
AN ABSTRACT OF THE THESIS OF

James Reichwein for the degree of Master of Science in Computer Science

presented on June 16, 2000.

Title: An Integrated Testing and Fault Localization Methodology

for Spreadsheet Languages

Signature redacted for privacy.
Abstract approved: ---~-.--=~'=""""~-,-.-~~---~------

/j
C Margaret M Burnett

Spreadsheet languages, which include commercial spreadsheets and various

research systems, have proven to be flexible tools in many settings. Research

shows, however, that spreadsheets often contain faults. This thesis presents an

integrated testing and fault localization methodology for spreadsheets. This

methodology allows spreadsheet developers to engage in modeless development,

testing and debugging activities. Furthermore, we provide an interface to our

methodology that does not require an understanding of testing and debugging

theory.

To accomplish this, we introduce the notion of fault likelihood: the likelihood

that a given cell contains a fault that contributes to an known failure in the

spreadsheet. To estimate fault likelihood we present five properties that we

feel should govern its behavior. We then discuss our implementation of this

methodology and illustrate its use.

An Integrated Testing and Fault Localization Methodology for Spreadsheet
Languages

by

James Reichwein

A Thesis

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed June 2000
Commencement June 2001

ACKNOWLEDGMENTS

I would like to thank my major professor, Dr. Margaret Burnett, for her

endless patience, good nature, and advice throughout my graduate work at

Oregon State University. I would also like to thank Dr. Gregg Rothermel and

Dr. Curtis Cook for their help and advice.

My thanks also go to the members of the Forms/3 Visual Programming

Research Group for their work on the Forms/3 implementation and for their

feedback on my work. Thanks especially to Andrei Sheretov for writing the

incredibly useful, yet incredibly annoying, CRG data structure.

TABLE OF CONTENTS

Chapter 1: Introduction 1

Chapter 2: Background 4

4

8

2.1 WYSIWYT: A testing methodology for spreadsheets

2.2 Fault localization

Chapter 3: Fault Localization in Forms/3 12

3.1 Integrating Testing and Fault Localization with the Spreadsheet
Paradigm. 13

3.2 Fault Likelihood . 15

3.3 Representing Fault Likelihood as a Color 16

3.4 Estimating Fault Likelihood 18

3.5 Example 23
3.5.1 Marking Cells Correct or Incorrect 23
3.5.2 Choosing a Different Test Case 24
3.5.3 Fixing the Fault 25

Chapter 4: Implementation and Complexity Analysis 28

4.1 Data Structures 28
4.1.1 Cell Relation Graph 28
4.1.2 Region Representative Approach . 34
4.1.3 Reaching Mark Lists 36

4.2 Algorithms and Complexity Analysis 41
4.2.1 Placing a Mark 41

An Example of the MarkPlaced() Algorithm 47
Complexity Analysis of the MarkPlaced () Algorithm 51

4.2.2 Changing Test Cases 52
4.2.3 Changing Spreadsheet Logic 53

An Example of the New Formula() Algorithm 55
Complexity Analysis of the NewFormula() Algorithm 58

4.2.4 Estimating Fault Likelihood 59

TABLE OF CONTENTS (Continued)

Chapter 5: Conclusions and Future Work

Bibliography

Page

62

64

LIST OF FIGURES
Figure

2.1 A Forms/3 spreadsheet used to calculate grades.

2.2 Securi tyCheck spreadsheet with testing information displayed. 7

3.1 An example of a check mark being blocked by an X mark, as
described in Property 4. 21

3.2 An example of an X mark being blocked by a check mark, as
described in Property 5. 22

3.3 Securi tyCheck spreadsheet at an early stage of development.
The user has noticed a failure in cell key3_out and has marked
it incorrect. 23

3.4 Securi tyCheck spreadsheet following additional validation. . 25

3.5 Securi tyCheck spreadsheet following application of additional
test cases. 26

3.6 Corrected Securi tyCheck spreadsheet. 27

4.1 The CRG for a portions of a grades spreadsheet. 29

4.2 A Forms/3 spreadsheet containing a matrix. . . 34

4.3 A sample spreadsheet shown before and after placing a check
mark on cell a. Arrows show the data flow dependencies between
cells. 48

4.4 Four steps in an example run of the MarkPlaced () algorithm.
CRGNodes are shown as boxes. The name of a cell is at the top of
a CRGNode, followed by the Mark (if any) on each each node. This
is followed by the ReachingMarkList and Del taList associated
with each node. Changes between each step are shown in bold,
and node currently being visited is given a thick border. 49

4.5 A sample spreadsheet shown before and after editing the formula
in cell b. Arrows show the data flow dependencies between cells. 56

4.6 Four steps in a sample run of the NewFormula() algorithm. . . . 57

LIST OF TABLES
Table

3.1 The definitions used in determining fault likelihood. Here Sis a
spreadsheet, and C is any cell in S. 19

4.1 The relationships between different CRGNode subclasses and
their components. 36

4.2 numReachingXMarks and numReachingCheckMarks yield five dis-
tinct fault likelihood values as shown. Note that a sixth value for
"very-low" is skipped. This value occurs only through the inter
action between numReachingXMarks and numReachingCheckMarks. 60

AN INTEGRATED TESTING AND FAULT LOCALIZATION

METHODOLOGY FOR SPREADSHEET LANGUAGES

Chapter 1

INTRODUCTION

Spreadsheet languages, which include commercial spreadsheet systems as a

subclass, have proven useful in many settings, including business management,

accounting, and numerical analysis. The spreadsheet paradigm is also a subject

of ongoing research, including spreadsheet languages for matrix manipulation

problems [41], for providing steerable simulation environments for scientists

[6], for high-quality visualizations of complex data [9], and for specifying full

featured GUis [21].

Despite the end-user appeal of spreadsheet languages and the perceived sim

plicity of the spreadsheet paradigm, research shows that spreadsheets often

contain faults. For example, in an early spreadsheet study, 44 % of "finished"

spreadsheets still contained faults [4]. A more recent survey of other such studies

reported faults in 38% to 77% of spreadsheets at a similar stage [28]. Of perhaps

greater concern, this survey also includes studies of "production" spreadsheets

actually in use for day-to-day decision-making: from 10. 7% to 90% of these

spreadsheets contained faults.

One possible factor in this problem is the unwarranted confidence spread

sheet developers have in the reliability of their spreadsheets [11]. Another is the

2

difficulty of creating and debugging spreadsheets: in interviews, experienced

spreadsheet users reported that debugging spreadsheets could be hard because

tracing long chains of formulas is difficult and because the effects of a small fault

may not be visible until they have been propagated to a final result [14, 23].

To begin to address these problems, previous work [33] presented a WYSI

WYT (What You See Is What You Test) testing methodology for spreadsheets.

That methodology allowed the user to indicate which cells are correct for a given

test case, and to view testedness information inferred from those marks. An em

pirical study [34, 35] of this methodology has shown that participants using the

WYSIWYT methodology were significantly more effective and efficient at test

ing than participants in a control group. Furthermore, participants using the

WYSIWYT methodology were significantly less overconfident than participants

in a control group. Additional work by Burnett, Sheretov, and Rothermel [7]

addressed scalability issues with the WYSIWYT methodology when used with

large grids. This involved storing testing information for regions of cells with

similar formulas rather than for every cell in the grid.

This thesis 1 presents work done to integrate debugging support with the

WYSIWYT methodology. This integrated methodology adds the ability to

indicate which cells are incorrect for a given test case, and to view fault local

ization information inferred from both correct and incorrect marks. As in [7],

debugging information is stored on the level of cell regions, allowing this new

methodology to work with large grids. Key to the effectiveness of our approach

is that it is tightly integrated into the spreadsheet environment, facilitating the

1 Portions of the work described in this thesis have previously appeared in [30].

3

incremental testing and debugging activities that normally occur during spread

sheet development. Our methodology also employs immediate visual feedback

to present information in a manner that requires no knowledge of the underlying

testing and fault localization theories.

4

Chapter 2

BACKGROUND

2.1 WYSIWYT: A testing methodology for spreadsheets

The research in this thesis builds upon the What You See Is What You Test

(WYSIWYT) methodology[33]. The underlying assumption in that methodol

ogy has been that, as the user develops a spreadsheet incrementally, he or she

is also testing incrementally. A prototype implementation of this approach to

incremental, visual testing has been implemented in the spreadsheet language

Forms/3 [5]; the examples in this thesis are presented in that language.

Figure 2.1, shows a Forms/3 spreadsheet used to calculate grades. Like

commercial spreadsheets, the value of a cell in Forms/3 is defined solely by its

formula. However, unlike commercial spreadsheets, cells are not locked into a

fixed grid, but can be laid out in whatever way the user desires. A side effect of

this is that cells can no longer be referenced using grid locations such as "Al",

therefore the methodology allows the user to give cells explicit names which are

displayed underneath the cell's border. Additionally, Forms/3 provides formula

tabs on the lower right hand corner of cells to allow more than one formula to

be viewed at a time.

The WYSIWYT methodology is intended for spreadsheet developers, not

software engineers. Thus, the methodology does not include specialized testing

vocabulary - in fact, it includes no vocabulary at all, instead presenting testing-

5

i .H~o/4HC ·'"'
, ... ,·_·c,c ? 1t)/ .,,,,;i",fffiJ,;.,,.,.,u,: i.•''''

q Ji'.iLl
«u. l'llTRIX

~ '
IL:] I Student Gr ad.es

RADIO OPTION

NP,ME ID HWI HW2 HW3 MIDTERN FINAL COURSE

I I Abbott, Mike I 1035 I 89 I e4 I e3 I 91 le6 186
hwl-1 hw2-l hw3-l midtenn-1 final-I course-I LO

2 lrames, Joanl1649 192 195 I 90 I 94 In 192
hwl-2 hw2-2 hw3-2 midtenn-2 final-2 course-2 ~

3 I Green, Matt I 2314 l1e le3 I 69 I so I 15 I 16
hwl-3 hw2-3 h'fl3-3 midtenn-3 final-3 c:ourse-3 IQ.

4 I Smith, Scott I 2316 I s4 I e1 I 0e I 9o I e6 ls1
i hwl-4 hw2-4 hw3-4 midtenn-4 final-4 course-4 L-0-

Wde I 5 jrhaaas, Sue 19851 191 I e2 I 03 I 01 I 90 181

I
hwl-5 hw2-5 hw3-5 midterm-5 final-5 course-5 lQ.

rorm Help

a.it Coll I A\IERAGE I 01 d86 d83 dee
Fd

06

d Pa:,t,e- I
r..,.,..a1 Viewl

llelp "" Test I
Show rest I 1- ..

FIGURE 2.1: A Forms/3 spreadsheet used to calculate grades.

related information visually. Users test spreadsheets by trying different input

values, and validating correct cells with a check mark. Cells start out with red

borders, indicating that they are untested. As cells are checked, their border

colors change along a red-blue continuum, becoming bluer as the cell's testedness

increases. When all the cells are blue, the spreadsheet is considered tested.

Although users of the WYSIWYT methodology need not realize it, they are

actually using a dataflow test adequacy criterion [18, 25, 29] and creating du

adequate test suites. In the theory that underlies this methodology, a definition

is a point in the source code where a variable is assigned a value, and a use is a

point where a variable's value is used. A definition-use pair, or du-pair, is a tuple

consisting of a definition of a variable and a use of that variable. A du-adequate

test suite is based on the notion of an output-influencing all-definition-use-pairs

adequate test suite [12] and is a test suite that exercises each du-pair in such a

6

way that it participates (dynamically) in the production of an output explicitly

validated by the user.

In spreadsheet terms, cells are considered variables. A cell is used when

another cell references it, and a cell is defined within its own formula. If a cell's

formula contains if-expressions, then the cell can have multiple definitions. The

testedness of a cell is calculated as the number of validated du-pairs with uses in

that cell, divided by the total number of du-pairs with uses in that cell. Also, in

the output-influencing scheme, testedness propagates against dataflow, so that

if a cell a is validated, and if one of the du-pairs that provided a's validated

value has its definition in cell b, then any du-pairs that participated in providing

b's value are also considered tested.

This underlying theory is hidden from the user, for whom du-pairs repre

sent interactions between cells caused by references in cell formulas. These

interactions can be visualized by the user through the display of dataflow ar

rows between subexpressions in cell formulas, and these arrows are colored to

indicate whether the corresponding interaction has been tested.

This methodology also lets the user incrementally and simultaneously de

velop and test their spreadsheets. If the user adds a new formula or alters an

existing formula, the underlying evaluation engine determines the du-pairs af

fected by this alteration and updates stored and displayed testing information.

In this context, the problem of incremental testing of spreadsheets is similar to

the problem of regression testing [32] and the WYSIWYT methodology empha

sizes the importance of retesting code affected by modifications.

Figure 2.2 illustrates the prototype implementation of this methodology in

use. The figure depicts a Forms/3 spreadsheet implementing a simple security

check. Three key values identifying a person are placed in the cells key1, key2,

7

1_1_9 __ 9... IUIS
keyl_l T!1 key2_1

1• ~ 1186 ~
keyl_out key2_out

FIGURE 2.2: Securi tyCheck spreadsheet with testing information displayed.

and key3. The output cells keyLout, key2_out, and key3_out give a garbled

version of the original keys that can be checked against a data base to determine

if the person can be accepted. The spreadsheet developer has validated the three

output cells in this program. The formula for key3_3 contains an if-expression.

So far only one branch of this expression has been tested, so the borders for

the key3_out and key3_3 cells are purple. Cell key3_1 has not been tested at

all, so it is red. Cells keyLout, keyL1, key2_out, key2_1, and key3_2 have

been completely tested, and have blue borders. The colors of displayed arrows

between cells indicate the degree to which dependencies (interactions) between

those cells have been validated.

Using this prototype we have recently conducted an empirical study to eval

uate the usefulness of the WYSIWYT methodology. This study was performed

using participants drawn from undergraduate and graduate Computer Science

8

courses. The participants were divided into two groups. One group tested

spreadsheets using Forms/3 with the WYSIWYT methodology enabled, and

the other tested the same spreadsheets using Forms/3 without the WYSIWYT

features. The test suites developed by these groups were then analyzed based

on their effectiveness-measured by DU-coverage-and efficiency-measured by the

number of redundant test cases and the speed of testing. Participants were also

given questionnaires to determine whether they showed any overconfidence in

the effectiveness of their test suites. The results of this study showed that

participants using the WYSIWYT methodology tested with significantly more

effectiveness and efficiency, and with significantly less overconfidence [34, 35].

2.2 Fault localization

In standard terminology [2], a failure is an incorrect computational result. A

fault is a location in the program that results in a failure. Fault localization is,

therefore, the process of finding the fault or faults that cause a failure. Several

techniques have been proposed to automate this process. One such approach is

algorithmic debugging [36, 24], which traverses an execution tree while asking

the user to verify the correctness of each node. Myers [22] mentions several

other fault localization techniques.

The fault localization technique described in this thesis is based on Program

Slicing [42]. A program slice is defined with respect to a slicing criterion (s, v)

in which s is a program point and v is a subset of program variables. A slice

consists of a subset of program statements that affect, or are affected by, the

values of variables in v at s [42]. Backward slicing finds all the statements that

affect a given variable at a given statement, whereas forward slicing finds all the

9

statements that are affected by a given variable at a given statement. Weiser's

slicing algorithm calculates static slices, based solely on information contained

in source code, by iteratively solving dataflow equations. Other techniques

[15, 26, 31, 39] calculate static slices by constructing and walking dependence

graphs.

Korel and Laski [16] introduced dynamic slicing, in which information gath

ered during program execution is also used to compute slices. Whereas static

slices find statements that may affect (or may be affected by) a given variable at

a given point, dynamic slices find statements that may affect (or may be affected

by) a given variable at a given point under a given execution. Dynamic slicing

usually produces smaller slices than static slicing. Dynamic slices are calculated

iteratively in [16]; an approach that uses program dependence graphs has also

been suggested [1].

A great deal of additional work has been done on program slicing. An

extensive survey of slicing is given in [40]. A more recent survey of dynamic

slicing is given in [17].

A slice performed on an incorrect output variable can be used as a means

for fault localization. Lyle and Weiser presented an alternate method for fault

localization using slicing called program dicing [19]. Whereas a slice makes use

only of information on incorrect variables at failure points, a dice also makes

use of information on correct variables. Dicing works by subtracting the slices

on correct variables away from the slice on the incorrect variable, resulting in a

smaller set of cells than in the slice on the incorrect variable. However, a dice

may not always contain the fault that led to a failure.

10

Lyle and Weiser describe the cases in which a dice on an incorrect variable

not caused by an omitted statement is guaranteed to contain the fault respon

sible for the incorrect value in the following theorem [19]:

Dicing Theorem. A dice on an incorrect variable contains a fault

(except for cases where the incorrect value is caused by omission of

a statement) if all of the following assumptions hold:

1. Testing has been reliable and all incorrectly computed variables

have been identified.

2. If the computation of a variable, v, depends on the computation

of another variable, w, then whenever w has an incorrect value

then v does also.

3. There is exactly one fault in the program.

In this theorem, the first assumption eliminates the case where an incorrect

variable is misidentified as a correct variable. The second assumption removes

the case where a variable is correct despite depending on an incorrect variable

(e.g. when a subsequent computation happens to compensate for an earlier

incorrect computation, for certain inputs). The third assumption removes the

case where two faults counteract each other and result in an accidentally correct

value.

Given the assumptions required for the Dicing Theorem to hold, it is clear

that dicing must be an imperfect technique in practice. Thus, Chen and Cheung

[8] explore strategies for minimizing the chance that dicing will fail to expose a

fault that could have produced a particular failure. For example, it is unlikely

that every correct variable depends on a fault; if a dicing algorithm subtracts the

11

intersection of all slices of correct variables from that of the incorrect variable,

the result is less likely to miss a fault. In addition, Chen and Cheung explore

dynamic dicing, which uses dynamic slices instead of static slices, in order to

avoid including statements that were not executed by the test suite. In similar

work, Pan and Spafford [27], introduce 20 heuristics for combining dynamic and

static slices to aid the programmer in fault localization.

12

Chapter 3

FAULT LOCALIZATION IN FORMS/3

We have designed a fault localization methodology for Forms/3 that is tar

geted for spreadsheet developers. With this audience in mind, we have observed

the following constraints in designing our methodology.

1. Our methodology must offer modeless operation. Spreadsheet cre

ation does not require the separate code, compile, link, and execute modes

typically required by traditional programming languages. Spreadsheet de

velopers simply write formulas, enter values, and get immediate feedback

from their actions. Thus, in order for testing and debugging techniques

to be useful for spreadsheet developers, the developers must be allowed to

debug and test incrementally in parallel with spreadsheet development.

2. Our methodology must not rely on terminology from testing or

debugging theory. Given their end user audience, spreadsheet testing

and debugging techniques cannot depend on the user understanding test

ing or debugging theory, nor should they rely on specialized vocabularies

based on such theory.

3. Our methodology must avoid false indications. While computer

specialists may be able to understand the limitations of their tools, spread

sheet developers are not liable to understand the reasons if debugging feed-

13

back leads them astray. If our methodology highlights a set of cells that

does not include a fault, these users are likely to become frustrated, and to

become disillusioned with our methodology. Therefore, our methodology

must avoid giving false indications of faults where no faults exist.

In this chapter, we present the high level design of our methodology and

describe how it meets the above constraints. In Chapter 4, we will go into detail

about the data structures and algorithms used to implement our methodology.

3.1 Integrating Testing and Fault Localization with the Spreadsheet
Paradigm.

The previous WYSIWYT methodology met our first design constraint by al

lowing the user to place check marks during any stage of spreadsheet creation,

and by handling formula edits to correctly keep track of testedness information

in the light of new formulas. Furthermore, the user can undo check marks if

they change their decision about the correctness of a value, or if they wish to

see exactly what changes in colored cell borders were caused by the check mark.

The WYSIWYT methodology met our second constraint through the use of col

ored cell borders to avoid using terminology from testing theory. Similarly, the

integrated testing and fault localization methodology presented in this thesis

meets our first two constraints by supporting the following user actions.

• Marking Cell Values as Correct or Incorrect.

In addition to the check marks the WYSIWYT methodology used, the

user can now place X marks on cells. The check mark indicates that

a cell's value is correct, and an X mark indicates that a cell's value is

incorrect. The user is also able to undo X and check marks.

14

To avoid testing or fault localization terminology, colors are used to give

testing and fault localization information to the user. Testing information

is displayed by the color of the cell border, while fault localization infor

mation is indicated by the color of the background of a cell. How these

colors are chosen is discussed later in this chapter.

• Changing the Current Test Case

In software engineering terminology, a test case is a single set of inputs

to a program. We define the inputs of a spreadsheet to be all of the

constant cells in that spreadsheet. We define a constant cell as any cell

whose formula does not refer to other cells and does not contain an "if"

expression.

For our methodology to be modeless, it must keep testing information

consistent with changes in test cases. To accomplish this, a change in an

input value causes all check and X marks on affected cell values to be

removed. This is because the values on those cells need to be re-checked

for the new test case. Note that the cumulative effects on testing and

fault localization information stored for these cells is not removed, rather

it is continually added to as the user continues the testing process. From

the user's perspective, changing a test case removes the marks, but does

not change the colors that result from the marks. The only time testing

and fault localization information is removed is when the user changes the

spreadsheet's logic.

15

• Changing the Spreadsheet's Logic

We consider the changing of a non-constant cell's formula to be the same

as a change in source code. As such any testing and fault localization

information affected by the change is no longer applicable to the new

program and must be removed. As with changing a constant cell, this

requires that all check and X marks on affected cell values be removed.

However, it also requires that the effects these marks have on testing and

fault localization information be undone. From the user's perspective,

both the marks and colors are removed.

These changes affect only the testing and fault localization information

affected by the edited cell. This is important in meeting our constraint

that our methodology be modeless. When a change in logic is made,

the user does not have to retest the entire spreadsheet, only the affected

portions.

3.2 Fault Likelihood

Dicing in a spreadsheet environment would find the set of cells that contribute

to a value marked incorrect but not to a value marked correct. The set of

cells indicated by dicing could exclude a fault if one of the conditions in the

Dicing Theorem were violated. However, one constraint our methodology must

satisfy is that the user should not be frustrated by searching through highlighted

cells to find that none of them contain faults. We believe that the restrictions

imposed by the Dicing Theorem are too strict to be practical in a spreadsheet

environment. Therefore dicing cannot be used for our methodology.

16

Dicing makes a binary decision about cells: either a cell is indicated or it

is not. To allow the conditions in the Dicing Theorem to be violated without

causing user frustration, our technique does not make a binary decision about

which cells to include or exclude. Instead, our methodology estimates the like

lihood that a cell contributes to a value marked incorrect. This likelihood is

presented to the spreadsheet developer by highlighting suspect cells in different

shades of red. We call this likelihood the fault likelihood of a cell. Let I be

the set of cell values marked incorrect by the spreadsheet developer. The fault

likelihood of a cell C is an estimate of the likelihood that C contains a fault

that contributes to an incorrect value in I.

3.3 Representing Fault Likelihood as a Color

The WYSIWYT methodology uses a red-blue continuum for borders against

the white background used for spreadsheets. This choice has several important

consequences. First, red and blue are easily distinguished [10]. Second, because

of the physiology of the human eye, red stands out while blue recedes [38],

which furthers our goal of attracting the user's attention to untested cell. Third,

because blue and red differ in two of the three RGB components of screen color,

the red-blue continuum should be usable by some red-deficient or blue-deficient

users [20]1.

1 Both our prototypes of the WYSIWYT methodology and of the methodology described by
this thesis support using grayscale colors for users who have difficulty distinguishing colors.

17

Additionally, the WYSIWYT methodology uses a quadratic formula that sep

arates the colors used to represent 0%, 100%, and intermediate percent values

of testedness. However, under the WYSIWYT methodology the user is unlikely

to be able to discern different levels of partial testedness.

In designing a fault localization methodology, we chose red to represent the

fault likelihood of a cell, as red stands out well and is often used to indicate

that something is wrong, or that something requires immediate attention (e.g.

a warning light in a car or a stop sign). This choice, however, meant that we

could not use the red-blue continuum of the WYSIWYT methodology without

giving red two inconsistent meanings. To avoid this, we decided to change

the colors used on cell borders to indicate testedness. Instead of ranging from

red for untested, to blue for tested, the cell borders now range from black for

untested, to blue for fully tested. Black was chosen as it is the default color

for borders around cells, and therefore a black border can be interpreted as a

cell containing no additional testedness. Another option would be to introduce

new colors for the testedness border. However, we preferred to keep the number

of colors used to a minimum, as too many colors can overwhelm the user [38].

Shades of purple are used to represent partially tested cells, and again we are

careful to make sure that all of the shades of purple used to represent partial

testedness can be easily distinguished from the blue used to represent complete

testedness, and the black used to represent no testedness.

The fault likelihood of a cell is shown by using a shade of red for the back

ground color of the cell. The shades vary from white, representing no fault

likelihood, to pink, representing minimal fault likelihood, to bright red, repre

senting maximum fault likelihood. We are careful to make sure that it is easy

to distinguish the lightest shade of pink from white.

18

Another concern is how easy it is for the user to distinguish the different

colors representing fault likelihood. To address this, we decided to limit the

number of colors used to five distinct shades of pink or red. We did this for

two reasons. First, we have no good way of mapping fault likelihood to a

numeric scale. For example, it makes no sense to say that something has 75%

fault likelihood. This makes it difficult to find a mathematical function to map

fault likelihood to a range of colors, as we do with testedness. Second, we

chose a small number of colors, to avoid having the user need to distinguish

between very close shades of color, as such shades may not be distinguishable

on some monitors, or by some users. The five colors we chose vary in their red

components, as well as their blue and green components, which should allow

some users with red-deficient vision to distinguish the different shades.

3.4 Estimating Fault Likelihood

There is no way to compute an exact value for the fault likelihood of a cell: we

can only estimate it based on the number of values marked correct or incorrect

that depend on a cell's value. Our strategy for doing so is to maintain the

properties described below, which rely on the definitions in Table 3.1.

Property 1 If IncorrectDependentMarks(C) =/-¢then Chas at least a minimal

fault likelihood.

This property ensures that every cell in the backward dynamic slice of a value

marked incorrect will be highlighted. Hence every cell that could possibly be

contributing to a failure is highlighted, reducing the chance that our method

ology will highlight a set of cells that does not contain a fault. However, there

are still two situations in which the highlighted cells might not include a fault

19

Predecessors (C) The set of cells in S that C references in its
formula.

Successors (C) The set of cells in S that reference C in their
formulas.

DynamicPredecessors (C) The set of cells D E S such that D's value was
used the last time the value of C was com-
puted.

DynamicSuccessors (C) The set of cells D E S such that D used the
value of C the most recent time D's value was
computed.

B ackwardSlice (C) The transitive closure on Predecessors (C).

ForwardSlice (C) The transitive closure on Successors (C).

DynamicBackwardSlice (C) The transitive closure on Dynamic-
Predecessors (C).

DynamicForwardSlice (C) The transitive closure on Dynamic-
Successors (C).

IncorrectDependentCells (C) The set of cells in DynamicForwardSlice (C)
that have been marked incorrect for the cur-
rent test case.

CorrectDependentCells (C) The set of cells in DynamicForwardSlice (C)
that have been marked correct for the current
test case.

IncorrectDependentM arks (C) The set of marks that have been Ill

DynamicForwardSlice (C) for any test case.

IncorrectDependentMarks (C) The set of marks that have been Ill

DynamicForwardSlice (C) for any test case.

TABLE 3.1: The definitions used in determining fault likelihood. Here S is a
spreadsheet, and C is any cell in S.

20

responsible for a value marked incorrect. The first situation can occur when a

fault is caused by the omission of a cell. The second situation can occur when a

correct value is mistakenly marked incorrect. These situations, however, cannot

in general be avoided by any fault localization methodology.

In order to localize a fault to a set of cells smaller than the dynamic backward

slice, we maintain several other properties to determine how fault likelihood

should be estimated. These properties attempt to highlight cells with a higher

likelihood of containing a fault a brighter shade of red than those with a lower

likelihood of containing a fault.

Property 2 The fault likelihood of C is proportional to IIncorrectDependent

Marks (C) I-

Property 3 The fault likelihood of C zs inversely proportional to I Correct

DependentMarks(C) I-

Property 2 is based on the assumption that the more incorrect computations a

cell contributes to, the more likely it is that the cell contains a fault. Conversely,

Property 3 is based on the assumption that the more correct computations a

cell contributes to, the less likely it is that the cell contains a fault.

Property 4 If there is no path along dynamic data flow from a cell B to a

correct mark on cell D that does not travel through a cell in IncorrectDependent

Cells(B), then the mark on cell D is said to be blocked with respect to cell B.

The mark on cell D has no effect on cell B. 2

2 In [30) we presented six properties of fault likelihood, but later decided to remove the fourth
property as it added an inconsistent meaning to the background colors of cells. Properties
4 and 5 in this this thesis correspond to properties 5 and 6 in [30).

21

FIGURE 3.1: An example of a check mark being blocked by an X mark, as
described in Property 4.

This property is relevant when a correct cell value depends on an incorrect

cell value, as shown in Figure 3.1. There are three possible explanations for

such an occurrence. The first is that a formula of one of the cells between the

correct cell and the incorrect cell somehow converts the incorrect value to a

correct one. The second is that there is another fault between the two cells that

counteracts the effect of the incorrect value. The third is that the developer

made a mistake in marking one of these two cells. We choose to trust the

developer's decision in this case and assume one of the first two situations. For

both of these situations the incorrect value does not contribute to the correct

value. Therefore the effects of the correct mark should not propagate back to

cells the incorrect value depends on.

22

3

FIGURE 3.2: An example of an X mark being blocked by a check mark, as
described in Property 5.

Property 5 If there is no path along dynamic data flow from a cell B to an

incorrect mark on cell D that does not travel through a cell in CorrectDependent

Cells(B), then the mark on cell D is said to be blocked with respect to B. The

mark on cell D has no effect on cell B, except for the minimum fa ult likelihood

required by Property 1.

This property is relevant when a value marked incorrect depends on a value

marked correct, as shown in Figure 3.2. In dicing, the dynamic backward slice

of the correct value would be completely subtracted from that of the incorrect

value. However Property 1 requires that we be more conservative and assume

that a violation of the Dicing Theorem is possible. Thus, the cells in the dynamic

backward slice of the correct value are given a low but nonzero fault likelihood.

23

3.5 Example

The following example illustrates the integrated testing and fault localization

methodology described in this thesis .

£ .m:l
tlMRD!

~ (!!:::J

lf'T10II

Gil
Tmt

rom Belp

a.t iueu
Paste

Tllll)Otal. Vlei I
K-1p Twt I
lUdt, Teet
Dau

97

key3

~ 178 ~ key3_1

11 ~ key3_2

11 ~ key3_3

FIGURE 3.3: Securi tyCheck spreadsheet at an early stage of development.
The user has noticed a failure in cell key3_out and has marked it incorrect.

3.5.1 Marking Cells Correct or Incorrect

Suppose that, starting with an empty spreadsheet, the user begins to build the

SecurityCheck application discussed in Section 2 and reaches the state shown

24

in Figure 3.3. At this state, the user's spreadsheet contains an incorrect output:

the key3_out cell, which should contain the value (4508/97), contains the value

23.

As soon as an incorrect output is noticed, the user can place an "X" mark

in a cell to indicate that it has an incorrect value. In Figure 3.3 the user has

placed such a mark in the key3_out cell.

Now, suppose the user decides to investigate the cause of this failure imme

diately. Having placed one or more X marks, the user can view fault localization

information by pressing a "Show Possible Bugs" button. This causes cells sus

pected of containing faults to be highlighted in red, as shown in Figure 3.3.

In keeping with Property 1, the highlighted cells are those contained in the

backward dynamic slice of key3_out.

Now suppose the user notices that the cell key2_out is correct. The user can

now mark it with a check mark. The result of doing so is shown in Figure 3.4.

Now cell key2_1 contains a lighter shade of red than before. This is in keeping

with Property 2 because it now contributes to a correct cell value.

3.5.2 Choosing a Different Test Case

Suppose the user developing the Securi tyCheck spreadsheet still wants to fur

ther narrow down the set of possible locations of the fault. One option is for

the user to apply additional test cases. Figure 3.5 shows the result of entering

a new test case into key1, key2, and key3. Now both key2_out and key3_out

are correct, so the user checks both cells. The information about the previous

test case is not lost, so now key3_3 has a reachable correct dependent for this

test case and a reachable incorrect dependent for the previous test case. This

25

q J:mj
cw. l!IITIIII< 98 l4

~ (!CJ ,
Cl'TION keyl key2 key3

1u ~ 119'5 ~ 178 ~ keyl_l key2_1 key3_l

~
11 ~ Tertod

key3_2

11 ~ key3_3
Hide

Form Help l8l'5 23
cut cell key2_out o key3_out o
Paste

T1111>0ral Viewj

Help Me Teet I
Hide Teot
Data

FIGURE 3.4: SecurityCheck spreadsheet following additional validation.

gives key3_3 a fault likelihood of ''very low''. However, in this test case key3_2

is no longer in the dynamic backward slice of key3_out. This is because key3_3

is designed to not use key3_2 if its result .. vould be a divide by zero. There is

still one reachable incorrect dependent from the previous test case for key3_2,

so its fault likelihood stays ''low''. Now the faulty cell, key3_2, has the brightest

red color on the form, suggesting that it is most likely to contain a fault.

3.5.3 Fixing the Fault

Now suppose tlw developer of the Security Check application decides to fix the

fault. This involves editing the formula for key3_2 from "key2_1 / key2_1",

26

£3. .me!
PIITRJX 2 l 0

I~" C!!::l. I .,, O!"!IOII
l lteyl key2 ltey3

14 ~ 11 ~ 121 ~ lteyl_l key2_l lteyJ_l

~
Te.tee! 1

ltey3_2 / ltey2_l

Hide

121 ~ key3_3
,-----
' I ,01:11111a1p -9 483
I cut Cell ltey2_out o ltey3_out o

Pute

1 r...,.,ral v11111!

l

. Help lie TNt !
~=Tai: I

FIGURE 3.5: Securi tyCheck spreadsheet following application of additional
test cases.

to "key2_1 / key3". Figure 3.6 shows the result of this action. As expected,

key3_2 now contains a divide by zero error; this is why key3_3 uses key3_1

instead. However, now that the formula has changed, the X mark previously

placed on key3_out in Figure 3.3 becomes out of date. Not only has it been

removed, but its effects on testing and debugging information were also undone.

This feedback is intended to encourage the user to perform regression testing on

the cells affected by the change. However, notice that the value of cell key3_out

did not change when the fault was fixed. This is because cell key3_2 is not in

the backward dynamic slice of cell key3_out. Since this value is still correct for

the current test case, the mark that was placed there is not removed.

27

s

e J 11 J j2 J 10
llCl,f keyl key2 keyJ

11 ~ 14 ~ 121 ~ keyl_l key2_l lteyJ_l

I $at I
Teostecl *DIVISIO

ltey3_2 / lteyJ

121 ~ lteyJ_J

Hide

1-6 ~ 483
Fonn Help ltey2_out ~ Jtey3_out o
cut Cell

Paste

T,q,oral View J

Help Ne Teet I
Hlde Teet
Data

FIGURE 3.6: Corrected Securi tyCheck spreadsheet.

28

Chapter 4

IMPLEMENTATION AND COMPLEXITY ANALYSIS

We have implemented a prototype of the fault localization methodology de

scribed in Chapter 3. This chapter describes the data structures and algorithms

used to implement this prototype and presents an analysis of the run time com

plexity of these algorithms.

4.1 Data Structures

4.1.1 Cell Relation Graph

The Cell Relation Graph (CRG) is an abstract model for spreadsheets [33], and

forms the basis for the implementation of the fault localization methodology

described in Chapter 3. Figure 4.1 shows the CRG for a portion of the Grades

spreadsheet shown in Chapter 2. A CRG consists of formula graphs, shown as

dotted rectangles, which are composed of subexpression nodes, shown as solid

circles and rectangles. Edges within a formula graph represent the flow of con

trol within cell formulas, and are represented by solid lines. Entry and exit

nodes, labeled with "E" and "X" respectively, represent where the evaluation

of the formula begins and ends. Predicate nodes are shown as solid rectangles,

and represent conditional expressions. Edges coming from predicate nodes are

labeled with the value to which the conditional expression must evaluate for

Fom Help

cut Coll

Paste

T,mporal Viow I
Holi, me h•t I
Hide- !est
Data

lacs LI
hw-avg-1 midte;cm-1 final-1 course-1 if (final-1 > midte;cm-1)

then (round ((hw-avg-1
+ final-1)
/ 2))

else (round ((hw-avg-1
+ (midte;cm-1
+ final-1))
/ 3))

I I
I I
I I
I I
I
I
I
I
I

I
I

\ I
\ I

\ \' I /
\ I /

I \ I I I I 1

: ----------~}\ : ~----------: \\,t~--------
\ I\.

: final-1 1s \ hw-avg-1 1 \ midterm-1
/ ; / \ : / :\ \ /

/ : / \ : / : \ \ /

1--/---------y_ ______ 7/----\---v. ____________ ; ____ v_ __ \-------------\----;7
I / I \ I \ \ 1 I
I J / \ 1 \ I I

/ I \ 1 \ I I
I 1 \ \ I I I
I / \ \ I I I
I / \ \ I I !
I I ~------"-----"---~--~ \ / / I
I I I / / I
1

1 11: if (final-1 > midterm-1) 1 1 1 1
\ I \ / 1 I
\ I ~-----------~ \ / I I

I I T F I // / I
\ I I I
\ I [::_,,, I

\ -----~-- ~------'L---=--\2: I
\ I

12: round ((hw-avg-1 + 13: round ((hw-avg-1 + 1

final-1) / 2) (midterm-1 + final-1)) / 3) :
I
I

I

I I

I -"'----""- I
I I
I I
I I
I I
I I
---~

course-1

FIGURE 4.1: The CRG for a portions of a grades spreadsheet.

I

I

I

29

\
I
I
I
I
I
I
I

I
I
I
I
I
I

30

control to follow that edge. All other nodes are computation nodes, and are

represented as circles. Data flow dependencies between subexpression nodes are

represented by du-pairs, which are shown by dashed lines. Data flow depen

dencies between formula graphs are shown by cell-dependence edges, shown by

dotted lines.

In collaboration with others in the Forms/3 group, we have implemented the

Cell Relation Graph as an internal data structure within Forms/3 [37]. In this

section we give an overview of the interface provided by the CRG data structure.

Following sections describe how we added fault localization information to this

data structure.

Below we describe the classes that we use to represent the CRG within

Forms/3. Note that we are describing all algorithms and data structures in

this paper using a pseudocode language based on C++ and Java. A commonly

used facility in our implementation is the iteration over a collection of items. In

C++ and Java, the syntax for this operation can vary depending on how the

collection of objects is stored. To avoid this low level detail, we adopt the syntax

list<Type> to represent a list of objects of type TYPE. The only requirement

on these lists that we impose is that they support iteration through n items in

O(n) time.

class CRGNode
{

}

public void NewFormula(Formula Formula);
public void Recomputed();
public void MarkPlaced(Mark mark, bool do);

public void updateGUI();

public list<CRGNodes> GetAffectingCRGNodes();

public FormulaGraph GetFormulaGraph();
public CRGTracer GetTracer();

class FormulaGraph
{

public list<DUPair> EnumincomingDUPairs();

public Testedness GetTestdness();
public FGNode GetFirstNode();

}

abstract class FGNode
{

public list<DUPair> EnumincomingDUPairs();
}

class ComputationNode extends FGNode
{

public list<DUPair> Enum0utGoingDUPairs();
}

class PredicateNode extends FGNode
{

}

public FGNode GetTrueBranch();
public FGNode GetFalseBranch();

class DUPair
{

}

public ComputationNode GetDefNode();
public FGNode GetUseNode();
public Testedness GetTestedness();
public void Validate();
public void UnValidate(int n);

31

A CRGNode represents a cell in the CRG. The method NewFormulaO is

called when a cell is given a new formula, and is passed a parsed represen

tation of that formula. The method Recomputed() is called when the value

of the cell has been recomputed. MarkPlaced O is called when a check or X

mark has been placed on a cell. The updateGUI O method is called in or

der to update the GUI with new testing and debugging information. The

GetAffectingCRGNodes () method returns the CRGNodes for all of the cells

that are referenced by the FormulaGraph of the CRGNode. A transitive clo

sure of this method would be a backward static slice. The GetFormulaGraph ()

32

method returns the FormulaGraph associated with the cell. Subexpression

nodes within the FormulaGraph are represented by the subclasses of FGNode.

All FGNodes can return a list of the du-pairs entering that node. These cor

respond to places in the subexpression that reference other cells. Computa

tion nodes are places where the cell's value can be defined, and therefore can

also return a list of outgoing du-pairs. The FormulaGraph: : GetFirstNode O,

PredicateNode: :GetTrueBranch(), andPredicateNode: :GetFalseBranch()

methods are used to traverse the formula graph.

The class DUPair represents one or more du-pairs. Note that it is possible

for a single subexpression to reference another cell twice, therefore it is possible

for there to be more than one du-pair between two FGNodes. We model this

by using a single instance of the DUPair class that represents more than one

du-pair. The testedness of a DUPair is defined as the number of validated

du-pairs it represents, divided by the total number of du-pairs it represents.

This information is encapsulated in the Testedness object returned by the

GetTestedness () method ofDUPair. The testedness of an entire FormulaGraph

is defined to be the number of validated du-pairs entering the formula graph,

divided by the total number of du-pairs entering the formula graph. This value

is returned by the GetTestedness () method of FormulaGraph, and is the value

used to determine the color used for cell borders.

In addition to the static dependence information stored in the CRG, we

also require dynamic dependence information to determine which du-pairs are

currently exercised. The CRGTracer class is responsible for maintaining this

information.

class CRGTracer
{

}

public void StartTrace();
public void TracePredicate(bool value);
public void StopTrace();

public list<CRGNodes> GetAffectingCRGNodes();

public void ValidateExecutedDUPairs();
public void UnvalidateExecutedDUPairs(int n);

33

This class stores the execution trace of a formula graph. The StartTrace O,

TracePredicate O, and StopTrace () methods are called by the Forms/3 eval

uation engine as the formula is evaluated. These are used by the CRGTracer to

keep track of what FGNodes have been evaluated. The GetAffectingCRGNodes 0

method returns all the CRGNodes that directly affect the FGNodes in the execu

tion trace stored by the CRGTracer. The transitive closure of this method would

be a backward dynamic slice on the CRGNode associated with the CRGTracer.

The ValidateExecutedDUPairs () and UnvalidateExecutedDUPairs O meth

ods are described later in this chapter.

34

.,

q .m'l I Students Grades
I c.u. 111\TRIX

~ lli!:::J
' INANE IID IDlliVG IMIDTERN I FINAL COURSE

RADIO Of'T!c.J

I l\bbct, Mike I 1035 ~~~ 89 □

I farne::i:, Joe j 1649 ~~~ 93 □

El [Green, Mattl2314 ~~~ ~
Tested

I Smith, Anne I 2316 ~~~ ~
I Thamas, Sue 198 51 ~~~ ~

Hide I ~,1}1-L------.j,l}~,I}' ', if (Grades[i@31 > Grades[i~2I)

Grades then (round I (Grades [i@I I
Fc,tmlielp I + Grades 11@3I I

I 21 I
Cut Cell I else (round I (Grades[i@IJ

+ (Grades I i@21
Paste- I + Grades[i@3111

101 □ 1 ~ 186 □ 1 81 □ 1 f 3) I

r"""',.i vi ... l
'

,;;.'(,,.;;: round ((Grades[l@jl + (Grades[2@jll
H•+P Me 1 t I Average + (Grades[3@jl + (Gradeo[4@jl

+ Grades[S@jlllll / SI
Ride 'fl!JSt I -Data

'' ''''' '"

FIGURE 4.2: A Forms/3 spreadsheet containing a matrix.

4.1.2 Region Representative Approach

A grid is a two-dimensional matrix of cells. Most commercial spreadsheet sys

tems are based entirely on grids. A homogeneous grid is one in which many

cells share the same formula, or have formulas that are identical except for

row /column indices in cell references. These similar formulas could be created

by the user copying a formula along a row or column, or could be stored as

a single formula for many cells. Forms/3 uses the latter approach. Figure 4.2

shows such a grid in a Forms/3 spreadsheet used to calculate student grades.

The Grades cell in this spreadsheet is a Forms/3 matrix. The Course column

in this matrix is composed entirely of a region. All of the cells in a region share

the same formula. The pseudo-constants i and j can be used in region formulas

35

to refer to the row and column number of the actual cell. This allows the cells

in the Course region to share the same formula, but have different values.

Homogeneous grids present a problem both for the efficiency of the CRG,

and for the user trying to test the grid. If each cell in a region stores its own

formula graph, then a grades spreadsheet for 1,000 students would need to

store 1,000 formula graphs, even though the formula graphs would be almost

identical. Furthermore, in order for the user to turn all the cell borders blue,

he or she would need to enter 1,000 identical test suites to test each row of the

spreadsheet, even though the formula for each row is nearly identical.

To solve these problems, Sheretov, et al. introduced the Region Represen

tative approach [37, 7]. In this approach, only one FormulaGraph is stored per

region. However, because every cell in a region can have a different value, there

is still a single CRGTracer for every cell. As a result, testedness information is

stored for the entire region, and each cell in a region can be considered a test

case for that region's formula. With the Region Representative approach, the

user needs to enter only one set of test cases to test the formula for the Course

region. Furthermore the system needs to store only one FormulaGraph object,

whether there are 1, 50, or 1,000 students in the class.

To implement the Region Representative approach, the CRGNode is made

an abstract class and three subclasses are created, CellCRGNode, RgnCRGNode,

and EltCRGNode. A normal cell has a CellCRGNode, which has both a Formula

Graph and a CRGTracer. A Region has a RgnCRGNode, which has a FormulaGraph,

but no CRGTracer. A cell inside of a region has a EltCRGNode, which has a

CRGTracer but no FormulaGraph. The EltCRGNode delegates the NewFormulaO

and GetFormulaGraph() methods to its parent RgnCRGNode. It is an error to

36

call the GetTracer() method of a RgnCRGNode object. Table 4.1 illustrates the

relationships between these classes.

FormulaGraph CRGTracer

CellCRGNode Has-a Has-a

RgnCRGNode Has-a

EltCRGNode Has-a

TABLE 4.1: The relationships between different CRGNode subclasses and their
components.

4.1.3 Reaching Mark Lists

To add the fault localization information needed for this thesis to the CRG,

we needed to keep track of the number of paths through which a particular

mark reaches a cell, and whether a mark is blocked by another mark. To

accomplish this, we use the Mark class to encapsulate a check or X mark, and a

ReachingMark class to associate a number of paths with a mark.

class Mark
{

private int MarkID;
private int MarkType;
private CRGNode MarkedNode;
private BlockList BlockedMarks;
private bool isCurrent;

public int GetMarkID();
public int GetMarkType();
public CRGNode GetMarkedNode();

public void SetBlockList(BlockList);

}

public BlockList GetBlockList();

public bool isCurrent();
public void bool setisCurrent(bool);

public bool blocks(Mark m);

class ReachingMark
{

}

public Mark mark;
public int paths;

37

Each Mark has a unique MarkID, which identifies that mark. Each mark

also has a MarkType, which identifies whether the mark is a check mark or

an X mark. Additionally, each Mark knows what CRGNode it was placed on,

and whether it was placed during the current test case. The blocks (Mark m)

method returns true if the given mark m would be blocked by this mark if the

value of the cell marked with m depended on the value of the cell marked by

this Mark. This method returns true only if both marks are of a different type,

and both marks were placed during the current test case.

A ReachingMark associates a Mark with a number of paths. ReachingMarks

are stored in three types of lists. BlockLists store ReachingMarks that contain

the number of paths along which a Mark has been blocked. A Blocklist imposes

the constraint that ReachingMark. paths must be > 0. If this constraint is vio

lated, the offending ReachingMark is removed from the BlockList. DeltaLists

store ReachingMarks that contain the change in the number of paths along

which a Mark reaches a cell. A DeltaList imposes no constraints on the

ReachingMarks it contains. ReachingMarkLists store ReachingMarks that con

tain the number of paths along which a Mark reaches a cell. A ReachingMarkList

imposes the constraint that ReachingMark. paths must be 2: 0. If this con

straint is violated, the offending ReachingMark has its paths member variable

38

set to 0. When a ReachingMark within a ReachingMarkList has O paths, it

is considered to be blocked. Additionally the ReachingMarkList class keeps

tracks of four integers, shown below.

class ReachingMarkList extends RMList
{

}

private int numBlockedCheckMarks;
private int numBlockedXMarks;
private int numReachingCheckMarks;
private int numReachingXMarks;

public int CalculateFaultLikelihood();

The CalculateFaul tLikelihood () method uses these integers to estimate

the fault likelihood of a cell. Keeping track of them in the ReachingMarkList

allows the fault likelihood to be calculated without having to iterate through

the ReachingMarkList and count which marks are blocked and which marks

are not blocked.

The functionality that is common to BlockLists, Del taLists, and Reaching

MarkLists is factored out into a common superclass, shown below. This super

class is responsible for maintaining a list of ReachingMarks, supporting various

operations on that list, and making sure that no two ReachingMarks within the

same list refer to the same Mark.

abstract class RMList
{

protected list<ReachingMark> theList;

protected template_add(ReachingMark rm, int paths);

public void Add(Mark m, int paths);
public void Add(ReachingMark rm);
public void Add(ReachingMarkList rml);

public void Sub(Mark m, int paths);
public void Sub(ReachingMark rm);
public void Sub(ReachingMarkList rml);

}

public ReachingMark Remove(Mark m);
public ReachingMark Remove(ReachingMark rm);
public list<int> Remove(ReachingMarkList rml);

public ReachingMark Find(Mark mark);
public ReachingMark Find(ReachingMark aRM);

public void Clear();
public RMList Copy();

public int Size();

public void DoBlock(Mark mark);
public void BlockRM(ReachingMark rm);

39

The RMList: : Add (ReachingMark) supports adding a ReachingMark to the

RMList. If the argument ReachingMark matches the Mark of a ReachingMark

that has already been stored in the list, their paths variables are added together,

and the result is stored in the original ReachingMark. The RMList: : Add (Mark,

int) method is a short cut for calling the RMList: : Add (ReachingMark) method

with a newly created ReachingMark. The Add (ReachingMarkList rml) method

is a short cut for calling the RMList: : Add (ReachingMark) method with every

ReachingMark within rml.

The Sub O methods behave the same as the Add O methods, but the paths

variables of ReachingMarks are subtracted instead of added. In the case where

the ReachingMark is not already in the list, the number of paths is subtracted

from zero.

The Remove (Mark) method removes the ReachingMark that corresponds

with the given Mark, and returns the ReachingMark that was removed (or null

if no corresponding ReachingMark was found). The Remove (ReachingMark rm)

method is a short cut for calling Remove (rm. mark). The Remove (ReachingMark-

40

List rml) method is a short cut for calling Removes (ReachingMark) on all the

elements of rml. The Remove (ReachingMarkList rml) method returns a list

of two integers. The first is the total number of ReachingMarks removed that

contained check marks. The second is the total number of ReachingMarks re

moved that contained X marks. The Find methods return the ReachingMark

within the RMList that corresponds to the method's argument. The DoBlock 0

and BlockRM() methods are described in Section 4.2.1.

To support subclassing, the RMList: : Add() and RMList: : Sub O methods

call the template_add O method to do the actual addition or subtraction.

The subclasses of RMList can override template_add O to impose additional

constraints on the ReachingMarks stored within the RMList. 1 Similarly, the

Remove O methods all call the Remove (Mark) method to do the actual removal,

allowing subclasses to override the Remove (Mark) method if needed.

Given these RMList subclasses, we can now show what we have added to the

CRGNode class to keep track of fault localization information.

abstract class CRGNode
{

}

public Mark GetCurrentMark();
public void SetCurrentMark(Mark m);
public ReachingMarkList GetReachingMarkList();
public void SetReachingMarkList(ReachingMarkList rml);
public DeltaList GetTempDeltaList();
public void SetTempDeltaList(DeltaList dl);

The GetCurrentMark () method returns the Mark that has been placed on

the cell owning that CRGNode. The GetReachingMarkList O method returns

the ReachingMarkList for the cell owning that CRGNode. Instances of class

1 This is an application of the Template Method design pattern [13].

41

EltCRGNode will delegate this to their parent RgnCRGNode. Thus, as with

testing information, all cells in a region share the same fault likelihood. The

GetTempDel taList O method returns a temporary Del taList that is valid only

while the algorithm for placing a mark is executing. This DeltaList is not

shared by all cells in a region.

4.2 Algorithms and Complexity Analysis

In Section 3.1, we described the three operations the user can perform in our

integrated testing and fault localization methodology. In this section we describe

the algorithms that implement these operations, as well as the algorithm we use

for determining an estimate of fault likelihood.

4.2.1 Placing a Mark

The method CRGNode: :MarkPlaced() is called by the user interface when a

mark is placed on a cell. In our user interface, left clicking in the check box in the

upper right hand corner of a cell places a check mark, while right clicking places

an X mark. If the user places the same type of mark twice on the same cell, this is

considered an undo operation, and the do argument to CRGNode: :MarkPlaced()

is set to false.

public void CRGNode: :MarkPlaced(Mark mark, bool do)
{

if (do) SetCurrentMark(mark);
else SetCurrentMark(null);

list <CRGNode> node_list = FirstPass(mark, do);

remove first element from node_list;

list<CRGNode> updateList = secondPass(node_list, mark, do);

}

for each CRGNode Nin updateList
{

N. updateGUI ();
}

42

The algorithm used by CRGNode: : MarkPlaced () makes three passes over

CRGNodes. The first and second passes are responsible for updating data struc

tures, and the third is responsible for painting the results on the screen.

The first pass is along the backward dynamic slice of the marked cell. This

pass is performed as a recursive depth-first search on CRGTracers. This pass has

two responsibilities. First, it maintains testedness information as in the WYSI

WYT methodology. This is accomplished using the CRGTracer: : Validate

ExecutedDUPairs () method when a check mark is being placed, and the

CRGTracer: : UnvalidateExecutedDUPairs () method when a check mark is

removed. Second, it performs a topological sort of the CRGNodes in the back

ward dynamic slice of the marked cell, and returns this list. Note that the

first element in this list contains the node mark has been placed on. This

node is not needed by the CRGNode: : Second- Pass() method, so it is re

moved by the CRGNode: :MarkPlaced() method before the list is passed to

CRGNode: : SecondPass ().

private list<CRGNode> CRGNode: :FirstPass(Mark mark, bool do)
{

list<CRGNode> topo_stack;

FirstPass_recurse(mark, do, topo_stack);

return topo_stack;
}

private void CRGNode: :FirstPass_recurse(Mark mark, bool do,
list<CRGNode> topo_stack)

{
CRGTracer tracer= GetTracer();

}

if (tracer has not been visited)
{

}

mark tracer as visited

if (Mark.GetType() is a check mark)
{

if (do) tracer.ValidateExecutedDUpairs();
else tracer.UnvalidateExecutedDUPairs(1);

}

for each CRGNode Nin tracer.getAffectingCRGNodes()
{

N.FirstPass_recurse(mark, do, topo_stack);
}

topo_stack.AddToFront(this);

43

The second pass is performed on the topologically sorted list of CRGNodes re

turned by the first pass. This pass is responsible for maintaining the Reaching

MarkLists of the CRGNodes, as well as the BlockLists of any marks on these

CRGNodes. It returns a list of CRGNodes that have testing and fault localization

information that will need to be updated in the user interface. This list is stored

in the updateList variable. The first part of this pass deals with the CRGNode

that was marked. If a mark is being placed (i.e. do is true), all marks that reach

this CRGNode must be blocked. If a mark is being removed, then all of the marks

that were blocked by the mark must be unblocked. The variable blocklist is

used to store the ReachingMarks for these marks.

private list<CRGNode> CRGNode: :SecondPass(list<CRGNode> node_list,
Mark mark, bool do)

{

list<CRGNode> updateList;
updateList.Add(this);

BlockList blocklist;

if (do)
{

blockList = GetReachingMarkList() .DoBlock(mark);

mark.SetBlockList(blockList);

44

ReachingMark newReachingMark = new ReachingMark(mark, 1);
GetReachingMarkList() .Add(newReachingMark);

}
else
{

}

blocklist = mark.GetBlockList() .Copy();
mark.blocklist.Clear();
GetReachingMarkList() .Remove(mark);
GetReachingMarkList() .Add(blocklist);

The DoBlock () method used in this step blocks all the ReachingMarks in

a RMList that are blocked by a given Mark. It returns a BlockList which

indicates how many marks were blocked, and along how many paths they were

blocked.

public BlockList RMList: :DoBlock(Mark mark)
{

}

BlockList result= new BlockList();

for each ReachingMark rm in theList
{

}

if (mark.blocks(rm.mark))
{

}

result.Add(new ReachingMark(rm.mark, rm.paths));
template_add(rm, -rm.paths);

return result;

Now that the node being marked has been processed, the blocked or un

blocked marks must be propagated to the nodes that affect the marked node.

This is done by adding or subtracting the changes to the temporary Del taList

of each of these nodes.

}

for each CRGNode Nin GetTracer() .GetAffectingCRGNodes()
{

}

if (do)
{

}

N.GetTempDeltaList() .Sub(blockList);
N.GetTempDeltaList() .Add(newReachingMark);

else
{

N.GetTempDeltaList() .Add(blocklist);
}

45

Now the remaining nodes are processed in topological order. These nodes are

first added to the updateList. For efficiency concerns, we will only perform one

update per FormulaGraph. As a result, EltCRGNodes are not placed into the

updateList. Instead, their parent RgnCRGNode is placed into the list instead.

for each CRGNode Nin node_list
{

if (! (N instanceof EltCRGNode))
{

}
else
{

}

updateList.Add(N);

RgnCRGNode rgnNode = N.GetParentRgnCRGNode();
if (rgnNode is marked)
{

}

updateList.Add(rgnNode);
mark rgnNode;

The next step is to update the Blocklist on the Mark on the CRGNode N.

If mark is being removed, it needs to be removed from N's blacklist. Next,

every ReachingMark that has been propagated to the temporary DeltaList of

N is processed. If this ReachingMark contains a mark that is newly blocked

46

by the mark on N, the ReachingMark is blocked. Otherwise, it is a mark that

was previously blocked by the mark on N, and therefore does not need to be

propagated further.

}

if (N.GetCurrentMark() != null)
{

if (do== false && mark.blocks(N.GetCurrentMark()))
{

N.GetCurrentMark() .GetBlockList.Remove(Mark)
}

for each ReachingMark Min N.GetTempDeltaList()
{

}

if (N.GetCurrentMark() .blocks(M.mark))
{

}

if CM.paths> 0)
{

}
else
{

}

N.GetCurrentMark() .GetBlockList() .Add(
N.GetTempDeltaList() .BlockRM(M));

N.GetCurrentMark() .GetBlockList() .Add(M);
N.GetTempDeltaList() .Remove(M);

The BlockRM() method used above is given a ReachingMark within the

RMList and blocks it. It returns a ReachingMark that indicates along how

many paths the original ReachingMark was blocked.

public ReachingMark RMList: :BlockRM(ReachingMark rm)
{

}

ReachingMark result= new ReachingMark(rm.mark, rm.paths);
template_add(rm, -rm.paths);
return result;

Next the ReachingMarkList of N needs to be updated. This is done by

applying the changes in N's temporary Del taList to N's ReachingMarkList.

47

Because the nodes are iterated through in topological order, all of the nodes

which N affects are guaranteed to have been visited. This ensures that the

temporary Del taList of N contains all the changes that need to be propagated

to N.

if (do== false)
{

N.GetReachingMarkList() .Remove(mark);
}

N.GetReachingMarkList() .Add(N.GetTempDeltaList());

Finally, these changes must be propagated to the nodes which affect N. Once

this is done, the temporary DeltaList is no longer needed.

}
}

for each CRGNode CN in N.GetTracer() .GetAffectingCRGNodes()
{

CN.GetTempDeltaList().Add(N.GetTempDeltaList());
}

N.GetTempDeltaList().Clear();

An Example of the MarkPlaced () Algorithm

To illustrate the MarkPlaced () algorithm, we will show how it handles placing

a check mark on cell a in the spreadsheet shown in Figure 4.3(a). The result

of placing this mark is shown in Figure 4.3(b). Notice that this mark blocks

the X mark on cell z, but does not block the X mark on cell h. Figure 4.4(a)

shows the CRGN odes and fault localization information for spreadsheet prior to

the mark being placed. In this figure, the mark on cell z is given the name "Xl",

and the mark on cell h is given the name "X2." A ReachingMark is shown as

a tuple consisting of the mark name and the number of paths associated with

48

that mark. For example, in Figure 4.4(a), the mark X2 reaches cell d through

one path, while the mark Xl reaches d through two paths.

:z :z

d o d o

(a) (b)

FIGURE 4.3: A sample spreadsheet shown before and after placing a check
mark on cell a. Arrows show the data flow dependencies between cells.

In the first pass of the MarkPlaced () algorithm, a depth first search is

performed starting from cell a that traverses its backward dynamic slice. As

this is done, the DUPairs coming into each cell are validated, and a topological

sort of the CRGNodes visited is collected. This sorted list of nodes is then passed

to the second pass of the MarkPlaced () algorithm.

49

z: z:
M: X1 M: X1
RL: (X1, 1) RL: (X1, 1)

DL: DL:

a: h: a: h:
M: M: X2 M: V1 M: X2
RL: (X1, 1) RL: (X2, 1) RL: (X1, 0), (V1, 1) RL: (X2, 1)

DL: DL: DL: DL:

b: d: b: d:
M: M: M: M:
RL: (X1, 1) RL: (X1, 2), (X2, 1) RL: (X1, 1) RL: (X1, 2), (X2, 1)

DL: DL: DL: (X1,-1), (V1,1) DL: (X1,-1), (V1,1)

(a) (b)

z: z:
M: X1 M: X1
RL: (X1, 1) RL: (X1, 1)

DL: DL:

a: h: a: h:
M: V1 M: X2 M: V1 M: X2
RL: (X1, 0), (V1, 1) RL: (X2, 1) RL: (X1, 0), (V1, 1) RL: (X2, 1)

DL: DL: DL: DL:

b: d: b: d:
M: M: M: M:
RL: (X1, 0), (V1, 1) RL: (X1, 2), (X2, 1) RL: (X1, 0), (V1, 1) RL: (X1, 0), (X2, 1),

(V1,2)
DL: (X1,-1), (V1,1) DL: (X1 ,-2), (V1 ,2) DL: DL:

(c) (d)

FIGURE 4.4: Four steps in an example run of the MarkPlaced () algorithm.
CRGNodes are shown as boxes. The name of a cell is at the top of a CRGNode,
followed by the Mark (if any) on each each node. This is followed by the
ReachingMarkList and DeltaList associated with each node. Changes be
tween each step are shown in bold, and node currently being visited is given a
thick border.

50

The second pass begins by processing the node that was marked. This

involves placing a Mark in cell a's CRGNode, changing a's ReachingMarkList to

reflect the new mark, and propagating these changes to the Del taLists of the

cells that directly affect the value of cell a. The results of these operations are

shown in Figure 4.4(b). The new check mark is named "Vl" and is placed on

cell a. The tuple (Vl, 1) is added to the ReachingMarkList associated with a,

indicating that this new mark reaches cell a through one path. Since the mark

Xl is blocked by the new check mark, the ReachingMark associated with mark

Xl is set to 0 paths. These changes are then converted to the DeltaList "(Xl,

-1), (Vl, 1)." This indicates that the number of paths through which mark

Xl reaches cell a has decreased by 1, while the number of paths through which

mark Vl reaches cell a has increased by 1. This DeltaList is then added to

the temporary DeltaLists associated with the cells that directly affect cell a's

value, in this case, cells b and d.

The second pass then iterates through the topologically sorted list of CRGN odes

returned by the first pass. Since cell b is affected by cell d, it is next in the

topological sort. To process this node, the second pass adds the temporary

DeltaList associated with cell b to the ReachingMarkList associated with cell

b. This DeltaList is then propagated to all cells that directly affect the value

of cell b, in this case cell d. The effects of these changes are shown in Figure

4.4(c). Once the temporary DeltaList of cell b has been propagated, it is no

longer needed and is removed.

Cell d is the only cell left to be visited. This is processed in the same way

as cell b, except there are no cells to which cell d's temporary Del taList can

be propagated. The final state of the spreadsheet after marking cell a is shown

in Figure 4.4(d).

51

Note that it is critical for the cells to be visited in topological order. If cell

d had been visited before cell b, then the ReachingMarkList of cell d would

contain "(Xl, 1), (Vl, 1)", which is incorrect.

Complexity Analysis of the MarkPlaced () Algorithm

Let N be the number of nodes in the backward dynamic slice of the marked

node, let Ebe the number of edges in the backward dynamic slice of the marked

node, and let M be the total number of marks in the system. The first pass of

this algorithm is a depth first search, and so has O(N + E) runtime complexity.

The second pass of this algorithm iterates over N nodes, and propagates the

temporary DeltaList to the cells that affect each node. This also has O(N +

E) steps. However, within this loop, the second pass performs addition and

subtraction operations between two RMLists. The worst case performance for

these operations is O(M 2). As a result, the second pass of this algorithm has

complexity O((N + E)M 2). The third pass of this algorithm updates all of

the affected nodes and has a runtime complexity of O(N). The second pass

dominates the complexity of this algorithm, making the runtime complexity of

the CRGNode: :MarkPlaced() algorithm O((N + E)M 2
).

The performance impact of this depends on how large the factor of M 2 is.

If this factor is not large, the performance of this operation will approximate

that of evaluating the formula of the marked cell (assuming that the spread

sheet environment has not cached the values of the cell's affecting the marked

cell). This is because an algorithm to calculate the cell's value from scratch

must first calculate the value of every cell in its backward dynamic slice. There

fore, the evaluation engine must perform a walk similar to that performed by

CRGNode: : FirstPass (). If the factor of M 2 is large, it may cause an unaccept-

52

able performance loss. However, it should be noted that although the worst case

value of the M 2 factor depends on the total number of marks in the system, in

reality the actual value could be less if only a small set of marked cells affect,

and are affected by, the marked cell.

If the factor of M 2 is too large, it would be possible to reduce it by imple

menting the ReachingMarkList class with a hash table. This hash table would

use the Mark and CRGNode as a key, and return the number of paths along which

that Mark reaches that CRGNode. To support iteration efficiently, it would also

be necessary to place the hash table elements in a series of linked lists, with

the CRGNode containing a pointer to the first element of this list. This would

allow the addition of two ReachingMarkLists to take O(M) time, instead of

O(M 2
) time. However, the penalty is that it would require a more complicated

set of data structures that would take up more space. In the worst case situa

tion, in which every mark reaches every cell, this hash table would have a space

complexity of O(CM), where C is the total number of cells in the spreadsheet.

4.2.2 Changing Test Cases

When a change in test case occurs, (i.e. a constant cell formula is changed to

another constant), all of the affected marks should be removed, although their

effects on testing and debugging information are preserved. In our prototype, we

accomplish this by way of the CRGN ode: : Recomputed() method. This method

is called whenever the evaluation engine recomputes a cell. This happens when

a cell has been affected by a change in a test case, or when it has been affected

by a change in spreadsheet logic. When called, this method removes any marks

on the affected CRGNode. Therefore this method can be used to remove the

53

affected marks for both changes in test cases, or changes in spreadsheet logic.

Furthermore, because this method takes advantage of work the spreadsheet

environment must always do when a cell formula is changed, it adds only a

constant run time overhead to the act of editing a formula.

4.2.3 Changing Spreadsheet Logic

When a change is made to the spreadsheet's logic (i.e. a non-constant formula

is edited, or a constant formula is changed to a non-constant formula), the

CRGNode: :NewFormulaO 2 method is called on the CRGNode of the edited cell.

This method is responsible for removing the effects of all marks that reach the

edited cell. It does this by calling UndoMarkEffects () on each CRGNode that

has a mark that reaches the edited CRGNode. Note that this is done before

creating a CRG for the new formula. This is critical, as changing the CRG first

would destroy the DUPairs that were in effect when the marks being removed

were placed. The UndoMarkEffects () method returns a list of CRGNodes that

contain testing and debugging information that needs to be updated in the user

interface. After the CRG is changed, this information is updated.

public CRGNode: :NewFormula(Formula)
{

list<CRGNode> updateList;

if (GetReachingMarkList() .Size() > 0)
{

ReachingMarkList marklist = GetReachingMarkList.Copy();
For every ReachingMark Min marklist
{

2 This method differs from that presented in [33, 37]. That algorithm only walked forward
along data flow from an edited cell, and did not remove the effects of a removed mark on
cells that were not affected by the edited cell.

}

}
}

54

CRGNode markedNode = M.mark.GetMarkedNode();
update-list.Add(markedNode.UndoMarkEffects(marklist));

Create a new CRG for the new formula

for each CRGNode Nin updateList
{

N. updateGUI ();
}

The UndoMarkEffects () method of a CRGNode performs a recursive, depth

first search on the cells that statically affect that CRGNode. Note that this

cannot be a search through dynamic dependencies, as this method is responsible

for removing effects of marks that were placed while different test cases, and

therefore different dynamic dependencies, were in effect. For efficiency, this walk

is careful not to visit the same FormulaGraph twice during a single invocation

of NewFormula().

This method removes all marks that reach the edited cell, and it removes all

of the effects these marks had on the CRG. However, it is careful not to remove

the effects of a mark that was placed on a value that was not affected by the

edited cell.

private list<CRGNode>
CRGNode:UndoMarkEffects(ReachingMarkList marklist)
{

list<CRGNode> updateList;
FormulaGraph fg = GetFormulaGraph();
int NumRemovedChecks = O;

if (fg is not visited)
{

mark fg as visited;
updateList.Add(this);

if (GetCurrentMark() != null)
{

if (marklist.Find(GetCurrentMark()) != null)
{

SetCurrentMark(null);
}
else
{

55

GetCurrentMark() .GetBlockList() .Remove(marklist);
}

}

}

}

NumRemovedChecks = first element of
GetReachingMarkList() .remove(marklist);

for each DUPair pin fg.EnumincomingDUPairs()
{

p.Unvalidate(NumRemovedChecks);
}

for each CRGNode Nin fg.GetAffectingCRGNodes()
{

updateList.Add(N.UndoMarkEffects(marklist));
}

updateList;

An Example of the NewFormula() Algorithm

To illustrate the NewFormula() algorithm, we will show how it handles an edit

to cell b in the same spreadsheet used to illustrate the MarkPlaced () algorithm.

The before and after states of this edit are shown in Figure 4.5. Note that the

56

marks which were affected by this edit were removed, along with their effects

on testing and fault localization information.

z

b

FIGURE 4.5: A sample spreadsheet shown before and after editing the formula
in cell b. Arrows show the data flow dependencies between cells.

The NewFormulaO algorithm first iterates through the ReachingMarkList

contained in cell b. The first Mark in this list, Xl, is on cell z, so the UndoMark

Eff ects O method is called on cell z. To process this cell, it removes the Marks

that reach cell b from z's ReachingMarkList, as shown in Figure 4.6(a). The

UndoMarkEff ects () method then continues to visit every cell that statically

affects cell z in depth-first order.

In this example, the next cells visited are cells a, d, and b. Again, the

Marks that reach cell b are removed from the ReachingMarkLists of the visited

57

z: z:
M: X1 M: X1
RL: RL:

DL: DL:

a: h: a: h:
M: V1 M: X2 M: V1 M: X2
RL: (X1, 0), (V1, 1) RL: (X2, 1) RL: RL: (X2, 1)

DL: DL: DL: DL:

b: d: b: d:
M: M: M: M:
RL: (X1, 0), (V1, 1) RL: (X1, 0), (X2, 1), RL: (X1, 0), (V1, 1) RL: (X1, 0), (X2, 1),

(V1,2) (V1,2)
DL: DL: DL: DL:

(a) (b)

z: z:
M: X1 M: X1
RL: RL:

DL: DL:

a: h: a: h:
M: V1 M: X2 M: V1 M: X2
RL: RL: (X2, 1) RL: RL: (X2, 1)

DL: DL: DL: DL:

b: d: b: d:
M: M: M: M:
RL: (X1, 0), (V1, 1) RL: (X2, 1) RL: RL: (X2, 1)

DL: DL: DL: DL:

(c) (d)

FIGURE 4.6: Four steps in a sample run of the NewFormula() algorithm.

58

cells. The result of these visits are shown in Figures 4.6(b), 4.6(c), and 4.6(d).

Once UndoMarkEffects () visits these cells, New Formula() will call it again

for the other mark that reaches cell b. This will cause UndoMarkEffects O to

visit cell a. However, this cell has already been visited, so UndoMarkEffects 0

returns and the New Formula() algorithm terminates. The final result of the

NewFormula() algorithm is shown in 4.6(d). Note that the Marks themselves

have not been removed yet. This will be done later by the Recomputed() method

when these cells are recomputed by the system.

Complexity Analysis of the New Formula() Algorithm

The New Formula() algorithm performs a depth first search on every marked

cell that is affected by the edited cell. Let N be the total number of CRGNodes

(excluding EltCRGNodes which do not have FormulaGraphs) that are reached

by a mark that also reaches the edited cell. Let E be the total number of

DUPairs that are incoming to these nodes. As the New Formula() algorithm

is careful not to visit a FormulaGraph more than once, only N nodes are vis

ited. For each node, the UndoMarkEffects () method performs at least one

RMList: : Remove (RMList) operation, which has a worst case performance of

O(M 2
), where Mis the total number of marks in the system. Additionally, the

UndoMarkEffects O method also visits all of the incoming DUPairs for these

nodes during the course of the algorithm. The result is that the combined run

time complexity of the NewFormula() algorithm is O(E + N M 2). As with the

MarkPlaced () algorithm, the M 2 factor plays a role in the performance impact

of this operation. However, the total number of marks that reach the edited

cells also plays a role in determining how large E and N are. From this analysis,

it appears that both the MarkPlaced() algorithm and NewFormula() algorithm

59

perform worst when a large number of marks affect, or are affected by, the cell

being edited or marked.

It is important to note that when using the Region Representative approach,

the New Formula() algorithm only needs to walk through regions. This is be

cause the testing and fault localization information it removes is only stored on

a per FormulaGraph basis. This is different from the MarkPlaced O algorithm,

which follows dynamic dependencies, and therefore needs to consider every cell

in a region (as each cell in a region can have different dynamic dependencies

due to different execution traces). As a result of this, the region representative

approach provides more performance benefits for the NewFormula () algorithm

than the MarkPlaced () algorithm when a large number of cells can share the

same formula.

4.2.4 Estimating Fault Likelihood

The above algorithms are responsible for keeping the ReachingMarkLists of

CRGNodes up to date. The four integers stored in these ReachingMarkLists are

then used to calculate an estimate for fault likelihood. As described in Section

3.3, this fault likelihood is mapped into five distinct shades of pink or red. As

a result, the fault likelihood value we calculate is from a range of six distinct

values: "none", "very low", "low", "medium", "high", and "very high".

To estimate the fault likelihood for a cell, we first map the values of

numReachingCheckMarks and numReachingXMarks into a range of values from

0 to 5. This mapping is performed using Table 4.2. We then combine these

values into an estimate for fault likelihood. All of this is done in the method

ReachingMarkList: : CalculateFaultLikelihood (). This method also ensures

60

numReachingXMarks or

Range or numRe achingChe ckMarks

0 ("none") 0

2 ("low") 1-2

3 ("medium") 3-4

4 ("high") 5-9

5 ("very-high") 10+

TABLE 4.2: numReachingXMarks and numReachingCheckMarks yield five dis
tinct fault likelihood values as shown. Note that a sixth value for "very
low" is skipped. This value occurs only through the interaction between
numReachingXMarks and numReachingCheckMarks.

that if there are any blocked or unblocked X marks affected by a cell, then that

cell has a fault likelihood that is at least "very low", in keeping with Property

1 in section 3.4.

enum {NONE= 0, VERY_LOW, LOW, MEDIUM, HIGH, VERY_HIGH};

public int ReachingMarkList: :CalculateFaultLikelihood()
{

if (numReachingXMarks == 0)
{

}
else
{

}
}

if (numBlockedXMarks == 0) then return NONE;
else return VERY_LOW;

int x = map numReachingXMarks to a Oto 5 range.
int c = map numReachingCheckMarks to a Oto 5 range.

return max(1, x - (c / 2));

The formula "max (1, x - (c / 2))" was chosen to fulfill Properties 2 and

3 in Section 3.4. It ensures that as the number of X marks affected by the cell

increases, the fault likelihood increases, and that as the number of check marks

61

affected by the cell increases, the fault likelihood decreases. The number of X

marks was given a higher weight than the number of check marks to prevent an

equal number of X and check marks from canceling each other out.

62

Chapter 5

CONCLUSIONS AND FUTURE WORK

This thesis presents an integrated testing and fault localization methodology

that is intended to help spreadsheet developers find faults in their spreadsheets.

This methodology allows developers to modelessly switch between spreadsheet

development, testing, and debugging, and does not make use of any formal

testing or debugging terminology that might be unfamiliar to spreadsheet de

velopers.

This methodology always highlights the union of the backward dynamic

slices of all values marked incorrect, reducing the chances of giving false in

dications of faults where no faults exists. We feel that such false indications

would cause spreadsheet developers, who may not understand the theory be

hind our methodology, to become disillusioned with and to lose confidence in

our methodology.

Unlike program dicing, our methodology does not make a binary decision

about whether a cell should be highlighted or not. Instead, it estimates the fault

likelihood of cells and uses this estimate to highlight cells in varying shades of

red. This allows our methodology to indicate that a small set of cells have a high

likelihood of containing faults, while still suggesting that there may be faults

within other cells in the union of the backward dynamic slices of all incorrectly

marked values.

63

To find an estimate for fault likelihood, we maintain five properties that

describe how we feel fault likelihood should behave. In an analysis of the algo

rithms used to maintain these properties, we have found that the performance

of these algorithms depends largely on the number of marks that affect, or are

affected by a given cell.

Future work is planned along two dimensions. First, user studies are re

quired to ascertain whether this methodology helps spreadsheet developers find

faults, and whether the algorithms used by this methodology perform well dur

ing actual usage. Second, we are considering several possibilities for enhancing

this methodology. For example, we may wish to investigate the use of slicing

and fault localization at the level of subexpressions. This would allow users

to isolate a fault to the actual subexpression where it occurs, but would come

at an additional cost. Another possibility is to enhance our method of esti

mating fault likelihood by replacing Table 4.2 with a more dynamic mapping.

This mapping could depend on the number of cells highlighted, or possibly the

number of cells in the spreadsheet.

Another possible direction is to refine the user interface for our methodol

ogy. Our current interface limits the user to only the information that can be

displayed on one screen. A more scalable approach, such as the one used in [3]

for C programs, would allow users to scan through slicing and fault localization

information for a large spreadsheet without having to scroll within or switch

between multiple worksheets.

64

BIBLIOGRAPHY

[1] H. Agrawal and J.R. Horgan. Dynamic program slicing. In Proceedings
of the ACM SIG PLAN '90 Conference on Programming Language Design
and Implementation, pages 246-256, June 1990.

[2] ANSI/IEEE. IEEE Standard Glossary of Software Engineering Terminol
ogy. IEEE, New York, 1983.

[3] T. Ball and S.G. Eick. Visualizing program slices. In Proceedings. IEEE
Symposium on Visual Languages, pages 288-95, October 1994.

[4] P. Brown and J. Gould. Experimental study of people creating spread
sheets. ACM Transactions on Office Information Systems, 5(3):258-272,
July 1987.

[5] M. Burnett and H. Gottfried. Graphical definitions: Expanding spread
sheet languages through direct manipulation and gestures. A CM Transac
tions on Computer-Human Interaction, 5(1):1-33, March 1998.

[6] M. Burnett, R. Hossli, T. Pulliam, B. Van Voorst, and X. Yang. Toward
visual programming languages for steering in scientific visualization: a tax
onomy. IEEE Computer Science and Engineering, 1(4), 1994.

[7] M. Burnett, S. Sheretov, and G. Rothermel. Scaling up a 'What You See
Is What You Test' methodology to testing spreadsheet grids. In IEEE
Symposium on Visual Languages, Tokyo, Japan, September 1999.

[8] T. Y. Chen and Y. Y. Cheung. On program dicing. Software Maintenance:
Research and Practice, 9(1):33-46, January-February 1997.

[9] E. H. Chi, P. Barry, J. Riedl, and J. Konstan. A spreadsheet approach to
information visualization. In IEEE Symposium on Information Visualiza
tion, October 1997.

[10] R. Christ. Review and analysis of color coding research for visual displays.
Human Factors, 17(6):542-570, 1975.

[11] C. Cook, M. Burnett, and D. Boom. A bug's eye view of immediate visual
feedback in direct-manipulation programming systems. In Proceedings of
Empirical Studies of Programmers, October 1997.

[12] E. Duesterwald, R. Gupta, and M. L. Soffa. Rigorous data flow testing
through output influences. In Proceedings of the 2nd Irvine Software Sym
posium, March 1992.

65

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[14] D. G. Hendry and T. R. G. Green. Creating, comprehending and explaining
spreadsheets: a cognitive interpretation of what discretionary users think of
the spreadsheet model. International Journal of Human-Computer Studies,
40(6):1033-1065, June 1994.

[15] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using depen
dence graphs. ACM Transactions on Programming Languages and Systems,
12(1):26-60, January 1990.

[16] B. Korel and J. Laski. Dynamic slicing of computer programs. The Journal
of Systems and Software, 13(3):187-195, November 1990.

[17] B. Korel and J. Rilling. Dynamic program slicing methods. Information
and Software Technology, 40(11-12):647-659, December 1998.

[18] J. Laski and B. Karel. A data flow oriented program testing strategy. IEEE
Transactions on Software Engineering, 9(3):347-354, May 1993.

[19] J.R. Lyle and M. Weiser. Automatic program bug location by program
slicing. In Proceedings of the 2nd International Conference, Computers
and Applications, pages 877-883, 1987.

[20] G. Murch. Physiological priciples for the effective use of color. pages 49-54,
November 1984.

[21] B. Myers. Graphical techniques in a spreadsheet for specifying user inter
faces. In ACM CHI '91, pages 243-249, April 1991.

[22] G. J. Myers. The Art of Software Testing. John Wiley, New York, 1979.

[23] B. A. Nardi and J. R. Miller. Twinkling lights and nested loops: distributed
problem solving and spreadsheet development. International Journal of
Man-Machine Studies, 34(2):161-184, February 1991.

[24] H. Nilsson and P. Fritzson. Algorithmic debugging for lazy functional lan
guages. Journal of Functional Programming, 4(3):337-369, July 1994.

[25] S. C. Ntafos. On required element testing. IEEE Transactions on Software
Engineering, 10(6), November 1984.

[26] K.J. Ottenstein and L.M. Ottenstein. The program dependence graph in
a software development environment. In Proceedings of the ACM SIG
SOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, pages 177-84, April 1984.

66

[27] H. Pan and E. H. Spafford. Heuristics for automatic localization of software
faults. Technical Report SERC-TR-116-P, Purdue University, July 1992.

[28] R. Panko and R. Halverson. Spreadsheets on trial: A survey of research
on spreadsheet risks. In Twenty-Ninth Hawaii International Conference on
System Sciences, January 1996.

[29] S. Rapps and E. J. Weyuker. Selecting software test data using data flow
information. IEEE Transactions on Software Engineering, 11(4):367-375,
April 1985.

[30] J. Reichwein, G. Rothermel, and M. Burnett. Slicing spreadsheets: An
integrated methodology for spreadsheet testing and debugging. In Proceed
ings of the 2nd Conference on Domain-Specific Languages, pages 25-38,
October 1999.

[31] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up slicing. In
Proceedings of the ACM SIGSOFT '94 Symposium on the Foundations of
Software Engineering, pages 11-20, December 1994.

[32] G. Rothermel and M. J. Harrold. Analyzing regression test selection tech
niques. IEEE Transactions on Software Engineering, 22(8), August 1996.

[33] G. Rothermel, L. Li, C. Dupuis, and M. Burnett. What you see is what you
test: A methodology for testing form-based visual programs. In Proceedings
of the 20th International Conference on Software Engineering, pages 198-
207, April 1998.

[34] K. Rothermel. Empirical studies of a WYSIWYT testing methodology.

[35]

Master's thesis, Oregon State University, March 2000.

K. Rothermel, C. Cook, M. Burnett, J. Schonfeld, T. R. G. Green, and
G Rothermel. WYSIWYT testing in the spreadsheet paradigm: An em
pirical evaluation. In Proceedings of the 22nd International Conference on
Software Engineering, Limerick, Ireland, June 2000.

[36] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, May 1982.

[37] A. Sheretov and M. Burnett. A methodology for testing spreadsheet grids.
Technical Report TR00-60-01, Oregon State University, Department of
Computer Science, January 1996.

[38] B. Shneiderman. Designing the User Interface. Addison-Wesley, Reading,
MA, 3rd edition, 1998.

[39] S. Sinha, M.J. Harrold, and G. Rothermel. System-dependence-graph
based slicing of programs with arbitrary interprocedural control flow. In
Proceedings of the 21st International Conference on Software Engineering,
May 1999.

67

[40] F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3:121 ~ 189, 1995.

[41] G. Viehstaedt and A. Ambler. Visual representation and manipulation
of matrices. Journal of Visual Languages and Computing, 3(3):273~298,
September 1992.

[42] M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
SE-10(4):352~357, July 1984.

