactly the same precision as the other two spectra and costs less in

program instrumentation. Profiling for BCS spectra incurs a 16% run-time

overhead whereas profiling PCS incurs up to 30% [3].
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Chapter 5

CONCLUSION AND FUTURE WORK

We have performed and described two experiments, investigating techniques

for aiding software regression testing.

The first experiment, examining the regression test selection techniques

Pythia and Dejavu, supports the conclusion that Pythia is often more effi-

cient than Dejavu in the cases we examined. Our data also show that Dejavu

occassionally is more precise than Pythia. Consequently, regression testers

must assess their own particular situation to decide which RTS technique is

appropriate for their situation.

The second experiment, investigating program spectra, supports conclusions

found in [11]. The successful replication of that study with a larger subject

program, Space, has helped reduce the external threat to validity for that ex-

periment. The main conclusion from the second experiment is that, for the

cases studied, BCS provides the best cost-to-collect/faults-caught ratio, among

the spectra studied.

To reduce the external threats to validity and generalize the results of both

experiments, these experiments must be performed again with different subject

programs. Also, the first experiment should be conducted again with larger test

suites and programs in order to learn what cost test suite execution must have

in order for Dejavu and Pythia to be more efficient than the retest-all technique.
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That future experiment could also investigate whether or not Pythia, which is

interpreted, will be less efficient than Dejavu, which is a binary program.

Overall, this research has contributed to computer science in two ways. First,

it has provided data to both regression test researchers and ultimately, software

regression testers that will help increase the effectiveness of regression testing.

Perhaps more important, however, this research helps promote an empirical

approach to computer science, in which theories are tested empirically. In doing

so, the research helps computer science progress further from a new discipline

to a discipline more similar to well-established "hard" sciences.
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