
AN ABSTRACT OF THE DISSERTATION OF

Abrar Fallatah for the degree of Doctor of Philosophy in Computer Science presented

on June 26, 2023.

Title: Inclusive Software Design and Its Methods for Beyond-WIMP User Interfaces

Abstract approved:

Margaret Burnett

While digital inclusivity researchers and software practitioners have been trying to ad-

dress exclusion biases in Windows, Icons, Menus, and Pointers (WIMP) user interfaces

(UIs) for a long time, little has been done to investigate if and how inclusive software

design and its methods that have been devised for WIMP UIs can be used effectively to

design and evaluate beyond-WIMP UIs. To that end, this dissertation investigated the

use of inclusive software design on a selection of different beyond-WIMP UIs at 3 stages.

In Chapter 3, we explored the applicability of inclusive software design as an evaluation

approach with a social robot that interacts with diverse people in diverse social places.

In Chapter 4, we examined using a particular inclusive software design method to eval-

uate and redesign a multiple robots controller. Finally, in Chapter 5, we investigated

whether and how a family of inclusive software design methods can be used analytically

to evaluate the multidimensionality of a Hands-Free Integrated Development Environ-

ment (IDE). This work contributes design implications, new technology development,

and empirical contributions to designing beyond-WIMP UIs for diverse humans.



©Copyright by Abrar Fallatah
June 26, 2023

All Rights Reserved



Inclusive Software Design and Its Methods for Beyond-WIMP User
Interfaces

by

Abrar Fallatah

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented June 26, 2023

Commencement June 2024



Doctor of Philosophy dissertation of Abrar Fallatah presented on June 26, 2023.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Abrar Fallatah, Author



ACKNOWLEDGEMENTS

I wish to extend my most profound appreciation to the remarkable intellects behind this

outstanding work and those who have accompanied and supported me throughout this

transformative journey.

First and foremost, I must express my heartfelt gratitude to Margaret Burnett (af-

fectionately known as Peggy), my esteemed Ph.D. advisor, whose unwavering belief in

my abilities surpassed my own during moments of self-doubt. Furthermore, I extend my

profound thanks to the esteemed members of my committee—Naomi Fitter, Christopher

Sanchez, Parsad Tadepall, and Geoff Hollinger—who not only bore witness to my aca-

demic progress but also provided invaluable guidance and mentorship throughout the

arduous expedition.

I am also indebted to my esteemed collaborators, who diligently aided in translat-

ing my conceptualizations into scholarly journals. Professors Heather Knight, Bohkyung

Chun, Martin Erwig, Christopher Bogart, and Anita Sarma, and a distinguished ensem-

ble including Samarendra Hedaoo, Sogol Balali, Brett Shawn Stoddard, Yao-Lin Tsai, Ji-

aji Sun, Jillian Renee Emard, Denisse A Alvarado, Brett Altena, Jeremy Urann, Janani

Swaminathan, Alexandra Bacula, Abhijeet Agnihotri, Brian Layng, together with the

exceptional contributions of Fatima A Moussaoui, Md Montaser Hamid, and Chimdi

Chikezie, have significantly enriched and elevated my work.

Moreover, I wish to convey my immeasurable gratitude to my devoted family, cher-

ished friends, and esteemed mentors who have played pivotal roles in shaping my path.

Foremost among them is my mother, Khadijah Haji, whose unwavering emotional and

financial support has been a cornerstone of my journey, always nurturing my aspirations

and instilling the belief that no dream is beyond reach. I must also acknowledge the

transformative influence of my brother, Eyad Fallatah, who exemplifies that life extends

far beyond our humble hometown’s confines, inspiring an insatiable curiosity and an

unwavering drive to explore uncharted territories. Equally deserving of recognition is

my brother, Anwar Fallatah, whose sage counsel and mentorship have endowed me with

the invaluable qualities of independence, enabling me to navigate the world with confi-

dence and fearlessness. I am also grateful for my brother Omar Fallath, whose positive

impact on my life cannot be understated, and my sister, Amjad Fallatah, who has been



an unwavering source of strength, fortifying my resilience and teaching me the virtues of

determination and assertiveness. I am also profoundly grateful for the unwavering sup-

port of my closest confidante and best friend, Samia Aldhahi, whose steadfast presence

and unwavering support have seen me through countless emotional tribulations.

Lastly, I must express my gratitude to Prof. Emad Aboelela, my esteemed advisor

during my Bachelor’s degree studies, whose professionally crafted and genuinely heartfelt

recommendation letter opened doors and paved the way for my future endeavors, and

Prof. Iman Alanasri, a luminary at Taibah University, whose unwavering belief in my

potential and constant encouragement throughout my academic odyssey encouraged me

to pursue a Ph.D. with unwavering determination.

To every individual mentioned above, I owe a debt of gratitude beyond words for

their unwavering support, guidance, and belief in my capabilities, without which this

remarkable journey would not have been possible.



TABLE OF CONTENTS
Page

1 General Introduction 1

2 Overall Background and Related Work 3

2.1 What is Inclusive Design? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Evaluation Methods for Interaction Design . . . . . . . . . . . . . . . . . . 4

2.3 InclusiveMag and GenderMag . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Exploring the Applicability of Inclusive Software Design to Social Robots 9

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Research Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.4 Inductive Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.5 Deductive Data Analysis . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 How Much Helping and Caring . . . . . . . . . . . . . . . . . . . . 20

3.3.2 The cultural and situational factors for predicting participants

likelihood to help and care for the robot . . . . . . . . . . . . . . . 22

3.3.3 Why participants helped and cared for the robot . . . . . . . . . . 31

4 Examining the Capability of an Inclusive Software Design Method for Evaluating

and Redesigning a Multiple Robots Controller 33

4.1 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Design Remedies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Analytical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Investigating Whether and How Analytical Inclusive Software Design Methods

Can Be Used to Evaluate a Hands-Free IDE for Humans Multidimensional Iden-

tities 53



TABLE OF CONTENTS (Continued)
Page

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 The researcher-participants’ work . . . . . . . . . . . . . . . . . . 55

5.2.2 The practitioner-participants’ and designer-participant’s work . . 58

5.2.3 What counted a bug . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Concluding Remarks 67

Bibliography 68



LIST OF FIGURES
Figure Page

1.1 Summary of the dissertation goal and stages. . . . . . . . . . . . . . . . . 2

2.1 The InclusiveMag meta-method has three steps. The first and second steps

output facet types and the range of possible values that each facet type

can have framed along personas and analytical design methods. These

facet types and values provide the starting point for the inclusivity design

methods in Chapter 4 and Chapter 5. . . . . . . . . . . . . . . . . . . . . 6

2.2 Portions of GenderMag’s three personas—Abi (left), Pat (middle), and

Tim (right)—as customized by a faculty member who was applying Gen-

derMag to college-level students [44], with each persona’s facet value for

the GenderMag facet types. In Chapter 4 we used the Abi persona only,

while we used both Abi and Tim personas in Chapter 5. More than two

personas is useful in emphasizing to other humans the diversity of the

target population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 The ChairBot in Action. (a) A closup on the ChairBot with an adhered

whiteboard, a clipped $5 bill, and a basket asking for help. (b) A cafe

customer helping the robot buy an item. After placing the item in the

basket, the customer gives the robot (in the red box) a thumbs up as it

drives away. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 The research sites/cafes depicted on a map of the university campus. C1=

Dining Hall Cafe, C2= Engineering School Cafe, C3= Library Cafe , C4=

ESL School Cafe, C5= Student Union Cafe, and C6= Business School Cafe) 12

3.3 An abstract illustration of the research sites sorted by their architecture

characteristics: Open-Space (a,b), Semi-Open (c,d), and Self-Contained

(e,f). The locations of the ethnographer/observer, wizard and the robot

are highlighted in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 A sample from a wizard notes with callouts to (1)Challenges while oper-

ating the robot, (2)Interactions description, and (3)Themes identification. 17

3.5 Our ethnographic theory-building process. . . . . . . . . . . . . . . . . . . 18

3.6 Four Examples of Caring Behaviors: (a) and (b) volunteering to help, (c)

anticipating the robot needs, and (d) emotional expressions. . . . . . . . . 21



LIST OF FIGURES (Continued)
Figure Page

3.7 Average percentage of help and care interactions sectioned by the three

levels of social atmosphere { Work Mood, Mixed, and Playful }. . . . . . . 24

3.8 Average percentage of help and care interactions sectioned by the three

levels of Worker Attitude { Friendly, Neutral, Unfriendly }. . . . . . . . . 25

3.9 Average percentage of help and care interactions sectioned by the three

levels Architecture { Self-Contained, Semi-Open, Open Space }. . . . . . . 27

3.10 Average percentage of help and care interactions sectioned by the three

levels of Food Items { Grab and Go, Drink Order, Meal Order }. . . . . . 29

3.11 Average percentage of help and care interactions sectioned by the two

levels of Robot’s Approaching Styles { Subtle, Pushy }. . . . . . . . . . . 30

3.12 Average percentage of help and care interactions sectioned by the two

levels of Number of People { Individual, Group }. . . . . . . . . . . . . . . 31

4.1 Schematic diagram of a ChairBot with 6 adhered touch sensors. 1,2:

Turn Left, 3,4: Turn Right, 5: Go Backward, 6: Go Forward, 7: Turn

the robot On/Off, 8: LED indicator, and 9: Turn All robots On/Off . . . 35

4.2 (a) A close-up on the ChairBot and non-robotic chairs participants were

asked to arrange. (b) A participants arranging the chairs to face each

other using touch sensors while the researcher at the back taking notes . . 36

4.3 The distribution of the issues participants faced . . . . . . . . . . . . . . . 39

4.4 The distribution of the arranging styles participants used . . . . . . . . . 42

4.5 Visual description of the four Arranging Styles participants used. . . . . . 43

4.6 The ratings of the Non-Robotic vs. Robotic chairs in terms of Mobility,

Ease of Use, and enjoyability. These ratings correspond to a 5-point Likert

Scale averaged (mean) answers from all participants. . . . . . . . . . . . 46

4.7 (a)A lab member testing the updated physical interface (b) A close up of

the updated physical interface showing the On/Off and toggling buttons.

(c) A lab member testing the new digital interface. (d) A close up of the

new mobile interface showing the controlling features for 3 ChairBots . . 47



LIST OF FIGURES (Continued)
Figure Page

4.8 Overhead view of a study area mimics the empirical study, showing the

starting position (a) and the requested arrangement (b) form the Abi

persona. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Excerpts from personas that Team Intersect-R created to represent (a) Low-

SES Immigrant Women and (b) High-SES Nonimmigrant Men. (The

sources and footnotes refer to that team’s internal documents, not sources/footnotes

in this work.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Excerpts of the Hands-Free IDE. (a) The hands-free IDE screen displaying

a menu with the “Create Function” option selected. (b) The foot-keyboard

which enabled users to navigate cursor position, push buttons, tell the

system to listen for voice commands, etc. . . . . . . . . . . . . . . . . . . 59

5.3 Team Gender-P1’s Walkthrough Form for Action 1’s pre-action question.

A: The action the team is evaluating. B: The answers (yes/maybe/no)

to the pre-action-1 question. (Since not all members of Team Gender-

P1 agreed on the answer, they selected both Maybe and No.) C: The

facets the team members used to decide their answers. D: What Team

Gender-P1 wrote about their reasoning. . . . . . . . . . . . . . . . . . . . 60

5.4 RQ1 results: (Top): For all 14 analytical questions, the multidimen-

sional Immigrant Low-SESWomen’s team found bugs whenever the single-

dimensional teams did. (Bottom): This was also true for 13/14 of the

Nonimmigrant High-SES Men’s analytical questions. (Left): Bugs each

team reported for each of the 7 pre-action questions (a’s in the table’s

columns) and post-actions questions (b’s in the table’s columns). ∗: The
team reported a bug in the analytical question. (Right): The extent to

which the multidimensional teams’ findings (shaded) were a subset of the

union of the bugs the single-dimensional teams found (thick black outline). 62

5.5 RQ2 results: Whenever an multidimensional team found an inclusivity

bug, were the facets they used the same as those the single-dimension

team used? (Facet colors show facets similar to the multidimensional

team’s, as per Table 5.2.) (Top): Yes for Low-SES Immigrant Women in

10/10 cases. (Bottom): Yes for High-SES Nonimmigrant Men in 4/5 cases. 65



LIST OF TABLES
Table Page

3.1 The categories and subcategories for the caring behaviors. . . . . . . . . . 19

3.2 The three cultural factors and its levels. . . . . . . . . . . . . . . . . . . . 23

3.3 The p values and odds of participants helping (Top in Blue) and caring

(Bottom in Orange) for the robot sectioned by the three levels of social

atmosphere { Work Mood, Mixed, and Playful }. . . . . . . . . . . . . . 25

3.4 The p values and odds of participants helping (Top in Blue) and caring

(Bottom in Orange) for the robot sectioned by the three levels of worker

attitude { Friendly, Neutral, and Unfriendly }. . . . . . . . . . . . . . . . 26

3.5 The p values and odds of participants helping (Top in Blue) and caring

(Bottom in Orange) for the robot sectioned by the three levels of archi-

tecture { Self-Contained, Semi-Open, Open Space }. . . . . . . . . . . . . 28

3.6 The three situational factors and its levels. . . . . . . . . . . . . . . . . . 28

3.7 The p values and odds of participants helping (Top in Blue) and caring

(Bottom in Orange) for the robot sectioned by the two levels of the robot

approaching styles { Subtle, Pushy }. . . . . . . . . . . . . . . . . . . . . 30

4.1 We recruited participants and divided them between two independent

variables (chair type and space type) . . . . . . . . . . . . . . . . . . . . . 35

4.2 The three code sets from the empirical study. . . . . . . . . . . . . . . . . 37

4.3 The usability issues grouped by evidence of participant’s Computer Self-

Efficacy: High and Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 The usability issues grouped by evidence of participant’s learning Styles:

With Tinkering and Without Tinkering . . . . . . . . . . . . . . . . . . 42

4.5 The arranging styles grouped by evidence of participant’s facet values:

High and Low Computer Self-Efficacy . . . . . . . . . . . . . . . . . . 45

4.6 The arranging styles grouped by evidence of participant’s facet values:

With Tinkering and Without Tinkering learning Styles . . . . . . . . . 45

4.7 The subgoals and actions discussed in the analytical study, and the inclu-

sivity issues that arose in each. . . . . . . . . . . . . . . . . . . . . . . . . 50



LIST OF TABLES (Continued)
Table Page

4.8 The found inclusivity bugs segmented by GenderMag’s facet values for

Abi. ∗: The team reported a bug tied to this facet. . . . . . . . . . . . . . 51

5.1 Which participants did what. The first four columns list the research-

participants’ teams and the products they produced. The last column lists

the practitioner-participants teams that used the InclusiveMag-derived

products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 The facets the researcher Teams created for each diversity dimension.

Each row shows the matched facets across dimensions. . . . . . . . . . . . 58



Chapter 1: General Introduction

Exclusion bias is a substantial problem because humans gain and lose physical and

cognitive abilities throughout their lifetime through illnesses, injuries, social identities,

and even cultural backgrounds. Thus, eventually, all humans are excluded by designs

that do not fit their ever-changing physical and cognitive needs. This exclusion by design

is not limited to keyboard-plus-mouse User Interfaces (UIs) and extends to all ubiquitous

computing systems that inherit the unconscious biases of the creators behind them [38].

While human-computer interaction researchers and practitioners have been adopting

inclusive design to weed out exclusion by design from keyboard-plus-mouse UIs and its

dominating WIMP (Windows, Icons, Menus, and Pointers) interaction modalities, little

has been done in the field of ubiquitous computing systems that are beyond-WIMP.

Beyond-WIMP UIs, such as robots that uses motion and audio, are becoming a reality

and replacing WIMP UIs. This dissertation investigates the following thesis: Inclu-

sive software design and its methods that have been devised for WIMP UIs can be used

effectively to design and evaluate beyond-WIMP UIs. To that end, this thesis contains

a three-stage investigation of inclusive software design for a selection of three beyond-

WIMP UIs: a social robot, a multiple robots controller, and a Hands-Free Integrated

Development Environment (IDE). The first stage (Chapter 3) explored the applicability

of inclusive software design as an evaluation approach with a social robot that interacts

with diverse people in diverse social places. The second stage (Chapter 4) examined the

use of a particular inclusive software design method to evaluate and redesign a multiple

robots controller. In this stage, the method was used twice: empirically in a lab study

and then analytically with design experts. Finally, stage 3 (Chapter 5) investigated

whether and how a family of inclusive software design methods can be used analytically

to evaluate the multidimensionality of a Hands-Free IDE.,

This dissertation makes several design implications (Chapter 3), new technology de-

velopment (Chapter 4), and empirical contributions (Chapter 3, Chapter 4, and Chap-

ter 5) to designing beyond-WIMP UIs for diverse humans. Specifically, the relevancy of

inclusivity to beyond-WIMP UIs and whether and how inclusivity methods can be used
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empirically and analytically to design and evaluate inclusive beyond-WIMP UIs.

Figure 1.1 summarizes the thesis statement and its three stages, each of which we

discussed in the previous chapters.

Figure 1.1: Summary of the dissertation goal and stages.
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Chapter 2: Overall Background and Related Work

The feasibility of this dissertation rests on weeding out Digital Exclusion Biases (aka

Exclusion by Design), which happens when designers instinctively build solutions for

users like them, either unaware of the needs of users with different cognitive and physical

attributes or do not know how to accommodate others’ needs into the design cycle [41,

38, 59]. These Disabled Designs not only stop users from accomplishing their tasks but

also decide where humans belong and where they are outsiders, shape humans’ sense of

value, and what they can contribute [43, 31, 19, 82, 81]. Exclusion and the social rejection

that often accompanies interacting with disabled designs are human experiences that

inclusivity researchers and practitioners aim to eliminate by using Inclusive Design [38,

19].

This chapter provides background on Inclusive Design and its evaluation methods

that have been devised for WIMP and beyond-WIMP UIs. This chapter also covers

the related work that applies to thesis statement. Additional related work specific to a

research stage is covered throughout this document in the context of that stage.

2.1 What is Inclusive Design?

Inclusive Design is a set of approaches designers embrace to ensure that buildings, public

spaces, services, products, and technology address the needs of the broadest possible au-

dience [15, 55, 14, 38]. The essence of inclusive design is understanding and enabling often

excluded users, such as minorities and older adults, to be in the mainstream of everyday

life rather than users who succeed only with particular attention or special design solu-

tions [15, 41]. This shift from special solutions and assistive gadgets toward inclusivity

was first introduced to Human-Computer Interaction (HCI) in 1994 by Roger Coleman

to enable independence for older adults and people with physical disabilities [14]. Ever

since, inclusive design has been growing to include additional Diversity Dimensions, such

as gender, socioeconomic status (SES), race, ethnicity, income, language, education, and

more [15, 55, 14].
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Although researchers have been adopting several human-centered design approaches

to address inclusivity, the prominent approach to inclusive beyond-WIMP design focuses

on developing guidelines for a specific diversity dimension(s) based on an intensive lit-

erature review. For example in the automotive domain, Roundtree et al. reviewed the

needs of various road users (i.e. children, adults, older adults, and individuals with vi-

sual, auditory, and cognitive impairments) to apprise inclusive design guidelines for an

external human-vehicle interface [69]. Roundtree et al. reported that while the average

reaction time for road users in crosswalks is approximately one second, external human-

vehicle interfaces should take into consideration that children pedestrians’ reflexes are

not trained for emergency scenarios and that their field of vision, which is one-third

narrower than adults, hinders their ability to judge speed and distance.

Here Roundtree et al. approached inclusivity from human factors and ergonomics

perspective, but this thesis focuses on Inclusive Software Design that supports the hu-

man’s cognitive problem-solving diversity. For example of inclusive software design in

a WIMP interface was Vorvoreanu et al. summative evaluation of an inclusive software

design method that finds and fixes the gender biases of a search engine [84]. Vorvore-

anu et al. used a set of problem-solving factors, such as self-efficacy and information

processing styles, to identify biased UI elements and patterns and fix them. This thesis

use similar inclusive software design methods to find and fix cognitive problem-solving

biases of two beyond-WIMP user interfaces.

2.2 Evaluation Methods for Interaction Design

Evaluation methods for interaction design fall into two categories: Analytical or Empir-

ical.

Analytical Evaluation Methods (aka discount evaluation) rely on using a set of design

principles to systematically evaluate a design without users and with the help of a small

set of User eXperience (UX) expert evaluators [56, 14]. Examples of analytical evalua-

tions methods include cognitive walkthroughs [86, 46], heuristic evaluations [57], expert

reviews [51], and applying HCI guidelines to a design [5, 49]. The Cognitive Walkthrough

for example is an action-based systematic approach to evaluate whether the order of cues

of a use-case reflect the way people cognitively process tasks and anticipate next-steps

of a platform [61, 86, 56]. For example, Wharton’s cognitive walkthrough uses a set of
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4 questions to systematically evaluate the actions needed to complete a use-case(s) [86].

The cognitive walkthrough evaluators answer these 4 questions for each action of a use-

case in sequence and justify each answer based on their HCI expertise and understanding

of the users. In a similar way, Heuristic Evaluation uses a set of agreed upon best prac-

tices or usability “rules of thumb” to evaluate a design [83]. For example, Nielsen’s

10 heuristics are used as principles to uncover usability problems in a design and their

severity [57]. The heuristic evaluation evaluators check design compliance with each

heuristic independently before aggregating their findings [47]. The evaluation methods

we are using in Chapter 4 and Chapter 5 rely on these analytical evaluation methods.

Unlike analytical evaluation methods, Empirical Evaluation Methods rely on data

that users generate, such as their feedback on a UI, behaviors and interaction patterns

with an interface, artifact they create, etc. Empirical data is obtained by several means

such as ethnography [21, 54], usability studies [78], controlled lab studies, interviews,

contextual inquiries, and observations. Ethnography, the method we are using in Chap-

ter 3, investigates the contextual construction of social behaviors and perceptions that

are linked to local cultures [33]. Ethnography is known as being relevant in HCI studies

as it helps increase the social and contextual investigation of and around computational

systems [21, 25]. An example of using ethnography as an evaluation design method in

a hospital units uncovered how patient profiles, workflow, and social dynamics dramati-

cally influenced the staff’s interaction with an autonomous delivery robot [54]. Although

the post-partum units integrated the robot into their workflow and social context, the

low tolerance for interruptions in the medical units caused the robot to have a negative

impact on the workflow and staff resistance. User studies on the other hand are widely

known for focusing on users and their tasks while seeking evidence about how to improve

the usability of an interface [32]. User studies, which we are using in Chapter 4, are some-

times referred to as usability testing [40] and are usually performed on controlled and

staged settings [78, 52]. Showkat et al., for example, ran a 12-participants users study

to identify gender differences when Tele-operating the PR2 humanoid robot (a mobile

robot with 2 arms) to manipulate four objects [77]. Showkat et al. revealed that male

participants were more confident and tinkered more with the robot than females which

resulted in greater task success and lower task completion time for males.
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2.3 InclusiveMag and GenderMag

InclusiveMag [50] is a meta-method that enables HCI researchers to generate systematic

analytical design methods for a given diversity dimension (Figure 2.1). The generated

methods are framed along facet types and facet values. Designers and other software

practitioners can then use the InclusiveMag-generated methods to analytically evaluate

user experiences from the perspective of users across the diversity dimensions.

Figure 2.1: The InclusiveMag meta-method has three steps. The first and second steps
output facet types and the range of possible values that each facet type can have framed
along personas and analytical design methods. These facet types and values provide the
starting point for the inclusivity design methods in Chapter 4 and Chapter 5.

For example, InclusiveMag was used to generate GenderMag, a systematic analytical

method for the diversity dimension of gender [9, 50]. HCI practitioners have used the

GenderMag method to find, avoid, and fix inclusivity issues in a variety of domains, such

as education software [9, 35, 76, 17], machine learning aids [10], office productivity soft-

ware [37], open source project sites [12, 24, 58], robotics [77, 3], software tools [29], and

search interfaces [84]. Other offspring of InclusiveMag include SESMag to support users

in diverse socioeconomic situations [39], AgeMag to evaluate age bias in e-commerce

applications [48], and a collection of eight pilot InclusiveMag-generated methods to sup-

port eight diversity dimensions (e.g., eyesight, attention span, position along the autism
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spectrum) [50].

Figure 2.1 gives an overview of InclusiveMag with its 3 steps: Scope, Derive, and

Apply. The first step, Scope, produces a set of facet types for the diversity dimension of

interest (e.g., gender, in the GenderMag example). These facet types are traits for which

individuals at opposite ends of the diversity dimension can differ significantly from each

other. For example, the GenderMag personas in Figure 2.2 have GenderMag’s five facet

types and some of the possible facet values different individuals might have. This thesis

use GenderMag’s personas in Chapter 4 and Chapter 5. 

Abi 
(Abigail/Abishek) 

 

   
 

Motivation: Uses technology 
to accomplish their tasks 

Computer Self-Efficacy: 
Lower self-confidence than 
peers about doing unfamiliar 
computing tasks. Blames 
themselves for problems, 
which affects whether and 
how they will persevere. 

Attitude Toward Risk: Risk-
averse about using unfamiliar 
technologies that might 
require a lot of time 

Information Processing 
Style: Comprehensive 

Learning by Process vs. 
Tinkering: Process-orientated 
learning 

 

Pat 
(Patricia/Patrick) 

 

   
 

Motivation: Learns new 
technologies when they need 
to 

Computer Self-Efficacy: 
Medium confidence doing 
unfamiliar computing tasks. If 
a problem can't be fixed, they 
will keep trying. 

Attitude Toward Risk: Risk-
averse and doesn't want to 
expend time when they might 
not receive benefits 

Information Processing 
Style: Comprehensive 

Learning by Process vs. 
Tinkering: Likes to explore 
and purposefully tinker 

 

Tim 
(Timara/Timothy) 

 

   
 

Motivation: Likes learning all 
the available functionality on 
all their devices 

Computer Self-Efficacy: 
High confidence in technical 
abilities. If a problem can't be 
fixed, blame goes to software 
vendor. 

Attitude Toward Risk: 
Doesn't mind taking risk using 
features of technology 

Information Processing 
Style: Selective information 
processing 

Learning by Process vs. 
Tinkering: Likes tinkering and 
exploring 

 

 Figure 2.2: Portions of GenderMag’s three personas—Abi (left), Pat (middle), and Tim
(right)—as customized by a faculty member who was applying GenderMag to college-
level students [44], with each persona’s facet value for the GenderMag facet types. In
Chapter 4 we used the Abi persona only, while we used both Abi and Tim personas
in Chapter 5. More than two personas is useful in emphasizing to other humans the
diversity of the target population.
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In InclusiveMag’s second step, Derive, inclusivity researchers use the facet types they

created in the Scope step to derive mechanisms for HCI practitioners to use when de-

signing/evaluating a system’s inclusivity, such as Figure 2.2’s personas. The researchers

also specialize an existing analytic method, such as a cognitive walkthrough or set of

design heuristics, using the facet types.

Finally, in the third step, Apply, software practitioners customize and apply the gen-

erated method(s) or other facet-based artifacts (e.g., personas) to evaluate their tech-

nology to increase its inclusivity across that diversity dimension. For example, if in the

Derive step the HCI researchers chose to specialize a cognitive walkthrough for the ana-

lytic process, then in the Apply step the practitioners will be conducting this specialized

cognitive walkthrough. The fifth chapter of this thesis, Chapter 5, shows how these

practitioners can compose one or more of these methods to evaluate a free-hand IDE

across multiple intersecting diversity dimensions.
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Chapter 3: Exploring the Applicability of Inclusive Software Design

to Social Robots

The first stage to defend or reject the thesis was exploring the applicability of inclusive

software design to evaluate the inclusivity of a beyond-WIMP UI. The beyond-WIMP

UI in this stage was a robotic chair (ChairBot) that asked bystanders to help it order

food items from six various cafes around a University Campus. In this stage, we studied

the inclusivity requirements in terms of culture and situational factors that predicted

participants’ likelihood to help and care for the robot. A chi-square test revealed that

cultural and situational factors such as the cafe’s overall mood (social atmosphere) and

the robot’s motion characteristics (approaching styles) predicted participants’ likelihood

to help and care for the robot. This stage showed that software inclusivity is relevant

to evaluating beyond-WIMP UIs that use motion only to communicate with humans.

This stage also showed that robotics engineer must consider the cultural and situational

factors at which the interaction is taking place to develop inclusive help-seeking robots.

3.1 Introduction

Prior work established that as robots leave the lab and join our daily life in numerous

forms providing countless services, these robots are yet still limited and can benefit from

human help to overcome their actuation limitations and exceptional situations [1, 2].

For example, mobile delivery robots must stay idle until a human picks up the packages

[11] or push elevator buttons to travel between building floors [67]. These examples

of how robots might still need help performing subtasks encouraged other researchers

to examine the tasks that robots can ask for help with, such as directions [85], image

labeling [72], and reaching objects [23]. Rosenthal et al., Bajones et al., and Rose

advanced the literature investigating the best human candidate to approach for help

location-wise [67, 2, 66]. Rosenthal et al. found that robots should ask for help in their

location before finding someone nearby because the tradeoff between the robot’s task

completion and human-helper interruption impacts the likelihood of receiving help [67].



10

Bajones et al. and Rose also found that closer human and those in the same social range

as the robot (roughly 10 feet) are more likely to help it [2, 66]. However, humans come

from diverse backgrounds, have different abilities, and follow various cultural norms.

While prior studies have focused on optimizing help for a particular task and recruiting

the best candidate to help, we focused on exploring the cultural and situational inclusivity

requirements for robots to succeed in seeking help in diverse locations.

To find the inclusivity requirements we sought to answer two research questions. The

first research question focuses on the inclusivity requirements and the second question

provides qualitative insights into why would people help and care for a robot.

RQ Inclusivity: What cultural and situational factors predict diverse people’s like-

lihood to help and care for a robot?

RQ Reasons: For what diverse reasons do people help and care for a robot?

To answer the research questions, the ChairBot asked 268 participants to help it

order food items from six cafes. We collected data about participants helping and caring

behaviors using Ethnography and in-the-wild study. We analyzed the data to define

six cultural and situational factors using ethnographic theory building and deductive

data analysis. We then run a sequence of chi-square and simple logistic regression tests.

Our statistical results revealed that four out of the six cultural and situational factors,

significantly predicted participants’ likelihood to help and care for the robot.

To provide qualitative insights into why would people help and care for the robot,

we analyzed the data using inductive data analysis. We found that while the how varied

participants had three main reasons for their behaviors: (1) Experiencing entertaining

interaction, (2) Helping the individuals behind the robot deployment, and (3)Increasing

the cafe’s revenue.

The utilization of ethnography and in-the-wild study as evaluation methods, in this

chapter, revealed how inclusive design might be applied to evaluate the inclusivity of

social robots. Additional to the four design implications, this work showed that soft-

ware inclusivity is relevant to evaluating beyond-WIMP UIs that use motion only to

communicate with diverse humans.



11

3.2 Methodology

To answer the research questions, we controlled the ChairBot using the Wizard of Oz

technique 1 in diverse locations, where we made it ask 268 participants to help it order

food in a cafe. The robot asked for help via a small whiteboard to display various requests

(e.g., “Would you please buy me a 16 oz iced americano with this cash?”, “Would you

please buy me a blueberry muffin with this cash?”). Figure 3.1a shows how the robot

asked for help and Figure 3.1b shows an interaction with a participant.

(a) (b)

Figure 3.1: The ChairBot in Action. (a) A closup on the ChairBot with an adhered
whiteboard, a clipped $5 bill, and a basket asking for help. (b) A cafe customer helping
the robot buy an item. After placing the item in the basket, the customer gives the
robot (in the red box) a thumbs up as it drives away.

We used two empirical evaluation methods to answer the research questions: ethnog-

raphy and in-the-wild user studies (recall Chapter 2). Similar to [73, 54, 13], we chose

ethnography to provide a detailed view and ensure a prosperous understanding of inhab-

ited cultural factors by observing human behaviors in diverse social settings. We also

picked in-the-wild user studies to discover realistic aspects of the interactions with the

robot and its design [87, 65]. Thus, before presenting our results, here, we explain how

we approached the study focusing on Research Sites, Data Collection, and Data Analysis

in the following subsections.

1A user-testing technique allows a researcher (the “wizard”) to generate system responses as users
interact with an interface without knowing that the wizard is behind the scenes pulling the levers and
flipping the switches. The Wizard of Oz technique enables the interface to appear to be real as an up
and running system [18, 42, 34, 68].
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3.2.1 Research Sites

We conducted the study at six various cafes over eight weeks at a University campus.

We visited each cafe twice for 12 total visits. We chose the six cafes from buildings that

covered a range of pedagogical topics (engineering, English-as-a-second-language (ESL),

business), and a variety of activities (library, dining hall, student union). All visits oc-

curred around lunchtime and between 11:00am - 3:00pm, based on managerial approval,

and lasted two hours. The robot interacted with diverse people, including faculty and

staff, students, and parents on college site visit days. This study was approved by the

university IRB. Figure 3.2 shows a map of the research sites and Figure 3.3 shows an

abstract illustration of each one.

C6 C5

C2

C3

C1

C4

Figure 3.2: The research sites/cafes depicted on a map of the university campus. C1=
Dining Hall Cafe, C2= Engineering School Cafe, C3= Library Cafe , C4= ESL School
Cafe, C5= Student Union Cafe, and C6= Business School Cafe)
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Figure 3.3: An abstract illustration of the research sites sorted by their architecture
characteristics: Open-Space (a,b), Semi-Open (c,d), and Self-Contained (e,f). The loca-
tions of the ethnographer/observer, wizard and the robot are highlighted in orange.

The Dining Hall cafe featured in Figure 3.3a is located at the left corner of a first-
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floor food court in a student housing facility. It shares a wide-open hall area with six

other food chains and a dine-in area without being barricaded. The cafe is not contained

and connected to different stores in a dine-in area where a flow of people pass by. This

cafe is located at one of the university’s largest dining halls and serves a diverse range

of customers coming in for a quick bite, a filling meal, or a relaxing break.

The Engineering School cafe featured in Figure 3.3b is located at the center

corner of a wide-open first-floor atrium in a 153,000-square-foot building. The building’s

first floor extends up through several floors with a glass roof; thus, the cafe space can

be viewed from upstairs and from stairways. There are classrooms, conference/meeting

rooms, offices and a fishbowl computer lab near the cafe. There also is a spacious lounge

area facing the cafe and a public piano for passersby to play. Similar to the Dining Hall

cafe, this cafe serves a diverse range of customers, not only engineering faculty and staff.

The Library cafe featured in Figure 3.3c is located on the first floor of the univer-

sity’s main library. It features a semi-open architecture and occupies most of the floor.

The cafe is bordered with a narrow barrier and pillars, allowing three access points. The

remaining area outside of the cafe hosts three vending machines, restrooms, an elevator,

and stairs to the library’s main entrance. The cafe’s customers are people who work and

study in the library, in addition to customers who drop by to grab beverages and snacks.

The ESL School cafe featured in Figure 3.3d is located on the first floor of a

living and learning center for international students. International students attending

the university’s ESL programs live and study on upstairs floors, where teachers and staff

occupy the first floor in the daytime. Within the building, the cafe near a convenience

market and residence’s kitchen. The cafe area is semi-open with three transparent glass

walls, and two open entrances between the glass walls.

The Student Union cafe featured in Figure 3.3e is located on the second floor

of the university’s student union building, in which large event rooms, dining facilities,

offices, and lounges are clustered. Even though the building is usually crowded, the cafe

is contained within opaque walls with a single narrower doorway. A variety of students,

faculties, employees, and community members come to this cafe for numerous purposes

ranging from formal interviews to casual chatting.

The Business School cafe featured in Figure 3.3f is located on the first floor of

the business school building. It is barricaded with an opaque wall with a single entrance

connected to the lobby where a lounge, a stairway, and elevators are located. The cafe
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occupies a smaller space compared with other semi-open and contained cafes, and has

four tables. The customer group of this cafe is usually business students and faculty

members. It is worth noting that the cafe manager at this cafe didn’t allow the robot

to be deployed inside the cafe to avoid crowdedness; thus, we deployed the robot in the

lobby area right next to the cafe’s entrance.

3.2.2 Data Collection

Similar to Yang et al. in-the-wild user study [87], we tracked participants helping and

caring behaviors across all research sites by Recording Videos. We collected video footage

using two cameras: primary and supplementary. The primary video footage was collected

with a stationary wireless camera, and the supplementary video footage was collected

with the USB camera attached to the wizard computer. We analyzed the video footage

only from the primary camera; however, we occasionally referred to the supplementary

one since both cameras offered different angles.

Additional to video recording and similar to Mutlu and Forlizzi [54], we collected

data using two ethnographic methods: Participant Observation and Fly-on-the-Wall

Observations. We used Participant Observation to gain intimate familiarity with and

in-depth understanding of how the social context influences participant behavior and

how the participant behavior influences the social context, while conducting open-ended

interviews (aka unstructured conversations [53, 60]) with the participants. We used Fly-

on-the-Wall Observation by following the robot from a distance as it asked participants

for help, to observe the interactions as they took place in the natural context without

influencing the social context.

In each site-visit, one of our team of two researchers played the ethnographer role

(here forward observer) and conducted Participant Observations. To eliminate biases,

halfway through each site-visit, the two researchers switched, allowing both to play the

role of the observer in a counterbalanced manner. The observer wrote field notes in a

shared notebook based on participants and cafes’ workers interactions with the robot.

Interviews with the participants took place sporadically and were initiated by either

the observer or the participant. The observer asked questions regarding the participants’

interactions and their perceptions of the robot. When participants initiated conversa-

tions, some voluntarily reported their reactions, and others asked about details of the
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research and technical features of the robot. Meanwhile, interviews with workers took

place when the customer flow was slow, or at the beginning and the end of the robot’s de-

ployment. Workers talked about their experiences and perceptions of the robot hanging

around their workplace and gave the researchers clues on customers’ reactions toward

the robot. Such unstructured interviews allowed customers and workers to articulate

their experience with the robot freely and in their own words.

Additional to participant observation, we used fly-one-the-wall observation. While

participant observations were taking place, the second team member played the role

of the wizard and conducted fly-on-the-wall observations through the supplementary

camera from a distance. Because the wizard was operating the robot and simultaneously

performing fly-on-the-wall observations, the wizard wrote the filed notes after finishing up

each site-visit, or at times of no interactions. The two researchers also counterbalanced

between the roles (observer and wizard) by switching after an hour of the site visit.

The two researchers shared notes were in a spontaneous (non-technical) language

and reflected their reasoning and conclusion. The researchers recorded participants’

interactions and initial theoretical themes. While playing the role of the wizards, the

researchers also recorded the challenges encountered in operating the robot (i.e., getting

the robot stuck in a blind spot). Figure 3.4 shows a sample of a wizard notes and its

reflective nature including the operating challenges.

3.2.3 Data Analysis

To ensure an adequate understanding of the cultural and situational factors, data anal-

ysis consisted of ethnographic theory-building [60] in conjunction with inductive and

deductive qualitative data analysis. The next three subsections cover each in details.

3.2.3.1 Ethnographic Theory Building

To develop the testable theories in this research, we rapidly analyzed the data using

four major steps: identify themes, refine themes, link themes and develop theories (Fig-

ure 3.5). The four steps were repeated twice, once with two researchers and once with

the whole research team. After each visit, two researchers examined the collected textual

data, manually identified the initial themes, and noted them. In this process, the two re-
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(1) Challenges

(2) Interactions

(3) Themes

Figure 3.4: A sample from a wizard notes with callouts to (1)Challenges while operating
the robot, (2)Interactions description, and (3)Themes identification.

searchers asked each others’ questions to justify the reasoning behind each theme, refine

questionable themes, and link the themes to develop theories that answer the research

questions. The two researchers were able to develop 8 theories to propose to the team.

The whole research team had two major meetings to finalize the developed theories.
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Observing the Social Behaviors in the Research Sites
(Using Ethnographic Methods) (4) 

Develop 
Theories(3) Link 

Themes
(2) Refine 

Themes 
(1) Identify 

Themes

Figure 3.5: Our ethnographic theory-building process.

The initial meeting was two weeks into the study, and the research team gathered to

identify and refine prominent themes (Figure 3.5, steps 1 and 2). At this meeting,

the team noticed that some participants took extra measures to help the robot, thus,

the researchers started referring to these behaviors as “caring behaviors”. The second

meeting was four weeks into the study, and aimed to refine the themes, link the themes

and finalize a list of theories (Figure 3.5, steps 2, 3 and 4). At this meeting, the team

interpreted the cultural factors that may predict participants likelihood to help the robot.

The team also eliminated weak themes such as using the perceived age and gender of

participants, since they might introduce biases.

3.2.4 Inductive Data Analysis

We also analyzed all the data using three levels of coding: open, axial, and selective.

In open coding, one researcher (the reliability coder) segmented the video footage into

interactions and assigned codes to the observed behaviors. For example, when the cafe

at the ESL ran out of blueberry muffins, a participant went to a nearby store to buy a

muffin for the ChairBot. This behavior was coded as “going to a nearby store” because

it was further than the expected help.

For axial coding, we related the codes to each other using inductive reasoning. We

used inductive reasoning to code the behaviors that stood out from a simple help, labeled

them as “caring” behaviors, and initially categorized them to 5 categories; these were

reduced to 3 categories afterwords.

Finally, we chose the core categories and its subcategories that emerged from the

total 268 interactions with cafe customers for selective coding. For example, we decided

during selective coding the 5 categories for the “caring” behaviors can be regrouped
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to form 3 categories. Additionally in this level we decided that care was a dependent

variable we needed to analyze and report as a subset of help. Table 3.1 shows the finale

set of categories and subcategories of the caring behaviors.

Table 3.1: The categories and subcategories for the caring behaviors.

Category Subcategory

Volunteering Without Request

Helping without ordering
Rejoining to help
Going to a nearby store
Interfering to help
Staff help

Anticipating the Robot Needs

Opting for gourmet options
Substituting to heather
ingredients
Opting for a similar item
Adding Straw
Including napkins
Asking to have the order toasted
Including utensils

Emotional Expression
Affirmation
Patting
Cautiousness

To ensure the reliability of the analysis, another researcher joined the reliability coder

in coding the data. The two independently coded 20% of the video data and reached more

than 80% agreement (counted using MAXQDA 2). Given this agreement, the reliability

coder coded the remaining data.

3.2.5 Deductive Data Analysis

A further dive into the deviations at each research site highlighted three situational

factors. We used deductive reasoning to code these factors since no specific behavioral

observations or patterns recognition needs to be established. For example, identifying

Food Items and its levels { Grab and Go, Drink Order, Meal Order } as a situational fac-

2MAXQDA is a software program for computer-assisted qualitative and mixed methods data analysis
in academic and scientific settings.
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tor to assess the impact of preparation time for each food item on how likely participants

help or care for the robot. We also used this top-down approach to why participants

helped and cared for the robot.

3.3 Results

3.3.1 How Much Helping and Caring

268 3 different participants interacted with the robot. We defined an interaction as

any encounter the robot had with a person while when it approached them with a help

request or got their attention. If the targeted person did not look at the robot while it

was in motion, we considered that as one-sided and not an interaction.

25% of participants who interacted with the robot also helped it. Participants helped

the robot by buying the requested item it was asking for. Refusing to help the robot

was either by ignoring the robot, stopping the interaction midway, or using any means

of communication channels to indicate an unwillingness to help. Examples of the com-

munication channels included shaking their head at the robot, saying “NO”or that they

are busy. In a single extreme case, one participant picked up the robot and moved it out

of their way.

A subset of “helping” was “caring”. 60% of participants who helped the robot went

above and beyond just giving it what it wanted, demonstrating a level of care for the

robot (recall Table 3.1). Caring behaviors had three main categories: (1)volunteering

without request, (2)anticipating the robot’s needs, and (3)encouraging the robot with

positive statements or gestures. A peer-reviewed video with clips of theses behaviors is

available [22], and Figure 3.6 shows some caring behaviors.

The most common category of caring behaviors was volunteering without request

(18/41). The behaviors in this category included: placing and picking up the robot

order without buying anything from the cafe (Figure 3.6a) and rejoining the order line

after leaving the cafe. Some participants went to a nearby market to help, when a food

item was sold out in the ESL school cafe. Five other participants took the initiative to

help when noticing that the current participant is not taking action toward placing an

3To compare different levels of each cultural and situational factor, each participant was only exposed
to a single level of each factor in a between-subjects (or between-groups) design fashion.
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(a) A participant volunteering to help
without purchasing any food item

(b) A barista leaving the pickup counter
to place the food item on the robot

(c) A participant adding a straw and nap-
kins to the requested drink item

(d) A group of participants cheering for
the robot after helping

Figure 3.6: Four Examples of Caring Behaviors: (a) and (b) volunteering to help, (c)
anticipating the robot needs, and (d) emotional expressions.

order. In some cases, cafe staff volunteered to help by leaving their position behind the

register, placing the order, picking it up, and then putting it on the robot (Figure 3.6b).

Participant’s anticipation of the robot needs was the second category caring behaviors,

based on frequency (13/41). Considering that most participants were placing orders at

a cafe shop themselves, this category included opting for gourmet option, substituting

an ingredient with a healthier one, and picking up complimentary items(Figure 3.6c). In

an interview with a participant who ordered a gourmet berries tea instead of a standard
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iced tea, the interviewee stated that they had never had this tea before but opted for

it because it sounded like flavorful and refreshing summer beverage. Such behaviors

showed that people were willing to go the extra mile to help the robot, instead of Just

Do The Work.

The third category of caring behaviors was participants usage of emotional expression

while interacting with the robot (10/41). This category included affirmative gestures

and statements of encouragement such as patting on the robot, writing a positive letter

on a napkin, and even cheering for the robot (Figure 3.6d). Participants used these

expressions to confirm that they purchased the item and that the robot is ready to go.

There were also a few participants who leaned on the cautious side and apologized to

the robot itself when placing the wrong order or misplacing the reminding change.

3.3.2 The cultural and situational factors for predicting participants

likelihood to help and care for the robot

To answer RQ Inclusivity about the cultural and situational factors that predicted

participants likelihood to help and care for the robot, we analyzed the diverse charac-

teristics of the 268 interactions (recall 3.3.3 Data Analysis). In this study, we used R

as a language and environment to statistically predict participants’ likelihood to help

and care for the robot. The dependent variables were help and care , and independent

variables were the six cultural and situational factors. Chi-square tests predicted the

statistical significance of each factor, and a simple logistic regression ,GLM4, predicted

the statistical significance of each level within a factor. We considered a P<.05 signif-

icant*, P<.01 significant** and P<.001 significant***. This subsection defines, lists,

and reports the cultural factors followed by the situational ones.

Cultural Factors

Cultural Factor is an ethnographical term refers to the shared patterns of behaviors

and norms in a social group and are linked to local sets of social-atmosphere and condi-

tions [4, 16]. The three cultural factors in this study were: Social Atmosphere, Worker

Attitude, and Architecture (Table 3.2).

4GLM stands for Generalized Linear Model, a simple version of logistic regression for predicting cate-
gorical/binary outcomes. For example, predicting class’s effect (the predictor) on the Titanic passengers’
survival (the binary outcome).
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Table 3.2: The three cultural factors and its levels.

Factor Levels Research Site

Social Atmosphere

Work Mood Business School Cafe

Mixed

Library Cafe

Engineering Cafe

Student Union Cafe

Playful
Dining Hall Cafe

ESL School Cafe

Worker Attitude

Friendly

Engineering Cafe (Visit#1)

Dining Hall Cafe (Visit#1)

ESL School Cafe (Visit#1)

Neutral

Library Cafe (Visit#1)

Dining Hall Cafe (Visit#2)

ESL School Cafe (Visit#2)

Student Union Cafe (Visit#1)

Engineering Cafe (Visit#2)

Business School Cafe (Visit#2)

Unfriendly

Business School Cafe (Visit#1)

Student Union Cafe (Visit#2)

Library Cafe (Visit#2)

Architecture

Self-Contained
Business School Cafe

Student Union Cafe

Semi-Open
ESL School Cafe

Library Cafe

Open Space
Dining Hall Cafe

Engineering Cafe

The first cultural factor, Social Atmosphere, referred to the overall mood of a cafe

that influenced its norms and its levels were: { Work Mood, Mixed, Playful }. Social

atmosphere was a significant factor in predicting participant’s likelihood to help ( X2

(2,268)=10.802, p = 0.004** ) and care for ( X2 (2,268)=7.4627, p = 0.023*) the robot.

Figure 3.7 shows that out of the three social atmospheres the Mixed and Playful ones
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exhibited the most instances of help and care compared to the Work Mood.

p=0.004**

p=0.023*

Figure 3.7: Average percentage of help and care interactions sectioned by the three
levels of social atmosphere { Work Mood, Mixed, and Playful }.

The simple logistic regression test showed participants in the Mixed and Playful social

atmospheres have higher odds (4.33 and 3.57 more times respectively) of helping the

robot compared to participants in the Work Mood social atmosphere (Table 3.3). In

the playful ESL school, where international students live and study, the robot’s presence

worked as a special event for them, especially during their first visit. The ESL students

took videos and pictures of the robot and even interacted with the robot before the study

began. After one student read the sign, they told the robot “Ok, come on. I will buy

you a muffin! Can you follow me? Wow, you can follow me.” Table 3.3 shows the odds

of participants caring for the robot in the Playful social atmosphere were 3.64 times

more than in the Work Mood social atmosphere. For instance, in the playful dining hall,

three of the interactions were made by participants who had rejoined the physical area

where the robot was wandering. One student said,“Oh, no one wants to buy a tea for

you? I’ll do it for you.” On a different example, a woman who passed by the robot at

first but doubled back to help, saying “Okay, I will buy you the chips, but you should

go for a healthier option next time, okay?” All of these examples were distinct from

the serious and work-like business school cafe where only 5 participants took the time

to help the robot. This result suggests Design Implication #1: Help-seeking robots

should ask for help where the predominant behavioral norms are socially oriented rather

than serious.
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Table 3.3: The p values and odds of participants helping (Top in Blue) and caring
(Bottom in Orange) for the robot sectioned by the three levels of social atmosphere {
Work Mood, Mixed, and Playful }.

Level P Value Estimate Std. (β) Odds (eβ)
Work Mood (ref.) <.001 *** -2.2618 0.10
Mixed 0.004 ** 1.4660 4.33
Playful 0.015 * 1.2714 3.57
Work Mood (ref.) <.001 *** -2.5055 0.08
Mixed 0.333 0.5692 –
Playful 0.024 * 1.2925 3.64

The second cultural factor was worker attitude, and referred to cafes’ staffs’ friendli-

ness towards the robot and its levels were: { Friendly, Neutral, Unfriendly }. Worker’s

attitude was a significant factor in predicting participant’s likelihood to help ( X2

(2,268)=6.4448, p = 0.039* ) and care for ( X2 (2,268)=11.239, p = 0.004**) the

robot. Figure 3.8 shows participants helped and cared for the robot more when the

worker’s attitude toward the robot were friendly and natural compared to when the

attitude was unfriendly.

p=0.039*

p=0.004**

Figure 3.8: Average percentage of help and care interactions sectioned by the three
levels of Worker Attitude { Friendly, Neutral, Unfriendly }.

The simple logistic regression test, however, did not support the previous numerical

observation showing that only Friendly worker’s attitude predicted participant’s likeli-

hood to help and care for the robot (Table 3.4). This result can be explained by Sauppe
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et al. observation that workers relate to robots as a social entities and operators with

them as adjacent coworkers [73]. Mutlu et al. also found that when organizations adopt

a beyond-WIMP system such as service robots, the robots impact the social dynamic and

workload of the field workers, which in turn contribute to possible positive or negative

reactions and attitudes toward the robot [54]. Based on the observations and numeri-

cal data during the two library visits were workers shifted from friendly at Visit#1 to

friendly at Visit#2, we infer that this theory would be interesting to explore further in

a more controlled setting. This result suggests Design Implication #2: People would

help robots if the people working around the robot have positive reactions and responses.

Table 3.4: The p values and odds of participants helping (Top in Blue) and caring
(Bottom in Orange) for the robot sectioned by the three levels of worker attitude {
Friendly, Neutral, and Unfriendly }.

Level P Value Estimate Std. (β) Odds (eβ)
Friendly (ref.) <.001 *** -1.1474 0.32
Neutral 0.359 0.2872 –
Unfriendly 0.102 -0.9628 –
Friendly (ref.) <.001 *** -2.1068 0.12
Neutral 0.055 0.7787 –
Unfriendly 0.169 -1.4767 –

Architecture was the third cultural factor and referred to the spatial characteristics of

a cafe, be it contained with opaque walls, semi-open, or open without being barricaded.

Thus, the levels were { Self-Contained, Semi-Open, Open Space }. Figure 3.9 shows that

the Cafe’s architecture was a significant factor in predicting participant’s likelihood to

help the robot ( X2 (2,268) = 9.168, p = 0.010*) but not care ( X2 (2,268) = 3.6413,

p = 0.162).
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p=0.010*

p=0.162

Figure 3.9: Average percentage of help and care interactions sectioned by the three
levels Architecture { Self-Contained, Semi-Open, Open Space }.

The simple logistic regression test showed the odds of participants helping the robot

in a Self-Contained cafe were 0.15 times lower than Semi-Open and Open Spaces (Ta-

ble 3.5). We inferred that semi-open and open spaces were suited for informal social

gatherings where giving a thumbs up to a robot is not outside the social norms. The

dining hall’s cafe, for example, is located at the corner of a first-floor food court in a stu-

dent housing facility where it is common for students to study, unwind, and even watch

TV. In contrast, the self-contained business school’s cafe where helping the ChairBot

garnered others’ attention, and many participants did not appreciate the stares or scru-

tinizing glances. The simple logistic regression test also showed that odds of participants

caring for the robot were only significant in the Self-Contained spaces (Table 3.5). This

result suggests Design Implication #3: help-seeking robots can ask for help in places

where people are chilling and unwinding rather than engaged.
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Table 3.5: The p values and odds of participants helping (Top in Blue) and caring
(Bottom in Orange) for the robot sectioned by the three levels of architecture { Self-
Contained, Semi-Open, Open Space }.

Level P Value Estimate Std. (β) Odds (eβ)

Self-Contained (ref.) <.001 *** -1.8718 0.15

Semi-Open 0.005 ** 1.1580 3.18

Open Space 0.017 * 0.9438 2.57

Self-Contained (ref.) <.001 *** -2.2736 0.10

Semi-Open 0.289 0.5444 –

Open Space 0.069 0.8344 –

Situational Factors Situational factor is another ethnographical term that refers

to minutely and opportunistically constructed conditions of a setting where moment-by-

moment social interactions are embedded. In our study, each interaction between the

robot and a participant had 3 situational factors: The type of the requested food item,

the robot approaching styles, and the number of people in an interaction (Table 3.6).

Table 3.6: The three situational factors and its levels.

Factor Level Examples

Food Items

Grab and Go Bakery or pre-packaged goods
Drink Orders Coffee, tea, or smoothie
Meal Orders Grilled sandwiches or wraps

Robot Approaching Style
Pushy Address and repeat at list twice
Subtle Address and repeat at most twice

Number of people
Individual Single person
Group Two or more people

To investigate the influence of different cafes’ different menu items, the robot ordered

a variety of food items from each cafe. This helped us assess the impact of preparation

time for each food item on how likely participants help or care for the robot. Food item,

the first situational factor, was categorized as { Grab and Go, Drink Order, Meal Order

} based on preparation time. Grab and go orders required no preparation time, drink

orders required some preparation time, and meal orders referred to advanced food items

that required longer preparation time.

While the numerical distribution of helping and caring instances in Figure 3.10 shows

that most participants helped the robot when it asked for grab and go item, the chi-
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square test showed that food item was not a significant factor in predicting participant’s

likelihood to help the robot ( X2 (2,268) = 4.7662, p = 0.092) or care for it( X2

(2,268) = 3.71, p = 0.157). This result contradict our initial theory that time allocation

influenced participates likelihood to help and care for the robot. We suggests that the

theory about time allocation would be interesting to explore further in a more controlled

setting, similar to how [67] investigated the influence of request time and repetition on

participates likelihood to help the robot.

p=0.092

p=0.157

Figure 3.10: Average percentage of help and care interactions sectioned by the three
levels of Food Items { Grab and Go, Drink Order, Meal Order }.

The second situational factor was the robot’s approaching style and referred to the

robot’s Motion characteristics, where the robot could either be { Subtle, Pushy }. When

the robot was pushy, it addressed a participant and repeated the help request at least

twice, but did not stop requesting help until the participant showed signs of refusing

to help. If the participant pulled out the clipped cash, the robot span in a happy-like

dance. On the other hand, the subtle-approaching ChairBot addressed a participant and

repeated the help request at most twice. If the participant pulled the clipped cash, the

robot accompanied the participant to the register.

Figure 3.11 shows that the robot’s approaching style was a significant factor in pre-

dicting participant likelihood to help the robot ( X2 (2,268) = 4.7867, p = 0.029 *) but

not care for it (X2 (2,268) = 3.5945, p = 0.058). The simple logistic regression test

showed the odds of participants helping a the Subtle robot were 0.25 times lower than

when it was Pushy(Table 3.5). While the robot’s approaching style was not a significant
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factor in predicting participant likelihood to care for the robot, numerically participants

cared for the pushy robot more than the subtle one by customizing the order to include

healthier options such as ordering a crepe without cream. Even participants who did not

help the pushy robot expressed a sense of care saying “Sorry, I’m in a hurry.” Patting

the robot was another common behavior that more frequently happened with the pushy

robot. Participants engaged more with the pushy robot, such as one participant saying:

“Turn around if you want a muffin!” This result suggests Design Implication #4:

help-seeking robots should be direct and persistent when asking people for help.

p=0.029 *
p=0.058

Figure 3.11: Average percentage of help and care interactions sectioned by the two
levels of Robot’s Approaching Styles { Subtle, Pushy }.

Table 3.7: The p values and odds of participants helping (Top in Blue) and caring
(Bottom in Orange) for the robot sectioned by the two levels of the robot approaching
styles { Subtle, Pushy }.

Level P Value Estimate Std. (β) Odds (eβ)
Subtle(ref.) <.001 *** -1.3952 0.25
Pushy 0.030 * 0.6182 1.86
Subtle(ref.) <.001 *** -2.0557 0.13
Pushy 0.061 0.6496 –

The third situational factor was the number of people in the interaction. The real-

world nature of the study did not exclude anyone from interacting with the robot, and

we identified two levels for this factor{ Individual, Group }. Similar to [27, 71], the

term groups referred to “two or more individuals who are apparently connected by a
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social relationship before interacting with the robot.” Participants exhibited caring

behaviors toward the robot when alone than in groups of two or more participants

(Figure 3.12). However, this was not a statistically significant factor for predicting

participant’s likelihood to help ( X2 (2,268) = 0.025043, p = 0.874) or care for the

robot (X2 (2,268) = 0.0021311, p = 0.963). We infer that this result would be interesting

to explore further by collecting data about group dynamics. This inference is concurrent

with Sebo et al.’s argument that when interacting with robots, groups exhibit behaviors

that differ from individuals, especially in decision-making behaviors [75] such as helping

a robotic chair.

p= 0.874
p=0.963

Figure 3.12: Average percentage of help and care interactions sectioned by the two
levels of Number of People { Individual, Group }.

3.3.3 Why participants helped and cared for the robot

When answering RQ Reasons, about why these diverse participants ended up helping

and caring for the robot, participants had varying 3 main reasons for their behaviors:

(1) Amusement/Curiosity, (2) Helping other people, and (3) Increase revenue.

(1) Amusement/Curiosity Some participants were amused by their interaction

with the ChairBot, even if they had seen it before. At the engineering school, where

researchers performed two previous ChairBot studies, the cafe manager introduced the

robot to the customers as a “regular customer” and encouraged customers to interact

with it. The employee told a customer, “This little guy gave me a candy last Halloween,
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and this time it is asking me to buy a coffee, haha, how fun!” Some participants were

also curious about how the robot worked. In one instance, two students jointly tested

the robot’s perception and path planning by moving around the robot, then went to the

researcher asking technical questions “Does the robot see people or have object detection

functionalities? How does the robot realize if it has received food?”

(2) Helping other people Some participants helped the robot to help the research

team. Other reasons for assisting the robot included a desire to help the person behind

the robot. For example, a student who was going through his mid-term said: “I imagined

that a student who is preparing a mid-term had sent the robot to the cafe to buy food.

I wanted to help the busy student.” Similarly, a participant came to the researcher after

helping the robot and stated: “I didn’t help the robot but you, a researcher who is

running this study. I also do my own experiments as a graduate student, and I know

how hard it is. If I didn’t notice you, I wouldn’t help the robot.”

(3) Increase revenue Finally, some cafe staff helped the robot to promote their

business and increase revenue. For example, the cafe manager at the library said she

wanted to help the robot as long as it garnered customers’ attention and increased

revenue. The manager at the dining hall said that he wanted to have the robot in as

long as it increased revenue and brought joy. A staff member followed his comment: “Oh

you are talking about Charles, we call him Charlie the chair here. Look at our customers

enjoying watching the robot. I think this little one is helping develop a good mood in

this cafe, and I wanted it to get help to keep amusing people.”

In conclusion, this chapter showed that inclusivity is relevant to beyond-WIMP user

interfaces. We investigated the inclusivity requirements in terms of culture and situa-

tional factors that predicted diverse peoples likelihood to help and cared for a robot in

diverse locations. The next chapter examines the ability of an inclusive software design

method for evaluating and redesigning a multiple robot controller.
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Chapter 4: Examining the Capability of an Inclusive Software

Design Method for Evaluating and Redesigning a Multiple Robots

Controller

The previous chapter demonstrated the applicability of inclusive software design as an

approach to evaluate the inclusivity of a beyond-WIMP robotic chair in the role of a

help-seeking; however, what about the applicability of inclusive software design methods

devised for WIMP UIs? Can an inclusive software design method be copy-cat to evaluate

a beyond-WIMP UI?

Toward that end, this chapter evaluates the inclusivity of beyond-WIMP UIs that

control multiple robots, empirically and analytically, using the GenderMag method (re-

call Chapter 2). We selected GenderMag as our inclusive software design method be-

cause previous work established the importance of accounting for gender differences in

problem-solving styles when developing UI for interacting with robots [77]. More specifi-

cally, Showkat et al. and Balali et al. suggested that supporting some of the GenderMag

facets could be valuable in creating inclusive robotic systems [77, 3].

We started with a touch-based (physical) controlling UI that allows multiple robots

to move. We then ran an empirical lab study with 12 participants to collect data for two

GenderMag facets and how they played out with participants’ usage of the robotic UI.

We then conducted an analytical evaluation to find the inclusivity issues for the complete

set of GenderMag’s facets. We finally redesigned the touch-based controlling interface

and added an additional mobile UI that addresses the reported issues.

The context in this chapter is furniture arrangement with the robot from the previous

chapter—ChairBot. We chose furniture arrangement because robotic chairs that auto-

matically relocate could reduce the time and energy associated with organizing social

events if they have a functional controlling interface for diverse end-users. The beyond-

WIMP controlling interface here is fundamental to providing the initial instructions,

setting operational timing, and teaching the robots. Designing beyond-WIMP UIs are

challenging since users have to operate multiple robots based on knowledge similar but
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not equivalent to ordinary non-robotic chairs.

We chose furniture arrangement as a study context to evaluate the inclusivity of the

beyond-WIMP controlling interface using GenderMag and framed the research questions

around the inclusivity requirements as follows:

RQ Issues: What issues must the ChairBots controlling interfaces eliminate to be

inclusive?

RQ Styles: What diverse arranging styles must the ChairBots controlling interfaces

support to be inclusive?

We also added a research question to assess the functionality of the interface by

comparing the performance of the ChairBots to no-robotic chairs as follows:

RQ Performance: What do people think of the ChairBot in terms of Mobility,

Ease of Use, and Enjoyability?

The utilization of GenderMag in this chapter revealed the capability of inclusive

software design methods that have been devised for WIMP UIs to be used effectively

to evaluate and redesign beyond-WIMP UIs. Our empirical results revealed that all

usability issues with the touch-based (physical) UI must eliminate to ensure gender

problem-solving inclusivity and the “Invisible Elements” usability issue had the most

pressing bias percentage. Additionally, of the four arranging styles the participants

used, “One-by-One” was the most utilized among gender problem-solving styles. These

findings guided our redesign decision and steered our journey to inclusive software design

for beyond-WIMP UIs.

4.1 Empirical Study

4.1.1 Methodology

To investigate the inclusivity of the ChairBot with end-users, we used the only version of

the robot with attached touch sensors as an end-user UI. The touch sensors communicates

with the chair base (gray base at the bottom of each chair in Figure 4.1), which is how

users can make the chair moves. In this empirical study, the touch sensors enabled

participants to instruct the chair by touching it to go forward, backward or rotate in

place. Also, we sat up the ChairBots to allow people to send the same motion command

to one or several robots.
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Figure 4.1: Schematic diagram of a ChairBot with 6 adhered touch sensors. 1,2: Turn
Left, 3,4: Turn Right, 5: Go Backward, 6: Go Forward, 7: Turn the robot On/Off, 8:
LED indicator, and 9: Turn All robots On/Off

We conducted a 2x2 mixed study for 12 participants to arrange both robotic and

non-robotic chairs around either an empty space and/or a table. The participants were

18 - 35 years of age and their gender varied (six men, five women, and one gender non-

conforming). We had two counterbalanced independent variables. The first independent

variable was chair type, with ChairBots and non-robotic chair type being the same model

of chairs on casters (Figure 4.2a). The other independent variable dictated the space

around which the participants arranged the chairs: two preset tables or an empty space

(Figure 4.2b). The order in which a user interacted with the chair types varied for each

user such that half interacted with the Robotic chairs first(Table. 4.1). Using a 1-5 Likert

scale (1=None and 5=Expert), only one participant identified themselves as an expert

with robots while the majority described themselves as competent (M=2.58, SD=1.31).

In this thesis we only analyzed the data around the first independent variable—chair

type to answer RQ Performance.

Non-Robotic Robotics Chairs
Empty Space N=5 N=7
Around Table N=7 N=5

Table 4.1: We recruited participants and divided them between two independent vari-
ables (chair type and space type)
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(a) (b)

Figure 4.2: (a) A close-up on the ChairBot and non-robotic chairs participants were
asked to arrange. (b) A participants arranging the chairs to face each other using touch
sensors while the researcher at the back taking notes

The study procedure consisted of a consent form, orientation to a Think Aloud pro-

tocol1, and two chair arrangement sessions corresponding to the study conditions. For

each session, we gave participants a set of 3 chairs followed by a scripted tutorial to

demonstrate the relevant chair type’s functionality. Once the participants finished an

arrangement session, they were asked to fill out a short survey about their experience.

Since we asked participants to Think Aloud by verbally expressing their thoughts and

reactions, before their first session, the participants practiced by talking through esti-

mating how many windows were in their homes. At the end of the two chair arrangement

sessions, we conducted semi-structured interviews with each participant focusing on their

expectations from the robots and the issues they faced.

During the empirical study, we collected verbal and behavioral data. We collected

behavioral data through our analysis of the video-recorded study area (i.e., participants’

actions). We also collected verbal data from the Think Aloud, surveys, and interviews

with the participants.

We analyzed the data in three steps. First, we transcribed the study sessions and

segmented them by conversational turns (i.e., change of speech). Then, two researchers

1A user-testing method requires participants to verbally comment on what they are doing and thinking
as they complete a task. The method is appropriate for revealing the cognitive processes in which
participants perform tasks and aspects of the user interface that delight, confuse, and frustrate them [34,
30, 45].
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independently coded 20% of the data. We selected the 20% data randomly from 4

different study sessions. Our three code sets covered evidence of two GenderMag facets

(Computer Self-Efficacy and Learning Styles), usability issues faced by the participants,

and chairs arranging styles. The two researchers reached an agreement of 98%(Jaccard

index). Given this reliability, one of the researchers coded the rest of the data as the

last step. Table 4.2 lists these three coded sets and the sources for each.

We used participants’ responses from the survey to analyze the performance of the

robotic and non-robotic chairs based on three factors: Mobility, Ease of Use, and Enjoy-

ability. Participants evaluated each factor using a 1-5 Likert scale (1=Strongly Disagree

and 5=Strongly Agree). The first factor, Mobility, referred to the average of scores based

on how expected, appropriate, and natural the motions were as perceived by participants.

The second factor, Ease of Use, referred to the average of scores based on how obvious,

easy to use, and convenient the chairs were as perceived by participants. and the third

factor, Enjoyability, referred to the average scores based on how likeable, pleasant and

simple the chairs were as perceived by participants.

Table 4.2: The three code sets from the empirical study.

Code Set Data Source Code

Evidence of
GenderMag Facets

Interview, Think
Aloud

Low Computer Self-Efficacy, high
Computer Self-Efficacy, Learning without
Tinkering, Learning by Tinkering,

Usability Issues
Interview, Think
Aloud, Video

Memory Challenges, Invisible Elements,
Accidental Activation, Motion Inaccuracy

Arranging Styles
Interview, Think
Aloud, Video

One by One, Trying Things, Clear The
Stage, Clustering

4.1.2 Results

For the first code set, Evidence of GenderMag Facets, we deductively tied the facets

(Computer Self-Efficacy and Learning Styles) to participates’ verbal data as follows:

• Low Computer Self-Efficacy : If the participant blamed technology failures on

themselves, or mentioned not being good or familiar with technology/robots, or

said it’s hard for them. An example of this code is when we asked P8 about their

overall experience with the ChairBots in the post sessions interview and stated: “It
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was kind of hard . . . Since these are robots, I was afraid I was going to break them.

So, that was kind of like a big worry factor”. 7/12 of the participants in this study

showed low level of Computer Self-Efficacy (confidence) when interacting with the

ChairBots.

• High Computer Self-Efficacy : If the participant blamed technology failures on

the robot or had positive self assessment. An example of this code is when P1

accidentally turned all the ChairBots On instead of a single ChairBot, and was

surprised when all of them moved. P1 startled when all the chairs moved and

stated: “The chairs don’t obey me!” when in fact P1 was the one who accidentally

accidentally activated the Move All feature. 5/12 of the participants in this study

showed high level of Computer Self-Efficacy (confidence) when interacting with the

ChairBots.

• Learning without Tinkering : If the participant adjusted the chairs following a

clear plan or idea. An example of this code can be seen when P4 was arranging

the ChairBots stating: “I’m just going to start doing something simple to see if I

can get both robotic chairs to get tucked in to the other sides of the tables.” Here

P4 verbalized a clear plan and walked us through it. 9/12 of the participants in

this study did not tinker around to learn how to interact with the ChairBots.

• Learning by Tinkering : If the participant experimentally adjusted the chairs with-

out following a clear plan or idea. An example of this code is when we asked P2

about their intentions in the first arrangement session, P2 stated: “I don’t know,

when I have a robot I tend to be more playful with it because I like tinkering with

stuff.” This example showed that the participant’s was tinkering around without

following a clear idea about where each robot should be. 3/12 of the participants

in this study tinkered around to learn how to interact with the ChairBots.

We identified a second code set, Usability Issues, independently of the first code

set so as to later look for co-occurrences. Usability Issues referred to the 44 issues the

participants faced when arranging the ChairBots. We inductively grouped these issues

into 4 codes and labeled them using the UI Tenets and Traps cards [49] (Figure 4.3) as

follows:
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Figure 4.3: The distribution of the issues participants faced

• Accidental Activation: If the participants were confused about activating the single

or multiple robots. The robotic chairs can be switched to a group mood that allows

participants to move them together, yet (5/44) 11% of the issues occurred due to

accidental activation of these two sensors (7 and 9 in Figure 4.1). For instance, P1

accidentally turned all the ChaiBots On and was startled when they moved. We

considered this instance and other similar ones a usability issue because the two

touch sensors were placed too close to each other, making participants prone to

accidental activation and resulting in an unintended robot motion.

• Memory Challenges: If the participants had to recall turning the ChairBots On/Off.

P11, for instance, had finished orienting a ChairBot, turned it Off, then tried mov-

ing to the second ChairBot. When the second ChairBot did not move, P11 said,

“I’m not thinking of turning [the robots] On and Off. I remember the Off but

not On.” We considered this instance a usability issue since the robots required

the participants to recall toggling between On/Off, challenging how they are used

to interacting with everyday objects that do not move after placing them. This

usability issue occurred only (6/44) 14% of the time.
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• Invisible Elements: If the participants touched/triggered the wrong sensor. Since

the sensors did not have any visible functionality cues (labels) or physical afford-

ability, participants often forgot the directional movement attached to each sensor.

P5, for instance, stated: “I think before when I pressed on this one [sensor#4], it

went to the right instead of this way [left].” Here P5 thought the sensors worked

differently in different ChairBots, forgetting that they were using two different

sensors. P5’s confusion showed that participants needed visual cues to signal the

directional movements of each sensor rather than learning to overcome its absence.

This usability issue occurred (14/44) 32% of the time.

• Physical Challenge: If the participants wrestled to place the chair accurately be-

cause of the predefined motions. To increase the speed of the robots, the ChairBots

had a predefined set of motions that allowed it to move forward/backward 100 mm

and rotate right/left 45 degrees per touch with a 5 degrees margin of error, yet

(19/44) 43% of the issues faced by the participants had to deal with this error.

P9, for instance, stated: “ . . . I had a job for six years arranging tables and chairs,

and my boss was very serious about [accurate placements]. [The boss] would come

in, and all the chairs must be in a perfect line . . . , and if it wasn’t right, [The

boss] would fix it.” We considered this instance and similar ones a usability issue

because it was difficult for P9 to ultimately place the robots with 100% accuracy,

as they wanted.

To answer RQ Issues we segmented the data from the second code set, Usability

Issues, by the first code set, Evidence of GenderMag Facets, such that the issues are

grouped by participants’ GenderMag Facets (Table 4.3 and Table 4.4). The segmentation

showed the UI must eliminate all 4 issues to be inclusive and the Invisible Elements issue

had the highest percentage of bias compared to the the other issues.

The last column (Issues%) in Table 4.3 shows all four Usability Issues were encoun-

tered by at least one participant’s with high-self efficacy (blue) and one participant’s

with low-self efficacy(orange). Out of the four Usability Issues {Accidental Activation,

Memory Challenges, Invisible Elements, and Physical Challenge}, (8/12) participants

faced the Invisible Elements issue, and participants with high self-efficacy (blue) were

less likely to face that issue than participants with low self-efficacy (orange). An example

of the Invisible Elements issue is a participant touching the backward sensor instead of



41

the forward leading to triggering unintended backward motion. The fact that a given

chair might not move as a participant expected was not comfortable for those with low

self-efficacy and affected their confidence in performing the task of making an arrange-

ment. This observation is consistent with Showkat et al. [77]’s high self-efficacy resulted

in high task success and lower task completion time when compared to low self-efficacy.

Table 4.3: The usability issues grouped by evidence of participant’s Computer Self-
Efficacy: High and Low .

Computer Self-Efficacy
Issues%High Low

P2 P1 P6 P9 P7 P10 P5 P3 P11 P8 P4 P12

Accidental
Activation

∗ ∗ ∗ ∗ ∗ 40%,
43%

Memory
Challenges

∗ ∗ ∗ ∗ ∗ ∗ 69%,
43%

Invisible
Elements

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 40%,
86%

Physical
Challenge

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 80%,
71%

Additionally, Table 4.4 shows participants who did not tinker around with technology

(orange) were likely to encounter the Invisible Elements issue. None of the tinkering

participants (blue) faced the Invisible Elements issue, suggesting that they regarded it

as an anticipated motion and adapted the arrangement around it. For example, P5,

who was not a tinkerer, asked the facilitator to guide them through which sensor to use

even after the initial tutorial: “ Which one should I press? So that the robot can move

forward . . . [after moving the ChairBots forward] So these two [sensor#3 and sensor#4

in Figure 4.1] are doing the same thing? These two corners are doing the same thing?

If I push on this side it does the same thing?”

For the third and last code set, Arranging Styles, we inductively derived 4 unique

codes from a total of 74 instances of arrangement styles with both types of chairs (Fig-

ure 4.5). Theses code sets were: One By One, Trying Things, Clear The Stage, and

Clustering. The most used arrangement style was One By One and the least used was

Clustering. All 12 participants used the One By One style for at least a part of their

session.

The first and most used arrangement style One By One refers to instances where

participants moved chairs one by one to the final position (Figure 4.5d). While this
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Table 4.4: The usability issues grouped by evidence of participant’s learning Styles:
With Tinkering and Without Tinkering .

Learning Styles
Issues%With Tinkering Without Tinkering

P2 P1 P9 P10 P5 P3 P11 P6 P8 P7 P4 P12

Accidental
Activation

∗ ∗ ∗ ∗ ∗ 67%,
33%

Memory
Challenges

∗ ∗ ∗ ∗ ∗ ∗ 67%,
44%

Invisible
Elements

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0%,
77%

Physical
Challenge

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 100%,
67%

Figure 4.4: The distribution of the arranging styles participants used

style might be time-consuming with more chairs, all participants found the style handy,

especially when they already knew how they wanted the chairs to be oriented or when

they had moved the chairs to their final destination. Participants used this arrangement

style (37/74) 50% of the times.

The second style, Clear The Stage refers to instances where participants cleared

other furniture objects that might be hazardous (i.e., tables and other chairs) before

attempting to move the desired chair. This style was beneficial to navigate around

tighter areas or when colliding with other furniture was inevitable (Figure 4.5c). P1, for

instance, explained their tendency to use Clear The Stage style to avoid “hitting other

expensive or sentimentally valued furniture objects”. This perhaps explains the higher
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(a) Clustering

(b) Trying Things

(c) Clear The Stage

(d) One by One

Figure 4.5: Visual description of the four Arranging Styles participants used.

occurrences (17/74) of using the Clear The Stage style when arranging chairs around

tables compared to the open space.

Trying Things was the third arranging style and related to instances where partici-
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pants moved chairs to several positions before settling on a final position (Figure 4.5b).

As the name suggested, participants used this style when the overall arrangement was

not precisely pictured. P5, for example, used this style five times in the open space to

organize what he referred to as an office-like group activity with a leader and 2 mem-

bers. While P5 verbalised their intentions for the arrangement, P5 spent extra time

trying out several positions and orientations of a specific chair—the group’s leader chair.

Participants used this style (14/74) 19% of the times.

Clustering, the least used style (6/74 8%), refers to instances where participants

moved chairs closer to the final desired position (Figure 4.5a). This arrangement style is

very similar to how people sort objects, yet the lower number of chairs and the tight lab

space did not encourage users to use this arranging style much compared to the prior

three.

To answer RQ Styles we segmented the data from the previous code set, Arranging

Styles, by the first code set, Evidence of GenderMag Facets, such that the styles are

grouped by participants’ GenderMag Facets (Table 4.5 and Table 4.6). The segmentation

showed the UI must support all 4 arranging styles to be inclusive and One-by-One was

the most utilized among gender problem-solving styles.

The last column (Styles%) in Table 4.5 shows all four Arranging Styles were used

by at least one participant’s with high-self efficacy (blue) and one participant’s with

low-self efficacy(orange). Out of the four Arranging Styles {One By One, Clear The

Stage, Trying Things, and Clustering}, all participants used the One by One style,

and participants with high self-efficacy (blue) were more likely to use several styles

compared to participants with low self-efficacy (orange). Additionally, the table shows

(4/5) participants with high self-efficacy (blue) were more likely to use the Clustering

style compared to participants with low self-efficacy (orange). This results show that to

maintain the inclusivity of the UI, all 4 arranging styles must be supported especially

the one by one and clustering styles.

This trend is also noticeable with tinkering (blue) participants who used almost

all arranging styles compared to participants who did not tinker (orange). Table 4.6

shows (2/3) participants who tinkered (blue) used all arranging styles, suggesting that

the robot controlling interface must provide both low and high levels of controlling

functionalities to be usable for diverse users. Additionally, the robot controlling UI must

continue supporting two arranging styles, Clear The Stage and Trying Things, since
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Table 4.5: The arranging styles grouped by evidence of participant’s facet values: High

and Low Computer Self-Efficacy

Computer Self-Efficacy
Styles%High Low

P1 P9 P6 P2 P7 P8 P3 P4 P5 P12 P10 P11

One by
One

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 100%,
100%

Clear The
Stage

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 80%,
57%

Trying
Things

∗ ∗ ∗ ∗ ∗ ∗ ∗ 60%,
57%

Clustering ∗ ∗ ∗ ∗ ∗ 80%,
14%

participants who tinkered (blue) were likelier to use them than participants who do not

tinker (orange). This result echoes the description of GenderMag’s Learning facet (recall

Chapter 2), suggesting tinkering tendencies accompany exploring and experimenting with

the technology.

Table 4.6: The arranging styles grouped by evidence of participant’s facet values:
With Tinkering and Without Tinkering learning Styles

Learning Styles
Styles%With Tinkering Without Tinkering

P1 P9 P2 P8 P6 P3 P7 P5 P4 P12 P10 P11

One by
One

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 100%,
100%

Clear The
Stage

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 100%,
55%

Trying
Things

∗ ∗ ∗ ∗ ∗ ∗ ∗ 100%,
44%

Clustering ∗ ∗ ∗ ∗ ∗ 66%,
33%

To answer RQ Performance we looked at how the participants ranked the robotic

and non-robotic chairs. Overall participants ranked the non-robotic chairs higher in

terms of mobility, ease of use, and enjoyability (Figure 4.6). The lowest ratings of the

robotic chairs were for mobility and usability. For example, P7 stated, ”The non-robotic

chairs felt natural to push and pull. The robots moved successfully but required a bit

of patience.” Perhaps the learning curve and 180 degree robotics wheels reduced the
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ranking of the robotic chairs compared to the non-robotic ones. While this result has

nothing to do with inclusive software design (center of the thesis), it gave us ideas what

needs to be fixed to make the robots more usable.

Figure 4.6: The ratings of the Non-Robotic vs. Robotic chairs in terms of Mobility,
Ease of Use, and enjoyability. These ratings correspond to a 5-point Likert Scale averaged
(mean) answers from all participants.

4.2 Design Remedies

To address the usability issues from the empirical study, we redesigned the physical

interface (Figure 4.7a and Figure 4.7b) and added an additional mobile one (Figure 4.7c

and Figure 4.7d) . In this section we will cover the design changes based on the usability

issues and arranging styles.

For the new physical interface (Figure 4.7a and Figure 4.7b), we addressed the phys-

ical challenge issue by replacing the copper-based sensors with padded force sensors,

providing realistic interactions and precise motions. Additionally, and to partially ad-

dress thememory challenges issue, we removed sensor#7 and the LED light, and replaced

them with a push button indicating if the chair is On or Off (Figure 4.7b). While this

new button did not prevent users from recalling if the chair was On or Off, the button

served as a visual cue and were externally consistent with home appliances and tech-

nology gadgets. We also added a switch button for users to toggle, but not that easily,

between the move all or one feature (Figure 4.7b). The switch was intentionally different

from the prior On/Off one to avoid accidental activation. Finally, we decided to address
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(a) (b)

(c) (d)

Figure 4.7: (a)A lab member testing the updated physical interface (b) A close up of the
updated physical interface showing the On/Off and toggling buttons. (c) A lab member
testing the new digital interface. (d) A close up of the new mobile interface showing the
controlling features for 3 ChairBots

the invisible elements issue by labeling each with a directional arrow. As for the new

mobile interface, we addressed the physical challenge and invisible elements issues with

a live overhead video stream and a visual joystick (Figure 4.7d). As for the memory

challenges and invisible elements issues, we added toggling buttons at the bottom-left

section to switch between chairs.

Considering the findings from the empirical study, we decided to keep the One by

One arranging style in both interfaces (Figure 4.7). As for the remaining 3 arranging

styles we added the ability to integrate geometric knowledge of the space to the mobile
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interface(Figure 4.7(d)). This new snap-to-geometry feature allowed users to command

the ChairBots movement relative to the geometry of the room or its objects (e.g., parallel

to a table). snap-to-geometry can be defined for room-centric geometries relative to the

walls of the room, or furniture-centric geometries relative to an object in the scene. This

feature would also help solving the physical challenge issue from the second code set.

4.3 Analytical Study

4.3.1 Methodology

We followed the empirical study with an analytical study using GenderMag’s walk-

through to evaluate the inclusivity of the same robotic UI in Figure 4.1. We chose this

sequence of studies because we noticed that we can’t find all gender

We intentionally used the UI in Figure 4.1 instead of the updated one to validate

the inclusivity biases. Additionally, in the previous empirical study, we used a subset of

GenderMag’s facets similar to [77] while in this analytical study, we run a GenderMag

walkthrough using all facets with a team of three HCI researchers and a software engineer.

All 3 HCI researchers were actively working with the ChairBots, and only one was

familiar with using GenderMag’s walkthrough to evaluate the inclusivity of WIMP UIs.

The software engineer had HCI experience but was not experienced in programming or

building robots.

As in all GenderMag walkthroughs, we (1) chose a persona and customized it,

(2) chose a scenario and listed its subgoals, (3) walked through each subgoal and ac-

tion from the perspective of the persona, a new user, and (4) reported the usability

issues and inclusivity bugs. The persona we chose was Abi (recall Figure 2.2) since it

represents cognitive problem-solving styles that are often overlooked by technology cre-

ators and we customized it to be a business student without HCI or robotics experience.

The scenario plotted Abi as a participant in an empirical study who wants to arrange

a set of three ChairBots around a table to match a provided sketch (Figure 4.8). This

scenario had 2 subgoals and 8 actions, and covered all the features including moving all

ChairBots at the same time.

We walkedthrough each subgoal and action by answering the standard GenderMag

questions. Each subgoal had one question—Will Abi have formed this subgoal as a step
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(a) (b)

Figure 4.8: Overhead view of a study area mimics the empirical study, showing the
starting position (a) and the requested arrangement (b) form the Abi persona.

to their overall goal? (Yes/ Maybe/No, What Facets, and why?) The actions, on the

other hand, had two paired questions. The first question for each action assesses if

the Abi persona would understand if the action is needed to achieve the larger goal

of arranging the ChairBots and was Will Abi know what to do at this step? (Yes/

Maybe/No, What Facets, and why?) The second question for each action assesses if

the Abi persona would understand that they made progress toward achieving the larger

goal (arranging the ChairBots) after they took action, and was If Abi does the right

thing, will Abi know that they did the right thing and is making progress toward their

goal? (Yes/ Maybe/No, What Facets, and why?). By answering these questions (i.e.,

running GenderMag’s walkthrough), we identified a total of seven inclusivity bugs and

one usability issue (Table 4.7).

4.3.2 Results

The analytical study using GenderMag’s walkthrough revealed seven inclusivity bugs

and a usability issue with the UI. The gender problem-solving bias percentage for this
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Table 4.7: The subgoals and actions discussed in the analytical study, and the inclusivity
issues that arose in each.

Item Question ID Revealed

Subgoal#1: Abi wants to move all the ChairBots close to the table S1 Bug 1

Action#1.1: Abi wants to turn all the ChairBots ON
A1a Bug 2
A1b –

Action#1.2: Abi wants to move the ChairBots forward as close
as she can to the table

A2a Bug 3
A2b –

Subgoal#2 Abi wants to move each ChairBot individually to the
correct position

S2 Bug 4

Action#2.1: Abi wants to turn OFF Two ChairBots
A3a Bug 5
A3b –

Action#2.2: Abi wants to adjust the position of the ChairBot
A4a Bug 6
A4b –

Action#2.3: Abi wants to turn the ChairBot OFF
A5a Bug 7
A5b –

Action#2.4: Abi wants to turn the reminding ChairBots ON
A6a –
A6b –

Action#2.5: Abi wants to adjust the position of the ChairBot
A6a –
A6b –

Action#2.6: Abi wants to turn the ChairBots OFF
A6a Issue 1
A6b –

ChairBot’s controlling UI was 38.9% (7/18) with an additional 5.6% (1/18) due to us-

ability only. These percentages of gender and usability biases [36] can be described with

the following equations:

GenderBias =
Number of questions with Maybe & No responses with GM facet

Number of questions answered

UsabilityBias =
Number of questions with Maybe & No responses without GM facet

Number of questions answered

As Table 4.8 shows, the two Abi facet values that were less supported in the physical

interface were computer self-efficacy and learning: by process vs. by tinkering. Specifi-

cally, 75%(6/8) the inclusivity bugs were due to lack of supporting Abi’s low computer

self-efficacy and 62.5% (5/8) Abi’s process oriented learning style. For example, the team

reported that Abi’s low self-efficacy and process oriented learning style might result in

Bug 5 as Abi tries to turn two ChariBots Off. The team justified the answer stating that

the there are plenty of information for Abi to process and recall, which might make the

persona blame herself:
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“Abi may not remember everything from the tutorial and be confused about

what the next step is. . . . Abi needs to process a lot of information about

where to touch the chair for it to move which might make Abi blame herself.”

Table 4.8: The found inclusivity bugs segmented by GenderMag’s facet values for Abi.
∗: The team reported a bug tied to this facet.

Facet
Inclusivity Bugs

Bias%
Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 Bug 6 Bug 7

Motivations ∗ ∗ ∗ 37.5%

Computer
Self-Efficacy

∗ ∗ ∗ ∗ ∗ ∗ 75%

Attitude Toward
Risk

∗ ∗ ∗ 37.5%

Information
Processing Style

0%

Learning: by
Process vs. by
Tinkering

∗ ∗ ∗ ∗ ∗ 62.5%

As Table 4.8 shows, the Abi facet values motivation and attitude towards risk were

also not supported in the physical interface. Specifically, 37.5%(3/8) the inclusivity bugs

were due to not of supporting Abi’s task oriented , motivation and risk-aversion about

using unfamiliar technologies (attitude towards risk). For example, Bug 3 represents

the state at which Abi wants to move the ChariBots forward closer to the table. The

team reported that while motivated, Abi’s risk-aversion and low self-efficiency about

operating the unfamiliar robots might prevent the persona from moving all 3 robot as

the first action:

“Abi have the motivation (wants to move the robots), but till this point Abi

did not control any robots and unfamiliar with this ChairBots . . . This is the

first time that Abi has to move them and Abi needs to move all three. As

such, Abi may have a problem managing 3 chairs at once as a first step ”

The only usability issue the team reported represent the state at which Abi wants to

turn a ChariBot Off as a last action. Here the persona, Abi, had finished the arrangement

around the table and the last chair need to be turned Off. The team labeled this a

usability bug since it depends on the persona’s ability to remember having to do it.
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“Abi may think the task is already done and forgets to turn the chair OFF.

It all depends on her memory.”

The outcomes of the GenderMag walkthrogh helped us identify not only where a bug

can arias, but why that bug might arise—what specific problem solving facet(s) are not

supported in the physical interface. Similar to the initial empirical study, the inclusivity

bugs were due to lack of supporting divers levels of self-efficacy and/or learning styles.

The next subsection cover the design remedies we developed to address the inclusivity

bugs. Farther work on validating the design remedies is published in [79] as part of

Stoddard’s Masters thesis. We hope that these findings inform the design of similar

robots and encourage other researchers to use GenderMag as an inclusive design method

to evaluate beyond-WIMP UIs.

In conclusion, this chapter showed GenderMag’s capabilities as an inclusive software

design method in evaluating and redesigning two beyond-WIMP UIs. We investigated the

inclusivity requirements for the UIs in the context of robotic furniture arrangements. The

next chapter investigates whether and how a family of inclusive software design methods,

similar to GenderMag, can be used analytically to evaluate the multidimensionality of a

Hands-Free IDE.
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Chapter 5: Investigating Whether and How Analytical Inclusive

Software Design Methods Can Be Used to Evaluate a Hands-Free

IDE for Humans Multidimensional Identities

5.1 Introduction

The previous chapter demonstrated the capability of an inclusive software design method

to evaluate and redesign a beyond-WIMP UI; however, inclusivity researchers have been

voicing their concerns about the penalties of designing for a single demotion of human

ever intersecting identities [7, 74, 64]. A 2018 meta-review by Schlesinger et al. [74]

found that most literature about inclusive design considers only a single user identity,

such as gender or socio-economic status (SES). Such one-dimensional approaches (using

GenderMag in the previous Chapter) have been impactful, but they have yet to be able

to serve users multiple and intersecting identities [20, 63, 62]. A well-known example

is the face recognition failure rate for Black women, in which facial recognition systems

achieved reasonable accuracy when predicting for men and for women, and for people

with both darker and lighter skins—but these one-dimensional evaluations did not re-

veal the disproportionate lack of support for darker-skinned women [7, 6]. To expand

behind robotics and generalize our inclusivity lens behind gender to humans multidimen-

sional identities, we run an additional study. In this study, we investigated whether and

how practitioners can use InclusiveMag’s generated analytical inclusive software design

methods to evaluate the multidimensionality of a Hands-Free IDE.

We selected the InclusiveMag meta-method (recall Chapter 2) to generate new ana-

lytical methods for the multidimensional population—low-SES immigrant women. Since

InclusiveMag is about supporting both endpoints of facet value spectra, we were also

interested in this population’s multidimensional “opposite”: high-SES nonimmigrant

men. These multidimensional populations were at the intersection of three diversity

dimensions: SES, Immigration, and Gender.
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Dim = SES Dim′ = Immigration Dim′′ = Gender

Using these three dimensions and their intersection, we investigated:

SESImmigrationGenderMag ⊆ SESMag ∪ ImmigrationMag ∪GenderMag

To perform this investigation, we needed four InclusiveMag-derived methods—one for

each of the SES, immigration, and gender dimensions and one for the multidimensional

SES+immigration+gender dimension. We needed software to evaluate, which in our case

was a prototype of a Hands-Free IDE. We also needed evaluations of this prototype based

on the products of InclusiveMag-derived methods. Finally, we needed HCI researchers,

designers, and practitioners to create and use these items.

To this end, our specific research questions were:

RQ1 Bugs: Can the bugs found analytically by a multidimensional HCI practitioner

team also be found analytically by an HCI practitioner team for a component diversity

dimension?

RQ2 Reasoning: If a multidimensional HCI practitioner team analytically finds a

bug, will the facets they use also be used by an HCI practitioner team for a component

diversity dimension, to find that same bug?

The utilization of InclusiveMag-derived methods in this chapter revealed that as

teams of HCI practitioners evaluated the multidimensionality of the Hands-Free IDE,

the inclusivity bugs that the single-dimension teams found were “mostly” a subset of the

ones found by the multidimensional teams. Additionally, in considering the reasoning

behind the teams’ bug-finding, a subset relation was “almost always” satisfied, showing

that at least one single-dimension team used the same facet value as the correspond-

ing multidimensional team. Our findings show that HCI practitioners can indeed use

the analytical inclusive design methods generated using InclusiveMag to evaluate the

multidimensionality of beyond-WIMP UIs.
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5.2 Methodology

We conducted a mixed-method empirical study with 10 HCI teams (24 participants). We

recruited the 24 participants from current and former offerings of a 10-week, advanced

HCI (Inclusive Design) course for graduate and 4th year undergraduate HCI students.

Being in a course gave participants a pre-existing reason to work for weeks using In-

clusiveMag, namely, getting a “good enough” course grade per their standards. We

chose this particular course because in the course, students learn inclusive design skills

hands-on using InclusiveMag (recall Figure 2.1). Specifically, over the 10-week course,

they use InclusiveMag’s Steps 1–2 to create their own inclusive design methods and then

use the methods they created to evaluate the inclusivity of prototypes they are design-

ing (InclusiveMag’s Step 3). Thus, all participants were familiar with the InclusiveMag

meta-method.

The 24 participants acted in three roles: researcher-participants to create InclusiveMag-

derived methods for different diversity dimensions, practitioner-participants to use those

methods to evaluate a prototyped Hands-Free IDE, and a designer-participant to provide

that prototype and an appropriate workflow for using it. For the researcher-participants

we followed a classic case study methodology [70], in which there were no controls—

participants did whatever they did in their own context to research the diversity di-

mensions. The practitioner-participants used the products of the researcher-participants

following specialized cognitive walkthroughs to reason their way through an evaluation

of the hands-free IDE.

5.2.1 The researcher-participants’ work

The researcher-participants’ mission was not to reveal answers to the research questions.

Rather, it was to provide, in an ecologically valid manner, the methods by which the

practitioner-participants would search for inclusivity bugs in the IDE, to enable us to

answer RQ1 Bugs and RQ2 Reasoning. Toward that end, the researcher-participants

(9/24 of the participants) worked in two teams (Immigrant-R and Intersect-R) of 4-

5 people each, in which they followed InclusiveMag’s Steps 1–2 (recall Figure 2.1) to

construct analytical methods with facets and research-based personas for the diversity

dimensions of Immigration and SESImmigrantGender, respectively. The teams spent
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8-10 weeks of the course doing this work, which is as much time or more than many UX

researchers can spend on population research [28, 80].

To carry out InclusiveMag’s Steps 1–2 (recall Figure 2.1), Teams Immigrant-R and

Intersect-R performed extensive research (however they saw fit, per case study method-

ology [70]) so as to create whatever facet types emerged from their research. Teams

Immigrant-R and Intersect-R used various research methods, including interviews; pub-

lished blogs and youtube-based interviews/documentaries with/about their populations;

reviews of academic literature; and drawing upon the lived experiences of team members

who self-identified as members of the population they were investigating. In addition,

since Team Intersect-R was researching a multidimensional population, they informed

their research with Team Immigrant-R’s findings and with the GenderMag and SES-

Mag foundational research. Team Immigrant-R’s work resulted in an ImmigrationMag

method whose facets formed the core of personas Ahava and Bernadette; likewise, Team

Intersect-R’s work resulted in an SESImmigrationGenderMag method with personas

Jesse and Taylor (Figure 5.1).

JESSE DIAZ
…
eAccess to Reliable Technology
Jesse owns a mobile phone for personal use 
but shares that same device with the entire 
family on a need basis. Jesse uses free internet 
connections available at their workplace. Outside 
the workplace, Jesse relies highly on the public 
devices and internet connections available at 
nearby libraries when they are not able to pay off 
their monthly internet bills. [Sources: 5, 10, 13]
…

(a)

TAYLOR MORRISON
…
Access to Reliable Technology
They have multiple personal devices such as
laptops, and smartphones. They also have 
company-provided computers that they need 
to use during office hours. They have to use the 
common company internet during office hours 
and are not allowed to visit certain websites 
when using office internet.
…

(b)

Figure 5.1: Excerpts from personas that Team Intersect-R created to represent (a) Low-
SES Immigrant Women and (b) High-SES Nonimmigrant Men. (The sources and foot-
notes refer to that team’s internal documents, not sources/footnotes in this work.)

The other two diversity dimensions in the study were gender and SES. For the gender

dimension, we used GenderMag [9], whose ecological validity stems from its use by

practitioners at several organizations (e.g., [8, 35, 84]). For the SES dimension, we used

Hu et al.’s facets [39], which had been created by a team of HCI researchers that included

several with professional HCI experience; we then created personas based on those facets

for purposes of this study.
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Researcher

Team

Diversity

Dimension

Facets Personas Practitioner

Team

Hu et al. [39] SES Access to Reliable Tech-

nology (Access); Tech-

nology Self-Efficacy (SE);

Technology Risks (Risks);

Technology Privacy/

Security(Priv.); Perceived

Control & Attitude To-

ward Authority (Control);

Communication Liter-

acy/Education/Culture

(Commun.)

Low-SES: Dav,

High-SES: Fee

SES-P1,

SES-P2

Immigrant-R Immigration Level of English Language

Proficiency (Commun.);

Willingness to Accept

Help (Accept Help); Men-

tal Health/Past Trauma

(Mental Health); Comfort

using Technology (SE)

Immigrant: Ahava,

Nonimmigrant:

Bernadette

Immigrant-P1,

Immigrant-P2

Burnett et

al. [26]

Gender Motivations (Mot.);

Computer Self-Efficacy

(SE); Attitude Towards

Risk (Risks); Information

Processing Style (Info.

Proc.); Learning: by

Process vs. by Tinkering

(Learn)

Women: Abi,

Men: Tim

Gender-P1,

Gender-P2

Intersect-R Immigration,

SES, Gen-

der

Communication Literacy

and Culture (Commun.);

Access to Reliable Tech-

nology (Access); Risks,

Privacy, Security (Risks);

Perceived Control and At-

titude Toward (Control);

Information Processing

Strategies (Info. Proc.)

Immigrant Low-SES

Women: Jesse,

Nonimmigrant High-

SES

Men: Taylor

Intersect-P1,

Intersect-P2

Table 5.1: Which participants did what. The first four columns list the research-
participants’ teams and the products they produced. The last column lists the
practitioner-participants teams that used the InclusiveMag-derived products.
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All four analytical methods set the facets and personas into a specialized cognitive

walkthrough process. Table 5.1 summarizes all four diversity dimensions used in the

study, which participant teams created them, what facets they included, and which

personas brought those facets to life.

The particular definitions of the facets frequently overlapped. Table 5.1 and Table 5.2

together show all the facets the Intersect-R team ultimately created corresponded to a

facet for at least one single-dimension population, although their terminology sometimes

varied. For example, the Intersect-R facet Communication Literacy and Culture (Com-

mun.) was similar to the SES facet Communication Literacy/Education/Culture (Com-

mun.) and the Immigrant-R facet Level of English Language Proficiency (Commun.).

All three of these Commun. facets (light-blue cells in Table 5.2) covered the persona’s

ability to communicate using cultural references and jargon, read comprehensively, and

speak English as a primary or second language.

Researcher
Team

Facets

Hu et al. [39] Commun. Access
Risks
Priv.

SE
Control

Immigrant-R Commun.
Accept
Help
SE

Mental
Health

Burnett et
al. [26]

Risks SE
Info.
Proc.
Mot.

Learn

Intersect-R Commun. Access Risks Control
Info.
Proc.

Table 5.2: The facets the researcher Teams created for each diversity dimension. Each
row shows the matched facets across dimensions.

5.2.2 The practitioner-participants’ and designer-participant’s work

Given the analytical methods they inherited, the mission of the 17 practitioner-participants

(three of whom had also been researcher-participants) was to apply their respective

methods and evaluate the inclusivity of the IDE. Their work processes and products

were the data we used to answer RQ1 Bugs and RQ2 Reasoning. Thus, the practitioner-

participants worked in 8 teams (2-3 people per team), using the researcher-participants’
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InclusiveMag-derived products to analytically evaluate the personas’ user experiences

with the hands-free IDE prototype. The designer-participant had been a UI designer

of that hands-free IDE prototype, and served as the expert on the prototype and

its intended workflow. Table 5.1’s rightmost column lists the teams of practitioner-

participants with the persona they worked with to perform their evaluations.

The practitioner-participants teams’ evaluations of the hands-free IDE prototype

(recall Step 3 in Figure 2.1) were cognitive walkthroughs specialized to the facets of the

diversity dimension. For these cognitive walkthroughs, they walked through an action

sequence of the prototype from the perspective of their personas and facets, asking before

each question whether their persona would do that action, and after each action whether

their persona would feel like they were making progress.

The action sequence, which the designer-participant had provided, was: (1) press

the “command” button on the foot-keyboard, (2) press the “voice” button on the key-

board, (3) say “1,” (4) press the “enter” button on the keyboard, (5) say “1,” (6) say

“AddFunction” to name the function, and (7) press the “enter” button on the keyboard.

This sequence of seven actions allowed users to create a function using voice commands.

Figure 5.2a shows the IDE’s screen early in this sequence, after a user says “1” to select

the “create function” option. Figure 5.2b shows the foot-keyboard input device.

(a) (b)

Figure 5.2: Excerpts of the Hands-Free IDE. (a) The hands-free IDE screen displaying
a menu with the “Create Function” option selected. (b) The foot-keyboard which en-
abled users to navigate cursor position, push buttons, tell the system to listen for voice
commands, etc.

The designer-participant also customized all personas’ background information to

ensure appropriateness for IDE usage, as follows:

“[Persona] is 17 years old. [Persona] is in their last year of high school. [Per-

sona] is living with their parents. [Persona] is comfortable with technology,
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and their hobby of coding has led them to want to study computer science

in their dream college.”

The teams of practitioner-participates wrote down their evaluations for each action in

the sequence, using a walkthrough form that consisted of 7 pre-action and 7 post-action

questions. The pre-action questions were “Will [persona] do this step? (yes/maybe/no,

what facets, and why).” The post-action questions were “If [persona] does the right

thing, will they know that they did the right thing and is making progress toward their

goal? (yes/maybe/no, what facets, and why).” For example, Figure 5.3 shows how Team

Gender-P1 answered Action 1’s pre-action question.

☐ Yes 

✔

Maybe

✔

No

Which, if any, of <persona>’s facets did you use to answer the question?

☐ Motivations
☐ Computer Self-Efficacy
☐ Attitude Toward Risk
☐ Information Processing Style
☐ Learning: by Process vs. by Tinkering
☐ None of the above

☐ Motivations
☐ Computer Self-Efficacy
☐ Attitude Toward Risk

✔

Information Processing Style
☐ Learning: by Process vs. by Tinkering
☐ None of the above

✔

Motivations
☐ Computer Self-Efficacy

✔

Attitude Toward Risk
☐ Information Processing Style

✔

Learning: by Process vs. by Tinkering
☐ None of the above

Why? Why?
It looks like a menu button, therefore 
because of their information 
processing style, they might press it 
to get more information.

Why?
They are not aligned to tinker. 
Since their goal is to use voice 
control, they will use that instead 
because of their motivations and 
learning style (by process).

The command button does not 
signify what it is going to be used for. 

They also don’t want to break 
anything and do the wrong thing by 
pressing the button. 

(e.g., Tap ‘Browse Off’.)
1a.    [BEFORE ACTION] Will <persona> do this step? Why?

Action #1 : Presses the ||| command button using their feet A

B

C

D

Figure 5.3: Team Gender-P1’s Walkthrough Form for Action 1’s pre-action question.
A: The action the team is evaluating. B: The answers (yes/maybe/no) to the pre-
action-1 question. (Since not all members of Team Gender-P1 agreed on the answer,
they selected both Maybe and No.) C: The facets the team members used to decide
their answers. D: What Team Gender-P1 wrote about their reasoning.

5.2.3 What counted a bug

We declared a pre- or post-action to be a bug if anyone on the team identified a problem—

i.e., if Maybe or No had been checked off (Figure 5.3), even if Yes had also been checked

off. As in other works (e.g., [10] and the previous Chapter), we defined a bug as also
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being an inclusivity bug if the team wrote that the bug was tied to one of the persona’s

facet values, because that would suggest that the bug would arise disproportionately

often for people with that facet value. Note that there could only be one bug per pre-

or post-action; multiple explanations or difficulties surrounding that pre- or post-action

were considered part of the same bug.

The teams had two ways they could mention facet values during their walkthroughs.

First, they could simply check off a facet (Figure 5.3C). Alternatively, they could write

about it in the free-text part of the form (Figure 5.3D). To identify facet values men-

tioned in the 109 free-form text entries the teams had made, we used qualitative coding.

Two researchers independently coded 20% of the free-form text data. Their agreement

level was 97.78% (Jaccard index), indicating a very high level of agreement. Given this

agreement level, one researcher coded the remaining data.

5.3 Results

Given the use of InclusiveMag-derived methods, RQ1 Bugs asks whether the bugs the

multidimensional practitioner-participants teams found analytically were the same bugs

that at least one of the single-dimensional teams found analytically. The answer in

practice was “mostly.” The single-dimension practitioner-participants teams together

were able to analytically find all except one of the bugs that the multidimensional team

found analytically (Figure 5.4).

Building off the previous subset relation (SESImmigrationGenderMag ⊆ SESMag ∪
ImmigrationMag ∪ GenderMag), we used three criteria to determine whether a bug

the multidimensional team found was an element of the union of the bugs the single-

dimension teams had found for that pre- or post action question.

Criterion 1: If at least one single-dimension team found the same bug as the corre-

sponding multidimensional team, then the subset relationship holds. 15 of the total 28

analytical questions satisfied Criterion 1 (Figure 5.4). For example in column 2a of Fig-

ure 5.4a, both Teams Gender-P1 and Intersect-P1 reported a bug here; since Intersect-P1

found a bug that at least one of the other teams found, Criterion-1 is satisfied. Column 2a

represents the state of the prototype just before the user needs to press the “voice” but-

ton. Team Gender-P1 anticipated that their persona, Abi, would need to tinker around

to find this voice button; but tinkering is not in line with Abi’s process-oriented learning
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(a) Low-SES Immigrant Women (b) Low-SES Immigrant Women

(c) High-SES Nonimmigrant Men (d) High-SES Nonimmigrant Men

Figure 5.4: RQ1 results: (Top): For all 14 analytical questions, the multidimensional
Immigrant Low-SES Women’s team found bugs whenever the single-dimensional teams
did. (Bottom): This was also true for 13/14 of the Nonimmigrant High-SES Men’s
analytical questions.
(Left): Bugs each team reported for each of the 7 pre-action questions (a’s in the table’s
columns) and post-actions questions (b’s in the table’s columns). ∗: The team reported
a bug in the analytical question. (Right): The extent to which the multidimensional
teams’ findings (shaded) were a subset of the union of the bugs the single-dimensional
teams found (thick black outline).

style:

Gender-P1: . . . [Abi] is not a tinkerer, would not like to press the button.

[Abi] might want to press “ESC” to go back and look for more informa-

tion/help.

Team Intersect-P1 also anticipated a bug; they were not sure if their persona, Jesse,

would be confident in associating the microphone icon with voice commands:
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Intersect-P1: This button looks familiar with other popular applications.

But not entirely sure, if [Jesse] may have the idea about a feature that has

something to do with voice.

Criterion 2: If at least one single-dimension team found a bug but the corresponding

multidimensional team missed it, the subset relationship still holds. 8 of the total 28

analytical questions fulfilled Criterion 2. In column 5b in Figure 5.4c, for example,

Team Gender-P2 reported a bug, but Team Intersect-P2 did not. This meets Criterion 2

because here the union of the three single-dimension teams have done at least as well

at bug-finding as the multidimensional team. Column 5b represents the state of the

prototype after the user has said “1.” Team Gender-P2 found that the persona, Tim,

would face an issue understanding the IDE’s response:

Gender-P2: . . . It is not certain that [Tim] will know [they are making progress

toward their goal] because [Tim] needs to try other options to understand

the [IDE].

Team Intersect-P2 did not find a bug; they believed the screen would be self-explanatory

for their persona, Taylor:

Intersect-P2: The options displayed on the screen are self-explanatory for

[Taylor] as they are comfortable with using technology and technological

terms. . .

Team Intersect-P2 and Team Gender-P2 findings still satisfy the subset relationship:

Gender-P2 did “at least as well” as Intersect-P2 at bug-finding.

Criterion 3: If all teams agreed that there was no bug with a pre- or post action ques-

tion, the subset relationship holds. 4 of the 28 analytical questions fulfilled Criterion 3

(Figure 5.4). Column 7b in Figure 5.4c is one example: neither Team Immigrant-P2 nor

Intersect-P2 found a bug. 7b represented the state of the prototype just after the user

had pressed enter to create the function. Immigrant-P2 felt their persona, Bernadette,

would know they had been successful:

Immigrant-P2: [Bernadette]’s initial goal was to create a function with voice

control. Once [Bernadette] sees this screen, [Bernadette] will know the func-

tion has been created successfully.
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Team Intersect-P2 came to the same conclusion, since their persona, Taylor, is used to

working with IDEs:

Intersect-P2: As [Taylor] is comfortable with using technology and have high

perceived control over technology, [Taylor] will feel good about [accomplishing

the task].

The team’s agreement about the absence of a bug with 7b satisfies the subset relationship.

If none of the these criteria were met, the subset relationship did not hold. Only one

of the 28 analytical questions, column 6a in Figure 5.4c did not fulfill the criteria. 6a

represented the state of the prototype just before the user had to say “AddFunction”

to name the function. Team Intersect-P2 thought their persona would use other terms

instead:

Intersect-P2: maybe, [Taylor] might even say different words related to this

like ‘create function’, ‘begin function’, . . . etc because as [Taylor] use different

technologies, [Taylor] are used to seeing different tech words across platforms

In considering the reasoning behind the teams’ bug-finding, RQ2 Reasoning, we

considered whether the multidimensional teams’ use of facet values were a subset of

the facets used by the combined related single-dimension teams. Here we only used

the previous Criterion 1 aspect of the subset relation. The teams who considered the

underrepresented populations (P1 teams) almost always satisfied this subset relation

(10/10 times) in their use of the facet values (Figure 5.5a). The P2 teams did so the

majority of the time too (4/5 times) in their use of the facet values (Figure 5.5b).

For example, consider column 7a in Figure 5.5a, for which all P1 teams had identified

an inclusivity bug. Column 7a represents the state of the prototype just before pressing

the “enter” button to create the addition function. The three single-dimension teams

together associated the bug with a total of five facets: Learn, Commun., Info.Proc.,

Risks, and Control. The Intersect-P1 team associated the bug with a subset of these,

Info.Proc., Risks, and Control. Team Intersect-P1 used these three facets to reason

that the persona, Jesse, had performed several actions but was still uncertain they were

making progress toward creating the function:

Intersect-P1: [Jesse] made a lot of progress. Without concrete clue it will be

very tough to make [Jesse] confident.
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(a) Low-SES Immigrant Women

(b) High-SES Nonimmigrant Men

Figure 5.5: RQ2 results: Whenever an multidimensional team found an inclusivity bug,
were the facets they used the same as those the single-dimension team used? (Facet colors
show facets similar to the multidimensional team’s, as per Table 5.2.) (Top): Yes for
Low-SES Immigrant Women in 10/10 cases. (Bottom): Yes for High-SES Nonimmigrant
Men in 4/5 cases.

Team Immigrant-P1 attributed the bug to two facets, Commun. and SE, the latter

similar to Team Intersect-P1’s Control facet. They reasoned that Ahava’s low self-

efficacy might make the persona hesitant about switching input modalities:

Immigrant-P1: . . . if [Ahava] are using voice control, [Ahava] might be hesi-

tant to go back and forth between the foot and voice commands.

Team Gender-P1 used three similar facets to Team Intersect-P1, (Info. Proc., SE, and

Risks), as well as an additional facet, Learn, to highlight the issue of frequent switching

between the input modalities:

Gender-P1: [Abi] will use VOICE, and probably say ”2” instead of going

back to the keyboard. [Abi] will use the same process as before.
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A similar facet-subset relation held for the P2 teams. In 4 out of 5 cases, the facets

Team Intersect-P2 used for bugs were a subset of the union of facets the other teams used

(SES-P2, Immigrant-P2, and Gender-P2) (Figure 5.5b). For example, Teams Intersect-

P2 and SES-P2 found a bug in column 2b, which represents the state of the prototype

after the user pressed the “voice” button on the keyboard. Team Intersect-P2 found the

display screen confusing to the persona but did not associate this bug with any facets:

Intersect-P2: The numbers against each option might be confusing for [Tay-

lor]. [Taylor] might not know how to proceed next.

Team SES-P2 agreed with Team Intersect-P2 about the bug—but used facets to find it.

Specifically, Team SES-P2 used Access and SE to reason that the persona, Fee, would

find the display screen confusing:

SES-P2: The number label might help [Fee] to guess that they have to say

the number to take the action. However, it’s still not clear since [Fee] might

expect to see an audio icon or a keyboard prompt or even a sound (similar

to Alexa listening)

Teams Intersect-P2 and SES-P2 findings satisfy the subset relation because Team Intersect-

P2’s judgment of “no facets” (i.e. the empty set) is a subset of SES-P2’s use of Access

and SE.

In conclusion, this chapter showed that as teams of HCI practitioners evaluated the

multidimensionality of the prototyped Hands-Free IDE, the inclusivity bugs that the

single-dimension practitioner-participants teams found were “mostly” a subset of the

ones found by the multidimensional teams. Additionally, in considering the reasoning

behind the teams’ bug-finding, a subset relation was “almost always” satisfied, showing

that at least one single-dimension team used the same facet value as the correspond-

ing multidimensional team. Our findings show that HCI practitioners can indeed use

the analytical inclusive design methods generated using InclusiveMag to evaluate the

multidimensionality of beyond-WIMP UIs.
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Chapter 6: Concluding Remarks

This dissertation investigates if and how inclusive software design can be borrowed from

Human-Computer Interaction to design and evaluate beyond-WIMP (Windows, Icons,

Menus, and Pointers) user interfaces. We choose beyond-WIMP because ubiquitous

computing systems that are part-WIMP or beyond-WIMP, such as autonomous delivery

robots, are becoming a reality and replacing keyboard-plus-mouse user interfaces; how-

ever, little has been done to address their software inclusivity. We also choose inclusive

software design because it addresses digital exclusion biases and advocates for supporting

a more comprehensive range of users. Toward that end, this dissertation proposes the

following thesis: Inclusive software design and its methods that have been devised for

WIMP UIs can be used effectively to design and evaluate beyond-WIMP UIs.

This dissertation comprises a three-stage investigation of inclusive software design for

three beyond-WIMP UIs: A social robot, a multiple robots controller, and a Hands-Free

Integrated Development Environment (IDE).

The first stage (Chapter 3) explored the applicability of inclusive software design as

an evaluation approach with a social robot that interacts with diverse people in diverse

places. More specifically, we studied the inclusivity requirements in terms of culture

and situational factors that predicted diverse peoples’ likelihood to help and care for a

robot in 6 cafes around a University Campus. The results from the study indicated that

cultural and situational factors such as the overall mood (aka social atmosphere) of a

cafe and the robot approaching styles predicted participants’ likelihood to help and care

for the robot. The stage showed that software inclusivity is relevant to beyond-WIMP

user interfaces and that future help-seeking can benefits from our four inclusive design

implications.

In the second stage (Chapter 4), we examined the use of a particular inclusive soft-

ware design method to evaluate and redesign a multiple robots controller. The method

we used was GenderMag, an evaluation method that reports the percentage of biases and

inclusivity issues of user interfaces. Similar to [77, 3], in this stage, we used GenderMag

empirically in a lab study where we asked participants to use the touch-based multiple
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robots controller to arrange robotic chairs. We then used GenderMag analytically with

design experts to evaluate the inclusivity of the controller. Based on GenderMag empir-

ical and analytical evaluations, we redesigned the touch-based controller and developed

an additional mobile UI. The results from the stage indicated that inclusive software

design methods, such as GenderMag, can be used analytically to evaluate and redesign

beyond-WIMP UIs.

In the third stage(Chapter 5), we investigated if and how inclusive software design

methods can be used analytically to evaluate the inclusivity of a Hands-Free IDE. Unlike

the previous two stages, this stage recognized users’ multidimensional identities and

evaluated the Hands-Free ID from the perspective of three dimensions: socioeconomic

status (SES), Immigration Status, and Gender. In this stage, we used the products of

the InclusveMag family of inclusive software design methods: SESMag, ImmigrationMag,

GenderMag, and SESImmigrationGenderMag. More specifically, we asked eight teams of

practitioners to evaluate the inclusivity of the Hands-Free IDE analytically and compared

whether the inclusivity bugs the multidimensional practitioner-participants teams found

analytically using SESImmigrationGenderMag were the same bugs that at least one of

the single-dimensional teams found using SESMag, ImmigrationMag, or GenderMag.

The results from the stage indicated that inclusive software design methods, such as the

family of InclusveMag, can be used analytically to evaluate the inclusivity of beyond-

WIMP UIs and that the inclusivity bugs found by using single-dimensional methods are

a subset of the bugs found by a multidimensional one.

This dissertation contributes several design implications, new technology develop-

ment, and empirical contributions to inclusive design, Human-Computer Interaction,

and Human-Robot Interaction. In addition to the four inclusive design implications, the

first stage (Chapter 3) reveals how inclusive design might be applied to evaluate social

robots’ inclusivity empirically. The second stage of this dissertation contributes two

novel multiple robot controllers touch-based UI and a mobile one (Chapter 4). Stages 2

and 3 (Chapter 4 and Chapter 5) also contribute empirical evidence regarding how in-

clusive software design methods such as GenderMag can be used analytically to evaluate

and (re)design beyond-WIMP UIs for diverse users.
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