AN ABSTRACT OF THE THESIS OF

David H. Graetz for the degree of Master of Science in Forest Resources presented on

July 5, 2000. Title: The SafeD Model: Incorporating Episodic Disturbances and

Heuristic Programming into Forest Management Planning for the Applegate River

Watershed, Southwestern Oregon.

Signature redacted for privacy.
| K. Norman Johnz}oﬁb

Abstract approved: __

A hybrid landscape optimization/simulation model called SafeD (Simulation and
analysis of forests with episodic Disturbances) was built to address the needs of forest
management planning in the Applegate River Watershed, southwestern Oregon (the
Applegate Project).

There are two goals of the Applegate Project: 1) search for forest policies and
practices that achieve goals set for the watershed; and 2) simulate forest condition over
time (in the context of possible stochastic disturbances) considering the effects of
different forest policies and practices.

The SafeD model implements a four-stage process to guide management of the
forested landscape to achieve specified goals over a planning horizon (40 years). The
first stage develops stand prescriptions, for each recognized forest stand type and
condition, which are designed to achieve specific stand goals. The second stage selects
the prescription for each stand. The selection of prescriptions is accomplished using a
heuristic programming technique, called the Great Deluge Algorithm, which is designed
to find the “optimal” prescriptions that satisfy goals at the landscape level. In stage three
the episodic disturbance processes are initiated. The episodic disturbances includes fire
and insect attacks with weather patterns providing the stochastic element. Fire is spread
using the FARSITE fire spread model with fine-resolution landscape data (25 meters x 25
meters). Insect attacks occur during drought periods in stands with excess basal area.
Stage four is the re-analysis and re-selection of stand prescriptions (for the remaining
time in the planning period) to accommodate for disturbances in stage three.

A sample application of the SafeD model is presented here. Two landscape

scenarios were developed. The first scenario contains two landscape goals. One goal is

to produce the greatest amount of big trees (>= 15 DBH) across the landscape. The
second goal is actually a sub-watershed equivalent roaded acre (ERA) constraint. The
second scenario presents a grow-only strategy to encapsulate the idea of leaving a
landscape unmanaged. The results show several interesting conclusions which may have
implications for forest management practices in the Applegate River Watershed. First, in
order to maximize the number of big trees across the watershed timber harvesting will
need to occur. Second, the effects of episodic insect disturbance negate the need for as
much timber harvesting as would be projected without accounting for such disturbances.
And third, fire plays a significantly less role, in regards to tree mortality, than insects

will.

The SafeD Model: Incorporating Episodic Disturbances and Heuristic Programming into
Forest Management Planning for the Applegate River Watershed, Southwestern Oregon

by

David H. Graetz

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

Presented July 5, 2000
Commencement June 2001

Master of Science thesis of David H. Graetz presented on July 5, 2000.

APPROVED:

Signature redacted for privacy.

L4 . : -
Major Professor, repreﬁfﬂg Forest Resources

Signature redacted for privacy.

‘(}x{ir of Department of Forest Resources

Signature redacted for privacy.

Dean of G@bﬁt‘e’School

I understand that my thesis will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my thesis to any reader
upon request.

Signature redacted for privacy.

David H. Graetz, Author

ACKNOWLEDGEMENTS

There are a number of individuals to whom I am greatly indebted to for their role
during these past three years which it has taken me to complete this thesis. T would like
to acknowledge them in chronological order: Debbie Johnson for her willingness to first
hire me at one job and then pass me along to the Applegate Project at the expense of that
job; Norm Johnson for taking a chance with me, for giving me guidance and vision
during the project, and allowing me to explore tasks I had no business exploring because
he knew I wanted a challenge; John Sessions for his technical expertise, his comradeship,
and his patience and understanding in answering my many questions; Bernie Bahro for
his fire expertise, his California connections, and for his friendship; and Jim Agee for all
his work in getting me various parameters for the project and his patience in explaining
them to me.

I would also like to recognize and thank Kay and Tony Davenport for their never-
ending supply of love and support. [know I'm getting too old to still be in school and
complaining about money but those days are about over (hey, only three more years for
my PhD.!).

My office-mates and peers who have put up with my gripes, solitude, and otherwise
non-social behavior deserve credit: Jonathan Brooks and Andy Herstrom. My future
advisor and mentor, Pete Bettinger, has been a great source of information and guidance
which I'hope will continue.

Finally, I certainly can’t forget to acknowledge the three most important sources of
inspiration in my life. I should list them in chronological order so I don’t get myself in
too much trouble: Kido, my faithful dog who sometimes forgets that and runs away, but I
can understand it’s in his blood and so [don’t take it too personal; Dana, my faithful
girlfriend who sometimes forgets that and — oh wait, that was Kido — her love and energy
have pulled us this far and I hope that together we get further down the road of life; and
Zorra, Dana’s faithful dog, for being a constant source of amusement and being just so

darn cute.

TABLE OF CONTENTS

INTRODUCTION ..ottt ettt ettt ns e ettt et et 1
Introduction and Project Strategy...........cccoviiiiiiiiiiiiiiicice e 1
SCIENCE TEAIM ..ottt ettt sttt ea e sa et s et st ne et st eneene 2
Study Area Conditions and Management Guidelinesc.c..ccooueveiciinriirieinnicieeincnn 2
Problem Definition and Modeling Justification.............ccccoooiiiiriiiieeniiincciie e 5

LITERATURE REVIEW ..ottt e 7
INETOAUCTION ...ttt ettt st 7
Landscape Analysis MOAelingcoouoiiiiiniiiniiiiit e 7
Spatial Data and Desirable Model Characteristics...........ccoeovvuirieeriiinicnieiiiiiicee 9
Classical Landscape Simulation and Modeling Approachesc.cccocovviiiiiiiienn. 11
Classical Landscape Optimizationcocooiiiiiniieniiiinceeeee e 12
Recent Landscape Analysis MOdEls.........coccoviriiniiiiniiniiieniece e 15
SOIUtON TECRNIQUEScueiviiiiiiiie ittt et et eeae e 22
Summary and CONCIUSIONScccoiiiiiiiii e e 28

BROAD OBJECTIVE. ..ottt 30

RESEARCH DESIGNccooiiiiiiiiiiiiie ittt e e 31

TABLE OF CONTENTS (Continued)

THE SAFED MODELooiiiiiii sttt s 34
GENETAL ..ottt ettt ettt et ee et et 34
STAZE O ...ttt e ettt ettt e st et ee s abeas bt e e ehbeeeb et e saseashs e e shbeenbe e eae e entenee s 38
STAZE TWO..eeue ettt ettt ettt et e e ab e e e b eeea s b e et e eabaeehs et et e ehbeenbeaateenane e 41
StAZE THICE ..ottt e ettt aeae et ee e e e e e nreee e 50
STAZE FOUT ..ttt st se ettt sn e 75
The SafeD Software Programc..cccooeoieiiiiniiicctcie e e 76

SAMPLE APPLICATIONooiiiiiiiiinit ettt st st s 77
Prescription Generation (StaZE ONEYccuieiirieeiieieeiee e st eeieeesrtee st esneesae 78
Landscape Optimization (StAZE tWO)........ccuvveriiniiriiiiiiie ettt 79
Landscape Simulation (Stage three)ccocceoieeiieiiiiiiiiiiiiii e 91

DISCUSSION AND FUTURE WORKcoociiiiiiiiiiiieiienc e 98
General Notes on SafeD ProCessesueoiiiieiiioniiiiiieicceee e 99
Prescription Generation (Stage ONE)c..eevveeeiiriieiiieeieienie et s 101
Landscape Optimization (StAZE tWO).......ccceeiriireeiiiieniieiirie et 102
Landscape Simulation (stage three and four)...........ccoooiiiiiiii 103

CONCLUDING REMARKS ...t 106

TABLE OF CONTENTS (Continued)

REFERENCES 108
APPENDICES. ... 113
Appendix A: Vegetation and Structural Stage Classification.......................... 114
Appendix B: Plant Association Group (PAG) Assignment Rules................... 115
Appendix C: Insect Disturbance Rules................ocooiiiiiiiiiiiiiiie . 117
Appendix D: FOFEM Tables..........ccoviiiiiiiiiiiii e 119
Appendix E: Hazard Analysis............cooviiiiiiiii e 125

Appendix F: The SafeD Model Code...........c.coooviiiiiiiiiiiiii 127

LIST OF FIGURES

Figure Page
1-1: Applegate River Watershed loCator...........ccooevinieiiirii e 3
1-2: Northwest Forest Plan land allocationsccocooeiiiiiiiiiiiies e 4
2-1: Hierarchical chart of landscape analysis..........ccccoieuiieiirniieniiirense e 8
2-2: Hierarchical chart of heUTIStICSccvociiiiiiiiiiiiiie e 25
2-3: Sample classification of Neighborhood Search techniques ... 26
6-1: Flowchart of SafeD) modeling Stagesccoecieeiiieiiniiie e 36
6-2: Interactions between major components of the SafeD modelcccoccoeeeiee. 37
6-3: Flowchart of the Great Deluge Algorithm used by SafeD.........c.cccooiiiiinis 47
6-4: Example of a grid Or raster StIUCTUTE..........cccuiviiiiiiiic it 51
6-5: General flowchart of fire disturbance Processes.........o.oovveeivinieriniciieniiieienceeeens 60
6-6: Size distribution of historical Wildfires...............ccocovinniiiine, 62
6-7: Area burned distribution of historical wildfires................c.ccoooviiiiiiiiii s 62
7-1: Prescription allocation for the Big Trees SCenario..............ccoceevieiervricncicnenenennens 84
7-2: Before-simulation harvest levels in the Big Trees scenariocccceeeveevivniniienene 89
7-3: After-simulation harvest levels in the Big Trees scenario...........ccccceceeveeneinnineennnen. 89

LIST OF TABLES

Table Page
2-1: Comparison matrix for recent landscape analysis models...........ccccoceerinirninvenneennn 21
5-1: Spatial data used for the Applegate Projectocccoviveiiniiniiiiiienie 32
5.2: Example of items and codes found in a treeliSt.........c..coooeriniiiiiiciiinieieninccs 33
6-1: Landscape attributes used by the SafeD modelc.ccoooeviiiiiiiiiinii 52
6-2: Initial debris pool 10adings (N tONS/ACTE)c.eoveevieieeriieeiiire ettt 55
6-3: Fuel Model (FM) classSifiCation MAtriXcoververrireieieireiieeeseeeeenie st e 56
6-4: Historical fire StAtiStICScceviriiuiiieiiieeie et s e 61
6-5: List of major inputs to the FARSITE model.............ccooviiiiiiiiniciciieeeccs 64
6-6: Ignition-Elevation probability MatriXcccocoeiiiiiiiiiiii e 67
6-7: Fire duration timMESccccevieriiaiiiiiiiiee e eete et st et ee et este et seee et e e et e eeteeeens 68
6-8: PREMO-generated inputs to the FARSITE model...........cccocooeiiiiiiiiiini, 70
6-9: GIS-generated inputs to the FARSITE modelcccccooieiininiiiininccee 70
6-10: Example of information found in a weather file.................ocooiiiniiii 72
6-11: Example of information found in a wind filec..coccovinininiiiiinic e, 72
7-1: ERA thresholds used for the Big Trees SCenarioc.cccoeeveeeieeieniieiieniieieeenn 83
7-2: Number of big trees before-simulation...........cccoooeiiiiiiiiinii e, 86
7-3: Number of big trees after-Simulation.............ccoevuieiieriniiee e 86
7-4: Weather pattern used for both SCENarios...........c.ccooeeoiiniiiniini 92
7-5: Insect MOTLAlity SEALISTICS ...c.eeurrieniieiieeeeertieteeite ettt st st s s 93
7-6: Number of ignition points for both sCenarioscccooeeiiiiiieniien 94

7-7: Fire mortality StAtiSTICS.veiiuiiiiiiieiiiiieeetie e e et eeeie et eeer e eair e et eesebeeaseeeesaeeeeannee 94

LIST OF TABLES (Continued)

7-8: New prescriptions needed as a result of episodic disturbances

9-1: Comparison matrix for recent landscape analysis models and SafeD 107

LIST OF APPENDIX TABLES

Table Page
1. Acres in each vegetation - structural stage classc.ccocevenviciniiiiii 114
2. 0regon WHite 0Kccccoiiiiiiiiiiii e e 119
3. DOUZIAS £l e et et 120
4. Other hardwoodscccooiiiiiii e e 121
5. PONAErosa Pillecccouiiiiiiiiiiiiiceci e s 122
6. SUGAT PIME..ueieeiiii ittt ettt ettt et ettt et ems e e e e e 123
T WRIEE fIT oo et e 124

The SafeD model: Incorporating Episodic Disturbances and Heuristic
Programming into Forest Management Planning in the Applegate River Watershed,
Southwestern Oregon

INTRODUCTION

Introduction and Project Strategy

This thesis presents my contribution and research for the Applegate River
Watershed Forest Simulation Project (hereafter called the Applegate Project). The
objective of the Applegate Project is to develop a forest landscape simulation model to
use in evaluating the potential effects of different policies and forest management
practices over time to achieve goals for the forest of the Applegate River Watershed in
the context of possible stochastic events. The resulting model has been named SafeD
(Simulation and analysis of forests with episodic Disturbances).

A strategy was implemented to break the development of the SafeD model into
more manageable pieces. Stand level and landscape level goals were identified and serve
as the logical spatial scales which will be used in this paper. Stand level refers to
working at the scale of an individual stand and includes decisions on how to identify
stands, how to classify stands, how to grow stands, and how to harvest stands. The stand
level work done for the Applegate Project was completed by other team members.
Landscape level refers to working at the scale of the area of interest (the 493,000 acre
Applegate River Watershed). Decisions made at the landscape level are more complex to
describe and model but they are essential to study because they look at the interactions of
stands between each other and their role in a larger spatial context. There is some
overlap between the stand and landscape level work and T will highlight that which is
necessary to understand the work [completed at the landscape level. See Wedin (1999)
for a more thorough overview of the stand level work completed for the Applegate

Project.

My contribution to the Applegate Project was initially structured to provide
Geographic Information System (GIS) support. That was later expanded to include
undertaking the modeling effort and the development of the SafeD model. This thesis
paper will focus on the modeling effort and the SafeD model. The GIS component of the
Applegate Project, while an important and critical component, became secondary in the
work I completed for the project. To this end, the GIS work I completed for the project

will only be mentioned briefly and as needed.

Science Team

The Applegate Project consists of a collaborative science team represented by
various disciplines. Team members include: Dr. Jim Agee, Univ. of Washington,
College of Forest Resources; Bernie Bahro, USFS R5, Fire and Fuels Specialist; Don and
Ellen Goheen, USFS R6, Insect and Pathology Specialist; Dr. Norm Johnson, OSU, Dept.
of Forest Resources; Debbie Johnson, OSU, Research Forest; Jim Kayser, Biometrician;
Dr. Chris Maguire, OSU, Dept. of Forest Science; Dr. John Sessions, OSU, Dept. of
Forest Engineering; Heidi Wedin, OSU, graduate student in Dept. of Forest Resources;

and myself.

Study Area Conditions and Management Guidelines

The Applegate River watershed is located in southwestern Oregon (Figure 1-1).
The watershed is approximately 493,000 acres and drains into the Rogue River. Forest
Service (FS) and Bureau of Land Management (BLM) lands comprise nearly two-thirds
of the ownership and contain almost 80% of the forested lands. The watershed’s 325,000
acres of federal lands were designated an Adaptive Management Area (AMA) in 1994
with the signing of the Northwest Forest Plan (USDA FS and USDI BLM, 1994). The
Applegate AMA includes several allocations within its boundaries (Figure 1-2): Matrix,
Riparian Reserves, and two Late-Successional Reserves (LSR). The remaining one-third

of the watershed is in private ownership (mostly non-industrial) and the Red Buttes

1. Reduce stand densities (of both merchantable and non-merchantable trees)

and shrubs by thinning or prescribed fire.
2. Protect and restore riparian areas and late-successional habitat.
3. Increase the number of larger, older trees.

4. Promote, maintain, and restore shade intolerant species in designated Plant

Association Groups (PAG’s).

Additionally, the Standards and Guidelines for Management of Habitat for Late-
Successional and Old-Growth Forest Related Species Within the Range of the Northern
Spotted Owl (USDA FS and USDI BLM, 1994) provided for the production of wood
commodities as a general management goal in the matrix allocation (but not necessarily

an exclusive goal); harvest is also allowed in the LSR’s to meet ecological objectives.

Problem Definition and Modeling Justification

The broad goal stated earlier to provide the Applegate Partnership with a model to
simulate forest change over time and to find forest policies that would help the Applegate
Partnership achieve its goals was very challenging. There are two distinct components
within that goal: 1) search for forest policies and practices that achieve goals set for the
watershed; and 2) simulate forest condition over time (in the context of possible
stochastic disturbances) considering the effects of different forest policies and practices.
Searching for forest policies and practices that achieve goals has its roots in classical
forest planning; whereas simulating forest condition over time falls under the arena of
classical landscape simulations. Both will be discussed in the Literature Review section.
The Applegate Project attempts to bridge these two approaches by combining the spatial
simulation of forest development on a large landscape, including stochastic disturbances,

with the search for management actions that achieve multiple goals.

This problem involves the interaction of a variety of factors and processes, such as
forest growth and yield, succession, management actions, and stochastic disturbances.
There are various spatial and temporal scales at work which make the task more complex.

By defining these complex processes and their interactions logically and
mathematically, landscape simulation models make it possible to examine assumptions
about landscape change explicitly (Mladenoff and He, 1999). Perhaps Mladenoff and He

(1999) stated the most compelling justification for landscape simulation models:

...modeling allows us to deduce results that otherwise cannot be
investigated due to their complexity, such as landscape change over long
time periods and the ecological ramifications of large disturbances, or
diverse management regimes. (p. 125)

LITERATURE REVIEW

Introduction

The overall objective of the Applegate Project is to create a forest landscape
simulation model to use in evaluating the potential effects of different policies and forest
management practices over time to achieve goals for the forest of the Applegate River
Watershed in the context of possible stochastic events. My ability to meet this objective
requires a tool that can, 1) help evaluate the effects of different management policies and
practices and 2) enable me to search for ways to achieve the goals set for the watershed.
These policies and practices often span large temporal and spatial scales making
assessment particularly complex. Simulation models are often the only way to assess
such scenarios that cannot be tested under real-world conditions. Additionally,
optimization methods are commonly used to determine policies and practices that achieve
goals for landscapes. Thus, this literature review will first concentrate on the
development of landscape simulation models and approaches, and particularly those that
include stochastic elements (generally those which include natural disturbances). Then,
methodologies used in forest management planning at the landscape level will be
reviewed (landscape optimization). Lastly, T will review and characterize two landscape
simulation models and a hybrid landscape simulation/optimization model.

It should be noted that anywhere the words “landscape simulation” or “simulation
model” are seen in this thesis the intent is really “forest landscape simulation model”. 1
may also use the terms “landscape optimization” or “optimization model”...again the
intent is really “forested landscape optimization”. This literature review and any

discussion in this thesis are in reference to a forested landscape.

Landscape Analysis Modeling

I am using the term “landscape analysis” to encompass the idea of analyzing a large
forested landscape for an assessment, strategic planning, or other purpose. The central
theme of this literature review is to distinguish between “classical” landscape simulation

models and ““classical” landscape optimization models; both of which fall under

should first be established. Ihave chosen to look at two general components of any type

of landscape analysis model: spatial data and desirable model characteristics.

Spatial Data and Desirable Model Characteristics

The “spatial data” components are those attributes that are related to the storage
and use of spatial data. Study area size is used to help evaluate if models are working at
the same scale. It may be unfair to compare a model that works on small landscapes (less
than 1,000 acres) with one that works on large landscapes (over 100,000 acres). Data
structure is the fundamental way in which the spatial data is stored and accessed for use.
Vector (or polygon) format means that spatiality is maintained through lookup tables;
raster format means that spatiality is inherent to the location of the data (as if on a grid).
Related to the scale issue is that of resolution. By resolution I am referring to the size of
the minimum mapping unit (MMU). In a raster model the MMU is often the size of each
grid pixel (and the MMU size is uniform) whereas in a polygon model the MMU size
may vary because polygons are seldom exactly the same size. By placing these attributes
in the spatial data component I am not implying that they are unimportant — just that I
have chosen not to evaluate them in a more critical manner as I will for the attributes in
the desirable model characteristics component.

I have determined seven desirable model characteristics which I feel will allow me
to evaluate whether or not a particular model would be suitable to address the needs of

the Applegate Project. These seven characteristics and the need for each are:

1. Recognize economical and ecological components: The Applegate Partnership
has indicated to the science team that they wish the model to have the ability to
evaluate both these components. An economical component is necessary because
there are real economic considerations the Partnership wishes to evaluate with
different management scenarios. As well, the ecological component is necessary
for the Partnership to assess the ecological effects of particular management

scenarios.

10

Optimize multiple goals: The Applegate Partnership has indicated they wish to
have the ability to set multiple landscape goals. Achievement of all goals is not
necessarily a “hard goal”; but the ability to try and reach multiple goals and
evaluate tradeoffs with different emphasis on goal-attainment is desired.
Represent forest management activities: Again, the Applegate Partnership has
expressed the desire to evaluate the tradeoffs associated with active management,
including timber harvest. Timber harvesting does occur within the Applegate
Watershed and current regulations (both federal and state) allow for continuing
harvesting.

Represent stochastic elements: Episodic disturbances are believed to play a
major role in tree mortality within the watershed. The driving forces for these
episodic disturbance events are stochastic in nature, for example drought. The
ability to represent these stochastic elements will enhance any simulation model
for the project.

Represent fire — spatially explicit: Fire has played a very important historical
role in the Applegate Watershed. Neglecting fire and its effect would seriously
skew and distort any simulation model for the watershed. Spatially explicit refers
to the ability for a model to locate where an event occurs and allows for the
spatial movement of events across the landscape. This is in contrast to a
distributional approach in which events and/or their effects are spread on a
“distributional” basis throughout some spatial unit.

Represent insects — spatially explicit: As with fire, mortality from insects has
had a significant effect on the current forests of the Applegate Watershed. The
current stand densities in the Applegate Watershed have high potential for future
insect attacks. The ability to account for the occurrence and severity of insect
attacks, in a spatially explicit manner, will greatly enhance any model applied to
the watershed.

Repeated simulations to assess variability: Any stochastic landscape model
should have the ability to run multiple times to assess variability. If a model was
completely deterministic then multiple runs would be unnecessary; each run

would be the same. On the other hand, stochastic models should have elements

11

that are different for each run. Having the ability to make multiple runs holding
certain landscape parameters constant and allowing the stochastic elements to
change gives a range of results that can form the basis for statistical analysis

including variation and average conditions.

Classical Landscape Simulation and Modeling Approaches

Many landscape simulation models are considered to lie within an area of ecology
called landscape ecology (Mladenoff and Baker, 1999). Landscape ecology can be
broadly described as the study of ecological phenomena on large land areas. Golley
(1993) suggested that landscape ecology, as applied in North America, derives its
theoretical framework from ecosystem and community ecology, and its applied
methodologies from environmental management. The development of classical
landscape simulation modeling has its roots in forest ecology at a spatial scale and
resolution fitting to the technology available at the time. Developments in this
technology rapidly expanded starting in the early 1980’s and correspondingly, so did
landscape modeling. Mladenoff and Baker (1999) attribute two factors to the increasing
scale and resolution of landscape modeling; availability of 30-meter resolution Landsat
Thematic Mapper (TM) data and the rise of powerful small workstations with GIS
software.

However, many of the simulation models developed in the early 1980’s were still
not spatially explicit and instead relied on distribution approaches (the distribution of
land area among classes of landscape phenomena) (Mladenoff and Baker, 1999). This
may be attributed to the lag time generally associated with the availability of new
technology and the ability to use that technology. Kessells’ (1979) gradient fire model
was an exceptional model for the time in that it used spatially estimated vegetation and
fuels data to simulate spatial fire patterns and post-fire succession.

A further development that helped propel landscape modeling was the introduction
of mathematical and physical theories about properties of arrays of cells (Mladenoff and

Baker, 1999). These theories and mathematical properties were around prior to the

12

1980’s, but again, the proliferation of desktop computers gave landscape modelers the
necessary tool to explore and use this information. Mladenoff and Baker (1999) discuss
the properties of cellular automata and percolation modeling and how these components
were incorporated into landscape simulation models.

Mladenoff and Baker (1999) give a concise review of early disturbance models
which I will summarize here. Many of the initial fire disturbance models were developed
to predict and understand fire behavior (for suppression) and were empirically based
(Van Wagner, 1969; Rothermel, 1972). Fire disturbance models eventually made their
way into forest management models (Kessell, 1979). Ecological research on forest
disturbances were important for providing a framework for later ecological-based
landscape simulation models. These disturbances include fire (Van Wagner, 1978;

Johnson, 1992) and windthrow (Runkle, 1982; Frelich and Lorimer, 1991).

Classical Landscape Optimization

Early Forest Management and Planning Models

There has historically been a very close association between forest planning models
and growth and yield models (Iverson and Alston, 1986). Mladenoff and Baker (1999)
state that some distinction of scale can be made which differentiate larger scale, strategic
planning or regional timber-supply models, and smaller scale, growth and yield models.
One of the best known forest management models is FORPLAN of the US Forest Service
(Iverson and Alston, 1986). However, early versions of models like FORPLAN were
often too simple and were criticized for lacking ecological dynamics and variability, or
spatial considerations (Johnson, 1992). Early models using Geographic Information
Systems (GIS) were more of a decision-making software than models in a strict sense,
and were not very ecologically driven (Mladenoff and Baker, 1999). As well, early GIS
forest planning models typically did not consider natural disturbance rates or variability,
or spatial interactions in their planning algorithms (Johnson and Scheurman, 1977,

Hoganson and Burke, 1997).

13

Landscape Optimization Approaches

Strategic forest planning primarily has been focused on setting the level of timber
harvest and the scheduling of timber harvest activities. Harvest levels based on
controlling the volume harvested, the area cut, or both volume and area, have historically
been calculated using simple formulas. Optimization models have recently become more
pervasive in both private and public forest planning. Optimization models work on the
principle that they attempt to maximize or minimize some quantity (usually called the
objective function or objective) subject to reaching policy goals, and given certain choices
for management that are allowed for individual parts of the forest or the entire forest.
Policy goals are commonly formulated as constraints in an optimization model.
Examples of objectives are to maximize timber harvest, maximize present net value
(PNV), or minimize cost. Examples of policy goals are to maintain a non-declining yield
of timber harvest over time, attain some distribution of acres among age-classes or seral
stages, or to limit the rate of harvest in different portions of the forest (Davis and
Johnson, 1987).

Policy goals are increasingly more complex and difficult to model. As a result,
optimization models have been reformulated as “goal programs” (Sessions et al., 1999).
In goal programming, constraints that were modeled as absolutes are transformed to
allow for under- or over-achievement with an associated penalty value. The objective is
generally to minimize the total penalty values. This formulation allows for recognition
that it may be necessary in the short-term (or smaller spatial scale) to sacrifice and accept
inferior values for some constraints in the course of achieving an overall better value in
the long-term (or larger spatial scale). Additionally, it instills a sense of “fairness” to the
model from often conflicting constraints given for various components of the model. For
example, it might be desired to improve the habitat of species X, which is met by having
eight snags per acre. At the same time, another goal may be to minimize the entire
number of snags across the landscape. By allowing policy goals to be target values rather
than absolutes, a solution might be found where six snags per acre can be created across
the landscape and the overall number of snags is close to being minimized; neither goal
was absolutely reached but each sacrificed a little in an acceptable compromise.

Additionally, by adjusting the target values (or weights) an analyst is able to explore the

14

solution space. Policy goals are often modified as the tradeoffs surface from these
adjustments.

Strategic planning systems based on forest-level optimization models have two
main components: 1) the model formulation and 2) the solution technique (Sessions et al.,
1999). I will discuss model formulation next and solution technique will be discussed
later in the literature review because it plays a more significant role in my contribution to

the Applegate Project.

Model Formulation

Model I and Model 11:

Model I and Model II are terms used to label the two fundamentally different
model formulations for optimizing forested landscapes (Johnson and Scheurman, 1977;
Davis and Johnson, 1987). The main difference is in defining the decision variables for
management activities and the way in which future (regenerated) stands are handled
(Johnson and Scheurman, 1977). Model I defines decision variables that follow the life
history of a stand over all planning periods. In Model II a stand may pass through several
decision variables as stands are regenerated, grow, and die (Davis and Johnson, 1987).

A problem formulated as Model I can be formulated as Model 1I and vice versa.
However, there are certain strengths and weaknesses of each that should be noted. The
power of Model II comes from the ability to merge acres of like characteristics from
across the planning area as they are regeneration harvested (Sessions et al., 1999). Fewer
decision activities (thus fewer decision variables) are needed as acres are merged, but at
the cost of losing some spatial definition in the management of future stands (Sessions et
al., 1999). When such merging is not acceptable, Model I is usually a preferable

formulation (Sessions et al., 1999).

15

Model IlI:

Boychuk and Martell (1996) used the term Model III to describe a generalized
version of Model I whereby the stands pass through decision variables for reasons other
than harvest, such as natural disturbances. An early example of Model Il is seen in Reed
and Enrico’s model (1986) in which the expected burned area (from a wildfire) was
subtracted from each age class in each time period, and added along with the cutover area
to the youngest age class in the following period. Although Reed and Enrico (1986)
described their model as stochastic, they actually used a “mean value” approach — the
random proportion burned was replaced with its expected value (Boychuk and Martell,
1996). This approach has been found to have some problems. Hof et al. (1988) noted
that attempting to use a mean value approach to a problem in a stochastic system leads to
a high probability for infeasible solutions. Boychuk and Martell (1996) went on to
compare the results of a stochastic programming problem (SPP) and the corresponding
mean value problem when fire risk is considered in forest planning analysis. In the SPP
formulation they represented stochastic fire loss by a discrete two-point probability
distribution that yielded the desired mean and coefficient of variation. They compared
only the first period solution and found that the mean value solution gave a good
approximation to the SPP, but consistently over-harvested under some conditions

(Boychuk and Martell, 1996).

Recent Landscape Analysis Models

Introduction

The threads of development from landscape ecology, disturbance models, forest
management and planning models, new technology, and the cross-over of theories from
mathematics have all interacted to arrive at the present state of landscape analysis
modeling. There has also been a trend towards simulation models that are multi-scale
and multi-process (Mladenoff and Baker, 1999). There are those with a narrow focus

such as FARSITE (Finney, 1998) which uses grid-cell input data, a vector format to

16

model the spreading fire front, exogenous climate drivers that control fire spread, and a
spotting routine that is stochastic and leapfrogs local dynamics.

Some models have incorporated non-spatial fire effects into forest planning
approaches that seek management actions that achieve multiple goals (Reed and Enrico,
1986; Boychuk and Martell, 1996). Other models such as LANDIS (Mladenotf and He,
1999) have emphasized the ability to be spatially explicit while including stochastic
elements and forest succession. And lastly, models such as SAFE FOREST (Sessions et
al., 1999) have attempted to combine the spatial simulation of forest development on a
large landscape, including wildfire disturbance and effects, with the search for
management actions that achieve multiple goals. These multi-scale, multi-process
models all have their groundwork based on earlier simulation models but interact in a
spatially explicit format that is not simply neighborhood-based (Mladenoff and Baker,
1999).

Landscape Analysis Models

The SafeD model developed in this thesis is not without predecessors. Many
simulation and optimization models have laid the groundwork for the work I completed.
As I'stated in the Literature Review introduction, it is my goal to distinguish between
classical simulation models and classical optimization models and to suggest that a
hybrid simulation/optimization model (such as SafeD) is an improvement . The two
previous sections discussed classical simulation and optimization models. However, to
further illustrate how a hybrid simulation/optimization model is an improvement in
landscape analysis modeling I have chosen three antecedent analysis models to evaluate.
The first two models, LANDIS and CLAMS, are forest simulation models — but not in a
strict classical sense. The last model, SAFE FOREST, is a hybrid simulation/optimization
model and is the most closely related to the SafeD model. Ihave chosen not to review
any early simulation or optimization models that would be considered “classical” because
landscape analysis modeling has progressed rapidly in recent years and I wish to evaluate
models that are comparable to the SafeD model. This is not to dismiss their importance

or role in landscape analysis modeling.

17

The LANDIS Model:

The LANDIS model by Mladenoff and He (1999) was designed to address the

following needs:

1. Simulate large landscapes that are heterogeneous in terms of site conditions and
initial vegetation conditions at the tree species level.

2. Simulate interaction of dominant forest disturbance regimes...fire, windthrow,
and harvesting, with species-level forest succession.
Adapt to range of possible scales and map input-data of varied resolution.

4. Include spatially explicit ecological interaction, and mechanistic realism, while

having modest input parameter needs. (p. 125)

The above needs are requirements for most forest landscape models and Mladenoff
and He (1999) state they cannot all be optimized within a single model. The needs are
framed by temporal and spatial scale, data availability, and parameter information for the
area being modeled (Mladenoff and He, 1999).

The application of the model I reviewed was designed to look at how a regional
landscape would recover from its current condition if natural successional processes
operated, both with and without fire and wind disturbances (Mladenoff and He, 1999).
The LANDIS model used a 10-year time step (over a 500 year planning horizon) to
model a 3.7 million acre landscape in a transitional zone between boreal forest and
temperate forest in northwestern Wisconsin (Mladenoff and He, 1999). A grid data
structure was used with a grid-cell resolution of 200 meters x 200 meters.

Forest succession, seeding dynamics, and natural disturbances were the main
components of the LANDIS model. LANDIS was designed as a tool to study species-
level responses and changes in forest landscape pattern with varied natural and
anthropogenic disturbances. These included stochastic fire and windthrow disturbances
that moved on a cell-by-cell probability which the authors called spatially explicit
(Mladenoff and He, 1999). In other words, the fire and windthrow events (once decided
when and where they will happen or start) could move and spread across the landscape

subject to behavior constraints and probabilities based on an individual cells’ attributes.

18

Multiple simulations were run to assess the variability of conditions on the
landscape, both with and without stochastic disturbances. With its ability to incorporate
natural stochastic disturbances the LANDIS model “serves as a useful baseline against

which to assess various landscape management or other change scenarios” (Mladenoff

and He, 1999).

The CLAMS Model.

The Coastal Landscape Analysis and Modeling Study (CLAMS) project is a current
effort to answer the question, “how [will] the current variety of land uses and forest
policies in the [Oregon] Coast Range ... affect biological diversity, watershed processes,
and economic and social outcomes” (Bettinger et al., 2000a). The CLAMS model
incorporates strategic goals (aggregate harvest levels across large areas, multiple owners,
and long periods) and tactical considerations (e.g., clearcut size limits, historical patch
size distributions) (Bettinger et al., 2000a). The total study area is the Coast Range of
Oregon (about 5 million acres) but the model runs independently for six “megasheds”
just over 800,000 acres each.

The CLAMS model has its framework rooted in a raster data structure with Landsat
TM data and digital elevation models (DEM) utilized in the preparation of model data
input (Bettinger et al., 2000a). However, once the data is entered into the model it is used
in a polygon format and spatial relationships are maintained through lookup tables.
Stochastic disturbances such as fire, windthrow, drought, and insect outbreaks are
currently not considered (Bettinger et al., 2000a).

The CLAMS model is a more detailed look at future conditions if current policies
and practices were left in place. The level of spatial detail in the CLAMS model is

remarkable for the size of the landscape being modeled.

The SAFE FOREST Model:

Authorized by Congressional funds in 1993 the Sierra Nevada Ecosystem Project
(SNEP, 1996) was created. The primary goal for the SNEP team was:

19

[to undertake] a scientific review of the remaining old growth in the
national forests of the Sierra Nevada in California, and for a study of the
entire Sierra Nevada ecosystem. (Johnson et al., 1998)

The project was an attempt to combine the spatial simulation of forest development
on a large landscape, including wildfire disturbance and effects, with the search for
management actions that achieve multiple goals. Many members of the scientific team
for the Applegate Project were involved with the SNEP work and many ideas and
methods have found their way from SNEP to the Applegate Project. For example,
episodic disturbances, particularly fire, were identified as key elements in the shaping of
the modern landscape within the Sierra. In fact, the effects and role of fire played such a
large part in the development of the landscape simulation model that the model itself was
dubbed “Simulation and Analysis of Fire Effects on FOREST” (SAFE FOREST)
(Sessions et al., 1999).

The SAFE FOREST model used a vector data structure in which spatial
relationships were kept through lookup tables. The main “modeling units” were called
LSOG (Late Successional Old Growth) which were areas judged to be relatively uniform
in type and distribution of vegetation patches (Johnson et al., 1998). The model was used
on a 1 million acre landscape centered in the Eldorado National Forest and intermingled
lands. Sessions et al. (1999) outlines a four-stage procedure for the SAFE FOREST

model:

1. Find the set of activities (management actions) that best meets the goals for areas
of late successional emphasis.

2. Find the set of activities that best meets the goals for the rest of forest.

3. Simulate the fires across the landscape for the planning periods based on
randomly selected weather.

4. Adjust the schedule of activities, outputs, and effects following the fires. (p. 237)

Five goals were identified and specified in hierarchical fashion (high-to-low): 1)
Increase the general extent and complexity of late-successional forests; 2) Reduce the
potential for high-severity fire; 3) Restore riparian areas and watersheds; 4) Reintroduce

historical ecosystem processes; and 5) Provide sustainable, cost-effective timber harvest

20

volume. The model search for management actions was designed such that achievement
of a higher-order goal would not be compromised by attempts to achieve a lower-order
goal (Sessions et al., 1999). Other considerations such as wildlife, silvicultural methods,
and goal alternatives were also incorporated into the study (Johnson et al., 1998).

Following assignment of activities in stages one and two, fire was placed upon the
landscape based on historical probabilities within each LSOG polygon (Sessions et al.,
1999). Stochastic weather and wind patterns were used to determine fire spread.

The effects of fire were then estimated using the vegetation structure and
composition at the time of the fire along with various topographic variables (Sessions et
al., 1999). This is a partial spatial approach. The fire itself was not spread in a spatially
explicit manner but the location of the fire within LSOG polygons and the use of
probabilities allowed for a “spatial generalization” of the spread and extent of a fire. It
should be noted that the SAFE FOREST partial spatial approach to spreading fire was a
significant leap in incorporating fire disturbance processes into landscape analysis
modeling. Multiple simulations were made to help assess the variability of wildfires

through time (Sessions et al., 1999).

Summary of Antecedent Models

Table 2-1 shows a comparison matrix for the spatial data and desirable model
characteristics of the three reviewed here. All three models recognize ecological
components and represent forest management activities. Only the SAFE FOREST model
has the ability to optimize multiple goals; which is an objective for the Applegate project.
There is a great disparity in the ability to represent stochastic elements which is the other
objective for the Applegate project. Both the LANDIS and SAFE FOREST model have
stochastic elements, however they are limited to representing fire disturbance only. Both
models ignore insects. The CLAMS model has no stochastic elements. Because there
are no stochastic elements the CLAMS model has no need to undertake repeated

simulations whereas the LANDIS and SAFE FOREST do.

22

Solution Techniques

Introduction

As I discussed earlier, there are two main components to strategic planning systems
based on forest-level optimization: 1) the model formulation and 2) the solution
technique (Sessions et al., 1999). Model formulation has been discussed. Solution
technique refers to the particular mathematical technique used to solve a problem. T will
discuss three broad classes of problem-solving techniques: linear programming, non-

linear programming, and heuristics

Linear, Integer, and Mixed-Integer Programming

Linear programming is a class of problem-solving methods used for problems
which are linear with respect to the relationships between the decision variables. Linear
programming (LP) techniques can be used to find the mathematically optimal solution
(Davis and Johnson, 1987). An optimal solution is the solution that gives the maximum
or minimum value for the objective function given the constraints. Harvest scheduling
models, such as FORPLAN (Johnson et al., 1980), rely on linear programming
techniques. However, large landscape simulations frequently have constraints expressed
in terms of maintaining a certain unit of area in a specific cover type and requires
decisions variables to be binary (zero or one). Traditional linear programming of these
types of problems is very difficult (Bettinger et al., 1997) and may require alternative
techniques such as integer or mixed-integer programming.

Linear programming can find the optimal solution for a model whose variables are
continuous. When decision variables are formulated as 0-1 variables the solution
technique is called integer programming (IP) or mixed-integer programming (MIP) when
both binary and continuous variables are present; both of which are considered extensions
of LP (Hof and Joyce, 1992). For example, a harvest scheduling problem may be
formulated such that the decision variables for a harvest unit are 0 (don’t cut) or 1 (cut)
for each period in the planning horizon. Often the spatial relationship between units is

important and IP and MIP allow optimal solutions to be found when there are spatial

23

constraints (Hof et al., 1994). LP, TP, and MIP are useful techniques and many examples
can be found of their application in forestry (Hof and Joyce, 1992; Hof et al., 1994; Davis
and Johnson, 1987; Hoganson and Rose, 1984; Daust and Nelson, 1993; O’Hara et al.,
1989; Clements et al., 1990). As with LP techniques, both IP and MIP techniques fail for

problems where the decision variables are too many or are non-linearly related.

Nonlinear Programming

Linear, integer, and mixed-integer programming are suitable for problems where
the decision variables have linear properties (i.e., plus or minus, + -). When operators
other than these are present the problem is considered nonlinear (such as products,
powers, and logarithms). Nonlinear problem solving techniques have practical size
limitations on the decision variables and problems with convergence on local optimums.
Currently a class of problem-solving methods called heuristics is being used to solve

nonlinear forest management problems.

Heuristics

Zanakis and Evans (1981) trace the word heuristic from the Greek word
“heuriskein” meaning “to discover”. In landscape modeling the term heuristic is used to
define a procedure to reduce search in problem-solving activities (Reeves, 1993).
Reducing search in problem-solving is a goal in landscape modeling driven by limited
computational capability and limited time; which can be related to the large number of
choices generally associated with landscape problems. Because the ideal behind reducing
search is to avoid looking at every possible problem solution (and thereby know the
absolute optimal), a heuristic can only be considered to be “searching” for the optimal
solution. This concept has led Reeves (1993 p6) to define heuristic as “a technique which
seeks good (i.e. near-optimal) solutions at a reasonable computational cost without being
able to guarantee either feasibility or optimality, or even in many cases to state how close

to optimality a particular feasible solution is”. The utilization of heuristic programming

24

techniques may allow the integration of complex, and often non-linear relationships

found in forest simulation models.

Taxonomy of Heuristic Methods:

There is a confusing array of references to heuristic techniques and classification in
the published literature. There appears to be general consensus in the implementation of
various heuristics but little recognition of an orderly schema of techniques. Perhaps that
1s because there are many variations and hybrids that defy orderly classification. In my
search of forestry related literature regarding heuristics I have found a few discrete
differences between techniques that will serve to bring some order (Figures 2-2 and 2-3).

To begin with, heuristics are a class of problem-solving methods. As discussed
carlier other classes include linear programming, integer programming, and mixed-
integer programming. The next level down are paradigms. The three main paradigms
found in forestry related heuristics are evolutionary algorithms, neighborhood search, and
non-neighborhood search. These paradigms describes the fundamental difference in the
search strategies. Evolutionary algorithms can be described as those whose search
methods attempt to model natural selection and population genetics. Neighborhood
search techniques employ a searching strategy that involves a defined “neighborhood”
while non-neighborhood search strategies use some other search strategy.

A closer look at the neighborhood search paradigm reveals many variations and
hybridizations on the theme of a neighborhood. Ihave chosen to illustrate one variation
through a filter that describes the extent of the neighborhood (Figure 2-3). Extensive
neighborhoods are those that involve looking at many other solution states before making
a decision to move from one state to another. Simple neighborhoods usually only look at
one or a few solution states before making a decision to move. Other filters that can be
used in evaluating neighborhood searches (or even non-neighborhood searches and
evolutionary algorithms) are whether or not a memory or acceptance criterion 1s
employed. Memory is the idea that a solution remembers where it has been and using
that knowledge in some decision-making process that determines how to move from one

solution state to another. Acceptance criteria techniques are those that use an acceptance

25

criteria (or a single criterion) as the major factor for deciding the quality of a move.
Filters are difficult to classify in a orderly fashion because most are used in a mix-and-
match hybridization fashion that suits the modeler. For each of the three paradigms
above there are many techniques which fall under each. Simulated annealing, the great
deluge algorithm, and tabu search are three such techniques that have been used in

forestry applications with success.

cass |HEURISTICS

Paradigms
v _ v
Evolutionary Neigborhood Non-
Algorithms Search neighborhood
search
Techninups ¢
Genetic (see figure “random"
Algorithms below) Monte-Carlo
sampling

Figure 2-2: Hierarchical chart of heuristics

26

N Neigborhood
Paradigms Search
"Filters" |
A
Extensive Simple
neighborhoods neighborhoods
Other Fijters
Technigues - Memory _ Simulat.ed
y — Acceptance Annealing
criteria
Tabu Search -- Randomness Great Deluge
Algorithm

Figure 2-3: Sample classification of Neighborhood Search techniques

Simulated Annealing:

Annealing is a natural process in which the internal elements of a cooling body
rearrange their order from a high-energy state to a low-energy state. In the high-energy
state the elements of a system are molten and move freely. As the system is cooled,
mobility is lost. If the system cools slowly (annealed), the elements crystallize into a
stable state of minimal energy. If the system cools quickly (quenched), the elements
harden into an unstable arrangement (LLockwood and Moore, 1993).

Simulated annealing (SA) is a heuristic programming technique that tries to mimic
the annealing process described above. An SA algorithm tentatively alters the
arrangement of elements in a system, evaluates the change in the objective function
value, and then conditionally accepts or rejects the new arrangement (Dowsland, 1993).
A “temperature” and “temperature reduction factor” are used in the SA process to
evaluate the change (i.e., describe the energy state) in the objective function. New
arrangements that improve the objective function are always accepted. Arrangements
that worsen the objective function (analogous to adding energy to the system) are further
evaluated by an additional acceptance criterion. In the early stages of the annealing

process the acceptance criterion is less stringent and allows the system to accept

27

arrangements that worsen the objective function more frequently. As the algorithm
reaches later stages the acceptance criterion becomes more stringent until, at some point,
arrangements that worsen the objective function are no longer accepted (Dowsland,
1993). The acceptance criterion prevents the objective function from “greedily”
converging on the closest local minima or maxima (Lockwood and Moore, 1993).
Example of the use of SA for forestry applications can be found in Murray and Church

(1995), Lockwood and Moore (1993), and Nelson and Liu (1994).

Great Deluge Algorithm:

The great deluge algorithm (GDA) is a recently developed variant on the above
simulated annealing method for solving discrete combinatorial problems. The GDA was
introduced by Gunter Dueck (1993) and proved superior to similar neighborhood search
algorithms in solving a 442-city and 532-city Traveling Salesman Problem. The form of
the GDA as presented by Dueck (1993) consisted of using a single parameter in the
determination of whether or not to keep an inferior intermediate solution. The use of one
parameter rather than two, as in a simulated annealing algorithm, is believed to de-
sensitize the algorithm thus leading to equally good results even when parameter
estimation and formulation is poor.

The GDA derives it name from the conceptual framework on which the algorithm
works. If a problem were constructed such that the objective is to find the highest
elevation in a fictitious country then the GDA would be one of maximization. The
algorithm would start at some unknown location in the country and then it would “rain
without end”. The algorithm then walks around in this country trying to “keep its feet
dry”. However, the algorithm will tolerate water up to its ankles and so is allowed to
walk in some inundated areas with the hope that there is dry land nearby. The water
continues to rise and thus the dry land and acceptable ankle-deep water diminishes until
the algorithm finally finds the “highest point” — determined by the fact that there is no

more land left to walk around in without water going past the ankles.

28

Tabu Search:

Tabu search is a heuristic programming technique that employs a “memory” while
aggressively exploring the solution space of an optimization problem. Exploration of the
solution space is accomplished by making “moves” in the system, where a move is
defined as the change in value of any one of the problem variables (VoR, 1993). A move
may improve or diminish the quality of the objective function (same idea as a new
arrangement as discussed in SA). A tabu search algorithm may contain a short- and long-
term memory to help the algorithm intensify and diversify. Intensification is the ability
to look around a particular area within a solution space without being confounded by
non-improving moves (VoR, 1993). This is accomplished by a short-term memory list
which restricts certain moves after the algorithm has made the move repeatedly. This
prevents local cycling whereby the algorithm continuously finds a local minima or
maxima (Glover and Laguna, 1993). Diversification is the ability to look in a completely
new area of a solution space (Bettinger, 1998). This is accomplished by a long-term
memory list which penalizes often-selected arrangements and forces the selection of new
arrangements, which may allow the algorithm to search into unexplored regions of the
solution space (VoB, 1993). Forestry applications of tabu search can be found in
problems that address the scheduling of timber harvest subject to adjacency requirements
(Murray and Church, 1995), and to harvest scheduling while meeting spatial goals for big
game (Bettinger et al., 1997).

Summary and Conclusions

Strategic forest planning has primarily focused on setting the level of timber
harvest and the scheduling of timber harvest activities. The SNEP and CLAMS projects
are two studies that have included the traditional analysis and scheduling of timber
harvest activities while also including the ability to model other policy goals, formulated
as constraints. The LANDIS model is a spatially explicit and stochastic model that
simulates forest landscape change over long time periods and over large, heterogeneous
landscapes. The SAFE FOREST model also included stochastic wildfire but its spatial

explicitness was limited to the size of its large modeling polygons.

29

As policy goals have become more complex, new programming techniques have
been employed to solve landscape problems. Linear programming, integer programming,
and mixed-integer programming are difficult to use for solving landscape-level spatial
problems; either as a result of computational limitations or because of the complexity of
the problem formulation (e.g., large number of choices or nonlinear operators) (Bettinger,
1998). Heuristic programming techniques have been found to be effective in solving
optimization problems and their use in forestry applications is becoming more common
(Lockwood and Moore, 1993; Murray and Church, 1995; Nelson and Liu, 1994). In
particular, the Great Deluge Algorithm has been shown to be effective in evaluating a
landscape problem with spatial constraints (Bettinger et al., 2000b).

With this literature review T hope to have demonstrated the three main drivers that
have led me to develop the SafeD model. First is the need for a hybrid
simulation/optimization model. The Applegate Partnership has expressed this need with
two of their goals: 1) to simulate forest change over time and 2) to achieve goals set for
the watershed. Second is the need to use heuristics solution techniques to solve our
landscape problem. The number of decision variables associated with our problem and
the need for spatial constraints make the use of traditional linear and non-linear
programming problematic, if not impossible at this time. Finally, I have shown that an
evaluation of recent landscape models reveals limitations in their ability to address the
needs of the Applegate Project (see Table 2-1). The three models reviewed show at least
one “deficiency” in the desirable model characteristics rows. Therefore, I have set out to
build the SafeD model to both address the needs of the Applegate Partnership and to have

all the desirable model characteristics shown in the matrix.

30

BROAD OBJECTIVE

The broad objective is to develop a landscape simulation model for the Applegate
Partnership, land management agencies, and others to use in evaluating the potential
effects of different policies and forest management practices to achieve goals set for the
Applegate Watershed. These goals may include: 1) limiting insect and windthrow
hazard, 2) limiting catastrophic fire hazard, 3) enhancing wildlife habitat, 4) improving
fish habitat, and 5) providing for economic returns through timber harvest. In meeting
these goals there may be a set of landscape sub-goals such as ensuring X number of snags
are left on every 40 acres, maximizing even-flow of timber, maximizing present net
value, maximizing wildlife habitat, or a combination of these. The actual goals used at
the landscape level for the Applegate Project will be discussed in the Methods section of
this thesis. There will be three main components of the overall simulation model
(SafeD): 1) a stand prescription model (PREMO), 2) a disturbance model (which includes
a fire model called FARSITE, an insect model, and a windthrow model), and 3) a
landscape optimization model .

The above objective describes the final product desired (the SafeD model),
however, there is a more subtle sub-objective that should be noted. Since the project will
be done in a compartmentalized fashion the “bringing together” of all pieces will be an
goal in itself. Management of the spatial data in a GIS, the stand prescription model, the
fire model, the insect and windthrow models, and the landscape model all need to be

integrated in the final step.

31

RESEARCH DESIGN

A four-stage process was developed to guide management of the landscape to
achieve specified goals over a planning horizon (40 years). The first stage is the
development of stand prescriptions, for each recognized forest stand type and condition,
which are designed to achieve specific stand goals. The second stage is the selection and
implementation of the prescription for each stand and to start the temporal *“‘changing” of
the landscape. The selection of prescriptions will be accomplished using heuristic
programming techniques designed to find the “optimal” prescription that satisfies those
goals at the landscape level — some of which have a spatial nature to them. In stage three
the episodic disturbance processes are initiated. The episodic disturbances will include
fire, insect attacks, and windthrow. Disturbance models will be stochastic and spatially
explicit. Stage four is the re-analysis and re-selection of stand prescriptions (for the
remaining time in the planning period) to accommodate for disturbances in stage three.

Results from the final landscape model can be compared to simulations of the
landscape using other management approaches such as growth without active
management or treatment of stands in accordance with current policies (based on

ownership).

34

THE SAFED MODEL

General

The goal of the Applegate Project is to develop a landscape simulation model for
the Applegate Partnership, land management agencies, and others, to use in evaluating
the potential effects of different policies and forest management practices over time to
achieve goals for the forest of the Applegate River Watershed in the context of possible
stochastic events. The project is designed to incorporate guidelines set for AMA’s. A

key feature of AMA’s is to:

... provide for development and demonstration of monitoring protocols and
new approaches to land management that integrate economic and
ecological objectives based on credible development programs and
watershed and landscape analysis....[The guiding technical objective] is
scientific and technical innovation and experimentation....[such as the]
design and testing of effects of forest management activities at the
landscape level. (USDA Forest Service and USDI Bureau of Land
Management., 1994, p. D 2-4)

There are three main components to the overall simulation model - a stand
prescription optimization model, a landscape optimization model, and disturbance
models (which includes fire, insect, and windthrow models). The overall simulation
model is the model I am describing in this thesis, the SafeD model (Simulation and
analysis of forests with episodic Disturbances). As I will describe in more detail the three
main components of the SafeD model are not necessarily embedded within the SafeD
model code itself. In other words, there are external models that the SafeD model is
dependent on. Handling the input and output of data from these external models is
accomplished by the SafeD model. The SafeD model is also responsible for all the
landscape optimization (to be discussed). The important point to remember is that the
SafeD model accomplishes many processes within itself but is dependent upon other

external models for some data and processes.

35

A four-stage process is used to test the impact of different management approaches

on the landscape over the planning horizon (40 years). See Figures 6-1 and 6-2 for a

flowchart of the following:

1.

Stage one is the preparation of stand data and the development of stand prescriptions,
for each recognized forest stand type and condition, which are keyed to different
emphasis of the overall goals.

Stage two is the selection of a prescription for each stand based on the goals
established for the watershed. The selection of prescriptions is accomplished using
heuristic programming techniques designed to find a “near-optimal” spatial pattern
that satisfies landscape goals.

Stage three is the initiation of the episodic disturbance processes. This includes a
stochastic fire model, an insect model, and a windthrow model that are spatially
explicit.

Stage four is the adjustment of the stand prescription to accommodate for the effects

of disturbances in stage three and re-optimize at the stand and landscape level.

38

Stage One

Vegetation classes and structural stages for the watershed have been developed
using Landsat TM satellite imagery captured in August, 1993. Thirteen vegetation
classes and fifteen structural stages are recognized within the watershed (Appendix A).
Each combination of a vegetation class and structural stage could occur within three area-
types identified on the landscape: normal, thinned, and fuel break. The three area-types
were developed to address the fact that the Landsat image was taken in 1993 and
activities have occurred on the landscape since that time. Data was obtained indicating
that these activities included some thinning and fuel breaks. We were able to spatially
identify many areas where a post-1993 thinning or fuel break was present.

Additionally, seven Plant Association Groups (PAGs) were developed by Agee
(1999) to help determine the successional pathways. Each stand was assigned a PAG
based on geology, elevation , precipitation, slope, and aspect. Appendix B shows the
rules for PAG assignment:

An important component within the SafeD model is the identification of what is a
“stand”. The science team for the Applegate Project decided to break with traditional
stand delineation (spatially defining polygons with similar vegetative or other attributes)
and instead used each pixel from the classified Landsat TM imagery as the stand unit.
That is, each 25m. X 25m. pixel is a stand in the SafeD model. “Stand type” refers to the
unique combination of vegetation classification, structural stage classification, and area
type. There are nine forested vegetation classes (and four non-forest classes), eleven
forested structural stage classes (and four non-forest classes), and three area types. For
the initial conditions in the Applegate Watershed there is a potential for 297 (9 * 11 * 3)
unique stand types.

The first stage of the modeling process is the development of stand prescriptions
that integrates growth, mortality, and achievement of stand goals. This is done for each
of the unique stand types in the watershed. Project member Wedin (1999) developed the
stand prescription optimization model. Wedin used the growth relationships found in the
Forest Vegetation Simulator (FVS)(Dixon and Johnson, 1995) as the foundation for a
new stand prescription generator called PREMO (PREscription generator under Multiple

Objectives) (Wedin, 1999). Periodic insect, wind, and root disease mortality are

39

incorporated into PREMO. Relationships on decay of snags and down wood comes from
Mellen and Ager’s (1998) coarse woody debris model.

PREMO is designed to take stand data, represented by a list of live trees, dead
trees, and down woody debris (called a treelist — see Data section), and create multiple
prescriptions for the stand in response to emphases on goals that might be used to guide
the management of the stand. A prescription, as T use in the context of the SafeD model,
is a series of treelists (for a single stand type) that reflect the actual dynamic condition of
the stand over the entire planning horizon. This is not the same as a “silvicultural
prescription” which contains very specific information regarding how and when to treat a
stand over the planning horizon. A prescription for the SafeD model is simply the ending
series of treelist with the assumption that all the silvicultural activities (or none) have
taken place and that growth and mortality is accounted for.

Five potential stand goals came out of discussions with the Applegate Partnership
and others: 1) limiting fire hazard; 2) limiting insect and wind-throw hazard; 3)
enhancing wildlife habitat; 4) improving fish habitat; and 5) providing a supply of timber
in a cost-efficient manner. The tools for manipulating stand condition in order to achieve
goals are growth, tree harvest, and snag creation. Measurements of goal attainment are
based on stand variables as calculated by investigating the modeled residual tree list
(standing live and dead trees, and down wood) or the modeled harvest treelist. Wedin
uses the RLS-PATH optimization algorithm (Yoshimoto et al., 1990) to find prescription
alternatives for each stand for each goal. More information on the stand prescription
optimization model can be found in Wedin (1999).

The science team developed a unique approach to account for stand mortality by
designing PREMO to function within the context of a larger landscape simulation model
(i.e. the SafeD model). The mortality equations normally used by FVS were left out of
PREMO and new periodic mortality equations were developed for PREMO to account
for periodic insect, wind, and root disease. However, a larger percentage of stand
mortality will occur episodically with the mortality occurring outside of PREMO (within
the SafeD model). The SafeD model is designed to track stand mortality and thus can be
used to evaluate whether or not the idea of representing stand mortality by episodic

events is feasible.

40

The idea behind stage one and the use of PREMO is important enough to re-
illustrate. Let’s start with isolating a single stand type within the Applegate study area.
Again, for this project the stands were identified as 25 meter pixels. Two or multiple
adjacent pixels could be identical stand types but they are modeled and tracked as
separate entities. Now assume that the stand selected is of Red fir vegetation class, falls
into the structural stage class of 15”” —21”” DBH with > 60% canopy closure, and the
area has not been modified since the 1993 Landsat image was taken (normal area type).
These three components identify unique stand types within the watershed. There are
many 25 meter pixels across the landscape that have these same components, and
therefore, are considered as being identical stand types.

The Red fir stand type just described has a treelist associated with it that provides a
description of the current stand in detail. We can manage that stand by allowing growth,
tree harvest, and snag creation. The question is, “What do we do to the stand?”
However, that can only be asked after answering the question, “What do you want the
stand to look like at the end of the planning horizon?” And the latter question is what is
used to identify a stand goal. If the stand goal is to create a stand that limits fire hazard,
then what we are really saying is, “I want a stand that exists in such a condition that if a
fire were to come through it, the adverse effects to the stand would be limited.” Of
course parameters and equations would need to be in place to measure the effects to the
stand from the fire.

Now that we have identified a single stand goal for the Red fir stand type we can
look at ways to treat the stand (or not treat the stand) to achieve the goal. And that is one
of the functions of PREMO. PREMO tries to produce an “optimal” treatment (which
results in a prescription) for a stand that takes into consideration the existing stand
condition, the management activities available, and the desired ending stand condition.
However, PREMO has to be pre-programmed with equations and functions for each

desired stand goal. There are currently 19 stand goals available from PREMO:

41

Reduce fire risk

Reduce insect risk

Enhance fish habitat

Enhance wildlife habitat — complex structure

Enhance wildlife habitat — simple structure

Maximize PNV

Reduce fire and insect risk, and maximize PNV

Enhance fish and wildlife (complex) habitat, and maximize PNV
. All goals with emphasis on maximize PNV

10. Grow only

11~ 19. Same as first nine except harvest not allowed until 3" period (called Timing
Choices)

X NOU AW~

In stage one we generate prescriptions for each unique stand type identified for all
of the stand goals. Continuing with the Red fir example, PREMO will generate 19
different prescriptions for that stand type; each of which is optimized for a particular
stand goal. The next question to ask is, “Which prescription do I actually select to
implement?” and that is addressed in stage two. Again, see Wedin (1999) for a detailed
explanation of how PREMO works in stage one.

The PREMO runs are made prior to the simulation runs. The SafeD model expects
the prescriptions files to be available at run-time. The SafeD model is programmed to
execute the PREMO runs in real-time as well (meaning PREMO is executed during the
simulation run). This generally proves inefficient because multiple simulation runs are
made and the PREMO runs are only needed once to create the prescriptions for the initial
conditions (which do not change). If any changes to the PREMO code are made then

new PREMO runs are made.

Stage Two

Introduction

Stage two is a three-phase process which completes the selection of specific
prescriptions for each stand and is the core of the optimization part of the SafeD model.
The prescriptions developed by PREMO in stage one are optimized at the stand level

based on stand goals. The idea of stage two is to optimize the selection of specific stand

42

prescriptions based on landscape goals. The three phases to accomplish this are: 1)
define the landscape goals, 2) define an objective function that measures attainment of
the landscape goal and any constraining functions, and 3) develop a heuristic to

maximize (or minimize) for the objective function.

Phase one of stage two — Define the landscape goals

Potential landscape goals include the same five stand goals but applied at the
landscape scale (limiting fire hazard, limiting insect and wind-throw hazard, enhancing
wildlife habitat, improving fish habitat, and providing a positive PNV). Other potential
landscape goals are spatial in nature. Examples include ensuring X number of snags are
left on every 40 acres or maximizing even-flow of timber in area Y while improving fish
habitat in area Z. The original idea behind the Applegate Project was to give the
Applegate Partnership an opportunity to define the landscape goals and for the project
science team to develop some landscape goals as well. However, because of difficulties
encountered in the model development there was not enough time to coordinate with the
Applegate Partnership and establish a well-defined set of landscape goals they wish to
model. This left the process of defining the landscape goals to the science team.

The science team chose two landscape goals:

1) Big Trees — Maximize the number of big trees (> 30” DBH) across a managed
landscape.

2) ERA Constraint — Limit each 6™-field sub-watershed to an Equivalent Roaded

Acre threshold (ERA — to be discussed in phase two).

Two scenarios were developed to encapsulate the above landscape goals (first
scenario) and provide for an alternative landscape “goal” of leaving a landscape
unmanaged (second scenario). These two scenarios serve as the modeling alternatives
that will be referenced throughout this thesis (scenarios will always be capitalized in

remaining text; landscape and stand goals will not):

1) Grow Only - No management activities allowed in any stand.

2) Big Trees — Incorporate the big trees and ERA constraint goals.

43

The landscape goals are applied to a spatial sub-set of the entire Applegate
Watershed. I call this sub-set the “eligible” or “modeled” landscape. The modeled
landscape is a result of identifying those cells for which the SafeD model will keep track
of.

For the Grow Only scenario the Red Buttes Wilderness and all non-forested areas
are the only areas not modeled.

The modeled landscape for the Big Trees scenario are those forested cells that:

1. AreinaLSR with an initial stand quadratic mean diameter breast height
(QMDBH) <= 15”

2. Are on federal lands in identified stream buffers with an initial stand QMDBH
<= 15"

3. Are not in the Red Buttes Wilderness

The Grow Only scenario was chosen for its use as a “baseline” to measure other
scenarios against. The ideal of having a big tree goal on the landscape was positively
received during several discussions with the Applegate Partnership. The ERA constraint
goal was incorporated to allow me an opportunity to work with a multiple-goal scenario.
ERA thresholds were also discussed with the Applegate Partnership although no formal

guidelines or parameterization came from them.

Phase two of stage two — Define objective function and constraint functions

The Grow Only scenario does not require any objective function because no
decisions need to be made; the landscape is left alone to grow. The big trees goal in the
Big Trees scenario is formulated as a Model I nonlinear integer problem (see Literature
Review) where decision choices are represented by binary integer (0-1) variables. In this
case, the fundamental choice is whether or not to assign a particular stand prescription to
a stand. The objective function is to maximize the number of big trees across the

managed landscape. The objective function is formulated as:

44

maximize:
n m q
Zt:] 21(:12]:1 rk,t,j Xk,]
where:
t = period
n = total number of periods
k = stand (note: stands are 25 m. x 25 m.)
m = total number of eligible stands
J = prescription
q = total number of potential prescriptions
I = total number of big trees (>= 30” DBH) in stand & in period ¢ from
prescription j
Xk,j = 0-1 variable indicating prescription j is assigned to stand &
subject to:
INPUT CONSTRAINT

2iaxe,; =1 Vk

POLICY CONSTRAINT (sub-watershed disturbance)

A normalized numerical coefficient called the Equivalent Roaded Acre (ERA) will
be used to track overall land disturbance within each 6™ field sub-watershed
(approximately 2,200 acres each). A road surface is considered to be the most extreme
type of disturbance in terms of increasing or concentrating water flows and sediment
production (Carlson and Christiansen, 1993). A road is given an ERA coefficient of 1.0.
Other types of disturbance are equated to a road surface by ERA coefficients reflecting
their relative level of disturbance. ERA coefficients are decayed over time to reflect

recovery.

45

The ERA constraint function is formulated as:

P
21 ERAx < ERA_Threshold, Vt,w
p

where:
t = period
w = sub-watershed
k = stand in sub-watershed w
P = total stands in sub-watershed w

ERAy = ERA value for stand k in period ¢
ERA_Threshold, ERA threshold for period ¢

Phase three of stage two — Develop heuristic to maximize the objective function

A heuristic optimization algorithm was developed to select the prescriptions for
each stand for the entire planning horizon to achieve the Big Trees landscape goal.
Heuristic programming is a broad term used here to describe a method of solving large,
multi-variable, combinatorial optimization problems. Simulated annealing, the great
deluge algorithm, genetic algorithms, and tabu search are examples of heuristic
algorithms (often just called heuristics). Heuristics find optimal or near-optimal solutions
through various processes that allow the algorithm to employ a search or sampling
strategy of the possible solutions. Some unique elements of heuristics include: 1) they
do not look at all the possible solutions; 2) they may have some sort of “memory” which
prevent the algorithm from continuously looking in one “area” for a solution; 3) they tend
to have a set of rules that allows the algorithm to accept inferior solutions, to avoid being
trapped in local optima, with the idea that it may lead to a better solution; and 4) they are
not guaranteed to find the mathematically optimal solution, in fact they may not find a
feasible solution at all (see discussion on heuristics in Literature Review).

I chose to use the Great Deluge Algorithm (GDA) as described by Dueck (1993).
The GDA requires only one acceptance criteria parameter which makes it easier to

implement than other similar techniques. As described in the literature review the GDA

46

rests on the notion that given a starting value, inferior solution values are acceptable
subject to an increasing “level”. The difference between the level and the best solution
value ever found decreases as the algorithm progresses by a single parameter called
“rain”. This idea works for both minimization and maximization problems.

The solution given by the GDA heuristic will be a near-optimal solution to the
underlying landscape question “Which prescription do I choose for each stand (from the
available set of prescription alternatives developed by PREMO) that optimizes the
landscape given a set of landscape goals.” Figure 6-3 shows a flowchart for a generalized

version of the GDA heuristic used.

48

Only the Big Trees scenario required a problem-solving heuristic. The Grow Only
scenario had no decision variables; the landscape is left alone to grow without any
management actions. The computer code written for the GDA heuristic is embedded
within several functions of the overall SafeD model code. The entire code can be seen in
Appendix F. A rough description of the GDA implemented for the Big Trees scenario

follows:

A completely random solution is generated. A solution is defined
as the allocation of a stand prescription to each stand on the managed
landscape. The Big Trees scenario had 2,289,823 stands that were eligible
for management (353,491 acres). There were 19 different stand
prescriptions that could be assigned to any single stand (see stage one). A
random solution is generated by randomly assigning one of the 19
available prescriptions to each of the stands. Once that is completed the
solution is evaluated to ensure it is feasible — in other words, it does not
violate any constraint. The only constraint imposed for the Big Trees
scenario was a sub-watershed ERA threshold. The SafeD model
calculates an ERA value for each of the 218 sub-watersheds in the
Applegate River Watershed. If any one of those sub-watersheds has an
ERA value higher than the allowed threshold value the entire random
solution is discarded and another generated. This process continues until a
feasible random solution is obtained for the starting point.

Once there is a valid initial solution the initial objective value
(OV) is calculated. For the Big Trees scenario the OV is the total sum of
all trees greater than or equal to 30” DBH on the managed landscape
across the entire planning horizon. This value is initially calculated by
looking at each stand, finding the appropriate treelist and summing the
number of eligible trees. After the initial OV is calculated two key
variables are set. First is the best objective value (BOV). Since the initial

OV is the only one found it is also set as the BOV. Next set is the

LEVEL. The LEVEL is the allowable value below (for a maximization
problem) which a new OV cannot drop. The initial OV, the BOV, and the
LEVEL are now set and the GDA algorithm is ready to enter into a
problem-solving iteration (looping) process.

The first step (or top) in the GDA loop is to make a “move”. A
move constitutes some change or deviation in the state of the solution. I
chose to make neighborhood moves by randomly selecting one of the
stands in the current solution and assigning a new random stand
prescription allocation. The only restrictions in place for the move is that I
can’t pick the same stand twice in a row and I can’t reassign the same
prescription (with over 2 million stands to randomly chose from the first
restriction was really unnecessary). The solution in place before making a
move is always stored in case the move proves to violate any constraints.
After the move is made the move solution is evaluated to see if does
violate the ERA threshold constraint. If it does violate the ERA threshold
constraint, the move is rejected, the stored pre-move solution is returned,
and the next loop is executed. If the move does not violate the ERA
threshold constraint the move objective value (MOV) is calculated using
the objective function described earlier.

At this point the GDA has changed the solution from its previous
state and the critical question is to decide whether or not to accept the
move and continue the looping process or reject the move and continue the
looping process. First the GDA asks, “Is the MOV better than the current
BOYV (better meaning a higher number) ?”” If so, the current configuration
of the solution is saved, the BOV is reset to the value of MOV, and the
LEVEL is increased by the rain parameter. The rain parameter is a
constant value determined through a trial-and-error process (see Dueck,
1993). A check is made to see if the GDA looping threshold has been
reached. The looping threshold is another value determined through a
trial-and-error process. If so, the GDA ends; if not, the GDA returns to

the top of the loop and picks another random stand to evaluate for a move.

49

50

However, if the MOV is not better than the current BOV the GDA asks,
“Is the MOY better than the current LEVEL value?”. If so, the current
configuration of the solution is saved and the LEVEL is increased by the
rain parameter. Notice that the BOV is not reset this time. A check is
made to see if the GDA looping threshold has been reached. If so, the
GDA ends; if not, the GDA returns to the top of the loop. Lastly, if the
MOV was not better than the current LEVEL value, the move is rejected,
the stored pre-move solution is returned, and the GDA checks the looping

threshold and continues as described above.

This marks the end of the three main phases of stage two. Once the GDA is
completed and a solution is found the SafeD model needs to run through some internal C
code to account for the solution variables found. This is a programming process and
basically entails the storing of specific values for each stand within the computer’s
memory. Most of this data is related to information obtained from treelist which are
stored on the computer’s hard drive. Storing the information in memory allows the

SafeD model to access the data faster and thus run faster in stages three and four.

Stage Three

Introduction

Stage three begins the movement from period to period for each period in the
planning horizon. The Applegate Project was originally designed to be a 100-year
planning horizon with twenty 5-year periods. Due to computer processing time
limitations, this was later reduced to a 40-year planning horizon with eight 5-year
periods. The programming implementation permits an unlimited number of 5-year
periods — as long as certain stand and parameter data are available. Stage three is the core
of the simulation part of the SafeD model. There are five main parts to stage three with

many components to each part:

53

Determine weather

Weather is a stochastic variable within the SafeD model. The science team chose
to use precipitation data obtained from a weather station in Medford, Oregon (just outside
the Applegate Watershed to the east). The variation in precipitation was calculated from
this data and three weather patterns were categorized: Wet, Moderate, and Drought.
Within the drought-type pattern two levels exist: Mild and Severe. The weather pattern is
currently used for two purposes: 1) the insects and, 2) fire disturbances (the weather role
will be discussed in upcoming sections for these disturbances). Determining the weather
pattern for any given period was based on a probability matrix and a random number
generator.

The probability matrix for 5-year weather patterns in the Applegate Watershed is:

Wet 10%
Moderate 65%
Drought 25% (two levels of drought — see below)

A random number generator is used with the SafeD model. I will briefly describe
the process here because random numbers are used a few more times within the SafeD
model and I feel it is important to clarify how they work. The ideal behind probabilities
and random numbers is to generate a number between 0 and 1, which can correspond to
probability values of 0% to 100% (which if divided by 100is Oto 1). Task the C
language to generate a random number then compare that random number against the
probability matrix to determine the weather pattern. If it was determined to be a drought
period I would check what the weather pattern was during the previous period (which is
stored in memory). If the previous period was also a drought period the current period
was considered a severe drought; otherwise it was a mild drought. Only one severe
drought period was allowed per 100-years. If a severe drought already occurred and the
random number generator was calling for another one, I would cycle with new random

numbers until either a wet or moderate weather pattern was found.

54

Adjust fuel loads

One of the experimental ideas the science team wanted to try in the Applegate
Project was the calculation of fuel loads and the classification of each stand into fuel
models based on current treelist data and fuel loads during each simulation period. We
call this process “dynamic fuel modeling” to reflect the ideal that the fuel loads are
changing each period because of stochastic disturbances, tree growth, tree and snag
decay, and harvest which we cannot determine a priori. Science team members Agee
(1999) and Bahro (personal comm.., various dates 1998-2000) developed the rules and
processes for our dynamic fuel modeling; I was responsible for implementing their rules
and processes into the SafeD model. To that end, I cannot discuss in detail the
background or particulars in the development of dynamic fuel modeling. However, I will
address what [implemented into the SafeD model. There are two components that I will
be discussing in this section. The first is the accumulation and decay of debris pools into
fuel loads. Second is the categorization of fuel loads into fuel models. It should be
noted that much of the work done by the Applegate Project science team for dynamic fuel
modeling was based on methodology from the Fire and Fuels Extension to the Forest
Vegetation Simulator (FVS) by Beukema et al. (1998).

Most biomass from above-ground sources can be collected into debris pools as that
material falls to the ground. Debris pools are diameter size categories for classification
of this material. The SafeD model tracks the amount of material falling into each debris
pool as well as account for decay of material already in the pools.

Initialization of debris pools for each stand really occurs once at the end of stage
two — before the SafeD model enters stage three. Initialization is not related to the
allocation of stand prescriptions; it is an independent process that happens regardless of
what management actions are decided upon. The science team chose to initialize the
debris pools based on the vegetation classification of each stand. Table 6-2 shows the

initial values for each debris pool in each vegetation category in tons/acre.

56

define fuel models include load and surface-area-to-volume ratio for each class (live and

dead), fuel bed depth, and moisture of extinction (Anderson, 1982). Fuel model codes

are standardized within the fire modeling community such that a fuel model 8 means

something whether you are in the Pacific Northwest or Florida. Table 6-3 shows the fuel

model (FM) classification matrix used for the SafeD model:

IF Vegetation is Barren, Water, Shrub, Grass/forbs

Barren ... FM 99
AT e FM 98
Grass/FOIDS ...t e FM 1
Shrub
<3000 L FM 4
> 30007 ., FM 19

ELSE IF stand QMDBH < 5” or (stand QMDBH < 8.9” and canopy closure < 60%)

>30007 o FM 5
< 30000
vegetationis Pine ... FM 2
vegetation is Deciduous hardwood FM 17
OTHELS L. s FM 6

ELSE IF vegetation is deciduous hardwood that has < 60% canopy closure or a stand
QMDBH of 5-8.9” and > 60% canopy closure FM 6

ELSE IF 1-hour fuel load <= 1.5

10-hour < 1 .o, FM 18
10-hour 1 -4.5 FM 8
10-hour > 4.5 . FM 11
ELSE IF 1-hour fuel load 1.5 -2.5
10-hour < 1 .o FM 20
10-hour 1 - 1.9
100-hour <=1 ..o FM 2
OLRELS L e e FM 23
10-hour 2 =6 ..o FM 31
I0-hour>6 ..o FM 32
ELSE
10-hour < 1o s FM 9
10-hour 1 -3
100-hour <=3.5 ... i FM 16
others e e e e, FM 10
10-hour > 3 FM 12

Table 6-3: Fuel Model (FM) classification matrix

57

I have discussed two processes regarding dynamic fuel modeling: the initialization
of debris pools and classification into fuel loads for the initial vegetation on the landscape
(time O - start of the simulation — stage two); and the classification of fuel loads into fuel
models regardless of the period. This brings me back to the dynamic fuel modeling
processes that occur in stage three. There are basically three steps to the dynamic fuel
modeling process that occur at the beginning of every period. Those three steps are: 1)
decay debris pools, 2) add new contributions to debris pools, and 3) reclassify debris
pools into fuel loads and those fuel loads into new fuel models.

Decay rates for the debris pools were established by Agee (1999) and implemented

in the SafeD model as follows:

Duff and litter pools

» Every period (5-years), decay 2% of litter

> Decay 3% of duff for each year

» Take 16% of remaining litter and move it to duff
Remaining debris pools

Pool diameter size =~ Rate

> 0-257 decay 12% per year

> 25-1 decay 12% per year

> 1-3 decay 9% per year

> 3-6" decay 1.5% per year

> 6-127 decay 1.5% per year

> >127 decay 1.5% per year

At the start of a period the SafeD model goes to each of the stands and decays the
debris pools associated with the stand. This is done on a stand-by-stand basis. Once the
decay step is completed, new net contributions to the debris pools are added. Net
contributions to debris pools are a function of stand composition, structure, growth,
mortality, and harvest. This information is actually calculated inside the PREMO
program back in stage one as part of the prescription development. I will not address the
calculations of net contributions in this thesis because if falls outside the scope of work 1
completed; I simply used the output data from PREMO (see Wedin, 1999). In essence,

the SafeD model goes through the entire landscape on a stand-by-stand basis and

58

determines which PREMO output data is needed for the stand. The SafeD model stores
the new net contributions for each stand in that period and now each stand has updated
debris pool information — decay and new contributions are accounted for. The final step
in the dynamic fuel modeling process is the recalculation of fuel loads based on the new
debris pools and the further classification into fuel models as previously described.
During each simulation period there are two types of episodic disturbances that the
SafeD model incorporates: insects and fire. The two components of stage three that 1
have just discussed (determine weather and adjust fuel loads) must occur every period
before any type of episodic disturbance. Their function is to prepare and “update” the
landscape attributes stored within the SafeD model such that when an episodic

disturbance occurs the landscape attributes are current.

Apply insect disturbance

Another experimental idea the science team wished to try in the Applegate Project
was that of having a stochastic insect disturbance regime which is spatial in nature. The
rules for insect disturbance were based on expert advice and the intent was not to provide
a precise set of triggers and impacts, but to simulate expected losses over the long run.
Science team member Agee (1999) provided the research and rules for the insect
disturbances.

The SafeD model embeds episodic mortality from insects in stochastic drought-
related pulses. That is, only during drought periods is there episodic insect mortality.
The rules for insect disturbances have two components: a basal area threshold is met and

triggered; then a severity is applied. Three separate insect keys were developed:

Key Example of insects
1) Douglas-fir (Douglas-fir beetle, flatheaded borer)
2) True fir (fir engraver)
3) Pines (pine engraver, western and mountain pine beetle)

If a simulation period is assigned a wet or moderate weather pattern at the
beginning of stage three then there is no insect mortality and the SafeD model skips the
whole insect disturbance processes. Otherwise, both mild drought and severe drought

weather patterns will trigger an insect disturbance. If a drought-type period is

59

encountered the SafeD model goes through the landscape on a stand-by-stand basis and
determines if basal area thresholds are exceeded; if so, then severity (mortality) rules are
applied. The basal area thresholds are a function of the stand PAG and which of the three
insect keys is being evaluated (all three keys are evaluated — one at a time). Severity is
applied to the individual treelist associated with the stand being evaluated. The insect
disturbance rules for the three insect keys are shown in Appendix C.

Once the severity is applied to all the stands for each of the three insect keys the
SafeD model runs through the landscape and re-calculates new stand level data for each
of the stands hit by insects. Stand level data are single values for particular attributes
which describe the stand as a whole. For example, a stand may have hundreds of
individual trees, each having their own basal area; when pulled together as a stand those
individual basal areas are collapsed into a single basal area value. PREMO calculates
and outputs stand level data back in stage one (and the SafeD model reads and stores that
data in stage one as well), but the SafeD model needs to make new calculations for each
stand that encounters an episodic disturbance during the simulation periods. New stand
level data that are calculated include: basal area, canopy cover, vegetation classification,
structural stage, height, height to live crown, and crown bulk density. The particular
methods used to calculate these values will not be addressed in this thesis. The origin of

the equations used are embedded in the PREMO program (see Wedin, 1999).

Apply fire disturbance

The last episodic disturbance event that occurs every period is fire. Wildfire has
played a significant role on the vegetative development in the watershed. The intent of
the Applegate Project is to project past wildfire statistics into parameters that can be used
for future wildfire simulations. Fire spread was accomplished using an external program
called FARSITE (Finney, 1998). Science team members Agee and Bahro have provided
the fire expertise for the project (this includes compiling past wildfire statistics and
setting all the parameterization of data for input into FARSITE). The fire disturbance
portion of the SafeD model is significant. My role in terms of this thesis is the
preparation of data for input into Farsite and the execution of processes developed by the

science team. 1 will detail that information generated specifically by the SafeD model

63

words, if simulations calculate fire statistics (over time) that mimic the Base-Case Fire
scenario then this could be suggestive of a landscape that is encountering fire (and
effects) similar to the historical data. The Base-Case Fire can then be used as a
comparative against actual fire simulations within the SafeD model during the entire
planning horizon. Parameters derived from the Base-Case Fire were used by science

team members Agee and Bahro to calibrate input variables to the fire spread model

FARSITE.

Introduction to FARSITE:

FARSITE (Fire Area Simulator) is a two-dimensional deterministic fire growth (or
spread) model developed by Mark Finney, now of the U.S. Forest Service Fire Science
Laboratory in Missoula, MT.. The Farsite model incorporates existing fire behavior
models of surface fire spread, crown fire spread, spotting, point-source fire acceleration,
and fuel moisture (Finney, 1998). A vector propagation technique for fire perimeter
expansion that controls for both space and time resolution of fire growth is built into the
FARSITE model. Vector fire perimeters (polygons) are produced at specified time
intervals. The vertices of these polygons contain information on the fire’s spread rate and

intensity, which are interpolated to produce raster maps of fire behavior (Finney, 1998).

FARSITE Inputs:

The version of FARSITE used for this project is a DOS-based version that the
SafeD model calls up. However, a number of spatial landscape attributes (in grid
structure), an ignition location file, and other parameterization files must be created and
ready for FARSITE to use each period. A list of significant input attributes and files is

seen below in Table 6-5 (this is not an exhaustive list of FARSITE inputs):

65

FARSITE. There are three components to this strategy: 1) determine how many fires
there will be during the 5-year period, 2) determine how long they will burn, and 3)
determine where the individual ignition points will be. The second component (how long
they burn) will be discussed later when I detail information on the Date and Time File.

The initial idea to determine how many fire ignition points there are per 5-year
period was to allow a range based on the weather pattern determined for that period
(Agee, 1999). That ideal was later superceded by having a single range of ignition points
regardless of the weather pattern (Bahro, personal comm., Oct. 1999). For my thesis
work the range was determined as 5 — 15 ignition points per 5-year period. The actual
number is selected by the SafeD model with a random number generator. It should be
noted that ignition points are x,y coordinates (for each point) that FARSITE uses as the
source of an individual fire. Within the SafeD model each cell (or stand or pixel) has an
x,y value associated with the center-point of the cell. When I refer to a “point” in this
discussion I am making an abstraction of a cell as a point represented by its center X,y
coordinates.

Once the number of ignition points is determined, the next step is to allocate those
ignition points on the landscape. A sequence of rules were developed to help guide the
selection of each ignition point. For each of the » ignition points determined in a given
period all of the below rules must be checked before the ignition point is accepted. A

brief description of these rules is as follows:

1. A probability is assigned for the likelihood of an ignition point occurring in areas
with no previous fire history.
2. Ignition points can not be located in water.
3. Probabilities are assigned to the likelihood of ignition points occurring within
certain elevation bands as a function of the weather pattern.

4. Ignition points can not be located within one mile of landscape border.

1) A probability is assigned for the likelihood of an ignition point occurring in areas with
no previous fire history:

Table 6-1 at the beginning of the Stage Three section shows an input landscape

attribute called “fire history”. The fire history attribute is a simple 0-1 variable (for each

66

cell) indicating whether or not we have data indicating the occurrence of previous fire
activity within the cell. That information stems from the Past Wildfire Statistics section
earlier. During the ignition point selecting process the fire history attribute is evaluated
to determine if there has been previous fire activity in the cell (value 1) or not (value 0).
If there has not been previous fire activity within the cell there is only a 60% chance that
the cell is allowed to be selected. A 60% chance was determined through a trial-and-
error process by the science team that produced a reasonable allocation of fire ignition
locations within and outside of “fire history” polygons. Random numbers are used to

compare against the given probability.

2) Ignition points can not be located in water:

A simple check is made to determine if the ignition point is being selected from
water on the landscape. Several input landscape attribute themes have information

regarding the presence or absence of water.

3) Probabilities are assigned to the likelihood of ignition points occurring within certain
elevation bands as a function of the weather pattern:

For each of the three main weather patterns (wet, moderate, drought) a probability
matrix is used to determine the likelihood of ignition point locations within certain

elevation bands (Bahro, personal comm., June 1999). Table 6-6 shows this matrix:

68

1) Date and time of fire start and fire end:

The science team chose to use the number of ignition points and the burning
duration as the controllers in trying to mimic a Base-Case Fire. This is because these are
two user-inputs to the FARSITE program. I have already discussed the strategy behind
the number of ignition points. The burning duration is the second controller which
specifies a starting date and time for the fires and a ending date and time. The date is
important as another stochastic element (see Weather and Wind Files sections later).

Agee (1999) calibrated the initial rules for determining how long fires would burn
as a function of the weather pattern assigned to the period. These rules were later
modified by science team member Bahro (personal comm., April, 1999) as shown in

Table 6-7.

| Weather Patten | Duration
Wet j 24 hours
Moderate 48 hours
Drought-type 96 hours

Tablé 6-7: Fire duration times

2) Timestep:

FARSITE uses the timestep and spread rate of the fire to compute the distance
traveled by fire at the vertices of the fire edge (recall that FARSITE uses a vector model
of fire growth) (Finney, 1998). The timestep can be viewed as the maximum amount of
time that landscape and environmental conditions are assumed constant so that fire
growth can be projected. A timestep of 4 hours was found to satisfy our need for speedy

computation without greatly affecting the precision or capabilities of FARSITE.

3) Distance resolution:

Distance resolution is the maximum horizontal spread distance allowed before new
information from the landscape 1s required. It is the resolution in the radial spread
direction. The distance resolution is also used by FARSITE to dynamically adjust the

timestep to achieve a specified level of spatial detail. For example, assume a hypothetical

69

fire in which the timestep is four hours and the distance resolution is 200 meters. If after
two hours the fire has burned in a radial distance of 201 meters then FARSITE will
automatically reset the current timestep instead of waiting for the original four hours to
complete. We used a distance resolution of 200 meters (eight 25 meter cells in a radial

distance).

4) Perimeter resolution:

Perimeter resolution is the maximum distance allowed between vertices of the fire
polygon (Finney, 1998). This value is related to the level of detail wanted to describe the
outer perimeter of fires. A larger perimeter resolution results in coarser fire polygons.

We used a perimeter resolution of 200 meters.

PREMO-Generated Inputs:

There are four landscape attributes needed by FARSITE which are generated by
PREMO in stage one and stored for use during the simulation by SafeD: canopy cover,
crown height, height to live crown, and crown bulk density (Table 6-8). Because the
calculation of these attributes is done in PREMO I will not discuss how they are

generated (see Wedin, 1999).

71

Science Team Generated Inputs:

There are five parameterization files that are needed by FARSITE and are created
prior to the start of a simulation by the science team. These five files are also constant
throughout the simulation although the possibility exists for them to be dynamically
changed during the simulation. All five files are simple ASCII text files which can be

created with any text/word processor.

Weather Information

The weather file consists of daily observations of minimum and maximum
temperature and humidity, and of precipitation at a specified elevation (example in Table
6-10). Science team member Bahro produced the weather file we used from weather data
collected within and around the Applegate Watershed. The dates were confined to a
range from August 15" to September 13™. In theory FARSITE will accept a weather
(and wind file) with information for every day of the year. The science team felt that it
was important to restrict the weather and wind dates to the August-September timeframe
to help attain fires that mimic the Base Case Fire scenario (Agee, 1999). The SafeD
model does have a stochastic element built into the date selecting process. A random
number generator selects (for a single run of FARSTTE during a given simulation period)
the actual starting date (confined to the above timeframe). Additionally, three weather
files and three wind files were created; one for each of the three main weather patterns
(wet, moderate, drought). The weather and wind files used depends on the weather
pattern assigned to the simulation period.

The weather file data is used to generalize a diurnal weather pattern for a
designated portion of the landscape so that dead woody fuel moistures can be calculated
(Finney, 1998). Adiabatic adjustment from the input elevations to any cell on the

landscape determines the local temperature and humidity (Finney, 1998).

72

Relative
Hour Temperature Humidity
Month Day PPT AM PM Min Max Max Min Elevation
8 15 0 500 1300 51 65 88 28 3500
8 16 0 400 1300 53 67 91 26 3500
8 17 0 500 1300 56 57 82 25 3500

Table 6-10: Example of information found in a weather file

Wind Information

The wind file consists of observations of wind speed, wind direction, and cloud
cover (example in Table 6-11). As with the weather file, the wind file data is assumed to
apply uniformly to the landscape. Wind inputs are required to reflect “open” conditions
at 6.1 meters above the top of the vegetation (Finney, 1998). Wind speed is assumed to
be parallel to the terrain and for forested terrain the open wind speed is reduced locally by
the canopy cover landscape metric (Finney, 1998). Science team member Bahro

developed the wind file used in the simulation.

Wind
Hour- Open Wind Direction Cloud Cover
Month Day Minute Speed (mph) (degrees Az) (percent)
8 15 200 2 | 159 0
8 15 2200 7 29 0
8 16 400 7 | 162 0

Table 6-11: Example of information found in a wind file

FARSITE Execution:

I'have discussed the fire spread model FARSITE and all the significant inputs to

run the model. FARSITE is an external DOS-based program that must be called up by

the SafeD model to run. That is accomplished by sending an “execution” statement to the

computer which temporarily suspends the SafeD model and starts the FARSITE model.

However, before that is initiated all the necessary landscape metrics, parameterization

files, and the ignition point locations must be created and in the format required by

FARSITE.

73

FARSITE has the capability to output a number of landscape raster files that

describe fire spread parameters. These output files include:

Time of arrival
Fireline intensity
Flamelength

Rate of spread
Heat per unit area
Crown — No crown
Spread direction

Nk W=

Of these seven outputs only the flamelength output is utilized by the SafeD model.
The flamelength is used to apply specific mortality rates to the individual treelist
associated with stands affected by fire. The other six outputs describe other
characteristics associated with a fire and they are being considered for inclusion in future

work of the SafeD model (they may be helpful in the parameterization of future inputs).

First Order Fire Effects Model:

The First Order Fire Effects Model (FOFEM) is a model that quantifies the direct
or immediate consequences of fire (Reinhardt et al., 1997). These consequences include:
tree mortality, fuel consumption, mineral soil exposure, and smoke. The science team
chose to use the FOFEM to quantify tree mortality as a result of flamelength.

FOFEM mortality tables were developed that describe a mortality rate for specific
species with specific diameters given a specific flamelength. Those tables can be seen in
Appendix D. This information is related to the treelist associated with any stand at the

time a fire occurs on it. The process works like this:

1. A fire occurs during a simulation period. FARSITE outputs a flamelength grid
specifying the actual flamelength associated with those cells in which fire
occurred.

2. That information is read into the SafeD model which in turn identifies which
treelist is associated with each cell affected by fire. Those treelists are “gathered”

up to have FOFEM applied to them. A treelist will typically have multiple

74

species of trees associated with it. Each species has different fire mortality rates
associated with it

3. Once #2 above is determined the SafeD model goes through each individual
record in the treelist and applies a specific mortality rate as a function of the
species, diameter, and flamelength (as seen in Appendix D).

4. The mortality records calculated are appended to the end of the treelist and given

a code to indicate the record is now a snag.

Recalculate Current Stand Data:

Once the FOFEM effects are applied to all the stands affected by fire during the
simulation period the SafeD model runs through the landscape and re-calculates new
stand level data for each of those stands. This is the same process as described at the end
of the Apply Insect Disturbance section.

This ends the processes that occur in stage three of the SafeD modeling strategy.
The science team developed rules to include a wind-throw episodic disturbance but 1
have not included that into the SafeD model at this time. Wind-throw generally occurs in
the higher elevations and the mortality is relatively insignificant compared to insects and

fire. Future work on the Safe model could include wind-throw disturbance.

Hazard Analysis

The SafeD model incorporates two hazard analyses - insect hazard and flame
hazard. However, at this time the hazard analyses are not used for any processes or
evaluations that occur within the SafeD model. They were an experimental idea for the
project to which significant time was devoted to developing code to accomplish them.
The analyses are done at specific times during stage three and the outputs are used for
mapping purposes only. Appendix E details the hazard analysis processes. Future work
on the SafeD model should include looking at the hazard analysis during each period and

adjusting activities to mitigate areas that are at high risk.

75

Stage Four

Stage four is the “adjustment stage”. The flowchart seen back in Figure 6-1 lists

the three main components of stage four as:

1. Use PREMO to develop new prescriptions for all stands affected by disturbances
in stage three.

2. Adjust activities on the landscape to account for effects of disturbances in stage
three.

3. Return to stage three for the next period until end of planning horizon.

The original idea behind stage four was to track all the stands that were affected by
episodic disturbances during the period (either insect and/or fire) and track which 6"-
field sub-watershed those stands were in. Then PREMO would generate a new array of
prescriptions for each effected. Landscape goals, at the sub-watershed level, would be
developed (or given) for which a new heuristic would be used to chose the allocation of
prescriptions to the effected stands. However, time did not allow me to implement this
strategy into the SafeD model.

Stage four has been simplified to the following steps:

1. Determine which stands were hit by either insects, fire, or both.

2. Let PREMO generate a new prescription for each stand that reflects the current
prescription already assigned to the stand (i.e., it has the same stand goal and
timing-choice assignment as discussed in the Stage One section).

3. Store the new prescription information for each stand and return to the beginning

of stage three for the next period.

9

The modified strategy for stage four is a simple “prescription in — prescription out”.
Any stand on the landscape hit by an episodic disturbance during the period is tracked.
At the end of the period all the stands hit are evaluated to find the number of new unique
stand prescriptions that need to be re-generated. The variables that describe a new unique
stand prescription are: the current stand prescription; which insects affected the stand, if

any; and the flame length associated with the fire that hit the stand, if any. All three of

76

these variables must be identical for separate stands to receive an identical new
prescription. PREMO is then used to generate a single prescription for each unique stand
combination that has the same stand prescription allocation and timing-choice assigned
prior to the disturbance.

Once the period representing the end of the planning horizon has been reached the
simulation component of the SafeD model is complete. The SafeD model will calculate
landscape variables such as acres per vegetation and structural stage class, how many
acres were effected by disturbances in each period, the level of harvest, and a few others

that will be discussed in the Sample Application section.

The SafeD Software Program

The SafeD model was written in the C and C++ language. Appendix F is a print-
out of the full code used for this thesis. The over 12,000 lines of code are written in a
hierarchical structure that starts from a function called Main. The Main function is the
controller function which calls up other controlling functions that are specific to the tasks
needed. Istarted the coding process in November 1998 and finished in January 2000.
The code is a DOS-Windows based program with no user interface at this time. Any
modifications or changes to variables must be accomplished within the un-compiled code

and then recompiled before executing the program.

77

SAMPLE APPLICATION

The results T will discuss are an example of an application of the SafeD model for

the Applegate River Watershed. The purpose of this example is two-fold:

1. To exercise the SafeD model to see how it works.
2. To begin to understand the relationships modeled for the Applegate River
Watershed.

Understanding these two purposes is very important to understanding the results
found in this section. In the Literature Review I discussed the limitations of other
landscape models to address the goals set for the Applegate Project. This led to the idea
of developing a hybrid optimization/simulation model (i.e. the SafeD model). But the
processes and steps to build such a model were not in place — the science team needed to
develop them as the model itself was developed. In the end there was an amount of
uncertainty as to whether or not the SafeD model would function as designed. In other
words, could the model do what it was designed to do? This sample application will
demonstrate how the SafeD model functions.

The second purpose of this example is to begin to understand the relationships
modeled. Those relationships, for example, may pertain to the growth and yield
functions, the episodic disturbances, or the optimization process. To understand these
relationships there must be an application such as the example I will discuss in this
section.

I will use the term “simulation run” to express the notion of executing the SafeD
model from start to finish. I will also frequently use the word “cell” to reference a stand
in the discussion on landscape optimization.

One of the Desirable Model Characteristics shown in Table 2-1 is the ability for a
model to have repeated simulations to assess variability. Repeated simulations are
appropriate if there are some stochastic or probabilistic elements to the model. The
episodic disturbances in the SafeD model are driven by stochastic weather patterns.
Also, the FARSITE fire spread model has a stochastic element that determines the
torching behavior of fires. The SafeD model has the capability to produce “repeat

simulations” whereby non-stochastic elements can be re-used by the model for n

78

simulations — and allow the stochastic elements to change. The resulting data can then be
used to assess variability. The results I will discuss in this thesis are the product of a
single “typical” run of the SafeD model. T actually made five simulation runs of both the
Grow Only and Big Trees scenario. However, this was in part a testing process. I needed
to ensure that the model itself worked as expected. The science team as a whole is
responsible for assessing the variability of the outputs and, as I have discussed, the

science team has not had that opportunity.

Prescription Generation (stage one)

The initial landscape on the Applegate Watershed is broken into 133 unique stand
types based on vegetation classification, structural stage classification, and area type (see
discussion in Stage One of The SafeD Model). These 133 unique stand types exist
regardless if the model is run for the Grow Only or Big Trees landscape goal. It takes
PREMO 37 minutes to generate 19 prescriptions for each of the 133 unique stands. A
total of 2,527 prescription files are generated and stored in this time.

Initial runs of PREMO (using a variety of prescription choices) showed stand basal
areas that were much higher than expected. I tried to determine why that was happening
but was unsuccessful. It is likely that there was not enough periodic mortality occurring
within PREMO. Yet this was consistent with a strategy the science team was trying to
accomplish in testing whether or not stand mortality could be better represented by
episodic disturbance events. Without the episodic mortality occurring (in the SafeD
model) the periodic mortality (in PREMO) is expected to be somewhat low. However,
the cause-and-effect links have not all been determined and T was skeptical of leaving
such high stand basal areas. To compensate [increased the periodic mortality rate inside
PREMO.

The mortality increase I specified in PREMO greatly affected the number of big
trees. The mortality functions I used selects (i.e. kills) trees in a descending order of tree
diameter — starting with the tallest tree in a treelist. 67% of the mortality from the
PREMO function I used comes from trees greater than 20” DBH and the remaining

mortality occurs in trees less than 20” but greater than 8” DBH. This did have some

79

desirable results (stand basal areas were reduced to a more expected level) but the effect

on the number of big trees was greater than desired.

Landscape Optimization (stage two)

The Modeled Landscape

I described earlier the idea of the “modeled” or “eligible” landscape in regards to
the two scenarios demonstrated in this thesis. This modeled landscape is really a function
of how I chose to store, track, and count information regarding the scenario being
modeled. For the Grow Only scenario the Red Buttes Wilderness and all non-forested
areas are the only areas not modeled. There were a total of 2,637,289 cells that were
modeled (407,131 acres). The modeled landscape for the Big Trees scenario was
developed using different rules (see discussion in Stage Two of The SafeD Model). The
result was 2,289,823 eligible cells for 353,491 acres. For the analysis of the Big Trees
scenario I could have chosen to track information for those acres that were included in
the Grow Only scenario but not the Big Trees scenario (407,131 — 353,491 = 53,640
acres). This capability was not programmed into the SafeD model but should be included

in future work.

The Great Deluge Algorithm (GDA)

The GDA was used only for the Big Trees scenario. The problem was solved ten
times during the development process. The rain amount, the looping threshold, and other
move strategies were tried during this process with similar results. I used a single run of
the GDA as the basis for the remaining simulation work. Note that the remaining
discussion on the GDA is based on this single run (again, which was similar to the
previous 10 developmental runs).

The GDA found a solution for the Big Trees scenario in 8 hours. A rain amount of
0.001 was found to be effective during the GDA development. A looping threshold of
29,767,699 feasible moves was set through a trial-and-error process. Feasible means that

the move does not violate any constraint; it may or may not be a better move. This works

80

out to a potential for each eligible cell to move 13 times. In terms of computer
processing time there are an average of 1,033 moves evaluated every second.

The solution found by the GDA for the Big Trees scenario is spatially and
temporally feasible with regards to the big trees goal and ERA constraint. However, 1
cannot guarantee any level of optimality for the solution found. Several factors stand in

the way of obtaining and/or measuring the success of the GDA:

1. A lack of independent solutions.
Recognition that the GDA parameters need more calibration.

Uncertainty that Objective Function is sufficient for the problem size.

el

Uncertainty with input stand data.

A lack of independent solutions:

I'ran and documented only one solution of the GDA for this thesis. Statistical
inference methods which can be used to validate heuristic solutions require multiple
solutions. Because the landscape optimization portion of the SafeD model is only one
component of the overall SafeD model I chose not to spend additional time in obtaining
multiple solutions. Future work on the SafeD model should include processes to obtain

multiple solutions and use statistical inference to describe the optimality of the solution.

Recognition that the GDA parameters need more calibration:

The rain amount, looping threshold, and move strategy I used for the GDA were
satisfactory but not necessarily the best. At the end of the 8-hour run the GDA was still
occasionally finding improving solutions. I noticed the same phenomenon during the
developmental runs. This could indicate that I need to increase the looping threshold
(which determines when the GDA will stop). Idid try varying the rain amount and
varying the move strategies during the developmental runs but saw no significant
improvement. The cause-and-effect linkages between all the parameters are difficult to

interpret so I would anticipate that the searching strategies could be improved.

81

Uncertainty that Objective Function is sufficient for the problem size:

The formulation of the Objective Function may not be sensitive enough to measure
significant changes in the Objective Value (OV) as the result of a move on the landscape.
The OV is a straight calculation of the number of big trees across the managed landscape
during all time periods. A move constitutes changing the prescription allocation of one
stand. To evaluate a move the Objective Function subtracts out the number of big trees
associated with the pre-move prescription for the stand and adds in the new big trees for
the new prescription. Because the stands are so small (25 m. x 25 m. = 0.15 acres) the
number of big trees in each stand is very small as well. However, the number of big trees
across the landscape is very large. It is possible that the GDA is continuously accepting
inferior moves because making any move changes the OV so minutely (either positively
or negatively) that it is always above the GDA threshold LEVEL for acceptance. This
could also be a precision problem in that the number of decimal places used in the
Objective Function is insufficient. There is another way to illustrate this problem. There
are 2,289,823 stands in the solution with each having 19 potential prescriptions
allocations. Iam taking one stand and changing it to one new prescription. I see this
with an analogy of dropping one drop of oil in a swimming pool and asking “can you

detect the 0il?”.

Uncertainty with input stand data:

For the Big Trees scenario the GDA required data from PREMO regarding the
number of big trees associated with all the prescriptions. I have already discussed that
the big trees data from PREMO is questionable. The way in which the data is biased will
influence the GDA results. If all the prescriptions are equally biased then perhaps the
relative proportion of big trees with the current data is good enough to use. It is more
likely that some prescriptions will have a far greater number of big trees and some
prescriptions will have far less than the prescriptions I used for this simulation. Without
further investigation into the PREMO calibration, conclusions should be seen as

tentative.

82

ERA Thresholds

There were no ERA thresholds placed on the Grow Only scenario. As mentioned
in the ERA discussion (in Stage Two of The SafeD Model), ERA values account for
vegetation alteration that could affect soil erosion and/or peak flows caused by
management activities and fire — and there are no management activities in the Grow
Only scenario.

For the Big Trees scenario various ERA thresholds were tried. During the
development process I tried two strategies: 1) keep a constant ERA threshold for all sub-
watersheds over all time periods, and 2) have a ERA threshold vary with each period but
applied equally to all sub-watersheds. There was no guideline predicating which strategy
I should use so for the final simulation run I chose the latter strategy. My decision was
based on the fact that I felt this strategy better represented the idea of allowing more
activity to occur in the earlier periods than in the latter periods. Given the current
conditions of the watershed (overstocked, high densities), heavier activities may need to
occur in the earlier periods to reduce current fire hazards and to achieve the big trees
stand goal.

The ERA threshold values [used were based on trial-and-error. I used ERA values
from the SNEP project (SNEP, 1996) and Carlson and Christiansen (1993) to establish a
rough starting point. During the development of the GDA I would lower the ERA
threshold values to find the lowest threshold values (per period) that allowed the GDA to
find solutions. Once the GDA started having a difficult time finding solutions with a set
of ERA thresholds I stopped lowering the values (Table 7-1). The solution found does

not violate the ERA threshold in any period for any sub-watershed

83

ERA Threshold (for
each sub-watershed)
Period 1 0.12
Period 2 0.12
Period 3 0.12
Period 4 0.12
Period 5 0.12
Period 6 0.10
Period 7 0.09
Period 8 0.09

Table 7-1: ERA thresholds used for the Big Trees scenario

Prescription Allocation

This section describes the allocation of stand prescription choices during stage two

of the simulation process. The Grow Only scenario had no management choices. The

Big Trees scenario tried to allocate prescriptions across the landscape to maximize the

number of big trees (>= 30” DBH) over the entire planning horizon on those stands

eligible for management. Recall from the discussion in Stage One that there are 19

prescription choices for each stand:

XNAN BB =

9.
10.

Reduce fire risk

Reduce insect risk

Enhance fish habitat

Enhance wildlife habitat — complex structure

Enhance wildlife habitat — simple structure

Maximize PNV

Reduce fire and insect risk, and maximize PNV

Enhance fish and wildlife (complex) habitat, and maximize PNV
All goals with emphasis on maximize PNV

Grow only

11 -19. Same as first nine except harvest not allowed until 31 period

84

The GDA has the ability to implicitly consider a large number of prescription

allocation combinations across the managed landscape; limited by the looping threshold.

The Big Trees scenario demonstrated in this thesis consists of over 2.2 million stands

(353,491 acres) with 19 prescription choices for each stand. The number of unique

prescription combinations that are possible to allocate can be expressed as:)&

where:

X = the number of prescription choices (19)
Y = the number of unique stands (2,289,823)

The GDA allocated the prescriptions as seen in Figure 7-1 (prescriptions 11-19 are

grouped with its corresponding 1-9 value):

100,000

80,000

60,000

Acres

40,000

20,000

Enhance
wildlife
habitat -
complex

Reduce fire Reduce Enhance
risk insect risk fish habitat

Enhance Maximize Reduce fire Enhance Allgoals Growonly Non-Forest

wildlife
habitat -
simple

PNV and insect fish and with
risk, and wildlife emphasis
maximize {complex) on

PNV habitat, maximize
and PNV
maximize
PNV

Figure 7-1: Prescription allocation for the Big Trees scenario

85

There was an almost even allocation of prescriptions 1 through 9 across the
landscape. The grow only prescription allocation is larger because it includes acreage for
those forested areas that were not in the eligible landscape (e.g. the Red Buttes
Wilderness). The non-forest acreage (71,552) remains constant for either scenario.

There are two possibilities which may explain the results demonstrated. First, the
method which I used to track and graph the prescriptions combined two equivalent
prescriptions which differed only in their timing choice. For example, the “reduce fire
risk” prescription shown in Figure 7-1 is actually a combination of the acres associated
with a reduce fire risk - timing choice 0 (harvest allowed starting immediately) with the
reduce fire risk — timing choice 3 (harvest allowed starting in 3 periods). It may be that
by breaking and tracking the prescriptions and their timing choice separately (for each of
the stand goals) that a more informative reflection of the allocation can be seen.

Secondly, the apparent even allocation of prescriptions may be a product of the
randomization processes that occurred within the GDA. An initial feasible random
solution is generated by the computer at the start of the GDA. There are no constraints
on the randomness. The computer language used to code the SafeD model (C and C++)
bases its random number generator on a even-distribution. Given that, one would expect
every stand prescription to be equally represented in the initial random solution. The
objective of the GDA was to search the “neighborhood” of this initial solution. The GDA
accomplished this searching by randomly changing the prescription allocation of a single
stand (called a “move”’). The GDA process I used made only 29,767,699 moves. On
average this allowed each stand in the solution to be moved 13 times. I cannot assure that
happened. It may be that a great number of stands were never evaluated for a move. Of
the 29 million moves that were made the new prescriptions evaluated were still based on
a even-distribution random number generator.

The two possibilities just discussed and the uncertainties associated with the GDA
make interpretation of the prescription allocation difficult. Visual examination of the

prescription allocation revealed no obvious spatial correlation.

87

The Grow Only scenario did not actively manage for big trees but the information
is useful as a comparison. The values shown are the total number of big trees, per period,
within the modeled landscape only. The modeled landscape acreages are different for the
two scenarios (see earlier discussion in The Modeled Landscape section) so the values
are normalized to a per-acre value. Values for each period are calculated after growth for
the period but before the occurrence of any episodic disturbance. Therefore the values in
period 1 do not change for the before and after-simulation calculations.

In period 1 the number of big trees per-acre is nearly identical for the two
scenarios. This would make sense because at period 1 there has been only 5-years of
growth and the two scenarios are fairly similar in their modeled landscape. For the
remaining periods the Big Trees scenario has a greater number of big trees per-acre than
the Grow Only scenario. The main difference is the Big Trees scenario allocated
prescriptions across the landscape that include timber harvesting and the Grow Only
scenario did not. Without greater evaluation of the cause-and-effects of all the processes
within the SafeD model I think a simple correlation can be made in regard to timber
harvesting and the number of big trees: timber harvesting (as implemented within the
PREMO prescriptions) increases the number of big trees because the growing space is
allocated to fewer trees. PREMO does have restrictions on the level of harvest and rules
regarding the silvicultural methods used (e.g., whether the harvest comes from “below”
or “above”; and which species) (see Wedin, 1999).

The notion that timber harvest increases the number of big trees is not unusual.
Assuming that a harvest is not a clear-cut (clear-cuts were not allowed by PREMO) then
the stand will experience an “opening-up” effect. In general this allows for greater
diameter growth of the residual stand. This is in contrast to an young, unmanaged stand
(i.e. grow only) where the stand components may be forced to compete in a vertical
nature because there isn’t enough room to grow in a horizontal nature. This tends to lead
to less diameter growth.

The big trees results illustrate the PREMO mis-calibration that T discussed earlier.
The number of big trees drops from over 1.2 million to just over 84,000 in the before-
simulation, Grow Only scenario. This is not expected. I would expect that given an un-

managed landscape the number of big trees would increase. However, as I already

88

mentioned, I believe I adjusted the PREMO mortality function to such a degree that too
many big trees died. An examination of all the big trees results show a substantial
decrease in the number of big trees over the 40-year planning horizon. However,
relatively speaking, the Big Trees scenario did seem to produce a greater number of big

trees per-acre in both the before- and after-simulation analysis.

Harvest Levels

The Big Trees scenario does allow timber harvest to occur. Timber harvesting is
not the goal of the Big Trees scenario — rather timber harvesting occurs as a by-product of
the landscape optimization which is driven by the landscape goal to produce big trees
across the landscape. The Grow Only scenario precludes timber harvest on the modeled
landscape. This scenario was developed to serve as a baseline in comparing what
happens to a landscape in which management activities are allowed to take place versus a
landscape that is left unmanaged.

All of the prescriptions developed by PREMO in stage one use timber harvesting as
an activity to achieve their respective stand goals (except for the grow only stand
prescription) (Wedin, 1999). Therefore, for the Big Trees scenario, all of the
prescriptions selected (described above in the Prescription Allocation section) have
harvest levels associated with them. Those levels are tracked by the SafeD model
(Figures 7-2 and 7-3). As with the big trees results there are two occasions when I
evaluate the harvest levels: 1) before-simulation, and 2) after-simulation. The before-
simulation values represent the predicted level of harvest given no episodic disturbances.
The after-simulation values are the levels after episodic disturbances occurred on the
landscape and after management activities were adjusted to account for the effects of

those disturbances.

90

The before-simulation results (Figure 7-2) show a significant harvest increase in
period 4. This could probably be attributed to the prescription timing choices. Each
prescription generated by PREMO in stage one has two timing choices for harvest
activities: 1) harvest could occur immediately in period 1, or 2) harvest is not allowed for
an additional 3 periods (i.e., period 4). The SafeD model currently does not track the
prescription allocation by these two timing choices so I cannot determine the effect that
the timing choice is having on the harvest levels.

The after-simulation result (i.e., episodic disturbance occurred) shows a rather
different picture in terms of harvest levels. To understand something of what may be
going on I must first restate that the only difference between the before- and after-
simulation is that episodic disturbances and their effects have occurred. The two episodic
disturbances included in the SafeD model are fire and insects. Fire occurs every period
regardless of the weather pattern and insects occur only during periods with a drought-
type weather pattern. As I will discuss in the results of the landscape simulation (stage
three) there is a mild drought in period 3 and a severe drought in period 4. Any
differences that are seen between the before- and after-simulation harvest level results are
related to effects and adjustments caused by these episodic disturbances.

The before- and after-simulation harvest level values for periods 1, 2, and 3 will
reflect only the fire disturbance. Episodic insect disturbance did occur in period 3 but
harvest levels are calculated from PREMO after growth (for the period) and before any
episodic disturbance. Therefore, the effects of any episodic disturbance in a given period
will not be displayed until the following period. The fires encountered in periods 1, 2,
and 3 were insignificant in size and this is reflected in the relatively unchanged before-
and after-simulation harvest levels.

The after-simulation period 4 harvest level is significantly less than the before-
simulation value. The before-simulation harvest level for period 4 is roughly 275 million
cubic feet (MMCEF). The after-simulation harvest level for period 4 drops to only 80
MMCEF - a decrease of 195 MMCEF. Recall that values displayed for period 4 reflect
episodic disturbances that occurred in period 3. It is the occurrence of the first episodic

insect disturbance event in period 3 that contributes to this dramatic decrease in harvest

91

levels. A severe drought occurs in period 4 and again a significant decrease in harvest
levels are seen in period 5. There is no accounting for salvage harvest that occurs after an
episodic disturbance. If there were the after-simulation harvest levels would be higher.
The total acres affected by insects is so high (see tables in the following Landscape
Simulation section), especially compared to the acres affected by fire, that it leaves little
doubt about the cause-and-effect relationship between episodic insect disturbance and
harvest levels in the Big Trees scenario: mortality caused by insect disturbance is going
to greatly reduce harvest levels. Without accounting for episodic insect disturbance
within the watershed any projections of harvest levels may be incorrect. Keep in mind
that this is only one landscape goal evaluation (Big Trees scenario) and that other

landscape scenarios may be developed which have alternative conclusions.

Landscape Simulation (stage three)

The simulation component of the SafeD model begins in stage three of the overall
modeling strategy. Once a solution for a particular scenario is found in stage two that
solution is stored and available for re-use in subsequent simulation runs.

To make a fair comparison of the results between the two scenarios all the
stochastic elements (that SafeD generates) were held constant for each scenario. Those

elements include:

The weather (influences insect and fire disturbances)

The number of fire ignition points per period (influences fire disturbance only)
The location of those ignition points (influences fire disturbance only)

The time and dates of fire burn (influences fire disturbance only)

bl e

95

Only during period 3 did fires in both scenarios approach the Base-Case Fire mean
area burned of 2,158 acres (the historical average). Otherwise the average acres burned
per period in both scenarios fell below historic values. The fires were larger in the Big
Trees scenario for periods 1,3, and 8.

The number of big trees killed (per-acre) was higher for the Big Trees scenario in
all but periods 5 and 7. In period 5 the Grow Only scenario killed .02 big trees per-acre
compared to .01 for the Big Trees scenario; and both were even at .01 big trees killed
during period 7.

The average stand basal area killed was higher in all but period 4 in the Big Trees
scenario. The greatest difference was in period 5 with the Grow Only scenario losing 146
sq. ft. of basal area compared to 176 sq. ft. in the Big Trees scenario.

The number of big trees killed by fire decreases significantly in both scenarios
during periods 3 and 4. This corresponds with a significant drop in the PREMO
calculation of big trees regardless of episodic disturbance (Table 7-2). Additionally,
periods 3 and 4 are the two drought-type periods and encounter insect disturbance before
the fires.

Evaluating the effectiveness of the episodic fire disturbance is based on two things:

1) Are the resulting fires and their associated flame lengths reasonable?
2) Do the fires approach the Base-Case Fire scenario (i.e., the historical record)?

Are the resulting fires and their associated flame lengths reasonable:

The flame lengths associated with all the fires (in all periods) for all the simulation
runs made for this thesis were evaluated for “reasonableness”. I used informal
guidelines (Bahro, personal comm., Feb 2000) because no formal protocol has been
established by the science team. In essence, I checked the flame length of each stand hit
by a fire to see if it exceeded a threshold. The threshold, established at 20 feet, was used
only to see if there were large number of stands that were exceeding that value. If a few
stands exceeded the threshold there is not much of a concern because it is possible for
flame lengths to reach that value. However, if I encountered many stands in many fires
that were exceeding the threshold a flag was set to indicate that maybe the fire spread

model was not operating properly or the inputs were not reasonable. There were no

96

incidences of the threshold being exceeded to a great extent in any fire during all the

simulation runs.

Do the fires approach the Base-Case Fire scenario.

The Base-Case Fire is an attempt to parameterize past fire activity for describing
the “best” scenario one could hope for in the future. The average acreage burned for a 5-
year period in the Base-Case Fire scenario is 2,158 acres. That value is approached only
in period 3 for both the Grow Only and Big Trees scenario. Period 3 had a mild drought
weather pattern.

The reason for the disparity between the anticipated Base-Case Fire scenario and
the results for these simulations is unclear at this time. The science team has not had the
opportunity to complete an evaluation of the input fire parameters. This should be

included in future work.

New Prescriptions

The number of new prescriptions needed for the Big Trees scenario is significantly
greater than the Grow Only scenario for all periods except period 5 (Table 7-8). Period 8
is not shown because new prescriptions are not generated after period 8 — the simulation
ends. The heterogeneity or homogeneity of the stand types affected by the episodic
disturbance greatly affects the number of new prescriptions needed. In the Grow Only
scenario there was only one stand prescription assigned to all the initial stands - grow
only. The Big Trees scenario had a suite of 19 different prescriptions that were allocated
across the landscape. Because the current prescription is one of the three variables that
identify a new unique stand prescription I expected an increase in the number of new
prescriptions needed for the Big Trees scenario.

The number of new prescriptions needed in periods 3 and 4 for the Big Trees
scenario is significant. On the average PREMO can generate prescriptions at the rate of
5,000 per hour for prescriptions needing at least five periods worth of data. This
translates into an approximate 4-hour process for PREMO to generate a single
prescription for each of the new unique stand prescriptions needed in periods 3 and 4 for

the Big Trees scenario.

98

DISCUSSION AND FUTURE WORK

At the beginning of the Sample Application section I outlined two purposes for the

application I have discussed:

1. To exercise the SafeD model to see how it works.
2. To begin to understand the relationships modeled for the Applegate River
Watershed.

These two purposes were in context for the goal of the Applegate Project:

“To develop a forest landscape simulation model to use in evaluating the
potential effects of different policies and forest management practices over
time to achieve goals for the forest of the Applegate River Watershed in
the context of possible stochastic events.”

The sample application of the SafeD model demonstrates the development of a
hybrid optimization/simulation model. It also demonstrates the need for further
calibration and parameterization. However, that should not overshadow the
accomplishment in creating the SafeD model.

The four-stage process designed for the SafeD model was a mixture of traditional
modeling techniques and traditional strategic forest planning with some innovative
strategies to overcome deficiencies or short-comings identified in these traditional
methods. Stage one incorporates the widely-used FVS growth and yield model, but
without the standard mortality equations, in a new prescription generator called PREMO.
Stage two uses a heuristic programming technique, the Great Deluge Algorithm, to find a
solution for a large landscape problem. Stages three and four incorporate the stochastic
nature of episodic disturbances with processes for fire and insect disturbance events —

then account for their effects and allowing management to react.

99

General Notes on SafeD Processes

Stand Delineation

The science team chose to break with traditional stand delineation (spatially
defining polygons with similar vegetative or other attributes) and instead used each pixel
from a classified Landsat TM image as a stand unit. This strategy was developed in part
to allow the SafeD model to track the episodic fire disturbance at a fine-resolution (25 m.
x 25 m.) and account for the effects of fires to specific stands. This is in contrast to
applying fire disturbance effects to larger spatial units on a distribution approach (e.g.,
see discussion on the SAFE FOREST model in the Literature Review). This strategy has
some drawbacks which should be addressed.

Allowing each 25 meter pixel to represent a stand is difficult to implement from a
tactical standpoint. It is unlikely that if one stand is different from its surrounding stands
(for this example we assume the surrounding stands are identical) that the single stand
would actually be treated or managed uniquely. But this must be weighed with the fact
that it is possible for this single stand to react differently to episodic disturbances such as
fire or insects. After running the simulations presented in this thesis [have come to two
seemingly contradictory conclusions about the stand delineation strategy we used: 1) that
the use of 25 meter pixels as stands may be ineffective for use when confronted with a
large landscape-level problem, and 2) that the use of 25 meter pixels as stands enhances
the ability to account for the effects of episodic disturbances.

I'have discussed the results of the GDA heuristic I used to solve the landscape
problem associated with the Big Trees scenario. By using 25 meter pixels as stands the
problem has over 2.2 million decision variables for the stands alone. The potential
number of unique combinations of stands to prescriptions is 19%*™"°" ' The GDA
evaluated only 29 million of those combinations. After running these simulations I am
left with the feeling that another approach to stand delineation may be more suitable in
regards to solving a landscape-level problem. The CLAMS project (Bettinger et al.,
2000a) is using a strategy that aggregates Landsat TM pixels into larger basic simulation

units (BSU) based on vegetation, stand structure, and other attributes. These BSU’s are

100

then combined (using unique intersections of an additional set of attributes) to form even
larger management “parcels”. These parcels serve as the management decision unit.
However, the attributes of the individual BSU’s that make up a parcel are maintained and
tracked during the simulation. I feel a similar strategy that aggregates data for
management decisions but maintains finer resolution data for episodic disturbances may
prove useful for the SafeD model in future work.

However, the use of 25 meter pixels as stands was essential to our efforts to apply
episodic disturbance on the landscape. The FARSITE fire spread model will accept input
landscape data at any resolution (i.e., the size of the pixels). By delineating stands at 25
meters we were able to provide a detailed description of the fuel model and other
necessary attributes for FARSITE at the pixel level. These attributes reflected the stand
more accurately in that they were not calculated as a percentage of some larger stand unit.

Future efforts on the SafeD model should explore other options for stand
delineation. I would hesitate to state that using 25 meter pixels as stand units is
impossible; I have shown that it can be done. I would only suggest that the usefulness of
maintaining such fine-resolution stand data may prove futile with large landscape

problems.

Variability Assessment

The results seen in this thesis are from a single simulation run of both the Grow
Only scenario and the Big Trees scenario. Idid make five simulations runs of each but
not all the data was maintained because they were done while I was finishing “checking-
out” that the model worked. The issues surrounding variability of the results are
important. Trends can be seen with multiple simulations that may not appear with a
single simulation. Future work on the SafeD model should incorporate a more thorough

variability assessment.

101

Prescription Generation (stage one)

PREMO

There are some limitations and considerations in regards to PREMO; both in the
theory behind PREMO achieving stand optimality and in the implementation of PREMO
with regards to this thesis. See Wedin (1999) for her discussion on the theory of PREMO
and its ability to achieve stand optimality. This thesis is concerned with the
implementation of PREMO.

PREMO was designed to generate a suite of goal-oriented optimized prescriptions
for the Applegate River Watershed. 1Tt has an automated approach in that the goals are
pre-programmed, the growth and yield equations are pre-programmed (for known
vegetation in the watershed), and the optimization search procedures are also pre-
programmed. This is a departure from traditional prescription generation in which a
modeler works with a growth and yield model and through manual trial-and-error to
develop good prescriptions. The PREMO approach has two distinct advantages: 1) it has
the ability to develop “optimal” prescriptions if a stand goal has been identified and
variables are in place to measure attainment of optimality; and 2) it has the ability to
create these new prescriptions “on-the-fly” during a simulation — they do not have to be
created a priori.

The SafeD model takes full-advantage of PREMO. The suite of prescriptions
generated by PREMO in stage one are optimized for specific stand goals for each of the
existing stands on the watershed. Having this suite of prescriptions to explore allows the
landscape optimization component of the SafeD model to work effectively. PREMO can
generate the prescriptions for the initial landscape in only 37 minutes — that’s over 2,500
prescriptions. Any change in the weights or variables used within PREMO can be
accomplished with minimal effect on the total simulation time. If traditional methods are
used to generate optimal prescriptions it would not be unreasonable to expect delays of
days or even weeks to incorporate such changes. However, future work on the SafeD

model should include making the PREMO model more efficient.

102

The ability for PREMO to generate on-the-fly prescriptions proved crucial to the
development of the SafeD model. The behavior, extent, and effect of stochastic episodic
disturbances cannot be predicted.. The idea of trying to develop a suite of prescriptions «
priori that would account for any episodic disturbance, in any period, for any
combination of disturbance type and severity is unreasonable for the spatial resolution we
are using for the Applegate Project. For example, ultimately there were over 43,000 new
prescriptions needed for the Big Trees scenario over the entire planning horizon (see
Table 7-8). It would have been nearly impossible for the science team to predict which
new prescriptions were needed during the simulation. Therefore, a suite of millions of
prescriptions would be needed. In the end, only the 43,000 were used. The time and
effort saved by not creating a suite of millions of prescriptions should certainly be
considered a benefit.

The issues surrounding my discussion on mortality in PREMO are unresolved.

Future work should also include ensuring that PREMO behaves in a predictable way.

Landscape Optimization (stage two)

The landscape optimization (stage two) required the use of a heuristic technique to
obtain a solution to the landscape problem presented. The large number of integer
variables and the complexity of the evaluation procedures make locating an optimal
solution with traditional mathematical programming techniques (e.g., integer
programming) a computationally difficult process. A comparison of the heuristic
algorithm used for this thesis with other algorithms is not presented because no existing
algorithm uses the same evaluation procedures for the landscape goal presented in this
thesis.

I'have demonstrated the use of the Great Deluge Algorithm in obtaining a solution
for a large landscape in which the problem is to simultaneously meet a landscape goal
subject to a spatial constraint. [ensure that the land management activities are
compatible with the landscape goal by always staying in the feasible region of possible

solutions.

103
Future work should incorporate processes to address the deficiencies I noted
regarding the ability to measure the success of the landscape optimization. This includes:

1) obtaining multiple solutions, 2) more effort on calibration, 3) ensuring the Objective

Function is sufficient for the problem, and 3) ensure the quality of the input stand data.

Landscape Simulation (stage three and four)

Episodic Disturbances (stage three)

Stage three of the SafeD model is the landscape simulation. The unique
contribution of the SafeD model is the incorporation of episodic disturbances (insects and
fire). Furthermore, the spatial resolution used (25 m. x 25 m.) to initiate, distribute, and
track the episodic disturbances (and effects) demonstrates an improved strategy over
traditional methods of applying disturbance effects on a distributional approach.

The results seen from the simulations presented in this thesis present three
interesting conclusions which may have significant implications for forest management
practices and polices in the Applegate River Watershed. First, this thesis has shown that
to achieve a landscape goal of maximizing the number of big trees across the landscape
timber harvesting will need to occur. The Grow Only scenario had significantly less big
trees than the Big Trees scenario (which included timber harvesting) both in the before-
and after-simulation analysis. Secondly, the effects of episodic insect disturbance is
going to negate the need for as much timber harvesting that would be projected without
accounting for such disturbances. And third, fire is going to play a significantly less role,
in regards to tree mortality, than insects will.

The first conclusion, that timber harvest needs to occur to achieve a landscape goal
of big trees, is somewhat expected. There are currently high stand densities in the
watershed. Those densities must be reduced to achieve diameter growth. Therefore, the
forests in the watershed need to be managed. Management can come from one of two
ways: 1) timber harvesting, or 2) episodic disturbances. If we ignore episodic
disturbances for the moment, then the results seen in this thesis demonstrate that

management with timber harvesting will produce more big trees than a “hands-off”

104

approach. However, if we consider episodic disturbances then the other two conclusions
I stated come into play.

The second conclusion, that episodic insect disturbance is going to negate the need
for timber harvesting in the Big Trees scenario, is seen in Figures 7-2 and 7-3. The after-
simulation harvest levels dropped significantly in the periods following the first episodic
insect disturbance (period 3). However, there are still more big trees in the Big Trees
scenario, which allowed timber harvesting, than in the Grow Only scenario. The
occurrence of the episodic insects in periods 3 and 4 greatly reduced the harvest levels. It
should be noted that the SafeD model has no salvage prescription to account for those
trees killed by insects and harvested while they are still useful (that capability would
increase the harvest level values).

The third conclusion, that fire is going to play a significantly less role in tree
mortality, is seen by comparing Tables 7-5 and 7-7. In either scenario the fires affected
less than 5,000 total acres during the entire 40-year planning horizon. The insects
affected over 400,000 acres during each of the two periods they occurred. This is a
significant finding. Current management policies in the watershed are directed towards
fire reduction. These results are showing that fire is insignificant compared to the
mortality insects will cause.

Future work to the SafeD model should include more evaluation of the episodic
disturbance processes. There are two questions that should be addressed: 1) are the
episodic disturbances doing what we want them to do in regards to mortality; and 2) is
this method of representing mortality through episodic disturbances really a viable

alternative?

Re-Optimization (stage four)

I discussed a modified strategy that we chose for stage four at the end of the
discussion in The SafeD model. In essence, the idea of re-optimizing the selection of
stand prescriptions proved too complicated for implementation at this time. The simpler
strategy used for this thesis makes an assumption that should be addressed in future work;

that the same prescription allocation should be prescribed to a stand after the occurrence

105

of any episodic disturbance on that stand. It may be more useful to evaluate the stand
from a different view and consider “now that this stand has been affected by an episodic

disturbance, what do I want to do to it in relation to other management considerations?”

106

CONCLUDING REMARKS

The goal of developing a forest landscape simulation model to use in evaluating the
potential effects of different policies and forest management practices over time while
achieving goals for the forest in the context of stochastic events has been met with the
SafeD model. However, the SafeD model is in its infancy and this thesis presents only a
single application - revealing some accomplishments and deficiencies in both the ideas
behind the model and the parameters and processes used within the model.

The focus of this thesis has been to highlight my contribution to the Applegate
Project: the development of a hybrid landscape optimization/simulation model that
incorporates episodic disturbance at a fine-resolution - the SafeD model. This is an
original contribution to the landscape modeling field. Traditional landscape optimization
and landscape simulation models have worked on parallel tracks, often in isolation of one
another. The SAFE FOREST model (Sessions, 1999) is the predecessor to the SafeD
model in bridging the gap between optimization and simulation models. The
optimization component (stage two) of the SafeD model is an improvement in traditional
landscape optimization for two reasons: 1) the linkage to the stmulation component of
the model, and 2) the use of heuristic programming techniques to solve a large landscape
problem. Furthermore, the SafeD model is an improvement over traditional landscape
simulation models for two reasons: 1) the maintenance of fine spatial resolution, and 2)
the incorporation of episodic disturbances, particularly insects. Additionally, by
maintaining a fine-resolution of data we are able to use the well-documented and widely-
used fire spread model called FARSITE (Finney, 1998).

In the Literature Review section I showed three antecedent landscape models in a
comparison matrix. Table 9-1 shows the same matrix with the addition of the SafeD
model. Although there is more work to do in testing and development of the SafeD
model it does meet the goals laid out in the matrix. Success of the SafeD model should
be judged on the successful completion in meeting these goals. In this regard I feel the

development and sample application of the SafeD model has been a success.

108

REFERENCES

Agee, Jim. 1999. Rules for potential vegetation; Rules for regeneration; Rules for
disturbance; FOFEM tables; Fire and fuel inputs; A mimic of natural fire.
September 17™ document outlining inputs to the SafeD model. Unpublished.

Anderson, H.E.. 1982. Aids to determining fuels for estimating fire behavior. Gen.
Tech. Report INT-122. U.S.Dept. of Agriculture, Forest Service, Rocky
Mountain Research Station.

Bettinger, Pete, J. Sessions, and K. Boston. 1997. Using Tabu search to schedule timber
harvests subject to spatial wildlife goals for big game. Ecological Modelling.
94:111-123.

Bettinger, Pete, J. Sessions, and K.N. Johnson. 1998. Ensuring the compatibility of
aquatic habitat and commodity production goals in eastern Oregon with a tabu
search procedure. Forest Science. 44(1):96-112.

Bettinger, Pete, J.Sessions, T. Spies, J. Brooks, and A. Herstrom. 2000a. Landscape
Simulation Model for Coastal Oregon Landscape Analysis and Modeling. Paper
3379 of Forest Research Laboratory, Oregon State University. (in review) Forest
Science.

Bettinger, Pete, D. Graetz, K. Boston, J. Sessions, W. Chung. 2000b. Eight heuristic
planning techniques applied to three increasingly difficult wildlife planning
problems. (in review) Forest Science. May 2000. 69pp..

Beukema, S.J., E. Reinhardt, J.A. Greenough, W.A. Kurz, N. Crookston, and D.C.E.
Robinson. 1998. Fire and fuels extension: model description, working draft.
Prepared by ESSA Technologies Ltd., Vancouver, BC for USDA Forest Service,
Rocky Mountain Research Station, Missoula, MT. 58 pp..

Boychuk, D., and D. Martell. 1996. A multistage stochastic programming mode] for
sustainable forest-level timber supply under risk of fire. Forest Science.
42(1):10-26.

Carlson, Joan and C. Christiansen. 1993. Eldorado National Forest: Cumulative off-site
watershed effects (CWE) analysis process — Draft Version 1.1. Eldorado National
Forest, Supervisor’s Office. Placerville, CA.

Clements, Stephen E., P.L. Dallain, and M.S. Jamnick. 1990. An operational, spatially
constrained harvest scheduling model. Canadian Journal of Forest Research.
20:1438-1447.

109

Daust, David K., and J.D. Nelson. 1993. Spatial reduction factors for strata-based harvest
schedules. Forest Science. 39(1):152-165.

Davis, L.S. and K.N Johnson. 1987. Forest management. Third edition. McGraw-Hill,
New York. 790 pp..

Dixon, Gary and Ralph Johnson. 1995. The Klamath Mountains geographic variant of
the Forest Vegetation Simulator Version 6.1. USDA Forest Service, Washington
Office, Forest Management Service Center, Fort Collins, CO. 19p. FMSC Internal
Report.

Dowsland, Kathryn A. 1993. Simulated Annealing. P.20-69 in Modern heuristic
techniques for combinatorial problems. Reeves, C.R. (ed.). John Wiley & Sons,
Inc., New York.

Dueck, Gunter. 1993. New optimization heuristics — The great deluge algorithm and the
Record-to-Record travel. Journal of Computational Physics. 104:86-92.

Finney, Mark A. 1998. FARSITE: Fire Area Simulator-model development and
evaluation. Res.Pap. RMRS-RP-4, Ogden, UT: U.S.Dept. of Agriculture, Forest
Service, Rocky Mountain Research Station. 47 pp..

Finney, Mark A.. 1999. FLAMMAP Model. Unpublished description. Systems for
Environmental Management. Missoula, MT.

Frelich, L.E. and C.G. Lorimer. 1991. Natural disturbance regimes in hemlock-

hardwood forests of the upper Great Lakes region. Ecological Monographs.
61:159-162.

Glover, Frank, and M. Laguna. 1993. Tabu search. P.70-150 in Modern heuristic
techniques for combinatorial problems. Reeves, C.R. (ed.). John Wiley & Sons,
Inc., New York.

Golley, F.B. 1993. Development of landscape ecology and its relation to environmental
management. In Eastside forest ecosystem health assessment. Volume II.
Ecosystem management: principles and applications. M.E. Jensen and P.S.
Bourgeron (ed.). pp. 37-44. USDA Forest Service, Missoula, MT, USA.

Hof, J.G., K.S. Robinson, and D.R. Betters. 1988. Optimization with expected values of

random yield coefficients in renewable resource linear programs. Forest Science.
34(3):634-646.

Hof, J.G, and L. Joyce. 1992. Spatial optimization for wildlife and timber in managed
forest ecosystems. Forest Science. 38:489-508.

110

Hof, J.G., M. Bevers, L. Joyce, B. Kent. 1994. An integer programming approach for
spatially and temporally optimizing wildlife populations. Forest Science. 40:177-
191.

Hoganson, H.M., and D. Rose. 1984. A simulation approach for optimal timber
management scheduling. Forest Science. 30(1):220-238.

Hoganson, H.M. and T.E. Burk. 1997. Models as tools for forest management planning.
Commonwealth Forestry Review. 76:11-17.

Iverson, D.C. and R.M. Alston. 1986. The genesis of FORPLAN: A historical and
analytical review of Forest Service planning models. USDA Forest Service,
General Technical Report INT-214.

Johnson, K.N., and H.L.. Scheurman. 1977. Techniques for prescribing optimal timber
harvest and investment under different objectives — discussion and synthesis.
Forest Science Monograph 18. Washington DC: Socienty of American Foresters.

Johnson, K.N., D.B. Jones, and B.M. Kent. 1980. Forest Planning Model (FORPLAN).
User’s Guide and Operations Manual. USDA Forest Service, Fort Collins, Co.
251 pp..

Johnson, K.N. 1992. Consideration of watersheds in long-term forest planning models:
The case of FORPLAN and its use on the national forest. In Watershed
management: Balancing sustainability and environmental change. R.J. Naiman
(ed.). pp. 347-360. Springer-Verlag: New York, NY.

Johnson, K.N., J. Sessions, J. Franklin, and J. Gabriel. 1998. Integrating wildfire into
strategic planning for Sierra Nevada forests. Journal of Forestry. 96(1):42-49.

Kessell, S.R.. 1979. Gradient modeling: resource and fire management. Springer-
Verlag, New York.

Lockwood, Carey, and T. Moore. 1993. Harvest scheduling with spatial constraints: a
simulated annealing approach. Canadian Journal of Forest Research. 23(3):468-
478.

Mellen, K., and A. Ager. 1998. Coarse Woody Debris Model - Version 1.2. USDA
Forest Service, Mt. Hood and Gifford Pinchot National Forest.

Mladenoff, David and W. Baker. 1999. Development of forest and landscape modeling
approaches. Pp. 1-13 in “Spatial Modeling of Forest Landscape Change:
approaches and applications”,. Mladenoff, David and W. Baker (Eds).
Cambridge University Press, UK..

111

Mladenoff, David and H.S. He. 1999. Design, behavior and application of LANDIS, an
object-oriented model of forest landscape disturbance and succession. Pp. 125-
162 in “Spatial Modeling of Forest Landscape Change: approaches and
applications”. Mladenoff, David and W. Baker (Eds). Cambridge University
Press, UK..

Murray, Alan T., and R.L. Church. 1995. Heuristic solution approaches to operational
forest planning problems. OR Spektrum [Operations Research]. 17:193-203.

Nelson, John, and G. Liu. 1994. Scheduling cut blocks with simulated annealing.
Canadian Journal of Forest Research. 24(2): 365-372.

O’Hara, A.J., B.A. Faaland, and B.B. Bare. 1989. Spatially constrained timber harvest
scheduling. Canadian Journal of Forest Research. 19:715-724.

Reed, W.J. and D. Enrico. 1986. Optimal harvest scheduling at the forest level in the
presence of the risk of fire. Canadian Journal of Forestry Research. 16: 266-278.

Reeves, Colin R. 1993. Modern heuristic techniques for combinatorial problems. Editor.
John Wiley & Sons, Inc., New York.

Reinhardt, Elizabeth D., R. Keane, and J. Brown. 1997. First Order Fire Effects Model:
FOFEM 4.0, user’s guide. GTR, INT-GTR-344. Ogden, UT: U.S. Dept. of
Agriculture, Forest Service, Intermountain Research Station. 65 p..

Rothermel, Richard C. 1972. A Mathematical Model for Predicting Fire Spread in
Wildland Fuels. Research Paper. INT-115. Ogden, UT: U.S. Dept. of
Agriculture. Forest Service, Intermountain Forest and Range Experiment Station.

Runkle, J.R.. 1982. Patterns of disturbance in some old-growth mesic forest of eastern
North America. Ecology. 63:1533-1546.

Sessions, John, K.N. Johnson, J. Franklin, and J. Gabriel. 1999. Achieving sustainable
forest structures on fire-prove landscapes while pursuing multiple goals. Pp. 210-
255 in “Spatial Modeling of Forest Landscape Change: approaches and
applications”, Mladenoff, David and W. Baker (Eds.). Cambridge University
Press, UK..

(SNEP) Sierra Nevada Ecosystem Project. 1996. Status of the Sierra Nevada: Final
Report to Congress by the Sierra Nevada Ecosystem Project (SNEP), Wildland

Resource Center Report No. 36, 3 volumes, University of California, Davis,
Calif..

112

USDA Forest Service and USDI Bureau of L.and Management. 1994. Record of
Decision for Amendments to Forest Service and Bureau of Land Management
Planning Documents Within the Range of the Northern Spotted Owl; Standards
and Guidelines for Management of Habitat for Late-Successional and Old-Growth
Forest Related Species Within the Range of the Northern Spotted Owl.
Washington, DC: U. S. Government Printing Office.

USDI Bureau of LLand Management, Medford District, USDA Forest Service, Rogue
River National Forest, USDA Forest Service, Siskiyou National Forest, USDA
Forest Service, PNW Research Station. 1994. Applegate Adaptive Management
Area Ecosystem Health Assessment. Pp. 1-76.

Van Wagner, C.E.. 1969. A simple fire growth model. Forestry Chronicl. 45:103-4.

Van Wagner, C.E.. 1978. Age class distribution and the forest fire cycle. Canadian
Journal of Forest Research. 8:220-7.

VoB, Stefan. 1993. Tabu search: applications and prospects. Pp. 333-353 in Network
optimization problems, Du, D.Z., and P.M. Pardalos (eds.). World Scientific
Publishing Co., Singapore.

Wedin, Heidi. 1999. Stand Level Prescription Generation under Multiple Objectives.
M.S. Thesis. Oregon State University, Corvallis, OR. 178 p.

Yoshimoto, A., R.G. Haight, and J.D. Brodie. 1990. A comparison of the pattern search
algorithm and the modified PATH algorithm for optimizing an individual tree
model. Forest Science. 36:394-412.

Zanakis, S.H., and J.R. Evans. 1981. Heuristic “optimization”: why, when, and how to
use it. Interfaces. 11(5):84-89.

113

APPENDICES

Appendix B: Plant Association Group (PAG) Assignment Rules

Plant Association Groups (PAGs)
1. Douglas-fir/Dry

Douglas-fir/Wet

White fir/Dry

White firfWet

Red fir

Jeffrey pine

Pine/oak

NounE®D

Codes used:
Ppt = precipitation in inches
Elevation = values in feet
Slope = values in %
Aspect = values in degrees

115

Rules for Assigning PAGs to Each Stand

Geology serpentine
Other .

1. Elevation < 2000
2A. Slope <£15%
2B. Slope >15% . .
3A. Aspect 135-225 .
3B. Aspect other

4. Elevation > 2000 and < 2500
5A. Ppt £35.
5B. Ppt. >35
6A. Ppt<40 .
6B. Ppt. >40.

7. Elevation > 2500 and < 3500
8A. Ppt <40 .
8B. Ppt >40
9A. Aspect 1-45 and 316-360
9B. Aspect Other
10A. Aspect 226-315 and 46-135
10B. Aspect 136-225 .

PAG
Jeffrey pine
Continue

Pine/oak

Continue to 3
Pine/oak
Douglas-fir/Dry

Pine/oak

Douglas-fir/Dry
Douglas-fir/Wet
Douglas-fir/Dry

White fir/Dry

Douglas-firr'Wet
Douglas-fir/Dry

11. Elevation > 3500 and < 4000
12A. Aspect 271-360 and 1-90
12B. Aspect 91-270 .

13. Elevation > 4000 and < 4500
14A. Ppt. <45
14B. Ppt. >45
15A. Aspect 136-225 .)
15B. Aspect 46-135 and 226-315
15C. Aspect 316-360 and 1-45

16. Elevation > 4500 and < 5000

17A. Ppt <50
18A. Aspect 136-225. .
18B. Aspect 91-135 and 226-270
18C. Aspect 271-360 and 1-90

17B. Ppt > 50
19A. Aspect 136-225. :
19B. Aspect 46-135 and 226-315
19C. Aspect 316-360 and 1-45

20. Elevation > 5000 and < 5500
21A. Ppt £50
22A. Aspect 158-202. .
22B. Aspect 136-157 and 203-225
22C. Aspect 226-360 and 1-135
21B. Ppt > 50 and <60
23A. Aspect 46-315 . .
23B. Aspect 316-360 and 1-45
21C. Ppt> 60
24A. Aspect 271-360 and 1-90.
24B. Aspect91-270 .

25. Elevation > 5500 and < 6000
26A. Ppt < 60
27A. Aspect 136-225.)
27B. Aspect 1-135 and 226-360
26B. Ppt > 60

28. Elevation > 6000.

116

Douglas-fir/Wet
White fir/Dry

Douglas-fir/'Wet

Douglas-fir/Wet
White fir/Dry
White fir/Wet

Douglas-fir/Wet
White fir/Dry
White fir/'Wet

White fir/Dry
White fir/Wet
Red fir

Douglas-fir/Wet
White fir/Dry
White fir-Wet

White fir/Wet
Red fir

Red fir
White fir/Wet

White fir/Wet
Red fir
Red fir

Red fir

Appendix C: Insect Disturbance Rules

DOUGLAS-FIR KEY

Thresholds of basal area (ba) per PAG

White fir/dry and Douglas-fir/wet: > 250 sq ft/ac.

Douglas-fir/dry:
Pine/Oak:

> 120 sq ft/ac.
> 80 sq ft/ac.

Severity (applied to treelist)

Mild drought:
Severe drought:

TRUE FIR KEY

10% of ba of Douglas-fir killed (>10” DBH)
20% of ba of Douglas-fir killed (>10” DBH)

Thresholds of basal area (ba) per PAG

Red fir or White fir/wet: > 250 sq f{t/ac.
White fir/dry: > 120 sq {t/ac.
Douglas-fir (wet or dry): any
Pine/Oak: any

Severity (applied to treelist)

Red fir series:
Mild drought:
Severe drought:

White fir series:
Mild drought:
Severe drought:

Douglas-fir series:

Mild drought:
Severe drought:

Pine/Oak:
Mild drought:
Severe drought:

10% of ba of White and Red fir killed (all sizes)
20% of ba of White and Red fir killed (all sizes)

10% of ba of White fir killed (all sizes)
20% of ba of White fir killed (all sizes)

20% of ba of White fir killed (all sizes)
40% of ba of White fir killed (all sizes)

40% of ba of White fir killed (all sizes)
60% of ba of White fir killed (all sizes)

117

118

PINES KEY

Thresholds of basal area {ba) per PAG

Jeffrey pine and Pine/Oak: > 80 sq ft/ac.
Douglas-fir/dry and White fir/dry: > 120 sq ft/ac.
Douglas-fir/wet, White fir/wet, and Red fir: > 180 sq ft/ac.

Severity (applied to treelist)

Mild drought: 10% of ba of all pines killed, largest first
Severe drought: 30% of ba of all pines killed, largest first

Appendix D: FOFEM Tables

Each of the six tables below represent the FOFEM mortality index used for the

119

particular species indicated. The columns are broken into two foot flamelength intervals.

The rows are DBH intervals. The table value is a percentage such that a value of 0.65

means that 65% of the trees-per-acre are killed.

Flamelength Category
2 4 6 8 10 12 4 16}
1 1 1 1 1 1 1 1 1
2 0.9 1 1 1 1 1 1 1
4 0.85 0.95 1 1 1 1 1 1
6 0.75 0.95 1 1 1 1 1 1
8 0.65 0.85 1 1 1 1 1 1
10 0.45 0.7 0.95 1 1 1 1 1
12 0.4 0.65 0.9 1 1 1 1 1
14 0.35 0.6 0.8 1 1 1 1 1
g’ 16 0.3 0.55 0.75 1 1 1 1 1
D 18 0.25 0.5 0.75 0.95 1 1 1 1
g 2q 0.2 0.45 0.65 0.85 1 1 1 1
% 22 0.2 0.4 0.65 0.85 0.95 1 1 1
QO 24 0.2 0.35 0.55 0.85 0.95 1 1 1
26 0.2 0.3 0.55 0.75 0.95 1 1 1
28 0.15 0.25 0.5 0.75 0.95 1 1 1
30 0.1 0.25 0.45 0.75 0.9 1 1 1
32 0.1 0.25 0.45 0.75 0.9 1 1 1
34 0.1 0.25 0.45 0.65 0.85 1 1 1
36 0.1 0.2 0.35 0.65 0.8 1 1 1
38 0.1 0.2 0.35 0.55 0.75 1 1 1
40 0.1 0.2 0.35 0.55 0.75 0.9 1 1

Table 2: Oregon white oak

120

Flamelength Category

2 4 6 8 10 12 14 16
1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1
0.6 1 1 1 1 1 1 1

0.5 0.9 1 1 1 1 1 1

0.3 0.6 1 1 1 1 1 1

1 0.3 0.3 0.9 1 1 1 1 1

1 0.2 0.2 0.8 1 1 1 1 1

1 0.1 0.1 0.6 1 1 1 1 1

2 1 0.1 0.1 0.4 0.9 1 1 1 1
2 1 0.1 0.1 0.2 0.9 0.9 0.9 0.9 0.9
3 2 0.1 0.1 0.2 0.7 0.9 0.9 0.9 09
r 2 0.1 0.1 0.1 0.6 0.9 0.9 0.9 0.9
o 2 0 0 0.1 0.5 0.9 0.9 0.9 0.9
2 0 0 0.1 0.4 0.8 0.9 0.9 0.9

2 0 0 0 0.3 0.8 0.9 0.9 0.9

3 0 0 0 0.2 0.7 0.9 0.9 0.9

3 0 0 0 0.1 0.6 0.9 0.9 0.9

3 0 0 0 0.1 0.6 0.8 0.8 0.8

3 0 0 0 0.1 0.5 0.8 0.8 0.8

3 0 0 0 0.1 0.4 0.8 0.8 0.8

4 0 0 0 0.1 0.3 0.7 0.8 0.

Table 3: Douglas fir

121

Flamelength Category

2 4 6 8 10 2 4 16

1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1

4 0.95 1 1 1 1 1 1 1

§ 0.75 0.95 1 1 1 1 1 1

8 0.7 0.95 1 1 1 1 1 1

10 0.7 0.9 1 1 1 1 1 1
12 0.6 0.85 1 1 1 1 1 1
14 0.6 0.8 0.95 1 1 1 1 1

g 16} 0.55 0.75 0.95 1 1 1 1 1
2 18 0.5 0.65 0.9 1 1 1 1 1
8 20 0.5 0.65 0.85 1 1 1 1 1
T 22 0.4 0.65 0.85 1 1 1 1 1
o 24 0.4 0.65 0.85 1 1 1 1 1
26 0.35 0.65 0.85 0.95 1 1 1 1
28 0.3 0.65 0.85 0.95 1 1 1 1
30 0.3 0.65 0.85 0.95 1 1 1 1
32 0.25 0.4 0.55 0.9 1 1 1 1
34 0.25 0.4 0.55 0.8 1 1 1 1
36 0.25 0.35 0.55 0.8 1 1 1 1
38 0.25 0.3 0.45 0.7 1 1 1 1
40 0.25 0.3 0.45 0.65 0.95 1 1 1

Table 4: Other hardwoods

122

Flamelength Category

2 4 6 8 10 12 14 16

1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1

4 0.7 1 1 1 1 1 1 1

6 0.6 0.6 1 1 1 1 1 1

g 0.4 0.4 1 1 1 1 1 1

10 0.3 0.3 0.7 1 1 1 1 1
12 0.2 0.2 0.3 1 1 1 1 1

1 0.2 0.2 0.2 1 1 1 1 1

> 1 0.1 0.1 0.1 0.8 1 1 1 1
= 0.1 0.1 0.1 0.5 1 1 1 1
- 0.1 0.1 0.1 0.3 1 1 1 1
T 2 0.1 0.1 0.1 0.1 0.9 0.9 0.9 0.9
a 2 0.1 0.1 0.1 0.1 0.9 0.9 0.9 0.9
2 0.1 0.1 0.1 0.1 0.7 0.9 0.9 0.9

2 0 0 0 0 0.5 0.9 0.9 0.9

3 0 0 0 0 0.4 0.9 0.9 0.9
32 0 0 0 0 0.2 0.9 0.9 0.9

3 0 0 0 0 0.1 0.8 0.9 0.9

3 0 0 0 0 0.1 0.8 0.9 0.9

3 0 0 0 0 0.1 0.7 0.8 0.8

4 0 0 0 0 0 0.6 0.8 0.8

Table 5: Ponderosa pine

123

Flamelength Category

2 4 6 8 10 12 14 16

1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1

0.7 1 1 1 1 1 1 1

0.7 0.7 1 1 1 1 1 1

0.6 0.6 0.9 1 1 1 1 1

1 0.6 0.6 0.7 1 1 1 1 1

1 0.5 0.5 0.5 1 1 1 1 1

1 0.5 0.5 0.5 0.9 1 1 1 1

2 1 0.4 0.4 0.4 0.7 1 1 1 1
= 0.4 0.4 0.4 0.5 1 1 1 1
3 o 0.3 0.3 0.3 0.3 0.9 1 1 1
T 22 0.3 0.3 0.3 0.3 0.8 1 1 1
o 2 0.3 0.3 0.3 0.3 0.6 1 1 1
2 0.2 0.2 0.2 0.2 0.4 0.9 1 1

2 0.2 0.2 0.2 0.2 0.3 0.9 1 1

3 0.2 0.2 0.2 0.2 0.2 0.8 1 1
32 0.2 0.2 0.2 0.2 0.2 07 1 1

3 0.1 0.1 0.1 0.1 0.1 0.5 0.9 1

3 0.1 0.1 0.1 0.1 0.1 0.4 0.9 1

3 0.1 0.1 0.1 0.1 0.1 0.3 0.8 1

4 0.1 0.1 0.1 0.1 0.1 0.2 0.8 1

Table 6: Sugar pine

124

Flamelength Category
2 4 6 8 10 12 14 16
1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
0.7 1 1 1 1 1 1 1
0.6 0.9 1 1 1 1 1 1
0.5 0.6 1 1 1 1 1 1
1 0.4 0.4 0.9 1 1 1 1 1
1 0.4 0.4 0.7 1 1 1 1 1
1 0.3 0.3 0.5 0.9 1 1 1 1
g‘ 1 0.2 0.2 0.3 0.8 1 1 1 1
o 1 0.2 0.2 0.2 0.7 1 1 1 1
3 2 0.2 0.2 0.2 0.5 0.9 1 1 1
5 2 0.1 0.1 0.1 0.4 0.8 1 1 1
o 2 0.1 0.1 0.1 0.3 0.7 0.9 1 1
2 0.1 0.1 0.1 0.2 0.6 0.9 1 1
2 0.1 0.1 0.1 0.1 0.5 0.9 0.9 0.9
3 0.1 0.1 0.1 0.1 0.4 0.8 0.9 0.9
32 0.1 0.1 0.1 0.1 0.3 0.7 0.9 0.9
3 0.1 0.1 0.1 0.1 0.2 0.6 0.9 0.9
3 0] 0 0] 0.1 0.2 0.5 0.8 0.9
3 0 0] 0] 0] 0.1 0.4 0.8 0.9
4 0 0 0 0 0.1 0.3 0.7 0.9

Table 7: White fir

125

Appendix E: Hazard Analysis

There are two separate hazard analyses which are then combined to form a single
overall episodic disturbance hazard analysis for the watershed. Both occur at specific
times during stage three of the modeling process.

The insect hazard analysis is a simple look at the landscape to determine if
individual stands would be affected by insects if the current simulation period was a
drought type period. Regardless of what the weather pattern actually is for the current
simulation period the insect hazard analysis assumes there is drought type weather; it’s a
“what if” scenario. It is a Yes-No analysis and no attempt is made to calculate actual
severity. The rules for determining whether or not a stand is hit by insects are found in
the section titled Apply Insect Disturbance. This analysis is done on a stand-by-stand
basis. Once completed the SafeD model stores a 0-1 variable indicating whether or not
each particular stand is susceptible to insect mortality.

The flame hazard analysis is a more complicated look at the landscape involving
the calculation of a flame height for each stand under the assumption that a theoretical
fire has occurred in the stand. An external program called FLAMMAP is used for this
analysis. FLAMMARP is a raster-based program that takes particular landscape attributes
and weather stream information to calculate a flame height for each pixel; in our case
each pixel is a stand. FLAMMAP is a recently developed program written by the same
developer of FARSITE (Finney, 1999). Our use of FLAMMARP is on an experimental
basis. The science team felt comfortable using FLAMMARP at this time because of
related work completed by Finney and the Fire Science Laboratory (see previous Apply
Fire Disturbance section). Future work on the SafeD model should incorporate better
documentation on FLAMMARP as it becomes available.

What is important to understand about our flame hazard analysis (in relation to my
thesis) is how the SafeD model prepares the input data for FLAMMAP. FLAMMAP
needs five landscape attribute grids and several parameterization and weather stream files
to work. The five landscape attribute grids are: fuel model, canopy closure, height to
live crown, crown bulk density, and stand height. This information is currently stored

within the SafeD model and it must be exported to an external ASCII file that the

126

FLAMMAP program can read. The parameterization files are some “setup” files that
FLAMMARP looks for to calibrate itself. These files include information about where
files are to be stored and read; what type of output files are wanted from FLAMMAP;
and where the weather stream files are located.

In any given simulation period the flame hazard analysis is started by having the
SafeD model export the current five landscape attribute grids to the hard drive of the
computer and create the needed parameterization files for FLAMMAP. The SafeD
model then “calls up” FLAMMAP. Upon completion FLAMMARP will create a
landscape grid that represents the potential flame height for each cell. The SafeD model
reads that information in and temporarily stores it. Flame height is an important indicator
of the potential effects a fire will have on a stand. Flame height can be related through
the First Order Fire Effects Model (FOFEM) to obtain tree mortality (as discussed in the
Apply Fire Disturbance section). The flame hazard analysis is completed by dividing the
calculated flame height into four hazard categories: Low, 0-4 feet; Moderate, 4-8 feet;
High, 8-12 feet; Extreme, > 12 feet.

The last step of the overall hazard analysis is the combining of the insect and fire
hazard analyses. This actually occurs outside of the SafeD model. As I described above,
both the insect and fire hazard analyses output data to the hard drive during each
simulation period. At the end of the entire simulation I combine the two analyses from
each period into a single insect-fire hazard rating through a GIS. It should be noted that
we are currently using these analyses for mapping purposes only. This is why the
combining process is done after the entire simulation and outside of the SafeD model - it

saves computing time.

127

Appendix F: The SafeD Model Code

128

MAIN.CPP

JREEKK KKK KKK KKK KRR KRR KRR KRR AR AR R AR AR R AR AR R KRR AR AR AR AR AR AR AR KA KA AR AR AR AN KA KA AR

Start of the BIG program to run SafeD, which will:

1) Call up Premo(heidi’s prescription generator) and get prescriptions

2) Pick and optimize prescription selection

3) Initiate episodic disturbances

4) React to disturbances

5) [eventually: Re-optimize stand prescriptions and prescription selection]

-- Coding started 20 Nov, 1998 David Graetz

KA KA R KA AR KA KA KRR AR KRR KRR A KRR AR AKX KRR AKX RAKK AR R AR AR KR AKRRK KRR KKK RRKKRARKRRK KKK KRR KK]
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <math.h>

#include "globals.h* //to hold global DEFINES, etc.
#include “"main.h" //external functions called up within main{)
#include "data.h" //Hold the prototypes for various structures

AR R R R R R R R R R

uleng NATLN; // A dglobal variable to hold the NextAvaiableTreeListNumber
int WEATHER; // To pass along what the weather status is for a period
int SimWeather[NP]; // To hold the weather status for entire simulation

//A global array to use for toggling whether to run certain portions at different period (l=yes, 0O=no} Can only
have 4 periods with 1

int EvaluateThisPeriod[NP]; //see EvaluatePeriods{) in misc.cpp
int UnigueMinor [MAX_SUBWATERSHEDS] ; //To hold the ID's for all the different sub-watersheds
int USW; //The number of Unigue Sub-
Watersheds
J] RRRRRRRAKA KR RRAKA KRR RRRK KKK ARA KK RRARRRKRRARR KRR FARRKKRRARRK KRR KRR AR RRARKEA R A AR KK AR
[/ xEEE main

[
J] o xxEES SafeD PROGRAM

Kk kAR
J] AEEE

P L]
[REEER R AR A KRR KA KA KRR AR KRR KRR KKK AR AR A KA KRR IR A KR KRR AR RARAR A KR KRR AR AR KA KRR KRR AR AR KR
R R B T B
int main(}

{

// A couple of variables to hold temporary names of files
char run_flammap[250]="", run_farsite[250]="";
ulong FirstTreelistThisPeriod;

A ittt End of variable defining —----—--—--ommm e
//Seed the random number generator
srand(time(NULL));

//Ensure that all the needed directories are made

#ifdef MAKE DIRECTORIES

MakeDirectories();

exit(0Q);

#endif

/7 s==z==

EvaluatePeriods(EvaluateThisPeriod); //Fill up the EvaluateThisPeriod array

//8et the grid environment scope for amls - This must be done after EvaluatePeriods()!!
EnvScope (EvaluateThisPeriod);

WeatherStatus{SimWeather}); //Fill up the SimWeather array with weather
type

/1=
Wet, 2=Mcderate, 3= Drought, 4 = Severe Drought
DeleteOldStuff(); //Clean up the
\outputs\prescription\modeled* directory before each run

StartTreeDamageFile(); //Create a new file that can be
opened later in program in append mode

¥ifdef FRAMEWORK_PROJECT
CopyExecutables () ;
#endif

#ifdef NEW_LANDSCAPE_FILES

InitialFiles(}; //Get the initial GIS
files ready for per(

exit(1l); //for testing

#endif //Be sure to

set the correct global environment #define

#ifdef FREQUENCY_ANALYSIS //toggle which ones and always exit after
TimingChoiceFrequency(};

exit(l};

#endif

129

CreateMainData(); //Make the initial Data.* structure
arrays

//REMEMBER: The Data.3oal and Data.Hold arrays get filled here if #define
RERUN_SIM, otherwise

// they will be picked and inputted into the Data.* arrays in
PickPrescriptions ()
/7=

R e e e e T e S S S T R T
//¥*** ALWAYS NEED !!!} *#¥¥¥
//Fill up the global UniqueMinor([] array and get the global USW value

UsW = CountSubWatersheds (UnigueMinor) ;
R e R S R R R e R A ARttt a ittt sttt

/7= mmmm=========
#ifdef OWNERSHIP_ANALYSIS //must be after CreateMainDa
from that

OwnershipByMinor (USW, UniqueMinor);

exit{l);

#endif

a - needs info

ol

AR R e e

//WARNING - Use the below function ONLY when I need to COMPLETELY redo initial prescriptions {see globals.h)
#ifdef INITIAL_PREMO

//InitialPremo(); //Run StandOpt.exe for all the
geals, for all the initial stands

CreateSortedPremoBinaryFile() ;

exit(0); //for testing

#endif

A R R e s

/7 =

f/¥** ALWAYS NEED !!l] **wx

//Get the initial fuel model and fuel loadings
InitialFuelContreller();

//Also initialize background ERA values for everyone
InitialEraValues();
/==

A R A e e e

//Determine or reload the prescriptions to use

#ifdef OPTIMIZE //and I don‘t want to use default Goal=9
Hold=0

PickPrescriptions (GOAL_TO_USE} ; //see below for goal # meanings

/t

1 = Even-flow of timber by Sub-watershed w/ full range of activities allowed in LSR‘'s and Riparian reserves
2 = Grow Only

3 = The Finney-Effect "bricks" - for FRAMEWORK only

4 = Rx6 - of the Framework alternatives

*/

#else

ReuseBestPrescription{GOAL_TO_USE} ;

#endif

//exic{0); //for testing - 1if goal maps and stuff are needed be sure to run
OutputPreSimAnalysisDatal)

AR A A A A A A A e R R e a e s

/7 o+
+H+++

#ifdef ALL GOALS_BIGTREES

//Do an analysis and see what the Big Trees values are if using one solid goal assignment across landscape (for all
10 goals).

//NOTE: needs to have the "InitOpt.bin" file create for the landscape gcal, so PickPrescripticn() needs to have
been run for goal

QutputPotentialBigTreesAllStandGoals(]);

#endif

/i + + o+

+++++

/1=
//**% ALWAYS NEED !!!! #¥w«

// Fill up the Data.*[] arrays with Premo data

FillInitialPremoData{0)}: //period 0 indicates an initial run.

/lexic(1});
/7

DoubleCheckVegcodes () ;

/7 ++++ ++
/! Redo the HLC and CBD measurements

RedoHleCbhd(} ;

/7 e+ FOTOnY

R R G R R R R R e R R L L et A e 2 2 ST
//NEED FOR ANALYSIS AND MAPS TO SHOW WHAT IS HAPPENING or HAPPENED BEFORE ENTERING SIMULATION PERIODS

#ifndef RERUN_SIM

1if{ OutputPreSimAnalysisData() == FALSE)

130

Bailout{52);
#endif
//exit(0); //for testing

P R R R]
//goto END;

//Set the variable NATLN (Next Available Tree List Number) at this point and updated throughout program
NATLN = FIRST_AVAILABLE_TREELIST;

for{period=1;period<=NP;period++)

{
P R R R L R T
7/ It is assumed, that when SafeD enters Period 1, that there has been 5 yrs cf growth
7/ and harvest in Premo. Premo works by taking a Time 0 treelist, harvesting (if at all) right
7/ away and then growing forward 5 years (and accounting for periodic mortality). So SafeD will
12 assume that the Premc values stored for Period 1 are values that represent activity and growth.

AR et R T

//print some stuff to screen
StartPeriodInfo(pericd);

//Get the weather to pass on
WEATHER = SimWeather [period-1);

//set weather to 3 while developing
//WEATHER = 3;

//Delete the stuff(if any) in the Modified directory before ANY disturbance
DeleteModified();

//Adjust the fuel loadings for decay and new fuel loading contributions - and then calculate new fuel

model

AdjustFuelStuffForGrowth{period);

Start Episodic Disturbances

At period 1, this means there has been 5yrs (lperiod) of harvest and growth {i.e.
management) before 1lst disturbance

FirstTreelistThisPeriod = NATLN;

//Send out a file to show where the potential Bug problems are this pericd (assuming a drought year)
MapPotentialBugs (period};

J] *EEEAAEsAsaadesacr Firct disturbance to occur will DE iNSechs * A s st ek arrrrrrixrrarn
#ifdef USE_BUGS
if(ApplyInsectDisturbance(period, WEATHER, FirstTreelistThisPeriod} == FALSE)
Bailout(76);

#endif
S Rt L R E e R L L i T
NOTE: The insects did some damage and their effects to HLC, STANDHEIGHT, CBD, and CLOSURE
were recalculated - but we do not have anything to update their effects to the fuel loadings
thus the FuelModels are not changing. - This is OK according to Bernie 16Feb00
Bl e R R T R L T S S)
//0utput landscape data for Flammap and Farsite for this period (FUEL, HEIGHT, BLC, CBD, and CLOSURE)
if(QutputCurrentLandscapeData(period) == FALSE)
Bailout(50);
//0Output some random fuel loads and fuel model for evaluation
QutputFuelloadsModel (pericd} ;
J/REAAE R R ARk A4 Rk A 4% Dropare and TUN FLAMMAP * 44+ % %% kkuadda hh ki h kA ARk kA AR Rk AR AR AN ARk dd
if(PrepareFlammap (period, WEATHER} == FALSE}
Bailout (0);
#ifdef USE_FLAMMAP J/****** RUN FLAMMAP and cutput the results to ...\ocutputs\\per*‘flammap.asc
if (EvaluateThisPeriod[period-1] == TRUE)
{
sprintf (run_flammap, "%s%s%d\‘\persd\‘runflammap.bat", PREFIX, INPUTS,GCAL_TO_USE,period);
system{run_flammap);
CleanAndSave (period, FLAMMAP, ACTUAL) ;
InQutFlammapResults (period, ACTUAL};
}
#endif
J/REA AR Rk a xR A x ka4 s Prepare and TUN FARSITE ** 4+ A+ % hkuas kadahhdd s dd sk bk h kA A hhk kAR AR Rk AR Rk kwdh
if({ PrepareFarsite(period, WEATHER)} == FALSE)
Bailout(l);
#ifdef USE_FARSITE //*****+ RUN FARSITE - apply the effects and update data

sprintf{run_farsite, "%s%s%d\\per%d:\‘runfarsite.bat*,PREFIX, INPUTS,GOAL_TO_USE,period);
system(run_farsite)

131

CleanAndSave (period, FARSITE, ACTUAL) ;

ApplyFireDisturbance (period, FirstTreelistThisPeriod}; //stuff in CountFireHit () commented
out - double check before running for real
#endif //use_farsite

//After all the disturbances, figure out which stands were hit - make new Premo runs - and input the new
data
if{ period != NP }
//Don’t do on last period!
ManageNewPremoRuns (FirstTreeligtThisPeriod, period);

//A double check to make sure vegcodes are OK before outputting
DoubleCheckVegcodes () ;

//Qutput the current VEGCODES for GIS mapping
if(EvaluateThisPeriod[pericd-1] == TRUE)
DutputVegcodes (pericd) ;

EndPeriodInfo(pericd);
}//end of for(period=l;period<=NP;period++)

//ANALYSIS AND MAPS TO SHOW WHAT HAFFENED AFTER THE SIMULATION
if{ OutputPostSimAnalysisData() == FALSE)
Bailout (52);

return TRUE;
}//end main program

MRIN.H

//variables to use within main()
int period;

//define in StandOptStuff.cpp

extern void InitialPremo(void);

extern void FillInitialPremoData(int per);

extern void CreateSortedPremcBinaryFile(void);
extern int ManageNewPremoRuns (ulong FTL, int Per);

//defined in ReadpData.cpp
extern int CreateMainData(void);

//defined in PrepareFarsite.cpp
extern int PrepareFarsite(int period, int weather);
extern void InitialFiles(void);

//defined in PrepareFlammap.cpp
extern int PrepareFlammap(int period, int weather);
extern void InOutFlammapResults(int p, int Status);

//defined in ArcInfoController.cpp -- These are not called up anymore
extern void VectorResults(int p);
extern void VegCodeMapping{int status);

//defined in FireEffects.cpp
extern int ApplyFireDisturbance(int period, ulong FTTP};
extern void DoubleCheckVegcodes (void};

//defined in Misc.cpp

extern void MakeDirectories{void};

extern void EnvScope(int Eval[NP]);

extern int CountSubWatershads{int UM[])};
extern void StartPeriodInfo(int p);

extern void EndPericdInfo(int p);
extern void Delete0ldStuff(void);

extern int WeatherStatus(int Weather [NP]);
extern int EvaluatePeriods(int Eval[NP]);
extern void Bailout{int ErrorNumber);
extern void CleanAndSave(int Per, int Program, int Status);
extern void DeleteModified(void);

extern void CopyExecutables({void};

extern void StartTreeDamageFile(void);

//defined in goal_controller.cpp
extern void PickPrescriptions(int goall;
extern void ReuseBestPrescription(int goal);

//defined in OutputData.cpp

132

extern int QutputCurrentLandscapeDatal(int Per);

extern int OutputPreSimAnalysisData(vaoid);

extern int OutputPostSimAnalysisData(void);

extern void TimingChoiceFrequency(void) ;

extern void OwnershipByMinor{int USW, int UniqueMinor[]):
extern void OutputFuelLoadsModel(int Per});

extern void OutputPotentialBigTreesAllStandGeoals (void):
extern void OutputVegcodes(int Per};

//defined in Insects.cpp
extern int ApplyInsectDisturbance{int Per, int Weather, ulong FTTP};
extern void MapPotentialBugs{int Per);

//defined in CommonDisturbance.cpp
extern void StartPtrTpInfo(struct PTR_TFP *ptr_info, ulong FirstTreelist);

//define in FuelEra.cpp
extern void InitialFuelController(vcid};
extern void AdjustFuelStuffForGrowth{int ActualPer};

//define in EraStuff.cpp
extern void InitialEraValues(void);

//defined in StandData.cpp
extern void RedcHlcCbhd(veid);

A L

/] mmmmmmmmm—mmeeem Ccommon Macros and #define for any project — mmmmmmmm—mmem e
AR R L R R Lt L R L R R S L T P T ST PR PP

//Make sure only one "*_PROJECT" is used below - will tell which *_Globals.h file to use
#define APPLEGATE_PROJECT
//#define FRAMEWORK_PROJECT

/7 ===
//===== ==

//Miscellaneous DO NOT CHANGE
typedef unsigned short ushort;
typedef unsigned long ulong;

#define FALSE 0

#define TRUE 1

#define REAL 0

#define FAKE 1

#define PREDICTED a //used as a toggle when inputting some data
(e.g. InputFlammap{())

#define ACTUAL 1 77

#define REUSE 2

#define LAST 3

#define FLAMMAP 1 // toggle to indicate stuff for
FLAMMAP

#define FARSITE 2 // toggle to indicate stuff for
FARSITE

#define SAFED 3 // for general SAFED stuff
#define SWAP1 1 // toggle for a one-swap move
#define SWAP2 2 // toggle for a two-swap move
#define FILE_TYPE 2 // 1 = AsciiFiles, 2 = BINARY files

//***** TOGGLE switches to indicate whether or not to use certain parts of code (comment or uncomment as needed)

//#define NEW_LANDSCAPE_FILES //when changes have been made to original GIS data - will call up ArcInfo
and create new

//#define MAKE_DIRECTORIES //for a new project using a new DRIVE PREFIX only

//#define SAVE_FOR_RERUN //use to save certain large files if RERUN_SIM is going
to be used

#define RERUN_SIM //use if this is simulation run is Identical to
previous run and want comparison

//#define OPTIMIZE //0therwise, Goal defaults to 9 and Hold defaults to O
//#define INITIAL_PREMO //Run PREMO for all the initial stands

// *** These toggles should almost always be on when running full, actual simulations

#define CREATE_TREE_INDEX //Toggle for the CreateTreeIndex function call in ReadData.cpp
#define USE_BUGS

#define USE_FLAMMAP //Whether or not to actually run FLAMMAP each period
#define USE_FARSITE //Whether or not to actually run FARSITE each period
#define END_PERIOD_PREMO //Whether or not to actually run PREMO at end of period

J/***** ALWAYS USE THE BEST GOAL-HOLD FOUND IF NOT ACTUALLY OPTIMIZING ON THIS RUN

#ifndef OPTIMIZE

#define USE_BEST_GOAL_ HOLD //0nly to read in a previous goal and hold solution found (used
in ReadData.cpp)

#endif

//***** Switches to use for PRE or POST-SIMULATION ANALYSIS - will control what data gets outputted - may not need
all these

#define ACRES_HARVEST

#define MAP_GOALS

//***** DIFFERENT ANALYSIS TO RUN BEFORE SIMULATIONS - called up in main.cpp and have an exit{l) statement after

//#define FREQUENCY_ANALYSIS
//#define OWNERSHIP_ANALYSIS
#define ALL_GOALS_BIGTREES

the stand goals applied only

J/***** Goal variables

#define APPLE_ERA 1
#define GROW_ONLY 2
#define FINNEY_EFFECT 3

#define RX6

133

//to evaluate harvest timing choices from prescriptions
//to see what the % ownership is by 6th field subwatershed
//to see BigTrees for one landscape goal for each of

//The finney “"bricks"
4

//JoAnn‘s rules to mimic alternative 6 of the Framework stuff

#define GOAL_TO_USE (GROW_ONLY)
for values

//which of the landscape goals to run - see main.cpp

//***** Set a little error checker for conflicts with the above #defines - will print up on debug window in

compiler
#1if defined(RERUN_SIM) && defined(OPTIMIZE)

#error ERROR: Can’t have RERUN_SIM and SAVE_GOAL_HOLD defined at the same time

#endif

#if defined(RERUN_SIM} && defined{SAVE_FOR_RERUN}
#error ERROR: Can’t have RERUN_SIM and SAVE_FOR_RERUN defined at the same time

#endif

#if defined(RERUN_SIM) && defined(PREDICTED_FLAMMAP}
#error ERROR: Can’t have RERUN_SIM and PREDICTED_FLAMMAP defined at the same time

#endif

#1if defined(APPLEGATE_PROJECT) && GOAL_TO_USE == FINNEY_EFFECT

#error ERROR: The Applegate project dces not have rules set up to apply the Finney Effect
#endif

#if defined (APPLEGATE_PROJECT) && GOAL_TO_USE == RX6

#error ERROR: The Applegate project does not have rules set up to apply the Rx6 landscape goal

#endif

//Stand Goal globals
#define SG_FIRE
#define SG_INSECTS 1
#define SG_FISH

#define SG_WILDLIFE_S 3
#define SG_WILDLIFE_C
#define SG_PNV
#define SG_COMBO1
#define SG_COMBOZ
#define SG_COMBO_ALL
#define SG_GROWONLY

IS

[N I

J/***** Switched for which heuristic I want to use

#define DELUGE
//#define ANNEAL

J/***** Another prefix for filenames
#ifdef TABUSEARCH

#define OPTPREFIX "T*

#elif defined{DELUGE}

#define OPTPREFIX “D*

#else

#define OPTPREFIX “A"

#endif

J/*¥**** for any heuristic
#define FIRST_SWAP1CHANCE

#define SECOND_SWAP1CHANCE

//Tag on to TabuSearch files
//Tag on to Deluge files

//Tag on to Simulated annealing files

//25% chance of making a one-swap move

#define PRINT_LOOPS

#1f (GOAL_TO_USE == 1}
#define BASE_ADJ

//Adjustment to the Baseline, determined in GetBaselineVTO()

telse

.50
//50% chance of making a one-swap move during second 1/3 of Delugeloops
.25
2000
{double!}l
{double}l.5

#define BASE_ADJ
#endif

J/***** Some stuff for TABU search

#define PENALTY1 1000000
solution or is TABU

#define TABULOOP 100

#define TLONG 15
Tabulong before getting a penalty in Short
#define TSHORT 11
come back into solution in the short term
#define LT_PENALTY 6

enter TLONG times

J/*¥**** gstuff for The Great Deluge
#1if (GOAL_TO_USE == 1)
#define LOOP_FACTOR

//Multiplied by # of cells

//penalty assigned when current "move" is already in

//Number of iterations to run the tabu search
//Number of times a move can enter

//Number of iterations a move can’'t

//Penalty assigned to Short because move has

13
in soluticn~control how many deluge loops

#define RAIN {double). 001
//The RAIN amount to use

#else

#define LOOP_FACTOR 10

#define RAIN {double} .01

#endif

//***** gruff for Simulating Annealing

#1f (GOAL_TO_USE == 1)}

#define INITIAL_TEMP 1000000000

#define LOOPS_AT_ONE_TEMP 200

#define COOLING_RATE .99

#define MIN_TEMP 1000

#define DELTA_ FACTOR 4

#define PENALTY 10

telse //default

#define INITIAL_TEMP 50000000000

#define LOOPS_AT_ONE_TEMP 250

#define COOLING_RATE .98t

#define MIN_TEMP 560600

#define DELTA_FACTOR 3

#define PENALTY 10

#endif

//***** Common Math values & EXPansion values

#define DG2RD 0.017453292 // PI / 180
Degree to Radians

#define RD2DG 57.29577951 // 180 / PI
Radians to Degrees

#define M2FT 3.28084 // Meters to feet

#define FT2M .3048 // Feet to Meters

#define PI 3.1415926535892

#define BASAL_CONSTANT (PI / (4*144)) //Formula for BA is: {(PI * D-squared)

- this replaces all but D-sguared

#define TONS

#define FUEL_LOAD_ EXP 10
fit ushort and not lose precision

#define BASAIL_EXP 10
fit ushort

#define DENSITY_EXP

CBDensity to fit ushort

#define BIGTREES_EXP 10
fit ushort

#define ERA_EXP

to fit ushort

#define BIG_TREE_SIZE 30
are evaluating

PR R e e e s T

[/mmmmmm e The directory paths that are used

VAR e e

#define INPUTS
#define ConstantInput
#define CommonInitial
#define TREE_INDEX
#define IT_INDEX

#define PremoProgName
#define FarsiteName
#define FlammapName
#define FarsiteOutputl
#define RerunDir
#define AmlDir

#define OUTPUTS

#define VectorOutDir
#define RasterOutDir
#define ErrorDir

#define MapDir

#define GeneralDataDir
#define PreSimOutputDir
#define PosgtSimOutputDir
#define OutputDelugeDir
#define InitialStandDataDir
#define ModeledStandDataDir
#define InitialPresDir
#define ModeledPresDir
#define P_ToModDir

#define P_ModDir

//In INCES,

H R KA AR A KA AR R A AR AR KR AT HERRE Kb hwk
throughout the SafeD program ----------
R T T T T T e
"\\model\\inputs\\goal”
“\\model\\inputs\\Constant"
“\\model\\inputs\\CommonInitial*
"treeindex.txt"
"InitialTreeindex.txt"

"\\model\\standopt\\Premo\\Debug\\Premo.exe"
"\\model\\farsite\\farsite\\Debug\\farsite.exe"
"\\model\\flammap\\flammap\\Debug\\flammap.exe"
“\\model\\SafeD\\per"
"\\model\ \RerunbData\\goal"

"“\\modely\amls*"

"\\modely\outputsiigoal"
"\\model\\ocutputs\\vector_out"
"\\model\\outputs\\raster_out"
"\\model\\outputs\\Errors"

"\\model\\outputs\\final_maps"
"\\model\\outputs\\GeneralData"
"\imodel\\outputs\\PreSimbData\\goal"

"\\model\\outputs\\PostSimlataiigoal”

"\\model\\cutputs\\Deluge\i\goal®

"\\model\\outputs\\StandData\\Initial"
"\\model\\outputs\\Standbata\ \Modeled"

"\\model\\outputs\\prescriptions\\initial"
"\\model\\outputs\\prescriptions\\modeled"
"\\model\\outputs\\prescriptions\\ToModify"
"\\model\\outputs\\prescriptions\\Modified"

R R R R e e T e e S e L T

[/ Some DEBUG toggles that can be used to turn con/off printf statements

AR R L a2 2 L T L e

#define DEBUG_COUNTCELLID
#define DEBUG_VEGCODES
#define DEBUG_MAINDATA
#define DEBUG_IGPOINTS
#define DEBUG_FLAMLAYERS
#define DEBUG_FLAMMAPENVT

134

(4 * 144)

Basal area to
valus for

BiyTrees to

2000 //1lbs per ton
//value to * real fuel loadings to
//Expansion value for

100 //Expansion
//Expangion value for

100 //Expansion

value for Era

size of big trees we

#define DEBUG_COUNTSUB

#define DEBUG_DELUGE

#define DEBUG_OBJVALUES

#define DEBUG_DECREASESHORT
#define DEBUG_DELUGEGOALl

#define DEBUG_MAINGOAL2Z2

#define DEBUG_INITTIAL_GOALZ
#define DEBUG_FILLVALUESTOOPTIMIZE
#define DEBUG_LOA

135

A R R R i A R R E T

/7 This must be last because many of the macros in the below file require #defines from above
R Rk A Ak R kAR AR KR KA KRR ARk AR B AR R AR AR AR R KRR KRR AR kR KA R AR KRR AR R RRK AR AR KRR ARRKRKRRERARARR R RARAR AR AR

#ifdef APPLEGATE_PROJECT
#include “Applegate_Globals.h*
#elif defined(FRAMEWORK_PROJECT)
#include “Framework_Globals.h"
#endif

GLOBALS.H

AR R R

Specific macros and #defines for the APPLEGATE project

A R R R R R R R

#define MAIN_USER "applegate®

variables

#¥define SHORT _NAME “apple"

PrepareFlammap - for misc. files used by those programs
#define PREFIX “g:"

for sprintf(} calls

#define PREMO_TOGGLE 1

F A i Uncomment the environment to use

#define WHOLE_RUN

//#define LITTLE_RUN

//#define COMPARE_RUN

//#define TINY_RUN

J] e

//For output .asc files to use in ArcInfo
#define CELLSIZE 25

METERS

#define NODATA -9999

//cell-dependent math conversions
#define ACREEQ {CELLSIZE * CELLSIZE * .000247)

¥define NODATAFLAG 65000
cell, but there

Cellid. 65000 works as long as no theme data is suppose

value.
#define NONFOREST 202
non-forest types

my treelist values may be >= than NODATAFLAG (65000}

209 flag which already gets nothing done to it in PREMO
#define FIRST_AVAILABLE TREELIST 210
#define FUEL_FLAG

//For loops., etc

#define NP

#define YIP

#define GOALS 10
have

#define HOLDNO 2
evaluate from prescription generator
#define LANDSCAPE_GOALS 2
making directories for new projects

#define MAX_SUBWATERSHEDS 221

+ 1 to handle NODATA in GIS)

#define WATER_BODY 220
coverage

#define VEGCLASSES 13
initial classification

#define STAGES 15
from initial classification

#define FILES 12
at 12 (don’t need PRULE used in Framework stuff

//Misc variables to use with the original GIS layers
#define IN_BUFFER 100

(Fed lands only) for Data.Buffer|]

#define IN_OLDFIRE 100

Data.FireHistory[]

//pass this to any AMLs so they can set proper
//mostly used in PrepareFarsite() and

//Used to set the beginning directory path

//MUST BE IN

//The equivalent acres in one cell

//indicates input data theme had a NODATA value in this
//was a valid

//to have that

//Easier way to track - this is the flay for

//Alsc, because

//give it the

999

@™

//Number of Periods

5 //Years In Period

/ /4 of stand goals (in PREMO) that we can
//How many "HoldFor" periods we have to

//The number of landscape goals programmed in - used in

//The max number of Unigue éth-field Subwatersheds (use Max value

//ID assigned to water bodies in the subwatershed GIS
//The number of original Vegetation Classes from
//The number of original Seral Stage Classes

//The number of input landscape files - leave

//Whether or not a cell is in the Ped stream buffers

//¥Whether or not a cell is in an vld fire polygon, for

//***** Yariable for the Subwatershed ERA threshold - can vary for each period

#define INITIAL_TRYS 5
threshold values before failing

//How many times to use the below ERA

136

#define PER1_ERA 12 // is really 0.28 or something like that (i.e. divided by ERA_EXP
)

#define PERZ_ERA 12

#define PER3_ERA 12

#define PER4_ERA 12

#define PER5_ERA 12

#define PER6_ERA 10

#define PER7_ERA 9

#def ine PERS_ERA g //There must be at least the same number as Number of Periods

//Codes to use when calling up FillPremoData after a disturbance - have no meaning, only for checking
#define FIRE 9997
#define BUGS 9998

//Codes to use when evaluating OWNERSHIP - these ¢odes were used in Finalown.own_code of GIS data

#define OWN_PNI 33 //Private Non-Industrial
#define OWN_PI 36 //Private Industrial
#define OWN_BLM 69 //Bureau of Land Management
#define OWN_USFS 76 //U8 Forest Service

#define OWN_STATE 89 //State Lands

#define OWN_MISC 124 //Miscellaneous owner

//Codes to use when evaluating LAND ALLOCATION - the codes were used in Finalown.land code of GIS data

#define ALLOC_NF 0 //Non-Federal and Private lands
#define ALLOC_RESERVE 41 //Federal "Late Successional Reserves"
#define ALLOC_WILD 51 //Federal "Wilderness"

#define ALLOC_MATRIX 71 //Federal "Matrix' lands

//GIS Codes for Plant Associaticon Groups
#define PAG_DFDRY
creating the Pag layer
#define PAG_DFWET
#define PAG_JEFFPINE
#define PAG_REDFIR
#define PAG_PINEOAK
#define PAG_WFDRY
#define PAG_WFWET
#define PAG_WATER
#define PAG_BARREN

//These are the values generated in GIS when

-

[I . E I SRR}

//GIS Codes for intial vegetation classification

#define GIS_BARREN 1

#define GIS_WATER 2

#define GIS_SHRUB 3

#define GIS_GRASS 4

//This 1s really for the Framework - but I need the PRULE to be defined within the ccde....ignore for the Applegate
#if (GOAL_TO_USE == FINNEY_ EFFECT)

#define PRULE 2 //which "Prescription RULE' grid to use for
the run 1=JoAnn's, 2=FinneyEffect

#else

#define PRULE 1

#endif

//=amm=m===x====

CODES SPECIFIC FOR ACTUAL TREELI

#define TOTALSP 10 //The number of treelist species codes there
are
#define NO_TALL_TREES 5 //The number of tallest trees to use as a group to

average out and get the stand.height

//Codes for species within Treelist
#define BLACKOAK 0
#define DOUGFIR

#define ICEDAR

#define KPINE

#define MADRONE

#define PPINE

#define RFIR

#define SPINE

#define TANOCAK

#define WFIR

W OW I W

//"Status* codes within Treelist

#define SNAG 0

#define LIVE 1

#define DWD 2

//Premc codes for VegClassification VC is "Veg Class"
#define VC_CH
#define VC_DH
#define VC_EH
#define VC_KP
#define VC_MC
#define VC_OPEN
#define VC_PINE
#define VC_RF
#define VC_WF
#define VC_MC3

WD o U N

o

//***#** Variables for EvaluateThisPeriod....put them in chronoclogical order

#define PER1 1 //actual year is {(S5yr * X }i.e. 5 for
this one

#define PER2 4

137

#define PER3 &

#define PER4 8

#if(PER4 > NP}

#error ERROR: Can’t have a higher evaluation period than the Number of Periods (NP} in the simulation
#endif

#1ifdef WHOLE_RUN

#define ENVT "whole*

#define ROWS 2497

#define COLUMNS 3071

#define XLL 445525

#define YLL 4638800

#define UNIQUE 31391399

#define F_XLL 445525.000000

#define F_YLL 45638800.000000

#define MOC (5280 * FT2M / CELLSIZE) //The number of cells it takes
to make a linear mile { Mile Of Cells = MOC }
#endif

#ifdef LITTLE RUN

#define ENVT *little*

#define ROWS 945

#define COLUMNS 376

#define XLL 496385

#define YLL 4653248

#define UNIQUE 467878

#define F_XLL 495385.906250

#define F_YLL 4653248.000000

#define MOC 30 //see #define MOC in #ifdef
WHOLE_RUN- lowering because this test area is too small
#endif

#ifdef COMPARE_RUN

#define ENVT "compare"

#define ROWS 264

#define COLUMNS 363

#define XLL 479753

#define YLL 4646797

#define UNIQUE 95832

#define F_XLL 479753.851912

#define F_YLL 4646797.395176

#define MOC 5 //see #define MOC in #ifdef
WHOLE_RUN- lowering because this test area is too small
#endif

#ifdef TINY_RUN

#define ENVT “tiny"

#define ROWS 12

#define COLUMNS 12

#define XLL 488517

#define YLL 4653108

fdefine UNIQUE 144

#define F_XLL 488517.851912

#define F_YLL 4653108.395176

#define MOC 1 //see #define MOC in #ifdef
WHOLE_RUN- lowering because this test area is toc small
fendif

MISC.CPP

/* This Misc.cpp code will hold Miscellaneous functions used by various other
pieces of the SafeD program. They are here because at the time of
construction I did not think they fit anywhere more specific

*/

#include <stdic.h>
#include <stdlib._h>
#include <string.h>
#include <direct.h>
#include <time.h>
#include "globals.h"
#include "data.h"

//functions used in Misc.cpp

void MakeDirectories(void);

void Bailout(int ErrorNumber);

void EnvScope(int Eval [NB]);

int CountSubWatersheds(int UM[]);

void StartPeriodInfolint p);

void EndPeriodInfo(int p);

void DeleteOldstuff (void);

void DeleteInitialStuff (veid);

int WeatherStatus(int Weather [NP]);

int EvaluatePeriods{int Eval[NP]};

void CleanAndSave{int Per, int Program, int Status);
int FillSubEraValues{int SubEral]}:

void DeleteModified(void);

void DeleteToModify(void);

void CopyExecutables(void);

void PrintToStat({int Line, ulong Value);

void StartTreeDamageFile(void);

//Global to uge for printing out total # of subwatershed
extern int USW;

//defined in FlammapStuff.cpp - used here again to make sure that file is deleted
extern void DeleteFar({int p);

J A R e R e

void PrintToStat(int Line, ulong Value!

J A R R AL L

(
I+

This function will print various STATistic information to a file called ...\presimdatalgoal3\Stats.txt

The file will be created on first call, otherwise appended to. See switch statement below for
what gets printed out.

*/

FILE *OUT;

char Temp(300];

[/ mmmmmm i mmmm—mm End of variable defining -—--=-=--=====momm oo

//Always create the correct file name
sprintf(Temp, "%s%s%d\\stats.txt®, PREFIX, PostSimOutputDir,GOAL_TO_USE);

//Open the file in the correct mode
if(Line == 1)
OUT = fopen(Temp, *w");

else
OUT = fopen(Temp, "a+");
switch{Line)
(
case 1:
fprintf (OUT, "TOTAL CELLS: %1lu \ENt%.21f acres\n“, Value, (double)Value * ACREEQ};
break;
case 2:
fprintf (OUT, "FORESTED CELLS: %1lu VEVE%.21f acres\n",Value, {double)Value * ACREEQ);
break;
case 3:
fprintf (OUT, *"CELLS IN SOLUTION: %1u Vtyt%.21f acres\n",Value, (double)Value * ACREEQ);
break;
case 4:
fprintf (OUT, "TOTAL SUBWATERSHED: Entvt®dAnt , USW) ;
fprintf (OUT, "SUBWATERSHEDS IN SOLUTION: \thtst®lusn', Value) ;
break;
case 5:
fprintf (OUT, "ACRES HIT BY FIRE: \t\t\t%.21fyn", (double)Value * ACREEQ);
break;
case 6:
fprintf (OUT, "ACRES HIT BY INSECTS: \EVENES.21E\n", (double)Value * ACREEQ);
break;
default:
fprintf (OUT, “No ideal what I‘m printing - sending bad Line value to PrintToStat!!!in"});
}

fclose(OUT);

}//end PrintToStat

R A A A

void StartTreeDamageFile(void)

R R R e e e AL A SRR

(
I+

This function will create a new file for every simulation. which can get opened in Append+ mode during
each simulation and will contain data relating to how many/much trees are affected by either fire or

insects during given periods.

*/

FILE *QUT;

char Temp({300];

e e End of variable defining ———==--- s e
//always create the correct file name

sprintf (Temp, “%s%s\\goal%d\‘TreeDamage.txt", PREFIX,SeneralDataDir,G0OAL_TO_USE);

//Then just open and close the file to create it for later use - this will delete any old copies
OUT = fopen{Temp, "w*);
fclose (OUT) ;

}//end StartTreeDamageFile

P A

void Bailout(int ErrorNumber)
O e T T T T AR e S S S T
{
//This function will create a text file with a error message hefore exiting
//the program because of some error condition

char BrrorMessage([250];

138

139

FILE *WriteOut;
char filename[100];

sprintf (filename, "%s%s\\Error.txt",K PREFIX,ErrorDir};
//Open up the Error.txt file
WriteOut = fopen(filename, "w"); //no errcr checking

//Get the appropriate ErrorMessage to write out

switch{ErrorNumber}
{
case 0: sprintf (ErrcrMessage, “%s", "Something wrong in preparing FLAMMAP files");
printf {"Something wrong in preparing FLAMMAP files\n");
break;
case 1: sprintf (ErrorMessage, "%s", "Something wrong in preparing FARSITE files");
printf{"Something wrong in preparing FARSITE files\n");
break;
case 2: sprintf (ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in

CELLID.asc");
printf(*Something wrong with the number of Rows and Columns in CELLID.asc\n"};

break;
case 3: sprintf (ErrorMessage, "%s", "Something wrong with the X and Y origins in CELLID.asc\n");
printf("Something wrong with the X and Y origins in CELLID.asc\n");
break;
case 4: sprintf (ErrorMessage, “%s", "Something wrong with the number of Rows and Columns in

TREELIST.asc") ;
printf(*Something wrong with the number of Rows and Columns in TREELIST.asc\n");

break;
case 5: sprintf(ErrorMessage, “%s", "Something wrong with the X and Y origins in TREELIST,asc\n"};
printf("Something wrong with the X and Y origins in TREELIST.asc\n");
break;
case 6: sprintf(ErrorMessage, "%s", “Something wrong with the number of Rows and Columns in
COWNER . asc"};
printf("Something wrong with the number of Rows and Columns in OWNER.asc\n");
break;
case 7: sprintf(ErrorMessage, "%s", "Something wrcng with the X and Y origins in OWNER.asc\n');
printf("Something wrong with the X and Y crigins in OWNER.asc\n"};
break;
case 8: sprintf (ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in

ASPECT.asc");
printf("Something wrong with the number of Rows and Columns in ASPECT.asc\n");

break;
case 9: sprintf (ErrorMessage, "%s", "Something wrong with the X and Y origins in ASPECT.asc\n"');
printf("Something wrong with the X and Y origins in ASPECT25.asc\n");
break;
case 10: sprintf(ErrorMessage, "%s", “Scmething wrong with the number of Rows and Columns in SLOPE.asc");
printf ("Something wrcng with the number cf Rcws and Columns in SLOPE.asc\n');
break;
case 11: sprintf(ErrorMessage, "%¥s"', "Something wrong with the X and ¥ origins in SLOPE.asc\n"};
printf ("Something wrcng with the X and Y origins in SLOPE25.asc\n"};
break;
case 12: sprintf (ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in ELEV.asc");
printf (“Something wrong with the number of Rows and Cclumns in ELEV.asc\n");
break;
case 13: sprintf(ErrorMessage, "%s", "Something wrong with the X and Y origins in ELEV.asc\n");
printf("Something wrong with the X and Y origins in ELEV.asc\n");
break;
case 14: sprintf(ErrorMessage, "%s"', "Something wrong with the number of Rows and Columns in MINOR.asc");
printf ("Something wrong with the number of Rows and Columns in MINOR.asc\n"};
break;
case 15: sprintf(ErrorMessage, “%s", "Something wrong with the X and Y origins in MINCR.asc\n");
printf{"Something wrong with the X and Y origins in MINOR.asc\n"};
break;
case 16: sprintf(ErrorMessage, "%s", "Scmething wrong with the number of Rows and Columns in ALLOC.asc");
printf("Something wrong with the number of Rows and Columns in ALLOC.asc\n");
break;
case 17: sprintf(ErrorMessage, "%s", "Something wrong with the X and Y origins in ALLOC.asc\n");
printf("Something wrong with the X and Y origins in ALLOC.asc\n"};
break;
case 18: sprintf(ErrorMessage, "%s", “Something wrong with the number of Rows and Columns in

STRBUF .asc");
printf("Something wrong with the number of Rows and Columns in STRBUF.asc\n");

break;
case 19: sprintf(ErrorMessage, "%s", "Something wrong with the X and Y origins in STRBUF.asc\n");
printf("Something wrong with the X and Y origins in STRBUF.asc\n"};
break;
case 20: sprintf(ErrorMessage, "%s", "There appears to be no treelist available for an IndexNo - see
screen"});
break;
case 21: sprintf{ErrorMessage, "%s", "NOT READY FOR THAT TYPE OF DISTURBANCE in FillPremoData{)\n");
printf {"NOT READY FOR THAT TYPE OF DISTURBANCE in FillPremoData()\n");
break;
case 22: sprintf(ErrorMessage, "%s", "While updating Data.* arrays after disturbance (FillPremcoData), New

Treelist # and 0ld Treelist # don’t match - and they should!");
printf({"while updating Data.* arrays after disturbance, New Treelist # and 0ld Treelist # don’t
match -~ and they should!"};

break;
case 23: sprintf(ErrorMessage, "%s", "Periods not matching while inputing V_*_*.txt (or SD*} file\n");

140

printf("Periods not matching while inputing V_*_*.txt (or SD*) file\n");
break;
case 24: sprintf(ErrorMessage, "%s’, "Could not create and fill the AllCFHarvest array in
Optimize.cpp\n"};
printf("Could not create and fill the AllCFHarvest array in Optimize.cpp\n");
break;
case 25: sprintf(ErrorMessage, "%s", 'Something wrong in generating an initial random solution for this
goali\n");
printf("Something wrong in generating an initial random solution for this gealin");

break;
case 26: sprintf{ErrorMessage, "%s", “Could not find an answer using TabuSearch for Goal
#%¥d", GOAL_TO_USE}) ;
printf{“Could not find an answer using TabuSearch for Goal #%d",GCAL_TO_USE};

break;
case 27: sprintf[ErrorMessage, "%s", "Could not input the solution for this goal - see screen');
break;
case 28: sprintf (ErrorMessage, “%s", "!!!!! WARNING !!!!! Not set up to handle more than %d HoldFor
values yet\n",HOLDNO) ;
printf(*!!1!!! WARNING !!!!! Not set up to handle more than %d HoldFor values vet\n”, HOLDNO) ;
break;
case 29: sprintf{ErrorMessage, "%s", "Something wrong in decreasing TabuShort");
printf("Something wrong in decreasing TabuShort”);
break;
case 30: sprintf(ErrorMessage, "%s", “Something wrong trying to print the Periodic values from VTO");
printf({"Something wrong trying to print the Periodic Values from VTO");
break;
case 31: sprintf{ErrorMessage, "%s", "Mismatch of data while trying to Input a Solution"};
printf("Mismatch of data while trying to Input a Solution");
break;
case 32: sprintf(ErrorMessage, "%s', *While updating Data.Treelist (UpdateDatal() in
FireEffects.cpp)...0ld and New Treelist #'s do not match...and they should!"};

printf(*while updating Data.Treelist in FireEffects...0ld and New Treelist #'s do not
match...and they should!“};

break;
case 33: sprintf(ErrorMessage, “%s", "In FCFEM(}...received a model species code > 9, which is invalid");
printf{"In FOFEM{}.. .received a model species code » 2, which is invalid");
break;
case 34: sprintf(ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in VEG.asc");
printf(*Something wrong with the number of Rows and Columns in VEG.asc\n"};
break;
case 35: sprintf{ErrorMessage, "%s", "Something wrong with the X and Y origins in VEG.asc\n");
printf (*Something wrong with the X and Y origins in VEG.asc\n");
break;
case 36: sprintf{ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in STAGE.asc"};
printf{"Something wrong with the number of Rows and Columns in STAGE.asc\n");
break;
case 37: sprintf(ErrorMessage, "%s", "Something wrong with the X and Y origins in STAGE.asc\n");
printf({"Something wrong with the X and Y origins in STAGE.asc\n");
break;
case 38: sprintf{ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in

CLOSURE.asc");
printf("Something wrong with the number of Rows and Columns in CLOSURE.asc\n"};

break;

case 39: sprintf{ErrorMessage, "%s', "Something wrong with the X and Y origins in CLOSURE.asc\n"};

printf("Something wrong with the X and Y origins in CLOSURE.asc\n');

break;
case 40: sprintf(ErrorMessage, "%s", "Looping is not set up in InitialStandOpt{) to handle more than 2
HoldFors");

printf("Looping is not set up in InitialStandCpt() to handle more than 2 HoldFors");

break;
case 41: sprintf(ErrorMessage, "%s", “HAVING TROUBLES FINIDING A TREELIST-GOAL-HOLD combo in the

ValueToOptimize array");
printf ("HAVING TROUBLES FINIDING A TREELIST-GOAL-HOLD combo in the ValueToOptimize array\n");
break;
case 42: sprintf(ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in FLAMMAP.fml
or FLAME.ASC");
printf ("Something wrong with the number of Rows and Columns in FLAMMAP.fml or FLAME.ASC\n");
break;
case 43: sprintf(ErrorMessage, "%s", "Something wrong with the X and ¥ origins in FLAMMAP.fml or
FLAME.ASC\n");
printf (“Something wrong with the X and Y origins in FLAMMAP.fml or FLAME.ASC\n");
break;
case 44: sprintf(ErrorMessage, "%s", "Could not find an answer using GreatDeluge or Annealing for Goal
#%d",GOAL_TO_USE) ;
printf("Could not find an answer using GreatDeluge or Annealingfor Goal #%d",GOAL_TO USE);

break;
case 45: sprintf(ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in GOAL.asc");
printf ("Something wrong with the number of Rows and Columns in GOAL.asc\n");
break;
case 46: sprintf(ErrorMessage, "$s", "Something wrong with the X and Y origins in GOAL.asc\n");
printf {"Something wrong with the X and Y origins in GOAL.asc\n");
break;
case 47: sprintf(ErrorMessage, "%s”, "Something wrong with the number of Rows and Columns in HOLD.asc");
printf("Something wrong with the number of Rows and Columns in HOLD.asc\n"):
break;
case 48: sprintf(ErrorMessage, "%s", "Something wrong with the X and Y origins in HOLD.asc\n');

printf{"Something wrong with the X and Y origins in HOLD.asc\n");
break;

case 49:
file\n*};

case 50:
input data\n"};
break;

case 51:
wrong\n') ;

case 52:

case 53:

case 54:

case 55:
FIREHIST.asc");

case 56:

case 57:
FLAMMAP\n") ;

case 58:

case 59:
categories\n*};

case 60:
barren, etec.\n");
break;

case 61:
Optimize.cpp\n");

case 62:

141

sprintf{ErrorMessage, "%s", "Have a BASAL, CLOSURE, or CED input value over 655 in a SD_*_*_.txt
printf{"Have a BASAL, CLOSURE,
break;

sprintf (ErrorMessage,

or CBD input value over €55 in a SD_*_*_. txt file\n");

"%s", "Something wrong while trying to create new Flammap and Farsite

printf("Something wrong while making new Flammap and Farsite input data for next period\n”);

sprintf(BErrorMessage, "%s", "In Goal*.cpp, EligibleCell and AllocOK do NOT match - something
printf("In Goal*.cpp,

break;
sprintf(BrrorMessage, “"%s", "Something wrong while trying to output Analysis data\n");
printf ("Something wrong while trying to output Analysis data\n'};

break;

sprintf{ErrorMessage, “%s", "Can’'t harvest where there is a treelist of NONFOREST!!!\n");
printf("Can’t harvest where there is a treelist of NONFOREST!!!\n");

break;

EligibleCell and AllocOK do NOT match - something wrong\n®");

sprintf(ErrorMessage, "%s", "Data.Vegcode has a code for water and the fuel model is NOT 98\n");

printf{“Data.Vegcode has a coda for water and the fuel model is NOT 98 -- IgnitionPoints(}\n");
break;

sprintf (ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in

printf ("Something wrong with the number of Rows and Columns in FIREHIST.asc\n");
break;
sprintf (ErrorMessage, "%s", "Something wrong with the X and Y origins in
printf{"Something wrong with the X and Y origins in FIREHIST.asc\n");
break;
"E5",

FIREHIST.asc\n"};

sprintf (ErrorMessage, "Something wrong trying to Run and Fill data with predicted
printf("Something wrong trying to Run and Fill data with predicted FLAMMAP\n");

break;
sprintf(BErrorMessage, "%s", "Something wrong trying to output the PredictedFlammapFT values\n"});
printf(’"Something wrong trying to output the PredictedFlammapFT values\n");

break;

sprintf (ErrorMessage, "%s", "Appears to be a mismatch between Veg and Stage in lst four
printf("Appears to be a mismatch between Veg and Stage in lst four categories\n");

break;
sprintf(ErrorMessage,

"$s", "In InputPremoData there is a treelist of 209 and IS NOT water,

printf{"In InputPremoData there is a treelist of 202 and IS NOT water, barren, etc.\n");

sprintf(ErrorMessage, "%s", "Could not create and fill the AllBigTrees array in

printf{"Could not create and fill the AllBigTrees array in Optimize.cpp\n");
break;
sprintf{ErrorMessage,

"%s", "The Landscape Goal value in globals.h is not

valid{FillValueToOptimize())!\n");

case 63:

printf{"The Landscape Goal value in globals.h is not valid! (FillvalueToOptimize(}}\n"};
break;

sprintf{ErrorMessage, "%s", "In OutputForestDistribution{) a cell has NONFOREST treelist but not

NONFOREST vegcode\n");

vegcodein"};
case 64:
PREMO values\n");
break;

case 65:
PREMO values\n");

case 66:

case 67:

case 68:

printf("In OutputForestDistribution() a cell has NONFOREST treelist but not NONFOREST
break;
sprintf (ErrorMessage, "%s",

"In OutputForestDistribution() problems figuring a VegCode from

printf(°In OutputForestDistribution() problems figuring a VegTode from FREMO values\n");

sprintf(ErrorMessage, "%s", "In OutputForestDistribution() problems figuring a StageCode from
printf("In CutputForestDistribution()
break:
sprintf (ErrorMessage, “%s", "Problem opening the current binary file\n");
printf({"Problem opening the current binary file\n");
break;

sprintf (ErrorMessage, "%s", "Problems generating in the MakeLink(} function - undeterminedin"}
printf("Problems generating in the MakeLink() function - undeterminedi\n"};

break;
"Not set up to handle more than X number of input landscape files -

problems figuring a StageZode from PREMO values\n');

sprintf (ErrorMessage, "%s",

see #define FILES\n"};

FILES\n"};
case 69:
file\n*j;
case 70:
case 71:
case 72:

printf('Not set up to handle more than X number of input landscape files - sce #define
break;
sprintf(ErrorMessage, "%s", "ROWS and COLUMNS wrong in binary file - undetermined which
printf ("ROWS and COLUMNS wrong in binary file - undetermined which file\n*);

break;
sprintf (ErrorMessage, “%s", "XLL and YLL wrong in binary file - undetermined which £ile\n"};
printf ("XLL and YLL wrong in binary file - undetermined which file\n");

break;
sprintf (ErrorMessage, "%s", "BYTEORDER wrong in binary file - undetermined which file\n®);
printf ("BYTEORDER wrong in binary file - undetermined which file\n");

break;

sprintf (ErrorMessage,

"%$s”, "There are more than 4 periods marked as TRUE in

EvaluateThisPeriod[l\n");

case 73:

case 74:
should not!\n*);

printf{"There are more than 4 periocds marked as TRUE in EvaluateThisPeriocd[]l\n"};
break;

sprintf{ErrorMessage, "%s", "Problems in FillAvgInitialGoalé()\n");
printf(“Problems in FillAvgInitialGoalé(}\n");

break;
sprintf (ErrorMessage, '%s', "In GetSumBigTrees(} - encountered a duplicate Treelist value -
printf("In GetSumBigTrees!}

break;

- encountered a duplicate Treelist wvalue - should not!\n");

142

case 75: sprintf(ErrorMessage, "%s", "Couldn't find a \"Key\" during bsearch() in FillPremoData() or
FillvalueToOptimize() or InputNewPremoStandData{)\n"};
printf(“"Couldn’'t find a \"Key\" during bsearch() in FillPremoData{} or FillValueToOptimize() or
InputNewPremoStandData{)\n"}; break;

case 76: sprintf{ErrorMessage, "%s", "Something went wrong in the ApplyInsectDisturbance routine\n");
printf({*Something went wrong in the ApplvInsectDisturbance routine\n*};
break;
case 77: sprintf(ErrorMessage, "%s", "WARNING....Count and Record do not match when determining Total,
insect, or fire occurances\n"];
printf (*WARNING. ...Count and Record do not match when determining Total, insect, or fire
occurancesi\n"}; break;
case 78: sprintf{ErrorMessage, "%s", "In FillvalueToOptimize there is a mismatch of RecordNo and POT *
NP UIAn"Y;
printf(*In FillValueToOptimize there is a mismatch of RecordNo and POT * NP !!!!\n");
break;
case 79: sprintf(ErrorMessage, "%s", "In FillValueToOptimize there 1s a mismatch of ITL and count
titi\ny;
printf("In FillvalueToOptimize there is a mismatch of ITL and count !!!'i\n"};
break;
case B0: sprintf(ErrorMessage, "%s", "Couldn’'t find a \"Key\" during bsearch{) GetBaselineVTO(},

AdjustValuesSwap* (),

InitialSolutionGoall(),GetSumBigTrees,Fill SEra PValues () ,CutputBigTrees{},CalculateSumPeriodEra()\n"):
printf{“Couldn’'t find a \"Key\" during bsearch{) GetBaselinevTO() or AdjustvValuesSwap* ().

InitialSolutionGoall(),GetSumBigTrees, Fill_SEra PValues(), OutputBigTrees{),CalculateSumPeriodEra()\n"};

break;
case 8l: sprintf{ErrorMessage, "%s", "There are mcre subwatersheds than the global variable
MAX _SUBWATERSHEDS\n"};
printf{“There are more subwatersheds than the global wvariable MAX SUBWATERSHEDS\n");
break;
case 82: sprintf{ErrorMessage, "%$s", “"Problems determining the eligible cells in

DetermineEligibleCells{}\n"};
printf{"Problems determining the eligible cells in DetermineEligibleCells{)\n"};
break;
case 83: sprintf{ErrorMessage, "%s", "Problems filling the solution during FillSclution()-maybe a goal
not defined!\n"};
printf("Problems filling the solution during FillSeolution!{)-maybe a goal not defined!\n");
break;
case 84: sprintf(BrrorMessage, "%s", "Showing there are 0 sub-watersheds after
CountSolutionWatersheds (}\n"};
printf{"Showing there are 0 sub-watersheds after CountSolutionWatersheds()\n"}; break;
case 85: sprintf({ErrorMessage, "%s", "Mismatch with the #o0of total or cells or #of Sub-watersheds in
Fill_SEra{(} or Fill_PerValues{)\n");
printf(*Mismatch with the #of total or cells or %of Sub-watersheds in Fill_SEra() or
Fill_PerValues()\n"}; break;

case 86: sprintf(ErrorMessage, "%s", "In CalculateSumPeriodEra{) there was a problem\n");
printf{*In CalculateSumPeriodEra() there was a problem\n"); break;
case 87: sprintf(ErrorMessage, "%s", "X random initial solutions failed - try changing the SubEral]

valuesi\n");
printf("%d random initial solutions failed - try changing the SubEral[] wvalues\n",INITIAL_TRYS);

break;

case 88: sprintf({BrrorMessage, "%s", "Couldn’'t find a \"Key\" during bsearch() in CompareEraMinor () \n");
printf{"Couldn’'t find a *Key\" during bsearch{) in CompareEraMinor{) \n"}: break;

case B3: sprintf(ErrorMessage, "%s", "No eligible cells found for this goal - something wrong\n");
printf(“\alalalalala\aNo eligible cells- something wrong!!!\n"); break;

case 90: sprintf(ErrorMessage, “"%s5", "The number of unigue combinations of variables for

Apply[Insect] [Fire] [Total])Disturbance do not match!\n");
printf(“\a\aThe number of unigue combinations of variables for
Apply[Insect] [Fire] [Total]Disturbance do not match!\n"); break;
case 91: sprintf(ErrorMessage, "%s", “Cellids and or Treelist wvalues not matching in UpdateDataTreelist ()
or UpdateDataWithNewStandData{)\n"};
printf{*\al\aCellids and or Treelist values not matching in UpdateDataTreelist{) cr
UpdateDataWithNewStandData{)\n"}; break;
case 92: sprintf{ErrorMessage, "%s", "Showing DougFir as TRUE with Pag series that should be
FALSE(ApplyInsectSeverity}i\n"};
printf({"\a\aShowing DougFir as TRUE with Pag series that should be
FALSE{ApplyInsectSeverity)\n"); break;
case 93: sprintf(ErrorMessage, "%s", "Received an invalid Pag value in one of the Insect Mortality
functions\n");
printf{*\a\aReceived an invalid Pag value in one of the Insect Mortality functions\n");
break;
case 94: sprintf(ErrorMessage, "%s", "FillSubEraValues failed - probably have more than periods defined
than it knows how to fill\n"*);
printf("\a\aFillSubEraValues failed - prchably have more than periods defined than it knows how
to £ill\n*}; break;
case 95: sprintf(ErrcrMessage, "%s", "Couldn't find a \"Key\" during bsearch{} in
UpdateDataWithNewStandData()\n");
printf("Couldn't find a \"Key\" during bsearch() in UpdateDataWithNewStandData()\n"};
break;
case 96: sprintf (ErrorMessage, “"%s", "Records and RecordsNeeded not matching while creating new Premo
Stand Data Inv structures\n");
printf ("Records and RecordsNeeded not matching while creating new Premo Stand Data Inv
structures\n*); break;
case 97: sprintf (ErrorMessage, “%s", "Mismatch of numbers when counting and filling data for AllInfo({] or
UniqueList[]\n*);
printf ("Mismatch of numbers when counting and filling data for AllInfc{) or UniqueList[}\n"};
break;
case 98: sprintf(ErrorMessage, "%s", "Couldn't find an initial treelist in the Treelndex.txt file during
Initial FuelEra stuffin");
printf(*Couldn't find an initial treelist in the Treelndex.txt file during Initial FuelEra
stuffin”); break;
case 99: sprintf(ErrorMessage, “%s", "Record count not matching when trying to £ill up TREELIST_RECORDS
stuff\n");
printf("Record count not matching when trving to £i11 up TREELIST_RECORDS stuffin");
break;
case 100:; sprintf(ErrorMessage, "%s", "Got an unrecognizable VegClass during InitalizeFuelLoadings{)\n*j};

143

printf (“Got an unrecognizable VegClass during InitalizeFuelLoadingsi)\n"); break;
case 10l: sprintf(ErrorMessage, "%s", "Couldn’'t find a \"Key\" during bsearch() in
LoadInitialFuelModels()\n"};
printf("Couldn’t find a \"Key\" during bsearch() in LoadInitialFuelModels{)\n"};
break;
case 102: sprintf(ErrorMessage, "%s", "Found a mismatch of NONFOREST fuel models during a Perioed run of
FuelDecayAndContribution(})\n");
printf ("Found a mismatch of NONFOREST fuel models during a Period run of
FuelDecayandContribution{)\n"); brzak;
case 103: sprintf(ErrorMessage, "%s", "In CalculateSumPeriodEra{) a Cellid is showing up whose parent
Subwateshed was not in S_Erall\n");
printf("In CalculateSumPeriodEra() a Cellid is showing up whose parent Subwateshed was not in
S_Era(]l\n"); break;
case 104: sprintf({ErrorMessage, "%s", "The CS.MaxGocal and CS.Goal values do not match for a SG_FIRE cell
- and they should\n");
printf("The CS.MaxGoal and CS.Goal wvalues do not match for a SG_FIRE cell - and they
shouldin"); break;
case 105: sprintf(ErrorMessage, "%s', "The current stand goal assignment got reselected during a
neigborhood search - should not'\n");
printf(“The current stand goal assignment got reselected during a neigborhood search - should
not!\n"}); break;
case 106: sgprintf(ErrorMessage, "%s", "The current MoveCbj value is not matching what was calculated
earlier in TestObj{], they should!\n");
printf("The current MoveObj value is not matching what was calculated earlier in TestObji],
they should!\n"); break;

default: sprintf(ErrorMessage, "%s", "Not sure what the heck the problem is!");
break;
}

//write out the ErrorMessage
fprintf (WriteQut, *%s*,ErrorMessage) ;

//close the file
fclose (WriteOut);

//Now exit the program
exit (0} ;
}//end of Bailout
R e AR AR LR R R AR e o

void EnvScope(int Eval [NP])

P AR A A R A R R e R

{
/*This functien is to make a text file called ...\model\outputs\final_maps\envt.txt that will
contain five lines ~ see below.
*
/

FILE *OpenWrite;
int r, count, a;
char Temp[150];
int SubEra[NF};
char output[101;
F R e LT end of variable defining ------------———————— -~

SRR R R AR AR KRR AR A KRR KRR RN AR NN DADDLEGATE * %k A kb kA A Ao kA ARk bR AR R R R AR R KRR AR R R R AR R AR AR R R AR R AR KRR R A AR
#ifdef APPLEGATE_PROJECT
#1f !defined{WHOLE_RUN) && !defined(COMPARE_RUN) && !defined({TINY_RUN) && !defined{LITTLE_RUN)
printf ("Environment scope not properly defined in Applegate Globals.h...bailing\n");
exit(0);
#endif
#ifdef WHOLE_RUN
sprintf (output, "%s",ENVT);
printf{*\n\g\g\er******++ USING THE ENTIRE APPLEGATE ENVIRONMENT *#*#**#*#¥***¥*\n\n\n");
#endif

#ifdef LITTLE_RUN

sprintf (output, "%s",6 ENVT);

printf ("\n\t\t\g********* UGING THE LITTLE APPLEGATE ENVIRONMENT *****#*s**\n\n\n"};
#endif

#ifdef COMPARE_RUN

sprintf (output, *%sg", ENVT};

printf{"\n\t\E\gr*******x USTNG THE COMPARE ENVIRONMENT *****#*+**\n\n\n");
#endif

#ifdef TINY_RUN

sprintf{output, "%s",ENVT);

printf{"\n\t\t\E*****+***x USTNG THE TINY ENVIRONMENT ***#*#**+**\n\n\n");
#endif
#endif //#ifdef APPLEGATE

//QQQQQQQQQQ"QQQQQQQQQQQQ"QQQ'Q FRAMEWORK R R R e R R e R T RS SR S RRAR S E RS SRs sl)
#ifdef FRAMEWORK_PROJECT
#if !'defined(ELTA)
printf("Environment scope not properly defined in Framework_Globals.h...bailing\n"};
exit{0);
#endif

#ifdef ELTA

sprintf(output, "%$s",ENVT);

printf("\n\tE\E\E******++*+ JSING THE ELDCRADC-TAHCE N.F. ENVIRCNMENT ******#*+**\n\n\n");

fendif
#endif //#ifdef FRAMEWORK_PROJECT

/1
14
1= ===

//Create and open the file

sprintf (Temp, "%s%s\\Envt. txt", PREFIX, MapDir);

OpenWrite = fopen(Temp, “w*);
77
fprintf (OpenWrite, "$s\n", output) ;
the amls to use

Frk Ak Ak Ak r LTNE] * et bk ek ke kb ko wh

7/
/ /NEW:

KRR HH NN NN NN NN JTNE D KRR A AR AR A Rk ok

5 Nov:

//open in write mode

//put in the

Add in a second line that is used as a toggle for the AML in determining if it should

//create new ASCII files or new BINARY files for the initial landscape data

1f(FILE_TYPE == 1)

fprintf (OpenWrite, "1\n"
else

fprintf (OpenWrite, "2\n"

J7 *¥rwaranwwwn TTNE 3 KRR AR AN AN

//Third line will now have the GOAL_TO_USE in this file instead of the old way of putting in a separte goal.txt

file
fprintf (OpenWrite, “"%d\n",GOAL_TO_USE);

7/

Arkrhhhk ki er LINE 4 **Aevhr e hhhnsdcs

//Now add in a line that has four values - each representing a period that we want to evaluate/map etc..

);

)i

//values are from the Eval[] array passed in to this function

count=0;
for(r=0;r<NP;r++)
(
1f(Eval[r] == TRUE)
{
counkt++;
if(count > 4)
Bailout(72);
else
fprintf (OpenWrite, "3%d
}
}

fprintf (OpenWrite,
ArcInfo needs it

“\n");

[wwAAEA A aAwwn [TNE 5 AR AR AR A A A kA Ak
// The fifth line will have all the period
//Set and errcr checker because this isn’t
if (NP > 8)

printf("Will also need to change

//first initialize the SubEra array
for{a=0;a<NP;a++)
SubEralal = 0;

//using the

SubEra[0] = PER1_ERA;
SubEra[l] = PER2_ERA;
SubEra[2] = PER3_ERA;
SubEra[3] = PER4_ERA;
SubEra[4] = PER5_ERA;
SubEra[5] = PER6_ERA;
SubEra[6] = PER7_ERA;
SubEra[7] = PER8_ERA;

for (r=0;r<NP;r++)

fprintf (OpenWrite, "$d4 *,
fprintf (OpenWrite, *\n*);
ArcInfo needs it

SubEralr]);

//Close the file
fclose (OpenWrite) ;

}//end EnvScope

vorel);

//create ASCII files

//create BINARY files

//New line because

ER2 thresholds on the same line separated by at least a space
set up for more than 8 periods right now

stuff in the EnvScopel()

function to handle more than 8 periocds\n"*};

globals.h #define PER1,2,3,4_ERA put the threshold in the SubEral] array

//New line because

PR R R S S R R S T PP T

int WeatherStatus (int Weather [NP])}

P R e R R T T

(
//Fills up the Weather[] array with codes t
7/ 1 = Wet, 2 = Moderate, 3 =

// Will always cuput these codes to

o use for Weather Type:
Mild Drought, 4 =

// weather pattern if I am Re-Running a simulation

Severe Drought
..\per0\weather.txt file so I can reenter the same

//NOTE: added do loop to make sure there was at least one drought period during a simulation

int a;
char WeatherFile[150];
sprintf {WeatherFile,

“%s%s%d\\per0\\weather .txt", PREFIX, INPUTS, GOAL_TO_USE) ;

"environment code*

These

144

for

145

//First, initialize the array - regardless if RERUN_SIM
for(a=0;a<NP;a++)
Weather([a] = 0;

#ifndef RERUN_SIM

int ¥nd, Current, Continue, PreviousWeather, HadSevere = FALSE, AtLeastOneDrcught;
FILE *WriteOut;

//Now £ill up the array. If there are Two drought periods in a row, then it is a SEVERE drought on the
//second occurance, and that can happen only ONCE during the entire simulation

do

(
//Reset this for each do loop try
PreviousWeather = FALSE;
AtLeastOneDrought = FALSE;

for (a=0;a<NP;a++)

(
do
(
rnd = { rand(} % 100 + 1) ;
//printf ("RND in WeatherStatus is: %d\n",rnd);
if {(rnd <= 25) // a 25% chance
that it IS a drought periocd
Current = 3;
else if{rnd > 25 && rnd <= 90)
Current = 2; //65%
chance of a moderate period
else
Current = 1; /710%
chance of a wet period
//If this is a drought, then see if previous period was also a drought
if{ Current == 3}
{
//5et the toggle to exit the big do loop - drought must be in lst
4 periods
if(a< 4}
AtLeastOneDrought = TRUE;
if(Previousieather == 3) //¥es, 2 droughts in a
row == SEVERE drought, but can only occur once!
(
if (HadSevere == FALSE) //this is first
SEVERE - ok, accept
{
Weatherlal = 4: / /New

code to indicate a severe drought
Continue = TRUE;
PrevisusWeather = Current;
HadSevere = TRUE;

else
//otherwise, pick another weather for this period
Continue = FALSE;
}
else
//previous period was not a drought, so this is ok, accept
{
Weather{a] = Current;
Continue = TRUE;
PreviousWeather = Current;

}
else
//Is a Moderate or Wet year, accept and get next period

{

Weather{a] = Current;
PreviousWeather = Current;
Continue = TRUE;
}
}while (Continue == FALSE};

}//end for(a=0;a<NP;a++)
Jwhile(AtLeastOneDrought == FALSE);

//Now write the current schedule out to a text file to use if the next simulation run is a RERUN_SIM
WriteOut = fopen(WeatherFile, "w"); //no error checking

for (a=0;a<NP;a++}
fprintf (WriteQut, ~*%d\n", Weather (al};

fclose (WriteQut);
#endif

146

#ifdef RERUN_SIM
FILE *Readln;

//open the weather file, read in the weather and store them in Weather[]
ReadIn = fopen{WeatherFile, "r"); //no error checking

for(a=0;a<NP; a++)
fscanf (ReadIn, "%d", &Weather([al):

fclose (ReadIn});
#endif

return TRUE;

}//end WeatherStatus(}

L R D T E L L r T T T L L L
int EvaluatePeriocds(int Eval[NP])

T R R e L R T Ty
{

//This function will lcook at the four #define PER1,2,3,4 variables and set an appropriate
//flag of value ‘1’ in the Eval[] array - which is used throughcut program to determine
//whether or not to do things. Mostly used for the periods will be mapped.

int a;

//first initialize the incoming array
for (a=0;a<NP;a++)
Eval[a] = Q;

//using #define PER1,2,3,4 put a flag in the Eval[] array

Eval(PER1-1] = 1; //need correct array notation
Eval [PER2-1] =
Eval[PER3-1] =
Eval[PER4-1] =

HHRE e

/*
for{a=0;a<NP;a++)
{

if(Evallal

1)

printf{"Period %d (year %d) will be evaluatedin',a+l, {a+l)*5 };
}
*/

return TRUE;
}//end EvaluatePeriods

A s

int FillSubEraThresholds{int SubEral[])

R T o L N L T T T s

{

I+

This function will £ill the incoming SubEra array with the thresholds defined in globals.h
When checking the subwatershed ERA threshold constraint during the landscape optimization,
this will allow a higher threshold in earlier periods and the ability to change that
threshold as time goes on.

*/

-- End of variable defining --

//Set and error checker because this isn’t set up for more than 8 periods right now
if(NP > 8)
return FALSE;

//first initialize the incoming array
for (a=0; a<NP;a++)
SubErala] = 0;

//using the globals.h #define PER1,2,3,4_ERA put the threshold in the SubEral] array
SubEra[0] = PERL_ERA;
SubEra[l] = PER2_ERA;
SubEra[2] = PER3_ERA;
SubEral3] = PER4_ERA;
SubEral[4] = PERS_ERA;
SubEral5] = PER6_ERA;
SubEral[6] = PER7_ERA;
SubEral7] = PERB_ERA;

return TRUE;
}//end FillSubEravalues

B R R L L L
int CountSubWatersheds(int UM[])

B R L L L o
/*

Whenever called up, it does 2 things:
1) Fills the global UM[] array with SubWatershed #'s
2) Returns the number of unique subwatersheds

This function works without using the structures that are seen later in the program because
it is done sc¢ early - just after reading the data inte the Data.* arrays. However,

the above global array and the return value (set to USW in main()) are useable by all
other functions.

*/

int b,c, next, there;

ushort *ptr_minor;

int *ptr_um; //ptr_um is pointer to UM[]

End of variable defining ---

147

printf{“*** Going tc count up the total # of sub-watersheds there are...this number will include GIS slivers and

water bodies ***\n");

//Initialize the UniqueMinor[] array.

for {c=0;c<MAX_ SUBWATERSHEDS;C++)
UM[c] = 0O;

//pick out the unique numbers in Data.Minor

next = 0;
for {c=0;c<UNIQUE; c++)
{
there = 0;
ptr_minor=&Data.Minor[c];
1f (*ptr_minor == 0)
break; //assumes Data.Minor was initialized with 0's and there
are
//no actual Minor sub-watershed values of ¢
for (b=0; b<MAX_SUBWATERSHEDS; b++)
{
ptr_um = &UM[b];
if((*ptr_minor) == (*ptr_um) }
{
there = 1;
break; //means the value is already in the UnigqueMinocr[] array
}
)
if{there == 0)
{
UM[next] = *ptr_minor;
next++;
}
}

if{next > MAX_ SUBWATERSHEDS)
Bailout (81);
printf("!!! There were %d UNIQUE sub-watersheds found.. HOWEVER, they may not all be in the solution\n®, next);
return next;
} //end of CountSubWatersheds

A R R R R R A A A

void StartPeriodInfolint p)

F A R R R)

//A little screen notice that the period has starte and everything has checked ocut OK

PUES { " NILATLVE \ B %% 4 e s s o e e % e ke ke ke Kk ok kK kR

puts{"\t\t*** EETER
printf{"\E\t*** PERIOD %d is starting - Buckle UP! A\t “kk\nt,ph;
puts{“\t\t*** kR

UL S { "\ B\ B o e ek o KK KK KK K e ek kK ek K KR)

)

F AR R R R L R T A AR]

void EndPeriodInfo{int p)

F A R R e R T

{
//A little screen notice that the period has ended and everything has checked out
//0K and program is continuing on to next period

PUES (" NIINIINE \ B % %% 0 e e o e e K e e e Rk R)

puts("\t\t*** i
printE(*\g\pr** PERIOD %d has ended - continuing \E ¥%*\n",p};
puts {“\t\t*** to next period if applicable. kg
puts ("\t\t*** *wwny

PUES { " VBB H et e e e ko e ke KRk Rk K R R e ko ko Rk kR)

A A R R

void DeleteOldStuff (veid)
//*ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ*ﬁﬁﬁ********Qﬁ««ﬁﬁ««ﬁﬁ««ﬁ«««Q«QﬁQ«ﬁﬁQﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁkﬁﬁﬁﬁﬁkﬁ

(

/*This will simply delete everything out of the \outputs\prescriptions\modeled* directory
s0 only new prescription data (for this run of Safe} will be in there. */

char DeleteCldPrescriptions{250];
char DeleteCldStandDatal250];
char JunkFile[300};

//Make the JunkFile which screen outputs can be redirected to
sprintf (JunkFile, *%s%s\\Junk.txt"’,PREFIX,ErrorDir);

//Make the strings for the system call
sprintf (DeleteOldPrescriptions, "del %s%s*.txt > %s°, PREFIX,ModeledPresDir,JunkFile);
sprintf(DeleteQldStandData, "del %s%s*.txt > %s",PREFIX,ModeledStandDataDir,JunkFile);

puts(®= ===== s=======zz==
printf(“Getting ready to delete all the files currently in:...
printf (“and those in...\\outputs\\StandData\\modeled*\n");

system(DeleteOldPrescriptions);
system(DeleteCldStandData) ;
}//end of DeleteOldstuff

B e O R S S S
void DeleteInitialStuff {void)
L T S L S S S T S R S s

{

/*This will simply delete everything out of the \outputs\prescriptions\initial* directory
so only new prescription data {(for this run of Safe) will be in there. */

char DeleteOldPrescriptions[250];
char DeleteOldStandData([250];
char JunkFile[300];

//Make the JunkFile which screen outputs can be redirected to
sprintf(JunkFile, "%$s%s\\Junk.txt",6 PREFIX, ErrorDir);

//Make the strings for the system call
sprintf{DeleteQldPrescriptions, "del %s%s*.txt > %s",PREFIX, InitialPresDir, JunkFile};
sprintf {Delete0ldStandData, "del %s%s*.txt > %s5"',PREFIX,InitialStandDataDir,JunkFile};

putsi(*" ======
printf{*Cetting ready to delete all the files currently in:...\\outputs\\prescriptions\\Initial*\n"});
printf{*and those in...\\outputs\\StandData\\Initial*\n");
puts{" =

system(DeleteOldPrescriptions);
system{DeleteCldStandData) ;
}//end of DeleteInitialStuff

R R

void CleanAndSave{int Per, int Program, int Status)
B e B R

{

/* This function will be called up after running FLAMMAP and FARSITE to clean up files and
save those that are necessary.

12Nov: Not actually doing any saving yet!
*/

//Files that will potentially be used
char DelBlcFile[256];

char DelCbdrile[256];

char DelHeightFile[256];

¢har DelFuelFile[256];

char DelClosureFile[256];

//Create the appropriate filenames

sprintf(DelBlcFile, *del %s%s%d\\per%d\\blc.asc’, PREFIX, INPUTS, GOAL_TO_USE, Per};
sprintf (DelChdFile, "del %s%s%d\\per%d\\cbd.asc", PREFIX, INPUTS, GOAL_TC_USE, Per};
sprintf (DelHeightFile, *del %s%s%d\\per%¥d\\height.asc", PREFIX, INPUTS, GOAL_TO_USE, Per);
sprintf (DelFuelFile, *del %s%s%d\\per%d\\fuel, asc", PREFIX, INPUTS, GOAL_TQ _USE, Per};

sprintf{(DelClosureFile, "del %s%s%d\\per%d\\closure.asc", PREFIX, INPUTS, GOAL_TO_USE, Per);

//During simulation period - delete the landscape ASCIT files after Flammap uses - Farsite will use the
"layers.far" binary file!
if (Progr. == FLAMMAP && Status == ACTUAL)
{
system{DelBlcFile};
system{DelCbdFilel;
system(DelHeightFile) ;
system(DelFuelFile);
system({DelClosureFile);

148

149

//Call up the DeleteFar() function after FARSITE is finished for an ACTUAL run - the Layers.far file is a binary
//file created by Finney's program and has all the landscape data - it is huge and we don’t need except during

//the period.

if (Program == FARSITE && Status ACTUAL)

{
DeleteFar (Per);
if {(EvaluateThisPeriod[Per-1] == FALSE)
(

system{DelBlcFile);
stops Farsite from stalling
system{DelCbdFile);
system{DelHeightFile);
system(DelFuelFile);
system{DelClosureFile);

}

}//end CleanAndSave

//moving these here to see 1f it

P AR R R

void DeleteModified{void)

A L A LT T L PP PP

{

/*This will simply delete everything out of the \outputs\prescriptions\Modified* directory

so only new treelist data during a period will be in there.
*/

char DeleteMod[256];

sprintf (DeleteMod, "del %s%s*.txt", PREFIX,P_ModDir);

puts("\n=

"

printf({"Getting ready to delete all the files currently in ...\\model\‘outputs\\prescriptions\\Modified*.txt\n"};

puts{"=====T-z=z==zzzz=zzc=T==TS=============================

system{DeleteMod} ;

}//end of DeleteModified

")

AR L L T R

void DeleteToModify{void}

A R

{

/*This will simply delete everything out of the \outputs\prescriptions\ToModify* directory

so only new treelist data during a period will be in there.
*/

char Delete[258];

sprintf{Delete, "del %s%s*.txt", PREFIX,P_ToModDir};

printf{'Getting ready to delete all the files currently in ...\\model\\outputs\‘\prescriptions\\ToModify*_ txt\n")};

system{Delete);

}//end of DeleteTcModify

—u)

P AR R R R

void MakeDirectories{void)

P AR T T e T

(
/*

This function is designed to check and make sure that all the directories that are going to
be used throughout the program exist already and if they don’t exist then to create them -
otherwise, if the program tries to write a file cut toc a non-existent directory it bails.

*/

char TestDir{250];

int a,b;

e End of variable defining ------

//Always change to the appropriate DRIVE because I think some of these calls won’t work across drive letters?

sprintf (TestDir, "%s", PREFIX);

_chdir (TestDir};

//First make the main MODEL directory
sprintf (TestDir, “%s\\Model",PREFIX;
if(_chdir{TestDir) }

_mkdir {TestDir) ;

//This directory has to be made by hand for

150

F A R

/7 Make all the directories under MODEL
DR R R R R D D R L L R R D L L L L S L LR TP e
sprintf (TestDir, “%s\\Model\\amls",K PREFIX);
if(_chdir(TestDir))

_mkdir (TestDir};

sprintf(TestDir, "%s\\Model\\farsite', PREFIX);
if(_chdir (TestDir))
_mkdir(TestDir);

sprintf (TestDir, “"%s\\Model\\flammap", FREFIX};
if(_chdir(TestDir) }
_mkdir (TestDir);

sprintf (TestDir, "%s\\Model\\inputs", PREFIX};
if (_chdir(TestDir) }
_mkdir(TestDir);

sprintf(TestDir, *“%s\\Model\\outputs", PREFIX};
if(_chdir(TestDir))
_mkdir (TestDir);

sprintf (TestDir, *“%$s\\Model\\RerunbData", PREFIX);
if{ _chdir(TestDir})
_mkdir (TestDir};

sprintf (TestDir, "%s\\Model\\SafeD",6 PREFIX);
if (_chdir (TestDir))
_mkdir (TestDir};

sprintf(TestDir, "%s\\Model\\standopt", PREFIX);
if{ _chdir(TestDir))
_mkdir (TestDir};

J R e A L AR R

/1 Make directories under Model\\amls
J e R R e & ST

sprintf (TestDir, "%s\\Model\\amls\\info", PREFIX);
if(_chdir(TestDir})
_mkdir (TestDir);

J R A

/7 Make directories under Model\\farsite
B B G B T B

sprintf (TestDir, *%s\\Model\\farsite\\farsite", FREFIX);
1f{ _chdir(TestDir) }
_mkdir (TestDir};

sprintf{TestDir, "%s\\Model\\farsite\\farsite\\Debug", PREFIX};
if(_chdir{TestDir}) }
_mkdir {TestDir);

J R e A

/1 Make directories under Model\\flammap
B R

sprintf(TestDir, “%s\\Model\\flammap\\flammap", PREFIX);
if{ _chdir{TestDir))
_mkdir (TestDir);

sprintf(TestDir, *%s\\Model\\flammap\\flammap\\Debug",hK PREFIX);
if(_chdir(TestDir))
_mkdir (TestDir);

J R R e e R PR R

/1 Make directories under Model\\inputs
F B B e

sprintf (TestDir, "%s\\Model\\inputs\\Constant", PREFIX);
if(_chdir({TestDir))
_mkdir (TestDir};

sprintf (TestDir, "%s\\Model\\inputs\\Constant\\info*, PREFIX);
if(_chdir(TestDir))
mkdir (TestDir);

sprintf {TestDir, "%s\\Model\\inputs\\CommonInitial", PREFIX);
if(_chdir(TestDir))
_mkdir (TestDir);

sprintf (TestDir, “$s\\Model\\inputs\\CommonInitial\\info", PREFIX);
if(_chdir(TestDir))
_mkdir(TestDir);

//-----For the goals under inputs
for (a=1; a<=LANDSCAPE_GOALS;a++)
{
sprintf (TestDir, "$s\\Model\\inputs\\goal%d", PREFIX, a};
if({ _chdir(TestDir))
_mkdir{TestDir};

151

//For the periods under each goal
for (b=0;b<=NPF; b++)

{
sprintf(TestDir, "%s\\Model\\inputs\\goal%d\\per%d", PREFIX,a,b);
if{ _chdir(TestDir} }
_mkdir (TestDir);
sprintf(TestDir, "%s\\Model\\inputs\\goal%d\\persd\\info", PREFIX,a,b);
if(_chdir (TestDir} }
_mkdir [TestDir};
}

J IR R A A Ak ok Sk ok ok ko kK ok ok ok ok ok KKk Sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko kK

/7 Make directories under Model\\outputs
PN R R R R R R g L T LT L L L e T

17
sprintf {TestDir, “%s\\Model\\outputs\\Deluge", PREFIX};
if(_chdir(TestDir))

_mkdir {TestDir) ;
/= For the goals under Deluge
for (a=1; a<=LANDSCAPE_GOALS; a++)
{
sprintf (TestDir, "%$s\\Model\\outputs\\Deluge\\goal%d", PREFIX,a};
if(_chdir(TestDir))
_mkdir (TestDir};
Y
/ ERRORS ==

sprintf (TestDir, "%s\\Model\\outputs\\Errors", PREFIX);
if(_chdir(TestDir))
_mkdir (TestDir};

17 ==== FINAL_MAPS [
sprintf (TestDir, "%s\\Model\\outputs\\final_maps", PREFIX};
if(_chdir (TestDir))

_mkdir (TestDir);

sprintf (TestDir, "%$s\\Model\‘outputs\\final_maps\\PlotFiles", PREFIX);
if{ _chdir(TestDir) }
_mkdir (TestDir);

sprintf (TestDir, "%s\\Model\\outputs\\final_maps\\info", PREFIX);
if(_chdir (TestDir) }
_mkdir {TestDir} ;

/1= == GeneralData ==
sprintf (TestDir, "%s\\Model\\outputs\\GeneralData", PREFIX);
if(_chdir(TestDir}

_mkdir (TestDir) ;

S =——— For the goals under GeneralData
for (a=1;a<=LANDSCAPE_GOALS;a++)
{

sprintf({TestDir, "%s\\Model\\outputs\\GeneralData\\goal%d", PREFIX,a);
if{ _chdir({TestDir))
_mkdir (TestDir);

======zaz===s==== PERIOD(S) =========

/- For the goals under outputs
for (a=1;a<=LANDSCAPE_GOALS; a++)
{
sprintf(TestDir, "%s\\Model\‘outputs\\goal%d",6 PREFIX,a);
1f(_chdir(TestDir))
_mkdir (TestDir);
//For the periods under each goal
for (b=0;b<=NP;b++}
{
sprintf (TestDir, "%s\\Model\\outputs\\goal%d\\per%d", PREFIX, a,b);
if{ _chdir (TestDir))
_mkdir (TestDir);
sprintf{TestDir, "%s\\Model\\outputs\\goal%d\\per%d\\info', PREFIX,a,b);
if{ _chdir(TestDir))
_mkdir (TestDir);
Y
Y

POSTSIMDATA =
sprintf(TestDir, "%s\\Model\\outputs\\PostSimData", PREFIX);
if{ _chdir(TestDir))

_mkdir (TestDir) ;

/=== For the goals under PostSimData
for{a=1;a<=LANDSCAPE_GOALS; a++)
{

sprintf(TastDir, “%s\\Model\\outputs\\PostSimData\\goal%d", PREFIX, a);
if{ _chdir({TestDir))

152

_mkdir (TestDir};

sprintf(TestDir, "%s\\Model\\outputs\\PostSimData\\goal%d\\info", PREFIX, a);
if(_chdir(TestDir))
_mkdir (TestDir;};
)

/1= PRESIMDATA zs=sSs==s=s=sSs==S=============
sprintf (TestDir, "%s\\Mocdel\\ocutputs\\PreSimData", PREFIX};
if{ _chdir(TestDir) }

_mkdir (TestDir);

/=== For the goals under PreSimData
for(a=1; a<=LANDSCAPE_GOALS;a++)
{

sprintf(TestDir, "%s\\Model\\outputs\\PreSimData\\goal%d", PREFIX,a);
if(_chdir(TestDir))
_mkdir (TestDir);

sprintf (TestDir, "%s\\Mocdel\\outputs\\PreSimData\\gcal%d\\info", PREFIX, a};
if(_chdir(TestDir})
_mkdir (TestDir) ;
}

/1= PRESCRIPTIONS =
sprintf(TestDir, "%s\\Model\\outputs\\Prescriptions",K PREFIX);
if{ _chdir (TestDir))

_mkdir {TestDir);

sprintf(TestDir, "%s\\Model\\outputs\\Prescriptions\\Initial", PREFIX);
if{ _chdir(TestDir))
_mkdir (TestDir);

sprintf(TestDir, “%s\\Model\\outputs\\Prescriptions\\Modeled", PREFIX);
if(_chdir{TestDir) }
_mkdir (TestDir};

sprintf(TestDir, *%s\\Model\\outputs\\Prescriptions\\Modified",K PREFIX) ;
if{ _chdir{TestDir) }
_mkdir {TestDir);

sprintf{TestDir, "%s\\Model\\outputs\\Prescriptions\\ToModify",6 PREFIX};
if(_chdir (TestDir))}
_mkdir (TestDir) ;

//===== RASTER_OUT
sprintf (Testbir, "%s\\Model\\outputs\\raster_out", PREFIX);
if({ _chdir{TestDir})

_mkdir (TestDir);

sprintf(TestDir, "%$s\\Model\\outputs\\raster_cut\\info", PREFIX);
if(_chdir(Testbir) }
_mkdir (TestDir};

//=== STANDDATZ
sprintf(TestDir, "%s\\Model\\outputs\\StandData", PREFIX};
if({ _chdir (TestDir)

_mkdir (TestDir) ;

sprintf (TestDir, "%s\\Model\\outputs\\StandData\\Initial", PREFIX);
if(_chdir (TestDir))
_mkdir(TestDir};

sprintf(TestDir, "%s\\Model\\outputs\\StandData\\Initial\\binary", PREFIX);
if{ _chdir (Testbhir))
_mkdir (TestDir};

sprintf (TestDir, "%s\\Model\\outputs\\StandCata\\Mcdeled",h PREFIX);
if(_chdir(TestDir))
_mkdir (TestDir);

--------- === = VECTCR_QUT
sprintf(TestDir, "$%$s\\Model\\outputs\\vector_out”, PREFIX);
if(_chdir(TestDir))

_mkdir (TestDir);

sprintf(TestDir, "%s\\Model\\outputs\\vector_out\\info", PREFIX);
if(_chdir (TestDir))
_mkdir {TestDir);

e e R R R E A

/7 Make directories under Model\\RerunData
S AR AR AR AR AR AR AR AR A AR AR A IR AR AR A A AR AR AR R AR AR AR AR R AR AR AR KRR R RN kAR A AR AT R E R R A A Ak R AR KKK RR AR KRR A Ak

S =——— For the goals under RerunData

for{a=1; a<=LANDSCAPE_GOALS;a++)

{

sprintf(TestDir, "%s\\Model\\RerunData\\goal%d", PREFIX, a};
if(_chdir(Testbir) }
_mkdir ({TestDir};

153

P A L O R L £ £ £ 4

/! Make directories under Model\\SafeD

T R e T E L

sprintf (TestDir, "%s\\Model\\SafeD\\SafeD", FREFIX);
if(_chdir(TestDir})
_mkdir {TestDir) ;

sprintf(TestDir, "%$s\\Model\\SafeD\\SafeD\\Debug", PREFIX);
if(_chdir(TestDir})
_mkdir (TestDir) ;

P A S R S e E R TR T T

/! Make directories under Model\\standopt

P A e L e R T T Ty

sprintf{TestDir, "$%$s\\Model\\standopt\\Premo", PREFIX);
if(_chdir{TestDir)
_mkdir (TestDir) ;

sprintf{TestDir, *$s\\Model\\standopt\\Premo\\Debug", PREFIX);
if(_chdir{TestDir))
_mkdir {TestDir);

}//end MakeDirectories

//ﬁﬁﬁiﬁﬁﬁﬁﬁﬁﬁi*ﬁﬁﬁﬁﬁﬁiﬁﬁ**ﬁﬁﬁﬁi*ﬁﬁ*****ﬁﬁ*tﬁﬁﬁﬁiwﬁﬁﬁﬁﬁﬁﬁiﬁﬁﬁﬁﬁﬁﬁiﬁﬁﬁﬁﬁﬁﬁiﬁﬁﬁ*ﬁ*ﬁ*iﬁﬁﬁﬁﬁﬁﬁ’iﬁﬁﬁﬁﬁﬁﬁﬁiﬁ*ﬁﬁﬁ
void CopyExecutables (void)
//ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ*ﬁﬁﬁﬁﬁﬁﬁﬂﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ***ﬁ*‘kﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ*****ﬁ**ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ**ﬁ*ﬁﬁﬁ*ﬁﬁ**ﬁ**
{
//Copy some executables from their debug directory in the Applegate directories over teo the Framework
char KillFile[256];
char CopyFile[256];
char JunkFile[300};

//Make the JunkFile which screen outputs can be redirscted to
sprintf (JunkFile, "%s%s\\Junk.txt",PREFIX,ErrorDir);

//The PREMO executable

sprintf(KillFile, *del %s%s > %s", PREFIX, PremoProgName,JunkFile) ;

sprintf (CopyFile, “copy g:%s %s%s > %s*,PremoProgName, FPREFIX, PremoProgName, JunkFile) ;
system{CopyFile};

//The FLAMMAP executable

sprintf (KillFile, *del %s%s > %s", PREFIX, FlammapName, JunkFile};

sprintf (CopyFile, "copy g:%s %s%s > %5, FlammapName, PREFIX, FlammapName, JunkFile) ;
system{CopyFile};

//The FARSITE executable

//sprintf(KillFile, *"del %s%s > %s",PREFIX,FarsiteName, JunkFile):

//sprintf {CopyFile, "copy g:%s %s%s > %5",FarsiteName, PREFIX,FarsiteName,JunkFile);
//system(CopyFile);

}//end CopyExecutables
DATA.E

/>
18 Aug 99 - I made this header file to store the definition for several variables

that were being used by all the *.cpp files. Rather than put these at top of each

file I can update these right here, only once and they will all have the new definition
*/

//in Misc.cpp
extern void Bailout (int ErrorNumber);
void PrintToStat(int Line, ulong Value);

//in mgsort .cpp
extern int mgsort(void *data, int size, int esize, int i, int k, int (*compare)
{const void *keyl, const void *key2));

//An array to use for toggling whether to run certain portions at different period {l=yes, 0O=no}
extern int EvaluateThisPeriod|[NP]; //YES for periods ? (see misc.cpp)

//defined in ReadData.cpp
extern struct Main{
ulong Cellid[UNIQUE]; /7 Values for entire
Applegate watershed
ushort GridRow[UNIQUE];
ushort GridColumn[UNIQUE];
ulong Treelist [UNIQUE];
ushort Elev[UNIQUE]; /7 in meters
ushort Aspect [UNIQUE];
ushort Slope [UNIQUE];
ushort Goal {UNIQUE];
ushort Owner [UNIQUE];
ushort Pag[UNIQUE];

ushort Alloc[UNIQUE];
allocation for stream buffers - use Data.Buffer
ushort Minor [UNIQUE];
ushort Hold[UNIQUE]:
ushort Buffer [UNIQUE];
only!! NODATAFLAG = noBuff, 100 = in Buffer
ushort FireHistory[UNIQUE];
NODATAFLAG = not in, 100 = in old polygon
ushort InitialVeg[UNIQUE];
ushort InitialStage[UNIQUE];
ushort PRule[UNIQUE];

//Get calculated within SafeD
ushort InitialDuff[UNIQUE];
divided by TONS - convert back by
ushort InitialLitter [UNIQUE];
FUEL_LOAD_EXP to make ushort)
ushort InitialClass25[UNIQUE];
ushort InitialClassl[UNIQUE];
ushort InitialClass3[UNIQUE];
ushort InitialClassé[UNIQUE];
ushort InitialClassl2[UNIQUE];
ushort InitialClassOverl12[UNIQUE];
ushort InitialFuelModel [UNIQUE];
ushort InitialEra[UNIQUE];
ushort FuelModel [UNIQUE] [NPE];
ushort Duff[UNIQUE] [NP];
FUEL_LOAD_EXP
ushort Flame[UNIQUE]:
length interval from a FARSITE run

//Data that will come from Premo
ushort Basal [UNIQUE] [NP];
value
ushort Closure[UNIQUE][NP];
ushort CBDensity[UNIQUE] [NP];
ushort HLC[UNIQUE] [NP];
ushort StandHeight [UNIQUE] [NP]
ushort BigTrees[UNIQUE] [NP};
ushort Era[UNIQUE][NP];
get REAL value
ushort Vegcode [UNIQUE] [NP] ;
float CFHarvest[UNIQUE] [NF]

ushort Litter [UNIQUE] [NP];
divided (/) by TONS -- Premo * by TONS

ushort Class25[UNIQUE] (NP];
big to fit in ushort. Convert

ushort Classl [UNIQUE] [NP

ushort Class3 [UNIQUE] [NP] ;

ushort Classé [UNIQUE] [NP

]

1

1

1
ushort Classl2 [UNIQUE] [NF];

E] {NP];

ushort ClassOver12 [UNIQU!
} Data;

extern int link[ROWS][31};

struct PREMO_RECORD

{
//Key data
ulong Treelist;
ushort Goal;
ushort Hold;
ushort Period;
//Regular attribute data
ushort Basal;
ushort Closure;
ushort Density;
ushort HeightCrown;
ushort StandHeight;
float Rev;
ushort BigTrees;
ushort Vegcode;
float Harvest;
//Fuel loading stuff
ushort Litter;
ushort Class25;
ushort Classl;
ushort Class3;
ushort Classé;
ushort Classl2;
ushort ClassOverl2;

Yi

struct PTR_PREMO_RECORD

{
struct PREMO_RECCRD *CurrentsSD;

ulong Records;
}i

154

7,/ Does NOT include an

// Stream buffers on FED land

I 01d fire perimeters

// These initial Fuel Loadings will be

// multiplying by TONS when using.{also using

//Divided by TONS - and multiply by

//Will hold the current flame

// converting...divide by 10 to get REAL

// Truncating to closest integer
// converting...divide by 100 to get REAL value
// Truncating to closest integer
// Truncating to closest integer
// converting...divide by 10 to get REAL value
// converting...divide by 100 to

I
S All these fuel loadings will be
flmmmmm o when it outputted and some are too
Jlm—————= when needed back to TONS.

struct TREELIST_RECORD

(
ushort
ushort
float
ushort
ushort
float
float
float
ushort

//These may get calculated, but there should be one

float

float

float
}i

Plot;
Status;
Tpa;
Model;
Report;
Dbh;
Height;
Ratio;
condition;

Basal;
CanopyWidth;
Hlc;

struct OPTIMIZE_SINGLE_VALUE
(

//Key data

ulong Treelist;
ushort Goal;
ushort Hold;

//attribute data

ushort

value[NE];

other Float/Double data

float BigTrees[NP];
ushort Rev [NP];
ushort CFHarvest[NP];

}i

struct SOLUTION

(
//Key data
ushort Minor;
ulong Cellid;
ulong Treelist;
ushort Goal;
ushort Hold;
ushort InitialEra;
ushort MaxGoal;

allowed to be chosen for a cell

ushort

PeriodEra[NF];

155

for each line in a treelist record

//Holds data on a "Prescription' basis - neglects individual cell variation

//This will have "rounded" values if using BigTrees or

//Holds data on an individual cell basis

//For the framework - this is the Highest stand goal number

//These get updated as heuristic is running and at end should

have correct values for given solution

Y

struct P_INFO
(

ulong Treelist;
ushort Goal;
ushort Hold;
Y
struct ERA
(
//Key data
ushort Minor;
//attribute data
ulong Ccount;
ulong SumInitialEra;
uleng sumPeriodEra[NP];
Y

struct TREELIST_FOR_PREMO

(
ulong
ushort
ushort
ulong
}:

0ldTreelist;
Goal;
Hold;
NewTreelist;

struct HIT_BY_DISTURB

(
//Key data
ulong Treelist;
ushort Goal;
ushort Hold;
ushort Pag;
ushort DougFir;
ushort TrueFir;
ushort Pine;
ushort Interval;

//regular attribute data

ulong
ulong

Cellid;
HewTreelist;

//Holds data on a SUBWATERSHED basis

//not really used - gets filled in FillS_Era

//These 4 are only used for INSECTS

//This is » 0 only when used for FIRE

Y

struct UNIQUE_INSECT

(
//Key data
ulong Treelist;
ushort Goal;
ushort Hold;
ushort Pag;
ushort DougFir;
ushort TrueFir;
ushort Pine;
//regqular attribute data
ulong NewTreelist;

¥

struct UNIQUE_FIRE

{ / /Key data
ulong Treelist;
ushort Goal;
ushort Hold;
ushort Interval;

//regular attribute data

ulong

}:

struct FOFEM_MATRIX

(
double
double
double
double
double
double

};

NewTreelist;

BO[21]1[8];
DF{21]1{8];
HW[21]1[8];
PP[21] [8]);
SP[21][8];
WF(21](8];

struct NEW_STAND_DATA

(
ulong
float
ushort

values 1-9
ushort
ushort
ushort
ushort
ushort
ushort

float

actually happening

float
};

struct STAND_CLASS

anywhere

(
float
ushort

values 1-9
ushort
ushort
ushort
fleoat

Y;

Treelist;
Basal;
VegClass;

Qmd ;
CoverClass;
Closure;
Density;
HeightCrown;
StandHeight;

BigTreesKilled;

BasalAreaKilled;

//This is used a temporary holder of data to pass in to certain functions from

Basal;
VegClass;

Qmd;
CoverClass;
Closure;
HeightCrown;

struct INITIAL FUELS

(
ulong Treelist;
ushort Goal;
ushort Hold;
double Duff;
double Litter;
double Class25;
double Classl;
double Class3;
double Class6All;
double Classé6Partl;
double Class6Part2;
double Classl2;
double ClassOverl2;
double HourlFuels;

actually define a fuel model
double HourlQFuels:;
double HourlQQFuels;
double MC_Duff;
double MC_Litter;

//Part or All of these may get used at any time,

//These 3 are part of ocur Veg-Structural classification

// values 0-8&

/Y

0 iz <60%,

1 is »=

//The % canopy closure

//These are used post-disturbance to track how much damage is

60%

//These 3 are part of our Veg-Structural classification

7/

values 0-6

0 is <60%,

1 is »>=

//The % canopy closure

7/

24

//These are

o - ,25"
/7 .25 - 1
/41 - 3
// 3 - 6"

3 - 67 from:

3 - 6" from:

6 - 12°

Over 12"

crown 1lift,

the different

stump to dwd

"pools®

total of Partl and Part2
harvest crowns,

of wood to use

156

depending on what’'s needed

background breakage

//These are groupings that Jim and Bernie use to

//"parallel"

variables for when stand is MC > 3000’

157

double MC_Class25;
double MC_Classl;
double MC_Class3;
double MC_Class6All;
double MC_ClasséPartl;
double MC_ClasséPartz;
double MC_Classl2;
double MC_ClassOverl2;

double MC_HourlFuels;

double MC_Hour 1l0Fuels;

double MC_Hour1l0QFuels;

float Basal;

ushort VegClass; //These 3 are part of our Veg-Structural classification -
values 1-2

ushort Qomad; // wvalues 0-&6

ushort CoverClass; // 0 is <60%, 1 is >= 60%

ushort Closure; //The % canopy closure

ushort FuelModel;

ushort MC_FuelModel;

};

struct CURRENT_ERAS

{

struct OPTIMIZE_SINGLE_VALUE *ptr_osv;

float NetEra[NP];

float CurrentEra;

int Cell; //to hold the cell array position value

int NeedsDecay; //defaults to FALSE, check for TRUE when needed
¥

PREMOSTUFE

AR R L e e e R e L L LS S

// This PremoStuff.cpp file will hold the functions, etc. that are used in conjunction with
/7 Heidi’'s Stand Optimizer program (PREMO}.

R R R R e L R R AR

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include ‘“globals.h*
#include "data.h"

//These functions will control stuff for Time 0 - for the initial Premo runs
void CreateTreelndex(void]);

void InitialPremo(void);

void FillInitialPremoData(int per);

void CopyStandOpt{int Treelist, int Goal, int Hold):

void CreateSortedPremoBinaryFile{void);

int LookAtPremoRecords(const void *ptrl, const void *ptr2);

//These functions will control stuff for post-disturbance Premo runs (i.e. starting Time period 1)

int ManageNewPremoRuns{(ulong FTL, int Per);

int CountTotalHit (ulong FTL);

int FillHitListForPremo(struct HIT_BY_DISTURB HitList[] . ulong FTL):;

int FillForPremo(struct TREELIST_FOR_PREMO FP[], struct HIT_BY_DISTURBE HitList[], int Count);

void MakeNewPremoRuns(struct TREELIST FOR_PREMO FP{], int Count, int ActualPer);

void CreatePostDisturbanceStandDataStructure(struct TREELIST_FOR_PREMO FP[], int Count, int ActualPer, struct
PTR_FPREMO_RECORD *ptr_info)

void InputNewPremoStandData(struct PTR_PREMO_RECORD *ptr_info, int ActualPer, ulong FTL, int HitCount});
int CompareHitListForNewPremo (const void *ptrl, const void *ptr2);

int CountUniqueNewPremoHits(struct HIT_BY_DISTURB HitList[], int Count);

//In Misc.cpp
extern void DeleteInitialStuff(void);

//in StandData.cpp
extern void NewStandHLC({ struct STAND_CLASS *Stand J);

//A couple of globkals to use for figuring out number of InitialTreelist and Potential prescriptions
ulong ITL;
/7= -- ---- End of function definitions ------------—-mememnmm oo

A R R L R E R

int ManageNewPremoRuns (ulong FTL, int Per)

R R L b e

{

/*

This function will control how end-of-periocd Premo runs are handled. The same strategy as that used
for the individual disturbances will be employed. Also, the same strategy used to f£ill up the
Data,*[] arrays with initial Premc data will also be employed. Basically:;

1) Figure out all the cells hit by any disturbance
2) Figure out UNIQUE combinations of variables that will affect how many Premo calls to make (this will

vary, see NOTE: in code after FillHitListForPremo ()
3) Store info on those unique combinations and call up Premo appropriately
4) Create storage for all Stand Data created by Premo

5) Fill the storage up appropriately

6} Finally, transfer that data back intc the Data.*[] arrays

NOTE: keep in mind that there will be MANY treelist in the \modified\ directory that do NOT get
sent to Premo. They may have been modified once by an early disturbance and then
only one cell had that particular treelist) let’s say another disturbance in the same period hits
the same cell. The updates will be done to the already modified treelist and a NEW treelist will
be generated - thus, the cld one is no longer a factor in this period
using it and was NOT hit by ancther disturbance}.
be an apparant loss of treelist being used for new Premo calls, but that is not the case.

*/

int a=0, HitCount, Records, Unique, Unique2;

struct PTR_PREMO_RECORD *ptr_info; //will point to the "sdInfo"

struct PTR_PREMO_RECORD SdInfo;

J e e e End of variable defining

//First count how many different stands were hit this period

HitCount = CountTotalHit(FTL);

//1If there are no cells getting hit by any disturbances,

if(HitCount == FALSE)
{

printf(“!1! There were NO cells effected by disturbances this pericd - that is odd !!!\n");

return TRUE;
}

//create an array of structures on the free store to hold info on all the different cells
struct HIT_BY _DISTURB (*HitList) = new struct HIT_BY DISTURB[HitCount];

if (HitList == NULL }

printf{*Problems allocating memory for HitList[]

//Initialize

memset(HitList, 0, sizeof({struct HIT_BY_DISTURB)

//Fill up the array of HitList structures
Records = FillHitListForPremo(HitList, FTL);
if(Records != HitCount)

Bailout(77);

/*

funless another stand was also
this is all tracked but the result may

then just return back to main

with %d records\n",HitCount);

158

for the memset & function calls

NOTE: At this time, we are considering not re-optimizing the landscape prescription selection after a period is

over. The

current strategy is to just re-use the current GOAL-HOLD assignment for each cell.

next

part - Sorting and Identifying unique combinations of cells that need new PREMC runs.

landscape

level we can sort and identify unigque combinations in HitList
In the future, if stand re-optimization takes place,

to

be developed to correctly account for new strategy

*/
//sort those records by: Treelist-Gecal-Hold

printf(“"\nGetting ready to sort the stands by Treelist-Goal-Hold

cells\n\n",HitCount}

//Sort HitList by Treelist-Goal-Hold-Flame
mgsort((void*)HitList
/ /base
HitCount,
//count of records

sizeof{ struct HIT BY DISTURB)

record
0, HitCount-1,
//current division { always: O,
CompareHitListFcrNewPremo
//compare function

//Count up how many of those records in HitList are actually unique combinations of Treelist-Goal-Hold
//REMEMBER: May have to develop new function if landscape reoptimization occurs at end of each period
Unigue = CountUnigqueNewPremoHits(HitList,HitCount);

printf("!!!There were actually %d unique records that will each require a PREMO runi\n",Unique};

//Create an array of structures to hold data pertaining to each unique T-G-H combination
struct TREELIST FOR_PREMO (*ForPremo) = new struct TREELIST_FOR_PREMO[Unique]l;

if (ForPremo == NULL)

printf("Problems allocating memory for ForPremo{] with %d records\n", Unique);

//Initialize

memset{ ForPremo, 0, sizeof(struct TREELIST FOR_PREMO}

//Fill up the array of ForPremo structures and make sure same # of records processed
Unigue2 = FillForPremo(ForPremeo, HitList, HitCount);

if{(Unique2 != Unique)

by Treelist - Goal - Hold.

new Compare*,CountUnigue*, and Fill* type functions will have

this will take awhile for %lu

Count-1

That has a HUGE effect on the

By not re-optimizing at the

sort and get unique Treelist-Interval combination only }.

//size of each

159

Bailout (90} ;

//Send ForPremo off to have the Premc runs made
#ifdef END_PERIOD_PREMO

MakeNewPremoRuns (ForPremo, Unique, Per);

#endif

//Initialize a structure that will hold data pertaining to the new Stand Data "Inv' structure that will get create
ptr_info = &SdInfo;
memset (ptr_info, 0, sizeof(struct PTR_PREMO_RECORD! };

//Create a sorted structure to hold all the new StandbData
CreatePostDisturbanceStandDataStructure (ForPremo, Unique, Per,ptr_info);

//Input all the new Stand Data into the Data.*[] arrays
InputNewPremoStandData{ptr_info,Per, FTL, HitCount);

//How that we are done with the Stand Data Inv[] memory bklock, delete it!
delete {] ptr_info->CurrentSD;

//and delete other stuff on free store
delete {] HitList;
delete [] ForPremo;

return TRUE;

}//end ManageNewPremoRuns

L R R e R R R R L e R e e A A
EE kR AR R RN x

void InputNewPremoStandData{ struct PTR_PREMO_RECORD *ptr_info, int ActualPer, ulong FTL, int HitCount)
//'tt'tttt'ttttttt**tt*tt*ttttw'w'***'*****************'****'***'ttt**t"'*****************'**""""w'w'w*'*"*"

AE Rk kk Rk kN h

(

/*

This function will essentially work the same way as FillInitialPremoData() does except in deciding which CELLS to
£i11.

1) Use same strategy as in CountTotalHit() to determine if a Data.*![] cell got hit. IF SO then
2) Grab the current Treelist, Goal, and Hold, of that cell and make a "key"....

3} Use that key to search the sorted array of "Inv" structures and find the match

4) Once a match is found, fill up the appropriate Data,*[] arrays with data from the matching key!

The Inv structure should have been sorted in CreatePostDisturbanceStandDataStructure(}) before getting here
*/

int a,y;

int Count, ArrayPer;

//structures

struct PREMO_RECORD Key;

struct PREMO_RECORD *ptr_record;
struct PREMO_RECORD *Inv;

L End of variable defining —~------—-—--—-——=----—--—— - ———o oo
puts (*\n B B LR L AR L e R R T LI
printf(" *x*#xxx Updating the Data.*[][] arrays with new data from the prescription optimizer *******\n")

puts (* I L T T N LR L L R L T e LAV L)

//Reassign ptr_info->CurrentSD to the new pointer Inv so it’s easier to write and access
Inv = ptr_info->CurrentSD;

//Start going through the Data.*{] arrays and find those that were hit by a disturbance this period
Count = 0;
for(a=0;a<UNIQUE; a++)

(
if({ Data.Cellid[a] == FALSE) //done looking
through arrays
break;
if(Data.Treelistlal »>= FTL) //This cell WAS
hit by something
(

//Start to make some of the "Key® for this cell to use in looking for the correct record in the
array of Inv structures

Key.Treelist = Data.Treelist[al;
Key .Goal = Data.Goallal;
Key.Hold = Data.Holdl[a];

//make another loop to account for the period
//*** IMPORTANT: note this starts filling in data for the FOLLOWING period - not this period!
for{y=ActualPer+1; y<=NP;y++)
(
//Finish off the key with the actual search period
Key.Periocd = (ushort)y;

//Make the ArrayPer variable
ArrayPer = y-1;

//Now use bsearch to find the matching record in the array of PremoInv structures

160

ptr_record = (struct PREMO_RECORD*)bsearch/{
&Key,
(void *)Inv,
(size_t)ptr_info->Records,
sizeof(struct PREMO_RECORD),
LoockAtPremoRecords) ;

if(ptr_receord == NULL)

Bailout (75);
//Check to see if the Vegcode value is Mixed Conifer - if so it must be broken into >
or < 3000’
if((int) (ptr_record->Vegcode ;/ 100) == VC_MC)
{
if{ Data.Elev[a] >= (3CQC*FT2M))
/iIt's over 3,000 ft
Data.Vegcode[a] [ArrayPer] = ptr_record-
>Vegcode + 500; //This will give it 10**
else
Data.Vegcode[a] [ArrayPer] = ptr_record-
>Vegcode; //Leave as is
}
else
Data.Vegcode[a] [ArrayPer] = ptr_record-
>Vegcode; //Leave as is

//Fill in the rest of Data.*[] arrays with the data accessible from the pointer
returned above
//BEveryone should already have the proper type

Data.Basal[a] [ArrayPer] = ptr_record->Basal;
Data.Closure[a] [ArrayPer] = ptr_record->Clcsure;
Data.CBDensity[a] [ArrayPer] = ptr_record->Density;
Data.HLC[a] [ArrayPer] = ptr_record->HeightCrown;
Data.StandHeight[a] [ArrayPer] = ptr_record->StandHeight;
Data.BigTrees[al [ArrayPer) = ptr_recocrd->BigTrees;
Data.CFHarvest[a] [ArrayPer] = ptr_record->Harvest;
Data.Litter[a] [ArrayPer] = ptr_record->Litter;
Data.Class25[a] [ArrayPer] = ptr_record->Class25;
Data.Classllal [ArrayPer] = ptr_record->Classl;
Data.Class3 [a] [ArrayPer] = ptr_record->Class3;
Data.Class6la]) [ArrayPer] = ptr_record->Classé;
Data.Classl2[a] [ArrayPer] = ptr_record->ClasslZz;
Data.ClassQverl2[a] [ArrayPer] = ptr_record->ClassOverl2;

}//end forty=0 ... }

count++;

}//end if({Data.Treelist ...)
}//end forta=0 ...)

//Error check that the correct number cf cells updated - same checker is in ManageNewPremcRuns ()
if{Count != HitCount}
Bailout{77};

}//end InputNewPremoStandData

J R R B R LR R B R T T T
Kk kR kR Rk kAR Rk

void CreatePostDisturbanceStandDataStructure(struct TREELIST_FOR_PREMO FP{], int Count, int ActualPer, struct
PTR_PREMC_RECCRD *ptr_info)

J] Rk Rk sk ek ko sk Sk ko ks Sk ok ko Sk kS kR Sk Rk kK R ok kR ok kK Kk kR Rk sk Rk kR Kk Rk sk ks sk ok ok kR Rk Ak kA Rk kR R Kk kKR

ok ok ok ok ok ok kR ok Rk Sk ko kA

{

/>

This function will pretty much do the same thing as was done in the CreateSortedPremoBinaryFile()
function that was used at Time 0. Basically, read and store all the data for all the new
SD_*_*_*.txt files that were just created after the Premoc runs at the end of a period. Then scrt
that data appropriately so that another functicn can go through the Data.*{] arrays and find
those cells that were hit by disturbance(s} this period and then find their new stand data.

17 FEB 00 -~ adding modification to stand HLC and CBD calculations here because it is easier tc have
the Inv|[] structure below just have the correct values now rather than waiting.

REMEMBER: at period NP, this will create "0" RecordsNeeded and thus will be skipped - Ch, back in main() this
function does NOT get called on last period anyways, duh.

*/

FILE *Dataln;

char Temp[256];

ulong RecordsNeeded, Record, Treelist;

ushort Goal, Hold:

int a,y,r=0;

int DataPeriod;

double RealBasal, RealClosure, RealCBD, RealHLC, RealHeight, RealRev, RealBigTrees, Harvest;
ushort VegCode;

double Reallitter, RealClass25, RealClassl, RealClass3, RealClassé6, RealClassl2, RealClassOverl2;
double LoadFactor;

double ModChd;

struct STAND_CLASS StandClass;

161

struct STAND_CLASS *ptr_stand;

ushort TempCocde;

int TempVeg, TempDiam, TempCover;

e L L L P L e PP P e e End of wvariable defining --=-r=---mmm oo

//Determine the actual # of records

//NOTE: May need to change below if re-optimizing at stand level to include records for sach GOAL and HOLD comb.
also

RecordsNeeded = Count * (NP-ActualPer);

if (RecordsNeeded == FALSE)
return;

//Create an array of sStructures on the free store to hold these
struct PREMO_RECORD (*Inv) = new Struct PREMO_RECORD[RecordsNeeded];
if({ Inv == NULL)
printf{"Problems allocating memory for Inv{] with %lu elements\n",RecordsNeeded*sizeof (PREMO_RECORD));

//Initialize
memset({ Inv, O, sizeof(struct PREMO_RECORD) * RecordsNeeded)

Jl ¥R REFRE R Rk kkkk*k OQrart pumping data into the array of Inv[] structures *****rttskirwmrxttatnts

//Set the LoadFactor that will be used to convert the incoming Fuelloadings (which are in LBS! to TONS but
//keeping some precision by multiplying by FUEL_LOAD_EXP
LoadFactor = TONS * FUEL_LOAD_EXP;

Record=0;
for {(a=0;a<Count;a++} //for each record in the
FP structure
{
//Get the treelist, goal, and hold to be used

Treelist = FP[a] .NewTreelist;
Goal = FPla] .Goal:;
Hold = FP[a].Hold;

//Start by opening the correct SD_*_*_*.txt file ONCE - always in the "\modeled\" directory at end of

period
sprintf{Temp, “%s%s\\SD_%d_%d_%d.txt", PREFIX,ModeledStandDataDir, Treelist,Goal, Hold);
DataIn = fopen{Temp, "r"}:;
if (DataIn == NULL)
fprintf (stderr, "opening of %s failed: %s\n",Temp, strerror{errno)i};
//The SD_*_*_* . txt files will have a line of data for the incoming treelist at and it is NOT needed.
//SafeD works by assuming the the 2nd period listed is after Harvest activities and 5-yr growth
fscanf {(Dataln, "$d %1f %1f %1f 31f %1f %1f %1f %hu %1f %1f %1f %1f %1f %1f %1f %1f", &DataPeriod
&RealBasal,
&RealClosure, &RealCBD, &RealHLC, &RealHeight, &RealRev, &RealBigTrees, &VegCode, &Harvest,
&ReallLitter, &RealClass25, &RealClassl, &RealClass3, &PRealClass6, &RealClassl2,
&RealClassOverl2);

//Now scan in all the data ONCE and store in the array of Inv structures
//I assume that the SD_*_*_* have Period "ActualPer" + 1 on line 2

for {y=ActualPer+1;y<=NE;y++}

{

//First, scan in the lines from SD* - this current period data is "over" and we don’t need this
fscanf(DatalIn, "%d %1f 31f %$1f %1f %1f %1f %1f %hu %1f %1f %1f %1f 31f 31f %1f $1f",
&DataPeriod, &RealBasal,
&RealClosure, &RealCBD, &RealHLC, &RealHeight, &PRealRev, &RealBigTrees, &VegCode,
&Harvest,
&Reallitter, &RealClass25, &RealClassl, &RealClass3, &RealClass6, &RealClassl2,
&RealClassOverl2);

if (DataPeriod != v}

{
printf{'problem with period values in the PREMC files for %lu %hu

%hu\n*,Treelist,Goal, Hold);
getchar{); //make program pause here

)

//Check and make sure values that eventually will be converted to USHORT are OK in terms of
65535 thingy!!

if (RealBasal >= 6553 || RealCBD »= 655 || RealBigTrees »= 6553 || RealLitter »= 6553*TONS |
RealClass25 »= 6553*TONS || RealClassl >= 6553*TONS || RealClass3 >= 6553*TONS |
RealClass6 >= 6553*TONS || RealClassl2 >= 6553*TCNS || RealClassOverl2 »= 6553*TONS)
{
printf("Guilty is: Tree %d Goal %d and Hold %d\n", Treelist, Goal, Hold);
Bailout({49};
}
Inv[Record] .Treelist = {ulong)Treelist;
Inv[Record] .Goal = {ushort)Goal;
Inv[Record] .Hold = (ushort)Hold;
Inv[Record] .Period = {ushort)y;
//This is the next period!
Inv[Record] .Basal = {ushort) (flocr (RealBasal * BASAL EXP));
Inv[Record] .Closure = {ushort} (floor {RealClosure}};
Inv[Record] .StandHeight = {ushort) (flocr {RealHeight + 0.5)};
Inv[Record] .Rev = (float)RealRev;

Inv[Record] .BigTrees = {ushort) (floor {RealBigTrees * BIGTREES_EXP)};

162

Inv[Record].Vegcode = VegCode;
Inv[Record] .Harvest = {float)Harvest * (float)ACREEQ;

//The incoming fuel loads are in LBS - convert to TCNS but keep some precision by multiplying
by FUEL_LOAD_EXP

Inv[Record].Litter = {ushort) (RealLitter/LoadFactor) ;
Inv[Record].Class25 = (ushort) {RealClass25/LoadFactor};
Inv[Record].Classl = {ushort) (RealClassl/LoadFactor);
Inv[Record].Class3 = {ushort)} {RealClass3/LoadFactor) ;
Inv[Record] .Classb = (ushort}) (RealClassé/LoadFactor) ;
Inv[Record].Classlz = (ushort} (RealClasslZ/LoadFactor);
Inv[Record] .ClassOverl2 = {ushort) (RealClassOverl2/LoadFactor);

P e T

// Below is the Bernie "tweak" for CBD 17Feb00

P R R T Rt R Rt R T

ModCbd = RealCBD * (RealClosure * ACREEQ) ;

if(ModCbd > .30
ModCbd

else if(ModCbd <
Modcbd

.30;
)
0;

o~

//Store the kg per m3 data in the Inv{] structure
Inv[Record] .Density = (ushort){floor (ModCbd*DENSITY_EXP}};

AR R R R R R

// <Call up the new Stand HLC function 17Feb00

// Use the method employed in StandDataController{}

B L Lt R T R T L At
//Initialize StandClass and its pointer

ptr_stand = &StandClass;

memset (ptr_stand, O, sizeof(struct STAND_CLASS));

//Fill some items in ptr_stand-> before sending off 25Feb...why do this?
ptr_stand->Closure = Inv[Record].Closure;
TempCode = Inv[Record].Vegcode; //The actual 3 or digit

code from PREMO

//NQTE: This TempCode Premo value DCES NOT have the modified MC vegclass to distinguish

between

//MC < 3000 and MC > 3000. HOWEVER, this is OK for here because the NewStandHLC(} function
will

//give the same HLC either way.

//extract the digits out

TempCover = TempCode%1lC; //last digit
for determining stage (is closure, <=60% or > £0%)

TempDiam = ((TempCode-TempCover)%100) / 10; //next to last digit also for determining
stage (is the QMD group)

TempVeg = (TempCode-TempCode%100) / 100; //1lst digit for determining
VegCode

//Put those wvalues in ptr_stand-»>

ptr_stand-»>VegClass = {(ushort)TempVeg;
ptr_stand->Qmd = (ushort}TemrDiam;
ptr_stand->CoverClass = {ushort)TempCover;

194 NEW HLC stuffti!!!
NewStandHLC(ptr_stand);
Inv{Record] .HeightCrown = {ushort) (floor (ptr_stand->HeightCrown + .5));

Record++; //BE SURE to increment
this counter up

}//end for(y=0;y<NP;y++)

fclose(Dataln);
}//end for{a = 0; a < Count; a++)

if (Record != RecordsNeeded)
Bailout (96} ;

//Sort the current Inv structures by Treelist-Goal~Hold-Period
gsort{ {void*}Inv,
/ /base
{size_t)RecordsNeeded,
//count of records
sizeof(struct PREMO_RECORD),
//size of each record
LookAtPremoRecords };
//compare function

//Tell ptr_info where the memory is that holds this Inv{] stuff and how many records there are

ptr_info->CurrentSD = Inv; /falthough Inv is an array of structures, by itself it
points to the memory block
ptr_info->Records = RecordsgNeeded;

//NQTE: Don’'t delete the Inv[] structures here, they will be used in another function

}//end CreatePostDisturbanceStandDataStructure

J R R R

533k Kk K kK KRk K kK kK Kk A K kK K KK K ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ko ok ok ok ko ok ok ko kK kK Kk

void MakeMewPremoRuns(struct TREELIST_FOR_PREMO FP[]), int Count, int ActualPer)

JRERE A

{

HRK KA KKK KK AR KKK KKK A A KA AR A Kk A Kk kK ok Kk Kk ok Kk Kk Rk ko kR kR R R Kk Kk Kk Kk Kk ARk kK K ke

// Make Premo runs for those treelist hit by some type of disturbance this past period

FILE *OpenBatch;
char Batch{250], Parameters[250), JunkFile{256), RunPremo(2536];

int a;

//For timing stuff
clock_t Start, Finish;
double Duration;

/*

printf{"\n\n=

= The FP structures as MakeNewPremoRuns sees it =

for {a=0;a<Count;a++)

printf ("PP[%$d]: Treelist: %lul\tGoal: %hul\tHold: %hu\tInterval: %hu\n",a,FP[a) . Treelist,
FP{a] .Goal, FP[a].Hold,

FP[a].Interval);

*/

//8tart the overall clock
Start = clock(];

//Make the JunkFile which screen outputs can be redirected to
sprintf (JunkFile, "%s%s\\Junk.txt", PREFIX,ErrorDir):;

//Go through the FP structures and make Prema calls for all needed records
for (a=0; a<Count;a++}
each record in the FP structures

{

/*

Premo wants the following information passed in as a parameter for each call

1)
2)
3)
4)
S}
*/

Finish = ¢
Duration =
printf("**
printf{"

for(a=0; a<

The full pathname of the Premo program itself
The current period

Treelist number

Goal number

Hold number

//Create a batch file to use to call up Premo
sprintf (Batch, "%s%s%d\\per%d\\Premoc.bat", PREFIX, QUTPUTS, GOAL_TO_USE, ActualPer);

//Create the argument line that will get inputted into the above batch file
sprintf {Parameters, "%s%s %d %lu %hu %hu %4',
PREFIX, PremoProgName,
ActualPer,
FE{a] .NewTreelist,
FP[a].Goal,
FP[a) .Hold,
PREMO_TOGGLE) ;

//0pen the batch file and write out the Parameters line and then close the file
OpenBatch = fopen(Batch, “w");
if (OpenBatch == NULL)

fprintf(stderr, "Opening of %s failed: %s\n", Batch, strerror(errnc) };
fprintf (OpenBatch, "%s\n", Parameters};
fclose (OpenBatch) ;

//Fill the RunPremo array with the Batch file name and the screen output redirection file name
sprintf (RunPremo, "%s > %s\n",Batch, JunkFile);

//timing info local to this loop
//clock_t Start, Finish;
//double Duration;

// Call up PREMO and run it with the above .bat file

//8tart = clock();

system(RunPremo) ;

//Finish = clock();

//Duration = ((double) (Finish-Start) ; CLOCKS_PER_SEC);
//printf("**That prescription took %.21f seconds**\n", Duration);

//end of for(a=0...

lock(};
{ (double) (Finish-Start) / CLOCKS_PER_SEC)
All of those prescription took %.21f seconds**\n", Duration);

10;a++)
printf("\a*); //an alarm to tell it‘s finished

163

\n"};

//for

164

}//end MakeNewPremoRuns

R e LR e e T T R T T T

int FillForPremo(struct TREELIST_FOR_PREMO FP[], struct HIT_BY_DISTURE HitList[], int Count)
P R e L R R R R T T TR E PR T
{

//Go through HitList[] again and find those actual Unigue combinations of Treelist-Goal-Hold counted earlier
//and this time £ill up the FP structure

int a, b, Unique;

ulong BvalTreelist;

ushort EvalGoal, EvalHold;

//This must be
reset because above it left loop with value of Count

for{a=0;a<Count;) //a will get increment by other
loop
{
if(b == Count) //because of weird
incremental method, b will reach end first but a doesn’t know that
break;
Unique++; //first one always counts

as do others because a gets reset in other loop

//Set the initial Eval* variables

EvalTreelist = HitList[a).Treelist;
EvalGoal = HitList[a].Goal;
EvalHold = HitList[a] .Hold;

//Insert those values in the array c¢f FP structures

FP[Umique-1] .NewTreelist = EvalTreelist;
FP[Unique-~1].Goal = EvalGoal;
FP[Unique-1].Hold = EvalHold;

//sine HitList is already sorted, start at next record and look downward until no longer a match
for (b=a+1;b<Count;}

{

iff HitlList [b].Treelist == EvalTreelist &&
HitList [b].Goal EvalGoal &&
HitList[b].Hold EvalHold)
b+ ;

//Then look at next record

else

{
//Set the "a" variable to where "b" is because this is the next unigue match
a = b;
break;

}
}//end forb=a+l;b<Count;b++)
}//end for{a=0;a<Count;a++)

return Unique;

}//end FillForPremo

P R e

int FillHitListForPremo{ struct HIT By DISTURB HitList{] , ulong FTL !}
D T iy
{

/*

Use the same rules as in the CountTotalHit() function to determine whether or not a cell was
hit by ANY type of disturbance this period.

NOTE: The array of HitList structures are type HIT_BY_DISTURE which is a structure type
developed to hold data after individual disturbances. It became apparent that I could just
re~use this structure type to hold information for all the cells at the end of a period. Just
be aware how certain members are being used.

Treelist: Normally would hold an OLD treelist value but in this case holds the updated and current treelist value

*/
int a, Count;

//Fill up HitList

Count = 0;
for ta=0; a<UNIQUE; a++)
{
if({ Pata.Cellid{a) == FALSE)
break; //done looking through
arrays

if(Data.Treelistla] »= FTL)

{
HitList{Count].Treelist Data.Treelist[a];
HitList[Count].Goal = Data.Goallal;
HitList([Count] .Hold = Data.Hold[a];

165

HitList [Count].Cellid = Data.Cellid[al;

Count++;

return Count;

}//end FillHitListForPremo

F R R R e R e Ll

int CountTotalHit{ulong FTL)

R T T T T

{

/>

After all the disturbances in a period - the best way to see if a cell has been hit by ANY
type of disturbance is to look through the entire Data.*[] arrays and count how many have

a current Treelist value »>= to the FirstTreelist value used in the pericd.

REMEMBER: this works because the Treelist value is updated right after each disturbance
*/

for{a=0;a<UNIQUE; a++)

{
if(Data.Cellid[a] == FALSE)}
break; //done locking through
arrays
if({ Data.Treelistfa] >»>= FTL)
Count++;
}

return Count;
}//end CountTotalHit

R g

woid InitialPremo (void)
kL R R L L T T e P P

{

/* This function has TWO roles..... one is to create a RUNSTANDOPT.BAT file for EVERY stand {cell} that
needs to be optimized. Second, once that .bat file is created this function will call up Heidi’s program
(currently called Premo.exe) and pass the arguments from the .bat file to it.

*

/

FILE *Index, *OpenBatch;
char TreeFileName[200])="", Garbage[200]="",Temp{256],Temp2[256],JunkFile[256];
int ScanStatus, IndexNo,count, ctr, goal, HoldPeriods;

/*
GOALS numbers as used in PREMO are:
0=Fire, 1=Insects, 2=Fish,

3=Wildlife-complex, 4=wildlife-simple,
5=PNV, 6=Fire,Insects, PNV 7=Fish,Wildlife, PNV 8=al1l1, PNV

9=GrowlOnly
10 = Non-forest{no goal associated) - only seen at end of simulation when cutputting a goal value to map
*/

//For Time information
//clock_t Start, Finish;
//double Duration;

S m e End of wariable defining -----------------o

//First, delete the old prescriptions in the\initial\ directcries
DeleteInitialStuff();

//Make the JunkFile which screen outputs can be redirected to
sprintf(JunkFile, "%$s%s\\Junk.txt",6 PREFIX, ErrcrDir};

// I will assume that the treelist index.txt file is completely filled with valid stands and files
sprintf(Temp, "%s%s%d\\perQ\\%s",PREFIX, INPUTS, GOAL_TC_USE,TREE_INDEX} ;
Index = fopen(Temp,"r");

if (Index == NULL}
fprintf (stderr, "opening of %s failed: %s\n", Temp, strerror{errno)}};

// First go through the file and COUNT the number of files
count = Q;
while ((ScanStatus=fscanf (Index, "%$d",&IndexNo!}) !=ECF)
{
count = ++count;

}

// Rewind the file pointer so it is back at the beginning of the file
rewind(Index};

166

// Now create a string that will be thrown into each runstandopt.bat file during the looping

// and then execute

the .bat file for each stand

for{ctr = 0; ctr < count; ctr++) //for each treelist

{

fscanf (Index, *%d", &IndexNo) ; //Scan the index no.

printf ("Working on Treelist %d\n", IndexNo);

for (goal=0;goal<GOALS; goal++) //tor each goal

{

//Set a qguick error if I change the # of HoldFor periods and I forget to fix this code
if (HOLDNO > 2)

Bailout (40} ;
for (HoldrPeriods=0; HoldPeriods<4;HoldPeriods+=3) //for the two Hold "for“ periods
(
//Instead of running PREMO for GrowOnly Prescriptions with multiple "hold" values,
Just
//copy the files from the hold==0 stuff into new files
if(goal == 9 && HoldPeriods > 0 }
{
CopyStandOpt (IndexNo, goal, HoldBeriods}) ;
continue; / /next
iteration of the for(HoldPeriods...) loop

}

sprintf (Temp, "%s%s 0 %d %d %d %d\n", PREFIX, PremoProgName, IndexNo, goal,

HoldPericds, PREMO_TOGGLE}

}//end of

sprintf{Temp2, "%s%s%d\\per0\\Premo.bat",6 PREFIX, INPUTS, GOAL_TO_USE)

//Open the PremoBatchFile and put in command line
OpenBatch = fopen(TempZ, "w"};
if (OpenBatch == NULL)
fprintf (stderr, "opening of %s.bat failed: %s\n", Temp2 ,strerror{errno}};
fprintf (OpenBatch, "%s\n", Temp);
fclose (OpenBatch) ;

//Refill Temp with the batch file name and the screen output redirection
sprintf(Temp, “%s > %s“,Temp2, JunkFile) ;

// Call up PREMC and run it with the above .bat file

//Start = clock{);

system(Temp) ;

//Finish = clock();

//Duration = ((double} (Finish-Start) / CLOCKS_PER_SEC);
//printf("**That prescription took %.21f seconds**\n”", Duration };

}//end of for(HoldPeriods...
for(goal....

} //end of for{ctr...

fclose(Index};

for(ctr=0;ctr<10;ctr++)
printf(*\a"}; //an alarm

}//end of InitialStandOpt

R e A R R

void CopyStandOpt(int Treelist, int Goal, int Hold)

A L T L D
{

/*This function will copy over those PRESCRIPTION, VEGCODE, and STAND DATA files that were
generated for a Grow Only goal with a hcld value of 0. Any addition hold values are redundant
because hold refers to how many periods to "hold" before allowing cutting and in the Grow Cnly
there is no cutting - thus they will be the same. At this time, I still need the files to
exist on the hard drive with the unigue name.

*/
char CopyPres(300];
char CopyStand[300];
char JunkFile[300];

//Make the JunkFile which screen outputs can be redirected to
sprintf (JunkFile, "%s%s)\Junk.txt",K PREFIX, ErrorDir};

if{Treelist == NONFOREST) //do nothing

return;
if(Treelist < NONFOREST) //icopy stuff from/to the INITIAL directory
{

sprintf (CopyPres, "copy %s%s\\P_%d_%d_0.txt %s¥s \\P_%d_%d_%d.txt >
%s" , PREFIX, InitialPresDir, Treelist,Goal,

PREFIX,InitialPresDir,Treelist, Goal, Hold, JunkFile};

sprintf (CopyStand, "copy %s%s\\SD_3%d_3%d_0.txt %s%s\\SD_%d_%d_%d.txt >
%5",PREFIX, InitialStandDataDir, Treelist,Goal

PREFIX, InitialStandDataDir, Treelist, Goal,Hold, JunkFile);
}

167

else //copy stuff from/to the MODELED
directory

{
sprintf (CopyPres, "copy %s%s\\P_%d_%d_0.txt %s5%s\\P_%d_%d_%d.txt >
%$s", PREFIX,ModeledPresDir, Treelist, Goal,

PREFIX,ModeledPresDir, Treelist, Goal,Hold, JunkFile);

sprintf (CopyStand, "copy %s%s\\SD_%d_%d_0.txt %$s%s\\SD_%d_%d_%d.txt =
%s", PREFIX,ModeledStandDataDir, Treelist, Goal,

PREFIX,ModeledStandDataDir, Treelist,Goal,Hold, JunkFile) ;
}

//now execute those system calls
system(CopyPres) ;
system (CopyStand) ;

}//end CopyStandopt

R R R Rl R LR R L R R R L TR TR L TSI T T P e
void CreateTreelIndex(void)
//********************kkk************ﬂ*ﬂt*ttittittttiiii*****iittt*ii*tiiﬂ*ii*****************
{
// This function is to look at Data.Treelist and make a list of
// all the unique treelist values that occur. I will then take each of those unique values and
// look for them in the Initialtreeindex.txt and create a new text file which contains ONLY those
// index numbers for treelist values that were found in Data.Treelist

int b, c,next,there;
ulong *ptr_utl;

FILE *Master, *Current;
int ScanStatus, IndexNo, Found;

char TreeFileName[256], Temp[256], Temp2 [256];
ulong *ptr_treelist;
int NumberTreelist =

- End of wariable defining --

//First, count the total number of values in Data.Treelist
for (c=0; c<UNIQUE; c++)
{

ptr_treelist = &Data.Treelist[c];

if(*ptr_treelist != 0 && *ptr_treelist != NONFOREST)}

NumberTreelist++;

}
//printf("\nThere are %d values (not necessarily unique) in Data.Treelist\n\n", NumberTreelist);

//Create and initialize the UniqueTreeList(] array on the free store
ulong (*UnigqueTreelist} = new ulong[NumberTreelist]:
if(UniqueTreeList == NULL)
printf (*Problems allocating memory for UniqueTreelList with %lu elements\n”,NumberTreelist);

memset (UniqueTreelist, 0, sizeof(UniqueTreeList[0])*NumberTreelist});

//Then, pick out the unique numbers in Data.Treelist
next = 0;
for (c=0; c<UNIQUE; c++)
{
there = 0;
ptr_treelist=&Data.Treelist[c];

if (*ptr_treelist == 0)
break; //assumes Data.Treelist was initialized with 0’s and
there are no treelist values of 0

if (*ptr_treelist == NONFOREST}
continue; //don’t put these in the file -

continue on to next

for (b=0;b<NumberTreelist;b++}

{
ptr_utl = &UniqueTreelist(b]; //utl stands for UniqueTreeList
if((*ptr_treelist) == {*ptr_utl) }
{
there = 1;
break; //means the value is already in the UniqueTreeList[]
array
}
}
if(there == 0)
{
UniqueTreeList [next] = *ptr treelist;
next++;
}
}

//Now create a TREEINDEX.txt file to be placed in the /inputs/per0 directory so that the PremoStuff.cpp

// functions can open that file and run Premo for these initial treelist.
sprintf (Temp, “%s%s\\%s", PREFIX, ConstantInput, IT_ INDEX);
sprintf (Temp2, "%s%s%d\\perO\\%s", PREFIX,INPUTS,GOAL_TO_USE, TREE _INDEX};

Master = fopen(Temp,"r");
Current = fopen(Temp2, "w");

if (Master == NULL || Current == NULL)

fprintf(stderr, "Opening of %s or %s failed: %s\n",Temp,Temp2,strerror(errnol};

//Now look through the UnigueTreeList[] array and for each of the values in it, find the file location
//from the InitialTreeindex.txt and send both that file directory and the unique tree list value to a new
//text file called Treeindex.txt (placed in the /inputs/per0/ directory

for{c=0;c<next;c++)

(
Found = 0;
while ({ScanStatus=fszscanf (Master, "%d %s", &IndexNo, TreeFileName)) !=EQF)
{

if (IndexNa =
{

{int)UniqueTreeList (c])

fprintf (Current, "%d\n", IndexNo) ;

Found = 1;
rewind(Master) ;
break;

}
}//end of while

if (Found == 0)
(
printf{"There appears to be no treelist available for IndexNo: %d - Bailing
out!\n*,UniqueTreeList([c]};
Bailout{20};
}

}//end of for (c=0;c<next;c++)

fclose (Master) ;
fclose(Current) ;

//delete stuff on free store
delete [] UniqueTreeList;

//Set the global variable ITL so the value of next
ITL = next;

} //end of CreateTreeIndex function

R R R L L S

void CreateSortedPremoBinaryFile (void)

VR R R R R D B L R g R R g S A L S L
{

/*

This function will create a sorted binary file that contains all the SD_*_*_ *.txt

data for the current landscape. This file only needs to be created when PREMO has been

ran on the initial files (i.e. after a change in PREMO coding}. The resulting binary file
can then be read in later during FillInitialPremoData{}.

*/

FILE *Index, *Dataln, *BinOut, *HeaderQOut;

char Temp[256];

int ScanStatus, Treelist, count, NonFforestCount, RealCount, ctr, goal, HoldPericds;

int y;

ulong RecordsNeeded, Record;

int DataPeriod;

double RealBasal, RealClosure, RealCBD, RealHLC, RealHeight, RealReV, RealBigTrees, Harvest;
ushort VegCode;

double RealLitter, RealClass25, RealClassl, RealClass3, RealClass6, RealClassl2, RealClassOverl2;
double LoadFactor;

/- End of variable defining

//Figure out how many records there are going to be
//I will assume that the treelist index.txt file is completely filled with valid stands and files
sprintf{Temp, "%s%s%d\\per0\\%s", PREFIX, INPUTS,GOAL_TO_USE, TREE_INDEX) ;
Index = fopen(Temp,'r");
if (Index == NULL}
fprintf({stderr, “opening of %s failed: %s\n", Temp, Strerror(errno});

// First go through the file and COUNT the number of files
count = Q;

NonForestCount=0;

while ({ScanStatus=fscanf(Index, "%d",&Treelist)}!=EOF)

{

if(Treelist == NONFOREST)
NonForestCount++;

count = ++count;

}

RealCount = count - NonForestCount;

168

169

//printf("There are %d files in the treeindex.txt file but only %d are Forest type\n",count,RealCount);

// Rewind the file pointer so it is back at the beginning of the file
rewind(Index};

//Determine the actual # of records
RecordsNeeded = RealCount * GOALS * HOLDNC * NP; //Use RealCount because records for NONFOREST are not
needed

//Create an array of structures on the free store to hold these
struct PREMO_RECORD {*Inv) = new struct PREMO_RECURD[RecordsNeeded]
if(Inv == NULL)
printf(“Problems allocating memory for Inv[} with %lu elements\n", RecordsNesded*sizeof (PREMO_RECCRD}) ;
//Initialize
memset{ Inv, 0, sizeof(struct PREMO_RECORD} * RecordsNeeded };

J RIS KSR AN RN K SEart pumping data into the array of Inv[] Structures **** krskkdssskrrkrss

//Set the LoadFactor that will be used to convert the incoming Fuelloadings (which are in LBS} to TONS but
//keeping some precision by multiplying by FUEL_LOAD_EXP

LoadFactor = TONS * FUEL_LOAD_EXP;
Record=0;
for(ctr=0;ctr<count;ctr++) //for all the treelist

listed in the treeindex.txt file

{

fscanf {Index, “%d", &Treelist); //Scan the actual treelist number

if (Treelist NONFOREST) //no need to do these
continue;
for(goal=0;goal<GOALS;goal++) //for each goal

{

//Set a quick error if I change the # of HoldFor periods and I forget to fix this code
if (HOLDNO > 2}
Railout {40);

for {HoldPeriods=0;HoldPeriods<4;HoldPeriods+=3) //for the two Hold "for" periods
{

//start by opening the correct SD_*_*_*.txt file ONCE
sprintf{Temp,
“%s%s\\SD_%d_%d_%d.txt*, PREFIX, InitialStandDataDir, Treelist,goal, HoldPeriods) ;
DataIn = fopen(Temp, "xr");
if (DataIn == NULL}
fprintf (stderr, "opening of %s failed: %s\n",Temp, strerrorierrnoc});

//The SD_*_*_*.txt files will have a line of data for the incoming treelist at and it
is NOT needed.
//SafeD works by assuming the the lst period is after Harvest activities and 5-yr
growth
fscanf (DatalIn, "%d %1f %1f %1f %1f $1f %1f %1f %hu %1f %1f %1f 31f %1f %1f %1f s1f",
&DataPeriod, &RealBasal,
&RealClosure, &RealCBD, &RealHLC, &RealHeight, &RealRev, &RealBigTrees,
&VegCode, &Harvest,
&Reallitter, &RealClass25, &RealClascsl, &RealClass3, &RealClassé,
&RealClassl2, &RealClassOverl2);

//Now scan in all the data ONCE and store in the array of Inv structures
//I assume that the SD_*_*_ * have Period 1 on line 2
for (y=0;y<NP; y++)
{
//First, scan in the lines from SD*
fscanf (DataIn, "$d %$1f %1f %1f %1f %1f %1f 31f %hu %1f %1f 31f %1f %£1f %1f
B1f %1f", &DataPeriod, &RealBasal,
&RealClosure, &RealCBD, &RealHLC, &RealHeight, &RealRev,
&RealBigTrees, &VegCode, &Harvest
&Reallitter, &RealClass25, &RealClassl, &RealClass3, &RealClassé,
&RealClassl2, &RealClassOverl2);

if (DataPeriod != y+1)
printf(*problem with period walues in the PREMQ files\n");

//Check and make sure values that eventually will be converted to USHORT
are OK in terms of 65535 thingy!
if(RealBasal >= 6553 || RealCBD >»= 655 || RealBigTrees >= 6553 ||
Reallitter »= §553*TONS ||
RealClass25 >= 6553*TONS || RealClassl >= 6553*TONS || RealClass3
>= £553*TONs ||
RealClass6 >= 6553*TONS || RealClasslZ >= 6553*TCNS ||
RealClassOverl2 >= 6553*TONS)

printf("Guilty is: Tree %d Goal %d and Hold %4 in period %d\n",
Treelist, goal, HoldPeriods,y+1);
Bailout (42);

)

//Just in case
if (RealCBD < 0)
RealCBD = 0;

Inv[Record] . Treelist

Inv[Record] .Goal =
Inv[Record] .Hold =
Inv[Record].Period =
Inv’Record] .Basal

* BASAL_EXP));
Inv Record].Clogure =
{ushort) (floor (RealClosure));
Inv [Record] .Density =
DENSITY_EXP));
Inv[Record] .HeightCrown =
0.5));
Inv[Record].StandHeight =
+ 0.5)});
Inv[Record] .Rev
Inv[Record] .BigTrees =
(ushort) (floor (RealBigTrees * BIGTREES_EXP)};
InviRecord] .Vegcode
Inv Record] .Harvest

{ulong)Treelist;
{ushort)goal;
{ushort)HoldpPeriods;
{ushort)y;

170

{ushort) (floor (RealBasal

{ushort) (floor {RealCBD *

(ushort) (floor {RealHLC +

(ushort) (floor (RealHeight

= (float)RealRev;

VegCode;
(float)Harvest;

//The incoming fuel loads are in LBS - convert to TONS but keep some

precision by multiplying by FUEL_LCAD_EXP

Inv[Record] .Litter =
{ushort) {RealLitter/LoadFactor);

Inv[Record].Class25 =
{ushort) {RealClass25/LoadFactor) ;

Inv[{Record].Classl =
{ushort) (RealClassl/LoadFactor);

Inv . Record] .Class3 =
{ushort) (RealClass3/LoadFactor);

Inv Record] .Classé =
{ushort) (RealClass6/LoadFactor) ;

Inv[Record] .Classl2 =
{ushort) (RealClass12/LoadFactor];

Inv[Record] .ClassOverl2 =
{ushort) {RealClassOverl2/LoadFactor)

Record++;
SURE to increment this counter up
Y//end for (y=0;y<NP;y++)
fclose{Dataln);
}//end for (HoldPeriods=0
}//end for {goal=0;g0al<GOALS; goal++]

}//end for{ctr = 0; ctr < count; ctr++)

felose {Index);

[/ ***** gort the array by Treelist-Goal-Hold-Elev-Period and prepare to write cut the results

gsort{ (void*)Inv,
//base
{size_t)RecordsNeeded,
//count of records
sizeof(struct PREMO_RECORD)},
//size of each record
LookAtPremoRecords ;;
//compare function

//Create the output Binary file and header file
sprintf(Temp, "%s%s\\Binary\\%s_Premo.bin", PREFIX, InitialStandDataDir, ENVT) ;
BinQut = fopen(Temp, "wb");

sprintf(Temp, "%s%s\\Binary\\%s_Premo.hdr", PREFIX, InitialStandDataDir, ENVT];
HeaderOut = fopen|{Temp, "w*);

//Write out the header data -- need to know how many records there are
fprintf(HeaderOut, "%lu\n*,RecordsNeeded);

//And now write out all the records in the array of Inv structure
fwrite(Inv, sizeof(PREMO_RECORD), RecordsNeeded,BinOut);

fclose (BinOut};
fclose (HeaderOut};

delete [] Inv;
}//end CreateSortedPremoBinaryFile

T AR R R R R R

int LookAtPremoRecords(const void *ptrl, const void *ptr2)

[/ ok sk ke ko kK K K K K K K Kk K K e e kK ko kR kR K Rk K Kk

(

//Just to typecast them since we aren’t actually passing in pointers
struct PREMO_RECORD *eleml;
struct PREMO_RECORD *elem2;

//BE

eleml = (struct PREMO_RECORD *)ptrl;
elem2 = (struct PREMO_RECORD *)ptr2;

if(eleml->Treelist < elem2->Treelist)
//First sort by Treelist
return -1;
if(eleml->Treelist > elem2->Treelist)
return 1;
else

//Then by Goal
if(eleml->Goal < elem2->Goal)

return -1;
if(eleml->Goal > elem2->Goal)
return 1;
else
//Then by Hold

if{ eleml->Hold < elem2->Hold)

return -1:
if{ eleml->Hold > elem2->Hold)}
return 1;
else
//Then by Period

1f{ eleml->Period < elem2->Period

return -1;

if({ eleml->Pericd > elemZ->Period

return 1;
else
return 0;
/ /FINISHED! !
}//end Period
}//end Hold
}//end Goal

}//end LookAtPremoRecord

P A R R R R R L

void FillInitialPremoData(int per)

P AR R R R R e R R R R R

(
I+

This function will be called up only at period 0, which is before main()
starts into the NP period loop. This function needs to COMPLETELY fill up the
Data.* array for all NP periods with the initial data derived from the prescripticn generator.

Filling in the initial data will be done by using the sorted binary file created during

CreateSortedPremcBinaryFile(
*
/

/ /10 variables
FILE *BinIn, *HeaderIn;
char Temp[256];

//structures
struct PREMO_RECORD Key;
struct PREMO_RECORD *ptr_record;

//pointers
ulong *ptr_treelist;
ushort *ptr_goal, *ptr_hold, *ptr_elev, *ptr_vegcode;

int x,y, count;
ulong RecordNo;

//For Time information
clock_t Start, Finish;
double Duration;

Start = clock();

}

3

171

printf({"\n\n
=\n"};

printf{*\t\t*** Filling the Data.* arrays with Binary data from PREMO ***\n");

//Create and Open the Header and actual Binary file with PREMO data in it
sprintf{Temp, "%s%s\\Binary\\%s_Premoc.bin", PREFIX, InitialStandbataDir, ENVT};

BinIn = fopen(Temp, "rb");

sprintf (Temp, "%s%s\\Binary\\%s_Premc.hdr",PREFIX, InitialStandDataDir, ENVT);

HeaderIn = fopen(Temp, “r");

//Get the Number of records that are listed in the header file

fscanf (HeaderIn, "$1lu*", &RecordlNo) ;

//Create an array of structures on the free store to hold these records
struct PREMO_RECORD (*PremoInv) = new struct PREMO RECORD[RecordNo] ;
if{ PremoInv == NULL }

172

printf("Problems allocating memory for PremoInv[] with %lu elements\n", RecordNo*sizeof (PREMO_RECORD));

//Initialize a couple of things
memset(PremoInv, 0, sizeof(struct PREMO_RECORD) * RecordNo);
memset (&Key, 0, sizeof{ struct PREMO_RECORD));

//Now just read in the binary data the same way it was written out in CreateSortedPremcBinaryFile!()

fread(PremoInv, sizeof {PREMO_RECORD),RecordNo,BinlIn);

//close up the files
feclose(BinIn);
fclose (HeaderIn) ;

//Go one-by-one through the Data.* stands and get the Treelist-goal-hold-Period and then use that as

//a key to do a binary search on the PremoInv structures and find the correct data
//1 assume that all Data.* arrays are filled and that the first Data.Treelist element
//has a value in it - if I hit a Data.Treelist == 0 then there are no more to do on landscape

for{count=0; count<UNIQUE; count++) //go one-by-one through Data.Treelist[]

{

//8et the primary pointers to the Data.* arrays

ptr_treelist = &Data.Treelist [count];
ptr_goal = &Data.Goal [count];
ptr_hold = &Data.Hold[count];
ptr_elev = &Data.Elesv[count];
ptr_vegcode = &Data.Vegcode [count)} [C];
//Set a break if we get a treelist == 0 ...signals the end of data in the Data.*[] arrays

if{ *ptr_treelist == FALSE)
break;

//If this cell is NONFOREST then make some adjustments to fuel models and fill Data.Vegcode[}(] with

NONFOREST
if (*ptr_treelist == NONFOREST}
{

//NOTE: the NONFOREST Data.InitialFuelModel[] and Data.FuelModel[][] were filled up back in the

function

//LoadInitialFuelModelsAndLoads (). I am not going to double-check here that it was done

although I have
//ran test to make sure.

//Assign a goal of 10" to indirate this is GROW-ONLY (non-forest)
*ptr_goal = 10;

//8et all Data.Vegcode values to NONFOREST
for (x=0;x<NP; x++)
{
*ptr_vegcode = NONFOREST;
ptr_vegcode++;

}
continue; //should continue next iteration of big
for {count=0; count<UNIQUE...) loop
}//end if (*ptr_treelist == NONFOREST)
/ /===================== End of what to do if the initial treelist is NONFOREST
else 1if(*ptr_vegcode == 0) //This treelist-goal combination has NOT been inputted
yet
{

Vegcodes should be 0 at beginning of simulation

//8tart to make sume of the "Key" for this cell to use in looking for the correct

//record in the array of Premolnv structures

Key.Treelist = (ulong) *ptr_treelist;
Key.Goal = (ushort}*ptr_goal;
Key .Hold = (ushort) *ptr_hold:

//make another loop to account for the period
for{y=0;y<NP;y++)
{

Key.Period = (ushort)y;

//printf{"Key: %lu %hu %hu %hu %hu\n",Key.Treelist, Key.Goal,Key.Hold, Key.Period);

//Now use bsearch to find the matching record in the array of PremolInv structures

ptr_record = {struct PREMC_RECORD*)bhsearch!
&Key,
{(void *)PremoInv,
(size_t)RecordNo,
sizeof(struct PREMO_RECCRD),
LookAtPremoRecords)

if{ptr_record == NULL}
Bailout (75} ;

173

//Check to see it the Vegcode value is Mixed Conifer - if so it must be broken into >
or < 3000°
if{ {(int) (ptr_record->vegcode / 100) == 5)
(
1f({ *ptr_elev >= (3000*FT2M) }
//It's over 3,000 ft
Data.Vegcode[count] [v] = ptr_record-
>Vegcode + 500; //This will give it 10+*+
else
Data.vegcode[count] [v}] = ptr_record-
>Vegcode; //Leave as is
}
else
Data.Vegcode [count] [v] = ptr_record-
>Vegcode; //Leave as is
if(Data.Vegcode{count] [y} > 1061)
printf("Got a BAD vegcode value during fill data with initial PREMC
data\n");

//Fill in the rest of Data.*[] arrays with the data accessible from the pointer
returned above

//Everyone shopuld already have the proper type - converted back in
CreateSortedPremoBinaryFile ()

Data.Basal[count] [¥] = ptr_record->Basal;

Data.Closure[count] [y] = ptr_record->Closure;

Data.CBDensity[count] [v] = ptr_record->Density:

Data.HLC [count] {y] = ptr_record->HeightCrown;

Data.StandHeight {count] [v] = ptr_record->StandHeight:

Data.BigTrees[count]{y] = ptr_record->BigTrees;

Data.CFHarvest [count] [v] = ptr_record->Harvest:

//Fuel Loads were also properly converted back in CreateSortedPremoBinaryFile(}

Data.Litter[count][y] = ptr_record->Litter;
Data.Class25[count] [y] = ptr_record->Class25;
Data.Classl[count][y] = ptr_record->Classl;
Data.Class3[count] [y] = ptr_record->Class3;
Data.Classé[count] [v¥] = ptr_record->Classé6;
Data.Classl2[count) [v] ptr_record->Classl2;

Data.ClassOverl2[count] [y] = ptr_record->ClassOverl2;

}//end for (y=0;y<NP;y++)
}//end of if(*ptr_vegcode == 0)
}//end for{count=0;count<UNIQUE;count++)

//delete any arrays on free store
delete [] PremoInv;

Finish = clock{};

Duration = ((double) (Finish-Start) / CLOCKS_PER_SEC);
printf("\t\tTo fill the Data.* arrays with PREMO stand data took %.21f seconds\n”, Duration):
printf(~ ======================================= ====

====\n");
}//end of FillPremoData

PR e R e e e e R e e e L

int CompareHitListForNewPremo(const void *ptrl, const void *ptr2)
PR e e A A SRR

{

//Just to typecast them since we aren‘t actually passing in pointers
struct HIT_BY_ DISTURB *eleml;
struct HIT_BY_DISTURB *elem2;

eleml = (struct HIT_BY_DISTURB *)ptrl;
elem2 = {struct HIT_BY_DISTURB *)ptr2;

if{ eleml->Treelist < elem2->Treelist }
//First sort by Treelist
return -1;
if{ eleml->Treelist > elem2->Treelist }
return 1:
else
//Then by Goal
{

if{ eleml->Goal < elem2->Goal)

return -1;
if(eleml->Goal > elem2->Goal)
return 1;
else
//Then by Hold

if{ eleml->Hold < elem2->Hold
return -1;

if{ eleml-»Hold > elem2->Hold)
return 1;

174

else

return 0;
//FINISHED! !
}//end Hold
}//end Goal

}//end CompareHitListForNewPremo

AR I T
int CountUniqueNewPremoHits (struct HIT_BY_DISTURB HitList[], int Count)
F AR L L R R R N L T

{
//Go through HitListl] and find how many actual Unique combinations of Treelist-Goal-Hold

int a,b,Unique;
ulong EvalTreelist;
ushort EvalGoal, EvalHold;

Jmmm s m e end of variable defining -—--—-—------—mmmmmm e
Unigque = 0;
b= 0;
for(a=0;a<Count;) //a will get increment by other
loop
(

if(b == Count) //because of weird
incremental method, b will reach end first but a doesn't know that

break;
Unique++; //Efirst one always counts

as do others because a gets reset in cther loop

//Set the initial Eval* variables

EvalTreelist = HitList[a].Treelist;
EvalGoal = HitList[a]}.Goal;
EvalHold = HitList[a].Hold;

//sine HitList is already sorted, start at next record and look downward until no longer a match
for({b=a+l;b<Count;)

(
if¢ HitList[b] .Treelist == EvalTreelist &&
HitList[b].Goal == EvalGoal &&
HitList[b] .Hold == EvalHold
}
b++;
//look at next record
else
(
//Set the "a" variable tc where "b" is because this is the next unique match
a =b;
break;

}
}//end for (b=a+l;b<Count;b++)
}//end for(a=0;a<Count;a++)

return Unique:;
}//end CountUniqueNewPremoHits

READDATA. PP

// This READDATA.cpp file is to hold the functions used to populate the DATA structure.
// This structure has arrays that hold a bunch of input data themes.

// There is also a 1link[][] array created that is the array used to "link" any input data into the
// the arrays in DATA by means of a row/column search and linkage.

#include <stdic.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include "globals.h*

//OK, see if I can make a structure called "Data" to store the maindata.

//Using a structure to keep memory usage down because only the Cellid and
//Treelist needs to be ulong{4bytes each element)} and the others can be ushort.

//1 could just declare each one separately but I want some practice with structures!

struct Main{

ulong Cellid[UNIQUE]; /7 Values for entire
Applegate watershed

ushort GridRow[UNIQUE];

ushort GridColumn[UNIQUE] ;

ulong Treelist[UNIQUE] ;

ushort Elev[UNIQUE]; I in meters

ushort Aspect [UNIQUE];

ushort Slape[UNIQUE];

ushort Goal [UNIQUE] ;

ushort Owner [UNIQUE];

175

ushort Pag[UNIQUE];

ushort Alloc[UNIQUE] ’ Does NOT include an
allocation for stream buffers - use Data.Buffer

ushort Minor [UNIQUE];

ushort Hold[UNIQUE];

ushort Buffer [UNIQUE]; // Stream buffers on FED land
only!! NODATAFLAG = noBuff, 100 = in Buffer
ushort FireHistory[UNIQUE]; 77 0ld fire perimeters

NODATAFLAG = not in, 100 = in old polygon
ushort InitialVeg[UNIQUE];
ushort InitialStage[UNIQUE];
ushort PRule [UNIQUE] ;

//Get calculated within SafeD

ushort InitialDuff [UNIQUE]; // These initial Fuel Loadings will be
divided by TONS - convert back by
ushort InitialLitter [UNIQUE]; // multiplying by TONS when using.(also using

FUEL_LOAD_EXP to make ushort)
ushort InitialClass25([UNIQUE];
ushort InitialClassl[UNIQUE];
ushort InitialClass3[UNIQUE];
ushort InitialClass6 [UNIQUE];
ushort InitialClassl2[UNIQUE];
ushort InitialClassOverl2[UNIQUE];
ushort InitialFuelModel [UNIQUE];
ushort InitialEra[UNIQUE};
ushort FuelModel [UNIQUE] [NP];

ushort Duff [UNIQUE] [NP]; //Divided by TONS - and multiply by
FUEL_LOAD_EXP
ushort Flame[UNIQUE]; //Will hold the current flame

length interval from a FARSITE run

//Data that will come from Premo

ushort Basal [UNIQUE][NP]; // converting...divide by 10 to get REAL
value

ushort Closure [UNIQUE] [NP]; // Truncating to closest integer

ushort CEDensity[UNIQUE] [NE]; // converting...divide by 100 to get REAL value

ushort HLC [UNIQUE] [NP]; // Truncating to closest integer

ushort StandHeight[UNIQUE] [NF]; // Truncating to closest integer

ushort BigTrees [UNIQUE] [NFP]; // converting...divide by 10 to get REAL value

ushort Era[UNIQUE][NP]; // converting...divide by 100 to
get REAL value

ushort Vegcode{UNIQUE] [NE]; /7

float CFHarvest [UNIQUE] [NP]; /7

ushort Litter [UNIQUE] [NF]; IFEEEEEEE All these fuel loadings will be
divided (/} by TONS -- Premo * by TONS

ushort Class25[UNIQUE] (NP]; /== when it outputted and some are too
big to fit in ushort. Convert

ushort Classl[UNIQUE] [NF]; S/ when needed back to TONS.

ushort Class3{UNIQUE] [NP];

ushort Class6 (UNIQUE] [NP];

ushort Classl2[UNIQUE] [NP];

ushort ClassOverl2 [UNIQUE] [NP] ;

} Data;

//Array to hold the "linkage" for filling up the arrays in the Data structure
int link[ROWS] [31];

//functions used in ReadData.cpp
int CreateMainData(void);

int AsciiReadCell(void); //For Ascii reading

//int AsciiReadDatal{void);

int MakeLink (void); //both binary and ascii ways can use this
int BinaryReadData({void}; //For Binary reading

long CheckHeader (int File);
void ReadGoalHoldFound{int Goal);

//defined in StandOptStuff.cpp
extern void CreateTreelIndex(void);

//defined in Misc.cpp

extern void Bailout({int ErrorNumber);

extern void PrintToStat(int, ulong Value);

] R AR kR R kAR R R R kA R R R Rk kR R R R Ak Ak Rk ARk R R R R R AR R AR KR AR KA AN AR A

int CreateMainbData{void)
L NI

{
#ifdef USE_BEST_GOAL_HOLD

printf(“\n\n******** Creating and initializing the main Data.*[] arrays....... LAY L I

printf (Mrrraanaw Will be using GOAL and HOLD values from previous simulation. *********xxxs\pn\n"};
#else

printf{“\n\n******** Creating and initializing the main Data.*[] arrays....... FREFKEFAKAKENQ") -
#endif
int r,s;

//For Time information
clock_t Start, Finish;
double Duration;

//Initialize all the arrays of the Data.* arrays w/ 0’s or other

for{r=0;r<UNIQUE;r++)

{
Data.
Data.
Data.
Data.

Cellid[r] = 0;
GridRow[r] =
GridColumn{r]
Treelist(r]
Data.Elev(r]
Data.Aspect|[r] =
Data.Slope[r] =
Data.Owner[r]
Data.Pagfr]
Data.Alloc[r] = 0;
Data.Minor[r] =
Data.Buffer(r]
Data.FireHistorylr) = 0;
Data.InitialVeg[r] =
Data.InitialStagelr] = Q;
Data.Flame[r]
Data.Goal[r]
PickPrescription - defaults to 9 (GrowOnly)
Data.Hold[r] =
(available to cut in period 1)

=]

Data.
Data.
Data.InitialClass25[r] =

InitialDuffr] o}
9]
G
Data.InitialClassl[r] = 0:
0
0
0

InitiallLitter([r] =

Data.InitialClass3|r] =
Data.InitlalClass5[r] =
Data.InitialClassl2[r]
Data.InitialClassCverl2(r] = Q;
Data.InitialFuelModell[r] =
InitialEralr] =
PRule[r] =

Data.
Data.

for {s=0;s<NP; s++}
prescription is selected
(
Data.Vegcade[r] [s] =
Data.CFHarvest[r] [s] =
Data.Basal[r][s] =
Data.Closure[r][s]

cooo

canopy closure
Data.FuelModel[r] [s] = 0;
Data.CBDensity[r] [s] =
Data.HLC[r] [s] =
Data.StandHeight[r] [s) =
Data.BigTrees[r][s] =
Data.Eralr] [s] = 0:
Data.Duff (r][s]
Data.Litter[r][s] =
Data.Class25[r] [s] =
Data.Classl[r][s] =
Data.Class3[r][s] =
Data.Classé6[r] [s] =
Data.Classl2[r] [s] =
Data.ClassOverl2[r][s]

[l N ===}

}

printf(f--——--—-- Finished initializing, now to start
Start = clock{);
//NEW: Nov 99.

Call up functions to read either ASCII or BINARY

#if (FILE_TYPE == 1)

176

data

//Goal will get a "real" value in

//same with Hold - defaults to 0

//These all will get filled after

//remember: the SD_*_*_*_txt file DOES have

filling in with data------—----- \n");

files (use #define FILE_TYPE toggle)

//Read in the ASCII files

PULS("\N\N*****4sxtaxxrxdrsarsds PARNTNG ***** WARNING ***** WARNING *****xsxrfsrsddadxkrsssnssny;

Dubs (o ***xx
pubs {#***ax
puts(v***** the Slope, Aspect and Pag files - BAILING NOW!
puts (P x*xes

AxE A

ASCII reading method has not been completely updated vet - will not input *****");
and see AsciiReadDatal()

Arkrw

AN L

TPULES (%% % o0 ko sk ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ko kR R Rk Rk Rk ko ko kR R Rk Rk Rk R Rk R K Rk R KRR kR R Rk R AR)

exit(l);

//call up these routines to f£ill the Data.*[]
if(AsciiReadCell(})

(if (MakeLink())
{ //if(AsciirReadbata(})
(

Finish = clock!();
Duration = {(

{double) (Finish-Start) /

and 1link[][] arrays

CLOCKS_PER_SEC) ;

printf{“\n**Reading the initial data in ASCII format took %, 21f

seconds**\n*, Duration);

)

177

telse
//Read in the
BINARY files

//call up these routines to £il1 the Data.*[] and link[][] array
1f(BinaryReadData{))
{

Finish = clock{)
Duration = ((double) {Finish-Start) / CLOCKS_PER_SEC);
printf {“\n**Reading the initial data in BINARY format took %.21f seconds**\n", Duration };

#endif //if {(FILE_TYPE==1)

[ERA AR Ea Ak s a4k s TREEINDEX CIEation *****xsxxsxxhan s a bk bbb adnn
//Create the TreeIndex.txt file now, because too many other things rely on it

#ifdef CREATE_TREE_INDEX

CreateTreeIndex|(); //undefine & create new file with just 1 or 2 values when running test con
PREMO

#endif

AR R e e e]

return TRUE;

}//end of CreateMainData

J B R L L R eI e
J B B N R L L e S

/7 Start of functions to handle importing the data in BINARY format
B R e e LT L T

B R e R e R I s e e

B R e e R R R Rt L L

int BinaryReadData{void)
[] AR R A AR Ak n AR AR KR AR A AR AR R R AR AR A AR R AR AR KR AN R R R KRR KRRk

{

FILE *BIN;

char InFile[150]="";

int r,c;

ulong cell;

long CellidND; //hold the returned NoData wvalue
from CheckHeader{} for Cellid - it is reused

long ND; //hold other returned NoData wvalues
from CheckHeader ()

int FileNo;

float RawValue;

//Create a temporary array to store the input Cellid binary data, which has data for every cell
float (*TempCellid) [COLUMNS] = new float[ROWS] [COLUMNS]: //ROWS*COLUMNS is how many elements are in the
initial grid/binary file
if (TempCellid == NULL)
printf("There was NOT enough memory for TempCellid with %1lu elements\n", ROWS*COLUMNS) ;

//Initialize the TempCellid array
for(r=0; r<RCWS;r++)
{
for{c=0; c<COLUMNS;C++)
TempCellid{r]{c] = G;
}

//Check the header data associated with this binary file and get the returned NODATA value
CellidND = CheckHeader(0};

J//******read in every element of the Cellid data and stcre in the TempCellid array

sprintf(InFile, *%s%s\\cellid_%s.bin", PREFIX, ConstantInput, ENVT);

BIN = fopen(InFile, “rb*};

if{ fread(TempCellid,sizeof(TempCellid),ROWS*COLUMNS, BIN) != ROWS*COLUMNS} //TempCellid is only a pointer!
Bailout {66);

else
printf("**Binary file %s OK**‘n", InFile);

fclose(BIN};

//Using the same criteria as reading in the old ASCII files, {i.e. checking for NODATA) fill the actual
//Data.Cellid[] array with only those values needing tracked and fill Data.GridRow[] with
//the original ROW cell number and the Data.GridColumn|[] with criginal COLUMN cell.

cell = 0;
for{r=1; r<=ROWS;r++)
4
for (c=1; c<=COLUMNS; c++)
4
1f (TempCellid(r-1]([c-1] != CellidND)
{
Data.Cellid[cell] = (ulong)TempCellid[r-1]{c-1}; //The CELLID value
Data.GridRow([cell] = (ushort)r;
//original grid row
Data.GridColumn[cell] = ({ushort)c;

//original column row
cell++;

//Call up the MakeLink()

if(MakeLink() == FALSE)
Bailout(67);

/*

to create the link[][]

array used thrcughcut this program

Loop through and read in the Input Landscape files. This is being done one file at a time so

only one TempInput has to be created.

The TempCellid[][] created above will act as the

template for reading in the current landscape file.

*/

//Create a temporary array to store the input binary data, which has data for every cell

//NOTE: These input binary files are generated by ArcInfo as FLOATing numbers so use that as type and typecast

later as needed

float (*TempInput) [COLUMNS] = new float [ROWS] [COLUMNS] ;

binary file
if (TempInput ==

printf(“There was NOT enough memory for TempInput with %lu slements\n",ROWS*COLUMNS) ;

for (FileNo=1;FileNo<=FILES;FileNo++)

{

NULL)

/*I am going to hard-wire codes to use for REQUIRED input landscape files:

1 Treelist

2 Elevation

3 Aspect

4 Slope

5 Ownership

6 Plant Association Group
7 Allocation (for federal lands)
8 Minor (sub-watersheds)
9 Buffer

10 Fire History

11 InitialVeg

12 InitialStage

13

There will be Switch statements both below and in the CheckHeader(}
be gsure to modify code in both places.

*/

switch(FileNo}
{

sprintf{InFile,

sprintf{InFile,

sprintf(InFile,

sprintf(InFile,

sprintf{InFile,

sprintf{InFile,

sprintf(InFile,

sprintf(InFile,

sprintf {InFile,

sprintf (InFile,

sprintf(InFile,

sprintf(InFile,

sprintf (InFile,

case 1:

break;
case 2:

break;
case 3:

break;
case 4:

break;
case 5:

break;
case 6:

break;
case 7:

break;
case 8:

break:
case 9:

break;
case 10:

break;
case 11:

break;
case 12:

break;
case 13:

break;
default:

{stream buffers on federal lands)

Bailout (68);

Prescription Rule allocation for Framework only

"%5%s5\\treelist_%s.bin", PREFIX, CommonInitial, ENVT);

"%s%s\\elev_%s.bin", PREFIX, ConstantInput, ENVT) ;

“%$s%s\\aspect_%s.bin", PREFIX, ConstantInput, ENVT} ;

"$s%s\\slope_%s.bin", PREFIX, ConstantInput, ENVT);

"%s%s\\owner_%s.bin", FREFIX, ConstantInput, ENVT} ;

"$s5%s\\pag_%s.bin", PREFIX, ConstantInput, ENVT} ;

“$s%s\\alloc_%s.bin", PREFIX,ConstantInput, ENVT};

"$s¥s\\minor_%s.bin", PREFIX,ConstantInput, ENVT) ;

*$s%s\\strbuf_%s.bin', PREFIX, ConstantInput, ENVT) ;

“$s3¥s\\firehist_%s.bin" ,PREFIX,ConstantInput, ENVT);

"%s%s\\veg_%s.bin", PREFIX,CommonInitial, ENVT) ;

"$sks\\stage_%s.bin", PREFIX, CommonInitial, ENVT) ;

“%s%s\\rule%d_%s.bin", PREFIX, ConstantInput, PRULE, ENVT} ;

function so if new required files are added

178

//ROWS*COLUMNS ic how many elements are in the initial

//Initialize and Re-Initialize the TempInput array to prepare and hold new data

for (r=0

{

//Check the header data associated with this binary file - program will bail if header file is bad

;r<ROWS; r++)

for{c=0; c<COLUMNS; c++)

TempInput[r][c]

ND = CheckHeader (FileNo);

//******read in every element of the current binary data and store in the TempInput array

BIN = fopen(InFile,

/I

Use the same criteria as reading in the original Cellid.bin file.

spat

then input data from the same spot from TempInput. Also, check the current value in TempInput and if it has
then put a NODATAFLAG in the spoti{because most nodata will be -39%% and

a NoDat

Bailout (66);
fclose (BIN);

a value (according to its

rb);
if{ fread(TempInput,sizeof (TempInput}, ROWS*COLUMNS,BIN] != ROWS*COLUMNS)

.hdr file)

= 0;

mose of these are ushort which can’t handle that value),

*/
cell =
for{r=1

{

grab it

made

NoData

NoData

NoData

NoData

NoData

NoData

NoData

0;

;T<=ROWS,; r++}

for{c=1;c<=COLUMNS; c++)

{

for this file

//RawValue

for this file

//RawValue

for this file

//RawValue

for this file

//RawValue

for this file

//RawValue

for this file

//RawValue

for this file

//RawValue

if (TempCellidfr-1][c~1] != CellidND)

//keep track of which array element to fill

//first grab the raw float value
RawValue = TempInput[r-1][c-1];

//The original Cellid - if not NoData,

//TempInput is only a pointert!

If there was a valid value in the TempCellid

179

then

//Now switch to the appropriate file so data can be placed properly and conversion

switch(FileNo)

{
case
this spot,

good, just

case

this spot,

good, just

case

this spot,

good, Jjust

case
this spot,
good, just
case
this spot,
good, just
case
this spot,

good, Jjust

case
this spot,
good, just

1:
if {RawValue == ND}
put NONFOREST wvalue in
Data.Treelist[cell] = {ulong)NONFOREST;
else
convert to correct type and put in right spot
Data.Treelisticell] = (ulong)RawValue;
break:
2:
if(RawValue == ND)

put NODATRAFLAG in
Data.Elev(cell] = (ushort}NODATAFLAG;

else
convert to correct type and put in right spot
Data.Elev[cell] = (ushort)RawValue;
break;
3
if{RawValue == ND}
put NCDATAFLAG in
Data,.Aspect[cell] = (ushort)NODATAFLAG;
else
convert to correct type and put in right spot
Data.Aspect[cell) = {(ushort)RawValue;
break;
4:
if (RawValue == ND)
put NODATAFLAG in
Data.Slope[cell| = (ushort)NODATAFLAG;
else
convert to correct type and put in right spot
Data,.Slope[cell| = (ushort)RawValue;
break;
S
if (RawValue == ND)
put NODATAFLAG in
Data.Owner[cell) = (ushort)NODATAFLAG;
else
convert to correct type and put in right spot
Data.Owner[cell] = ({ushort)RawValue;
break;
6:
if (RawValue == ND)
put NODATAFLAG in
Data.Pag[cell] = {ushort}NODATAFLAG;
else
convert to correct type and put in right spot
Data.Pag[celll = {ushort)RawValue;
break;
7:
if (RawValue == ND)
put NODATAFLAG in
Data.Alloc[cell] = {(ushort)NODATAFLAG;
else
convert to correct type and put in right spot
Data.Alloc[cell] = {ushort)RawValue;

break;

//There

//There

//There

//There

/ /There

//There

//There

is

180

case 8:
if (RawValue == ND) //There is
NoData for this file in this spot, put NCDATAFLAG in
Data.Minor [cell] = {ushort)NODATAFLAG;
else
//RawValue is good, just convert to correct type and put in right spot
Data.Minor [cell] = {ushort)RawValue;
break;
case 9:
if (RawValue == ND) //There is
NoData for this file in this spot, put NODATAFLAG in
Data.Buffer[cell] = (ushort)NODATAFLAG;
else
//RawValue is good, just ccnvert to correct type and put in right spot
Data.Buffer[cell] = (ushort}RawValue;
break;
case 10:
if (RawValue == ND) //There is
NoData for this file in this spot, put NODATAFLAG in
Data.FireHistory[cell] = {(ushort)NCDATAFLAG;
else
//Rawvalue is good, just convert to correct type and put in right spot
Data.FireHistory[cell] = {ushort}RawValue;
break;
case 11:
if (RawValue == ND) //There is
NoData for this file in this spot, put NODATAFLAG in
Data.InitialVeg[cell] = (ushort}NODATAFLAG;
else
//Rawvalue is good, just convert to correct type and put in right spot
Data.InitialVeg[cell] = {ushort}RawValue;
break;
case 12:
if (RawValue == ND} //There is

NoData for this file in this spot, put NODATAFLAG in
Data.InitialStagefcell] = (ushort)NODATAFLAG;

else
//RawValue is good, just convert to correct type and put in right spot
Data,InitialStage[cell] = (ushort)RawValue;
break;
case 13:
if (RawValue == ND) //There is
NoData for this file in this spot. put NODATAFLAG in
Data.PRule[cell] = (ushort)NODATAFLAG;
else
//Rawvalue is gocd, just convert to correct type and put in right spot
Data.PRule{cell] = (ushort)RawValue;
break;
default:

Bailout{68);
}//end switch

//increment array position counter
cell++;

}//end if (TempCellid[r-1][c-1] != CellidND}
}
}//end for (r=1;r<=ROWS;r++)
printf(***Binary file %s has been inputted and is OK**\n", InFile)
}//end for (FileNc=0;FileNo<=FILES;FilelNo++)
//Delete the TempCellid and TempInput arrays from free store since they is no longer needed

delete [] TempCellid;
delete [] TempInput;

return TRUE;
}//end BinaryReadData

//**ttﬁtttttkktkttttkkkkkkkktttkkk&ckk&cktk&ck&ck&ck&ck&ck&ck&ck&cttk&cﬁ*k&ck&cktttktk&ck&ckﬁk&ck****k&ck&ck&ck&ck&ck&ck&cttk
void ReadGoalHoldFound({int Goal)

P A R R R R R R Y

{

7>
This function is te read in the binary files for a GOAL-HOLD solution
from a previous simulation run, and reenter those values into Data.Goal{] & Data.Hold[].
These binary files were generated in BinarySaveGoalHold, found in "goal_controller.cpp.
For GROW_ONLY goal, just skip this function because the Goal-Hold values default to 9-0
during initialization in CreateMainDatal().

*/

FILE *BIN;

char GoalInFile[256];
char HoldInFile[256];

ushort *ptr_goal;
ushort *ptr_hold;

J ittt End of variable defining ------—--—-—--------ommm o

printf("**Reading binary GOAL and HOLD values from previocus simulation.\n");

if(Goal != GROW_ONLY)
{

/ /Make the correct output file names

sprintf(GoalInFile, "%s%s%d\\%s_%s_goal.bin", PREFIX.RerunDir, GCAL_TO_USE, OPTPREFIX, ENVT) ;
sprintf (HoldInFile, "%s5%s5%d\\%s_%s5_hold.bin", PREFIX,RerunDir, GOAL_TO_USE,OPTPREFIX, ENVT} ;

//Now read them back in
ptr_goal = gData.Goal[0];
ptr_hold = &Data.Hold[O0];

BIN = fopeniGoalInFile, "rb");
if({ BIN == NULL }

printf (*THERE IS NO OLD GOAL FILE FOR THIS LANDSCAPE - BAILING!!!!\n"});

fread(ptr_goal,sizeof(Data.Goal[0]), UNIQUE, BIN) ;
fclose(BIN);

BIN = fopen(HoldInFile, "“rb");
if{ BIN == NULL)

printf ("THERE IS NO OLD HOLD FILE FOR THIS LANDSCAPE - BAILING!!!!\n");

fread(ptr_hold, sizeof (Data.Hold[0]),UNIQUE,BIN) ;
fclose (BIN} ;

}//end ReadGoalHoldFound

R R R R R S R R R R R R R R R Rt

long CheckHeader {int File)

PR R R RS TS T

{

/*
Input code values {"File") and what data they are referring to:
0 Cellid

1 Treelist

2 Elevation

3 Aspect

4 Slope

5 Ownership

[Plant Association Group

7 Allocation (for federal lands)

8 Minor {sub-watersheds)

9 Buffer (stream buffers on federal lands)

10 Fire History

11 InitialVeg

12 InitialStage

13 Prescription Rule allocation for Framework only

*/

FILE *IN;

char HeaderFile[150];
char garbage[l3];
char ByteOrder([10];
int Row, Column;

long Neodata;

double x11, yll, junk;

//Get the appropriate file to check

switch(File)
(
case 0:

sprintf (HeaderFile, "%s%s\\cellid_%s.hdr", PREFIX,ConstantInput, ENVT);
case 1:

sprintf (HeaderFile, "%s%s\\treelist_%s.hdr", PREFIX,CommonInitial, ENVT);
case 2:

sprintf (HeaderFile, "%s%s\\elev_%s.hdr", PREFIX, ConstantInput, ENVT);
case 3:

sprintf (HeaderFile, "%s%s\\aspect_%s.hdr", PREFIX,ConstantInput, ENVT);
case 4:

sprintf (HeaderFile, "%s%s\\slope_%s.hdr", PREFIX, ConstantInput, ENVT);
case 5:

sprintf (HeaderFile, "%s%s\\owner_%s.hdr", PREFIX, ConstantInput, ENVT);
case 6:

sprintf (HeaderFile, "%s%s\\pay_%s.hdr", PREFIX, ConstantInput, ENVT);
case 7:

sprintf (HeaderFile, “%¥s%s\\alloc_%s.hdr",PREFIX,ConstantInput, ENVT);
case 8:

sprintf (HeaderFile, “%s%s\\minor_%s.hdr", PREFIX,ConstantInput, ENVT);
case 2:

sprintf (HeaderFile, "%s%s\\strbuf_%s.hdr', PREFIX,ConstantInput, ENVT);
case 10:

sprintf (HeaderFile, *%$s%s\\firehist_%s.hdr", PREFIX,ConstantInput, ENVT);
case 11:

sprintf (HeaderFile, "%s%s\\veg_%s.hdr', PREFIX,CommonInitial, ENVT);
case 12:

break;

break;
break;

break;

break;
break;

break;

break;

break;

break;

break;

break;

181

182

sprintf (HeaderFile, "%s%s\\stage_%s.hdr", PREFIX,CommonInitial, ENVT}; break;
case 13:

sprintf{HeaderFile, “%s%s\\rule%d_%s. hdr", PREFIX,ConstantInput, PRULE, ENVT); break;
default:

Bailout({68);
}

IN = fopen{HeaderFile, "r*);

if({IN == NULL}
printf (*Problem opening HeaderFile %s\n", HeaderFile);

//Now scan in the header data and verify that it is OK

fscanf (IN, "%s %d %s %d %s %1f %s %1f %s %1f %s %1d %s %s”,
garbage, &Column, garbage, &Row, garbage, &xl1l, garbage, &yll,
garbage, &Jjunk, garbage, &Nodata, garbage, ByteOrder);

//Check the number of Rows and Columns for this data
if {Column != COLUMNS || Row != ROWS)
Bailout(69);

//Check the grid origin for this data
if((int} {x1l) != XLL || tint)(yll) != YLL}
Bailocut(70};

//Check to make sure the ByteCrder is correct
if{stremp{strlwr (ByteOrder), "lsbfirst"}) //convert to lowercase and test against "lsbfirst" -
which it should be!

Bailout(71);

fclose{IN);

//write out a little OK line
printf("Header file %s is OK\n", HeaderFile);

//When finished, return the current Nodata value so it can be used during input into the Data.* arrays
return Nodata;
}//end CheckHeader

AR L R R R L g R R L R R R Ry

AR R L R R R L L T T S S S SR

/7 Function used regardless of whether BINARY or ASCII method used
P S E G G R e R S L s R e s s T T

A R g R e g S SR

D R S R E T s R R St L

int MakeLink(void)

P R e R S S R S R R L L

/f
=
This function can be used whether the data was read in ASCII or BINARY format because
it uses the values found in Data.Gridrow, which is populated by either method

*/

Create and fill the LINK array for later use

int r,c,Start, HowMany;
int *ptr_link;
ushort #*ptr_gridrow;

int ctr;
ulong NumberCellid, *ptr_cellid;
-- End of variable defining

//Initialize the LINK array - with row numbers 1-N and 0's -- see below for more
ptr_link = &link[0][0];
for (r=1;r<ROWS+1; r++)

{
*ptr_link = r;
ptr_link++;
for({c=0;c<2;c++)
{
*ptr_link = 0;
ptr_link++;
}
}

//Fill the array called Link, which has 3 columns: The first

//represents the original ROW number and the second has its starting row position

//in any of the Data.* arrays (not the array subscript)and the third column is how

//many values are going into the Data.* arrays for that row.

//The link array will have spaces for ALL

//rows, regardless if data actually gets put in (will have 0’'s if nodata for the whole row).

Start = 0;
for{r=1; r<=ROWS; r++)
(

ptr_gridrow = &Data.GridRow[Start];
ptr_link = &link[r-1][1};

if(*ptr_gridrow == (ushort)r)

{

*ptr_link = (Start+1l);

HowMany =
do
{
Ptr_gridrow++;
HowMany++;
} while (*ptr_gridrow == (ushort)r };

Start = Start + (HowMany-1);
*{ptr_link+l) = (HowMany-1)

//count the number of values in the CELLID column
for {ctr=0; ctr<UNIQUE; ctr++)

{

ptr_cellid=&Data.Cellid[ctr];
if(*ptr_cellid != Q)

}

NumberCellid = ctr+l;

printf("There are %lu unique cellids\n",NumberCellid);
printf("First CELLID is: %lu and the last CELLID is: %lu\n",Data.Cellid[0],

Data.Cellid{NurberCellid-1]);

//Call up the PrintToStat() function to fill up with the total cell count info.
PrintToStat (1, (ulong)NumberCellid);

return TRUE;
Y/ /end of MakeLink()

J] KRR R R R R R A Rk A kKRR AR R KRR AR KRR KRR Ak kK kKR AR R KRR E R KR AR R KRR R KK I AR KA AR KRR R KRR R KRR R KKK AR R

A R

/7

Start of functions to handle importing the data in ASCII format

] R R R Ak kKRR KRR R R AR KRR KKK T KRR I KKK KK KKK KRR RRRR KRR AR RRRRRRRRR KRR

R R R R e

A R R e A

int AsciiReadCell (void)

J] KRR R Ak ok k kR kR R R KRR R KRR KR KRR R Rk R AR Rk ARk kKRR KRR R K KRR R SR

{

FILE *READ_CELL;
char garbage([13];
int Row,Column;
int r,c;

long int TestvValue, Nodata;
ulong ConvertTest,cell
double x11, vy1l1, junk;

char Temp(150]);

//0pen the cellid.asc file and check validity
sprintf (Temp, "%s%s\\cellid_%s.asc",PREFIX,ConstantInput, ENVT};

READ_CELL

= fopen(Temp, "r");

if (READ_CELL == NULL)

else
#ifdef DEBUG_OPEN1

#endif

fprintf(stderr, 'opening of %s failed: %s\n", Temp, strerror{errnocl}!};

printf('File: %s opened with no problems in mode READ!\n", Temp);

fscanf (READ_CELL, "%s %d %s %d %s %1f %s %1f %s %1f %s %14",

garbage, &yll,

#ifdef DEBUG_STRUCT

= Enter CELLID data into the maindata array

garbage, &Column, garbage, &Row,

garbage, &junk, garbage, &Nodata);

//Do some error checking and bail if input data is not correct
if(Column == COLUMNS && Row == ROWS)

printf ("Rows and columns for CELLID.asc are OK\n");

else
Bailout(2);

//Do some error checking and bail if input data is not correct
if(floor({xll) == XLL && floor(yll) == YLL)
printf ("X and Y origin for CELLID.asc are OK\n"};
else
Bailout{3);

//print out the above to see if initilalized correctly
printf("Cellid\tRow\tColumn\tTlist\tUnit\n"};

for {r=0;r<UNIQUE; xr++)

{

183

184

printf("$lu\tthu\tthui\tkhu\t¥hu\n",Data.Cellid[r],Data.GridRow(r],
Data.GridColumn[r},Data.Treelist(r][0],Data.Unit{r]};

#¥endif
//Fill the Data.Cellid with valid CELLID values and Data.GridRow with the
//original ROW cell number and the Data.GridColumn with original CCLUMN cell.
cell = 0Q;
for (r=1;r<=ROWS,;r++}
{
for (c=1;c<=COLUMNS;c++}
{
fscanf (READ_CELL, "%1d", &TestValue};
if{TestValue != Nodata)
{
ConvertTest = {ulong)TestValue;
Data.Cellid[cell] = ConvertTest; //The CELLID value
Data.GridRow[cell] = {ushort)r; //original grid
row
Data.GridColumn{cell] = {ushort)c; //original column row
cell++;

#ifdef DEBUG_STRUCT
//print out the above to see if filled correctly
printf ("Cellid\tRow\tColumn\tTlist\tUnit\n"):
for (r=0;r<UNIQUE, r++)
{
printf({"%1lu)\t%shu)tshu\tshul\tthu\n", Data.Cellid(r],Data.GridRow[r}
Data.GridColumn[r],Data.Treelist (r] [0],Data.Unit[x]);

#endif

fclose (READ_CELL) ;

return TRUE;
}//end of AsciiReadCell

FUELS ¥.CPP

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <math.h>

#include "globals.h //to hold global DEFINES, etc..
#¥include *data.h”

/7= -- For FUEL stuff

void InitialFuelController({void};

ulong CountLandscape(void);

ulong FillallInfo(struct P_INFO AllInfo[] };

int CompareAllInfoTreelist(const void *ptrl, const void *ptr2);

ulong CountUnigueAllInfoTree(struct P_INFO AllInfo[], ulong Count);

ulong FillFuelsWithTreelist({struct P_INFO AllInfo[], ulong Count, struct INITIAL_FUELS Fuels[]):
void InitialFuelLoad(struct INITIAL_FUELS Fuels[], ulong Count);

void InitializeFuellLoadings{struct INITIAL_FUELS Fuels[], int Ctr);

void DeterminelInitialFuelModel({struct INITIAL_FUELS Fuels[]}, ulong Count);
void LoadInitialFuelModelsAndlLoads (struct INITIAL_FUELS Fuels[], ulong Count);
void AdjustFuelsStuffForGrowth{int ActualPer);

void FuelDecayAndContribution{int ActualPer);

void CalculateAndFillSimFuelModel {int ActualPer);

void DoubleCheckFuels(void);

void CountTreelistRecords{int HowMany[], char Filename[]};

void FillTreelistRecords{char Filename[], struct TREELIST RECORD Snags(], struct TREELIST RECORD Live({],
struct TREELIST_RECORD Dwd[], int HowMany{]):

int CompareFuelsForTreelist(const void *ptrl, const void *ptrz2);

//Definined in StandData.cpp

extern void CalculateIndividualBasalCanopyWidth(struct TREELIST RECORD Records[], int NoRecords);

extern void CalculateStandClassification(struct TREELIST_RECORD Records[], int NoRecords, struct STAND_CLASS
*Stand} ;

S e e e

//w*w*w***a******a*a********aaaaaa*****k*****aaaak**********kaaaa
R R Rk

veid AdjustFuelStuffForGrowth(int ActualPer}
T I e N

EEEE AR KRR K

{
/*

185

This may prove to be a time-hog but for now this function will operate on a cell-by-cell basis. The reason is
that, in

theory, I feel it may be very difficult to track all the potential different fuel loadings by "groups' of cells
that

have identical loadings and other parameters (such as elevation, canopy closure, @Rmd, etc.) that are all used to
differentiate into fuel models.
*/

//For Time information
clock_t Start, Finish;
double Duration;

Start = clock(};
printf{"Going to calculate fuel decay and contribution !!\n");

//First, Decay and add on the Net Fuel Loading contributions to each cell
FuelDecayAndContribution(ActualPer};

//Now go through and recalculate fuel models for every cell
CalculateAndFillSimFuelModel (ActualPer) ;

Pinish = clock();

Duration = ((double) (Finish-Start) / CLOCKS_PER_SEC };

printf {"‘n\nIt took %.21f seconds to run FuelDecayandContribution(} & CalculateAndFillSimFuelModel () \n", Duration
Yi
printf (
====\n"};

}//end AdjustFuelStuffForGrowth

J B R R R d L T S S S S T T
T

void CalculateAndFillSimFuelModel {int ActualPer)

D R L R LR LR R R L T R E R R R L B R T
Ak kR kA ok

{

/>

At this point, the fuel loadings should have been adjusted for the current period by FuelDecayAndContribution().

It is

now simply a matter of going to each cell and determining the fuel model using the rules Jim & Bernie developed for
"Reclassificaiton of Fuel Model after the First Period" as seen in Jim’s Sept. 17, 1999 documentation.

*/

int a;

int ArrayPer;

int TempCode, Templover, TempDiam, TempVeq;

int HourlFuels, HourlOFuels, Hourl(QOFuels;

i R bbb L e End of variable defining -----======-m— - e mm oo

//Set the ArrayPer variable
ArrayPer = ActualPer - 1;

for{a=0; a<UNIQUE; a++)

{
if (Data.Cellid(a] == FALSE) //No more to check
break;
if(Data.Treelist[a] == NONFOREST}
continue;
//Go on to next cell - already double checked in FuelDecayAndContributioni{}
//Break apart Data.Vegcode to identify the pieces because that is a piece the fuel model matrix needs
//REMEMBER: The TempCode could have 5 or 10 for TempVeg
TempCode = Data.Vegcode[a] [ArrayPer]; //The actual 3 or 4 digit code from PREMO
TempCover = TempCode$l0; //last digit
for determining stage (0 is <= 60%, 1 is > 60%)
TempDiam = ((TempCode-TempCover)%100Q) / 10; //next to last digit also for determining stage (is the
QMD group)
TempVeg = (TempCode-TempCode%100) / 100; //1st or lst two digits for

determining VegCode

//Now go through the classification matrix

if(TempDi == 0 || { TempDiam <=1 && TempCover == 0}
(
if{ Data.Elev([a] > (3000*FT2M))
Data.FuelModel [a] [ArrayPer] = 5;
else
{
if{Tempveg == VC_PINE)
Data.FuelModel({a] [ArrayPer] = 2;
else if{(TempVeg == VC_DH)
Data.FuelModel{al [ArrayPer] = 17;
else
Data.FuelModel [a] [ArrayPer] = 6;
}
}
else if{ TempVeg == VC_DH && (TempCover == 0 || { TempDiam <= 1 && TempCover == 1))

Data.FuelModel[a] {ArrayPer] = 6

else

186

//Create the 1,10,100 hour variables to reduce computation and ease of seeing what’s going on

HourlFuels = Data.Litter[a] [ArrayPer] + Data.Class25[a] [ArrayPer];
HourlOFuels = Data.Classl[a] [ArrayPer];
Hourl00Fuels = Data.Class3[a] [ArrayPer];

//REMEMBER: The Data."fuel lcad"[][] values are modified ushort - must expand Jims variables
by FUEL_LOAD_EXF t¢ match

//Also: Jim’s values are in TONS

if({ HourlFuels <= 1.5 * FUEL_LCAD_EXP)

{
if(HourlOFuels < 1 * FUEL_LOAD_EXP }
Data.FuelModel[a] [ArrayPer) = 18;
else if{ HourlOFuels < 4.5 * FUEL_LOAD_EXP)}
Data.FuelModel[a] [ArrayPer] = 8;
else
Data.FuelModel[a] [ArrayPer] = 11;
}

else if{ HourlFuels <= 2.5 * FUEL_LOAD_EXP)}
{
if(HourlOFuels < 1 * FUEL_LOAD_EXP)}
Data.FuelModel[a} [ArrayPer} = 20;
else if(HourlOFuels < 2 * FUEL_LOAD_EXP)
{
if(Hourl00Fuels <= 1 * FUEL_LOAD_EXP)

Data.FuelModel [a] [ArrayPer] 2;
else
Data.FuelModel{a] [ArrayPer] = 23;
}
else if{ Hour1lOFuels <= 6 * FUEL LOAD_EXP)
Data.FuelModel[a] [AxrrayPer] = 31;
else
Data.FuelModel([a] [ArrayPer] = 32;
}
else
{
if (HourlOFuels < 1 * FUEL_LOAD_EXP }
Data.FuelModel[a] (ArrayPer] = 9;
else if{ Hour1lOFuels < 3 * FUEL_LOAD_EXP)
{
if(Hourl0OFuels <= 3.5 * FUEL_LOAD_EXP)
Data.Fuel¥odel[a] [ArrayPer} = 15;
else
Data.FuelModel(a] [ArrayPer] = 10;
}
else
Data.FuelModel[a] [ArrayPer] = 12;
}

}//end of main else for the class. matrix
}//end for(a=0 ...)

}//end CalculateAndfFillSimFuelModel

N R R R R A L R R L T ST R T T RS T T o
PO —

void FuelDecayAndContribution(int ActualPer)

A L L R R R R R L T T T
Kk ke ke

{

/*

This functicn will take care of decay existing fuel loads and then adding on the Net Contribution of fuel loads to
get

a new fuel lcad, for each cell.

Because all Fuel Loading values are stored as modified ushort (to maintain some precision) all Data.* values need
to be first

divided by FUEL_LOAD_EXP and then multiplied by TCNS before Decaying! The AfterDecay* (AD*) values can then be
reversed

{divide by TONS and multiply by FUEL_LOAD_EXP) and directly added to the values in Data."fuel load
class*[][ArrayPer]. I will

use a new variable called FACTOR that will do the eguivalent.

The decay rates are a combination of those found in Table 4.6 of

*Fire and Fuels Extension: Model Description - Working Draft', by ESSA Technologies Ltd (Beukema et al.) - Feb 16,
1999.

Also, Jim Agee updated the DUFF and LITTER decay rates in his writeup {dated Sept 17,1999) in Section 6. Additions
to Fire and

Fuels Extensicn {FFE) of FVS.

*/

int a;

int ArrayPer, ArrayPrevPer;

int AD_Duff, AD Litter, AD Class25, AD Classl, AD_Class3, AD_Class6, AD_Classl2, AD ClassOverl2; //AD is "After
Decay”

int FACTOR, MoveLitter;

/== -- End of variable defining -
//printf{"Here in FuelDecayAndContribution for period %d\n",ActualPer);

//Set the FACTOR variable so it's not always recalculated
FACTOR = TONS / FUEL_LOAD EXP;

//Set the variables for ease of figuring out what array spots to use
ArrayPer = ActualPer - 1;
ArrayPrevPer = ArrayPer - 1;

//Go one-by-one through the Data.* array
for {a=0; a<UNIQUE; a++)

187

{
if(Data.Cellid[a] == FALSE) //No more to check
break;
if {Data.Treelist[a] == NONFOREST)
{
//Dc a quick check and make sure Fuel Models are CK
if (Data.FuelModel[a] [ArrayPer} == 93 || Data.FuelModella] {ArrayPer] == 98 ||
Data.FuelModel[a] [ArrayPer] == 4 || Data.FuelModel[a] [ArrayPer] == 1% |
Data.FuelModel (a] [ArrayPer] == 1}
{}
else
Bailout(102);
continue; //Go on to next cell
}
L E L L L L L L L L T T T
AR AR ARk
Decay
Fuels

The AD_* variables will be "reset" after sach cell and they represent the current ACTUAL value

of the fuel load.

NOTE: All these variables get factored out to LBS~ACRE to help not lose precision.
NOTE: is not clear if existing duff should be decayed first then litter stuff added on. The

way

Jim's notes specified to move litter to duff first, then decay but wording was a bit confusing.
B T R R R R R T L L S S L L e e

ExE xR
if{ ActualPer == 1}
{

/>

printf(*InitialFuelioadings {in LBS-ACRE):\n"};

printf (*$d\t¥d\csd\t¥d\t¥d\t$d\t3d\t%d\n",Data.InitialDuff[a] *FACTOR,Data.InitialLitter[a] *FACTOR,
Data.InitialClass25[al*FACTOR, Data.InitialClassl{a]*FACTOR, Data.InitialClass3[a]*FACTOR,

Data.InitialClassé[a]*FACTOR,
Data.InitialClassl2[a]*FACTOR, Data.InitialClassOverl2[a]*FACTOR);

*/
//In period 1, the actual fuel lcads to decay are really those found in the Initial* arrays
AD_Class25 = (int}{ (Data.InitialClass25[a]*FACTOR) * pow(.88,
YIP) };
AD_Classl = {int)({ (Data.InitialClassl[a]*FACTOR} * pow{.88, YIP} };
AD_Class3 = {int}((Data.InitialClass3(a}*FACTOR} * pow{.91, YIP) };
AD_Classb = {(int} ((Data.InitialClass6[a]*FACTOR) * powl(.985, YIP) |
AD Classl2 = (int}{ (Data.InitialClassl2[a]}*FACTOR) * pow({.9285
YIP) };
AD ClassOverl2 = {int})((Data.InitialClassOverl2[a]*FACTOR) * pow(.985, YIP! };

//The duff & litter are handled a bit differently per Jim Agee.

His rules:

"plus-add” this on

// 1) Take 2% of incoming litter and vaporize it - this really means the "existing*
litter - the 2% is for all 5 Years

AD_Litter = ({int)((Data.InitialLitter[a]*FACTOR) * .98 };

/7 2) Then take 1/6 of total litter and move it to duff

MoveLitter = (int){AD Litter * .16666);

AD Duff = MoveLitter;

AD_Litter = AD_Litter - Movelitter;

// 3) Decay duff at 3% a year - REMEMBER to

AD_Duff += (int}{ (Data.InitialDuff[a]l*FACTCOR} * pow(.97,YIP} };

//printf ("AfterDecay values for period 1\n");

//printf (“$A\t3AVERANtEANEEANEEA N ERANESA\n" ,AD_Duff, AD_Litter, AD Class25, AD_Classl, AD_Class3, AD_Classé,

AD_Classl2, AD_ClassOverl2);
}

else
{

//For all other periods, the actual loads to decay are those from the previous period

AD_Class25 = (int) { (Data.Class25[a] [ArrayPrevPer]*FACTOR) *
powl(.88, YIP));

AD_Classl = {int)((Data.Classl[a] [ArrayPrevPer]}*FACTOR) * pow(.88, YIP)
y;

AD_Class3 = {int)((Data.Class3[a] [ArrayPrevPer]*FACTOR) * pow(.91, YIP)
)i

AD Classé6 = {int){ (Data.Classé[a) [ArrayPrevPer]*FACTOR) * pow(.985,
YIP) };

AD Classl2 = (int) ((Data.ClasslZ[a] [ArrayPrevPer]*FACTOR} *
pow!.985, YIP));

AD_ClassOverl2 = (int){ (Data.ClassOverl2[a] [ArrayPrevPer]*FACTOR} * powl.985,
YIP));

//The Quff & litter are handled a bit differently per Jim Agee. His rules:

/1 1) Take 2% of incoming litter and vaporize it - this really means the "existing"
litter - the 2% is for all 5 Years

AD Litter = (int}((Data.Litter[a)[ArrayPrevPer]*FACTOR) * .98 };

// 2) Then take 1/6 of total litter and move it to duff

MoveLitter = (int) (AD_Litter * .16666);

188

AD_Duff = MoveLitter;

AD_Litter = AD_Litter - Movelitter;

// 3) Decay duff at 3% a year - REMEMEER to “plus-add" this on

AD_Duff += (int){ {(Data.Duff[a] [ArrayPrevPer]*FACTOR} * pow{.97,YIP) };
}//end else if{ActualPer == 1)

/*
printf{*And those fuel loadings to add on are:\n"};
printf {*%A\c%A\t%A\ %A\ %A\ L3d\t¥d\t3d\n" , Data.Duff(a] [ArrayPer] *FACTCOR, Data.Litter[a] [ArrayPer] *FACTCR,
Data.Class25(a) [ArrayPer] *FACTOR, Data.Classl[a) [ArrayPer]*FACTOR, Data.Class3[a)[ArrayPerl*FACTOR,
Data.Class6la) [ArrayPer) *FACTOR,
Data.Classl2[a) [ArrayPer] *FACTOR, Data.ClassOverlZla) [ArrayPer]*FACTOR);
*/
R R e e T T d T Ll B LA e e S e
AArrw
/7 Add Net Contributions
A R D R R R R L L AL s TS T T T

ok k kA

//The AD_* variables now have the current After Decay fuel load values in LBS-ACRE. These should be
converted

//back to the modified ushort TONS-ACRE and then added on the current modified ushort TONS-ACRE values
that

//are stored in the current periods net contribution Data."fuel Load"[][] as they were calculated in
Premo;

//REMEMBER: there are no NEW net contributions to Duff from Premo - it was all handled in above decay
froem litter

Data.Dufffal [ArrayPer) = (ushort) (AD_Duff / FACTOR);

Data.Litter{a) [ArrayPer] = {ushort)Data.lLitter[a] [ArrayPer] + (AD_Litter /
FACTOR) ;

Data.Class25[a) [ArrayPer] = {ushort)Data.Class25([a] [ArrayPer] + {(AD_Class25 /
FACTOR) ;

Data.Classl[a) [ArrayPer] = (ushort)Data.Classl([a] [ArrayPer] + {AD_Classl /
FACTOR) ;

Data.Class3 [a] [ArrayPer] = {ushort)Data.Class3[a] [ArrayPer] + (AD _Class3 /
FACTOR) ;

Data.Classé [a] [ArrayPer] = {(ushort)Data.Class6[a] [ArrayPer] + (AD_Classé /
FACTOR) ;

Data.Classl2[al [ArrayPer) = (ushort})Data.Classl2{a] [ArrayPer] + (AD_Classl2 /
FACTOR} ;

Data.ClassOverl2[a) [ArrayPer] = {ushort)Data.ClassOverl2[a])(ArrayPer] + {(AD ClassOverl2 / FACTOR);
I
printf({*Resulting in these FinalFuelloadings in modified TONS-ACRE (divide by 10 to get real value) , Note some

precisicn less:\n*);
printf ("$hu\t$hu\t$hu\tshu tshul\tshul\cshul\tshui\nin", Data.Duff[al [ArrayPer],Data.Litter [a) [ArrayPer],
Data.Class25(a] [ArrayPer), Data.Classl(a] [ArrayPer], Data.Class3[a] [ArrayPer),
Data.Classé6[a]) [ArrayPer],
Data.Classl2[a] [ArrayPer], Data.ClassOverlZ{a] {ArrayPer]):
*/

}//end forta=0 ...)

}//end FuelDecayAndContibution

R S R T T L L R Lt T L T T L s L A e s e e e
Ak A kAR R h

void InitialFuelController (void)

R T R R R I I T
RN AR Ak Rk A h

uleong ForestCells, SecondForestCount;

ulong Unique, SecondUnique;

J e

printf (*\n\n=

printf (" Initializing Fuel Loadings \n"};
printcf(* == ==\n"};

ForestCells = CountLandscape(};
printf("There are %lu forested cells in this landscape (probably more than in a Solution!)\n", ForestCells};

//Send data out to stat.txt file
PrintToStat{2, {ulong)ForesktCells);

//Allocate an array of P_INFO structures to hold each “ForestCells” combination of Treelist-Goal-Hold
struct P_INFO{*AlllInfe) = new struct P_INFO[ForestCells);
if{AllInfo == NULL)

printf (*Problems allocating memory fer AllInfo[] with %lu records\n", ForestCells);
//Initialize
memset{AllInfo, 0, sizeof(struct P_INFO) * ForestCells);

//Fill up AllInfo with the Treelist Goal Hold for all those cells that are forested
SecondForestCount = FillAllInfo{AllInfo);
if(SecondPorestCount != ForestCells)

Bailout(97});

//Sort those records in AllInfo - use mgsort because there may be alot of records

mgsort{ {void*}AllInfo, / /base
ForestCells, //count of
records
sizeof (struct P_INFO), //size of each record
0, ForestCells-1, //current division {

always: 0, "count"-1 }
CompareAllInfoTreelist Y / /compare functiocn

189

//NOTE: At Time 0 - the Goal & Hold do not matter for the initialization of the FUEL LOADINGS - only different
treelist !

//Now go through and count the Unigue Treelist in AllInfo
Unigque = CountUniqueAllInfoTree{AllInfo, ForestCells):
printf{"There were actually %lu UNIQUE Treelist for the forested cells\n",Unique);

//Create a structure to hold new Fuel Loading information for those unigue Treelist
struct INITIAL_FUELS(*Fuels) = new struct INITIAL_FUELS[Unigue];
if(Fuels == NULL)

printf("Problems allocating memory for Fuels[] with %lu records\n",Unique};
//Initialize
memset (Fuels, 0, sizeof{struct INITIAL_ FUELS} * Unique };

//Now £ill up the Fuels structures
SecondUnigue = FillFuelsWithTreelist(allInfo, ForestCells, Fuels);
if(SecondUnigue != Unigue)

Bailout{97};

//Can delete the AlllInfo structures now they are broken down into Unique records
delete [] AllInfo;

//Get the initial (i.e. default) fuel loadings that will be used for the entire landscape
InitialFuelLoad(Fuels, Unique);

//Now with those fuel loadings, get the initial fuel model assignment at Time 0 - REMEMBER: not used, stands need
to grow tc Per 1 first!
DetermineInitialFuelModel (Fuels, Unique};

//Finally, go through the Data.*[] arrays and load in the actual initial fuel model
LoadInitialFuelModelsAndLoads (Fuels, Unique);
//Delete stuff on free store

delete [] Fuels;

//Go through and make sure everyone has fuel loads and model
DoubleCheckFuels{);

printf("=== === -
printf(* Finished with initial fuels and arting to initialize Background ERA values
printf (=== == = ==

}//end InitialFuelController

17 AR AR A AR A A A A R R R e R R R e A A e AR AR A RS

void LeadInitialFuelModelsAndLoads (struct INITIAL_FUELS Fuels(], ulong Ccunt}
A R R L L R R R R R R R R R d R R T e
{
/>
This function will fill up the InitialFuelModel{] and the Intial fuel loading arrays (e.g. InitialDuff,
InitialLitter, etc).
with the data currently stored in Fuels.
*/
L
int a,b;
struct INITIAL_FUELS Key;
struct INITIAL_FUELS *ptr_record;
/=== e s e s mmmmme o End of variable defining ----------———=sm-m— e m e e mm e

//Go through all of Data.*[] and load up the fuel model appropriately
for {a=0; a<UNIQUE; a++}
{
if {Data.Cellid[a] == FALSE) //no more cells to check
break;

//Blways reinitialize the key to make sure no junk in it
memset {&Key, 0, sizeof (struct INITIAL_FUELS} };

if(Data.Treelist[a] == NONFOREST)
{
//Assign a new fuel model based on Jim Agee’s paper "Reclassification of Fuel Model after the
First Period"

if(Data.InitialVegl[a] == GIS_BARREN) //BARREN - both should be
the same!
(
if(Data.InitlalStagela] '= GIS_BARREN)
Bailout{59};
else
(
Data.InitialFuelModel(a] = 99;
//And all of this cell’'s FuelModel[][] should be 99
for (b=0;b<NP;b++)
Data.FuelModel[a] [b] = 99;
)
}
else if(Data.Initialvegl[a] == GIS_WATER) //WATER - both should be

the same!

190

if(Data.InitialStage[a] != GIS_WATER)
Bailout (59} ;
else
(
Data.InitialFuelModel[a] = 98;
//And all of this cell‘s FuelModel[][] shculd be 98
for (b=0;b<NP;b++)
Data.FuelModel[al (b] = 98;
}
}
else if{Data.InitialVeg(a] == GIS_SHRUE) //SHRUB - both should be
the same!
{
if(Data.InitialStage[a] != GIS_SHRUB)
Bailout{59);
if{ Data.Elev[a] =< {3000*FTZM)) //check elevation
{
Data.InitialFuelModel[a] = 4;
//And all of this cell’s FuelModel[][] should be 4
for (b=0;b<NP; b++)
Data.FuelModelia]l [b] = 4;
}
else
{
Data.InitialFuelModel[a] = 192;
//And all of this cell’s FuelModel([][] should be 19
for {b=0;b<NP;b++)
Data,FuelModel(al (bl = 19;
}
}
else if(Data.InitialVeg{a] == GIS_GRASS) / /GRASS/FORBS - both
should be the same!
{
if (Data.InitilalStagela] != GIS_GRASS)
Bailout (59};
else
{
Data.InitialFuelModel([a] = 1;
//And all of this cell’s FuelModel[][] should be 1
for (b=0;b<NF;b++)
Data.FuelModellal [b] = 1;
}
}
else
Bailout (50} ;
}//end if{Data.Treelist == NONFOREST]
else //Use the Treelist value to make a key and lcck for that key->Treelist in the Fuels

structure and Populate with that

//Always reinitialize the key to make sure no junk in it
memset (&Key, 0, sizeof(struct INITIAL_FUELS));

//Make the key
Key.Treelist = Data,Treelistlal;

//Now do a bsearch for that key on the Fuels structure
//NOTE: The Fuels structure should already be sorted by treelist because it was created from
another treelist-sorted structure
ptr_record = (struct INITIAL_FUELS*)bsearch(
&Key,
{void *)Fuels,
{size_t)Count,
sizeof(struct INITIAL_FUELS)
CompareFuelsForTreelist);

if(ptr_record == NULL]
Bailout (101);

// =
// First enter the fuel loads determined earlier

//REGARDLESS - always load in the Initial Fuel loadings at this point for all FOREST cells
//NOTE: the fuel loading data in ptr_record-»> is already in correct units

/7 Sy

if({ {ptr_record->VegClass == VC_MC) && (Data.Elev([al > (3000*FTZM})) //See if a VC_MC type

stand
{
Data.InitlalDuff(a) = (ushort)ptr_record->MC_Duff;
Data.InitialLitter([a] = {ushort)ptr_record->MC_Litter;
Data.InitialClass25(a) = (ushort)ptr_record->MC_Class25;
Data.InitialClasslla} = (ushort)ptr_record->MC_Classl;
Data.InitilalClass3[a} = (ushort)ptr_record->MC_Class3;
Data.InitialClassflal = (ushort)ptr_record->MC_Class6Aall;
Data.InitialClassl2{al = {ushort)ptr_record->MC_Classl2;
Data.InitialClassOverl2(a] = (ushort)ptr_record->MC_ClassOverl2;

else

Data.InitialDuff[a]
Data.InitialLitter([a]
Data.InitialClass25[a)
Data.InitialClassl[a]
Data.InitialClass3[a]
Data.InitialClassé6{a]
Data.InitialClassl2fa)]

= (ushort)ptr_record->Duff;

= (ushort)ptr_record->Litter;

= (ushort)ptr_record->Class25;

= (ushort)ptr_record->Classl;

= (ushort}ptr_record->Class3;

= (ushort)ptr_record->Classtall;
(ushort)ptr_record->Classl2;

Data.InitialClassOverl2[a] = (ushortiptr_record->ClassOverl2;

//==

// Then load the fuel model calculated earlier

/ ==
if (ptr_record->VegClass == VC_MC)
{
//If elev > 3000’ then need to check the MC_FuelModel
if(Data.Elev{a] > (3000*FT2M))
{
//Check for the FUEL_FLAG
if{ ptr_record->MC_FuelModel != FUEL_FLAG }
Data.InitialFuelModel[al = ptr_record->MC_FuelModel;
else
Data.InitialFuelModel[a} = 5;
¥
else
{
//Check for the FUEL_FLAG
1f(ptr_record->MC_FuelModel != FUEL_FLAG)
Data.InitialFuelModel[a] = ptr_record->MC_FuelModel;
else
{
if(ptr_record-»>VegClass == VC_PINE)
Data.InitialFuelModel[a) = 2;
else 1f{ ptr_record->VegClass == VC_DH
Data.InitialFuelModel[a] = 17;
else
Data.InitialFuelMcdel[a] = §;
}
}
}//end if VegClass == VC_MC
else
{

//First just check for the FUEL_FLAG
FUEL_FLAG
Data.InitialFuelModel[a]

if(ptr_record->FuelModel

)

ptr_record->FuelModel;

else
{
if{ pata.Elev[a] > (3000*FT2M))}
Data.InitialFuelModel[a] = 5;
else
{
if(ptr_record->VegClass == VC_PINE)
Data.InitialFuelModel [a] = 2;
alse 1f{ ptr_record-»vegClass == VC_DH)
Data.InitialFuelModella] = 17;
else
Data.InitialFuelModella] = &;
H

}
}//end VegClass !'= VC_MC
}//end ELSE treelist = NONFOREST
}//end for{a=0 ...)

}//end LoadInitialFuellodelsAndLoads

AR R

int CompareFuelsForTreelist(const void *ptrl, const veid *ptr2)

AR R R R

{

//Just to typecast them sincCe we aren’t actually passing in pointers

struct INITIAL_FUELS *eleml;
struct INITIAL FUELS *elem2;

eleml = {struct INITIAL_FUELS *)ptrl;

elem2 = (struct INITIAL_FUELS *)ptr2;

"
=

eleml->Treelist < elem2~>Treelist ;
//Compare by Treelist

return -1;

1f{ eleml->Treelist > elem2->Treelist)

return 1;
else
//FINISHED
return 0;

}//end CompareFuelsForTreelist

191

192

F R R R e

void DetermineInitialFuelModel (struct INITIAL_FUELS Fuels[}. ulong Count)
N T T e e s e
{

I

The initial fuel model assignment is a bit un-necessary anymore. Criginally, Jim and Bernie developed a matrix
using the VegClass and Structural 5tage to determine the initial fuel model at Time 0. They later developed

a new classification of fuel models for after the first period that was based on fuel loadings (stuff in

the struct Fuels[] }. However, we don’'t really need a fuel model at Time 0 because that is the start of the
simulation. What really happens is that we enter Time 1 and Premo spits out growth and yield data for a period

of 5 yrs after the initial period. That means there has been harvest and growth and this all occurs PRICR to
initiating a fire in Time 1. Sco fuel models for after Time 0 will get calculated later. Regardless, this function
is something of a check so we can see what the initial fuel assignment is given the current landscape.

This will use the same rules Jim & Bernie developed for 'Reclassificaiton of Fuel Model after the First Period" as
seen in Jim’s Sept. 17, 1999 documentation. This is different than original plan to use the GIS matrix mentioned

earlier.

*/

//The Fuels structure should already be sorted by treelist because it was created from another treelist-sorted
structure

//for (a=0;a<Count; a++)

/7 printf{"%$lu\n", Fuelgs[a] .Treelist);

//The Fuels structure should have the necessary information now to actually determine the Fuel Model per Jim Agee’s
rules
for (a=0;a<(signed)Count;a++}
{

//3im has a weird rule at first, and the only way I can figure out how to handle it without going through
the entire

//Data.*[] array and recalculating the the below IF statements is to set a "flag" for this condition. So

when
//it comes time to £ill up Data.*[] if I get the FUEL_FLAG I know to make another calculation based on
elevation
if{ Fuels(a).Qmd == || (Fuels[a].omd <= 1 && Fuels(a].Closure < 60}
{
Fuels[a].FuelModel = FUEL_FLAG;
if(Fuels[a].VegClass == VC_MC}
Fuels[a] .MC_FuelModel = FUEL_FLAG;
}
else if(Fuels([a).VegClass == VC_DH && (Fuels[a].Closure < 60 || (Fuels[a].Qmd <=1 && Fuels[a].Closure »=
60)))
Fuelg[a].FuelModel = 6; //Don’t need a MC_FuelModel because it had to be VC_DH tc get
this
else

//This should take care of EVERYTHING else that doesn‘t get coded out above

//REMEMBER: The Fuels[].* values are modified ushort - must expand Jims variables by
FUEL_LOAD_EXP to match
//Also: Jim’'s values are in TONS
//Use the 1,10, & 100 hour fuel loadings
if(Puelsla].HourlFuels <= 1.5 * FUEL_LCAD_EXP }
{
if{ Fuels[a].Hourl0Fuels < 1 * FUEL_LOAD_EXP
Fuels[a].FuelModel = 18;
else if{ Puels[a].Hourl(OFuels < 4.5 * FUEL_LOAD_EXP
Fuels[a].FuelModel = 8;
else
Fuels[a].FuelModel = 11;
}
else if(Fuels[a} . HourlFuels <= 2.5 * FUEL_LOAD_EXP)
{
i1f(Fuels[a].HourlOFuels < 1 * FUEL_LOAD_EXP |
Fuels[a].FuelModel = 20;
else if(Fuels[a].HourlQOFuels < 2 * FUEL_LOAD EXP }
{
if(Fuels[a] .Hourl0QFuels <= 1 * FUEL_LOAD_EXP }
Fuels[a] .FuelModel = 2;
else
Fuels[a] .FuelModel = 23;
}
else i1f(Fuels[a}.HourlQFuels <= 6 * FUEL_LOAD_EXP
Fuels[a].FuelModel = 31;
else
Fuels[a].FuelModel = 32;

else

1f{ Fuels[a].Hourl0OFuels < 1 * FUEL_LOAD_EXP }
Fuels[a].FuelMcodel = 9;
else if(Fuels|a].HourlOFuels <= 3 * FUEL_LOAD_E¥P }
{
if(Fuels{a].HourlQQOFuels <= 3.5 * FUEL_LOAD_EXP)
Fuels[a] .FuelModel = 1lg;

else
Fuels[a].FuelModel = 10;

else
Fuels([a].FuelModel = 12;

//Now check and see if this is a VC_MC and if so alsc populate the MC_* stuff

if(Fuels|a].VegClass == VC_MC)
{

//Use the 1,10, & 100 hour fuel loadings
if({ Fuels[a].MC_HourlFuels <= 1.5 * FUEL_LOAD_EXP)

{
if(Fuels[a].MC_HourlOFuels < 1 * FUEL_LOAD_EXP
Fuels[a] .MC_FuelModel = 18;
elge if(Fuels[a] .MC_HourlOFuels < 4.5 * FUEL_LOAD_EXP)
Fuelsla] .MC_FuelModel = 8;
else
Fuels(a].MC_FuelModel = 11;
}
else if(Fuelsfa).MC_HourlFuels <= 2.5 * FUEL_LOAD_EXP)}
{
if(Fuels(a].MC_HourlOFuels < 1 * FUEL_LOAD_EXP }
Fuels|a] .MC_FuelModel = 20;
else if{ Fuels(a].MC_Hourl0Fuels < 2 * FUEL_LOAD EXp }
{
if(Fuels[a].MC_Hour1QQFuels <= 1 * FUEL_LOAD_EXP)
Fuels[a] .MC_FuelModel = 2;
else
Fuels{a] .MC_FuelModel = 23;
3
else if{ Fuels|a].MC_Hourl0Fuels <= 6 * FUEL_LOAD_EXP)
Fuels|a] .MC_FuelModel = 31;
else
Fuels[a] .MC_FuelModel = 32;
3
else
{
if(Fuels{a].MC_HourlJFuels < 1 * FUEL_LOAD_EXP)
Fuels|a] .MC_FuelModel = §;
elge 1f(Fuels[a].MC_HourlOFuels < 3 * FUEL_LCAD_EXP)
{
1f(Fuels[a].MC_HourlQ(QFuels <= 3.5 * FUEL_LOAD_EXP
Fuels{a] .MC_FuelModel = 1§;
else
Fuels{a] .MC_FuelModel = 14Q;
)
else
Fuels[a] .MC_FuelMadel = 12;
}
}//end if(Fuels[a].VegClass == VC_MC)

}//end of the main ELSE statement

//printf ("Just got FuelModel %$hu and MC_FueslModel %hu\n", Fuels(a].FuelModel, Fuels|a

}//end for(a=0 ...)

}//end DetermineFuelModel

R Rt

void InitialFuelLoad(struct INITIAL FUELS Fuels[], uleong Count)

P R AT R s

{
int a, b, Found;
FILE *Open;

char Temp{250], ActualFile[250];

int HowMany([3];

ulong Treelist, TestTree;

int SnagCount, LiveCount, DwdCount;

struct STAND_CLASS StandClass;

struct STAND_CLASS *ptr_stand;

/7= -- End of variable defining ---

//for (a=0;a<(signed)Count;a++)
/7 printf ("Fuels[%d]:\t%lu\t3hult%huin", a,Fuels|a].Treelist, Fuels[a].Goal

//Grab the Treelist for each of the records in the UL structures
for {a=0;a<(signed)Count;a++)
{
//Initialize the HowMany array
for {b=0;b<3;b++)
HowMany[b] = 0;

//Initialize StandClass and its pointer
ptr_stand = &StandClass;
memset (ptr_stand, 0, sizeof (struct STAND_CLASS));

Fuels[a

] .MC_FuelModell;

1 .Hold};

//Since this is period 0 use all the ORIGINAL treelist files. Because there were

//many more initial treelist created than we use, the treelist # has to be used

//to index the particular file we want. This is the same method that Premo uses.

193

Treelist = Fuelsfa].Treelist;

//Create a string to hold the name of the "InitialTreeindex.txt® filename
sprintf (Temp, *"%s%s\\%s", PREFIX,ConstantInput, IT_INDEX);

//Open the Treeindex.txt file
Open = fopen(Temp, "r"};
if{Open == NULL)
fprintf(stderr, 'Opening of %s failed: %s\n", Temp, strerror{errno));

//Scroll through the IntialTreeindex and find the current treelist and its actual file pathname
Found = FALSE;
while{ fscanf{Open, "%lu %s5", &TestTree, ActualFile) != EOF)
{
if{ TestTree == Treelist) //Have the match
{
//printf{"Found %s\n",ActualFile)
Found = TRUE;
break;

}
}//end while....
//Test to make sure the file was found
if{ Found == FALSE |

Bailout(98};

//Close the open file
fclose (Open) ;

//Count how many SNAGS-LIVE-DWD records there are in the treelist
CountTreelistRecords (HowMany, ActualFile);

//Allocate free store memory for each of 3 types of TREELIST_RECORD structures

struct TREELIST_RECORD (*SnagRecords} = new struct TREELIST_RECORD[HowMany[0]};
struct TREELIST_RECORD (*LiveRecords) = new struct TREELIST RECORD[HowMany[1l]]1;
struct TREELIST_RECORD (*DwdRecords) = new struct TREELIST_RECORD[HowMany [2]];
if (SnagRecords == NULL)

printf{*Problems allocating memory for SnagRecords[] with %d records\n",HowMany[0]};
if(LiveRecords == NULL}

printf(“Problems allocating memory for LiveRecords[] with %d records\n",HowMany[l]);
if (DwdRecords == NULL}

printf(*Problems allocating memory for DwdRecords[] with %d records\n",HowMany[2]};

//Initialize

memset { SnagRecords, (, sizeof (struct TREELIST_RECORD} * HowMany([0Q]
memset (LiveRecords, 0, sizeof(struct TREELIST_RECORD) * HowMany[1l}
memset { DwdRecords, 0, sizeof (struct TREELIST_RECORD) * HowMany [2])

)i
I

//8end off Records to get filled with the treelist data and verify numbers
FillTreelistRecords{ActualFile, SnagRecords, LiveRecords, DwdRecords, HowMany);

//Set some counters for how many records are in each type
SnagCount = HowMany[0];
LiveCount = HowMany[l];
DwdCount = HowMany[2];

//Get the BASAL AREA and CANOPFY WIDTH for the LiveRecords
CalculateIndividualBasalCanopyWidth (LiveRecords, LiveCount);

//Get the three items we use in our Veg-Structural classification
CalculateStandClassification{LiveRecords, LiveCount, ptr_stand};

//Put the values now found in StandClass into Fuels

Fuels[a] .Basal = ptr_stand->Basal;
Fuels{a].VegClass = ptr_stand-»VegClass;
Fuels[a].Qomd = ptr_stand->Qmd;
Fuels[a].CoverClass = ptr_stand->CoverClass;
Fuels[a].Closure = ptr_stand->Closure;

194

//printf{“%s has classification %hu%hu%hu and Basal %.2f\n",6 ActualFile, Fuels[a].VegClass, Fuels[al.QOmd,
Fuels[a] .CoverClass, Fuels(a}.Basal);

//Now send data off to initialize the Fuel Loadings
InitializeFuellLoadings (Fuels, a);

//Delete stuff on free store
delete [] SnagRecords;
delete [} LiveRecords;
delete [} DwdRecords;

}//end forfa=0 ...)

}//end InitialFuelload

F A R A e e R R R R

*hx

void InitializeFuelloadings (struct INITIAL_FUELS Fuels{], int Ctr)

J A A R R SRS

*hx

(
/*

As far as I can tell, these are the default values that Jim Agee wants to use instead of Table 4.2 of

"Fire and Fuels Extension: Model Description - Working Draft®, by ESSA Technclogies Ltd (Beukema et al.)

1999

Jim’'s version is dated 7-27-99 and he labels as Table 4.2 as well.
he did (dated Sept 17,199%%)

NOTE:
believe

Lou Beers and Heidi put in Premo without discusszing what it meant.

classification

scheme and thus Jim Agee did not know to code that one out.
those young stands (probably down in the valleys)

*/

ushort VegClass;

//Grab the VegClass associated with current stand.

VegClass = Fuels|[Ctr

[/ REEE R Ak

//1,5,7
(

Fuels[Ctr]
Fuels[Ctr]
Fuels|[Ctr]
Fuels[Ctr]
Fuels[Ctr]
Fuels[Ctr]
Fuels[Ctr]
Fuels[Ctr]
Fuels[Ctr]
Fuels[Ctr]

if(VegClas
//5
(

}

}

else if(VegClass ==

(
Fuels[Ctr]
Fuels[Ctr]
Fuels|[Ctr]
Fuels[Ctr]
Fuelg[Ctr]
Fuels[Ctr]
Fuels|[Ctr]
Fuels[Ctr]
Fuels[Ctr]
Fuels[Ctr]

)

else if{ VegClass ==

(
Fuels[Ctr]
Fuelg[Ctr]
Fuels[Ctr]
Fuels[Ctr]
Fuels[Ctr]
Fuels|[Ctr]
Fuelsg[Ctr]
Fuels|[Ctr]
Fuels|[Ctr]
Fuels[Ctr]

}

else if(VegClass ==

(
Fuels|[Ctr]
Fuels[Ctr]
Fuels|[Ctr]
Fuels|[Ctr]
Fuels[Ctr]
Fuels[Ctr]
Fuels[Ctr]
Fuels[Ctr]
Fuels[Ctr]
Fuels[Ctr}

in Section 6.

]1.VegClass;

-Duff

.Litter =
.Classz5s =
.Classl =
.Class3 =
.Class6Aall =
.Classé6Partl =
.Class6Part2 =
.Classl2 =
.ClassOverl2 =

PR ORRROON
S o ®Wm

[=R=]

s == VC_MC}

Fuels|[Ctr])
Fuels[Ctr]
Fuels[Ctr]
Fuelg[Ctr]
Fuels[Ctr]
Fuels[Ctr]
Fuels[Ctr]
Fuels|[Ctr]
Fuels[Ctr]
Fuels[Ctr]

MC_Duff
.MC_Litter
.MC_Class25
.MC_Classl
.MC_Class3
.MC_Class6all
.MC_Class6Partl
.MC_ClasstPart2
.MC_Classl2
.MC_ClassOverl2

VC_DH)

LDuff

.Litter =
.Class25 =
.Classl =
.Class3 =
.Class6all =
.Class6Partl =
.ClasséPart2 =
.Classl2 =
.ClassOverl2 =

OO0 O Wwo

MO R ONO R

oo

VC_EH)

.Duff

.Litter =
.Class25 =
.Classl =
.Class3 =
.Class6All =
.Classé6Partl =
.Class6Part2 =
.Classl2 =
.ClassOverl2

OOk oW ®

H O W O

[

VC_KP)

.Duff

.Litter =
.Class25 =
.Classl =
.Class3 =
.Class6all =
.Classé6Partl
.ClasséPart2 =
.Classl2 =
.ClassOverl2

OB WWwo

WNORFRODOON

oo

Additions to Fire and Fuels Extension

There was no documentation on what to do with VC_OPEN

Assign default fuel loadings depending
if(VegClass == VC_CH || VegClass == VC_MC || VegClass

A % % ¥ A 4

*

195

- Feb 16,

This is in his section of the writeup
(FFE) of FVS.

That classificaition is a strange one that T
Tt WAS NOT part of our original veg

For now, I will assume that VC_OPEN is a product of

It was caleulated earlier in CalculateStandClassification

UPON initial vegolass *HF A s hshkkkkkkk kAR Ak Ak

== VC_FINE ;

= 5.0 * FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD _EXP;

FUEL_LOAD_EXP;

* FUEL_LOAD_EXF;

* ok kA ¥ A

*

%

* oA A ¥ ¥

* *

A

*

//parallel variables for MC > 3000

~

u
wWWwNO RO

* FUEL_LOAD_EXP;
* FUEL_LOAD_EXP;
* FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
.0 * FUEL_LOAD_EXP;
= 3.0 * FUEL_LOAD_EXE;

= 0;

*

0
4
.9
1
8

*

= 9.5 * FUEL_LOAD_EXF;
= 9.5 * FUEL_LOAZD_EXP;

/2

= 2.3 * FUEL_LOAD_ EXP;
FUEL_LOAD_EXF;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LGAD_EXF;
FUEL_LOAD_EXP;
FUEL_LOGAD_EXF;

FUEL_LOAD_EXP;
FUEL_LOAD_EXP;

/13

= 3.7 * FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LORD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;

FUEL_LOAD_EXP;
FUEL_LOAD_EXP;

/74

= 5.0 * FUEL_LGAD_EXP;
FUEL_LOAD_EXP;
FUEL_LGOAD_EXF;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;

FUEL_LOAD EXP;
FUEL_LOAD_EXP;

else if{ VegClass == VC_RF)

(
Fuels [Ctr).Duff
Fuels [Ctr].Litter
Fuels{Ctr].Class25
Fuels(Ctr].Classl
Fuels {Ctr].Class3
Fuels([Ctr].Class6all
Fuels{Ctr].Class6Partl
Fuels[Ctr].Class6Fart2
Fuels([Ctr].Classl2
Fuels[Ctr].ClassOverl2

}

else if(VegClass == VC_WF)

(
Fuels([Ctr].Duff
Fuels[Ctr].Litter
Fuels{Ctr].Class25
Fuels([Ctr].Classl
Fuels[Ctr].Class3
Fuels[Ctr].Class6All
Fuels[Ctr] .Class6Partl
Fuels[Ctr] .Class6Part2
Fuels[Ctr].Classl2
Fuels[Ctr].ClassOverl2

}

else if(VegClass ==

VC_DH s0 the program

{

VC_OPEN }
wouldn’t bail

Fuels[Ctr] .Duff
Fuels[Ctr].Litter
Fuels[Ctr].Class25
Fuels[Ctr].Classl
Fuels[Ctr].Class3
Fuels[Ctr].Class6all
Fuels[Ctr].Class6Partl
Fuels[Ctr].Class6Part2
Fuels[Ctr].Classl2
Fuels[Ctr].ClassOverl2

else
Bailout(100);

//Now group up the needed compcnents to
Fuels([Ctr].HourlFuels
Fuels([Ctr].HourlQFuels
Fuels([Ctr].Hourl00Fuels

//Make the parallel groups for when MC
if{VegClass VC_MC)
{

Fuels[Ctr] .MC_HourlFuels

Fuels [Ctr] .MC_HourlOFuels

Fuels[Ctr] .MC_Hourl00Fuels
}

}//End InitializeFuelLoadings

196

//8

= 30.0 * FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;

n
MW oo
[= IR =10 N AP N
EE

FUEL_LOAD_ EXP;
FUEL_LOAD_ EXP;

|
G oo
oo

*

/79

= 30.0 * FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUFL_LOAD_EXP;
FUEL_LOAD_EXE;
FUFL_LOAD_EXP;
FUEL_LOAD_EXP;

[SINC IR -3
P

*

FUEL_LOAD_EXP;
FUEL_LOAD_EXP;

|
G - RN XN S e =Y

[=3c1

//John did not have this ccded in PREMO - I put same values as

= 2.3 * FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;
FUEL_LOAD_EXP;

a

L

T]
[e AR =]

RMNO HHONDH

*

FUEL_LOAD_EXP;
FUEL_LOAD_EXP;

[=N<]
*

make the 1,10, and 100 hour fuel loadings
= Fuels[Ctr].Litter + Fuels{Ctr].Class25;
= Fuels[Ctr].Classl;
= Fuels[Ctr] .Class3;

//Parallel variables for MC > 3000’ /715
= Fuels[Ctr].MC_Litter + Fuels([Ctr] .MC_Class25;

Fuels[Ctr] MC_Classl;

= Fuels|[Ctr] .MC_Class3;

F AR R

void FillTreelistRecords(char Filename{],

struct TREELIST _RECORD Snags(], struct TREELIST_RECORD Live(],
struct TREELIST_RECORD Dwd([], int HowMany{]}

AR e

{

FILE *IN;

ushort TestPlot, TestStatus;

int SnagCount, LiveCount, DwdCount;

/==

//Open up the filename passed in
IN = fopen{Filename, "r");
SnagCount = 0;

LiveCount = 0;

DwdCount = 0;
while(fscanf(IN, “$hu %hu ", &TestPlot
{

if (TestStatus == SNAG)

{

Snags [SnagCount] . Plot =
Snags [SnagCount] . Status =

//Scan the rest in
fscanf (IN,
&Snags [SnagCount] .Report

-- End of variable defining

&TestStatus) !=

EOF
//Put evervthing in Snags

TestPlot;
TestStatus;

“$f %hu %hu %f %f %f %hu’, &Snags[SnagCount].Tpa, &Snags [SnagCount] .Model,

&Snags [SnagCount] .Dbh, &Snags[SnagCount] .Height, &Snags{SnagCount].Ratio,

&Snags [SnagCount] .Condition) ;

SnagCount++;
}
else if{TestStatus == LIVE)

//Put everything in Live

Live[LiveCount].Plot = TestPlot;
Live[LiveCount].Status = TestStatus;

//Scan the rest in
fscanf (IN, "%f %hu %hu %f %f %f', &Live[LiveCount].Tpa, &Live[LiveCount] .Model,
&Live[LiveCount].Report,
&Live [LiveCount] .Dbh, &Live[LiveCount].Height, &Live[LiveCount].Ratio);

LiveCount++;
}
else //Put everything in Dwd
4

Dwd[DwdCount] . Plct = TestPlot;

Dwd[DwdCount] .Status = TestStatus;

//Scan the rest in
fscanf (IN, "$%f %hu %hu %f %f %f %hu", &Dwd[DwdCount].Tpa.&Dwd[DwdCount] .Model,
&Dwd {DwdCount] .Report,
&Dwd ([DwdCount] .Dbh, &Dwd[DwdCount] .Height, &Dwd[DwdCount] .Ratio,
&Dwd [DwdCount] .Condition};

DwdCount++;
}
}//end while

fclose(IN);

//Error check how many records just went into the different *Records structures

if{SnagCount != HowMany[0])

4
printf{"Number of SnagRecords not matching between ExtractTreelist & FillRecords...bailing\n");
Bailout{99);

}

if (LiveCount != HowManyfl])

{
printf ("Number of LiveRecords not matching between ExtractTreelist & FillRecords...bailing\n");
Bailout{99);

}

if (DwdCount != HowMany[2])

4
printf{"Number of Dwdecords not matching between ExtractTreelist & FillRecords...bailing\n");
Bailout (99);

}

}//end FillRecords

N R R R R R R e T
void CountTreelistRecords(int HowMany[), char Filename[})

FE R S R L e R N s T T
{

FILE *Open;

double Plot,Status, Tpa,Model, Report,Dbh,Height,Ratio, Dead;

//-==-= ~= —————— - End of variable defining ----—-—----—-——---——— -

//Open up the filename passed in
Open = fopen(Filename, "r");

//Start going through and counting records
while(fscanf {Cpen, “%1f",&Plot) != EOF) //if Plot is EOF then file end has been reached
4
//8can in the next 7 variables
fscanf (Cpen, *%1f %1f %1f %1f %1f 31f %1f", &Status, &Tpa, &Model, &Report, &Dbh, &Height, &Ratio) ;

//Some Dbh 0’s may have slipped in treelist, catch and give them a small dbh
if (Dbh

//For Snags and DWD
1f(Status != LIVE)
fscanf(Open, "%1f" , &Dead);

//Tally up the actual records for each "Live" type
if (Status == SNAG}
HowMany [0]++;
else if(Status == LIVE)
HowMany [1] ++;
else
HowMany [2] ++;

}//end while....

//Close the file
fclose (Open) ;
}//end CountTreelistRecords

P R R R R)

ulong CountLandscape (void)
P R R R L R R T

{

197

198

/* Count how many FOREST CELLS there are on the landscape - these are all the cells
eligible to receive a prescription.

*/
ulong Count=0;
int a;
/==
for (a=0; a<UNIQUE; a++)
{
if{Data.Cellid[a] FALSE)
break; //no mere data ta check
if(Data.Treelist{a] != NONFOREST)
Count++;
}

return Count;
}//end CountLandscape

A R AR L T T T T

ulong FillAllInfo(struct P_INFO AllInfo[])

J B B R L Lt T T
(

//Same thing as CountLandscape() except this time £ill up the AllInfo structures

I+

Sometimes this function is called and that is really needed is the Treelist value - but
this function will always f£fill up Goal & Hold so it is more versatile and if a calling
functions doesn’t need them - so0 be it! (e.g. the initial fuel loading stuff

*/

int a;
ulong Count=0;

for (a=0; a<UNIQUE; a++)
{

if(Data.Cellid[a] == FALSE)
break; //no more data to check
if (Data.Treelist[a] != NONFCREST }
{
AllInfo[Count].Treelist = Data.Treelist[al;
AllInfo[Count] .Goal = Data.Goal(a];
AllInfo[Count] .Hold = Data.Hold[a]:
Count++;
}

return Count;
}//end FillAllInfo

P AR R

int CompareAllInfoTreelist{const void *ptrl, const veid *ptx2)

R R

(

//Just to typecast them since we aren’t actually passing in pointers
struct P_INFO *eleml;
struct P_INFO *elem2;

eleml = (struct P_INFO *)ptrl;
elem2 = (struct P_INFO *)ptr2;

if(eleml->Treelist < elem2->Treelist
//Sort by Treelist

return -1;

eleml->Treelist > elem2->Treelist)

return 1;

if

else

return 0;
//FINISHED! !

}//end CompareAllInfo
DT R R R R T R L L L LR T T T T T T S

ulong CountUniqueAllInfoTree{struct P_INFO AllInfo(], ulong Count)

P R R

(
//Go through the array of AllInfo structures and count how many unigue TREELIST there are.
ulong a,b;

ulong Unique;
ulong EvalTreelist;
/=

- End of variable defining ------~------—--—mmmmmmmmmm

199

for(a=0;a<Count;) //a will get increment by other
lcop
(
if(b == Count) //because of weird
incremental method, b will reach end first but a doesn’'t know that
break;
Unique++; //first one always counts

as do others because a gets reset in other loop
//Set the initial Eval* variables

EvalTreelist = AllInfola].Treelist;

//since AllInfo is already sorted, start at next record and look downward until no longer a match
for{b=a+l;b<Count;)

{
if{(AllInfo([b].Treelist == EvalTreelist }
b++;
//look at next record
else
{
//Set the "a' variable to where "b" is because this is the next unigue match
a = b;
break;

}
}//end for (b=a+l;b<Count;b++)
}//end for{a=0;a<Count;a++)

return Unique;
}//end CountUniqueallInfoTree

A

uleong FillFuelsWithTreelist (struct P_INFO AllTnfo{], ulong Count, struct INITIAL_FUELS Fuels([])

F R R il f R B R T

{
//Same thing as CountUnigueallInfo, except fill up Fuels at same time
ulong a,b;

ulong Unique;
ulong EvalTreelist;

e ettt L LT L L End of variable defining --------——--———=——————=-m—— -
Unigque = 0;
b = 0;
for (a=0;a<Count;) //a will get increment by other
loop
{

if{b == Count} / /because of weird
incremental method, b will reach end first but a doesn'’'t know that

break;
Unique++; //first one always counts

as do others because a gets reset in other loop

//Set the initial Eval* variables
EvalTreelist = AllInfo{a).Treelist;

//Put these in UniqueList

Fuelsg[Unique-1].Treelist = EvalTreelist;

//since AllInfo is already sorted, start at next record and look downward until no longer a match
for {b=a+1;b<Count;)

{
if(AllInfo[b)].Treelist == EvalTreelist
b++;
//look at next record
else
{
//Set the "a" variable tc where "b* is because this is the next unigue match
a = b;
break;

}

}//end for(b=a+l;b<Count;b++)
}//end forla=0;a<Count;a++)

return Unique;
}//end FillFuelsWithTreelist

e T

void DoubleCheckFuels{void)

A N h L R T T L T L L R L S B L
{

I+

Go through the entire Data.*[] arrays and make sure every cell has some fuel loadings and a valid fuel model
associated with it.

*/

for{a=0;a<UNIQUE; a++)

200

if (Data.Cellid[a]l == FALSE)
break;

if (Data.Treelist[a]l == NONFOREST}

(

//No fuel loads in Nonforest stuff - but check for a fuel model
if{Data.InitialFuelModelfal == 0)
printf("Cellid %lu has nc fuel model\n",Data.Cellid[a]};

else //check both the class3 fuel loading and the fuel model - could also check more FuellLoadings if
wanted

if(Data.InitialClass3[a] == || Data.InitialFuelModel([a] == 0
printf("Cellid %lu has no fuel load and-or fuel model\n",Data.Cellid[a]l);
}
}//end for(a=0 ...)

}//end DoubleCheckFuels

ERASTUFF.CPP

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <math.h>

#include "globals.h* //to hold global DEFINES, etc..
#include "data.h"

//Functions defined here in EraStuff.cpp

void InitialEraValues(void);

int CalculateSumPeriodEra{ulong NoSub, struct ERA S_Eral[], ulong Count, struct SOLUTION CS[], struct
OPTIMIZE_SINGLE_VALUE OV[],

ulong Records};
void CalculateNetEras(struct CURRENT_ERAS *CellEra);
void CalculateDecayOnlyNetEras{ struct CURRENT_ERAS *CellEra);

//External functions

extern int LookAtOSV{const void *ptrl, const void *ptr2};

extern int CompareEraMinor{const void *ptrl, const void *ptr2);
extern int LookAtSolutionCellid{const void *ptrl, const void *ptr2};

J R R L T R R e e L e
T

int CalculateSumPeriodEra{ulong NoSub, struct ERA S_Era{], ulong Count, struct SOLUTION CS[]}, struct
OPTIMIZE_SINGLE_VALUE GVI[],

ulong Records)
R L L L R L LR L R L L L T T e

LR TR

{
/*
NOTE: CS[] is sorted by Cellid in ascending order
S_Era[] is sorted by Minor in ascending order
OV[] sorted by TREELIST-GOAL-HOLD in ascending crder

This functions should get called first after making a random initial solution. Using that solution fill up and
calculate

every cells ERA value for the simulation period. For those cells actually in the solution the periodic ERA’s are a
function of:

- Their InitialEra

~ ERA recovery

- New ERA contribution due to harvesting
~ continuing recovery

For those cells NOT actually in the current solution, the periodic ERA values are a function of:

- Their InitialEra
~ ERA recovery

To do this: look at every cell and do a BSEARCH to see if its subwatershed is in solution. If so, get the
solution

TREELIST-GOAL-HOLD and BSEARCH those values in OV[]. Once found calculate periodic ERA’s as noted below and store
in

the S_ERA structure and CS[] structure.

Another STRATEGY note (because I keep forgetting how this works in long run):

The CS[] structure contains a member called CS.PeriodEral] that will hold the individual contribution that a cell
makes to the

overall Subwatershed ERA value stored in the S_Era.SumPeriodEral[]. Until a final soluticn is found there is no
need to

store individual ERA values in the permanent Data.Era[] array because it will change during the solution finding
process. So

201

this function is very important because it goes through the entire Data.* arrays and accounts for EVERY cell that
IS in the

solution AND for every cell that is in a subwatershed that IS in the sclution. Those are two distinct things. The
S_Era.SumPeriodEral[] values recognize that some cells contribute to the subwatershed ERA value even though they are
not

in solutioen.

In the end, as a solution is being found by the heuristic, when a "move" is made (which only involves moving Goal-
Hold values

from cells that are IN the solution) the contribution that a cell made that is being moved OUT of the solution can
be

subtracted by finding its individual contributicn in CS.PeriodEra[] and subtracting that from S_Era.SumPeriodEral]
and the

new move contribution can be found by taking the new prescription (Treelist-Goal-Bold) and find that prescription
in

the OV[] structure and recalculate the same as is done here -> and added to the S_Era.SumPeriodEral] and restore in
the

CS.PeriodErall.

*/

int a,b;
int InSoclution;

//Keys and pointers for structures

struct ERA Key;

struct ERA *ptr_record;

struct SOLUTICON SKey;

struct SOLUTION *ptr_skey;

struct OPTIMIZE_SINGLE_VALUE OVKey;

struct OPTIMIZE_SINGLE_VALUE *ptr_ovkey;
struct CURRENT_ERAS CellEraValues, *ptr_cev;

//For Time information
clock_t Start, Finish;
double Duration;

S e e e End of variable defining --—-----=-s-mmm oo e e

printf("Calculating the SumPeriodEra!] and CS[).PeriodEral] values for this solution\n");

//Always zero out the values in 5_Era[l.SumPeriodEra{] at start since they are += and may get called multiple times
for (a=0;a<(signed}NoSub;a++)
{
for (b=0; b<NP;b++)
S_Erala].SumperiodEralb] = 0;

Start = clock(};

for(a=0; a<UNIQUE;a++}
{
if(Data.Cellid(a] == FALSE) //nao more cells to check
break;

//NOTE: This starts off the same way as Fill_SEra() does

//8ince there are no restrictions such as not counting wilderness, every cell has a contribution to
cumulative ERA

//as long as its subwatershed is in the solution. Make a key with the subwatershed ID and search for it

Key.Minor = Data.Minorla}l;

/*
A cell ALWAYS contributes to the S_Eral].SumPeriodicEra[] values if its "parent' subwatershed is in
S_Eral(] .Minor.
The tricky part is to track whethker a particular cell is being "managed" (i.e. in the solution) because

its
SumPeriodicEra[] values are calculated differently. */
//Use bsearch on S_Era to see if this subwatershed is in solution
ptr_record = (struct ERA*)bsearch(
&Key,
(void *)S_Era,
(size_t)NoSub,
sizeof(struct ERA},
CompareEraMinor) ;
/7 +4+
PR Y R S Sy
/7 SUBWATERSHED IS NOT IN SOLUTION
/7 +HH+H +

B e e R
if{ ptr_record == NULL)}
{
/"
There are basically a couple of reasons that this subwatershed is not in the solution:
1) It just isn’t! For example, a subwatershed with only wilderness will most likely not be in
the solution
2} Something has gone wrong.

Do a double check by verifying that the actual Cellid is not in CS[].
*/

202

//First, verify that this cellid is not in the solution (should not since it's parent
subwatershed was not!)

//There shouldn’t be many subwatershed NOT in solution so this should not take up too much
processing time

//Make a key for the current cell using its cellid
SKey.Cellid = Data.Cellid[a]

//Use bsearch on CS[] to see if this cell ig in the solution
ptr_skey = (struct SOLUTION*)bsearch(

&SKey,

{void *)Cs,

{gsize_t)Count,

sizeof({ struct SOLUTION],

LookatSolutionCellid);

if(ptr_skey != NULL) //1f it finds this key in CS then something
is wrong!

Bailout(103);

}//end if(ptr_record == NULL)

IEEEE LT L LT +++ FH++++ 4 +++++ +++
L T e

7/ + +H+tr+Errrrd 4 +++++ SUBWATERSHED IS IN SOLUTION
++ +++ B RS ST

/7 FHEF ++++ bt

R B S T
else
{
/*
S0 this cell’s parent subwatershed IS in the solution, but the cell itself may noct be. Two
things need to happen:
1) petermined whether the cell itself is in the solution and
2) account for this cells contribution to the S_Era[].SumPeriodEra[] & CS[].PeriodEral]
since it’s parent subwatershed is in solution.
*/

//First, determine whether or not this cellid is in the solution

//Make a key for the current cell using its cellid
SKey.Cellid = Data.Cellid[a]:

//Use bsearch on CS{] to see if this cell is in the solution
ptr_skey = (struct SOLUTION*)bsearch(

&SKey,

(void *}CS,

(size_t)Count,

sizeof(struct SOLUTION),

LookAtSolutionCellid);

//Make a flag to use below
if{ ptr_skey == NULL }

InSolution = FALSE; //cell not in solution
else

InSolution = TRUE;

J KK KKK K KKK KK kK K K KK K Kk K KK K K K Kk KKK K KKK KKK KA KKK KKK AR KKK KK AR TR LXK K KKK AR K KKK K
/1
AND CELL IS NOT IN SOLUTION

J KRR K KA KKK KKK KK KKK K KKK KKK KKK KKK KKK KK KKK KKK KKK KKK KKK KKK KKK EEEEEEE KKK KKK KKK KK KK
if{ InSolution == FALSE }
{
/*
Since there is no possibility of activity taking place
in this cell, just slowly decay or "recover" it'’s current Data.InitialEral]
proportionally down to 0.
There is no documentation to do this but it should not matter because they don’t
contribute to anything.
I am thinking that later we may want to "recover" certain areas at different rates
and track how those
subwatershed that are "unmanaged" fair compare to those that are managed.

This cell will still contribute to the S_Era.SumPericdBEral] values, but how they are
calculated is different

than if it was in solution because this cell {not being in the solution) cannot have
activities and so there are

no new net increases in ERA values.

*/

//clear the CellEraValues stuff before filling and sending off

memset (&CellEraValues, 0, sizeof{struct CURRENT_ERAS));

//Make a package of stuff to send off to get NetEra's calculated

CellEraValues.CurrentEra = { {float)Data.InitialEralal / ERA_EXP)
//last stored as modified ushort
CellEraValues.Cell = aj

//Need te send a pointer to get values back
ptr_cev = &CellEraValues;

//Ship pointer off to function which will calculate DecayOnly NetEra's for each
period
CalculatebDecayOnlyNetEras(ptr_cev);

203

//If new Aecayed NetEras were calculated, store their contribution to the
SumPeriodEral]
if{ ptr_cev->NeedsDecay == TRUE)
{
for{b=0;b<NP;b++)}
ptr_record->SumPeriodEral[b] += (ulong} (ptr_cev->NetEralb]);

}//end if{ InSolution == FALSE)

F AT T R T T T S S RS R e

/7
AND CELL IS IN SOLUTION

R e L T T T e O
else
{
I+
Finally, down to the nitty-gritty. This cell is in the solution and its parent
subwatershed is in solution.
The S_Era.SumPeriodEra[] and CS[].PeriodEra(] values are therefore a function of
recovery and net addition due to
activities occuring in a period.

*/

//Make a key for this cells Treelist-Goal-Hold as seen in the C3[] structures
OVKey.Treelist = ptr_skey->Treelist;

OVRey.Goal = ptr_skey->Goal;

OVKey.Hold = ptr_skey->Hold;

//Use bsearch on OV[] to access this prescriptions Rev and CFHarvest values
ptr_ovkey = (struct OPTIMIZE_SINGLE VALUE*)bsearch(

&OVKey,

(void *)ov,

{size_t)Records,

sizeof(struct OPTIMIZE_SINGLE_VALUE),

LookAtOSV)

if{ ptr_ovkey == NULL } //there had better be one!
{
printf("Can’t find key: Treelist = %lu, Goal = %hu, and Hold =
%hu\n", OVKey.Treelist, OVKey.Goal, OVKey.Hold) ;
Bailout (80);
}

//clear the CellEraValues stuff before filling and sending off
memset (&CellEraValues, 0, sizeof{struct CURRENT ERAS) };

//Make a package of stuff to send off to get NetEra's calculated

CellEraValues.ptr_osv = ptr_ovkey;

CellEravValuss.CurrentEra = { (float)Data.InitialEralal / ERA_EXP)
//last stored as modified ushort

//Need to send a pointer ta get values back
ptr_cev = &CellEraValues;

//8hip pointer coff to function which will calculate NetEra’s for each period
CalculateNetEras (ptr_cev);

//Store the return values in the NetEra[] member in two places for each period
for (b=0;b<NP;b++}
{

ptr_skey->PeriodEralb] = (ushort} (ptr_cev->NetEralbl)
ptr_record->SumPeriodEra[b] += (ulong) (ptr_cev->NetEra[b]);
3
//Also store Data.InitialEra{) in the solution structure - is needed when making
moves in heuristic process
ptr_skey->InitialEra = Data.InitialErafa])

//double check how this get used later!!

}//end elge if{ InSolution ... }
}//end else if(ptr_record == NULL)
}//end for(a=0 ...)

//Testprint

/*

printf(’The SumPeriodEra values here in CalculateSumPeriodEra are\n");
for (a=0;a<(signed)NoSub;a++)

{
printf ("Subwatershed %hu has Count %lu: *,8_Eral[a].Minor, S_Era(a].Count);
for (b=0; b<NP;b++)
printf(*"\t%.2f", { (float)S_Era[al.SumPeriodEralb) / ERA_EXP} / S_Erala].Count};
printf{"\n");
)
*/

Finish = clock{);
Duration = ({double) (Finish-Start) / CLOCKS_PER_SEC);

printf(*!!Toock %.21f seconds to calculate SumPeriodEra{] and CS.PericdEraljfor the entire landscape**\n", Durat
yi

return TRUE;
}//end CalculateSumPeriodEra

J R L e SR P PP

void InitialEraValues(void)

J R B B T

{

/*

Give background ERA values to all of the landscape - including those that are NONFOREST

For now there are only a few "rules" that give different background levels. I am

completely making these rules up - based on some values I have seen in the draft document,

*Eldorado National Forest: Cumulative Off-Site Watershed Effects (CWE) Analysis Process" version 1.1
dated June, 1993.

There is plenty of room here to develop new rules and I will implement those at later dates as more
information is given to me regarding what background values are appropriate
*/

int a;

//Go through all of Data.*[]

for (a=0;a<UNIQUE; a++)
{

204

ion

if{Data.Cellid[a] == FALSE) //no more cells to check
break;
if(Data.Minor[al] == WATER_BODY } //Data.InitialBra[] already initialized to
0.0 - just skip and leave at 0
continue;
if({ Data.Alloc[a] == ALLOC_WILD } //Data.InitialEra{] already initialized to
0.0 - just skip and leave at 0
continue;
if(Data.InitialVegla] == GIS_WATER) //Data.InitialEra[] already initialized to 0.0 - just
skip and leave at 0
continue;
//REMEMBER: I made this up with some "guidance" from document
if(Data.Buffer[a] == IN_BUFFER)
//These should have low background values
Data.InitialErala] = (ushort)(.01 * ERA_EXP };
else if({ Data.Owner[a] == OWN_PI
//Private Industrial should be highest
Data.InitialBrala] = (ushort)(.08 * ERA_EXP);
elge if(Data.Alloc([a] == ALLOC_MATRIX)
//Assume all Matrix lands have had previous activity
Data.InitialErala] = (ushort}{ .08 * ERA_EXP);
else if{ Data.Owner([a] == OWN_STATE || Data.Owner[a] == CWN_MISC } //State and misc lands
get fairly high value
Data.InitialEra[a] = {(ushort}{ .07 * ERA_EXP);
else
Data.InitialErafa] = (ushort){ .05 * ERA_EXP);

//all remaining - give mzdecate value

Y//end forf{a=0 ...)

printf{" = \n");
printf{" Finished initializing Background ERA values \n")
printf{'==

}//end InitialEraValues

R it

void CalculateDecayOnlyNetEras(struct CURRENT_ ERAS *CellEra }

R E T R L Lt R T I S e

(

/*

This function will calculate the Net Period Era’s for any cell that is being DECAYED only.
That is, there is definately NO activity going on in it. That may be due to it not being
in the solution at all, or if the cells parent subwatershed is in the soluticn this cell
may still not be in the solution.

NOTE: The entire structure CellEra was zero’ed out before being called so it is safe to assume
that the NetEral] array is zero at start.
*/

int b;
float Subtract, LastEra;

- End of variable defining --~--~--=----------------o-ooooooo

//NOTE: could code so this function is not called if a cell has these next attributes, but is easier to do only
once here!

//Determine if one of those cells that received an InitialEra of 0, if so then NetEra[] is fine
if{Data.Minor[CellEra->Cell] == WATER_BODY) //NetEra[] already initialized to 0.0 - J
return and leave at 0

ust

205

return;

1f(Data.Alloc{CellEra->»Cell] == ALLOC_WILD) //NetEra(] already initialized to 0.0 - just
return and leave at 0
return;

1f(Data.InitialVeg[CellEra-»Cell] == GIS_WATER) //NetEra[] already initialized te 0.0 - just return and
leave at 0
return;

//1f cell passes the above break statements, set the flag to tell calling function that new non-zero values are in
NetEra
CellEra->NeedsDecay = TRUE;

//0therwise, "recover" proportionally from its Data.InitialEra(] value

LastEra = CellEra->CurrentEra; //CurrentEra has the Data.InitialEBra[] value
for this cell
Subtract = (CellEra->CurrentEra / NP * 2); //This is rounding, but that’'s QK - the * 2 is because initial

ERA are low!

for (b=0;b<NP;b++)
(
LastEra = LastEra - Subtract;

if{LastEra < 0 }
LastEra = 0;:

CellEra->NetEra[b] = LastEra * ERA_EXP;
}//end for{b=0 ... }
}//end CalculateDecayOnlyNetEras

J R KRR R R K R KK KR K K R K KR KR KK ok kR ko kR R R K R R K R R KKK R K KR K KK R KR K R R R KK KK KK K KR R K

void CalculateNetEras(struct CURRENT_ERAS *CellEra)
T T T R E T

(

/*

This function will calculate Net Period Eras for any cell , for all periocds. The Era
coefficients used here are a mixture of stuff, See comment at start of InitialEravalues()
for source of most Era data.

*/

int b;

float CurrentEra;

int LastCutPer, UseAlternate;

float EraSitePrep, EraHarvest, EraRecovery, ThisPericdHSP, LastPeriodHSP;

/7 Calculate Net losses and additions

LastCutPer = -1;

for (b=0; b<NP; b++)
{

//reset some variables every period

EraSitePrep =0;
EraHarvest = 0;
UseAlternate = FALSE;

if(b > 0)

(

LastPeriodHSP = ThisPericdHSP;
ThisPeriodHSPE = 0;

}
else //first period only
{
ThisPeriodHSF = 0;
LastPeriodHSP = 0;
}

J/RRR R R KRRk R xx KRk Kk KKk x DECOVERY F*FFFrrrrrrrannnnnnnnsnnnxrdnsk

//First there is always some "recovery" from previous period

if(== 0)
EraRecovery = (float) (CellEra->CurrentEra / NP * 2); //recover the same as
above stuff
else
(
//Recovery is function of last time there was harvest - these values could easily be modified
if not working
if((b - 1) == LastCutPer)
//last harvest was 1 pericd ago
EraRecovery = {(float).08;
else if((b - 2) == LastCutPer)
//last harvest was 2 period ago
EraRecovery = {float).02;
else if((b - 3) == LastCutPer)

//last harvest was 3 period ago
EraRecovery = (float).02;

206

else

//recover

VZAEEE T LY

if(CellEr

Barber)

EraRecovery = (float) (CellEra->CurrentEra / NP * 2};
the same as above stuff

AAFARAAFAFN NEW ADDITIONS *Hrthbhhhhhhhhhhnbhhh bbbk hhss

a-»ptr_osv->CFHarvestb] > 0) // There was Harvest this pericd

(per discussion with Klaus

/7

500 - 2500 dellars £

2000 with 2000 being

if(CellEra->ptr_osv->Revib] < 500 }
EraSitePrep = 0;
else if(CellEra-»>ptr_csv->Rev[b] > 2500)

EraSitePrep (float)C.1;
else //scale the ERA for those revenues between
rom 0.0 - 0.1

EraSitePrep = (float)((CellEra->ptr_osv->Rev[b] - 500) * .00005);// .00005 is .1 /

the range cf § values

//===s=== = =m=usoe —=
//ERA for Harvest from pg. 89 of SNEP Addendum (chap 2)... ERA=max{0.0l1 * mbf,
/7
//NQTE: CFHarvest value needs to be converted to MCF and then using conversion of 5 to get MBF
EraHarvest = (float} (0.01 * (.00l * CellEra-»ptr_osv->CFHarvest([b] * 5 })
if{ EraHarvest < 0.08 }
EraHarvest = (float)0.(08;
//must be at least 0.0%
elge if(EraHarvest > 0.2)
EraHarvest = {float)0.2;
//but not greater than 0.20
7*
Because of problem where a stand may be cut in multiple periods with increasing EraHarvest and
EraSitePrep
values, the CurrentEra must be controlled or it skyrockets. To compensate, calculate the total
contribution
from EraHarvest & EraSitePrep, if it is higher that the previous periods calculations {assuming
it was
also harvested in previcus period) take the difference of the twe and add ONLY that difference
on to
CurrentEra and don’t add any EraRecovery.
*/
ThisPeriodHSP = EraHarvest + EraSitePrep;
if{ LastCutPer == {(b-1} }
UseAlternate = TRUE;
LastCutPer = b;
}//end if{ ptr_ovkey-> ...)
if(UseAlternate == TRUE)
{
if(ThisPeriodHSP > LastPeriodHSP }
CurrentEra = CurrentEra + (ThisPeriodHSP - LastPeriodHSP);
else
CurrentEra = CurrentEra;
}
else //OK, calculate a new CurrentEra by subtracting Recovery values and adding SitePrer and Harvest
values
CurrentEra = CurrentEra - EraRecovery + EraHarvest + EraSitePrep ;
//Don’t let the CurrentEra "recover" itself below 0 - or constrict it to never be less than its

InitialEral]

if(CurrentEra < 0)

CurrentEra = C;

//Store that value in the NetEral] member
CellEra->NetEra[b] = (CurrentEra * ERA_EXP);

}//end for(b=0 ...)

}//end CalculateNetEras

QUTEUTDATA . (PP

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include “globals.h”

#include "data.h"
#include "goals.h*

//defined here in OutputData.cpp

int OutputCurrentlandscapeData(int Per);

int OutputPreSimAnalysisData(void};

int OutputPostSimAnalysisData(void);

void OutputAcresHarvest(int Status);

void OutputMapGoals(int Status);

void OutputForestDistribution(int Status);

void LevelOfActivity(int Status);

void TimingChoiceFrequency (void);

void OwnershipByMinor (int USW, int UniqueMinor[]};
void OutputFuelloadsModel {int Per);

void QutputPotentialBigTreesAllStandGoals(void);
void OutputEndingSolutionMetrics(void);

void OutputVegcodes{int Per);

void OutputInitialGeal (void);

//defined in ReadData.cpp
extern int CreateMainData(void);

//defined in FuelStuff.cpp

extern ulong Countlandscape (void);

extern ulong FillaAllInfo(struct P_INFO AllInfo[] };

extern int CompareAllInfoTreelist(const void *ptrl, const void *ptr2);
extern ulong CountUniqueAllInfoTree(struct P_INFCQ AllInfol], ulong Count);

// AAAAASAR AR S S st At sl R s R R A R R R EE R R SN

int QutputPreSimAnalysisData({void)

AR e R R g e e t

(

/* This function doesn’t care whether optimization was done at the Watershed or Subwatershed level.
It will output data to use in either making maps in ArcInfo or for making graphs in Excel - as well
as providing general statistical data regarding various elements we want to look at.

There are several pieces of data that can be extracted for a Pre-Simulation analysis. This controlling
function can be used to 'toggle’ which ones we want, because in the end, in may be faster to run

some simulations without doing all these analysis and outputting.

*/

printf("\n\t\t\t\t=== Generating data for PRE-SIMULATION analysis =

\n");

//For Time information
clock_t Start, Finish;
double Duration;

J/ERREEER AR Rxaavxrat s gome function Calling Controled by using #defines in global.h ***kkkkswxrkhksxrrnk
Start = clock();

OutputFuell.ocadsModel (0) ;
QutputForestDistribution {PREDICTED) ; //This should get done no matter what!
//NOTE: output of initial ERA values is done in Goalfontroller.cpp with PrintInitialEraValues()

if (GOAL_TO_USE != GROW_ONLY) //Grow Only - don't need harvest and acres or goal
(

#ifdef ACRES_HARVEST
LevelOfActivity (PREDICTED} ;
OutputAcresHarvest (PREDICTED) ; //Ascii file that can be
used in Excel
#endif

#ifdef MAP_GOALS
QutputMapGoals (PREDICTED) ; //Grid format file for
ArcInfo
#endif

}//end 1f(GOAL_TQ}USE != GROW_ONLY}

Finish = clock();
Duration = { {dcuble}(Finish-Start} / CLOCKS_PER_SEC);
printf("\n**It took %.21f seconds to output the PRE-SIMULATION anylysis data**\n", Duration);

return TRUE;
}//end OutputPreSimAnalysisData{void);

AR R R R LR L ST AT e R

int CQutputPostSimAnalysisData (void)

R T N Ty

(

/>

This function is pretty much identical to the above OutputPreSimAnalysisData(), except that
this will send a parameter ’'ACTUAL’ to various ouput functions so they know to ouput
results in the ..\PostSimDatal\goal*\ directories.

This function doesn’t care whether optimization was done at the Watershed or Subwatershed level.
It will output data to use in either making maps in ArcInfo or for making graphs in Excel - as well
as providing general statistical data regarding various elements we want to look at.

208

There are several pieces of data that can be extracted for a Post-Simulation analysis. This controlling
function can be used to 'toggle’ which ones we want, because in the end, in may be faster to run

some simulations without doing all these analysis and outputting.
./
/

printf ("\n\t\t\t\t

= Generating data for POST-SIMULATICN analysis

//For Time information
clock_t Start, Finish;
double Duration;

J/**xkxxkkwkaskakerkskes Function Calling Controled by using #defines in global.h ****s*ssssrksssrsss
Start = clock(};

OutputEndingSolutionMetrics();

OutputForestDistribution(ACTUAL) ; //This should get done no matter what!
if (GOAL_TO_USE != GROW_ONLY) //Grow Only - don’t need harvest and acres or goal
(

#ifdef ACRES_HARVEST
LevelQOfActivity (ACTUAL) ;

OutputAcresHarvest {ACTUAL) ; //Ascii file that can be used in
Excel
#endif
#ifdef MAP_GOALS //DON*T NEED UNTIL WE CCME UP WITH RE-OPTIMIZING
ROUTINES DURING SIMULATION - SAME AS PRE-SIM
//0utputMapGoals {ACTUAL) ; //Grid format file for
ArcInfo
#endif

}//end if (GOAL_TO)USE !=GROW_ONLY)

Finish = clock();
Duration = { (double} (Finish-Start} / CLOCKS_PER_SEC);
printf(“\n**It took %.21f seconds to output the POST-SIMULATION anylysis data**\n", Duration };

return TRUE;
}//end OutputPostSimAnalysisData (void)

P R

void OutputEndingSolutionMetrics(void)

P R R L L L L T T T

{

/*

This function will only get called in OutputPostSimanalysisData{) and it is

designed to first create a SOLUTICN structure that is identical to the solution used
for this goal - and then fill it up with values as seen below in code.

*/

FILE *WriteQut;

char filename[256];

int a, b;
ulong AllocOK, AllocNOK,CellsInShed;
ulonyg SolutionCounters[3];

double PerBigTrees[NP];
double SumBigTrees = 0;
ulong *ptr_cellid;
ushort *ptr_bigtrees;
int FoundMatch;

ulong Cellid;

ulong SolutionSheds;

S End variable defining -
printf("\n\n*** Calculating new Solution Metrics {(e.g. EraValues, BigTrees) - will take a few moments ***\n\n");

//**********i»*******************t**
7/ Determine the "Solution'
7/

// This creates a "bogus® solution but allows this function to use the Solution structure for calls

// to other functicns that want that type of structure as a parameter.
R g N L N T e

//Initialize the SolutionCounters array and call up the DetermineEligibleCells() function to fill it up
for({a=0;a<3;a++)
SolutionCountersfaj] = 0;

if(DetermineEligibleCells(SolutionCounters) == FALSE}
Bailout (82);

//The values now in SolutionCounters should be properly set

AllocOK = SolutionCounters(0];
AllocNOK = SolutionCounters(l];
CellsInShed = SolutionCounters([2];

//Set a checker to look for when there are 0 eligible cells
if (AllocOK == FALSE)
Bailout(89);

209

//Create an array of structures on the free store to hold the sgcluticn
struct SOLUTION (*Solution) = new struct SOLUTION[AllocOK];
if(solution == NULL }
printf ("Problems allocating memory for Solution[] with %lu elements\n"',AllocOK*sizeof (SOLUTION));

//Initialize
memset(Solution, 0, sizeof(struct SOLUTION} * AllocOK);

//Now £ill that array of SOLUTION structures with the Treelist - Minor - Cellid - GOAL - and HOLD of those eligible
cells

if(FillSolution(SolutionCounters, Solution, FAKE) == FALSE
Bailout(83};
//Now sort the array of SOLUTION structures by MINOR . This will guarantee all the subwatersheds are in order
//Use mgsort because gsort takes way too long since there are not many unique Minor ID's
mgsort { {void*}Solution, //base
(size_t)AllocOK, //count of # of arrays
sizeof (struct SOLUTION), //size of each array
0, AllocOK-1, //current division (
always: 0, "Countr-1 }
LookAtSolutionMinor); //compare function
/7 ===End of defining and f£illing Solution =========== ==

PR Rt A L e e

/7 Determine and print out the ERA
values
P R L R S L L T e T E P P e

//Call up the CountSolutionWatersheds() function to see how many subwatersheds are actually in the solution
SolutionSheds = CountSolutionWatersheds{AllocOK, Solution);

if(SolutionSheds == FALSE)}
Bailout(84);

//Create the appropriate number of Solution ERA structures and store them in an array
struct ERA (*S_Era) = new struct ERA[SolutionSheds];
if(S_Era == NULL!
printf{"Problems allocating memory for S_Era with %lu elementsz\n",SolutionSheds*sizeof (struct ERA)};

//Initialize this array of ERA structures - this is important because Fill_SEra will dc some += summing
memset(S_Era, 0, sizeof{struct ERA} * SolutionSheds);

//Fill the array of S_Era structures with appropriate values NCTE: the ERA values are ready to
be printed after this!
if(FillEndingEra{SclutionSheds, S_Era, AllocOK, Solution) == FALSE)

Bailout{85);

//Print out the ERA values in S_Era
PrintSolutionEraValues (S_Era, SclutionSheds, LAST);

/1 end of doing ERA stuff
/% B L T ek L T s
BIG
TREES
Since the Solution structure was filled during the above call to FillSclution() I can use that to acCcess
those cells that were actually in the solution. Remember that the Solution structure gets filled with
a Treelist, Goal, & Hold but they don't mean anything here. 2All that matters is the Cellid and then
to £ind that Cellid in the Data.*[] arrays and count up the stored Data.BigTrees[][], which should be
an accurate reflection of what was on the landscape during each period.
B L R LR R R L e e T T P P e
*/

printf("Counting up the ENDING # of Big Trees for this goal and solution\n\n"};

//Resort the array of Solution structures by CELLID

gsort({void*)Sclution, /‘hase

{size_t)AllocOK, //count of # of
arrays

sizeof (struct SOLUTION), //size of each array

LookAtSolutionCellid ¥ //compare
function

//Initialize the PerBigTrees{] array
for{a=0;a<NP;a++)
PerBigTrees[a] = 0;

//Put pointers at start of Data.* arrays
ptr_cellid = &Data.Cellid[0];
ptr_bigtrees = &Data.BigTrees[0][0];

for{a=0;a<(signed}AllocOK;a++}
{
//REMEMBER- this works because both Solution and Data.Cellid have cellid's in "row/column' order

//Get Values for current cell in CS
Cellid = Solution[a].Cellid;

//Start looking through the Data.* arrays and find a match
FoundMatch = 0;

210

do{
if{ *ptr_cellid == Cellid) //0k, the cellid’s match, so should
everything else!
(
for (b=0;b<NP; b++]
{
PerBigTrees[b] += {({*ptr_bigtrees) * ACREEQ);
ptr_bigtrees++; //on

last period - this will bump the pointer to period 1 of next cell
}
FoundMatch = 1;
}

//increment cellid pointer, whether or not a match was found
ptr_cellid++;

//increment ptr_bigtrees only if no match found vyet
if {FoundMatch == 0 }
ptr_bigtrees+=NP;
Jwhile (FoundMatch == 0);
}//end forfa ...)
//Add up the total sum of big trees

for{b=0;b<NP;b++}
SumBigTrees += PerBigTrees[b]/BIGTREES_EXP;

/) ==== PRINT OUT STUFF BELOW =
//Create and open the file

sprintf(filename, "%s%s%d\\BigTrees.txt",PREFIX, PostSimOutputDir, GOAL_TC_USE);
WriteOut = fopen{filename, "w");

fprintf{WriteOut, “\nThe Periodic Big Trees Totals are:\n"):
for{a=0;a<Np;a++)
fprintf (WriteOut, "Per%d is %-.31f\n",a+l, PerBigTrees[al/BIGTREES_EXP);

fprintf{WriteCut, "\n\nThe total sum of Big Trees is: %.31f\n", SumBigTrees};
fprintf(WriteOut, "Which amcunts to about %.31f per acre\n®,SumBigTrees/{AllocOK*ACREEQ)) ;

fclose{WriteOut);

//Delete stuff on free store
delete [] Solution;
delete [] S_Era;

}//end OutputEndingSclutionMetrics

A R d R R R TR L

void OutputFuelLoadsModel (int Per]

A i E

(

7
This will output a file that has the following columms:

Treelist Duff Litter Class2% Classl Class3 Classé Classlz ClassOverl2 Pag Elev VegCode
FuelModel

Since this is just an analysis function to help Bernie and Jim look at how their fuel model classification scheme
using fuel loads is working, T have two options: 1)} print out data for every individual cell in the entire
landscape, or

2) print out data for all unigue combinations of the above columns. Neither of those choices are good. With over
two million cells for the entire landscape, #1 is just toc unwieldy, and #2 would take too much time and I don't
feel like

coding in. So a compromise: I will randomly pick a # and use that as my starting point in the Data.*[] arrays and
just

output data for the next 50 cells - then pick another random # and do the same for another 50 cells. So this will
always

output data for 100 cells across the landscape. I don‘t think it’'s important that we know exactly where they are
but that

could be accounted for if wanted later (using the GridrRow and GridCeolumn[] arrays).

*/
char Index[250), ActualFile[250), OutFile[250];
FILE *Open, *WriteOut;

ulong a, rnd, Found;

int ArrayPer, Elev;
ulong TestTree;

char *Name;

char SepChar[3]=*\\\\";
char LastName[20];

/==

printf(*\n\n=====
printf (" Outputting Fuel Leads and Fuel Model
printf (* === =

//Set the arrayPer
ArrayPer = Per - 1;

//Create a string to hold the name of the
"$5%s\\%s",

sprintf {Index,

211

“InitialTreeindex.txt” filename

PREFIX, Constant Input, IT_INDEX);

//Create and open the output file stuff

sprintf {OutFile
WriteOut =

//Print out some misc.
fprintf (WriteOut,
fprintf (WriteOut,

Pericd 0\n");

fprintf (WriteoOut,
fprintf (WriteQut,

"%$s%s\\goal¥d\\Pericd_%d_FuelLoads.txt", PREFIX, GeneralDataDir, GOAL_TO_USE, Per} ;
fopen(OQutFile,

) ; //No error checking!

stuff
*The fuel loading values are in TONS-ACRE\n'):;
“There may be some discrepancy with the Treelist type and what was used to initialize loadings in

//print out column labels

fprintf (WriteOut,
Pag
fprintf {WriteOut,

ClassOverl2

“Elev: 0 is < 3000’ and 1 is >= 3000'\n"};

"This is an output for Period %d\n\n:\n", Per};

*TreelistFile\tDuff Litter Class25 Classl Class3 Classé Classl2
Elev Vegcode FuelModel\n");

f
I

//Get a random # to use for the first 50 cells

do{
rnd =

that there are

{ulong} (rand(} % UNIQUE};
Jwhile(rnd > UNIQUE -

{(UNIQUE/2)); //Make it way less because of how many Nodata cells

//Now go through the Data.*[] array for 50 cells starting at cell 'rnd"
for {a=rnd;a<rnd+30; a++)

{

if {Data.Cellid[a]

== FALSE)
break;

//Get the Elev variable
if{Pata.Elev[a]l > (3C00*FT2M))

else

Elev = 1;

Elev = 0;

R L

//For period O analysis,

get the original treelist actually used - not the Treelist #

if (Per ==)

{

//Open the Treeindex.txt file

Open = fopen(Index, "r");

if (Open == NULL }
fprintf(stderr, "Opening of %s failed: %s\n”, Index, Strerror{errnoj};

//Scroll through the IntialTreeindex and find the current treelist and its actual file pathname

Found = FALSE;

while{ fscanf(Open, "%lu %s",&TestTree, ActualFile) != EOF)
{
1f{ TestTree == Data.Treelistl[a]) //Have the match
{
Found = TRUE;
break;
3

}//end while....
//Pest to make sure the file was found
if{ Found == FALSE)
Bailout (98);
//Close the file
fclose(Open);

//Extract off the last piece of ActualFile to tell what the treelist is actually for

Name = strtok(ActualFile, SepChar);
while{Mame != NULL)
{

sprintf (LastName, "%s",Name);

Name = strtok{NULL, SepChar);
}
fprintf (WriteOut, "%s\t',LastName};
fprintf(WriteOut, "%-12,1f", ((float)Data.InitialDuff(a] / FUEL_LOAD_EXP))
fprintf(Writecut, "%-12.1f", ((float)Data.InitialLitter{a] / FUEL_LOAD_EXP));
fprintf (WriteOut, "%-12.1f", (ifloat)Data.InitialClass25({a) / FUEL_LOAD_EXP));
fprintf (WriteQut, "%~l2.lf”,((float)Data.InitialClasslIa] / FUEL_LQOAD_EXP));
fprintf (WriteOut, "%-12.1f", ({float)Data.InitialClass3[a] / FUEL_LOAD_EXF));
fprintf (WriteCut, “%-12.1f", ((float!Data.InitialClass6la]l / FUEL_LOAD_EXP));
fprintf (WriteGut, "%-12.1f", ({float)Data.InitialClasslz{a] / FUEL_LCAD_EXP)}
fprintf (WriteCut, "%-12.1f", ((float)Data.InitialClassOverl2(a] / FUEL_LOAD_EXP))

fprintf (WriteQut
fprintf (WriteOut
fprintf (WriteoOut,

“$hu\t",Data.Pagial)
“d\t", Elev) ;
"ONE")
//There was no Vegcode stored for the initial data!

212

fprintf (WriteOut, "%hu\n",Data.InitialFuelModel{al};
else

if (Data.Treelist[a] < FIRST AVAILABLE TREELIST)
{
//0Open the Treeindex.txt file
Open = fopen{Index, "r");
if (Open == NULL)
fprintf{stderr, "Opening of %s failed: %s\n", Index, strerror(errno));

//8croll through the IntialTreeindex and find the current treelist and its actual
file pathname
Found = FALSE;
while({ fscanf(Open, *%lu %s",&TestTree, ActualFile} != EOF
(
1f(TestTree == Data.Treelist{a]} //Have the match
(
Found = TRUE;
break;

1
}//end while....

//Test to make sure the file was found
if(Found == FALSE)
Bailout (98);

//Close the file
fclose(Open) ;

//Extract off the last piece of ActualFile to tell what the treelist is actually for
Name = strtok({ActualFile,SepChar);
while (Name != NULL)
{
sprintf(LastName, "%s",6 Name};
Name = strtok({NULL, SepChar};

fprintf(WriteOut, “%s\t",LastName);

else
fprintf(WriteOut, “%hult\t ", Data.Treelist[a]);

//Do all of this regardless of treelist #
fprintf(WriteOQut, "%~12.1f", ({float)Data.Duff(a)[ArrayFer] / FUEL_LOAD_EXF}};
fprintf (WriteOut, "$-12.1f",((float)Data.Litter[al [ArrayPer] / FUEL_LOAD_ EXP)):

fprintf (WriteQut, "%-12.1f", ((float)Data.Class25]al [ArrayPer] / FUEL_LOAD_EXF}) :
fprintf (WriteOut, "%-12.1f", ((float)Data.Classlla] [ArrayPer] / FUEL_LOAD_EXP)};
fprintf(WriteOut, "%-12.1f", ({float)Data.Class3{a] [ArrayPer] / FUEL_LOAD_EXP));
fprintf (WriteOut, "%-12.1f", ({float)Data.Classé[a] [ArravFer) / FUEL_LOAD_EXP}};
fprintf (WriteOut, "%-12.1f", ((float)Data.Classl2[a} [ArrayPer] / FUEL_LOAD_EXF)});
fprintf(WriteOut, "%-12.1f", ({float)Data.ClassOverl2[al[ArrayPer] / FUEL_LOAD_EXP}});

fprintf (WriteOut, "%hul\t',Data.Paglal);
fprintf (Writeout, "%d\t",Elev);
fprintf (WriteOut, "%$hult",Data.Vegcode[a] [ArrayPer]});

fprintf (WriteOut, "%hu\n",Data.FuelModel[a) [ArrayPer]};
}

}//end for{a=rnd ...)

The seccnd random fifty

//Get a random # to use for the second 50 cells

do{

rnd = (ulong) (rand() % UNIQUE};
}while{rnd > UNIQUE - (UNIQUE/2) };: //Make it way less because of Nocdata cells that there
are

//Now go through the Data.*[] array for 50 cells starting at cell "rnd"
for {a=rnd; a<rnd+50;a++)}
(
if (Data.Cellid[a] == FALSE}
break;

//Get the Elev variable
if(Data.Elev[al > (3000*FT2M})
Elev = 1;
else
Elev = 0;

//**&&&&&&&&&&&&&*&&&&*&*wrrrrrrrrr&rk***kk******'*****tt****ﬂﬂ*ﬂﬂﬂﬂ

//For period 0 analysis, get the original treelist actually used - not the Treelist #
if (Per ==)

(

//0pen the Treeindex.txt file
Open = fopen(Index, "r");

else

file pathname

if {Open == NULL)

fprintf (stderr,

//Seroll through the IntialTreeindex and find the current treelist and its actual file pathname

Found = FALSE;
while(fscanf(Open, "%lu %s",&TestTree, ActualFile) != EOF
{
if(TestTree == Data.Treelist{a])
{
Found = TRUE;
break;

}
}//end while....

//Test to
if{ Found == FALS

Bailout

//Close the file
fclose (Open)

//Extract off the last piece of ActualFile to tell what the treelist is
strtok {ActualFile, SepChar) ;

Name =
while (Name

{

NUL!

E)
(98);

L)

sprintf (LastName,

Name =

fprintf (WriteOut,
fprintf(WriteOut,
fprint f {(WriteOut,
fprintf (WriteQut,
fprintf (WriteOut
fprintf (WriteOut,
fprintf {WriteOut,
fprintf (WriteOut,
fprint £ {(WriteOut,
fprintf{WriteOut,
fprintf{WriteOut,
fprintf{WriteOut,

fprintf (WriteOut,

if (Data.Treelist[
{

//0Open the Treeindex.txt file

Open =

"Nt
“%-12.
"%-12
"%-12.
"%-12
"%-12.
“H-12.
"E-12.
"§-12.
"$hui\t
kAN

TONEN)

g

,LastName} ;

1£",

C1Er,

1f",

C1Er,

1f",
1€,
1£,
1£”,

((float}Data.InitialDuff [a]
float)Data.
flcat)Data.
float)Data.
float)Data.
float)Data.
(float)Data.
((float)Data.
",Data.Paglal);

((
o
((
(t
&
(

,Elev);

"Opening of %s

make sure the file was found

,Name) ;
strtok {NULL, SepChar};

failed: %s\n",

InitialLitterla]
InitialClass25[a]
InitialClassl[a]
InitialClassi[a]
InitialClass5[a]
InitialClassl2[al}

Index,

InitialClassOverl2(a] ¢

!

213

strerror {errno));

//Have the match

/ FUEL_LCAD_EXP});

/ FUEL_LCAD_EXP)

/ FUEL_LCAD_EXP
/ FUEL_LCAD_EXP)
/ FUEL_LOAD_EXP)
/ FUEL_LOAD_EXP)

Vi
)
Vi
b
1

actually for

Vi

/ FUEL_LOAD_EXP});

//There was no Vegcode stored for the initial data!
",Data.InitialFuelModel(al};

"$hu\n

al

fopen ({Index,
if (Open == NULL)
fprintf (stderr,

re):

"Opening of %s

< FIRST_AVAILABLE_TREELIST}

failed:

%$s\n*, Index,

FUEL_LOAD_EXP)) ;

strerror{errno));

//8croll through the IntialTreeindex and find the current treelist and its actual

Found =

{

= EOF)

//Have the match

FALSE;
while{ fscanf(Open, "%lu %s",&TestTree, ActualFile}
if(TestTree == Data.Treelistlal)
{
Found = TRUE;
break;
}

}//end while. ...

//Test
if¢(

Found

to
== F,

ALSE

)

Bailout (98);

//Close the file

fclosed

//Extract off the last piece of ActualFile to tell what the treelist is actually for

Name =

while{Name

{

Open});

make sure the file was found

strtok{ActualFile, SepChar);

NULL

)

sprintf {LastName,
= strtok (NULL, SepChar} ;

Name

fprintf (WriteOut,

else

fprintf iWriteOut,

AN

"Fhultit

"%g",Name) ;

,LastName) ;

", Data.Treelist([a]}

//Do all of this regardless of treelist #

fprintf (WriteOut,
fprintf(WriteOut,
fprintf (WriteOut,

"%-12.1f",
"%-12.1f",
"%-12.1f",

((float)Data.Duff[a] [ArrayPer]
((float)Data.Litter[a] [ArrayPer] /
((float)Data.Class25[al [ArrayPer] /

/ FUEL_LOAD_EXP) };

/ FUEL_LOAD_EXP) };
FUEL_LOAD_EXP) };

fprintf (WriteOut,
fprintf (WriteOut,
fprintf (WriteOut,
fprintf (WriteOut,
fprintf (WriteOut,
fprintf (WriteQut,
fprintf (WriteOut,
fprintf (WriteQut,

fprintf (WriteOut
}

}//end of the second for{a=rnd ...)

fclose(WriteQut);

}//end OutputFuelLoadsModel

v%-12.1f", {{float)Data.Classl[a] (ArrayPer] / FUEL_LOAD_EXP));
“$-12.1f", ({fleoat)Data.Class3[a] [ArrayPer] / FUEL_LOAD_EXP)):
“$-12.1f", { {float)Data.Class6[a] [ArrayPer] / FUEL_LOAD_EXP));
“%$-12.1f", {(flecat)Data.Classl2[a) [ArrayPer] / FUEL_LOAD_EXP));
“%-12Z.1f", { {float)Data.ClassOverl2[a] [ArrayPer] / FUEL_LQAD_EXP));
“%hu\t", 6 Data.Pagla]l);

"$d\t",Elev);

“$hu\t",Data.Vegcode[a] [ArrayPer]) ;

“%hu\n",Data.FuelModel [a] [ArrayPer]);

AR R L L T

int OutputCurrentLandscapeData{int Per)
P T T L T T T

{
/ /NOTE:

//NOTE 18NOV99:

//He has expressed that he could do it later but for now all must be Ascil files

printf(*\n= = Outputting landscape
=\n*, Per}:

data (Fuel, BLC, CBD, Stand Height, and Closure)

//Variables for writing the output files

FILE *WRITE_BLC, *WRITE_CBD,
char BLCFile[256], CBDFile[256],

int *ptr_srp;

ushort *ptr_column;
int r,c,HowMany;

int ColumnsLeft, ctr;
ushort StartColumn,OutColumn;
ushort QutClosure;

ushort *ptr_klc, *ptr_chd,

//For Time information
cloek_t Start, Finish;
double Duration;

77/

*WRITE_HEIGHT,
HeightFile[255],

*ptr_height,

*WRITE_FUEL, *WRITE_CLOSURE;
FuelFile[256], Closurerile([Z256];

//Starting Row Position

*ptr_fuel, *ptr_closure;

the incoming "Per* is the correct period to which this data goes (not array subscript)

I would eventually like to get Finney to rewrite Farsite and Flammap to input binary files

214

for period %d...PRE-FIRE!

Start = clock(};

//Make the correct output file names
sprintf (BLCFile,
sprintf (CBDFile
sprintf (HeightFile,
sprintf (FuelFile,
sprintf (ClosureFile,

1d variables

“$s%s%d\\per%d\iblc.asc", PREFIX, INPUTS, GOAL_TO_USE, Per};
“$s¥s¥%d\\perkd\\cbd.asc", PREFIX, INPUTS, GOAL_TO_USE, Per};
“$s%s%d\\per%d\ height .asc", PREFIX, INPUTS, GOAL_TO _USE, Per) ;
“$s¥s¥d\\per%d\\fuel.asc", PREFIX, INPUTS, GOAL_TO_USE, Per};
"$s¥s%d\\persdi\closure.asc", PREFIX, INPUTS, GOAL_TO_USE, Per) ;

//open up the files to write to
WRITE_BLC = fopen (BLCFile, "w"};
WRITE_CBD = fopen (CBDFile, “w"};
WRITE_HEIGHT = fopen(HeightFile, "w");
WRITE_FUEL = fopen(FuelFile, "w");
WRITE_CLOSURE = fopen(ClosureFile, “w"};
if (WRITE_BLC == NULL)
fprintf (stderr, “opening of %s failed: %s\n", BLCFile, strerror{errno)};
if (WRITE_CBD == NULL}
fprintf (stderr, "opening of %s failed: %s\n", CBDFile, strerrori{errno));
if (WRITE_HEIG == NULL}
fprintf (stderr, "opening of %s failed: %s\n", HeightFile, strerror{errno}};
if (WRITE_FUEL == NULL}
fprintf (stderr, “opening of %s failed: %s\n", FuelFile, strerror(errno}};
if (WRITE_CLOSURE == NULL}
fprintf (stderr, “opening of %s failed: %s\n", ClosureFile, strerror(errnc)};

//write out the header data to each of the files

fprintf (WRITE_BLC,
fprintf (WRITE_BLC,
fprintf (WRITE_BLC,
fprintf (WRITE_BLC,
fprintf (WRITE_BLC,
fprintf (WRITE_BLC,

fprintf (WRITE_CBD,
fprintf (WNRITE_CED,
fprintf (WRITE_CED,
fprintf (WRITE_CBD,
fprintf (WRITE_CED,
fprintf (WRITE_CBD,

“ncols\t\t%d\n" ,COLUMNS) ;
'nrows\t\t%d\n", ROWS) ;
“xllcorner\t%.6lf\n" F_XLL};
“vllcorner\t%.61£\n" ,F_YLL};
“cellsize\t%d\n", CELLSIZE};
“NODATA_value\t%d\n" ,NODATA} ;

“ncols\t\t%d\n", COLUMNS! ;
‘nrows\t\t%d\n" ,ROWS) ;
"x1llcorner\t%,61£f\n",F_XLL);
"yllcorner\t%.61f\n",F_YLL);
“cellsize\t%$d\n", CELLSIZE};
“NODATA_value\t%d\n" 6 NODATA]} ;

215

fprintf (WRITE_HEIGHT, "ncols\t\t¥d\n", COLUMNS) ;
fprintf (WRITE_HEIGHT, "nrows\t\t%d\n", ROWS) ;
fprintf (WRITE_HEIGHT, "xllcorner\t%.61f\n", F_XLL);
fprintf (WRITE_HEIGHT, "yllcorner\t%.61f\n",F_YLL);
fprintf (WRITE_HEIGHT, “cellsize\t%d\n", CELLSIZE) ;
fprintf (WRITE_HEIGHT, "NODATA_value\t%d\n", NODATA) ;

fprintf (WRITE_FUEL, "ncols\t\t%d\n", COLUMNS) ;
fprintf (WRITE_FUEL, "nrows\t\t%d\n", ROWS) ;
fprintf (WRITE_FUEL, "xllcorner\t%.61f\n", F_XLL) ;
fprintf (WRITE_FUEL, *yllcorner\t%.61f\n", F_YLL);
fprintf (WRITE_FUEL, “cellsize\t3d\n", CELLSIZE)
fprintf (WRITE_FUEL, "NODATA_value\t%din", NODATA) ;

fprintf (WRITE_CLOSURE, "ncols\t\t%d\n", COLUMNS) ;
fprintf (WRITE_CLOSURE, “nrows\t\t$d\n", ROWS) ;
fprintf (WRITE_CLOSURE, "xllcorner\t%.61lf\n", F_XLL);
fprintf (WRITE_CLOSURE, "yllcorner\t%.61£f\n", F_YLL);
fprintf (WRITE_CLOSURE, "cellsize\t%d\n",CELLSIZE} ;
fprint f (WRITE_CLOSURE, "NODATA_value\t%d\n*", NODATA} ;

for (r=1;r<=ROWS;r++)

{
ptr_srp = &link[r-1](1]);
HowMany = *({ptr_srp+l);

StartColumn = Data.GridColumn((*ptr_srp)-1]; //not
a pointer!

ptr_column = &Data.GridColumn[(*ptr_srp)}-11;

ptr_blc = &Data HLC[(*ptr_srp)-1][Per-1];

ptr_chd = &Data.CBDensity [(*ptr_srp)-1] [Per-1];

ptr_height = &Data.StandHeight [(*ptr_srp)-1] [Per-1];

ptr_fuel = &Data.FuelModel[(*ptr_srp)-1] [Per-1];

ptr_closure = &Data.Closure{ (*ptr_srp)-1][Per-1];

//If the whole row is blank, print out NODATA and goto next row
if(*ptr_srp == FALSE) //means a zero was left in this spct during MakeLink
{

for{c=1; c<=COLUMNS; C++)

{
fprintf (WRITE_BLC, "$d *,NODATA) ;
fprintf (WRITE_CED, "$d *, NODATA);
fprintf (WRITE_HEIGHT, "$d *, NODATA);
fprint £ (WRITE_FUEL, "%d “, NODATA);
fprintf (WRITE_CLOSURE, “%d “,NODATA) ;
}

//put in new lines

fprintf (WRITE_BLC, "\n");
fprintf {WRITE_CBED, "\n");
fprintf (WRITE_HEIGHT, "\n");
fprintf (WRITE_FUEL, "\n");
fprintf (WRITE_CLOSURE, "\n"};

continue; //goto next row

//print out NODATA for those cells before data starts
for{c=1l;c<StartColumn;c++)
(
fprintf (WRITE_BLC, "%d ",NODATA);
fprintf {(WRITE_CBD, "%d ", NODATA);
fprintf (WRITE_HEIGHT, "%d " ,NODATA};
fprintf (WRITE_FUEL, "%d ' ,NODATA);
fprintf (WRITE_CLOSURE, "%d " ,NODATA);
}

//set some counters
OutColumn = StartColumn;
ctr = 0;

//print out values for area on landscape by checking
//value in Data.GridColumn to match it with CutColumn value

dof
if{*ptr_column == OutColumn)
(
fprintf (WRITE_BLC, "%hu ", *ptr_blc};
fprintf (WRITE_CBD, "%.2f ', (float)*ptr_cbd / DENSITY_EXP)
fprintf (NRITE_HEIGHT, "%hu ", *ptr_height)
fprintf (WRITE_FUEL, “%hu ', *ptr_fuel};

//Check Data.Closure()[] and reclassify data into the 4 categories that Farsite wants
before writing out

if{*ptr_closure <= 10)
OutClosure = 1;

else if{*ptr_closure > 10 && *ptr_closure < 50)
QutClosure = 2;

else if(*ptr_closure >= 50 && *ptr_closure < 80)
QutClosure = 3;

else

"

CutClosure 4;

216

fprintf (WRITE_CLOSURE, "%$hu ",CutClosure);

ptr_blc+=NP;
ptr_cbd+=NP;
ptr_height+=NP;
ptr_fuel+=NP;
ptr_closure+=NPE;

ptr_cclumn++;
OutCelumn++;

ctr++;

}

else //print cut NODATA for the "gaps"

{
fprintf (WRITE_BLC, "%d ", NODATA};
fprintf (WRITE CBD, "$d " ,NODATA);
fprint £ (WRITE_HEIGHT, "%d “,NODATA};
fprint £ (WRITE_FUEL,"%d *,NODATA);
fprint £ (WRITE_CLOSURE, "%d " ,NODATA) ;
QutColumn++;

}

}while(ctr != HowMany);

//Check to see how many cclumns are left to do

ColumnsLeft = COLUMNS - (OutCclumn-1);
if{ColurnsLeft == D)
{

fprintf (WRITE_BLC, "\n");
fprintf (WRITE_CBD, "\n');
fprintf (WRITE_HEIGHT, "\n");
fprintf (WRITE_FUEL, “\n");
fprint f (NRITE_CLOSURE, "\n");

continue; //go to next row

}

//print out NODATA for those cells after the data that are left
for {c=0;c<ColumnsLeft;c++}
{

fprintf (WRITE_BLC, "%d ',NODATA);

fprintf (WRITE_CED, "$d *,NODATA);

fprintf (WRITE_HEIGHT, "%d *,NODATA);

fprintf (WRITE_FUEL, "%d " ,NODATA);

fprintf (WRITE_CLOSURE, "%d " ,NODATA);

)

//put in a new line

fprintf (WRITE_BLC, "\n'};
fprintf (WRITE_CBD, "\n"};
fprintf {(WRITE_HEIGHT, "\n");
fprint £ (WRITE_FUEL, "\n");
fprintf (WRITE_CLOSURE, "\n");

}//end of for(r=1l;r<=ROWS;r++)

fclose (WRITE_BLC) ;
fclose (WRITE_CBD) ;
fclose (WRITE_HEIGHT) ;
fclose (WRITE_FUEL) ;
fclose (WRITE_CLOSURE} ;

Finish = clock();
Duration = ({double){Finish-Start) ; CLOCKS_PER_SEC);
printf("\n**It took %.21f seconds to output this periods BLC, CBD, HEIGHT, FUEL and CLOSURE files**\n", Duration);

return TRUE;

)/ /end OQutputCurrentLandscapeData

P D T e L L L LSS S P LT S
void OutputAcresHarvest{int Status)

PR R e e

{

//Variable for writing the cutput files
FILE *WriteExcel;
char ExcelFile[150];

//Acre counters {(number of cells)

ulong NonForestCells = 0, TotalCellCcunt = 0;

ulong GoalCells[GOALS], CellsTouched[NP], FedTcuched[NP], NonFedTouched[NP];
double FedHarvest[NP], NonFedHarvest [NP], TctalFedHarvest=0, TotalNonFedHarvest=0;

int r,c;

ulong *ptr_cellid, *ptr_treelist;

ushort *ptr_goal, *ptr_owner, *ptr_mincr, *ptr_buffer;
float *ptr_harvest:

/1

==end variables

//Make some output filenames and open files
if (Status == PREDICTED)

sprintf (ExcelFile, *"%s%s%d\\acres_harvest.txt",PREFIX, PreSimOutputDir, GOAL_TO_USE)
else

sprintf (ExcelFile, "%s%s%d\\acres_harvest.txt", PREFIX, PostSimOutputDir, GOAL_TC_USE);

WriteExcel = fopen (ExcelFile, "w"};
if (WriteExcel == NULL)
fprintf(stderr, *opening of %s failed: %s\n", ExcelFile, strerror(errno)};

//Initialize arrays
for(r=0; r<GOALS; r++)
GoalCells[r] = 0;

for(r=0;r<NP;xr++)}
(
CellsTouched[r] = 0;
FedTouched(r] = 0;
= 0;

NonFedTouched[r]
FedHarvest(r] = 0;
NonFedHarvest[r] = 0;

//8tart at beginning of Data.*[] arrays and keep tally of items to cutput.
for (r=0; r<UNIQUE; r++)
(

//set pointers

ptr_cellid = wData.Cellidir]

ptr_treelist = &Data.Treelist[r];

ptr_goal = &Data.Goal[r];

ptr_owner = &Data .Qwner [r];

ptr_minor = &Data.Minor (xr];

ptr_buffer = &Data.Buffer(r];

ptr_harvest = &Data.CFHarvest(r) [0}; //values stored are a PER ACRE
value

if(*ptr_cellid == FALSE) //no more records te check in array

break;
TotalCellCount++;

//set an error checker
if{ *ptr_harvest > 0 && *ptr_treelist == NONFOREST!
Bailout(53};

//First, lets track how many acres were assigned to each goal

217

if{ *ptr_treelist == NONFOREST) //These were NON-FOREST,

so track separately
NonForestCells++;
else
GoalCells[*ptr_goall++;

//Then track Harvest Levels and Activity levels by Ownership and periods
for(c=0;c<NP;c++)
{

if(*ptr_harvest > 0} //Yes,

activity for this cell in this period

(

there was Harvest

CellsTouched[cl++; //increment counter for

cells touched per period

if(*ptr_owner =
levels by Fed and NonFed

FedTouched[c]++;
FedHarvest [c]+= (*ptr_harvest}*ACREEQ;

)
else
{
NonFedTouched[c}++;
NonFedHarvest[c]+= (*ptr_harvest)*ACREEQ;
)
¥
ptr_harvest+s+; //increment to next period

)

}//end for(r=0; r<UNIQUE;xr++)

#ifdef DEBUG_OUT_ACRES_HARVEST
//print out GoalCells
for{r=0; r<GOALS; r++)
printf {*There are %lu cells with goal %d\n",GoalCells(xr],r};
printf(”and %lu cells that were Non-Forest\n", NonForestCells);

printf{“\nThere are a total of %.21f acres in this simulation\n", TotalCellCount*ACREEQ) ;

TotalFedHarvest = 0;

OWN_USFS || *ptr_owner == CWN_BLM) //track cells touched &

218

TotalNonFedHarvest = 0;
for (r=0; xr<NP;r++)
(
printf{"Period %d:\tAcres of FedTouched = %.21f and Harvest %.21f, \tAcres of NonFedTouched = %.21f and
Harvest %.21f\n",
r+1l, FedTouched[r]*ACREEQ, FedHarvest(r]. NonFedTouched[r]*ACREEQ, NonFedHarvest[r]);

TotalFedHarvest+= FedHarvest(r];
TotalNonFedHarvest += NonFedHarvest[r];
}

printf{*\nTotal harvest on Federal Land (USFS, BLM) is %.21f CF, and NonFederal land is %.2Z1f\n",TotalFedHarvest
#endif

TotalNonFedHarvest) :

//Print out data to use in EXCEL
fprintf (WriteExcel, "AcresFed\tHarvestFed\t\t\tAcresNonFed\tHarvestNonFed\n");
for (r=0;r<NP;xr++)
fprintf (WriteExcel, "%-6.31f\t\t%-10.31f VENENES-6.21fNENES-10.22f\n",
FedTouched[r]| *ACREEQ, FedHarvest|[r], HonFedTouched[r)*ACREEQ, NonFedHarvestlr]});

//close the files
fclose(WriteExcel);

}//end OutputAcresHarvest

R i R e A L L S

void OutputMapGoals{int Status)

A e R e]

{

/*The current goal assignment is outputted to ...\ouputs\PreSimData\goal*\goal.asc in this function.
There is also one outputted to ...\ouputs\rerun_datalgoal.{.asc or .bin) during optimization routine and
there is no difference except that the one in ..*\rerun_data\ is always made in binary format.

*/

//Variable for writing the output files
FILE *WriteGoal;
char GoalFile[256];

int *ptr_srp; //Starting Row Position
ushort *ptr_column, *ptr_goal;

int r,c,HowMany;

int ColumnslLeft, ctr;

ushort StartColumn,QutColumn;

//Make some filename and open
if (Status == PREDICTED)
sprintf{GoalFile, "%s%s%d\\goal.asc", PREFIX,PreSimOutputDir,GOAL_TO_USE);

else

sprintf (GoalFile, "“%s%s%d\\goal.asc",PREFIX,PostSimOutputDir, GOAL TO_USE);
WriteGoal = fopen{GoalFile, "w");
if (WriteGoal == NULL)

fprintf(stderr, "opening of %s failed: %s\n", GoalFile, strerrorierrno)};

//Print out an ascii file that is in row/column format which contains the GOAL values for every cell
//This file can be used in ArcInfo to make maps!

//write out the header data

fprintf (WriteGoal, "ncols\t\t3d\n", COLUMNS) ;
fprintf (WriteGoal, "nrows\t t%d\n",ROWS) ;
fprintf (WriteGeal, "x1llcornerit%.6lf\n", F_XLL);
fprintf{WriteGoal, "v1llcorner:\t%.61f\n",F_YLL)};
fprintf(WriteGoal, "cellsize\t%d\n", CELLSIZE);
fprintf (WriteGoal, "NODATA_value\t¥d\n",6 NODATA) ;

for (r=1;r<=ROWS; r++)

(
ptr_srp = &link[r-111[11;
HowMany = *(ptr_srp+l);
StartColumn = Data.GridColumn| (*ptr_srp)-1];
ptr_column = &Data.GridColumn[(*ptr_srp)-1]
ptr_goal = &Data.Goal[(*ptr_srp)-1];

//If the whole row is blank, print out NODATA and goto next row
if(*ptr_srxp == FALSE) //means a zero was left in this spot during
MakeLink

for{c=1;c<=COLUMNS; c++)
fprintf (WriteGeoal, "%d " ,NODATA);

//put in new lines
fprintf (WriteGoal, "\n");

219

continue; //goto next row

}

//print out NODATA for those cells before data starts
for{c=1;c<StartColumn;c++)
fprintf(WriteGoal, "$d " ,NODATA);

//set some counters
QutColumn = StartColumn;
ctr = C:

//print out values for area on landscape by checking
//value in Data.GridColumn to match it with OQutColumn value
do{
1f{*ptr_column == QutColumn)
{
fprintf (WriteGoal, "%hu ", *ptr_goal):

ptr_goal++;
ptr_column++;
QutColumn++;
CExr++;

elge //print out NODATZ for the "gaps"
fprintf (WriteGoal, "$d " ,NODATA) ;
OutColumn++;

}

}while(ctr !'= HowMany);

//Check to see how many columns are left to do

ColumnsLeft = COLUMNS - (OutColumn-1);
if (ColumnsLeft == 0}
{

fprintf(WriteGoal, "\n"};

continue; //go to next row

}

//print out NODATA for those cells after the data that are left
for {e=C; c<ColumnsLeft;c++}
fprintf{WriteGoal, "%d ",NODATA};

//put in a new line
fprintf (WriteGoal, *\n");

}//end of for(r=1;r<=ROWS;r++)

fclose (WriteGoal} s
}//end MapGoals

J] KKK Kk ek ok ok ok ok K ok Kk Kk K WKk Kk ok ok ko ok ok kK ok k ko ko kk ok ok K Kk ok ok ok ok

void OutputForestDistribution({int Status}

J O KRAA KK E KA MM I I KK E N R AU KK I K I AR A A h A A hh h Kk ok k ko hhk kb ke k F ko k ok hkh
{

//Variable for writing the output files

FILE *WRITE_VEG, *WRITE_STAGE, *WRITE_COMEO;

char VegDistFile[150], StageDistFile[l150], ComboFile[150];

//Acre counters {(number of cells)
ulong NonForestCells, TotalCellCount, PerTotal;

//Arrays to hold # of cells for various combination

ulong EntireVeg[NP][VEGCLASSES+1],

AllFedVeg[NP] [VEGCLASSES+1], FedNMVeg [NP] [VEGCLASSES+1], AllNonFedVey [NP] [VEGCLASSES+1] ;

ulong EntireStage[NP] [STAGES]., AllFedStage[NP][STAGES], FedNMStage [NP] [STAGES],AllNonFedStage [NP) [STAGES];
ulong Combo[STAGES] [VEGCLASSES+1] [NP];

int r,e,t;

ulong *ptr_cellid, *ptr_treelist;

ushort *ptr_owner, *ptr _buffer, *ptr_vegcode, *ptr_veg, *ptr_stage, *ptr_alloc;
ushort TempCode;

int VegCode, StageCode, TempVeg, TempDiam, TempCover;

/1 == == ==end variables ==

/%

Here’s the conversion, Values in Data.Vegcode are those 3 or 4 digits values that were sither generated directly
in PREMC or were slightly modified by this progrom in FillPremoData(). Heidi gave me the following regarding

what the PREMO codes meant:

lst digit = (veg. class)
CH

DH

EH

CCP

MC

open 2777
Pine

RF

WF

WO IO R W

2nd digit = (QMD)

220

0 0-4.9

1 5-8.9

2 9-14.9
3 15-20.9
4 21-24.39
5 25-31.9
& 32+
3rd digit = (Canopy closure}
0 <= 60%
1 > 60%
Alterations:

FillInitialPremoData() changed those with an original 1st digit of 5 to be either 5 [MC < 3000') or 10 (MC
10000,
so I can directly check for 5 or 10.

The digit assignment from PREMO is not consistent with the already established values
I use for maps in ArcInfo and other tracking so I will use the following conversion matrix:

GIS cocdes 1-4 are for: Barren, Water. Shrub, Grass/Forbs respectivly. Either Vegetation or Seral Stage. These
were

considered NONFOREST cells in the simulation and should have both a NONFOREST flag in Data.Vegcode and
Data.Treelist.

However, the original classification (barren, water, shrub, grass/forbs}) was kept in Data.InitialVeg &
Data.InitialStage (1-4).

(note: this is for the lst digit(s) only = VEGETATION CLASS)
PREMO ‘meaning’ GIS VEGETATION code (this is what I will use to place in correct array
position)

1 CH 11

2 DH 10

3 EH 12

4 cCcp el //PREMO appears not to be
classifying anything as 4** so don’'t worry if none seen

5 MC<3000" 6

& ‘open’ 14 //This was not part of original
classification - will have to eventually decide what it is!

7 Pine 8

8 RF 5

9 WF 7

10 MC>3C0C 13

(note: this is for the 2nd & 3rd digit (or 4-5 if 1st was a 10) only = SERAL STAGE !}

PREMO PREMO ‘meaning’

2nd 3rd DEH Canopy GIS SERAL STAGE code
(this is what I will use to place in correct array positiocn}

Q 0or 1l 0-4.9" any 5
1 0 5-8.9" <=60% 3
1 1 5-8.9" >60% 7
2 0 9-14.9" <=60% 8
2 1 9-14.9" >60% e
3 4] 15-20.9" «=60% 10

3 1 15-20.9" >60% 11

4 0 21-24.9" <«<=60% 12

4 1 21-24.9" >60% 13

5 Oor 1l 25-31.9" any 14

[QO or 1l 32+" any 15
*/

//NOTE = change these to use memset!

//Initialize the arrays
for (r=0;r<NP;r++) //The arrays to hold Vegetation data
{

for (c=0;c<VEGCLASSES+1;c++)

{

EntireVeg[r]([c] = 0;
AllFedveg[r][c] 0;
FedNMVeg{r][c] = 0;
AllNonFedVegl[r] [c] = 0;
}
}
for (r=0;r<NP;r++) //The arrays to hold Seral Stage data
{
for {c=0; c<STAGES; c++)
{
EntireStage[r](c] = O;
AllFedStage[r] [c] = 0;
FedMMStage([r}[c} = 0;
AllNonFedStage[r][c] = 0;
}
}
for (r=0; r<STAGES; r++) //The array to hold the VegStageCombo data

{
for(c=0; c<VEGCLASSES+1;c++)
{
for (t=0; t<NE; t++}
{
Combo[r][c]l(t] = O;

1))

//Start at beginning of Data.
NonForestCells=0;
TotalCellCount=0;

for(r=0; r<UNIQUE;r++)

{

//set pointers

ptr_cellid = &Data.Cellid[r];
ptr_treelist = &Data.Treelist[r];
ptr_owner = &Data.Owner|[r];
ptr_alloc = &Data.alloc[r];
ptr_buffer = &Data.Buffer(rl};
ptr_vegcode = &Data.Vegcode[xr] [0} ;
ptr_veg = &Data.InitialVeg[r];
ptr_stage = &Data.InitialStage(r];
if{ *ptr_cellid == FALSE)

break;
TotalCellCount++;

//Check the cells treelist.
initial Veg & Stage
if{ *ptr_treelist =

{

if NONFOREST, then its

NONFCREST!

NonForestCells++;
if(*ptr_vegcode != NONFOREST)
Bailout(63);

// **** otherwise,
category ***

//Since all arrays were initialized with zero's
then be counted for acres

//For the EntireStage and EntireVeg arravs
for {c=0;c<NP;c++}
{
EntireVeg[c][{*ptr_veg)-1]++;
subtract 1 to get array notation
EntireStage[c] [(*ptr_stage)-1]++;
subtract 1 to get array notation

Combo [(*ptr_stage)-1][{*ptr_veg)-1l][cl++;

for each period
}//end for (c=0;c<NP;c++}

//For the allFed* arrays
if{ *ptr_owner == OWN_BLM || *ptr_owner

&& the FedNM* array

for{c=0;c<NP;c++}
Federal ownership

{

AllFedVeg[c) [(*ptr_veg)-1]++;

'ptr_vegcode’

221

*[] arrays and keep tally of items to output.

//no more records to check in array

should be NONFOREST as well, so use
//keep track of these

//problem - this should be NONFOREST

look at ptr_veg & ptr_stage and track those wvalues by correct ownership

I will just increment up a 'hit’ which can
- This gets filled no matter what

//*ptr_veg should have its original veg -

//*ptr_stage should have its original stage-

//Track the intersection of these

COWN_USFS)

//Al11

AllFedStagelc][{*ptr_stage)-1]++;

)

//NOTE: The stream buffer behavior is a bit wierd.

to indicate whether
//a cell is in a riparian reserve,
at Data.Buffer !

if (*ptr_alloc

that data is in Data.Buffer.

ALLOC_RESERVE || *ptr_alloc

Data.Alloc does NOT have a code

So make sure to loock

ALLOC_WILD || *ptr_buffer

FedNMStage [c] [(*ptr_stage)-1]++;

IN_BUFFER} //L8R, Wilderness, & Riparian
{
for (c=0;c<NP;c++)
{
FedNMVeg[c] [(*ptr_veg)-1l]++;
)

)

//For the NCN-FEDERAL lands, AllNonFed=*[][]
1=

//these are NonFederal lands

if({ *ptr_owner != CWN_BLM && *ptr_owner OWN_USFS)
{
for (c=0; C<NP; C++)
{
AllNonFedVeg[cl [(*ptr_veg)-1]1++;
AllNonFedStage[c] [{(*ptr_stage)-1]++;
}
}
}//end if{ *ptr_treelist == NONFOREST}

else
Data.Vegcode[][] and track by same categories

//first,
values
for (c=0;c<NP;c++)

{

//For all NonForest cells,

convert the values in

extract each periocds vegcode and break it apart to get the correct GIS Veg and Stage

code from PREMO

//last digit for determining stage

TempCode

//extrac
TempCove!

TempDiam

determining stage (is the QMD group)

TempVeg

for determining VegCode

//Use TempVeg to determine proper

switchi{T
{
case 1
case 2
case 3
case 4:
case 5:
case 6:
case 7
case 8
case 9
case 10:

default:

program with proper error message

}

//Use TempDiam and TempCover to determine

any closure

7/

/7

break;

7/

’/

break;

/7

I

break;

any closure

any closure

switch (T
(
case 0O
case 1
<=60%
>60%
case 2:
<=60%
>60%
case 3:
<=60%
>60%
case 4:
<=60%
>60%
case 5:
case 6:
default:

= Data.Vegcode[r]ic];

t the digits out
TempCode%190;
{is closure,

r =

=

= (TempCode-TempCode%l00) /

empVey)

VegCode
VegCode
VegCode
VegCode
VegCode
VegCode

VegCode =

VegCode

VegCode =

VegCode = 13;

Bailout (64);

empDiam)
StageCode = 5;

if (TempCover == 0)

else

if (TempCover == 0}

else

if (TempCover == ()

else

if (TempCover == 0)

else

StageCode = 14;

StageCode = 15;

Bailout(85);

exit the program with proper error message

}

<=60% or > 60%)

{TempCode-TempCover) %100)

100;

= 11;
= 10;
= 12;
= 9;
= 6;
= 14;

StageCode

StageCode =

StageCode

StageCode

StageCode

StageCode =

StageCode

StageCode

/7 10;

GIS VegCode

break;
break;
break;

break;

break;
break;
break;
break;
break;

//next to

//The actual 2 or 4

last digit also for

//1st or lst two dig

//CH

//DH

//EH

//CCP

//MC < 3000
// ‘open’
//pine

//RF

/ /WF

//MC > 30007

proper StageCode

break;

break;

break;

//This will exit the

/70-4.9

//5-8.9"

//9-14.9"

//15-20.9"

//21-24.9"

//25-31.9"

1132+

//This wil

J/****xxxxxx Now £il1ll the appropriate cell tracking arrays based on ownership breakdown ******xxxx

//subtract 1 to get

Federal ownership

== IN_BUFFER}

//For the EntireStage and EntireVeq arrays
EntireVeglc] [VegCode-1]++;

array no

tation

EntiresStagelc] {StageCode-L1]++;

Combo [StageCode-1] [VegCode-1] [c]++;

222

digit

its

1

- These get filled no matter what

//For the AllFed* arrays && the FedNM* array
if(*ptr_owner == CWN_BLM || *ptr_owner == OWN_USFS) //All
{
AllFedveg(c] [VegCode-1]++;
AllFedStage(c] [StageCode-1]++;
if(*ptr_alloc == ALLOC_RESERVE || *ptr_alloc == ALLOC_WILD || *ptr_buffer

//LSR,Riparian, & w

ilderness

{

}

//For the NCN-FEDERAL lands,

if(
{

*ptr_owner != OWN_BLM &&

}

}//end for(c=0;c<NP;c++)
}//end else if{ *ptr_treelist == NONFOR

}//end for{r=0; r<UNIQUE;r++)

//printf{“Checked all the cells during OutputFore

J) REEEEEEEREEEEEEAFAAAAxx%*E+ Print out the data
//Make some output filenames and open files
if(Status == PREDICTED)

{

sprintf (VegDistFile, "%s%s%d\\VegDist.t
sprint f (StageDistFile,

sprintf (ComboFile, "%s%s%d\\ComboDist.t

¥

else

data

{
sprintf (VegDistFile,
sprintf (StageDistFile,
sprint f (ComboFile,

}

WRITE_VEG = fopen (VegDistFile., "w*);

WRITE_STAGE= fopen(StageDistFile,
WRITE_COMBO = fopen(ComboFile,

gty
ey g

if (WRITE_VEG == NULL}

fprintf(stderr, "opening of %s failed:
if (WRITE_STAGE == NULL)

fprintf(stderr, "opening of %s failed:
if (WRITE_COMBO == NULL)

fprintf(stderr, 'opening of %s failed:

//Put out the combo file first, it will have a St
for (c=0;c<NP;c++)

{
fprint £ (WRITE_COMBO,
fprint f (WRITE_COMBO,

for (r=0; r<STAGES; r++}

//For each period

YPerBd\EINE2\E3V B4V EEVESNVET

(fprintf (WRITE_COMBO, "%d\t",r+1};
for (t=0; t<VEGCLASSES+1; t++}
¢ fprint £ (WRITE_COMBO, "%-6.0f\
éprintf(WRITE_COMBO, "\n"});
2printf(WRITE¥COMBO, *\n\n\n"};
}

//Put in some header lines for the Entire* arrays
fprintf (WRITE_VEG, “Entire\tl\t2\t3\td\t5\t6\t7\t
fprintf (WRITE_VEG, *

fprintf (WRITE_STAGE,

"Entire\t1\t2\t3\t4\t5\t6\t7

FediMMVeg[c] [VegCode-1]++;
FedNMStage[c] [StageCode-1]++;

AllNonFed*[][]

*ptr_owner != OWN_USFS)

AllNonFedVegic] [VegCode-1]++;
AllNonFedStage(c] [StageCode-1]++;

EST)

stDistribution\n");

223

//these are NonFederal lands

R R RN AR R AR AR AR AR R AR AR AR AR AR AR AR AN AR AR & &

//This 1s PreSimulation data

xt", PREFIX, PreSimOutputDir, GOAL_TO_USE);

xt", PREFIX, PreSimOutputDir, GOAL_TO_USE);

"$s¥s%d\\VegDist . txt", PREFIX, PostSimOutputDir, GOAL_TO_USE) ;
"%$s%s%d\\StageDist.txt", PREFIX, PostSimOutputDir, GOAL_TO_USE} ;
"$s%s%d"\\ComboDist . txt", PREFIX, PostSimOutputDir, GOAL_TO_USE};

%s\n", VegDistFile, strerror{errno)):

%s\n", StageDistFile, strerror(errno));

%s\n", ComboFile, strerror(errno)):

age-Veg acre matrix for each period

£BAESNELONELILINELZ2 13 \t1d4\n", c+]1);

t",Combofr][t] [c]*ACREEQ};

SVEINEIONELINELIZ2NEISNELIA D") ;

VEBVESVELONEIINEI2\E13\t14N\E15\n") ;

"$s%s%d\\StageDist.txt", PREFIX, PreSimOutputDir, GOAL,_TO_USE} ;

//This is PostSimulation

fprintf (WRITE _STAGE, == — o = — oo oo o o o o oo o oo

for (r=0;r<NP;r++)
{
//Put in the period
fprint f (WRITE_VEG, *%d*,r+1);

fprint £ (WRITE_STAGE, *“%d",r+1);
//The Veg acres

PerTotal=0;

for (c=0; C<VEGCLASSES+1; c++}

{

PerTotal+=EntirevVeg[r]ic};
fprintf (WRITE_VEG, “\t%-6.0f"

fprint £ {WRITE_VEG,

//The Stage acres
PerTotal=0;

.EntireVeg(r] [c]*ACREEQ] ;

"\E\t%-8.2f", PerTotal *ACREEQ) ;

224

for{c=0; c<STAGES;c++)
{
PerTotal+=EntireStage(r][c];
fprintf (WRITE_STAGE, “\t%-6.0f",EntireStage[r] [c]*ACREEQ!};

fprintf (WRITE_STAGE, "\t\t%-8.2f",6 PerTotal*ACREEQ!;

//Put in a new line
fprintf (WRITE_VEG, "\n") ;
fprintf (WRITE_STAGE, "‘n"};

//A couple of spaces to separate next array data
fprintf (WRITE_VEG, "\n\n"};
fprintf (WRITE_STAGE, “‘n‘n"};

//Put in some header lines for AllFed* arrays
fprintf (WRITE_VEG, *AllFed\tl\t2Nt3N%E4\E5%E6%E7 Ve8I 8100211V 120e13 814 \n");
fprintf (WRITE_VEG, * -

fprintf (WRITE_STAGE, "AllFed\tl\t2)\t3\t4\t5\E6\E7VEBVEINELONEIINE12NEL3\ELI3N\ELSAD") ;
fprintf (WRITE_STAGE, *

for{r=0;r<NP;r++)

(

//Put in the period
fprintf (WRITE_VEG, "%d”" ,r+1);
fprintf (WRITE_STAGE, "%d",r+l);

//The Veg acres
PerTotal=0;
for{c=0; c<VEGCLASSES+1;c++)
(
PerTotal+=AllFedVeg(r][c];
fprintf (WRITE_VEG, "\t%-6.0f",AllFedVeg[r][c]*ACREEQ);

fprintf (WRITE_VEG, "\t\t%-8.2f", PerTotal*ACREEQ);

//The Stage acres
PerTotal=0;
for{c=0;c<STAGES; c++)
{
PerTotal+=AllFedStage(r. [c];
fprintf (WRITE_STAGE, "\t%-6.0f", AllFedStage[r] [c]*ACREEQ);

fprintf (WRITE_STAGE, “"\t\t%-8.2f",PerTotal*ACREEC);

//Put in a new line
fprintf (WRITE_VEG, "\n");
fprintf (WRITE_STAGE, "\n"};

//A couple of spaces to separate next array data
fprintf (WRITE_VEG, *‘n\n");
fprintf (WRITE_STAGE, “\n\n");

//Put in some header lines for FedNM* arrays

fprintf (WRITE_VEG, "FedNM\tl\t2\t3\t4\t5\t6\t7 8 \e9\e10 V811 12 813 14 \n");
fprintf (WRITE_VEG, *
fprintf (WRITE_STAGE,
fprintf (WRITE_STAGE,

for (r=0;r<NP;r++)

(
//Put in the period
fprintf (WRITE_VEG, "%Q",r+1);
fprintf (WRITE_STAGE, "%d",r+l);

//The Veg acres

PerTotal=0;
for {c=0; c<VEGCLASSES+1;c++}
{

PerTotal+=FedNMVeg[ri[c];

fprint £ (WRITE_VEG, *\t%-6.0f", FedNMVeg|r] [c]*ACREEQ!;
}

fprintf£ (WRITE_VEG, *\t\t%-8.2f",PerTotal*ACREEQ);
//The Stage acres

PerTotal=0;
for{c=0; c<STAGES; c++)
{

PerTotal+=FedNMStage[r] [c];
fprintf (WRITE_STAGE, "\t%-6.0f",FedNMStage[r][c]*ACREEQ);

fprintf (WRITE_STAGE, "“t\t%-8.2f",PerTotal*ACREEQ);
//Put in a new line

fprintf (WRITE_VEG, "\n");
fprintf (WRITE_STAGE, "\n");

//A couple of spaces to separate next array data

fprint £ (WR
fprintf (WR

ITE_VEG, “"\n\n"};
ITE_STAGE, "\n\n"};

//Put in some header lines for AllNonFed* arrays

fprintf (WR
fprintf (WR
fprintf (WR.
forintf (WR

ITE_VEG, "NonFed\tl\t2\t3\t4\t5\t6\t7\t8\t\t10 11 12313 vt1d\n"

ITE_VEG, "
ITE_STAGE,
ITE_STAGE,

for (r=0; r<NP;r++)

(

fclose (WRI
fclose (WRI
fclose (WRI

//Put in the period
fprintf (WRITE_VEG, "%d",r+1);
fprintf (NRITE_STAGE, "%d’,r+1)

//The Veg acres

PerTotal=0;

for {c=0; c<VEGCLASSES+1;c++)
(

PerTotal+=AllNonFedVeg[r] (c¢];

fprint £ (WRITE_VEG, "\t%-6.0f",6 AllNonFedVeyfr][c]*ACREEQ);

fprintf (WRITE_VEG, "\t\t%-8.2f", PerToctal*ACREEQ);

//The Stage acres
PerTotal=0;

for (c=0; c<STAGES; c++)
(

PerTotal+=AllNonFedStage(r) (c];

forintf (WRITE_STAGE,
£print f (WRITE_STAGE,

//Put in a new line
fprintf (WRITE_VEG, "\n"};
fprint £ (WRITE_STAGE, “"\n"“};

TE_VEG) ;
TE_STAGE) ;
TE_COMBO) ;

}//end QutputForestDistribution

"\t%-6.0£f",AllNonFedStage(r] [c] *ACREEQ);

"wEvt%-8.2f", PexTotal*ACREEQ) ;

AR R R S S T T T T T T

void Level

OfActivity (int Status)

] R AR AR AR R RN R KKK KKK KKK KKK KRR RN N A AR AR R AR R AR AN NN A A AR R AR AR ARR

(

/* This will output a table with 6th field subwatershed id’'s in Rows,

and columns for the four EvaluateThisPeriod|] periods, with values representing how many
"touched". This file will also have its first column (after

the id) with the total acres in that subwatershed and then the total forested acres.
This file will be comma delimited and can be imported intoc ArcInfo and joined with the

acres were

SubWatershed layer to make maps showing the LevelOfActivity - or the

tables can

NOTE: This function is not looking at a "solution"

harvest as
*/

//These gl
extern int
extern int

int a, r,
ushort *pt

be used stand-alone.

sociated with it anyways!

obals were filled when main{)
UniqueMinor [300];
usw;

SearchShed;
r_minor;

ulong *ptr_treelist;

int Pera,

FILE *WRIT!
char LoaFi
/7=

printf{"There are %d 6th-field subwatersheds in LevelCfActivity\n",UswW);

//Create on FreeStore an array to hold rows for each subwatershed and 7 columns:
[1[3]1=Cells in Per"A"
[1[4]1=Cells in Per"B" [][5]=Cells in Per"C" [][6]=Cells in Per"'D"

/1
/1
ulong (*LO
if {LOA ==

//initiali

PerB, PerC, PerD, Hit;

E_LOA;
le[256];

- End of Variables

called up CountSubWatersheds

[1{01=ID [1[1)=TotalCells [](2]=ForestedCells

A) [7] = new ulong[USW]([7];
NULL}

printf("There was NOT enough memory for LOA with %lu elements\n", USW*7);

zZe the LOA array

for (r=0; r<USW; r++)

{

1)

for (a=0;a<7; a++)
(
LOA(r]{al = 0;

//Look at EvaluateThisPeriod and find the 4 evaluation periods there

225

to determine the LOA, but that should be negligible because
this tracks harvest values and a cell not in the solution for a particular landscape goal will not have any

226

Hit=0;

for (r=0; r<NP;r++)

{
if (EvaluateThisPeriod[r] > 0)
(

if (Hit 4)
(
printf("There are toc many EvaluateThisPeriod[] periods! - ignoring those past the
first four\n"};
break;
}
if{Hit == 0)
PerA = r;
else if (Hit == 1)
PerB = r;
else if(Hit == 2)
PerC = r;
else
PerD = r;
Hit++;

}//end for{r=0;r<NP;r++)

//printf("Evaluating Periocds: 2#d, %d, %d, %d\n", PerA+l, PerB+l, PerC+l, PerD+1l);

//Start the search process
for (r=0;r<USW;xr++)
{
SearchShed = UniqueMinor[rj;

if (SearchShed == WATER_BODY || SearchShed == NODATAFLAG)
continue;

//Put ID in LOA
LOA{r][0] = SearchShed;

//Using SearchShed, look through all of Data.Minor for that value
for (a=0; a<UNIQUE; a++)
{

ptr_minor = &Data.Minor[a]

ptr_treelist = &Data.Treelist[a]l;

if{*ptr_minor == Q)
break; //assumes Data.Minor was initialized with 0’s
and there are
//nc actual Minor sub-
watershed values of 0

if(({ushort)SearchShed == *ptr minor) //YES, they match
{

//Tally up the total acres for this subwatershed
LOA[r] [1}++;

//Tally up the actual forested acres
if(*ptr_treelist != NONFOREST)
LCA[r] [2]++;

//Look at appropriate Data.CFHarvest elements to see if there was activity or not

//I1f there was, tally up the number of cells as appropriate

if{ Data.CFHarvest[a][Pera] > 0 } //There was a harvest in Period "a*
LOA[r] [3]++;

if{ Data.CFHarvest[a][PerB] > 0) //There was a harvest in Period "B*
LOA[x] [4] ++;

if(Data.CFHarvest[a] [PerC] > 0 } //There was a harvest in Period "C"
LOA[r] [5]++;

if(Data.CFHarvest[a][PerD] > 0 } //There was a harvest in Period
LOA[x] [€]++;

}
}//end for (a=0;a<UNIQUE;a++)
}//end for (r=0;r<USW;r++}

// Create, Open, and Write data out to a file
if {Status == PREDICTED}
//This is PreSimulation data
sprint f(LoaFile, "%s%s%d\\loa.csv",PREFIX, PreSimCutputDir, GOAL_TQ_USE) ;

else
//This is PostSimulation data
sprintf(LoaFile, "%s%s%d\\loa.csv'.PREFIX.PostSimOutputDir, GOAL_TO_USE);
WRITE_LOA = fopen(LoaFile, 'w");
if (WRITE_LOA == NULL)

fprintf(stderr, "opening of %s failed: %s\n", LoaFile, strerror(errno});

//No header line because ArcInfc won't import them - see top of function for format

227

//Will output the actual acres associated with the cell count found -- ** no TABS either (A/I doesn’t like them)
for{r=0; r<USW;r++)
{
if(LOA[Z][0] > O)
{
fprintf (WRITE_LOA, "%1lu, ", LOA(x] (0]} //the ID is stored here - don’'t convert to
acres

for({a=1l;a<7;a++}
{
fprint £ (WRITE_LOA, "%-7.2f",LOA[r] [a] *ACREEQ) ;
if{a < 6 }
//don’'t want comma after last value - screws ArcInfo up
fprintf (WRITE_LOA, ", ");
}
fprintf (WRITE_LOA, "\n");

delete [] LOA;

fclose (WRITE_LOA) ;
}//end LevelQfActivity

PR R R AR L

void TimingChoiceFrequency (void)

B Lk L L T T T L R L R R R L R T T T TS T P T e e

{

J*

The objective is to look at all the SD_*_*_*.txt files for ALL the possible prescriptions that could

be chosen for the initial landscape (ALL means for all 10 stand goals and 2 "hold" periods for all existing
treelist!).

This function will count up the total number of prescriptions opened and track, by period, how many prescriptions

had harvesting (i.e. thinnings) occuring in each period. This freguency can then be compared to the

harvest values that are seen after a landscape optimization and notice if harvest flow is occuring with period

peaks that alsc have a high frequency of prescriptions with harvesting in that periocd (even-flow may be
difficult to achieve because of that.
*/

FILE *Index, *SD, *WriteQut;

char Garbage[100]="",6 Temp[256], SDFile[255];

int ScanStatus, IndexNo,count, ctr, gocal, HoldPeriods;
int TotalFiles,y;

int AF[NP]);

double TotalVolume [NP];

int DataPeriod;

double RealBasal, RealClosure, RealCBD, RealHLC, RealHeight, RealRev, RealBigTrees, Harvest, SD_Era;
ushort VegCode,Reallitter,RealClass25,RealClassl,RealClass3,RealClassh,RealClassl2,RealClassOverl2;

F e ittt End of variable defining -------------——-=-==--r—-——————————on

//Create the Data.*[] arrays so Data.Treelist gets made for the particular ENVIRONMENI defined
CreateMainData() ;

//initialize array
for{y=0;y<NP;y++)
{
AF[y]=0;
TotalVolume[y] = 0;

// I will assume that the treelist index.txt file is completely filled with valid stands and files
sprintf (Temp, “%s%s%d\\per0\\%s", PREFIX, INPUTS,GOAL_TC_USE, TREE_INDEX);
Index = fopen{Temp,"r");

if {Index == NULL)
fprintf{stderr, "opening of %s failed: %s\n", Temp, strerror(errno)};

// First go through the file and COUNT the number of files
count = 0;
while ((ScanStatus=fscanf (Index, "%d",&Index¥o)) '=EOF)
{
count = ++count;

}
printf(*\n\nThere are %d files in the Tree Index File\n\n",count};

// Rewind the file pointer so it is back at the beginning of the file
rewind(Index);

//For each treelist-gcal-hold possibility, go through read the SD_*_*_.txt file and track periodic harvest
freguency
TotalFiles=0;
for(ctr = 0; ctr < count; ctr++}) //for each treelist
{
fscanf (Index, "%d", &IndexNo} ; //8can the index no.

//flag for NONFQREST values
if (IndexNo == NONFOREST)
continue;

228

for{goal=0; goal<GOALS; goal++) //for each goal
{

//8et a quick error if I change the # of HoldFor periods and I forget to fix this code
if (HOLDNO > 2}

Bailout (40} ;
for (HoldPeriods=0;HoldPeriods<4;HoldPeriods+=3) //for the two Hold "for* periods
{

TotalFiles++;

//Make the appropriate file name and actually open the SD_*_*_*.txt file
sprintf{SDFile,
*%s%s\\SD_%d_%d_%d. txt", PREFIX, InitialStandDataDir, IndexNo,goal,HoldPeriods) ;
SD = fopen({SDFile,"r"};
if (8D == NULL)
fprintf (stderr. "opening of %s failed: %s\n", SDFile. strerror(errno)};

//First, scan in the the first line from the SD* file-which is for Time 0, do not
want
fscanf(SD, "%d %1f %1f %1f 31f %1f %1f %1f %1f %hu %1f %1f %1f %1f %1f 21f %1f %1f",
&DataPeriod, &RealBasal,
&RealClosure, &RealCBD, &RealHLC, &RealHeight, &RealRev, &RealBigTrees,
&SD_Era, &VegCode, &Harvest,
&Reallitter, &RealClass25, &RealClassl, &RealClass3, &RealClassé,
&RealClassl2, &RealClassOverl2);

for (y=1;y<=NP;y++)}
{
//Now actually scan in the data for all the modeling periods
fscanf (SD, "$d %1f %1f %1f %1f %1f %1f %1f %1f %hu %1f %1f %1f %1f %1f %1f
$1f %1f", &DataPeriod, &RealBasal,
&RealClosure, &ReallBD, &RealHLC, &RealHeight, &RealRev,
&RealBigTrees, &SD_Era, &VegCode, &Harvest,
&RealLitter. &Realllass25, &RealClassl, &RealClass3, &RealClassé,
&RealClassl2, &RealClassOverl2);

if (Harvest > 0 && y < HoldPeriods)
printf('Prescription P_%d_%d_3d.txt has harvest occuring before
HoldPeriod expires!\n", IndexNo,goal,HoldPeriods);

if{DataPeriod != y)
printf ("PROBLEM - there aren’t NP periods in file %s\n",SDFile};

//If there is a value > 0 for Harvest, increment the AF[y] array by one
//And track the total volume
if {Harvest > 0)
{
AF [y-1]++;
TotalVolume[y-1] += Harvest;
Y
}//end for{y=1;y<=NP;y++)

fclose (SD);

}//end for{ctr = 0Q; ctr < count; Ctr++)

fclose (Index);

//print out the results to screen
printf(’= Harvest Frecuency Analysis =
puts(*”};
for (y=0; y<NP;y++}
printf{ "Period %d:\t%d\t\t% 0f\t\t%, 31f\n",y+1,AF[y], (float) AF{y]/TotalFiles*100,TotalVolumely]/AF[y]

=\n",TotalFiles};

};

//and print out results to a file
sprintf (Temp, "$s%s\\HarvestFreguency.txt", PREFIX, GeneralDataDir) ;
WriteQut = fopen{Temp, “w"}; //no
error checking
fprintf (WriteQut, *= == Harvest Frequency &nalysis
fprintf (WriteQut, "\t\tNo. of \t\tPercent of\tAvg.Velume\n'}:
fprintf (WriteOut, "\t Prescriptions\t\t Total\t\tper prescripticnin');
fprintf (Writedut, "\n");
for {y=0;y<NP;y++)

fprintf {WriteQut, "Period %d:\t%d\t\t%.0f\t\t%.31f\n",y+1,AF[y], (float}
AF[y]/TotalFiles*100, TotalVolume [y] /AF[Y] };

=\n\n", TotalFiles};

fclose (WriteQut);

}//end TimingChoiceFrequency

L g R R L L L R R L AR R
void OwnershipByMinor(int USW, int UnicueMinor{])

J AR R AR R AR AR A AR AR AR AR AR R AR AR A R A KR A AR AR AR AR AR A AR A AR AR A A AR A AR AR AR A AR AR AR A AR AR AR AR AR AR ARk AR
{ //Figure out the majority owner for each subwatershed
//NOTE: This is not a "perfect" method and is suited to be changed as seen fit

FILE *WriteQut;
char Temp[256];
int Shed, CurrentShed;

//Make an array on free store that will store
[0], subwatershed 4

//rows: subwatershed
ulong {(*MO} [3] = new

if (MO == NULL)

printf("There was NOT enough memory for MO with %lu elements\n*,

//initialize the arr
for {r=0; r<USW; r++)
{
MO[r] (0]
MO[r] (1]

//Start to look at e
for (Shed=0; Shed<USW;
{

columns:
ulong [USW] [3];

ay

ach sub-watershed,
Shed++)

one at a time,

- End of variable defining ----

/ /MinorOwner (MO}

for each subwatershed,
(1], Federal {BLM, USFS}

and track ownership

//get the appropriate sub-watershed value from the UniqueMinor array

CurrentShed=UniqueMinor [Shed];

O [Shed] [0

//Start looking through Data.* arrays and find subwatersheds with this value and track ovmership

1 =

for{(r=0; r<UNIQUE; r++)

{

data

anyways

Data.InitialStage[r]

if{Data.Minor[r] ==
break;

if{Data.Minor[r] ==
continue;

if (Data.Minor([r] ==
continue;

if(Data.Treelist([r]

continue;

{ulong)}CurrentShed;

FALSE)

NODATAFLAG)

WATER_BODY}

== NONFOREST)

USW*2);

f21,A11 Others

//populate the Subwatershed #

//don’t count those that are nonforest

//Some of those GIS slivers

//These are lakes,

the # of cells by ownership category

etc.

229

or bad

//Now make a switch according to which goal is being evaluated and make sure to evaluate only
//those cells that are elegible for that goal anyway

switch{GOAL_TO_USE)
{

if({Data.Alloc|r]

case 1:

if¢
> 9} ||

break;
case 2:

break;
default:

break;

//0nly gets to here
if (Data.Minor[r] ==
{

Data.Alloc([r] ==

(Data.Buffer[r]
continue;

== ALLOC_WILD)
continue;

if all above have passed and no continue statement was encountered

{ushort)CurrentShed)

ALLOC_WILD ||

{(Data.Alloc [r]

== IN_BUFFER && Data.InitialStage(r]

ALLOC_RESERVE &&

> 9))

if(Data.Owner|[r) == OWN_BLM || Data.Owner[r] == OWN_USFS)

else

)

}//end for{r=0;r<UNIQUE;r++)
}//end for(Shed=0; Shed<USW; Shed++}

//print results

MO[Shed] [1]++;

MO [Shed] [2] ++;

printf{*Subwatershed #\tMajority Owner\n");

printf({“=====
for{r=0;r<USW;r++)

{

printf{"%lu

", MO[r][0]);

if{MO(r][1] > MO[xr]I[2])
printf {(*\t\tFEDERAL\n"};
else if{(MO[r]([1] < MO[r][2]}
printf{“\t\tNONfederal\n"};

else

\n");

printf ("\t\tegqualin"};

//and print out results to a file
sprintf (Temp, "%s%s\\Goal%d_OwnerMinor. txt", PREFIX, GeneralDataDir, GOAL_TO_USE) ;

230

WriteQut = fopen(Temp, "w"); //no
error checking

fprintf (WriteOut, “Subwatershed #\tMajority Owner\n");

fprintf{(WriteQut, “=sss==s==s=ss=s===z==z=================z=====z==zz==== \n");

for {r=0; r<USW; r++)

(

fprintf{WriteCut, *%lu :",MO[x][0]};

if(MO[r]il] > MO[r][2])

fprintf(WriteQut, “\t\tFEDERAL\n");
else if{MO[r][1l] < MO([x][2])

fprintf (WriteQut, "\t\tNONfederal\n"};
else

fprintf(WriteOut, “"\t\tequali\n"'};

fclose(WriteoOut);

delete [] MO;

}//end OwnershipByMinor

A Rl Rl e R A L T T T T T
void OutputPotentialBigTreesaAllStandGoals(veid)

A R R R R R R S R R L R R L T
(

I

Output the number of BigTrees associated with the eligible sclution area for any one goal applied

as the only solution. That is, pretend that conly cne goal is selected, and one hold value, and

call that the "solution" and then cocunt up the Big Trees.

This function will simply use the same rules used tc define the Solution cells for a particular goal
- and then use those cells to look up their associated big trees from the PREMO data.
*/

FILE *BinIn, *HeaderIn, *Writedut;
char Temp(2561};
ulong Records;

int a, b,x;

ulong c;
ulong AllocOK, AllocNOK,CellsInShed;
ulong SolutionCounters{3]; //will get filled with AllocOK, AllocNOK,

CellsInShed, by DetermineEligibleCells ()}

double PerBigTrees[NP];
double SumBigTrees = 0Q;

struct OPTIMIZE_SINGLE_VALUE Key;
struct QPTIMIZE SINGLE_VALUE *ptr_key;
/-~ -— - End variable defining ---

//Create the output file for the data generated here
sprintf{Temp, "$s%s%d\\All_BigTrees.txt",6 PREFIX, PreSimOutputDir, GOAL_TO_USE);

//0pen up the file for printing
WriteOut = fopen(Temp, ‘w");

//0pen the Header and actual Binary file ccntaining the data found during FillvalueToOptimize(
sprintf(Temp, "%s%s\\Binary\\%s_InitOpt.bin", PREFIX, InitialStandDataDir, ENVT);
BinIn = fopen(Temp, “"rb");

sprintf (Temp, "%¢%s\\Binary\\%s_InitOpt hdr",LPREFIX, InitialStandDataDir, ENVT);
HeaderIn = fopen(Temp, "r");

//Get the Number of records that are listed in the header file
fscanf (HeaderIn, "$1u", &Records) ;

//Create an array of structures on the free store to hold these records
struct OPTIMIZE_SINGLE_VALUE (*OptValues} = new struct OPTIMIZE_SINGLE_VALUE[Records];
if({ Optvalues == NULL)
printf{"Problems allocating memory for OptValues[] with %lu
elements\n", Records*sizeof (OPTIMIZE SINGLE_VALUE)) ;

//Now just read in the binary data the same way it was written out in FillvalueToOptimize ()
fread(OptValues, sizeof(OPTIMIZE_SINGLE_VALUE),Records,Binln};

//close up the files
fclose(BinIn);
fclose (HeaderIn);

//Initialize the SolutionCounters array and call up the DetermineEligibleCells() function to fill it up
for (a=0;a<3;a++)
SolutionCountersla] = 0;

printf("*** Going to determine the eligible cells for this soluticn and fill up the array of SOLUTION structures
wew\nv),

231

if{ DetermineEligibleCells(SolutisnCounters)
Bailout(B2});

//The values now in ScolutionCounters should be properly set

AllocOK = SolutionCounters[0];

AllocNOK = SolutionCounters[l];

CellsInShed = SolutionCounters[2];

printf{"!!! There are %lu valid cells with cellids..... ",CellsInShed);

printf(" and %lu cells that are eligible for the solution and %¥lu that are not.\nin",2AllocOK,21locNOK) ;

//Set a checker to look for when there are C eligible cells
if (AllocOK == FALSE)
Bailout (B9} ;

//Create an array of structures on the free store to hold the solution
struct SOLUTION (*Sclution) = new struct SOLUTION[AllocOK];
if(Solution == NULL)
printf ("Problems allocating memory for Solution[] with %lu elementsin",AllocOK*sizeof {SOLUTION));

//Initialize
memset{ Solution, 0, sizeof({struct SOLUTION) * AllocOK);

//Now f£ill that array of SOLUTION structures with the Treelist - Minor - Cellid - GOAL - and HOLD of those eligible
cells
if(FillSolution(SolutionCounters, Solution, REAL) == FALSE

Bailout (B3);

for (a=0;a<{signed)AllocOK;a++)
Solution{al .Hold = 0; //assign a Hold wvalue of 0 to all cells

B R e e e e R A A AR R R

*hk

All the above stuff only needs to be done once. At this point the Solution structure is filled up with the
Treelist-Cellid-Minor values for all the eligible cells in this solution. To simulate the ideal of applying

one goal across the landscape, just make a loop to fill all of the Solution.Goall] members with one gsal value.
Then use that as the Key when searching the above OptValues[] structure and copy what was done in the
OutputBigTreesForSolution{) function to output the big tree values

I I N T I T T RS L

*xkx [

//MAKE a loop to do this for each of the StandGoals possible
for (x=0;x<GOALS; x++)
{

//First, assign goal "x" to all the cells in the Solution structure
for (a=0;a<{signed}AllocOK;a++)
Solutionfa).Goal = ({ushort)x;

//Re=initialize the PerBigTrees[] array
for {a=0; a<NP; a++)
PerBigTrees(a] = ¢;

//Rlso reset SumBigTrees
SumBigTrees=0;

for{c=0;c<AllocOK;c++) //AllocOK is how many rows of data there are (i.e. eligible cells found
earlier)
{
//Make a Key using the Treelist-Goal-Hold values found for each record in the array of Sclution
structures
Key.Treelist = Solution[c].Treelist;
Key.Goal = Solution[c].Goal; //will all have the value of "x"
Key.Hold = Solution[c] .Hold; //will all be 0

//Now use bsearch to find the matching record in the array of OV structures
ptr_key = (struct OPTIMIZE_SINGLE_VALUE*}bsearch(

&Key,

(void *)OptValues,

{size_t)Records,

sizeof(struct OPTIMIZE_SINGLE_VALUE),

LookAtOSV };

if(ptr_key == NULL) //There had better be one!
{
printf("Can’t find key number %lu: Treelist = %lu, Goal = %hu, and Hecld =
$huin", c¢,Key.Treelist,Key.Goal,Key.Hold] ;
Bailout (80);
}
else //Sum up the periodic
Values

for (b=0;b<NP;b++)
PerBigTrees([b] += ptr_key->BigTrees[b];
}
}//end for{c ...)

J/*#xxxxxx When outputting the # of Big Trees, remember that data was entered by multiplying by 10 - so
divide to get real value
//Add up the total sum of big trees

for (b=0;b<NP;b++)

232

SumBigTrees += PerBigTrees(k]/BIGTREES_EXP;

fprintf (WriteOut, "\n\nSTAND GOAL: %d\n",x);

fprintf (WriteOut, *These are Biyg Trees that were in the Solution area only...which amounted to %.21f
acres\n", AllocOK*ACREEQ) ;

fprintf (WriteQut, “\nThe Period Big Trees Totals are:\n"};

for(a=0;a<NP;a++}

fprintf (WriteCut, "Per%d is %~.31f\n",a+l,PerBigTrees[al/BIGTREES_EXP);

fprintf (WriteOut, "The total sum of Big Trees is: %.31f\n",SumBigTrees)

fprintf (WriteQut, ‘Which amounts to about %.31f per acre\n", SumBigTrees/ (AllocOK*ACREEQ));
}//end for(x=0 ...)

fclose (WriteQut};

//delete stuff on free store
delete [] Solution;
delete [1 Optvalues;

}//end OutputPotentialBigTreesallGoals

A L e SR ST ST TN
void OutputVegcodes(int Per)
AR T L T T T T

//NOTE: the incoming "Per" is the correct period to which this data goes (not array subscript)
//Qutput the GIS vegcode variable so they can be pulled into a GIS and mapped

FILE *WRITE_VEG;
char VegcodeFile[256];

int *ptr_srp; //Starting Row Position
ushort *ptr_column;

int r,c,HowMany;

int ColumnsLeft, ctr;

ushort StartColumn,OutColumn;

ushort *ptr_vegcode;

/1

==end variables =

//Make the correct output file name and cpen it
sprintf {VegcodeFile, "%s%s%d\\perikd\\vegcode.asc",PREFIX,OUTPUTS,GOAL_TC_USE, Per);
WRITE_VEG = fopen(VegcodeFile, "w")
if {WRITE_VEG == NULL}
fprintf (stderr, "opening of %s failed: %s\n", VegcodeFile, strerrori{errnc)]);

//Start writting data to the file

fprintf (WRITE_VEG, *ncols\t\t%d\n", COLUMNS) ;
fprintf (WRITE_VEG, "nrows\t\t%d\n", K ROWS) ;
fprintf (WRITE_VEG, "xllcorner\t%.61f\n", F_XLL);
fprintf (WRITE_VEG, "yllcorner\t%.6lf\n",F_YLL);
fprintf (WRITE_VEG, "cellsize\t%d\n",CELLSIZE);
fprint f (WRITE_VEG, "NODATA_value\t%d\n", NODATA) ;

for{r=1;r<=ROWS;r++)

{
ptr_srp = &link[r-1]1[1)
HowMany = *{ptr_srp+1l);

StartColumn = Data.GridColumn[{*ptr_srp)-1]; //not a pointer!
ptr_column = &Data.GridColumn[(*ptr_srp)-1];
ptr_vegcode = &Data.Vegcode| (*ptr_srp)-1] [Per-1]

//If the whole row is blank, print out NODATA and goto next row
if(*ptr_srp == FALSE) //means a zero was left in this spot during MakelLink
{
for (c=1; c<=COLUMNS; c++}
fprintf (WRITE_VEG, "%d “,NODATA);

//put in new line
fprintf {WRITE_VEG, "\n");

continue; //goto next row

//print out NODATA for those cells before data starts
for(c=1;c<StartColumn;c++)
fprint £ (WRITE_VEG, "% " ,NODATA};

//set some counters
QutColumn = StartColumn;
ctr = Q;

//print out values for area on landscape by checking
//value in Data.GridColumn to match it with QutColumn value
do{
if (*ptr_column == OutColumn)
{
fprintf (WRITE_VEG, "%hu ",*ptr_vegcode)

ptr_vegcode+=NP;

ptr_column++;
OutColumnt+;
ctr++;

else //print out NODATA for the ‘gaps"
fprintf (WRITE_VEG, "%d “,NODATA);

OutColumm++;
}
}while(ctr != HowMany };

//Check to see how many columns are left to do
ColumnsLeft = COLUMNS - (OutColumn-1);

if ({ColumnsLeft == @)
{
fprintf (WRITE_VEG, "\n"};

continue; //go to next row

}

//print out NODATA for those cells after the data that are left
for{e=0;c<ColumnsLeft;c++)
fprintf (WRITE_VEG, "3d *,NODATA) ;

//put in a new line
fprintf (WRITE_VEG, “\n"};

}//end of for{r=l;r<=ROWS;r++)

fclose (WRITE _VEG) ;
return;

}//end OutputVegcodes

A R

void OutputInitialGoal (void)

J e e L L R T S R T E e

{

I

After an initial Stand Goal selection has been made, this will spit cut the goals in a binary
file that can be brought into ArcInfo and mapped and/or used fcr comparison after the heuristic
has found the final solution.

This function assumes that the initial goal assignment was inserted into the Data.Goal array by
calling InputSolution()} after the random initial stuff.

-

/

FILE *BinOut, *HeaderOut;
char Temp[256];

int *ptr_srp; //Starting Row Position
ushort *ptr_column;

int r,c, HowMany;

int ColumnsLeft, ctr;

ushort StartColumn,QutColumn;

ushort *ptr_goal;

float *ptr_goalout;

/7 --- End of variable defining —------—-===-—--o-mmmm o m o

233

//Use this to store all the NODATA and actual values - go I can spit out a binary file at end of function - ready

for ArcInfo input
float {*GoalOut) [COLUMNS] = new float[ROWS] [COLUMNS];
if(GoalOut == NULL)

printf ("There was NOT enough memory for GcalCut with %lu elements\n®,ROWS*COLUMNS) ;

//Initialize
memset [GoalOut, 0, sizeof (GoalOut[0][0]) * ROWS * COLUMNS);

2 ==

/7 Store the Data.Goal[] data in the GoalOut{][] array and place a NODATA wvalue in the correct

// spots. This is all to ease the transition into ArcInfc. This way, I can spit out a
// small binary file with the values and NODATA which AT can just read in.
/7 ============= = == = = =

//Use the same procedure that is done with the other Output*{} functions
for(r=1;r<=ROWS; r++)

(
ptr_srp = &link[x-1]{1};
HowMany = *(ptr_srp+l);
StartColumn = Data.GridColumn| { *ptr_srp)-~1]; //not a pointer!
ptr_column = &Data.GridColumn| {*ptr_srp)-1]
ptr_goal = &Data.Goal[(*ptr_srp)-1]

//If the whole row is blank, store NODATA and goto next row

if(*ptr_srp == FALSE) //means a zero was left in this spct during MakeLink

{
for{c=1;c<=COLUMNS;Cc++)

GoalOut(r-1]{c-1] = {float)NODATA;

continue; //goto next row

//store NODATA for those cells before data starts
for (c=1;c<StartColumn; c++}
GoalOut{r-1}{c-1] = (float)NODATA;

//set some counters
OutColumn = StartColumn;
ctr = 0;

//store values for area on landscape by checking
//value in Data.GridColumn to match it with OGutColumn value

dof
if (*ptr_column == OutColumn)
{
GoalCut[r-1]i0utColumn~1] = {float)*ptr_gocal;
ptr_goal++;
ptr_column++;
QutColumn++;
ctr++;
}
else //print out NODATA for the “gaps"
{
GoalOut [r-1] [CutColumn-1] = {float}NODATA;
QutColumn++;
}
}while{ctr != HowMany };

//Check to see how many columns are left to do
ColumnsLeft = COLUMNS - {OutColumn-1);

if (ColumnsLeft == 0}
continue; //go to next row

//print out NODATA for those cells after the data that are left
for (c=0;c<ColumnsLeft;c++)
GoalOutfr-1]{{outColunn-1ll+c] = {(float)NODATA;

}//end of for{r=1;r<=ROWS;r++)

/1=

/7 Put a pointer at start of GoalCut and purdge that data as a binary file

ptr_goalout = &GoalOut[0][0];

//Create the output Binary file and header file
sprintf (Temp, “%$s%s%d\\InitGoal.bin", PREFIX,PreSimOutputDir, GOAL_TO_USE};
BinCut = fopen(Temp, *wb");

sprintf (Temp, *3%s%s%d\\InitGoal.hdr", PREFIX, PreSimOutputDir,GOAL_TO_USE};
HeaderOut = fopen(Temp, "w");

//Write ocut the header data -- exact format for ArcInfo
fprintf {HeaderQut, "ncols\t\t%d\n", COLUMNS) ;

fprintf (HeaderOut, "nrows\t\t%d\n", ROWS} ;

fprintf {HeaderOut, "xllcorner\t%.61f\n", F_XLL};

fprintf (HeaderOut, "yllcorner\t%.61l£f\n", F_YLL)

fprintf (HeaderOut, "cellsize\t%d\n", CELLSIZ2E);

fprintf {HeaderOut, "NODATA_value\t%d\n", NODATA) ;

fprintf (HeaderOut, "byteorder\tLSBFIRST\n");

//And now write out all the records in GoalQut
fwrite (ptr_goalout, sizecf(float),ROWS*COLUMNS, BinQut);

fclose(BinOut) ;
fclose (HeaderOut) ;

//delete stuff on free store
delete [] GoalOut;

}//end OutputInitialGoal

INSECTS.CEFP

/*

This souce code will hold all the functions needed to initiate and wreak havoc on

stands due to episodic insect outbreaks.

The insect disturbance is based on two components: 1st, a threshold is met
is a function of the weather) and 2nd, a severity is applied.
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

234

235

#include <time.h>
#include "globals.h*
#include "data.h”

//defined in main.cpp
extern ulong NATLN;

//define in Misc.cpp
extern void DeleteToModify(void);

//defined in CommonDisturbance
extern void ExtractTreelist{struct TREELIST_FOR_PREMO TP[], int Count, int Per, ulong FTL);
extern void PrintNewTreelist{struct TREELIST RECORD Records[], int Count, struct TREELIST_RECORD NewSnags({],

int SnagCount,
ulong Treelist};
extern void UpdateDataTreelist(struct HIT _BY DISTURE AllHit[], int AllCount};
extern void UpdateDataWithNewStandData (struct HIT _RY DISTURB HitList[], int HitCount, struct NEW_STAND_DATA SD[],
int Unique, int Per);

//defined in StandData.cpp

extern void StandDataController (struct NEW_STAND _DATA SD[], int Count, struct TREELIST_RECORD Records[], int
NoRecords };

extern void CalculateIndividualBasalCanopyWidth{struct TREELIST_ RECORD Records[], int NoRecords);

e INTERNALS - = — m o m oo m o m o oo e e

int ApplyInsectDisturbance{int Per, int Weather, ulong FTTP};

int CountInsectHit(int Per);

int FillInsectHitList(struct HIT_BY_DISTURE HitList[], int Per};

int CountUniqueInsectHits(struct HIT BY DISTURB HitList[], int Count);

int FillUniqueInsectStructures(struct UNIQUE_INSECT UniqueList[], struct TREELIST_FOR_PREMO ToPremol[}

struct HIT_BY_DISTURB HitList[], int Count});
void ApplyInsectSeverityCalculateStandData(struct UNIQUE_INSECT UL[], int Count, struct NEW_STAND_DATA StandDatall],
int Weather});
int DougFirMortality(struct TREELIST_RECORD Records([], int Count, struct TREELIST_RECORD NewSnags(],
int SnagCount,
ushort Pag, int Weather, struct NEW_STAND_DATA *ptr_sd);
int TrueFirMortality(struct TREELIST_RECORD Records(l, int Count, struct TREELIST_RECORD NewSnagsi],
int SnagCount,
ushort Pag, int Weather, struct NEW_STAND_DATA ‘*ptr_sd);
int PineMortality(struct TREELIST_RECORD Records[], int Count, struct TREELIST_RECCRD NewSnagsl[],
int SnagCount,
ushort Pag, int Weather, struct NEW_STAND_DATA *ptr_sd);
int CompareHitListForBugs(const void *ptrl, const void *ptr2};
void MapPotentialBugs!{int Per);

7/ === end of function definitions for this code

J] KRRk ok ko k sk ok ok ok ok ok ok Kk ok ok ok ok ok ok ok ok k k ok Kk ok ok ok ko ok ko kk ok sk ok ok kR k ok ok k h k k

int ApplyInsectDisturbance{int Per, int Weather, ulong FTTP}

] Rk ok sk ko ok ok ok ok ok ok ko ok Kk ko ok ok ok ok ek ok

{
//Weather values are:
/7 1 = Wet, 2 = Moderate, 3 = Mild Drought, 4 = Severe Drought
/*
PAG values are:
1 Douglas fir / Dry
2 Douglas fir / Wet
3 Jeffrey pine
4 Red fir
5 Pine / Oak
& White fir / Dry
7 White fir / Wet
8 Water
9 Barren
*/

int ActualPer, ArrayPer;
int a=0, HitCount, Records, Unigue, UniqueZ;
char weatherTypel[50];

//For Time information
clock_t Start, Finish;
double Duration;

/=

End of variable defining --

//Create the WeatherType string
if(Weather == 1)
sprintf (WeatherType, "Wet");
else if(Weather == 2)
sprintf (WeatherType, "Moderate");
else if(Weather == 3)
sprintf (WeatherType, "Mild Drought');
else
sprintf (WeatherType, "Severe Drought'});

//REMEMBER: Per is the actual period, not array subscript - reset Per
ActualPer = Per;
ArrayPer = per-1;

236

if(Weather == 1 || Weather == 2)
{

e A A A R R
AXXRXRXA RN\),

printf ("\t INSECTS \n"};
printf ("\t\t Not a drought period (%s)\n",WeatherType);
printf{*\t\t There will be NO episodic insect attacks\n"):

e e A e R e L E TS ey
FrErAAAREA\RL)

return TRUE;

else

e St AN R R R S L
FAEERE AR A RAN\L)

printf("\t Starting episodic disturbances for ... INSECTS \n"]:
printf{“\t\t This is a drought-type period (%s)\n',WeatherType);
printf ("\t\t There WILL be episodic insect attacks -- bzzzzz!\n");

ey A S e R S e R

AkHkAHER A\

}

//Count up how many cells were hit by insects this period

HitCount = CountInsectHit{ArrayPer);

printf("\n\nFor Period %d, just counted %d cells being attacked for %.0lf
acres\n", ActualPer,HitCount, HitCount *ACREEQ) ;

//Print out the number of acres hit
PrintToStat{6, HitCount);

//1f there are no cells getting hit by insects, then just return back to main
if(HitCount == FALSE)
{

printf("!!! There were NO cells effected by insects - skipping INSECT DISTURBANCE routines !!!\n"j;
return TRUE;
}

//create an array of structures on the free store to hold info on all the cells being hit
struct HIT _BY DISTURB (*HitList) = new struct HIT_BY_DISTURB[HitCount];
if(HitList NULL)

printf{"Problems allocating memory for HitList[] with %d records\n*,HitCount};

//Initialize
memset (HitList, 0, sizeof (struct HIT_BY_DISTURB) * HitCount);

//Fill up the array of HitList structures
Records = FillInsectHitList (HitList, ArrayPer);
if(Records != HitCount)

Bailout(77);

printf{"\nGetting ready to sort the stands by Treelist-Goal-Hold-Pag-DougFir-TrueFir-Pine..... this will take awhile
for %lu cells\n\n’, HitCount);
Start = clock();

//sort those records by: Treelist-Goal-Hold-Pag-DougFir-TrueFir-Pine
mgsort{ (void*)HitList,

//base
HitCount,
//count of records
sizeof(struct HIT_BY_DISTURB], //size of each
record
0, HitCount-1,
//current division (always: 0, Count-1)
CompareHitListForBugs) //compare
function

Finish = clock();

Duration = { (double) (Finish-Start) / CLOCKS_PER_SEC);

//printf{"***Finished sorting in %.21f seconds, now going to determine how many unique combinations of the above
sort there are\n",Duration};

//Count up how many of those records in Hitlist are actually unique combinations of Treelist-Goal-Hold-Pag-DougFir-
TrueFir-Pine

Unigue = CountUnigueInsectHits(HitList,HitCount});

printf("!!!There were actually %d unique records that will each require a PREMO run\n*,Unique);

/*
Create 3 different structures to hold various information (may share some common data, but are "packaged"
different)

Each of these 3 will hold information ONLY for those unique combinations of Treelist-Goal-Hold-Pag-DougFir-TrueFir-
Pine

1 - an array of structures to hold data pertaining to which insect type{(s) are attacking and treelist values

2 - an array of structures to hold old and new treelist values to use when period is cver and need to make new
Premc calls

3 - an array of structures to hold new Stand Data that will need to be updated in the Data.* arrays BEFORE next
disturbance

*/

237

struct UNIQUE_INSECT {(*Uniquelist) = new struct UNIQUE_INSECT[Unique];
struct TREELIST_FOR_PREMO({*ToPremo) = new struct TREELIST_FOR_PREMQ[Unique];
struct NEW_STAND_DATA({*StandData) = new struct NEW_STAND_DATA[Unique]
if(UniqueList == NULL)
printf (*Problems allocating memory for UniqueList[] with %d records\n",Unique)
if (ToPremo NULL)

printf ("Problems allocating memory for ToPremo[] with %d records\n"',Unique)
if(StandData == NULL)

printf(’Problems allocating memory for StandData[] with %d records\n*,Unique);
//Initialize
memset (Uniquelist, 0, sizeof(struct UNIQUE_INSECT) * Unique);
memset (ToPremo, 0, sizeof(struct TREELIST_FOR_PREMO) * Unique);
memset (StandData, 0, sizeof(struct NEW_STAND_DATA) * Unique);

//Fill up the Uniquelist and ToPremo structures and make sure same # of records processed
Unique2 = FillUniqueInsectStructures (UniquelList, ToPremo,HitList,HitCount};
1f(Unique2 !'= Unique)

Bailout {20);

//Update the treelist values in Data.Treelist[]
UpdateDataTreelist (HitList, HitCount}; //REMEMBER -
HitList will be sorted by CELLID after this

//Extract the current period treelist from the appropriate prescriptions or copy from the \modified\ directory
ExtractTreelist (ToPremo,Unique, ActualFer, FTTP};

//Now apply the severity to those treelist just extracted - AND calculate new stand data for each treelist
ApplyInsectSeverityCalculateStandData(UniqueList, Unique, StandData, Weather);

//Now that StandData is filled up, send off with HitList (which must be sorted by CELLID) to modify the data in the
Data*[] arrays
UpdateDataWithNewStandData{HitList, HitCount, StandData, Unique, ArrayPer);

//Delete all the treelist files in the ToModify directory since they have been modified and now sit in \Modified\
directory
DeleteToMedify();

//delete free store stuff
delete [] HitList;

delete [] Uniquelist;
delete [] StandData;
delete [] ToPremo;

return TRUE;
}//end ApplyInsectDisturbance

P R R R R LR R e T T T T
ok kR kR kK kR K

void ApplyInsectSeverityCalculateStandData(struct UNIQUE_INSECT UL[], int Count, struct NEW_STAND_DATA StandDatal],
int Weather)

J] R R R R K K K KKK KK K K K K K R R K Rk kK ok R R Kk kR Rk ok ok kKK KK Rk R K K K R R K R K R R R R KRR K KRR KRR R Rk kR ok ok ok ok ok ok ok ok ok ok KK K K K K K K K K

kK Rk Kk K R R K

PAG values are:

Pine / Oak

White fir / Dry
White fir / Wet

Water

Barren

(NI . WV, I OV X R

This function will take each of the records in the array of UL[] structures, find the extracted treelist which is
sitting

in the ..\prescriptions\ToModify* directory (with the label T_'NewTreelist".txt). Fach treelist will be read in,
stored

in some fashion, and then specific mortality functions will come into play as a function of the PAG and which
insect

group or groups (DougFir, TrueFir,Pine) caused the treelist to get created as a unigue combination in the first
place.

*/

FILE *IN;
char Temp[256];

int a, b, ReadStatus, NoRecords, MNewSnagCount;

ulong Treelist;

ushort Pag;

ushort Plot, Status, Model, Report, Condition;

float Tpa, Dbh, Height, Ratio;

struct NEW_STAND DATA *ptr_sd;

J et e L End of variable defining ---—--—=—=m-mem e
printf({"\n*** Starting to apply specific mortality equations to the %d unique stands hit by insects ***\n",K Count};

//Start a loop to do this for every record in the array of UL structures
for{a=0;a<Count;a++}

238

//Set a pointer to the current StandCatal] space
ptr_sd = &StandDatalal;

//Grab the data that will identify the file needed in the ..\ToModify* directory
Treelist = UL[a].NewTreelist;

//Create a string to hold the filename - Always in the ToModDir
sprintf (Temp, "%s%s\\T_%lu.txt", PREFIX,P_ToModDir, Treelist);

//0pen the file for reading

= fopen(Temp, "r");

NULL)

fprintf(stderr, "Opening of %s failed (ApplyInsectSeverity): %s\n", Temp, strerror(errno)):

//Go through the file and count how many lines(records) there actually are
NoRecords=0;
while(ReadStatus = fscanf(IN, "3hu %$hu %f %hu %hu %f %f %f", &Plot,&Status,

&Tpa, &Model, &Report, &Dbh, &Height, &Ratio] != EQF}
(
NoRecords++;
if (Status !'= LIVE) //Not a live tree so it will also have a code for the Condition

fscanf (IN, "%hu", &Condition};
}//end while(ReadStatus ...}

//Rewind back to the beginning of the file
rewind(IN);

//printf("There were %d lines in T_%lu.txt\n",6 NoRecords, Treelist);

//Allocate free store memory for NoRecords amount of TREELIST_RECORD structures
struct TREELIST_RECORD (*Records) = new struct TREELIST_RECORD[NoRecords];
if(Records NULL)

printf("Problems allocating memory for Records[] with %d recordsin",6 NoRecords};

//Initialize
memset { Records, 0, sizeof{struct TREELIST RECORD) * NoRecords);

//Also allocate memcry for 100 records to hold data for NewSnags created
struct TREELIST_RECORD({*NewSnags) = new struct TREELIST RECORD[100];
if{NewSnags == NULL)
printf("Problems allocating memory for NewSnags[] with 100 records\n');

//Go through the current file again and fill up the array of Records
for (b=0;b<NoRecords;b++)
{
fscanf (IN, “%hu $hu %f %hu %hu %f %f %f", &Records[b].Plot, &Records[b].Status, &Records|b].Tpa,

&Records [b] .Model

&Records[b) _Report, &Records[b].Dbh,

&Records [b] .Height, &Records[bl.Ratio);

mortality

if (Records[b].Status != 1)
fscanf (IN, "%hu", &Records([b].Condition];

}//end for(b=0 ...)

//Close the treelist file
fclose (IN);

//Send the current Records off to get individual basal area calculated - needed here to track specific
for analysis

CalculateIndividualBasalCanopyWidth (Records, NoRecords):

//Regardless if needing DougFir, TrueFir, and/or Pine effects, get the current PAG associated with this

record
Pag = UL(a] .Pag;
//Reset the NewSnagCount
NewSnagCount = 0;
//Cne at a time - check to see if this file will be hit by DougFir, TrueFir, or Pine bestles -~ or any
combination
/7 ++ +++++
/1 Doug fir mortality
// ++ + ++
if(UL[a] .DougFir == TRUE}
(
//An error checker to make sure initial breakdown of Unique comkbinaticns was correct
if{ Pag == PAG_REDFIR || Pag == PAG_WFWET || Pag == PAG_JEFFPINE)
Bailout (92);
NewsSnagCount = DcugFirMortality(Records, NoRecords, NewSnags, NewSnagCcunt, Pag, Weather,
ptr_sd);

}

F R e B S a Y
/7 True fir mortality

/7 o+ P R +H+
if(UL{a].TrueFir == TRUE)

(

//An error checker to make sure initial breakdown of Unicue combinations was correct
if(Pag == PAG_JEFFPINE)

239

Bailout(92);

NewSnagCount = TrueFirMortality(Records, NoRecords, NewSnags, NewSnagCount, Pag, Weather,

ptr_sd);

}

// +++ ++44 + +Hb bttt

// Pine mortality

/7 +++h et B O R R L e o b

if(UL[a).Pine == TRUE)

{

//An error checker to make sure initial breakdown of Unique combinations was correct
if(Pag > PAG_BARREN)
Bailout (93);

NewSnagCount = PineMortality{Records, NoRecords, NewSnags, NewSnagCount, Pag, Weather, ptr_sd);

//Print out the records in Records|[] and NewSnags|[]
PrintNewTreelist {Records, NoRecords, NewSnags,NewSnagCount, Treelist);

//Store the treelist value in StandData
StandDatafa) .Treelist = Treelist;

//Calculate new landscape metrics (fuel, closure, height, blc, cbd)
StandDataController (StandData, a, Records, NoRecords);

//delete stuff on free store
delete [] Records;
delete [] NewSnags;

}//end for(a=0 ...)

}//end ApplyInsectSeverity

AR e R L

int PineMortality(struct TREELIST_RECORD Records[], int Count, struct TREELIST RECORD NewSnags[],
int SnagCount, ushort Pag, int Weather,
struct NEW_STAND_DATA *ptr_sd)

A T L AL LT L

{

/%
This function will apply the specific mortality effects to those treelist that are being hit
by pine insects (western pine beetle, mtn pine beetle, pine engraver). It is assumed that the Basal Area threshold

was exceeded for this treelist, based on its Pag back in the FillHitList() function.
The NewSnags[] structures will hold data for those new snags created as a result of the mortality applied.

Weather values are:
1 = Wet, 2 = Moderate, 3 = Mild Drought, 4 = Severe Drought

PAG values are:

Douglas fir / Dry
Douglas fir / Wet

Jeffrey pine

Red fir

Pine / Qak

White £ir / Dry

White fir / Wet

Water

Barren

V-2 I A IT, NI N]

*/

int a;

float Mort:

flecat MortTpa, RemainTpa, StandMortBasal=0, StandMortBigTrees=0;
struct TREELIST_RECCRD *ptr_record, *ptr_snag;

-- End of variable definition ---

if {SnagCount > 99)
{

printf{*\a\a\a\a\aNeed to allocate more space for NewSnags\n'):

SnagCount = 90; //just reset and reuse
the last 10 records for now

}

//Set the mortality weight based on the inccming Weather

if (Weather 3} //MildDrought
Mort = (flcat).1l; // 10%

else //Assuming only a 4 (SevereDrought) can come in
Mort = (float).3;

//Go through all the records in Records[] and find those that should have mortality applied
for(a=0;a<Count;a++)
{

//Must be a live tree that is modeled as

if (Records[a].Status == LIVE && {(Records[a].Model == KPINE || Records[a].Model == PPINE |
Records[a] .Model == SPINE))

{

//Set a pointer here to make it easier to copy over data into NewSnags(]

240

ptr_record = &Records[al;
ptr_snag = &NewSnags[SnagCount];

//Calculate the MortTpa and the RemainTpa;
MortTpa = Mort * Records[a].Tpa;
RemainTpa = Records[al.Tpa - MortTpa;

//Calculate the BasalArea mortality
StandMortBasal += (MortTpa * Records[a].Basal);

//Track those trees >= 30" DBH and the total number killed
if (Records[a] .Dbh »= BIG_TREE_SIZE
StandMortBigTrees += MortTpa * (float)ACREEQ;
//convert to an actual number

//Put the RemainTpa back into the current record
Records[a) .Tpa = RemainTpa;

//copy over the current record from Records to the appropriate NewSnag record
memcpy (ptr_snag, ptr record, sizeof {struct TREELIST_RECORD) };

//However, some values in NewSnags[].*are wrong - fill with correct wvalues

NewSnags [SnagCount] . Status = SNAG;
NewSnags[SnagCount] . Tpa = MortTpa;
NewSnags[SnagCount] .Condition = 1; //Condition code for a new snag

//Increment SnagCount to track the total number of snags create
SnagCount++;
if {SnagCount > 99)
{
printf{"\a\a\alaiaNeed to allocate more space for NewSnags\n'};
SnagCount = 90;
//just reset and reuse the last 10 records for now

}

}//end if(Recordsfal].Status ...}
}//end for(a=0 ... }

//Cumulative track the Stand Basal Area Mortality & the Big Trees Killed
ptr_sd->BasalAreaKilled += StandMortBasal;
pPtr_sd->BigTreesKilled += StandMortBigTrees;

return SnagCount;
}//end PineMortality

R R R L]

int TrueFirMortality{struct TREELIST_RECORD Records[], int Count, struct TREELIST_RECORD NewSnags([],
int SnagCount, ushort Pag, int Weather,
struct NEW_STAND_DATA *ptr_sd)

R R R L T A L S e

(

/%

This function will apply the specific mortality effects to those treelist that are being hit
by True fir insects {fir engraver). It is assumed that the Basal Area threshold

was exceeded for this treelist, based on its Pag back in the FillHitList() function,
The NewSnags[] structures will hold data for those new snays created as a result of the mortality applied.

Weather values are:
1 = Wet, 2 = Moderate, 3 = Mild Drought, 4 = Severe Drought

PAG values are:
Douglas fir / Dry
Douglas fir / Wet
Jeffrey pine
Red fir
Pine / Oak
White fir / Dry
White fir / Wet
Water
Barren

VoG W N

*/

int a;

float Mort;

float MortTpa, RemainTpa, StandMortBasal=0, StandMortBigTrees=0;

struct TREELIST RECORD *ptr_record, *ptr_snag;

J /= m e e e BEnd of variable defining ------------------mm-mm o

//Set the Mort weight based on incoming Pag and the weather

if (Pag == PAG_REDFIR || Pag == PAG_WFDRY || Pag == PAG_WFWET)
{
if (Weather == 3} //MildDrought
Mort = (float).l; //10%
else

//Severe Drought
Mort = (float).2;
}
else if(Pag == PAG_DFDRY “ Pag == PAG_DFWET)
{

}

else if(Pa

(

else

if (Weather == 3}

else
//Severe Drought

241

//MildDrought
Mort = {float).2: /720%

Mort = (float).4;

== PAG_PINEOAK)
if (Weather == 3}

else
//8evere Drought

//Mildbrought
Mort = (float).4; //40%

Mort = (float].é&:

Bailout (93);

//So go through all the records in Records[] and find those that will have mortality applied
for{a=0;a<Count;a++)

{

new snag

new snag

if{Pag == PAG_REDFIR)

(
//Must be

a live tree that is modeled as White fir or Red fir

if(Records[al .Status == LIVE && (Recordsla].Model == WFIR || Records|a].Model == RFIR) }

{

//convert

//Set a pointer here to make it easier to copy over data into NewSnags|]
ptr_record = &Records[al;
ptr_snag = &NewSnags [SnagCount] ;

//Calculate the MortTpa and the RemainTpa;
MortTpa = Mort * Records[a].Tpa;
RemainTpa = Recordslal.Tpa - MortTpa;

//Calculate the BasalArea mortality
StandMortBasal += (MortTpa * Records|a].Basall:

//Track those trees >= 30" DBH and the total number killed
if {Records!a].Dpbh >= BIG_TREE_SIZE)

StandMortBigTrees += MortTpa * (flcat)ACREEQ;
to an actual number

//Put the RemainTpa back into the current record
Records[al .Tpa = RemainTpa;

//copy over the current record from Records to the appropriate NewsSnag record
memcpy {ptr_snag, ptr_record, sizeof{struct TREELIST RECORD} };

//However, some values in NewSnags[l.*are wrong - fill with correct values
NewSnags[SnagCount] .Status = SNAG;

NewSnags [SnagCount) . Tpa = MortTpa;

NewSnags [SnagCount] .Condition = 1; //Condition code for

//Increment SnagCount to track the total number of snags create
SnagCount++;
if{SnagCount > 99)
{
printf{"\alalala\aNeed toc allocate more space for NewSnags\n");
SnagCount = 20;

//just reset and reuse the last 10 records for now

)

}//end if(Records[a].Status ...)
}//end if(Pag == REDFIR

else
{
//Must be

a live tree that is modeled as White fir

if {Records[a}.Status == LIVE &t Records[a).Model == WFIR

(

//eonvert

//Set a pointer here tc make it easier to copy over data into NewSnags[]
ptr_record = &Recordsla];
ptr_snag = &NewSnags([SnagCount];

//Calculate the MortTpa and the RemainTpa;
MortTpa = Mort * Records[a].Tpa;
RemainTpa = Records[al.Tpa - MortTpa;

//Calculate the BasalArea mortality
StandMortBasal += (MortTpa * Records([a].Basal);

//Track those trees >= 30" DBH and the total number killed
if (Records(a) .Cbh »= BIG_TREE_SIZE)

StandMortBigTrees += MortTpa * (float)ACREEQ;
to an actual number

//Put the RemainTpa back into the current record
Records[a].Tpa = RemainTpa;

//copy over the current record from Records to the appropriate NewSnag record
memcpy (ptr_snag, ptr_record, sizeof(struct TREELIST_RECORD});

//However, some values in NewSnags[].*are wrong - fill with correct values
NewSnags [SnagCount] . Status = SNAG;

NewSnags [SnagCount] . Tpa = MortTpa;

NewSnags[SnagCount}.Condition = 1; //Condition code for

242

//Increment SnagCount to track the total number of snags create
SnagCount++;
if (SnagCount > 99}
{
printf{*jatata‘a‘\aNeed to allocate more space for NewSnags\n"};
SnagClount = 20;
//just reset and reuse the last 10 records for now
)
}//end if(Records(a].Status ...}
}//end if else (Pag REDFIR

}//end for{a=0 ...

//Cumulative track the Stand Basal Area Mortality & the Big Trees Killed
ptr_sd->BasalAreaKilled += StandMortBasal;
ptr_sd->BigTreesKilled += StandMortBigTrees;

return SnagCount;
}//end TrueFirMortality
R T e el T T S L L
int DougFirMortality(struct TREELIST RECORD Records[], int Count, struct TREELIST_RECORD NewSnags[],
int 3nagCount, ushort Pag, int Weather, struct
NEW_STAND DATA *ptr_sd)

i T T R e T

{

I

This function will apply the gpecific mortality effects to those treelist that are being hit

by Douglas-fir insects (DF beetle, flatheaded borer). It is assumed that the Basal Area threshold

was exceeded for this treelist, based on its Pag back in the FilllInsectHitList{) function.
The NewSnags[] structures will hold data for those new snags created as a result of the mortality applied.
Weather values are:

1 = Wet, 2 = Moderate, 3 = Mild Drought, 4 = Severe Drought

PAG values are:

Douglas fir / Dry
Douglas fir / Wet
Jeffrey pine

Pine / Oak

White fir / Dry
White fir / Wet

Water

Barren

WG R

NEW: Keep track of the # of BigTrees > 30" that are killed and also track the amount of Basal Area killed in this
stand

*/

int a, b=0;

float Mort;

float MortTpa, RemainTpa, StandMortBasal=0, StandMortBigTrees=
struct TREELIST_RECORD *ptr_record, *ptr_snag;

J S m e e End of variable defining --------=---=mmmmemmmmae e

//Set the mortality weight based on the incoming Weather

if (Weather == 3} //MildDrought
Mort = (float).1; // 10%

else //Assuming only a 4 (3evereDrought) can come in
Mort = {float).2;

//Go through all the records in Records(] and find those that should have mortality applied
for (a=0;a<Count; a++)
(
//Must be a live tree that is modeled as Douglas-fir & have a diam > 10"
if (Records[a].Status == LIVE && Records[a] .Mcdel == DOUGFIR && Recordsla].Dbh » 10}
{
//Set a pointer here to make it easier to copy over data into NewSnags[]
ptr_record = &Recordsla]l;
ptr_snag = &NewSnags [SnagCount] ;

//Calculate the MortTpa and the RemainTpa;
MortTpa = Mort * Records(a].Tpa;
RemainTpa = Recordsial.Tpa - MortTpa;

//Calculate the BasalArea mortality
StandMortBasal += {MortTpa * Records{a].Basal};

//Track those trees >= 30" DBH and the total number killed
if (Records[a].Dbh >= BIG_TREE_SIZE
StandMortBigTrees += MortTpa * {float)ACREEQ;
//convert to an actual number

//Put the RemainTpa back into the current record
Records([a)].Tpa = RemainTpa;

//copy over the current record from Records to the appropriate NewSnag record
memcpy (ptr_snag, ptr_record, sizeof(struct TREELIST_RECORD));

//However, some values in NewSnags[].*are wrong - fill with correct values

NewSnags [SnagCount] .Status = SNAG;
NewSnags [SnagCount) . Tpa = MortTpa;
NewSnags[SnagCount] .Condition = 1; //Condition code for a new snag

//Increment SnagCount to track the total number of snags create
SnagCount++;
if (SnagCount > 29)
(
printf("\avalal\ataNeed to allocate more space for NewSnags'n");
SnagCount = 90;
//9ust reset and reuse the last 10 records for now

}//end if(Records[a].Status ...)
}//end for{a=0 ...)

//Cumulative track the Stand Basal Area Mortality & the Big Trees Killed
ptr_sd->BasalAreaKilled += StandMortBasal;
ptr_sd->BigTreesKilled += StandMortBigTrees;

return Snaglount;
}//end DougFirMortality

J R e L e e T
int CountInsectHit (int Per)

J R Ll L L L L R L T AL S ST LT PP

{

//Given the current period, this function will count up how many cells will be hit according
//to guidelines provided by Jim Agee for Insect disturbances.

int a, Count;

//Go through and count how many stands are going to be hit with insects this period
Count=0;
for{a=0; a<UNIQUE; a++)

243

(
if(Data.Cellid[a] == FALSE) //no more cells to check
break;
if (Data.Treelist[a] == NONFOREST) //Not going to do anything with these because

they have no treelist anyways!
continue;

//make Count by PAG and the lowest basal thresho’d for any of the 3 insect groups

if (Data.Pag[a] == PAG_DFDRY || Data.Pagla] == PAG_DFWET || Data.Pagla] == PAG_PINEOAK)
Count++;

else if(Data.Pagf{a] == PAG_JEFFPINE)

{

if(Data.Basal[a] [Per]/BASAL_EYP > 80)
// lowest threshold exceeded

Count++;
}
else if(Data.Pagia)l == PAG_REDFIR)
(
if(Data.Basal[a] [Per]/BaASAL_EXP > 180)
Count++;
}
else if(Data.Pag[a] == PAG_WFDRY)
(
if(Data.Basal[a] {Per]/BASAL_EXP > 120)
Count++;
}
else if(Data.Pagla]l == PAG_WFWET)
(
if(Data.Basal{a] [Per]/BASAL_EXP > 180}
Count++;
}

}//end for (a=0;a<UNIQUE; a++)
return Count;
}//end CountInsectHit

A e R e

int FillInsectHitList{struct HIT_BY_DISTURE HitList[], int Per)
R D R LT L L e L R R
(

//Once HitList has been created in ApplyInsectDisturbance, this function will £ill it up

int a, IncrementRecord, Record;

//Now go through the entire landscape again, and this time for any cell that is being attacked
//make a “flag" of 1 in the HitList[].DougFir, HitList(].TrueFir, and/or HitList[].Pine member
//keep track of Treelist, Goal, Hold, Pag, and Cellid
Record=0;
for (a=0; a<UNIQUE; a++)
(

if {Data.Cellid[a] == FALSE) //no more cells to check

break;

by insects,
....also

if(Data.Treelist [a] == NONFOREST)
they have no treelist anyways!
continue;
if (Data.Pagla] == PAG_DFDRY)

(
//DFDRY gets hit no matter what
HitList[Record] .Treelist
HitList [Record].Goal
HitList[Record].Hold
HitList[Record].Pag
HitList [Record] .Cellid

(no threshold here for fir engravers - nasty!),
Data.Treelistlal;

244

//Not going to do anything with these because

so count it
= Data.Goallal;
Data.Hold[a];
Data.Pagla]l;
Data.Cellidlal;

//now flag for which of the 3 insect groups will get it

HitList[Record].TrueFir
//fir engravers

if(Data.Basal[a] [Per]/BASAL_EXP > 120
(

)

HitList[Record] .DougFir
//DougFir beetles

HitList [Record] .Pine
//pine beetles and engravers

}
Record++;

}//end DFDRY

else 1f{ Data.Pagla]
{

== PAG_DFWET}

//DFWET gets hit no matter what

HitList[Record] .Treelist =
HitList [Record] .Goal

HitList [Record] .Hold

HitList [Record] .Pag

HitList [Record] .Cellid

{no threshold here for fir engravers
Data.Treelist{a];

TRUE:

TRUE;

TRUE;

- nasty!), so count it
Data
Data
Data
Data

.Goalla];
.Hold[a];
.Paglal;
.Cellidla};

//now flag for which of the 3 insect groups will get it

HitList [Record].TrueFir
//fir engravers

if (Data.Basal[a] [Per] /RASAL_EXP > 250
HitList [Record] .DougFir
//DougFir beetles

)

if (Data.Basal[a] [Per] /BASAL_EXP > 180
HitList [Record].Pine
//pine beetles and engravers

)

Record++;
}//end DFWET

else if(Data.Pag[a]
{

== PAG_PINECAK)

//PINECAK gets hit no matter what
HitList[Record].Treelist
HitList[Record].Goal
HitList[Record] .Hold
HitList[Record].Pag
HitList[Record].Cellid

(no threshold here for
Data.Treelistfa]l;

TRUE;

TRUE;

TRUE;

fir engravers - nasty!). so count it
= Data.Goallal;

Data.Hold[a];

Data.Paglal;

Data.Cellid[a];

//now flag for which of the 3 insect groups will get it

HitList[Record] .TrueFir
//fir engravers

if (Data.Basal[a] [Per] /BASAL_EXP > 80
{

)

HitList [Record] .DougFir
//DougFir beetles

HitList [Record] . Pine
//pine beetles and engravers

}
Record++;

}//end DFDRY

else if(Data,Pag[a]
{

PAG_JEFFPINE)

IncrementRecord FALSE:
//only get mortality due to pine beetles

if{ Data.Basal[a] [Per] /BASAL_EXP > 80 }

{
HitList [Record].Treelist
HitList [Record] .Goal
HitList [Record] .Hold
HitList [Record] .Pag
HitList [Record].Cellid
HitList [Record] .Pine

//pine beetles and engravers
IncrementRecord

}

TRUE;

TRUE;

TRUE;

and engraves

Data.Treelist|a];
Data.Goall[a]:
Data.Hold[a];
Data.Pagl[a]l;
Data.Cellid[a];
TRUE;

TRUE;

if (IncrementRecord == TRUE)

}//end JEFFPINE

else if(Data.Paglal]

{

Record++;

== PAG_REDFIR)

IncrementRecord = FALSE;

i1f({ Data.Basalla] [Fer]/BASAL_EXP > 180)

(

HitList[Record]
HitList[Record]
HitList [Record]
HitList [Record]
HitList[Record]
HitList[Record]

.Treelist
.Geoal
.Hold
.Pag
.Cellid
.Pine

//pine beetles and engravers

}

if(Data.Basall[a] [Per]/BASAL_EXP > 250

IncrementRecord

HitList[Record]

//fir engravers

.TrueFir

if {IncrementRecord == TRUE)

}//end REDFIR

else if(Data.Paglal

Record++;

== PAG_WFDRY)

IncrementRecord = FALSE;

if{ Data.Basal[a][Per]/BASAL_EXP > 120

{

HitList{Record
HitList[Record
HitList[Record
HitList{Record
HitList[Record

]
]
]
]
]
HitList[Record]

//fir engravers

HitList[Record]

.Treelist
.Goal
-Hold

. Pag
.Cellid
.TrueFir

.Pine

//pine beetles and engravers

)

if{ Data.Basal{a] [Per]/BASAL_EXP > 250

IncrementRecord

HitList [Record] .DougFir
//DougFir beetles
if (IncrementRecord == TRUE)
Record++;
}//end WFDRY
else if(Data.Pagla] == PAG_WFWET)

{

IncrementRecord = FALSE;

if{ Data.Basal{a] [Per]/BASAL_EXP >

{

HitList [Record]
HitList[Record]
HitList [Record]
HitList[Record]
HitList [Recoxrd]

HitList [Record].

.Treelist
.Goal
.Hold
.Pag
.Cellid
Pine

//pine beetles and engravers

)

IncrementRecord

if{ Data.Basal[a] [Per]/BASAL_EXP >

HitList[Record]

//fir engravers

.TrueFir

if {IncrementRecord == TRUE)

}//end WFDRY

}//end for(a=0;a<UNIQUE;a++)

return Record;

}//end FillHitList

Record++;

= Data.Treelist[a]

)

)

Data.Goallal;
Data.Hcld[a];
Data.Pagla);

Data.Cellid[a];

= TRUE;

u

= TRUE;

TRUE;

= Data.Treelist[a];

)

\
h

Data.Goallal;

= Data.Hold[a];

Data.Paglal;
Data.Cellidl[al;
TRUE;

TRUE;

= TRUE;

TRUE;

= Data.Treelistl[a];

)

int Count)

Data.Goall[al;
Data.Hold[a];
Data.Paglal;

= Data.Cellidlal;

TRUZ;

= TRUE;

TRUE;

J R Rk R R R A R AN K KKK KK A AR A AR AR AR A AR ANk Ak k kA AR KA A AR K KA AR AN A AR AN AR RAN AR RN R AR RN

int CountUnigueInsectHits(struct HIT_BY_DISTURB HitList[],

245

246

[KRR R Rk kR Rk Rk Rk kR Rk kR ok kR R Rk R kR Rk Rk kR kR kR R R kR R Rk R kR R kR KRRk Rk Rk Rk
(

//Go through HitList[] and find how many actual Unigue combinations of Treelist-Goal-Hold-Pag-DougFir-TrueFir-Pine
there are

int a,b,Unicque;
ulong EvalTreelist;
ushort EvalGoal, EvalHold, EvalPag, EvalDougFir, EvalTrueFir, EvalPine;

IZALL - end of variable defining ~------m-oommm -
Unigue = 0;
b = 0;
for {a=0;a<Count;} //a will get increment by other
loop
(

if(b == Count} //because of weird
incremental method, b will reach end first but a doesn't know that

break;
Unicque++; //first one always counts

as do others because a gets reset in other loop

//Set the initial Eval* variables

EvalTreelist = HitList[a].Treelist;

EvalGoal = HitList[a] .Goal;

EvalHold = HitList[a] .Hold;

EvalPag = HitList[a].Pagqg;
EvalDougFir = HitList[a].DougFir;
EvalTrueFir = HitList[a].TrueFir;
EvalPine = HitList[a] .Pine;

//since HitList is already sorted, start at next record and look downward until no longer a match
for {b=a+1;b<Count;)

(
if(HitList(b] .Treelist == EvalTreelist &&
HitList[b] .Goal == EvalGoal &&
HitList([b].Hold == EvalHold &&
HitList[b].Pag == EvalPag &&
HitList[b] .DougFir == EvalDougFir &&
HitList[b].TrueFir == EvalTrueFir &&
HitList[b].Pine == EvalPine
!
b+
//look at next record
else
(
//Set the "a" variable to where "b’ is because this is the next unique match
a = b;
break;

}//end for({b=a+l;b<Count;b++)
}//end for(a=0;a<Count;a++)

return Unique;

}//end CountUniqueInsectHits

P AR R e R
O ek ok ok ke ko ko ok ok ko kR ok ok ok kb

int FillUnigqueInsectStructures(struct UNIQUE_INSECT UniqueList[], struct TREELIST_FOR_PREMO ToPremol[],

struct HIT_BY_DISTURB HitList[], int Ccunt)

A R R R T E R R R LR R R R R R T N S R

ke ko ko Rk ke ko ko ok ko ko ko ke

(

//Go through HitList[] again and find those actual Unique combinations of Treelist-Goal-Hold-Pag-DougFir-TrueFir-
Pine counted earlier

//and this time £ill up the Uniguelist and ToPremo structures. as well as put the NewTreelist wvalue in HitList[]
int a, b, Unigue;

ulong EvalTreelist;

ushort EvalGoal, EvalHold, EvalPag, EvalDougFir, EvalTrueFir, EvalPine;

R e e T End of variable defining --——————— -
Unique = 0;
b =0; //This must be
reset because above it left loop with value of Count
for {a=0;a<Count;} //a will get increment by other
loop
(

if{b == Count) //because of weird
incremental methed, b will reach end first but a doesn't know that

break;
Unicque++; //first one always counts

as do others because a gets reset in other loop

//Set the initial Eval* variables

EvalTreelist = HitList(a].Treelist;

EvalGoal = HitList[a].Goal;

EvalHold = HitList!la].Hold;

EvalPag = HitList[a].Pag;
EvalDougFir = HitList[a].DougFir;

EvalTrueFir = HitList[a].TrueFir;

247

EvalPine = HitList[a].Pine;

//Insert those values in the array of UniqueList structures
UniqueList[Unigue-1].Treelist = EvalTreelist;

UniqueList[Unigue-1].Goal = EvalGoal;
UnigueList[Unique-1].Hold = EvalHold;
UniqueList[Unigue-1].Pag = EvalPag;
UniqueList[Unigue=-1] .DougFir = EvalbDougFir;
UniqueList[Unique-1].TrueFir = EvalTrueFir;
UniqueList[Unigue-1].Pine = EvalPine;

//And put the needed values in the array of ToPremo struZtures
ToPremo [Unique-1].01dTreelist = EvalTreelist;

ToPremo [Unique-1] .Goal = EvalGoal;
ToPremo [Unique-1] .Hold = EvalHold;

//Put the NATLN in for this first unigue combination - this global variable is set in Main.cpp and alsc
used by FireEffects.cpp

HitList[a].NewTreelist = NATL;
UniqueList[Unigue-1] .NewTreelist = NATLN;
ToPremo {Unigue-1] .NewTreelist = NATLN;

//since HitList is already sorted, start at next record and look dovmward until no longer a match
for (b=a+l;b<Count;)

{

if(HitList[b].Treelist == EvalTreelist &&
HitList[b].Geoal EvalGoal &&
HitList[b] .Hold EvalHold &&
HitList[b}.Pag == EvalPag &&
HitList[b].DougFir == EvalDougFir &&
HitList[b}.TrueFir == EvalTrueFir &&
HitList[b].Pine == EvalPine
)

{
HitList[b].NewTreelist = NATLN;

//Alsc put the current NATLN in this structure
b++;
//Then look at next record

}

else

{
//Set the "a" variable to where "b* is because this i1s the next unigue match
a = b;
NATLN++;
break;

)
}//end for(b=a+l;b<Count;b++}
}//end for(a=0;a<Count;a++)

//Always increment NATLN cne more
NATLN++;

return Unigue;

}//end FillUnigueInsectStructures

JIRRAA KR RA AR AR AR AN KA AR RAAA KA KRR R AAAAA AR AAAA KRR RA AR AR KRR RA R AA KA AR KA KKK RAAAA R R RAR A AR A
int CompareHitListForBugs(const void *ptrl, const void *ptrl)

J R AR AR A AR A A IR AR A KRR AR AR AR AR KKk h ke ke khh kAR R Ak kA KKK A A bbbk hh kR K hh ko hhhh bk FAKRARAKA KK A KA A&

{

//Just to typecast them since we aren’'t actually passing in pointers
struct HIT_BY DISTURB *eleml;
struct HIT_BY DISTURB *elem2;

eleml = (struct HIT_BY DISTURB *)ptrl;
elem2 = {struct HIT BY DISTURB *)ptr2;

if{ eleml->Treelist < elem2->Treelist)
//First sort by Treelist
return -1;
if(eleml->Treelist > elem2->Treelist
return 1;
else
//Then by Goal

if(eleml->Goal < elem2->Goal)

return -1;
if{ eleml->Goal > elem2->Goal)
return 1;
else
//Then by Hold

if({ eleml->Hold < elem2->Hold }

return -1;
if{ eleml->Hold > elem2->Hcld)
return 1;
else
//Then by Pag

248

1f{ eleml-»Pag < elem2->Pag

return -1;
if(eleml->Pag > elemZ->Pag)

return 1;
else
//Then by DougFir
{
if{ eleml->DougFir < elem2->DougFir)
return -1;
if(eleml->DougFir » elem2->DougFir)
return 1;
else
//Then by TrueFir
{
if{ eleml->TrueFir < elemZ->TrueFir)}
return -1;
if(eleml->TrueFir > elem2->TrueFir }
return 1;
else
//Then by Pine
{
if{ eleml->Pine < elemZ->Pine)
return -1;
if{ eleml-»>Pine > elem2->Pine)
return 1;
else
return Q;
//FINISHED! !

1//end Pine
}//end TrueFir
}//end DougFir
)/ /end Pag
}//end Hold
}//end Goal

}//end CompareHitListForBugs

//kkkk*******t***********************w**kk*****wwww***wwwwww**********************w**w*w**

void MapPotentialBugs(int Per)
//*kk**kkk*w***tt**tt****t**

{

//Given the current period, this function will count up how many cells will be hit according

//to guidelines provided by Jim Agee for Insect disturbances.

J*

Using the same rules at in CountInsectHit, make a temp array (size of the landscape) that has the
value 1 for those cells that will be hit by an insect during a drought weather pericd. This is
not saying anything about the severity of the effects, just whether or not it will be "hit" that period
*/

FILE *BinOut, *HeaderOut;
char Temp[256];

int ArrayPer;
int a, Count;
int Hit = 1;

int *ptr_srp; //Starting Row Position
ushort *ptr_column;

int r,c,HowMany;

int ColumnsLeft, ctr;

ushort StartColumn,OutColumn;

ushort *ptr_bugs;

float *ptr_bugsout;

//Set the ArrayPer variable
ArrayPer = Per-1;

//Use this to store all the NODATA and actual values - so I c¢an spit out a binary file at end of function - ready
for ArcInfo input
float {*BugsOut) [COLUMNS] = new float [ROWS] [COLUMNS];
if (BugsOut == NULL)
printf ("There was NOT enough memory for BugsOut with %lu elements\n“, ROWS*COLUMNS) ;
//Use this store just the actual values to match with the Data.*{) arrays
ushort (*BugsHit) = new ushort[UNIQUE] ;
if{BugsHit == NULL)
printf(“There was NOT enocugh memory for BugsHit with %lu elements\n",UNIQUE);

//Initialize the arrays above
memset { BugsOut, 0, sizeof (BugsCut[0]]0}} * ROWS * COLUMNS);
memset { BugsHit, 0, sizeof (BugsHit[0]) * UNIQUE);

//Go through and count how many stands are going to be hit with insects this period -- track in the BugsHit([] array
Count=0;
for (a=0;a<UNIQUE; a++)
{
if (Data.Cellid[a] == FALSE | //no more cells to check
break;

if (Data.Treelist[a] == NONFOREST) //Not geing to de anything with these
they have no treelist anyways!
continue;

//make Count by PAG and the lowest basal threshold for any of the 3 insect groups

if (Data.Pagla] == PAG_DFDRY || Data.Pagla] == PAG_DFWET || Data.Pagla] == PAG_PINEOAK)
BugsHitla] = Hit;
else if(Data.Pagla]l == PAG_JEFFPINE)

{
if(Data.Basalla] [ArrayPer]/BASAL EXP > 80)
// lowest threshold exceeded
BugsHit[a] = Hit;
}
else if (Data.Pagla] == PAG_REDFIR)
{
if (Data.Basal[a] [ArrayPer]/BASAL_EXP > 180)
BugsHit{a} = Hit;
}
else if(Data.Pagla] == PAG_WFDRY)
{
if (Data.Basal[a] [ArrayPer]/BASAL_EXP > 120)
BugsHit[a] = Hit;
}
else if (Data.Pagla] == PAG _WFWET)
{
if (Data.Basal[a] [ArrayPer]/BASAL_EXP > 180}
BugsHit [a] = Hit;

}
}//end forla=0; a<UNIQUE; a++)

//==== =z==
// Store the BugsHit data in the BugsoOut[][] array and place a NODATA value in the correct
// spots. This is all to ease the transition into ArcInfo. This way, I can spit cut a

// small binary file with the values and NODATA which AI can just read in.

// =========

//Use the same procedure that is done with the other Output*(} functions

for(r=1; r<=ROWS;r++)

(
ptr_srp = &link[xr-1](1];
HowMany = *(ptr_srp+l);
StartColumn = Data.GridColumn{ {*ptr_srp}-1]; //not a pointer!
ptr_column = &Data.GridColumn((*ptr_srp)-1];
ptr_bugs = &BugsHit ([(*ptr_srp)-1];

//If the whole row is blank, store NODATA and gotc next row
if(*ptr_srp == FALSE) //means a zero was left in this spot during MakeLink
{
for(c=1; c<=COLUMNS; c++}
BugsOut(r-1][c-11 = {float)NODATA;

continue; //goto next row

//store NODATA for those cells before data starts
for{c=1;c<StartColumn; c++)
BugsOut[r-1] [¢c-1] = (float)NODATA;

//set some counters
OutColumn = StartColumn;
ctr = 0;

//store values for area on landscape by checking
//value in Data.GridColumn to match it with CutColumn value
do{
if (*ptr_column == CutColumn)
(
BugsOut [r-1] [QutColumn~1] = (float)*ptr_bugs;
ptr_bugs++;
ptr_column++;
QutColumn++;
ctr++;
else //print out NODATA for the "gaps"
BugsOut[r-1) [OutCclumn-1] = {(float)NODATA;
OutColumn++;
}while(ctr != HowMany };

//Check to see how many columns are left to do
ColumnsLeft = COLUMNS - (OutColumn-1};

if{ColumnsLeft)
continue; //go to next row

//print out NODATA for those cells after the data that are left
for {c=0;c<ColumnsLeft;c++)

249

because

BugsOut [r-1] [{OutColumn-1}+c] =

(float) NODATA;

}//end of for(r=1;r<=ROWS;r++)
//======s==s=ss===s===c==============s==s==z====zs==s=z== === =====
/7 Put a pointer at start of BugsOut and purge that data as a binary file

ptr_bugsout = &BugsOut[0]1{0];

//Create
sprintf (T
BinOut =

sprintf (T
HeaderOut

the output BRinary file and header file

emp, "%s¥s%¥d\\per%d\\PotBug.bin", PREFIX, QUTPUTS, GOAL_TC_USE, Per) ;

fopen(Temp, "wb");

emp, "%s%s%d\\per%d\\PotBug.hdr", PREFIX, QUTPUTS, GOAL_TO_USE, Per);

= fopen(Temp, "w");

//Write out the header data -- exact format for ArcInfo

fprintf (H
fprintf (H
fprintf (H
fprintf (H
fprintf (H
fprintf (H
fprintf (H

//and now
fwrite(pt:

fclose (Bi
fclose (He

//delete
delete []
delete []

eaderOut, "ncols\t\t¥d\n", COLUMNS) ;
eaderOut, "nrows\t\t%d\n", ROWS) ;
eaderOut, "xllcorner\t%.61f\n" ,F_XLL) ;
eaderOut, "yllcorner\t%._.61f\n",F_YLL);
eaderOut, "cellsize\t%d\n",6 CELLSIZE} ;
eaderQut, "NODATA_value\t%d\n", NODATA) ;
eaderOut, "byteorder\ tLSBFIRST'n") ;

write out all the records in BugsQut

r_bugsout, sizeof (float),ROWS*COLUMNS, BinQut) ;

nout) ;
aderout) ;

stuff on free store
BugsHit;
BugsOut;

}//end MapPotentialBugs

INPOCO

NTROLLER ., (PP

A e e e

// This code will hold functions to do things associated with ArcInfo
[RE R R ARk k kA Ak kkk k kA kR Ak kA kA AR R R KRR AR KR KRR KRR A AR R A AR AR AR AR AR

/ /NOTE:
// These

22 feb 00
functions are being superceded by handling

// The aml’s have been rewritten and could still be

// 1f wan

#include
#include
#include
#include
#include
#include
#include

//Functio
void VegC
void Conv:
void Vect.

ted in the future.

<stdio.h>
<stdlib.h>
<string.h>
<time.h>
<math.h>
*glcbals.h"
“data.h"

ns defined here in ArcResults.cpp
odeMapping(int status);
ertVegcodes (veid);

orResults (int p);

the AMLs individually in ArcInfo for now
called up by similar functions to these

) PR AR A A A AR KRR R AR KRR AR KRR R R KA A KRR AR AR Rk Rk Rk Ak kAR R R Kk K Rk kK

void VegC

odeMapping (int status) // Controlling fuction //
// kkkhkhkhkhkhhhhkhkhhkhkkkhhkhkhkhkk kb khh bk bk hhkhkkhkhkhhhhhhhhhrhrrrrrrrrtr

J] R KRR AR AR R Ak Ak kA R KR kAR R R AR R A AR A kAR Ak kA A kA Ak kAR AR AR KRk

{

if (status

}//end of

//if status

I= 0}
ConvertVegcodes(};

VegCodeMapping

TRUE then do this

) KRR KKK AR A A KAk Rk ok k k kR KRR KRR R KRR A AR A A KRR R A ARk Rk ok k ok ok kR ok k ok ok ok ok ok

void ConvertVegcodes(void)

) KRR A KA KA AR ARk Rk k ok k kk kR AR AR AR AR A AR R R R R R R KRR AR R R Ak k k kT kR AR KRk k®

{

//This is to start a process to pipe a file through Arc, which in turn will run the

//Convert_vegcodes.aml.

//Will create two files. 1) a file called ConvertVegcodes.bat and the other called vegcodes.txt

FILE *OpenWrite;

char CodeFile[100];
char BatchFile[100];
char ToWrite[100];
char ArcCommand([100];
char Temp([3];

250

251

int r;

//Make the correct filenames and strings

sprintf{CodeFile, "%s%s\\Vegcodes.txt", PREFIX, MapDir];

sprintf (BatchFile, "%s3%s\\ConvertVegcodes.bat",PREFIX,MapDir):;

sprintf(ToWrite, “type %s%s\\Vegcodes.txt | arc", PREFIX,MapDir);

sprintf(ArcCommand, "&r %s%s\\convert_vegcodes.aml %s %$s", PREFIX,amlDir,MAIN_USER, ENVT);

//Find the four mapping/evaluation periods and tag them on to end of &kr command
for{r=0;r<NE;r++)
(
if (EvaluateThisPeriod[r] == TRUE)
(
sprintf (Temp, " %d",r+l);
strcat (ArcCommand, Temp) ;

//Make and write the batch file
OpenWrite = fopen{BatchFile, "w"); //open in write
mode
fprintf(OpenWrite, "%s\n", ToWrite);
fclose (OpenwWrite) ;

//Prepare and write the Vegcodes.txt file
OpenWrite = fopen(CodeFile, "w"}; //open in write
mode
fprintf (OpenWrite, "%s\n", ArcCommand);
fclose (CpenWrite) ;

//Now run the ConvertVegcodes.bat file
system(BatchFile);
}//end of ConvertVegcodes

T A R R B R R R R

void VectorResults(int p)
R R R R L L LTI T Yy

(
//This is to create the Batch file needed to change the directory and start process to pipe
//a file through Arc, which in turn will run the VectorResults.aml.
//Will create two files. 1) a file called VectorResults.bat and the other called VectorResults.txt
//which have a specific format as seen below.
//Will then execute VectorResults.bat
FILE *OpenWrite;
char WriteQut[100};
char RunBatch[100];
char DirOut[100];
char StartArc[150];
char ArcCommand[100};:
//Make the filenames and command lines
sprintf(WriteOut, "%s%s%d\\per%d\\VectorResults.bat", PREFIX, INPUTS,GOAL_TO_USE,p);
sprintf{Dirdut, "cd %s%s\\', PREFIX,VectorOutDir);
sprintf{StartArc, “type %s%s%d\\per%d,VectorResults.txt | arc*, PREFIX, INPUTS, GOAL_TO_USE,p);
sprintf (ArcCommand, "&r %sS%s\\VectorResults.aml¥,PREFIX, AmlDir);
OpenWrite = fopen(WriteOut, "w*); //open in write
mode
fprint £ (OpenWrite, "%s%s\n", PREFIX,DirOut);:
fprint f(OpenWrite, "%s%s\n", PREFIX, StartArc};
fclose{OpenWrite)
//PBrepare and write the VectorResults.txt file
sprintf (WriteQut, "%$s%s%d\\perkd\\VectorResults.txt", PREFIX, INPUTS,GOAL TO_USE,p);
OpenWrite = fopen{WriteQut, "w"); //open in write
mode

fprint f{OpenWrite, "%s\n", ArcCommand);
fclose (OpenWrite);

//Now create and RunVectorResults to actually start the ArcInfo aml
sprintf(RunBatch, "%s%s%d\\per%d\\VectorResults.bat", PREFIX, INPUTS,GOAL_TO_USE,p):
system{RunBatch) ;

}//end VectorResults

COMMONDISTURBANCE. PP

/*
This sourcefile will hold some functions common to any type of episodic disturbance. Mostly to handle the
treelist and prescription data.

*/

252

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include "glokals.h"
#include "data.h”

void UpdateDataTreelist{struct HIT_BY DISTURB AllHit[}, int AllCount);

void ExtractTreelist(struct TREELIST_FOR_PREMO TP[], int Count, int Per, ulong FTL};

void PrintNewTreelist{struct TREELIST_RETORD Records|[], int Count, struct TREELIST RECCRD NewSnags[], int SnagCount,
ulong Treelist);

void UpdateDataWithNewStandData(struct HIT_BY_DISTURE HitList[], int HitCount, Struct NEW_STAND_DATA SD{], int
Unigue, int Per};

int CompareHitListCellid{const void *ptrl, const void *ptr2);

int CompareStandDataTreelist {const void *ptrl, const void *pPtr2);

/7

== End of function definitions ==

R R

AAERRA AR KR RA AR

void UpdateDataWithNewStandData(struct HIT_BY DISTURB HitList([], int HitCount, struct NEW_STAND_DATA SD[]}, int
Unique, int Per)

SRR AR A AR AR A AR A AR AR R A AR R AR A AR A AR R A AR AR R R AR A AR AN AR AR AR AR A AR AR AR AR A Ak A AR R AR R A AR AR R A AR R A AR AR AR KRR A AN R AR AR A AR A
KARAAAAR AR AAA

{

/%

This function assumes that HitList was sorted by CELLID prior to coming here and that it is also filled up with the
MNew Treelist value. Going one-by-one through HitList, the cellid will be checked, in ascending order, with
Data.Cellid[] values and when a match is found the New Treelist value in HitList will serve as a Key to search

in the SD[] structure for the record that has the new stand data for this treelist(which must be sorted by
“Treelist").

The incoming “Per* variable should already be in array notation

Will also update the ERA’s for the cell if this is called after a fire disturbance - which can be "flagged" by
a value > 0 in HitList[].Interval

NOTE: This is doing NOTHING to the ERA’s for those NONFOREST cells ~ that would have to be handled back when the
raw flame length grid is read intoc and stored in HitList, because nonforest stuff is discarded there!

*/

FILE *OUT;

char Temp[300];

int a,b;

uleng *ptr_cellid, *ptr_treelist;

ushort *ptr_elev, *ptr_vegcode, *ptr_basal, *ptr_closure, *ptr_ckd, *ptr_hlc, *ptr_height, *ptr_era;
double TotalBigTreesgKilled=0, UnAdjustedBasalareaKilled=0, AdjustedBasalAreaKilled;

ulong CurrentId, CurrentTreelist;

//structures
struct NEW_STAND_DATA Key;
struct NEW_STAND_DATA *ptr_record;

J e e End of variable defining ---=-----=---moommomme oo
printf("*** Updating the Data.*[] arrays with new StandbData after the last episodic disturbance event ***\n");

printf("** If this is for post-FIRE, then ERA’s are also being adjusted to account for the associated Flame
Interval **\n");

//Initialize the key
memset{ &Key, 0, sizeof(struct NEW_STAND_DATA) };

//8D[] will most likely already be sorted with lowest Treelist value first, but nct a guarantee. Sort just in
case.

gsort({void*)sD, //ase
Unique,
//ecount of records
sizeof(struct NEW_STAND_DATA}, //size of each record
CompareStandDataTreelist Vi //compare function
,*

Now that HitList and SD are both sorted by the proper member, it is possible to grab the first record in HitList[
and look

in ASCENDING order through the Data.* arrays - because they should be in Cellid ascending order as well.

When a match isg found the value in Data[].Treelist should contain the NEW treelist number (that was updated in
the earlier function UpdateDataTreelist(} }. Use this new treelist number as a Key and search through the SD[]
structures

to find a match. When a match is found the Key can be used to copy over new stand data from SD to the Data[].*
arrays.

Because both the Data*.[] arrays and HitList[] are sorted with Cellids in ascending order, cnce a match has been
found

for a HitList record, there is no need to start searching from the start of Data*.{] - Jjust increment pointer up
one,

*/

ptr_cellid = &Data.Cellid(0]; //Set pointers at first
elements in Data arrays

ptr_treelist = &Data.Treelist[0];

ptr_elev = &Data.Elev[0];

253

ptr_vegcode = &Data.Vegcode([0] (Per]; //Remember, "Per” already in array
notation

ptr_basal = &Data.Basal[0][Per];

ptr_closure = &Data.Closure[0Q] [Per];

ptr_cbd = &Data.CBDensity[0] {Per]

ptr_hle = &Data.HLC[0]{Per];

ptr_height = &Data.StandHeight[0]{Per];

ptr_era = &Data.Era[0] [Per];

//8tart the searching
for (a=0;a<HitCount;a++)

{

//Grab the Cellid in HitList and alsc the treelist
CurrentId = HitList[a].Cellid;
CurrentTreelist = HitList[a].NewTreelist; //Don’t use the "treelist" member - that is

the old number

//Now look for the CurrentId to match an ID in the Data.*[] arrays
if (CurrentId != *ptr_cellid)
{
do
{
ptr_cellid++; //Increment ALL

the pointers

ptr_treelist++;
ptr_elev++;

ptr_vegcode+=NP; //Don’'t forget these

pointers are for 2Z-dimensional arrays!

StandData.

ptr_basal+=NP;
ptr_closure+=NpP;
ptr_chd+=NP;
ptr_hlc+=NP;
ptr_height+=NP;
ptr_era+=NP:

}while{CurrentId !'= *ptr_cellid);

//Everything should match now - set an error checker
if (*ptr_cellid != CurrentId || *ptr_treelist != CurrentTreelist)
Bailout(91);

//Make a key using the CurrentTreelist value to search for
Key.Treelist = CurrentTreelist;

//Now use hsearch to find the matching record in the array of 5D structures
ptr_record = (struct NEW STAND_ DATA*)bsearch{

&Key,

(void *)5D,

(size_t)Unique,

sizeof (struct NEW_STAND_DATA),

CompareStandDataTreelist Y

if (ptr_record == NULL)
Bailout(95);

[] R K K kK e K ek K K ek ek sk kK kK kK ok K K K K K A A K kK K ok Xk kK Kk ok ko

//******* Since we have found a match, update all the necessary values in the Data,*[] arrays ****#*s**+
F I T O T T T

//Fill in the Data.*[] arrays and paying careful attention to typecasting - some was already done in
cpp

//Want these to match the CONVERSION that was done in CreateSortedPremoBinaryFilel}
*ptr_basai = (ushort) (fleor (ptr_record->Basal * BASAL_EXP | };
*ptr_closure = ptr_record->Closure;

//"floored" and converted to ushort in StandData.cpp

*ptr_cbd = ptr_record->Density;

//"floored", multiplied by 100, and converted to ushort already

*ptr_hle = ptr_record->HeightCrown;

//"floored" and converted to ushort in StandData.cpp

*ptr_height = ptr_record->StandHeight;

//"floored" and converted to ushort in StandData.cpp

//Put in the new Vegcode - be sure to check elev and modify the VegCode to be 5 or 10 if it is a MC type
//VEGCODES are printed at end of period so always update with new codes after disturbances
if{ ptr_record->VegClass == VC_MC && { (*ptr_elev) >= (3000*FT2M}})

*ptr_vegcode = (ushort) ({{ptr_record-»VegClass + 5) * 100) + (ptr_record-»>Qmd * 10 } +

(ptr_record->CaoverClass));

elsge
*ptr_vegcode = {ushort} {{ptr_record-»>VegClass * 100) + {(ptr_record->gmd * 10 } + {(ptr_record-

>CoverClass});

//Keep track of the Total Big Trees killed and the Total Stand Basal Area
TotalBigTreesKilled += (double)ptr_record->BigTreesKilled;
UnAdjustedBasalAreaKilled += (double)ptr_record->BasalareaKilled;

//NOTE: TIf Jim & Bernie develop new Fuel Model class. rules for post insect or fire and they

differentiate with

//me>3000 and mc<3000 then this will be the place to put that in.

254

VAR e e e A R e e R e

J//******% Check and see if ERA’'s need updating for after FIRE disturbances

Kk KKK KKK

AR R e e R

if(HitList[a)].Interval > 0 }

hit by fire

originally put in Premo.

the ERA for this & the next two periods will have some additicnal ERA added to them which will
be a function of the Flame Length {(or really the Interval since I don’t keep the actual flame

values and were calculated back just

after the Prescription selection. They were decayed based on previous periods era first and

{
7%
Not sure what exactly to do here, but will try and mimic what John S.
That is
length) .
NOTE: Currently, the Data.Era[][] values are "real"
then new

contributions added. This function will not recalculate decay for periods after this

disturbance, but

that should probably be considered. Again, this will simply add scome additional ERA

coefficient to the

existing pericd values and maybe the next two periods.

*/
if(HitList(a].Interval > 12 }
{
ushort AddEral[3] = (25, 15, 5};
for (b=0;b<3:b++)
{
if (Per+b == NP)
break;
*(ptr_era+b) += AddEral[bj;
- start of HitList loops expects it at particular spot!
}
}
else if({ HitList[a].Interval > §)}
{
ushort addera[3] = {15, 5, 3};
for (b=0;b<3;b++}
{
if (Per+b == NP)
break;
*{ptr_era+b) += AddEra{b];
- start of HitList loops expects it at particular gpot!
}
3

else if(HitList([a].Interval > 4 }
*ptr_era += (ushort)5;
//otherwise leave alone - no additional contribution

}//end if (HitList ... }
}//end for(a=0... }

//Adjust the basal area mortality to get an overall average
AdjustedBasalAreaKilled = UnAdjustedBasalAreaKilled/HitCount;

//Put the mortality data in the TreeDamage.txt file opened at start of program
sprintf (Temp, “%s¥s\\goal%d\\Treelamage.txt", PREFIX,GeneralDataDir,GOAL_TC_USE)

OUT = fopen{Temp, “a+"};

//DON'T increment pointer

//DON’'T increment pointer

fprintf (OUT, "Period %d, Big Trees killed by current disturbance: %.21f\n", Per+1, TotalBigTreesKilled);

fprint£(OUT, “Peried %4, Adjusted Avg. Basal Area killed (sg ft): %.21f\n",Per+l

fclose (QUT) ;

}//end UpdateDataWithNewStandData

adjustedBasalareaKilled) ;

VR e e e e

void UpdateDataTreelist(struct HIT_BY_DISTURB AllHit[], int AllCount)

P R e e e S A

(
I*

This function is designed to ONLY change the treelist values in Data.Treelist.

It will NOT actually

do anything to the treelist or prescriptions themselves - that is handled by other functions.

*/

int a;

ulong CurrentId, CurrentTreelist, NewTreelistValue;
ulong *ptr_cellid, *ptr_treelist;

//ushort *ptr_flame;

//ushort FlameLength;

//For Time information
clock_t Start, Finish;
double Duration;

//Send the AllHit structures to get sorted by their Cellid value only
Start = clock{();

- end of variable definitions ----------------—-————---

255

gsort ({void*}allHit, / /base
AllCount,
//count of records
sizeof (struct HIT_BY_DISTURE}, //size of each record
CompareHitListCellid Vi //compare
function

Finish = clock();
Duration = ((double) (Finish-Start) / CLOCKS_PER_SEC) ;:

//Now that the AllHit is sorted by Cellid, it is possible to grab the first record in AllHit and look
//in Ascending order through the Data.* arrays - because they should be in Cellid ascending order as well.
//When a match is found, insert the new treelist walue into Data.Treelist[] and then grab the next record
//in AllHit and continue looking further down in the Data.* arrays.

ptr_cellid = &Data.Cellid[0];

//Set pointers at first elements of Cellid & Treelist in Data arrays
ptr_treelist = &Data.Treelist[0];
//ptr_£flame = &Data.Flame[0};

for (a=0;a<AllCount;a++)

{

Current1d = AllHit[a).Cellid;
CurrentTreelist = AllHit[a] .Treelist;
NewTreelistValue = AllHit[a] .NewTreelist;

//Flamelength = allHit[a].Interval;

//Now look for the CurrentId to match an ID in the Data arrays

if (CurrentId != *ptr_cellid)
(

do

{

ptr_cellid++;
ptr_treelist++;
//ptr_flame++;
}while (CurrentId != *ptr_cellid);
}

//Everything should match now - set an error checker
if (*ptr_cellid != CurrentId || *ptr_treelist != CurrentTreelist)

Bailout {91);

//Since we have found a match, update the value in Data.Treelist with the NewTreelistValue
*ptr_treelist = NewTreelistValue;

//*ptr_flame = FlameLength; //will be zero except after a fire

type disturbance
}//end for(a=0 ...)

}//end UpdateDataTreelist

F AR R R Y

void ExtractTreeligt(struct TREELIST_FOR_PREMO TP[], int Count, int Per, ulong FTL}
R R R Rk ko Rk kR KR KRR R Rk R Rk KRk kR Rk R kR R R KRR R R Rk Rk R R kR R Kk R K
{

I+

The object here is to extract the current period treelist out of a prescription and send that treelist to
another directory so it can receive the particular episodic disturbance effect and later be sent through Premo.

- OR -

If the treelist is one that has already be hit by another disturbance this period then that treelist

was already extracted and modified and now sits in the *\modelloutputs\prescriptions\modified* directory.

All that needs to be done is to copy that treelist over to the ...*\ToModify* directory and get yet

another new treelist number that it will be tracked by (i1f so, the old treelist may still be needed by another
stand so it won‘t be deleted - that way it can be ran through Premo and used where appropriate).

*/

int a;
ulong 0ldTreelist,NewTreelist;
ushort Goal, Hold;

FILE *READ PRESCRIPTION, *WRITE_TREELIST;
char InPrescription[256], OutTreelist[256];
char CopyFrom[256], CopyTo[256], CopyFiles([256], JunkFile[256];

double TestValue;

double Plot,Live, Tpa,Model, Report,Dbh, Height, Ratio, Dead;
int Period;

int Finished, AllRecords,GotNext;

int Status;

//Print up a little screen information
B RN TR S e R e R

puts ("\E\EA** IETTEw
puts ("\t\t*** Going to copy over treelist data so disturbance LD
puts{"\t\t*** effects can be made. LR
puLs (“\t\tr** k)

PUES (#\E B *H 5k sk ke ok ko kKK R KR KRR R R kR kR R KRk Rk R\)

//Do this for each of the records found in the array of TP structures

256

for (a=0;a<Count; a++)

{

0ldTreelist = TP[a].0ldTreelist;
Goal = TP[a].Goal;
Hold = TP[a].Hold;
NewTreelist = TP[a}.NewTreelist;

//Test to see if the 0ldTreelist is greater than the incoming FTL variable -
//If not, then it has not been disturbed yet this peried

if({0ldTreelist < FTL)

{

//If the 0ldTreelist is a value < NONFOREST, then the prescription data is in a different
//directory and so test for this and set appropriate string tc use in InPrescription
i£(01ldTreelist < NONFOREST)
sprintf (InPrescription,
"$5%s\\P_%1lu_%hu_%hu.txt", PREFIX, InitialPresDir, 0ldTreelist,Goal, Hold);
else
sprintf (InPrescription,
"%$s%s\\P_%1u_%hu_%hu.txt", PREFIX, ModeledPresDir, 0ldTreelist,Goal, Hold};

//always send the output treelist files to the \\ToModify* directory!
sprintf(OutTreelist, "%s%s\\T_%lu.txt", PREFIX,P_ToModDir, NewTreelist);

//Open up the InPrescription (which has prescription datal and find the treelist data
associated

//with the current period. Then copy all those records to a new file which alsc needs tc be
opend

READ_PRESCRIPTION = fopen!(InPrescription, "r");

WRITE_TREELIST = fopen(OutTreelist, *w");

if (READ_PRESCRIPTION NULL)

fprintf{stderr, "opening of %s failed{ExtractTreelist): %s\n", InPrescription,

strerror (errno}};
if (WRITE_TREELIST == NULL)
fprintf(stderr, 'opening of %5 failed({ExtractTreelist): %s\n',OutTreelist,
strerror (errno});

//Start scanning data in and lock for -9999 to indicate that a new period treelist is
//starting, and then verify that it is the correct period, and then scan and copy cver
//all the treelist records from InPrescription to OutTreelist.

Finished = FALSE;

AllRecords = FALSE;

fscanf (READ_PRESCRIPTICN, "$lf", &TestValue); //All files must have -9999 as
first thing.

do{ //This do loop will
actually be broken out of by a BREAK statement

if {TestValue == -9999) //Because all files will start with this on
line 1!

{
fscanf (READ_PRESCRIPTICON, "%d", &Period};

if (Period == Per) //Have the correct period - start scanning
and copying

while(AllRecords == FALSE)
(

1f{Status = fscanf{READ_PRESCRIPTION, *$1f %$1f $1f %1f %1f %1f %1f
%1f",&Plot, &Live, &Tpa, &Model,

&Report, &Dbh, &Height, &Ratic) == ECF)
break;
//Needed to stop scanning at last Period

//finished, break out this While loop
if (Plot == -9999}
//To stop scanning in all other periods
break;
//finished, break out this While loop

//otherwise print to CutFile
fprint £ (WRITE_TREELIST, "$.0Llf\t%.0lE\t%. 21E\t% . O1E\t%. 01E LS. 21£60e%.21E 8. 216\,

Plct,Live, Ppa,Mcdel,Report,Dbh, Height ,Ratic}
if (Live != LIVE)
{
fscanf (READ_PRESCRIPTION, "%1f" , &Dead);
//For Snags and DWD
fprintf {WRITE_TREELIST, "%.01f\n",Dead};

}
else
fprintf (WRITE_TREELIST, "‘n");
}//end of while(AllRecords == FALSE)
break: //got all the records I want - quit lecking

and break out of do{ loop
}//end of if{Period == per)

257

else
//Scan in til the next -9999 is found
{
GetNext = FALSE;
while(GotNext == FALSE}
{
fscanf (READ_PRESCRIPTION, "%1f", &TestValue);
if (TestValue == -9999 || Testvalue == EOF)
break;

}//end of else
continue;

}//end of if{TestValue == -9999)

}while{Finished

FALSE} ;

fclose (READ_PRESCRIPTION) ;
fclose (WRITE_TREELIST) ;
}//end if (0ldTreelist < FTL)
else //The treelist has
already been hit and is in the *\modified\ directory - just copy over
{
//Make two strings to hold the old and new treelist path names
sprintf (CopyFrom, "2s%s\\T_%1lu.txt", PREFIX,P_ModDir,0ldTreelist)
sprintf (CopyTo, "%8%s\\T_%1lu.txt", PREFIX, P_ToModDir, NewTreelist};
sprintf (JunkFile, “%s%s\\Junk.txt", PREFIX,P_ToModDir);

//Make the system copy call string and execute it
sprintf (CopyFiles, "copy %s %s » %s",CopyFrom, CopyTo,JunkFile); //redirect
screen output to file that gets deleted later
system(CopyFiles);
}//end else...

}//end forta=0 ...}

}//end ExtractTreelist

[E R AR AR AR A A AR AR Rk kR AR R R R AR AR KRR K KA A AR AR AR A AR A R R KK KA KA AR A ARk R AR KRR AR R R R AR ARk R Rk kR A AR
R T

void PrintNewTreelist(struct TREELIST_RECORD Records[], int Count, struct TREELIST RECORD NewSnags{], int
SnagCount, ulong Treelist)

A R e e e e R e e e SRS AR

HREE R A A A Rk Ak Ak ok ke

(

/*

This function will simply print out the records in the array of Records[] and NewSnags[] structures. They will
always be printed out to the ...\presecriptions\Modified* directory. From there, Premo can grab those

new treelist and do its thing - or any other disturbances during the same period can use these new treelist!
*/

I+

NOTE: PROBLEM WITH SOME TREELIST NO HAVING LIVE TREES !!!

Having problem with episodic events (fire} wiping out all the live trees and sometimes leaving a

"Live" record with a TPA of 0.0 - and that‘s the only live record. That tends to screw up things in

PREMO. Presently I have fixed this back in ApplyFofemEffects{) so go there and read notes. However, if bugs
cause problem (they currently can’t because they completly kill stands but there may be problems with rounding
of very small TPA values during Apply*BugDamage{) stuff) then something else will need to happen.

*/

FILE *OUT;

char Temp[256];

int a;

//Create and open the output file
sprintf(Temp, "s%s\\T_%1lu.txt", PREFIX,P_ModDir, Treelist};
OUT = fopen(Temp, "w');
if(© == NULL)
fprintf(stderr, "Opening of %s failed (PrintNewTreelist): %s\n",Temp, strerror{errnc)};

//Print out all the records in the array of Records
for {a=0;a<Count;a++)
(
if(Records(a].Tpa != 0) //Fire will often completely kill a tree and all the data will be in
NewSnags
(
fprintf (OUT, "$hult%hul\t%.2f\t3hut3hultd . 2f\t%. 2f\e% 2\ e,
Records[a].Plot,
Records[al.Status,
Records[a].Tpa,
Recordsfa] .Model,
Records[a] .Report,

Records([a] .Dbh,
Records[a] .Height,
Records[a] .Ratio

yi

if(Records[a].Status != LIVE)
fprintf (OUT, "%hu\n",Records[a].Condition};

else
fprintf (OUT, "\n");

}//end if (Records[a].Tpa !'= 0)
}//end for(a=0 ...)

//Now print out those records in the array of NewSnags
for (a=0;a<SnagCount; a++)

{

fprint £ (OUT, “%hult%hult%,. 2f\t%hult¥hu\td. 2£7\t%. 26 6%, 26 0",

)i

if (NewSnagslal .Status != LIVE)

NewSnags[al
NewSnags[a]
NewSnags[a]
NewSnags[a]
NewSnags|[a}l
NewSnags[a]
NewSnags [a]
NewSnags [al

fprintf (OUT, "%hu\n',NewSnags(a)].Condition);

else
fprintf(OUT, "‘n");

}//end for(a=90;a<SnagCount;a++)

fclose (CUT) ;

}//end PrintNewTreelist

P R

int CompareHitListCellid{const void *ptrl, ccnst void *ptr2)

P R AR

{

.Plot,
.Status,
.Tpa,
.Model,
.Report,
.Dbh,
.Height,
.Ratio

//Just to typecast them since we aren’t actually passing in pointers

struct HIT_BY_DISTURE *eleml;
struct HIT_BY_DISTURB *eleml;

eleml = (struct HIT _BY DISTURE *)ptrl;
elem2 = (struct HIT_BY_DISTURE *)ptr2;

if{ eleml->Cellid < elem2->Cellid }
Cellid in ascending order
return -1;
if{ eleml->Cellid > elem2->Cellid }
return 1;
else
return 0;
//Finished!!!
}//end CompareHitListCellid

A R R R

int CompareStandDataTreelist(const veid *ptrl, const void *ptr2)

A R

{

//Jdust to typecast them since we aren't actually passing in pointers

struct NEW_STAND_DATA *eleml;
struct NEW_STAND DATA *elem2;

eleml = {struct NEW_STAND DATA *)ptrl;
elem2 = (struct NEW_STAND_DATA *)ptr2;

if(eleml->Treelist < elemZ->Treelist }
//8ort by Treelist in ascending order
return -1;
if(eleml->Treelist > elem2->Treelist)
return 1;
else

return 0;
//Finished!!!
}//end CompareStandDataTreelist

CONSTE. .CPP

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include “globals.h"
#include "data.h"

//Defined in this Constraints.cpp file

int CheckConstraintsGeall(struct ERA Era[], ulong NoSheds, int SubErall};
int CheckConstraintsGoald(struct ERA Era[], ulong NoSheds, int SubEral[]};

258

259

J kA A Ak ok k ko ko kA A AR A A A A A A AR A A A A A A h Ak ke ko h kA Ak h kA Ak Ak kA A A kA A Ak ok Ak Ak khhh ko k ok ok ok ko kk ok ko ko ok ko ok ok ok ok ok ok ok ok ok ko ok ok ok Kk ok ok
-

int CheckConstraintsGoall (struct ERA Era(}, ulong NoSheds, int SubErall)

R R I T N L T T
R

{

/*

This function will check the Equivalent Roaded Acre value for all the sub-watersheds. If any of the watersheds
violate the threshold during any periocd then a FALSE return value will be given.

NOTE: remember that the Era values were inputted after being (*) by ERA EXP, so the SubEra(] values reflects
that...

if it has a value of something like 25, it really means .25

*/

int b,x;

for (b=0;b<(signed)NoSheds;b++)

{
for (x=0;x<NP;x++}
{
if(Bra[b].SumPeriodEra[x] / Era[b].Count > {unsigned)SubEra[x])
return FALSE;
}
}

//1f above loops complete then everything is OK
return TRUE;
}//end CheckConstraintsGoall

TR LR R R R R e R I N Ty
R

int CheckConstraintsGoald (struct ERA Era[], ulong NoSheds, int SubEral])

R R e R R e T L N T L T T T 1 Lt T T e
PR

{

7

NOTE: This is the same as CheckConstraintsGoall{} but duplicating in case there are additional constraints for
Goald at a later date or if it is decided to use a different strategy.

This function will check the Equivalent Roaded Acrs value for all the sub-watersheds. If any of the watersheds
violate the threshold during any period then a FALSE return value will be given.

NOTE: remember that the Era values were inputted after being (*} by ERA_EXP, so the SubEra[] values reflects
that. ..

if it has a value of something like 25, it really means .25

*/

for (b=0;b< (signed}NoSheds ;b++)

(
for {x=0; x<NP;xX++)
{
if(Era[b].SumPeriodEralx] / Eral(b].Count > {unsigned)SubEral[x] }
return FALSE;
}
}

//If above loops complete then everything is OK
return TRUE;
}//end CheckConstraintsGoald

FLAMMAPSTUFF . PP

J R AR A ARk Ak ok ok kKA E R ok kK KRRk Kk ok Kk kK ko Kk ok ko kR KRRk K Kk ke kKK Rk Rk ok ok kA ko ok ok ok kK ko

//This PrepareFlammap.cpp file contains the functions that are used to prepare and run
// FLAMMAP.exe within this SafeD.exe program.

A R R R R R R R R R L L e e

PR R R R e R R e R d L R R E R a R L L R R L T R S

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include "globals.h*
#include "data.h”

//Functions defined here in PrepareFlammap.cpp

int PrepareFlammap(int period, int weather);

void DeleteFar {int p);

int MakeRunflammap (int p);

int PreparelayerFile(int p);

int PrepareFlammapEnvt{int p, int w);

int WhichFlammapOutputs{int p};

void InOutFlammapResults{int p, int Status); //Used after any Period run of Flarmap

260

//defined in Misc.cpp
extern void CleanAndSave(int Per, int Program, int Status);

//defined in ReadData.cpp
extern long CheckHeader (int File);

] kR R Rk ko sk ok ko ko ok Kk kK ok ok k ok Tk R Kk k ko ko kR ke R kR Kk ko kk ok ok ke Rk kR ko R ko kR kR Rk kK

int PrepareFlammap (int period, int weather)
T MM T TN M T T T T T ™ T T T T T T TN Y T IO T

{
//REMEMBER: PrepareFlammap doesn’t get called if #defined RERUN_SIM so is ok to delete any ,far files found

DeleteFar (period); //Delete any .far file created by Flammap during previous
simulation

if{ MakeRunflammap (period))
{ if{ PreparelayerFile(period)
¢ 1f(PrepareFlammapEnvt(period,weather)
¢ 1f{ WhichFlammapOutputs (period))
{ return TRUE;
313}

return FALSE;

}

/% ke sk ke ok kK kK ok ok Kk kK ok ok ok kK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok Tk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ek Kk k ke

void DeleteFar{int p}

%k ke ok ok ko ok Rk ek ok kR ok ok ok ok ok ok ko k kK ko ok ko k ko kK Rk Rk ok ok kR ok kS

{

I

Called up at three different times.

First: Before and After any run of Flammap during RunPredictedFlammap(}

Second: During a simulation period, if the simulation is not #defined RERUM_SIM then this is
called before a run of PLAMMAP for that period.

Third: During a simulation perisd, after a run cf FARSITE, if not #defined RERUN_SIM and
also not #defined SAVE_FOR_REUN

FARSITE and FLAMMAP will use this Layers.far file if it is there.
*/

char ToDelete([256];

FILE *t;

[=mmmmm—— - End of variable defining -———------vo-emmom oo

//File to check if exist
sprintf (ToDelete, "$s%s%d\\per%d\\layers.far", PREFIX, INPUTS,GOAL_TO_USE,p);

if((t = fopen{ToDelete, *r"}} != NULL) //open the layers.far
file in READ mode to see if it exist
{

fclose(t};

sprintf (ToDelete, “"del %s%s%d\\per%d\\lavers.far", PREFIX, INPUTS,GOAL_TO_USE,p}; //reusing the ToDelete
array!

system(ToDelete) ;
}

}//end DeleteFar

J e R A Rl A e L A A R T N e T T Ty

int MakeRunflammap(int p)

R R R T L T N L L I T T e
//Make the RUNFLAMMAP.BAT file needad by Flammap - on the fly

FILE *Openvirite;
char WriteQut(150];

char LayerFile[150];
char EnvtFile[150];
char Flammap_Outputs[150];

/e e End of variable defining ---------~--mmmmeo oo

//String together the current period directory path and the appropriate file names
sprintf (LayerFile, "%s%s%d\\per%d\\lavers.txt",6 FREFIX, INPUTS, GOAL_TO_USE,p};:

sprintf (EnvtFile, *%s%s%d\\per%d\\flammap_envt. txt", PREFIX, INPUTS,GOAL_TO_USE,p};
sprintf (Flammap_Outputs, "%s%s%d\\per%d\\flammap_ocut.txt", PREFIX, OUTPUTS, GOAL_TO_USE,p);
sprintf (WriteQut, "%s%s%d\\per%d\\runflammap.bat", PREFIX, INPUTS, GOAL_TO_USE,p};

OpenWrite = fopen{WriteQut, 'w"); //open in write
mode

fprintf(OpenWrite, "%s%s -L %s -E %s -0
%s\n', PREFIX, FlammapName, LayerFile, EnvtFile, Flammap Cutputs);

folose (CpenWrite)
return TRUE;

)

AR R R e R R R Rl s d S e e e e

int PreparelayerFile(int p}

A R

{
//The layers.txt file called by Flammap specifies the files that Flammap AND Farsite will
//use for the landscape paramsters. We are going to have to specify that the
// HEIGHT, FUEL, BLC, DBD, and CLOSURE files are located in the current period directory
//and the ELEV, SLOPE, and ASPECT files are in the constant directory.
//This file DOES NOT need to exist. It will be created from scratch using the data from below.
//This layers.txt file will ALSC be used by Farsite during its run in this period.
char WriteOut[50];
FILE *OpenWrite;
char FuelFile[50);
char ClosureFile [50]};
char HeightFile[50];
char BLCFile[50];
char CBDFile[50];
char EUnits[10] = "meters";
char SUnits[10] = "degrees";
char LatFile[l15] = "LATITUDE";
char Grid[15}) = "GRID_UNITS"
Gridunits{10] = "meters";
R e End of variable defining --~------------c-omooo o -oommoe o
//Make the names of files dependent upon the current period
sprintf (FuelFile, "%s%s%d\\per%di\:\fuel.asc", PREFIX, INPUTS, GOAL_TO USE,p);
sprintf{ClosureFile, "%s%s%d\\per%d\‘\closure.asc", PREFIX, INPUTS, GOAL TO_USE,p);
ClosureUnits[1l0] = "cat";
sprintf(HeightFile, "%s%s%d\\per%d\\height.asc", PREFIX, INPUTS,GOAL TO_USE,p);
HeightUnits[10] = "feet";
sprint f {(BLCFile, "%s%s%d\\per%di\blc.asc", PREFIX, INPUTS,GOAL_TO_USE,p);
char BLCUnits[10] = “feet";
sprintf(CBDFile, "$%s%s%d\\per%d\\cbd.asc", PREFIX, INPUTS, GOAL_TO_USE,p)};
char CBDUnits[10] = "kg_per_m3";
//Now create the new LAYERS.TXT file for the current period
sprintf(WriteOut, "%s%s%d\\per%di\\layers.txt",6 PREFIX, INPUTS,GOAL_TO_USE,p};
OpenWrite = fopen{(WriteCut, "w");
mode

fprintf{OpenWrite,
fprintf (OpenwWrite,
fprintf (OpenWrite,
fprintf (OpenWrite,
fprintf (OpenWrite,
fprint £ (OpenWrite,
fprintf (OpenWrite,
fprintf (OpenWrite,
#ifdef APPLEGATE_PROJECT
fprintf (CpenWrite,
#elif defined(FRAMEWORK_PROJECT}
fprint £ (OpenWrite,
#endif
fprintf (CpenWrite,

fclose (OpenWrite)

return TRUE;
}

R R b e e e S R A

int PrepareFlammapEnvt(int p, int w)

A e e AR

{

//The flammap_envt.txt file called by Flammap specifies soms files that Flammap will

//use to set up the general parameters. We are going to need to change which FuelMoistureFile

"%s%s\\elev_%s.asc \t\t%s\n",
"%s%sh\\slope_%s.asc \t\t%s\n",
"$s%s\\aspect_%s.asc \‘tit\n",

"%s
"%s
]
Y%s
"%

™

1ge

nge

\tit\n", FuelFile};

AVENEAEAENESS AN,
Meaedhenentdsin,
VEAEONENENESSARY,
MEANECAENENES S AN,
AY-AN AN AT AN T 1220
VEANENENERNE3T AN,

VeAEVENENESS\NR",

ClosureFile, ClosureUnits) ;
HeightFile, HeightUnits)
BLCFile, BLCUnits) ;
CBDFile, CBDUnits) ;

LatFile};

LatFile);

Grid,GridUnits);

//uses (based on whether it is a drought year or not).
//There may be additional reasons to change certain files at a later time.

//This file DOES NOT need to exXist.
char fms[20]1="FUELMOISTURE FILE";

char CustomFuel [256];
char WetFMFile[256];
char ModFMPile[256];
char DroFMFile[256];

It will be created from scratch using the data from below.

PREFIX,ConstantInput, ENVT,EUnits);
PREFIX, ConstantInput, ENVT, SUnits);
PREFIX, ConstantInput, ENVT);

261

//open in write

//Use these to copy whichever of the above we want to a consistent output string name
char WriteOut[256];
char OQutMoisture[256];

FILE *OpenWrite;
f mm e End of variable defining ------------————————————-emmoooooooo

//Put together all the filenames

sprintf (CustomFuel, "%s%s)\\%s_flammap.fmd", PREFIX, ConstantInput, SHORT_NAME} ;
sprintf(WetFMFile, "%s%s\\%s_wet.fms", PREFIX, ConstantInput, SHORT_NAME) ;
sprintf (ModFMFile, "$s%s\\%s_mod.fms", PREFIX, ConstantInput, SHORT_NAME) ;
sprintf (DroFMFile, "%s%s)\\%s_dro.fms", PREFIX, ConstantInput, SHORT_NAME) ;

//Now determine which of the files are going to be used

262

if{w == 1) // is a WET
period
strepy (QutMoisture, WetFMFile);
else if({w == 2) // is a MODERATE period
strepy (OutMoisture, ModFMFile);
else
stropy (QutMoisture, DroFMFile);
//21 FEB Q0 - Bernie indicated we should ALWAYS run FLAMMAP with drought weather - let’'s reset here

sprintf (OutMoisture, "%s",DroFMFile);

//Create a string with the actual envt.txt file name with the full directory path
sprintf (WriteOut, "%s%s%d\\per3d\\flammap_ envt.txt", PREFIX, INPUTS, GCAL_TC_USE,p);

OpenWrite = fopen(WriteQut, ‘“w"); //open in write mode

fprintf (OpenWrite, "FUEL_MOISTURE\t\t\t%s\n", OutMoisture};
fprintf (OpenWrite, "CUSTOM_FUEL_MODELS\t\t%s\n", CustomFuel}

fprintf (OpenWrite, "WIND_SPEED\t\t\tlld\n"); //10 is a

default for now

fprintf (OpenWrite, "WIND_DIRECTION\t\t\tUPHILL\n"); //UPHILL is a default -

could use Azimuth degrees
fclose (OpenWrite);

return TRUE;
}

R

int WhichFlammapQutputs (int p)

R i R

{

/* This function will create the file "Drive":\model\outputs:per*:flammap_out.txt which simply

has a list of files that are wanted from the Flammap program. The possible list is that

described in the Flammap help. The suffix (_out.txt) will be stripped off the name by Flammap and the
remaining will be used as the "basename" for what grids it generates - thus we

will always created files such as: ...\perl\flammap.fml (for a flame length grid), etc..

*/

FILE *CpenWrite;
char WriteOut{50];

char Gridl{10] = *“FML"; //Make a Grid2, Grid3, etc., if more outputs

are wanted.
fmmmm End of variable defining ------—-—-------—— - —m- e mmm -

//Make WriteOut dependent on the current period
sprintf(WriteQut, "%s%s%d\\pertd\\flammap_out.txt", PREFIX, OUTPUTS, GOAL_TO_USE,p);

OpenWrite = fopen{WriteOut, "w"}; //open in write mode

fprintf (OpenWrite, "$s\n",Gridl);

fclose (OpenWrite);

return TRUE;
}//end WhichFlammapOutputs{int p}

A R e e A

void InCutFlammapResults(int p, int Status)

A R AL R

{

/>

This function will open the current period run of Flammap, which produces an ocutput flame height
file called FLAMMAP.FML in the ...\outputs\per*\ directory. That file has values that are in meters

and this function will convert those values to the closest feet integer value. They will then be
exported back onto the hard drive and saved, for mapping, as either p_flammap.asc or flammap.asc
(Predicted or Actual} - the original Flammap.fml file will be deleted to save space

REMEMBER - Flammap says it has a NODATA value of -1 but that is NOT true and Mark Finney is aware of the problem.

What really happens is that a 0 (zero) gets placed in those cells with NODATA, so by using Cellid as the

template I can tell which cells are really suppose to be NODATA and which are suppose to have a value of 0.

//NEW 5 Nov 99: Delete the Flammap generated *.FML file after inputting data
*
/

FILE *READ_FLAMMAP, *WriteFlammap;
char FlammapFile{250];

263

char garbage[100]=*";
int Row,Column;
double x11, y11, junk;
int r,c,HowMany, ctr;
int *ptr_link;

char Temp[150]1="*;

long CellTestValue;

double FlammapTestValue;

long int FlammapNodata;

ushort FlammapConvertTest;

ushort *ptr_flammap, *ptr_gridcolumn;

FILE *BIN;

char InFile[256];

long CellidND; //hold the returned NoData value
from CheckHeader{)} for Cellid - it is reused

//Variable for writing the output files

int *ptr_srp; //Starting Row Position
ushort *ptr_column;

int ColumnsLeft;

ushort StartColumn,CutColumn;

J - End of variable defining ---------~~~~-------— oo

printf{" Preparing to import and export the FLAMMAP flame heights (import in meters, export in FEET units)}\n");

//Instead of storing all Predicted and Actual flammap values in Data.* - fill this up and spit out
ushort (*FlammapValue} = new ushort [UNIQUE];
if (FlammapValue == NULL)

printf{"There was NOT enough memory for FlammapValue with %lu elements\n",UNIQUE);

//Initialize the FlammapValue array, which will get filled with Flammap wvalues using Cellid.bin as a guide
//to indicate those cells which were originally NODATA (because of nodata problem with Flammap).
memset{ FlammapValue, 0, gizeof(FlammapValue{0]) * UNIQUE};

//Create a string to hold the name of the current input Flammap.fml file
sprintf(FlammapFile, "%$s%s%d\\per%d\\flammap.fml", PREFIX, OUTPUTS, GOAL_TO_USE,p);

/1 = OPEN AND READ THE CELLID DATA (again) = s===s=====

//Create a temporary array to store the input Cellid binary data, which has data for every cell

float (*TempCellid) [COLUMNS] = new float[ROWS] [COLUMNS]; / /ROWS*COLUMNS is how many elements are in the initial
grid/binary file

if (TempCellid == NULL)

printf ("There was NOT enough memory for TempCellid with %lu elements\n", ROWS*COLUMNS) ;

//Initialize the TempCellid array
memset(TempCellid, 0, sizeof{TempCellid[0][0]) * ROWS * COLUMNS);

//Check the header data associated with this binary file and get the returned NODATA value
CellidND = CheckHeader{0);

//******read in every element of the Cellid data and store in the TempCellid array

sprintf(InFile, "%s%s\\cellid_%s.bin", PREFIX, ConstantInput, ENVT) ;

BIN = fopen(InFile, "rb");

if{ fread{TempCellid,sizeof (TempCellid), ROWS*COLUMNS,BIN) != ROWS*COLUMNS) //TempCellid is only a pointer!
Bailout (66);

else
printf ("**Binary file %s OK**\n", InFile);
felose (BIN) ;
/1 OPEN AND READ THE FLAMMAP.FML HEADER DATA =

READ_FLAMMAP = fopen(FlammapFile,"r"};
if (READ_FLAMMAP == NULL)
fprintf (stderr, “opening of %s failed: %s\n", FlammapFile, strerror(errno));

//use the x11 and yll later on as Error Checkers
fgcanf (READ_FLAMMAP, "%s %d %s %d %s %1f %s %1f %s %1f %s %1d", garbage, &Column,
garbage, &Row, garbage, &x11,garbage, &yll,garbage, &junk, garbage, &FlammapNodata) ;

//Bo some error checking and bail if input data is not correct
if {Column == COLUMNS && Row == ROWS)
printf{*Rows and coclumns for FLAMMAP.fml are OK\n");
else
Bailout{42);
//Do some error checking and bail if input data is not correct

if(int(x1l) == XLL && int(yl1) YLL)
printf ("X and Y origin for FLAMMAP.fml are OK\n");
else
Bailout {43);
/7 == End of reading header data for files

for{r=1;r<=ROWS; r++)
{

ptr_link = &link[r-11[1];
HowMany = *(ptr_link+l);

for {c=1; c<=COLUMNS; C++)
{

//Use the TempCellid[](]
//the data found in Flammap.fml

264

//This was originally filled during ReadBinaryFiles ()

//c is the current column # to search for in Data.GridColumn

as the "template" - if it has a value,

then input
(after converting to the closest feet value)

//First scan everyone in - one at a time so they all are on the same cell

CellTestValue =
fscanf (READ_FLAMMAP,

if (CellTestValus

{

{long)TempCellid[r-1][c-1];

"%1f", &FlammapTestValue) ;

!= CellidND)

//convert the flammap wvalue
FlammapConvertTest = (ushort)(flcor((FlammapTestValue*M2FT) + .5));

//This is a VALID cell

//Set pointer where this grid row starts in the Data.* array and in the FlammapValue

array

ptr_gridcolumn = &Data.GridColumn[(*ptr_link)-1];

ptr_flammap = &FlammapValue[(*ptr_link)-1];

//look for this specific GridColumn in the Data.GridColumn array
for{ctr=0;ctr<HowMany;ctr++)

{

if(*ptr_gridcolumn == {ushortjc)
{

*ptr_flammap =

break;
3
//otherwise increment everything
ptr_gridcolumn++;
ptr_flammap++;

}//end for (ctr=0;ctr<HowMany;ctr++)

}//end if{CellTestValue != CellNodata)

}//end for{c=1;c<=COLUMNS; C++)

}//end for(r=1;r<=ROWS;r++)

//close the file
fclose (READ_FLAMMAP) ;

//Delete the TempCellid array from free store

delete [] TempCellid;

// Delete the flammap.fml file

sprintf (FlammapFile, "del $s%s%d\\per%d\\flammap.fml", PREFIX, OUTPUTS, GOAL_TO_USE.p);

DELETE system command!
system(FlammapFile) ;

//==

/* Ok, the data is now stored in FlammapValuel],
appropriately named file (either p_*.asc for predicted values,

*/

//Make the correct output file name

if{Status == ACTUAL)

sprintf(FlammapFile, "%s5%s3%d\\per3d\\flammap.asc", PREFIX, OUTPUTS, GOAL_TO_USE, p) ;

else

//found it

FlammapConvertTest;

//Tag on the

so just spit those values back out into an
or *.asc for actual values)

sprintf (FlammapFile, “%s%s3%d\ \per%d\\p_£flammap.asc", PREFIX, OUTPUTS, GOAL_TO_USE,p);

//open up the files to write to
WriteFlammap =
if (WriteFlammap == NULL})

fprintf (stderr, "opening of %s failed: %s\n", FlammapFile, strerror(errno));

//write out the header data

fopen (FlammapFile, "w");

fprintf{WriteFlammap, "ncols\t\t¥d\n", COLUMNS) ;
fprintf (WriteFlammap, “nrows\t\t%d\n", ROWS) ;
fprintf (WriteFlammap, "x1lcorner\t%.61£\n", F_XLL) ;
fprintf (WriteFlammap, "v1lcorner\t%.61f\n", F_YLL);
fprintf{WriteFlammap, “cellsize\t%d\n", CELLSIZE) ;
fprintf (WriteFlammap, "NODATA_value\t%d\n",6 NODATA) ;

for {r=1;r<=ROWS;r++)

{
ptr_srp =
HowMany =
StartColumn =
ptr_column =
ptr_flammap =

&link([r-1]1[1];
*(ptr_srp+l);

Data.CridColumn[(*ptr_srp)-1];
&Data.GridColumn| (*ptr_srp)-1]
&FlammapValue[(*ptr_srp}-1];

//1If the whole row is blank, print out NODATA and goto next row
//means a zero was left in this spot during MakeLink

if(*ptr_srp == FALSE)
{

for {c=1;c<=COLUMNS; c++)

fprintf (WriteFlammap, "$d ", NODATA!};

//not a pointer!

265

//put in new lines
fprintf {WriteFlammap, "\n"};

continue; //goto next row

//print out NODATA for those cells before data starts
for (e=1;c<StartColumn; c++)
fprintf (WriteFlammap, "$d *,NODATA);

//set some counters
QutColumn = StartColumn;
ctr = 0;

//print cut values for area on landscape by checking
//value in Data.GridColumn to match it with CutColumn value
do{
if (*ptr_column == OutColumn)
(
fprintf (WriteFlammap, "%hu *“,*ptr_flammap);

ptr_flammap++;
ptr_column++;
QutColumn++;
ctr++;

else //print out NODATA for the "gaps"

fprintf (WriteFlammap, “%d *, NODATA);
OutZolumn++;

}while{ctr != HowMany);

//Check to see how many columns are left to do
ColumnsLeft = COLUMNS - {(OQutColumn-1);

if (ColumnsLeft == 0)
(
fprintf (WriteFlammap, "“\n");
continue; //go to next row

}

//print out NODATA for those cells after the data that are left
for (¢c=0;c<ColumnsLeft;c++)
fprintf (WriteFlammap, "%d " ,NCDATA);

//put in a new line
fprintf (WriteFlammap, "\n"};

}//end of for{r=1;r<=ROWS;x++)

fclose (WriteFlammap) ;

//Delete the FlammapValue array on free stere
delete [] FlammapValue;

}//end InOutFlammapResults

FIREEFFECUTS.CPP

/* This code will apply the effects from a fire to our landscape by finding those stands that were "hit" and
modifying

their treelist thus creating new treelist for every stand that was hit. Afterwards PREMO will need to be recalled
to

re-optimize those stand prescriptions before the landscape re-osptimization takes place.

*7

#include <stdio.h»
#include <stdlib.h>
#include <string.hs
#include <math.h>
#include <time.h>
#include “globals.h’
#include "data.h"

//defined in main.cpp
extern ulong NATLN;

//define in Misc.cpp
extern void DeleteToModify(void) ;

//defined in CommonDisturbance
extern void ExtractTreelist(struct TREELIST_FOR_PREMC TP[]}, int Count, int Per, ulong FTL);
extern void PrintNewTreelist{struct TREELIST_RECORD Records[], int Count, struct TREELIST_RECORD NewSnags![],

int SnagCount, ulong
Treelist);
extern void UpdateDataTreelist {struct HIT_BY DISTURB AllHit[], int AllCount);
extern void UpdateDataWithNewStandData{struct HIT_BY_DISTURB HitList[], int HitCount, struct NEW_STAND_DATA SD{],
int Unigue, int Per);

//defined in StandData.cpp

266

extern void StandDataController {struct NEW_STAND_DATA SD[], int Count, struct TREELIST RECORD Records[], int
NoRecords) ;
extern void CalculateIndividualBasalCancpyWidth (struct TREELIST_RECCORD Records[], int NoRecords);

//defined in ReadData.cpp
extern long CheckHeader{int File);

//Declare functions used in this code

int ApplyFireDisturbance({int period, wulong FTTP);

int CountFireHit({int per)

int FillFireHitList (struct HIT_BY_DISTURB HitList[], int Per);

int CountUniqueFireHits(struct HIT BY_DISTURB HitList[], int Count);

int FillUniqueFireStructures(struct UNIQUE FIRE UniquelList[], struct TREELIST_FOR_PREMO ToPremol[],

struct HIT_BY DISTURB HitList[}, int Count)
void ApplyFireSeverityCalculateStandData{struct UNIQUE_FIRE UL[], int Count, struct NEW_STAND DATA Standbatal]);
int FlameInterval({int f_feet);
void FillFofem(struct FOFEM_MATRIX *Fofem);
int ApplyFofemEffects(struct TREELIST_RECORD Records[], int Count, struct TREELIST_RECORD NewSnags([],

int SnagCount, sStruct FOFEM MATRIX *Fofem, int

Interval, struct NEW_STAND_DATA *ptr_sd);
int CompareHitListForFlame{const void *ptrl, const void *ptr2};
void DoubleCheckVegcodes (void) ;

] KRRk AR KRR R Rk kAR Kk R AR KRR KR KRR AR K KRR AR KRR R RR KRR R KRR KR RARRRRAR KRR KRR RRARE KRR RRAR K AR KRR KRR RRRRRRRRRRRR R KRR KK

PR R R R R R R R R R R e R R R R R R B B R R R R R R b

// Controlling fuction //
[KRR AR A R R AR AR AR AR AR R R KA R AR KA KRR AR AR A KA AR AR A RARA AR AR

int ApplyFireDisturbance{int peried, ulong FTTP)

[AR AR AR AR AR AR KA KRR AR AR R AR AR KR AR AR AR A RRARERRRRARA R KRR RA R
{

int a=0;

int ActualPer, ArrayPer;

int Count, Records, Unique, Unique2;

//For Time information
clock_t Start, Finish;
double Duration;

ActualPer = period;
ArrayPer = period - 1;

//Count up how many cells were hit by fire this period

Count = CountFireHit {(ActualPer);

printf("\n\nFor Period %4, just counted %d cells that were hit by fire, for %.01f
acres\n",ActualPer, Count, Count *ACREEQ) ;

//Print out the number of acres hit
PrintToStat {5, Count);

//1f there are no cells getting hit by fire, then just return back tc main

if(Count == FALSE)

{
printf("!!! There were NO cells hit by fire - skipping FIRE DISTURBANCE routines !!!\n");
return TRUE;

//create an array of structures on the free store to hold info on all the cells being hit
struct HIT_BY DISTURB (*HitList) = new struct HIT_BY_DISTURE[Count];
if(HitList == NULL)

printf{“Problems allocating memory for HitList[] with %d records\n", Count};

//Initialize
memset{ HitList, 0, sizeof({struct HIT_BY_DISTURB: * Count);

//Fill up the array of HitList structures
Records = FillFireHitList (HitList, ActualPer)
if (Records != Count)

Bailout(77);

//sort those records by: Treelist-Goal-Hold-Interval

printf("\nGetting ready to sort the stands by Treelist-Goal-Hold-Interval,.... this will take awhile for %lu
cells\n\n",Count});

Start = clock(};

mgsort({(void*}HitList
//base
Count,
//count of records
sizeof{ struct HIT_BY_DISTURE), //size of each
record
0, Count-1,
//current division { always: 0, Count-1)
CompareHitListForFlame) //compare
function

Finish = clock();
Duration = ((double){Finish-Start) / CLOCKS_PER_SEC

267

//Count up how many of those records in HitList are actually unique combinations of Treelist-Goal-Hold-Interval
Unigue = CountUniqueFireHits(HitList,Count];
printf{*!!!There were actually %d unique records that were hit by FIRE this period run\n”,Unique);

/*
Create 3 different structures to hold various information (may share some common data, but are "packaged”
different)

Each of these 3 will hold information ONLY for those unique combinations of Treelist-Goal-Hold-Interval

1 - an array of structures to hold data pertaining to which fire interval and T-G-H combination, and treelist
values

2 - an array of structures to hold old and new treelist values to use when period is over and need to make new
Premo calls

3 - an array of structures to hold new Stand Data that will need to be updated in the Data.* arrays BEFORE next
disturbance

*/
struct UNIQUE FIRE (*UniqueList) = new struct UNIQUE_FIRE{Unique];
struct TREELIST_FOR_PREMO(*ToPremo) = new struct TREELIST FOR_PREMO[Uniquelj;
struct NEW_STAND_DATA (*StandData) = new struct NEW_STAND_DATA[Unique]
if(UnigqueList == NULL)
printf {"Problems allocating memory for UniquelList[] with %d records\n",Unique);
if({ ToPremo == NULL)

printf{"Problems allocating memory for ToPremo[] with %d records\n", Unique):
if{ StandData == NULL)

printf{“Problems allocating memory for StandData[] with %d records\n",Unique;;
//Initialize
memset(UniquelList, 0, sizeof (struct UNIQUE_FIRE) * Unique);
memset(ToPremo, Q, sizeof(struct TREELIST_FOR_PREMQ} * Unique);
memset (StandData, 0, sizeof (struct NEW_STAND_DATA) * Unique);

//Fill up the UnigueList and ToPremo structures and make sure same # cf records processed
Unigue2 = FillUnigqueFireStructures(UniqueList, ToPremo,HitList, Count);
if(Unique2 != Unique)

Bailout{90};

//Update the treelist values in Data.Treelist[]
UpdateDataTreelist (HitList, Count); //REMEMBER - HitList will
be sorted by CELLID after this

//Extract the current period treelist from the appropriate prescriptions or copy from the \modified\ directory
ExtractTreelist{ToPremo, Unigue, ActualPer, FTTP) ;

//Now apply the severity to those treelist just extracted
ApplyFireSeverityCalculateStandData{Uniquelist, Unique, StandDatal;

//Now that Standbata is filled up, send off with HitList (which must be sorted by CELLID) to modify the data in the
Data*[] arrays
UpdateDatawWithNewStandData({HitList, Count, StandData, Unique, ArrayFer);

//Delete all the treelist files in the ToModify directory since they have been modified and now sit in \Modified\
directory
DeleteToModify () ;

//DoubleCheckVegcodes (1} ;

//Delete stuff on free store
delete [] HitlList;

delete [] Uniquelist;

delete []1 ToPremo;

delete [] StandbData;

return TRUE;
}//end ApplyFireDisturbance

F L e
void ApplyFireSeverityCalculateStandData(struct UNIQUE_FIRE UL[], int Count, struct NEW_STAND_DATA StandDatall)
R R R T R L L]
{

/*

This function will take each of the records in the array of UL[] structures, find the extracted

treelist which is sitting in the ..\prescriptions\ToModify* directory (with the label

T_"NewTreelist".txt). Each treelist will be read in, stored in some fashion,

and then specific FOFEM mortality functicns will come into play as a functicn of the Flame Length Interval

which caused the treelist to get created as a unique combination in the first place.

*/

FILE *IN;
char Temp[256];

int a, b, ReadStatus, NoRecords, NewSnagCount;
ulong Treelist;
ushort Interwval;

ushort Plot, Status, Model, Report, Condition;
float Tpa, Dbh, Height, Ratio;
struct NEW_STAND_DATA *ptr_sd;

S e End of variable defining ----=-sv-semomm e oo

printf(*\n*** Starting to apply specific FOFEM effects to the %d unique stands hit by fire ***\n",Count);

268

//First thing, allocate memory for the FOFEM coefficients - sorta redundant to do every period but is quick

struct FOFEM_MATRIX (*Fofem) = new struct FOFEM_MATRIX;
if(Fofem == NULL)
printf({"Problems allocating memory for a FOFEM_MATIX structure!\n");

//Initialize the Fofem structure
memset (Fofem, 0, sizeof (struct FOFEM_MATRIX]);

//Fill the Fofem structure up with the correct coefficients
FillFofem(Fofem) ;

//Start a loop to do this for every record in the array of UL structures
for(a=0;a<Count;a++)
(

//Set a pointer to the current StandData[] space

ptr_sd = &StandDatala]l;

//Grab the data that will identify the file needed in the ..\ToModify* directory
Treelist = UL[a].NewTreelist;

//Create a string to hold the filename - Always in the ToModDir
sprintf (Temp, "%s%s\\T_%lu.txt", PREFIX, P_ToModDir, Treelist};

//0pen the file for reading
IN = fopen{Temp, "r");
if(IN == NULL)}

fprintf{stderr, "Opening of %s failed (ApplyFireSeverity): %s\n",Temp, strerror (errno}};

//Go through the file and count how many lines(records) there actually are
NoRecords=0;
while(ReadStatus = fscanf{IN, "$hu 3hu %f %hu %hu %f %f %f", &Plot, &Status,

&Tpa, &Model, &Report, &Dbh, &Height, &Ratio) != EOF)
{
NoRecords++;
if(Status != LIVE} //Not a live tree so it will also have a code for the Condition

fscanf (IN, "$hu", &Condition);
}//end while(ReadStatus ...}

//Rewind back to the beginning cf the file
rewind(IN) ;

//printf ("There were %d lines in T_%1lu.txt\n",NoRecords, Treelist);

//Allocate free store memory for NoRecords amount of TREELIST RECORD structures
struct TREELIST_RECORD (*Records) = new struct TREELIST_RECCRD[NoRecords];
if (Records NULL)
printf("Problems allocating memory for Records[] with %d records\n",K NoRecords);

//Initialize
memset (Records, 0, sizeof(struct TREELIST_RECORD} * NoRecords);

//Blso allocate memory to hold data for NewSnags created {a fire may create snags for every record except

those that are already Snags and DWD)
struct TREELIST RECORD({*NewSnags) = new struct TREELIST_RECORD(NoRecords];
if (NewSnags == NULL)

printf("Problems allocating memory for NewSnags[] with %d records\n", NoRecords);

//Go through the current file again and £ill up the array of Records
for (b=0; b<NoRecords; b++)
(

fscanf (IN, "%hu %hu %f %hu %hu %f %f %f",&Records[b].Plot, &Records{b].Status, &Records[b].Tpa,

&Records [b] .Model,
&Records[b] .Report, &Records[b].Dbh,
&Records[b] .Height, &Records[b].Ratio);

if (Records[b].Status != 1)
fscanf (IN, "$hu",&Records[b].Condition);

}//end for(b=0 ...)

//Cloge the treelist file
feclose (IN);

//Send the current Records off to get individual basal area calculated - needed here to track specific

mortality for analysis
CalculateIndividualBasalCanopyWidth{Records, NoRecords);

//Get the current Interval assoclated with this record
Interval = UL[a].Interval;

//Reset the NewSnagCount
NewSnagCount = 0;

//8end the data off to have FOFEM effects applied

NewSnagCount = ApplyFofemEffects(Records, NoRecords, NewSnags, NewSnagCount, Fofem, Interval,

//Print out the records in Records{] and NewSnags[]
PrintNewTreelist (Records, NoRecords, NewSnags, NewSnagCount, Treelist);

//Store the treelist value in StandData
StandDatalal .Treelist = Treelist;

ptr_sd);

269

//Calculate new landscape metrics (fuel, closure, height, blc, cbkd)
StandDataController(StandData, a, Records, NoRecords);

//delete stuff on free store
delete [] Records;
delete [] NewSnags;

}//end for{a=0 ...}

//Lastly, delete the Fofem structure
delete [] Fofem;

}//End ApplyFireSeverity

T A e et T T T T R

int ApplyFofemEffects(struct TREELIST_RECCRD Records[]. int Count, struct TREELIST_RECORD NewSnags{],
int SnagCount, struct FOFEM_MATRIX *Fofem, int Interval, struct

NEW_STAND_DATA *ptr_sd)

R G R R T R L L A R L T T T T T oen

(

/>

Look at all the individual records currently in the array of Records structures. Depending on the

flame length interval that was passed in, apply a particular FCFEM coefficient to that record.

For those newly created snags, put that information in the array of NewSnags structures

*/

int a, DbhRow, FlameColumn, SaveSpot;

float MortTpa, RemainTpa, StandMortBasal=0, StandMortBigTrees=0;

double *ptr_fofem;

struct TREELIST_RECORD SaveRecord;

struct TREELIST_RECORD *ptr_record, *ptr_snag, *ptr_saverecord;

int AlreadySavedDne=FALSE, HadSevereMortality=FALSE;

int Fix;

J R e L e e End of variable defining ------------ormm o

//Start a loop to look at each record in the array of Records structures
for (a=0;a<Count;a++)
{

//Must be a live tree

if (Records[a].Status == LIVE)

(

//Figure out which DBH row in the Fofem structure arrays to use

//The arrays have rows for DBH’s: 1,2,4,6,8,10..... 40 (array subscript 0-20)
if {Records[a] .Dbh < 2)
DbhRow = 0;
else
DbhRow = (int)}floor{Records([a].Dbh / 2};
if(DbhRow > 20) //Just use values for those with DBH of 40

DbhRow = 20;

//Figure out which Interval column in the Fofem structure arrays to use
//The Interval variable should already be a multiple of 2 - generated in FlamelInterval()

function

//The arrays in the Fofem structure have columns for Intervals: 2,4,6,8...16 {array subscript
0-7)

FlameCclumn = (Interval / 2) - 1;

if (FlameColumn > 7} //this is a flame of over 16‘ - just use the 16° effects

FlameColumn = 7;

//Put a pointer at the appropriate FOFEM array to get the Mortality Coefficient

//associated for the Species, given its DBH, and the current Flame Interval.

//Check to make sure the Model code is valid

if {Records[a].Model > 9)

Bailout (33};

switch{Records[a] .Model! //This is the “model code" reported by Premo

{

case 0: ptr_fofem = &Fofem->BO[DbhRow] [FlameColumnl; break; //Use the BO
array

case 1: ptr_fofem = &Fofem->DF[DbhRow] [FlameColumn]; break; //Use the DF
array

case 2: ptr_fofem = &Fofem->DF [DbhRow] [FlameColumn]; break; //Use the DF
array

case 3; ptr_fofem = &Fofem->PP[DbhRow] [FlameColumn]; break; //Use the PP
array

case 4: ptr_fofem = &Fofem->HW([DbhRow] [FlameColumn]; break; //Use the HW
array

case 5: ptr_fofem = &Fofem->PP{CbhRow] [FlameColumn]; break; //Use the FP
array

case 6: ptr_fofem = &Fofem->WF[DCbhRow] [FlameColumn]; break; //Use the WF
array

case 7: ptr_fofem = &Fofem->SP[DbhRow] [FlameColumn]; break; //Use the SP
array

case 8: ptr_ fofem = &Fofem->HW[DbhRow] [FlameColumn]; break; //Use the HW
array

case 9: ptr_fofem = &Fofem->WF[DbhRow] [FlameColumn]; break; //Use the WF
array

270

if(*ptr_fofem != 0) //When 0, there is no FOFEM effect so skip this

J*
/

Determine the FOFEM mortality for a record - that is, if ptr_fofem is .9, then 90% of

the TPA

associated with the current record will die and turn into snags. These trees will
inherit

the same attributes as before death(dbh,height,crown) and will get a new code to
indicate

what the "condition" ig and a new “"Status" value. The remaining trees not affected
by the

mortality percentage (i.e. 10% of the TPA from the above example) will be outputted
with

a new TFA and the same attributes (dbh,height,crown} as before.

*/

//Set a pointer here to make it easier to copy over data into NewSnags|]

ptr_record = &Recordsla)

ptr_snag = &NewSnags[SnagCount] ;

//Calculate the MortTpa and the RemainTpa;

MortTpa = (float){{*ptr_fofem) * Records[a].Tpa)

RemainTpa = Records[a].Tpa - MortTpa;

//Calculate the BasalArea mortality

StandMortBasal += (MortTpa * Records[a].Basal);

//Track those trees >= 30" DBH and the total number killed

if(Records[a] .Dbh >= BIG_TREE_SIZE }

StandMortBigTrees += MortTpa * (float)ACREEQ;
//convert to an actual number

//Put the RemainTpa back into the current record

Records[a] .Tpa = RemainTpa;

//copy over the current record from Regords to the appropriate NewSnag record

memcpy (ptr_snag, ptr_record, sizeof (struct TREELIST_RECORD) };

//If the mortality was 100% just zero out the whole record - PrintNewTreelist{} won't
print those with TPA == 0.0

if(*ptr_fofem == 1)
{
HadSevereMortality = TRUE;

Jf Fxwwdswwsdsgxrkrxrrrxx PART I of no live trees fix
D T
//Save the first record that gets completely wiped out - may need to
reinsert if no LIVE trees at end
if (AlreadySavedCne == FALSE)
{
//Place pointer at the SaveRecord structure
ptr_saverecord = &SaveRecord;
//Copy current data from Records to SaveRecord
memcpy (ptr_gaverecord, ptr_record, sizeof({struct TREELIST_RECORD)

//Remember where this record is in the array of structures

SaveSpot = a;

//Put the original TPA back in - remember, only doing this for
one record so although BOGUS, it‘s livable as a fix

ptr_saverecord->Tpa = MortTpa+l; //just because these are
usually very small stands and I think rounding problems

AlreadySavedOne = TRUE;

)

[/ AEEEARAAAARKARAARARKARRNH and Part I fix

B R R R R R E O S S S s T 13

//Always reset the current record to zero if complete mortality from FOFEM
memset (ptr_record, 0, sizeof(struct TREELIST_RECQRD) }:;

}

/ /However, some values in NewSnags[].*are wrong - fill with correct values
NewSnags[SnagCount] . Status = SNAG;

NewSnags|[SnagCount] . Tpa = MortTpa:;

NewSnags[SnagCount] .Condition = 1; //Condition code for a

new snag - may want to change since it was a fire?

//Increment SnagCount to track the total number of snags create
SnagCount++;

}//end if(Recordsla).Status == LIVE)
}//end for(a=0 ...)

//Cumulative track the Stand Basal Area Mortality & the Big Trees Killed
ptr_sd->BasalAreaKilled += StandMortBasal;
ptr_sd->BigTreesKilled += StandMortBigTrees;

J AR KK KRR A Rk k kR A KAk R AN F R ARk ¥ >4 DPART IT Of NO LIVE TREES FIX AA*A4sadakanhhd bk had kA kA kA XA kk kA Xk A X AR A RAN KA 4R
/*

A problem has occurred when there is complete mortality to some records in a treelist and sometimes no

"live" trees are left in the treelist - they all got sent to snags. Check two things:

1 - was there SevereMortality. If so, look at all the records in Records and see

2 - is there at least ONE valid live tree with a valid TPA value that won't screw PREMO up.

If not, then simply reinsert the SaveRecord values back into the Records{] and hope that takes care of it.

*/
if{ HadSevereMortality == TRUE)
{
Fix = TRUE;
for (a=0;a<Count;a++)
{
//1f there is at least one of these then no need to do any fixing
if (Records[al .Status == LIVE) //Must ke a live tree
{
if {Records[al .Tpa > 0) //and have a valid tpa
{
Fix = FALSE;
break;
}
)
}/i/end forla=0;a<Count;a++)
if(Fix == TRUE)
{
ptr_record = &Records[SaveSpot];
memcpy (ptr_record, ptr_saverecord, sizeof{struct TREELIST_RECORD));
}
}// end 1f{ HadSevereMortality == TRUE)

J] KA KAk R Ak kA kR AR KR AR KA AR AR Ak R AR xR R A*x k% %% End Part II of £ix for no Live Trees
KA KRR KRR AR R R AR KRR AR AR E AR AR KRR ARk k

return SnagCount;

}//end ApplyFofemEffects

A R e R R R R A

void FillFofem{struct FOFEM MATRIX *Fofem)

[R R R AR KAk KRR AR AR KRR KRR R AR KRR A KKK A KRR K AR R AR KA KRR KR AR KA RA KA R AR RS R R R AR KRR AR RAK IR
{

/*

This function is called once every period to fill up the Fofem structure. That structure will
contain the FOFEM coefficients developed by Jim Agee and Bernie Bahro. Currently there are

6 different "categories® of coefficient matricies: Black Oak, Douglas fir, Hardwoods,
Ponderosa Pine, Sugar Pine, and White fir. These categories will have to be used for all our
stands that are hit.

*/

FILE *READ_FOFEM;
char Temp(256];

int a,b;
double *ptr_fofem;

//First open up the fofem.txt file
sprintf (Temp, *%s%s\\FOFEM.txt",K PREFIX,ConstantInput);
READ_FOFEM = fopen(Temp, "r*});
if (READ_FOFEM == NULL)
fprintf (stderr, “opening of %s failed: %s\n", Temp, strerror{errno));

else
printf("\n KR AR A R KR KRR AR R R AR AR R KA AR KR AR AR R AR RN)
printf (" **** Reading in the FOFEM.txt file ****\n");
printf(® KER AR KRR R AR R AR AR AR A AR R A AR A A kR R RN)
}

for(a=0; a<6; a++)

{

switch{a)
{
case 0: ptr_fofem = &Fofem->BO[0][0]; break; //Fill up BO array
case 1: ptr_fofem = gFofem->DF[0] [0]; Dbreak; //Fill up DF array
case 2: ptr_fofem = &Fofem->HWI[0][0]; Dbreak; //Fill up HW array
case 3: ptr_fofem = &Fofem->PP[0][0]; Dbreak; //Fill up PP array
case 4: ptr_fofem = &Fofem->SP{0][0]; break; //F1ll up SP array
case 5: ptr_fofem = gFofem->WF{0}[0]; break; //Fill up WF array
)
for {b=0;b<(21*8);b++)
{

fscanf (READ_FOFEM, "%lf", ptr_fofem);

ptr_fofem++;
)

}//end of for(a=0; a<6; a++)

//Test Print out
/*

271

272

int z;

for({a=0; a<6; a++)

{
switch(a)
{
case 0: ptr fofem = &Fofem->BO[0]([0]; printf("\n The BO array\n'); break;
//Read BO array
case 1l: ptr_fofem = &Fofem->DF[0](0]; printf{"\n The DF array\n"); break;
//Read DF array
case 2: ptr_fofem = &Fofem->HW[0][0]; printf{*\n The HW array\n*); break;
//Read HW array
case 3: ptr_fofem = &Fofem->PP[C][C0]; printf("'\n The PP array\n"); break;
//Read PP array
case 4: ptr_fofem = &Fofem->SP[C][0]; printf("\n The SP array‘n"!; break;
//Read SP array
case 5: ptr_fofem = &Fofem->WF{0][C]; oprintf({'\n The WF array\n"); break;
//Read WF array
}
for(b=0;b<2l;b++)
(
for{z=0;z<B;2++)
{
printf ("% .21f ", *ptr_fofem);
ptr_fofem++;
}
printf{"\n");
}
}//end of for{a=0; a<f; a++)
*/

fclose (READ_FOFEM) ;

}//end FillFofem

F A A S il b B
R R 2 R L

int FillUniqueFireStructures(struct UNIQUE_FIRE UnigqueList[], struct TREELIST_FOR_FREMO ToFremo(], struct
HIT_BY_DISTURB HitList[],

int Count)
R R R R R
KRR Rk ok kA kAR R R A R AR R AR A
{
//Go through HitList[] again and find those actual Unique combinations of Treelist-Goal-Hold-Interval counted
earlier
//and this time fill up the UniqueList and ToPremo structures, as well as put the NewTreelist value in HitList[]
int a, b, Unique;
ulong EvalTreelist;
ushort EvalGoal, EvalHold, Evallnterval:

R End of variable defining ———--===---mssem e
Unigue = 0;
b = 0; //This must be
reset because above it left loop with value of Count
for(a=0;a<Count;) //a will get increment by other
loop
{

if{b == Count) //because of weird
incremental method, b will reach end first but a doesn’t know that

break;
Unigue++; //first one always counts

as do others because a gets reset in other loop

//Set the initial Eval* variables

EvalTreelist = HitList[al.Treelist;
EvalGoal = HitList[(a].Goal;
EvalHold = HitList([a].Hold;
EvalInterval = HitList[a].Interval;

//Insert those values in the array of UniqueList structures
UniqueList[Unique-1].Treelist = EvalTreelist;
UniqueList[Unique-1].Goal = EvalGoal;
UniqueList[Unique-1] Hold = EvalHold;
UniqueList[Unique-1].Interval = EvalInterval;

//And put the needed values in the array of ToPremo structures
ToPremo [Unigque-1]1.01dTreelist = EvalTreelist;

ToPremo [Unique-1].Goal = EvalGoal;
ToPremo [Unigue-1] .Hold = EvalHold;

//Put the NATLN in for this first unigue combination - this global variable is set in Main.cpp and also
used by Insects.cpp

HitList([a].NewTreelist = NATLN;

UniquelList[Unique-1] NewTreelist = NATLM;

ToPremo [Unique-1] .NewTreelist = NATLN;

//sine Hitlist is already sorted, start at next record and look downward until nc longer a match
for {b=a+1l;b<Count;)

{
if(HitList[b].Treelist == EvalTreelist &&
HitList [b].Goal == EvalGoal &&
HitList[b].Hold == EvalHold &&
HitList [b].Interval == EvalInterval)
{
HitList[b].NewTreelist = NATLN;
//Also put the current NATLN in this structure
b++;
//Then lock at next record
}
else
{
//Set the 'a“ variaple to where "b” is because this is the next unique match
a = b;
NATLN++;
break;

}
}//end for{b=a+l;b<Count;b++)
}//end for(a=0;a<Count;a++)

//Always increment NATLN one more
NATLN++;

return Unigue;
}//end FillUniqueFireStructures

R A e L

int CountUniqueFireHits({struct HIT_BY_DISTURB HitList[], int Count}

R R R R R Lt L L L T T S L s L e LR a e a

(

//Go through HitList[} and find how many actual Unique combinations of Treelist-Goal-Hold-Interval

int a,b,Unique;
ulong EvalTreelist;
ushort EvalGoal, EvalHold, Evallnterval;

273

J /== mm e mm e mmm oo end of variable defining ---------—————-—-—-——— -
Unique = 0;
b=90;
for {a=0;a<Count;}) //a will get increment by other
loop
(

if (b == Count} //because of weird
incremental method, b will reach end first but a doesn’'t know that

break;
Unigque++; //Eirst one always counts

as do others because a gets reset in other loop

//Set the initial Eval* variables

EvalTreelist = Hitlisgt[a].Treelist;
EvalGoal = HitList[a].Goal;
EvalHold = HitList[a] .Hold;
EvalInterval = HitList[a].Interval;

//sine Hitlist is already sorted, start at next record and look downward until no longer a match
for (b=a+1;b<Count;)

(
if(HitList[b] .Treelist == EvalTreelist &&
HitList [b].Goal == EvalGoal &&
HitList [b] .Hold EvalHold &&
HitList[b].Interval == Evallnterval)]
b++;
//look at next record
else
{
//Set the '"a' variable to where "b" ig because this is the next unigue match
a = b;
break;

}
}//end for{b=a+l;b<Count;b++)
}//end for(a=0;a<Count;a++)

return Unicue;
}//end CountUnigqueFireHits

[R R A AR A R R A AR AR AR AR AR KRR KRk h R A AR A KRR RA R A AR AR AR AR AT R A Ak R AR AR KRR R RAR AR AR R A OO R
int CompareHitListForFlame(const void *ptrl, const void *ptr2)

R e e S S S R

(

//Just to typecast them since we aren't actually passing in pointers
struct HIT_BY DISTURE *eleml;
struct HIT_BY_DISTURB *elemZ;

eleml = (struct HIT_BY_DISTURB *)ptrl;
elem2 = (struct HIT_BY_DISTURE *)ptr2;

274

if{ eleml->Treelist < elem2->Treelist)
//First sort by Treelist
return -1;
if{ eleml->Treelist > elem2->Treelist)
return 1;

//Then by Geal
if(eleml->Goal < eslem2->Goal)

return -1;
if({ eleml->Goal > elemZ->Goal)

return 1;
else
//Then by Hold
(
if({ eleml->Hold <« elem2->Hold)
return -1,
if(eleml->Hold > elem2->Hold)
return 1;
else
//Then by flame Interval
{

1f{ eleml->Interval < elem2->Interval

return -1;

if{ eleml->Interval > elem2->Interval)
return 1;

else

return 0;
//FINISHED!!
}//end Interval
}//end Hold
}//end Goal

}//end CompareHitListForFire

D e el R R L N s e e R L N L L L e
int FillFireHitList(struct HIT_BY_DISTURB HitList[], int Per)

[KRR KRR Kk R R R Ak A kR ARk KR KRR R AR R R Ak Ak kA kA kA Ak Rk Ak kA AR R R R R AR R R Rk Rk Rk ko Ak K
{

/*

Once HitList has been created in ApplyFireDisturbance, this functiom will £ill it up. This

is pretty much a copy of CountFireHit, except this time variables will be stored in the HitList
structures for those cells that are hit.

Because CountFireHit() creates the new flame.asc file with flame length values in FEET , this function will now
call up a function to put that value into 2‘ interval values [which is what the FOFEM matrix has effects for).
*

/

//Some string arrays
char garbage{13];
char FlameFile[250];

//File pointers
FILE *READ_FLAME;

//pointers

int *ptr_link;

ulong *ptr_treelist, *ptr_cellid;

ushort *ptr_gridcolumn, *ptr_goal, *ptr_hold;

//Misc. variables

int Row,Column;

int r,c,HowMany, ctr;

long int Nodata;

double x11, yll;

double TestValue, junk;

int Record, Interval;

J) mmm e end of variable defining ---------~--------e--- oo

//Make the flame file name and open it
sprintf(FlameFile, “%$s%s%d\\per%d\\flame.asc", PREFIX,QUTPUTS,GOAL_TC_USE,Per);
READ_FLAME = fopen{FlameFile, "r");

//Read in the header info from the flame.asc file to get to the Real Data!

//This assumes the data was check for errors in CountFireHit (}

fscanf (READ_FLAME, "%s %d %s %d %s 31f %s %1f %s %1f %s %14~
garbage, &Column, garbage, &Row, garbage, &xll, garbage, &yll,
garbage, &Jjunk, garbage, &Nodata);

//8can in the values from flame.asc., If they are valid (not Nodata nor NONFOREST) then include them. REMEMBER, if
//Nodata exists in the Data.GridColumn[] array, then there was originally nodata for this cell.
Record = 0;
for{r=1;r<=ROWS; r++)
(
ptr_link = &linkf{r-1]1[1];
HowMany = *{ptr_link+l);

for {e=1;c<=COLUMNS; c++)

275

{
fscanf (READ FLAME, "%1f", &TestValuel;
if (TestValue |= Nodata) //YES, it is a valid
numbexr

{
ptr_gridcolumn = &Data.GridColumn{ (*ptr_link)-1]; //set pointers
ptr_treelist = &Data.Treelist((*ptr_link)-1];
ptr_goal = gDhata.Goal[{*ptr_link)-1];
ptr_hold = &Data.Held[{*ptr_link)-1];
ptr_cellid = &Data.Cellid{{*ptr_link)-1];

for {ctr=0;ctr<HowMany; ctr++)

{
if (*ptr_gridcolumn == (ushort)c) //FOUND the correct column
{ //1f a common GridColumn is not found - then Nodata
existed in orig Data.*[] arrays
if (*ptr_treelist != NONFOREST && TestValue != FALSE)
//Must be a valid NONFOREST cell
{

Interval = FlameInterval((int)TestValue);

//Now store all the needed data in the array of HitList

structures
HitList[Record].Treelist = *ptr_treelist;
HitList [Record] .Goal = *ptr_goal;
HitList[Record] .Hold = *ptr_hold;
HitList[Record].Interval = Interval;
HitList [Record].Cellid = *ptr_cellid;
Record++;
//To send back as a counter
}
break; //get out of
this for(ctr=0;ctr<HowMany...locp
}
ptr_gridcolumn++;
ptr_treelist++;
ptr_goal++;
ptr_hold++;
ptr_cellid++;
}//end of for (ctr=0;ctr<HowMany; ctr++)

}
}
y//end of for(r=1;r<=ROWS;r++)
fclose (READ_FLAME]} ;

return Record;

}

L R e N T L L
int CountFireHit(int per)

A L S e

(

i*

After a run of Farsite, it will create a file called "per*_flame.grd", which I will
copy over to the correct "\\per*\\" directory first.

If the above file does not exist then either there were no fires that period

or the fire size was so small that FARSITE did not create an output flame.grd. In any case,
this function will be skipped if there is no per*_flame.grd file available.

Otherwise, this function will go through the output flame grid file and count up how

many cells were actually hit by fire. If, by chance, the fire occurs in a cell where there is
no data in the Data.* arrays, then it will be skipped with no repercussions (i.e. not counted).

Also, NONFOREST will be skipped

25 FEB 00: Now will temporarily read the original Farsite generated grid and make

a new copy cf it using the same strategy that was done in InOutFlammapResults(). The Farsite
generated file has ~1 as the NoData value and ArcInfo seems to not like that.

*/

J e e e e

//8Scme string arrays
char garbage(50];

char FlameFile[250];
char GrdFlameFile[250];
char SystemCalll([3001;
char SystemCall2[2501;
char SystemCall3[2501;
char SystemCall4{2501;

//File pointers
FILE *READ_FLAME;
FILE *WriteFlame;

//peinters

int *ptr_link;

ulong *ptr_treelist;
ushort *ptr_gridcolumn;

//Misc. variables

int Row, Column;

int r,c,HowMany, ctr;
double Nodata;
double x11, yll;
double TestValue,
int CellsHit=0;

junk;

long CellTestValue;
ushort ConvertTest;
ushort *ptr farsite;

FILE *BIN;
char InFile[256];
long CellidND;

//vVariable for writing the output files
int *ptr_srp: //Starting
ushort *ptr_column;

int ColumnsLeft;

ushort StartColumn,OQutColurmn;

/7

//Make the correct file names
sprintf(FlameFile,
sprintf (GrdFlameFile,
sprintf (SystemCalll,
sprintf {SystemCall2,
PREFIX, OUTPUTS, GOAL_TO_USE, per) ;
sprintf(SystemCall3,
sprintf(SystemCall4,

"del %s",

“del %s",

//Execute some system calls
system(SystemCalll);
system(SystemCalld);
system{SystemCall2);
system(SystemCall3);

/7

Rew Position

"$s%s%d\\pertd\\flame.asc", PREFIX, CUTPUTS, GOAL_TO_USE,per);

"$s5¥s%d\ \pertd\\flame. grd", PREFIX, OUTPUTS, GOAL_TO USE,per);
FlameFile);
‘move $s%s\\per%d_flame.grd %s%s%d\\per%d\\tlame.grd", PREFIX,RasterOutDir, per,

“del %s%s\\per%d_arrive.grd", PREFIX,RasterOutDir,per};
GrdFlameFile) ;

//Check existence of valid output FLAME grid from FARSITE

//Open up the flame.grd file (to read)
READ_FLAME = fopen(GrdFlameFile, "r"}
if (READ_FLAME == NULL}

{

fclose (READ_FLAME} ;
return FALSE;

printf(* Preparing to import and export

//Create and initialize the FarsiteValue

gquide

//to indicate those cells which were originally NODATA (because of nodata problem with Farsite).

ushort (*FarsiteValue) =

if (FarsiteValue == NULL)
printf(“There was NOT enough memory for FarsiteValue with %lu elements\n®, K UNIQUE);

0

new ushort

memset (FarsiteValue,

/7

//Create a temporary array to store the input Cellid binary data,
new float[ROWS] [COLUMNS];

float (*TempCellid) [COLUMNS] =
grid/binary file
if (TempCellid

NULL)

sizeof (FarsiteValue[Q]}

CPEN AND READ THE CELLID DATA

There were no fires this pericd - skipping FireEffects

the FARSITE flame heights

array,

[UNIQUE];

* UNIQUE};

(again)

(import in meters,

export in FEET units

which has data for every cell
//RCWS*CCLUMNS is how many elements are in the initial

printf{*There was NOT encugh memory for TempCellid with %lu elements\n*, ROWS*COLUMNS} ;

//Initialize the TempCellid array
memset{ TempCellid, 0,

sizeof (TempCellid[0][0])

* ROWS * COLUMNS);

//Check the header data associated with this binary file and get the returned NODATA value

CellidND = CheckHeader(0);

//******read in every element of the Cellid data and store in the TempCellid array

sprintf(InFile,

BIN = fopen(InFile, ‘rb");

1f(fread{TempCellid, sizecf (TempCellid}, ROWS*COLUMNS, BIN)

Bailout (66);
else

"$s¥s\\cellid_%s.bin", PREFIX, ConstantInput, ENVT) ;

printf{***Binary file %s CEK**\n",InFile);

fclose (BIN) ;

/!

ROWS* COLUMNS)

READ THE FARSITE.GRD HEADER DATA - opened & checked existence earlier

//Read in the header info from the flame.grd file to get to the Real Data!

fscanf (READ FLAME, "%s %d %s %d %s %1f %s

%$1f %s %1f %s %1f",
garbage, &Column,
garbage,

//Do some error checking and bail if input data is not correct

garbage,
&junk, garbage,

&Row, garbage. &xll, garbage,

&Nodata) ;

276

\n*);

which will get filled with Farsite values using Cellid.bin as a

//TempCellid is only a pointer!!

&yll,

1f(Column != COLUMNS && Row != ROWS)
Bailout(42);
if({ floor(x1ll) != XLL && £loor(yll) != YLL)

Bailout(43};

// ==== End of reading header data for files

//Scan in the values from flame.grd. If they are valid (not Nodata nor NONFOREST) then count them.

277

REMEMBER, if

//Nodata exists in the Data.GridColumn[] array, then there was originally rodata for this cell, so DO NOT count.

for(r=1;r<=ROWS; r++}

(
ptr_link = &link{r-1][1];
HowMany = *{ptr_link+1}

for(c=1; c<=COLUMNS; c++)

(
//Use the TempCellid{]li] as the "template" - if it has a value, then input
//the data found in flame.grd - if there is one{after converting to the closest

//First scan everyone in - one at a tims so they all are on the same cell
CellTestValue = {long)TempCellid[r-1]ic-11;
fscanf (READ_FLAME, "$1f", &TestValue):

feet value}

if({CellTestValue '= CellidND} //This is a VALID cell
(
if({ TestValue == Nodata) //not hit by fire
ConvertTest = 0; //give it a zero flame length
else
ConvertTest = (ushort)(floor((TestValue*M2FT) + .5)); //convert to

closest ushort value

//Set pointer where this grid rcw starts in the Data.* array and in the FarsiteValue

array
ptr_gridcolumn = &Data.GridColumn[(*ptr_link)-1]; //set pointers
ptr_treelist = &Data.Treelist((*ptr_link)-1];
ptr_farsite = &FarsiteValue[(*ptr_link)-11;

/7/look for this specific GridColumn in the Data.GridColumn array
for (ctr=0; ctr<HowMany,; ctr++}
(
if{*ptr_gridcolumn == {ushort)c) / /FOUND the correct
{ //If a common GridColumn is not found -
existed in orig Data.*[] arrays

*ptr_farsite = ConvertTest;

if{ *ptr_treelist !|= NONFOREST)
//Only "count* if is not a NONFOREST cell
(
if (ConvertTest > 0 }
//don’t count those that get rounded to 0 flame length

CellsHit++;
//To send back as a counter
}
break;
this for{ctr=0;ctr<HowMany...loop
}
ptr_gridcolumn++;
ptr_treelist++;
ptr_farsite++;
}//end of for{ctr=0;ctr<HowMany;ctr++}
}//end if{CellTestValue != CellidND}
}//end for (c=1;c<=COLUMNS;C++)
}//end of for(r=1;r<=ROWS;r++)
fclose (READ_FLAME} ;
//Delete the TempCellid array from free store
delete [] TempCellid;
/7 =s====== s======== ========zz ==
// Delete the flame.grd file
system{SystemCalld);
S R === sx==s==s==
//0k, the data is now stored in Farsitevalue[], so just spit those values back out

//open up the files to write to
WriteFlame = fopen(FlameFile, "w");
if (WriteFlame == NULL)
fprintf({stderr, “opening of %s failed: %s\n", FlameFile, strerror(errno));

//write out the header data

fprintf(WriteFlame, "ncols\t\t%d\n", COLUMNS) ;
fprintf (WriteFlame, *nrows\t\t%d\n", ROWS) ;
fprintf(WriteFlame, "xllcorner\t%.61f\n", F_XLL);
fprintf (WriteFlame, "yllcorner\t%.61£f\n",F_YLL);
fprintf(WriteFlame, "cellsize\t%d\n", CELLSIZE);
fprintf (WriteFlame, "NODATA_value\t¥d\n", NODATA};

colunn
then Nodata

//get out of

278

for (r=1;r<=ROWS; r++)

{
ptr_srp = &link(r-1][13;
HowMany = * (ptr_srp+l);
StartColumn = Data.GridColumn({*ptr_srp)-1]; //not a pointer!
ptr_column = &Data.GridColumn{ (*ptr_srp)-1]
ptr_farsite = &FarsitevValue[(*ptr_srp)-1]

//1f the whole row is blank, print out NODATA and gots next row
if(*ptr_srp PALSE) //means a zero was left in this spot during MakelLink
{

for (c=1;c<=COLUMNS;c++)
fprintf{WriteFlame, "%d ", NODATA);

//put in new lines
fprintf (WriteFlame, "\n"):

continue; //goto next row

//print out NODATA for those cells before data starts
for{c=1;c<StartColumn; c++)
fprintf (WriteFlame, "%d ", NODATR) ;

//set some counters
OutColumn = StartColumn;
ctr = 0;

//print out values for area on landscape by checking
//value in Data.GridColumn to match it with OutColumn wvalue

do{
if (*ptr_column == OutColumn)
{
if {(*ptr_farsite == 0)
fprintf(WriteFlame, *“%d " ,NODATA);
else
fprintf(WriteFlame, *%hu ", *ptr_farsite};
ptr_farsite++;
ptr_colummn++;
OutColumn++;
ctr++;
}
else //print out NCDATA for the “gaps*
{
fprintf(WriteFlame, "%d “,NODATA}):
OutColumn++;
}
lwhile(ctr != HowMany);

//Check toc see how many columns are left to do

ColumnsLeft = COLUMNS - (OutColumn-1);
if(ColumnsLeft == 0}
{

fprintf (WriteFlame, "\n"};
continue; //go to next row

}

//print out NODATA for those cells after the data that are left
for{c=0;c<ColumnsLeft; c++)
fprintf (WriteFlame, "%d ", NODATA};

//put in a new line
fprintf (WriteFlame, “"\n"):

}//end of for{r=1;r<=ROWS;r++)

fclose {(WriteFlame);

//Delete the FarsiteValue array on free store
delete [] FarsiteValue;

return CellsHit;
}//end of CountFireHit

T R R R T
int FlameInterval (int f_feet)

PR e LR

{

//Will return an integer value that indicates what the 2’ flame height group is.
//The return value is the upper group height, so a FlameFeet of >=0 to 2 = 2, 3-4 =4, etc.

int group;

double INTERVAL = 2;

double Divide = 0;

if(f_feet <=2}
return 2;

279

Divide = {f_feet / INTERVAL);
group = { {int){ceil{Divide)}) * (int}INTERVAL;

return group;
}//end of FlameInterval

R e L e e

void DoubleCheckVegcodes (void)
A d R R L Rt R R d g L R T TR TR TP

{

/>
Go through the entire Data.*[] arrays and make sure every cell has valid vegcode values
*/

int a,b;

ushort TempCode;
int TempCover, TempDiam, TempVeg;
/=== e End of variable defining —-———mmm s oo mmmm -

printf{"Getting ready to double check Vegcodesin"):

for (a=0; a<UNIQUE; a++)

{
if (Data.Cellid[a] == FALSE)
break;
if (Data.Treelist[a] == NONFOREST)
(
for (b=0;b<NP; b++)
(
if (Data.Vegcode[a][k] != NONFOREST}
printf {"NONFOREST has a bad vegcode!\n"};
}
}
else
(

for (b=0;b<NP; b++)
(
TempCode = Data.Vegcodal[al] [b]; //The actual 3
or digit code from PREMO

if{ TempCode > 1061)
printf("Problem with total TempCode\n");

//extract the digits out
TempCover = TempCode%l0;
//last digit for determining stage (is closure, <=60% or > 60%)
/ 10: //next to last digit also for

TempDiam = { {TempCode-TempCover)}%100 }
determining stage (is the QMD group)
TempVeg = (TempCode-TempCode%100} / 100; //1lst digit for

determining VegCode

if (TempCover > 1)
printf ({"Problem with COVER walue\n"});

if (TempDiam > &)
printf ("Problem with DIAM value\n");

if (Tempveg > 10)
printf{*Problem with VEG value\n"};

}//end for{(a=0 ...)

}//end DoubleCheckVegcodes

GORL_CONTROLLER . CFF

/*
N R L L L L L
This GOAL_CONTROLLER.CPP file will hold the functions that are used for the landscape

optimizatiomn.

This file will hold the “PARENT* function that calls up the particular functions needed for particular landscape
goals we want to run.

Alsc, some functions that are fairly common to any goal and any heuristic are in here.

All heuristics used should employ the strategy of creating an array SOLUTION structures that has "X" records ;

where

"X* is a dynamic number reflecting the numbers of cells being evaluated and the 4 columns are:
-cellid-treelist-goal-holdfor- This format can be used for any type of spatial unit such as

subwatershed or for the entire basin.

280

B R R L R R T R R R R P

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h»>
#include <time.h>
#include <math.h>
#include "globals.h"
#include “"data.h"

//Functions declared here in gcal_controller.cpp

void SwaplAdjust{ struct SOLUTION *ptr_cs, ushort NG, ushort NH, double PervValues[], struct OPTIMIZE SINGLE_VALUE
ovIl,
ulong Records, struct ERA *ptr_era);
void AsciiSaveGoalHold({void);
void BinarySaveGoalHold({void);
ulong CountSolutionWatersheds({ulong count, struct SOLUTION Solution([]);
int DecreaseShort{ulong count, ushort Short{][GOALS] [HOLDNO]);
int DetermineEligibleCells({ulonyg Values{]);

int Fill_PValues(ulong Count, struct SOLUTION CS[], ulong Records, struct OPTIMIZE_SINGLE_VALUE OV[], double
Valuel] };
int Fill_SEra{ulong NoSub, struct ERA S_Era[], ulong Count, struct SOLUTION CS[] };

int FillEndingEra{ulong NoSub, struct ERA S_Era[], ulecng Count, struct SCOLUTION CSI[]);

int FillSeolution(ulong Values[], struct SOLUTION Solution[], int Status);

int FillValueToOptimize (void);

double GetBaselineVTO(ulong count, struct SOLUTION Solution{], double PerValues[], struct CPTIMIZE_SINGLE VALUE
OV[I], ulong Records});

double GetSumBigTrees(ulong count, struct SOLUTION CS[], struct OPTIMIZE_SINGLE_VALUE OV[], ulong Records);

int InputSclution{ulong Count, struct SOLUTION CS[]):
void InputAndCalculateSclutionEras{ulong Count, struct SOLUTION CS[]);
int LookAtOSV{const void *ptrl, const veid *ptr2);
int CompareEraMinor (const void *ptrl, const void *ptr2);
int LookAtSolutionMinor (const void *ptrl, const void *ptr2):
int LookAtSolutionCellid({const void *ptrl, const void *ptr2):;
void PickPrescriptions(int goal};
void ReuseBestPrescription(int goal);
void PrintSclutionValues(uleng Count, struct SOLUTION CS[], struct OPTIMIZE_SINGLE VALUE OV[],
ulong Records, int SubEra([], int Status);
void PrintSoluticnBigTrees(ulong Count, struct SOLUTION CS[], struct OPTIMIZE_SINGLE VALUE OV[],
ulcng Reccords, int SubEra[], int Status);
void PrintSolutionEraValues(struct ERA Era[], ulong NcSheds, int Status);

//functions to manage for goals {in gcal*.cpp)
extern void Goall{vecid);

extern void Goal3({void);

extern void Goal4(void);

extern void ReuseGoal({int Goal);

//Function is used here first but was originally coded during FillPremoData(), sc it is found in PremoStuff.cpp
extern int LockAtPremoReccrds{const void *ptrl, const void *ptr2);

//declared in EraStuff.cpp
extern veid CalculateNetEras{ struct CURRENT_ERAS *CellEra ;;
extern void CalculateDecayOnlyNetEras{ struct CURRENT_ERAS *CellEra };

//Set in PremoStuff.cpp
extern ulong ITL;

R e R R

void PickPrescriptions(int goal)
T L L L S T T T ST R T PP ST PP P DL

{

/* = ‘'goal" meanings: ==
1 = Max. Big Trees over entire watershed with subwatershed ERA constraint and w/thinning only of those stands <15"
in reserves

2 = Grow Only

*/

if(goal == 1)
{

AN LN R e D e SRR
ey

printf{"\t\t*** GOAL #1
wekREARY)
printf (“\t\t**+* Getting ready to pick prescriptions based on Maximizing the # of Big Trees over the
O

printf{"\t\t*** entire watershed while constrained to a 6th-field subwatershed ERA thresheold.
wawaR\ne) ;

printf{"\t\t*** And with CONSERVATIVE management in the reserves (thinning only in stands <= 15\")
wwaEA\DY)

printf({*\t\t*** Both Federal and Private lands are eligible and included in this simulation.
*reREA L)

DULS ("N *+ % H 4 ek ok ek ko ke o b kbbb ek ok X Kbk A kA R Rk R kA kR ek Rk kAR Ak

«**a\n\n") ;

Goall();
)
else if (goal == GROW_ONLY)
(

281

L R R L R R L L S ST T T I
wuy

printf{**** GOAL #2
wrawr\ne);

printf{"*** This is a GROW-ONLY scenario. Aall stands will be assigned a StandGoal of grow-only with
wewwr\pu);

printf{"*** a HOLDFOR value of 0. Periodic disturbance will still be accounted for during growth.
wxwrr\nwy,

N R e e e e e A e e A SRS ARG AR R AL ST

\n\n");
ReuseGoal (goal); //Just use the ReuseGoal(} function
}
else if{goal == FINNEY_EFFECT)
{
T RN T R R E R e
ey

printf("*+** GOAL #3
wrwaA\nY);

printf("*** This is the FINNEY EFFECT scenario. All the \"Bricks\" on Federal lands were assigned the
wrwar\nn)

printf(“*** the Reduce Fire Hazard stand prescription. All private lands were assigned the provide
werRE\n)

printf("*** a positive PNV stand prescription - all other cells were assigned Grow Only.
weRREADE) ;

DUES (%% %% kb % k& k& ko kb bk KK R R R A kR kA kR KRR Ak R R R kA kA R R R Ak K R AR R kA kAR R R AR R kAR AR kAR kA kA kA kAR

\n\n");
Goal3{);
}
else if{goal == RX6)
T R T LR L R e

ey

printf ("*** GOAL #4
wrwwr\gu);

printf{"*** This goal is designed to mimic alternative & of the Framework draft alternatives.
wrrrE\n]

printf("*** All private lands were assigned the Provide Positve PNV goal. Federal lands were
wrwaA\nu);

printf{"*** assigned stand prescriptions pased on maximizing the the # of Big Trees over
wrwaA\na);

printf{"*** the entire watershed while constrained to a éth-field subwatershed ERA threshold and
wrwar\na);

printf(**** some limitations on which prescriptions are allowed in particular areas.
wwawr\nu)

o R e e e e R e e A S AL RS SRS AR SR

\n\n");
Goaldl();

else
printf{*\nNo optimization routine developed for that goal yet\n');

//Save the Goal-HoldFor values for entire landscape so I can reuse when running multiple simulations and want same
data

if{FILE_TYPE == 1)

AsciiSaveGoalHold({);

else

BinarySaveGoalHold(};

}//end PickPrescription

R R R e

void ReuseBestPrescription({int goal
R e T LT T P

{

VA "goal" meanings: ==
1 = Max. Big Trees over entire watershed with subwatershed ERA constraint and w/thinning only of those stands <15"
in reserves

2 = Grow Only

*/

if(goal == 1)
{

LT RN Y R R d R e et
wrrrRRa)

printf (*\t\t**+ GOAL #1
wrwaA\nI);

printf{*\t\t*** Prescripticns were selected based on Maximizing the # of Big Trees over the
wrwaA\nu);

printf{*\t\t*** entire watershed while constrained to a 5th-field subwatershed ERA threshold.
wrwaA\nu)

printf(*\t\t*** and with CONSERVATIVE management in the reserves (thinning only in stands <= 15*)
wrawEAn);

printf{"\t\t*** Both Federal and Private lands are eligible and included in this simulation.
Axkar\pnu)

BN R A R e e e e e AR e e e R S S AL A SRS S A AR

*#***\n\n"};

ReuseGoal (goal);

282

else if({goal == GROW_ONLY)
BT TR LR R S L Rt L L R LT T L L L L ST TT e Tae
TEY

printf("*** GOAL #2
*haaa\QY .

printf{"*** Thig is a GROW-ONLY scenario. All stands will be assigned a StandGoal of grow-only with
wrxxa\nuY

printf{**** a HOLDFOR value of 0. Periodic disturbance will still be accounted for during growth.

*awwa\nuy)

e R R R e e R R e

\n\n"};
ReuseGoal{goal);
}
else if({goal == FINNEY_EFFECT)
{
Je T R T R g S e
weuy

printf{"*+** GOAL #3

v uUr
printf(“*** This is the FINNEY EFFECT scenario. All the \"Bricks\" on Federal lands were assigned the
*REAENDT)
printf("*** the Reduce Fire Hazard stand prescription - all other cells were assigned Grow Only.
wewwa\puy

B e R e R

\n\n"};
ReuseGoal (goal);
}
else if(goal == RX6E)
{
DT T TR D e
A

printf(n*** GOAL #4
weerEAnT)

printf{"*** This goal is designed to mimic alternative & cf the Framework draft alternatives.
wewaa\nuy

printf{"*** All private lands were assigned the Provide Positve PNV goal. Federal lands were
wewaa\nu)

printf{"**+* agsigned stand prescriptions based on maximizing the the # of Big Trees over
*rwwa\nny

printf("**+* the entire watershed while constrained to a 8th-field subwatershed ERA threshold and
AN

printf{"*** gome limitations on which prescriptions are allcwed in particular areas.
srrrrnuy

Do T R R e L T e

\n\n"});
ReuseGoal{gocal);

}
else
printf (*\nNo optimization routine developed for that goal yet\n");

}//end ReuseBestPrescription

D R L L L L L R L LT T R L2
Ak AR kA Ak A A Ak

int Fill_SEra{ulong NoSub, struct ERA S_Era(], ulong Count, struct SOLUTION CS[])

I R N N N T

AR AR kA ko h Ak AR

{

J*

This function is designed to fill the S_Era[] structures with the initial subwatershed cumulative ERA value for all
of thoge

subwatershed that are actually in the solution. gince the Equivalent Roaded Acre (ERA) value is suppose to be a
cumulative measurement, this function will ignore whether or not particular cells are included in the solution -
just whether or

not a cell is in a subwatershed that is in the solution.

In the draft document, "Eldorado National Forest: Cumulative Off-Site Watershed Effects (CWE) Analysis Process"
version 1.1

dated June, 1993, there was reference that they DID NOT include the acreages of wilderness in their ERA
calculations, but

after discussion with John Sessions we felt that we WILL include those acreages because the ERA is a cumulative
measuremernt.

However, this ccde could be modified to not count those acres if that is determined so later.

NOTE: Both CS{] and S_Eral[] MUST be coming in sorted by Minor in ascending order
*/

int a, Number;

ushort CurrentValue;
struct ERA Key;

struct ERA *ptr_record;

A End of variable defining --------=----=--s-mmommmm
//printf("Here in Fill_ SEra\n"j;

J/rrxxrrtxenasnswxs Pirgt thing is to grab all the unique subwatershed ID's from CS[] **r**arrsssadbsashbbnsrbnnss

//Set CurrentValue to the first sub-watershed ID in CS

283

CurrentValue = CS[0].Minor;

S_Era[0] .Minor = CurrentValue;

Number = 1;

//printf ("Counting sub-watershed %huin",CS[0].Minor);

for (a=0; a<(signed)Count;a++)
{
if (CS[a].Minor == CurrentValue)
continue; //don’t count
else
{
//printf("Counting sub-watershed %hu\n®,CS[a].Minor);

S_Era[Number] .Minor = CS[al.Minor;
CurrentValue = CS[a] .Minor;
Number++;

}
printf("In FillS_Era, there were %d subwatersheds counted - out of %d, Everything is ', Number, NoSub);

if (Number = (signed}NoSub }

(
printf(* Not OK,.bailing\n", Number) ;
Bailout (B85} ;
return FALSE;

else
printf{" OK.,.continuing\n\n"):

//Since CS[] was sorted by Minor prior to coming to this function, I will assume that the Minor
//values that are now in S_Era[].Minor are in ascending order and can be ESEARCH with no problems.

JIFERERR AR AR AR SRRk ARk k ka2 kA Now sum up the initial ERA’s for each subwatershed in solution *****rrrdssrrinssrss

for {a=0;a<UNIQUE;a++)
{
if{ Data.Cellid[a] == FALSE) //No more cells to check
break;

//8ince there are no restrictions such as not counting wilderness, every cell has a contribution to
cumulative ERA

//as long as its subwatershed is in the solution. Make a key with the subwatershed ID and search for it

Key.Minor = Data.Minor{al;

//Use bsearch to find the matching subwatershed in the array of Era structures
ptr_record = (struct ERA*)bsearch{

&Key,

{void *}S_Era,

{size_t}NoSub,

sizeof{ struct ERA),

CompareEraMinor);

//A subwatershed may not be in the solution so this is difficult tc say something is wrong - will assume
that a NULL
//pointer only happens for subwatersheds not in solution and thus will skip tc next cell (e.g. water
bodies are never in solution}
if(ptr_record == NULL
continue;

//at this point we have a pointer at the proper S_Era structure and we have access to the
Data.InitialEra[] wvalue.

ptr_record->SumInitialEra += Data.InitialErala]; //8um up the InitialEra[]} for this
subwatershed
ptr_record->Count -

//and track how many total cells are being summed per subwatershed

}Y//end for(a=0 ...)

return TRUE;
}//end Fill_SEra

A L d S R T L T T
KRRk kA kA R A Rk

int FillEndingEra(ulong NoSub, struct ERA S Era[], ulong Count, struct SOLUTION CS[])

F R T R R e T L L L T
KR Ak kR kAR kR A Rk

{

/*

NOTE: Both CS[] and S_Era[] MUST be coming in sorted by Minor in ascending order

This function is basically a copy of Fill_SEra() except this only gets called at the end of a simulation.
The difference is that this functions wants to sum up the Data.Era[)[] values for those

cells in the solution.

*/

int a, b, Number;
ushort CurrentValue;
struct ERA Key;

struct ERA *ptr_record;

/== -——- End of variable defining ——-—=-—==somm e mmme oo
JlrrKxxwxrmawrawarr Pirst thing is to grab all the unique subwatershed ID‘s from CS[] *F**ardwsdrdamankhhshnshsenn

284

//Bet CurrentValue to the first sub-watershed ID in CS
CurrentValue = CS5({0].Minor;

S_Era(0] .Minor = CurrentValue;

Number = 1;

//printf{“Counting sub-watershed %hu\n",CS{0].Minor};

for{a=0;a<(signed)Count;a++)

{
if(CS[a].Minor == CurrentValue)
continue; //don’t count
else
{
//printf("Counting sub-watershed %huin",CS(a].Minor)
S_FEra[Number] .Minor = Ccs(al.Minor;
CurrentValue = CS(a)}.Minor;
Number++;

}
printf("In FillS_Era, there were %d subwatersheds counted - out of %d, Everything is ", 6 Number, NoSub);

if (Number != (signed)NeSub)

{
printf{* Not OK..bailing\n",Number);
Bailout (85);
return FALSE;

else
printf(" OK...continuing\n\n"};

//8ince CS[] was sorted by Minor prior to coming to this function, I will assume that the Minor
//values that are now in S_Eraf].Minor are in ascending order and can be BSEARCH with no problems.

JpERARII A A A A A AR A x ARk A AR AR AR Now sum up the initial ERA’s for each subwatershed in solution *******skkakdrdrrrr

for (a=0;a<UNIQUE; a++]
{
if(Data.Cellid{a] == FALSE) //No more cells to check
break;

//Since there are no restrictions such as not counting wilderness, every cell has a contribution to
cumulative ERA

//as long as its subwatershed is in the sclution. Make a key with the subwatershed ID and search for it

Key.Minor = Data.Minorl[a];

//Use bsearch to find the matching subwatershed in the array of Era structures
ptr_record = {struct ERA*)bsearch!

&Key,

{void *)S_Era,

{size_t)NoSub,

sizeof{ struct ERA).

CompareEraMinor };

//A subwatershed may not be in the sclution so this is difficult to say something is wrong - will assume
that a NULL
//pointer only happens for subwatersheds not in solution and thus will skip to next cell {e.g. water
bodies are never in solution}
if{ ptr_record == NULL)}
continue;

//at this point we have a pointer at the proper S_Era structure and we have access to the
Data.InitialEral] value.
for (b=0; b<NP;b++}
ptr_record->SumPeriodEralb] += Data.Era(a][b]; //Sum up the periodic Data.Eral][]
valuesfor this subwatershed

ptr_record->Count s
//and track how many total cells are being summed per subwatershed

}//end for{a=0 ...)

return TRUE;
}//end FillEndingEra

J A D R e e
KRR R R Ak kR A Ak k

int Fill_PValues{ulong Count, struct SOLUTION CS[], ulong Records, struct OPTIMIZE SINGLE_VALUE OVI[], double
Value[])

B L E T D R R R T L L R
T

{

/>

This function is designed to go through the current solution stored in CS[] and tally up the sum total wvalue, for
all the

different prescriptions found. This is done by making a key from CS and looking for that key in the QV[] structure
and

looking at the Value({] member in there.

NOTE: C5{] is sorted by Cellid in ascending order & OV[] sorted by TREELIST-GOAL-HOLD
*/

int a,c;

//structure stuff
struct OPTIMIZE_SINGLE _VALUE Key;
struct OPTIMIZE_SINGLE_VALUE *ptr_key;

/fmmm o e e e e End of variable defining -----—----~----=----o--o-ooooooo

for{a=0;a<({signed}Count;a++)

(

285

= Now go through the CS[] structures and tally up the Optimizing Value for those cells in the solution

//Now make a key to look up the Optimizing value for this particular stand prescription in the array of

OV structures.
Key.Treelist = CSla).Treelist;
Key.Goal = CSlal.
Key.Hold = CS[al.

//Now use bsearch to find the matching record in the array of OV structures
ptr_key = {struct OPTIMIZE_SINGLE_VALUE*)bsearch/

&Key,

(void *)oV,

(size_t)Records,

sizeof(struct OPTIMIZE_ SINGLE_VALUE),

LookAtOSY) ;
if (ptr_key == NULL) //There had better be one!
Bailout(86);
else
(
//Track the Value being optimized which returns back to heuristic as PervValues(]
for {c=0;c<NP;c++)
Valuelc) += ptr_key->Valueic];
}

}//end for{a ...}
return TRUE;
}//end Fill_PValues

F A e

ulong CountSolutionWatersheds{ulong count, struct SOLUTION Solution[])

P A R e e

{

I

This will count up return the number of sub-watersheds that are actually in the current
solution. The difference with the CountSubWatersheds() (in Misc.cpp) is that here those

GIS slivers and water bodies that were considered sub-watersheds are not counted.

This function will assume that the array of Solution structures has been sorted by the
.Minor member
*/

int a, Number;
ushort CurrentValue;

e End of variable defining --=-------------ccmoomoommno oo

//Set CurrentValue to the first sub-watershed ID in Solution
CurrentValue = Solution[Q] .Minor;

Number = 1;

//printf (*Counting sub-watershed %hu\n",CurrentvValue);

for {a=0; a<(signed)count;a++)

{
if (Solution{al.Minor == CurrentValue}
continue;
else
{

//printf (*Counting sub-watershed %huin",Solution[a].Minor);
Number++;
CurrentValue = Solution[a].Minor;

)

//Print stuff to the stats.txt file
PrintToStat (4, {ulong)Number);

return {(ulong)Number;
}//end CountSolutionWatersheds

AR R R R R A e T

int DetermineEligibleCells(ulong Values|[])

R g B R S
(

I

Depending on the GOAL_TO_USE, thig function will go through the landscape and determine
some wvalues that will be placed in the Values[] array and can then be used to
dynamically allocate space in the SOLUTION structure that will be created later.

NOTE: This function can be used for all goals and anytime in during simulation when
outputs are needed to mimic the starting conditions (e.g. to get the potential BigTrees
given the initial landscape and using different goal scenarios - in OutputPreSimData)

//don’t count

*/
int a;
ushort *ptr_minor, *ptr_alleoc, *ptr_stage, *ptr_buffer, *ptr_owner;

ulong *ptr_treelist, *ptr_cellid;
ulong AllocOK=0, AllocNOK=0,CellsInShed=0;

1f (GOAL_TO_USE == 1)
{

for(a=0;a<UNIQUE; a++)

(
ptr_alloc = &Data.Alloc(a]l;
ptr_minor = &Data.Minor[a)l;
ptr_treelist = &Data.Treelist[al;
ptr_stage = &Data.InitialStage{a);
ptr_buffer = &Data.Buffer([a];
ptr_cellid = &Data.Cellid[al;
if (*ptr_cellid == FALSE)
break;
CellsInShed++;
if{ *ptr_minor == WATER_BODY || *ptr_minor == NODATAFLAG |
one of those sliver subwatersheds
*ptr_alloc == ALLOC_WILD || *ptr_treelist == NONFOREST
Wilderness or Treelist 209 or
{(*ptr_alloc == ALLCOC_RESERVE && *ptr_stage > 9)
//if in LSR and 15" QMD or
(*ptr_buffer == IN_BUFFER &% *ptr_stage > %) }
//if in BUFFER and »15" QMD...
A]110CNCE++;

/{These ARE NOT eligible
else
AllocOK++;

}
}
else if (GOAL_TO_USE == GROW_ONLY)
{

for(a=0; a<UNIQUE; a++)

286

//1if a lake or

I iLE

{
ptr_alloc = &Data.Alloc[a]l;
ptr_minor = &Data.Minor([a);
ptr_treelist = &Data.Treelist([a];
ptr_cellid = &Data.Cellid[a];
if (*ptr_cellid == FALSE)
break;
CellsInShed++;
if(*ptr_minor == WATER_BODY || *ptr_minor == NODATAFLAG I //if a lake or
one of those sliver subwatersheds,
*ptr_alloc == ALLOC_WILD || *ptr_treelist == NONFOREST) J/if
Wilderness or NONFOREST
A110cNOK++;
//These ARE NOT eligible
else
AllocOK++;
}
}
else 1f(GOAL_TO_USE == FINNEY EFFECT)
{
for (a=0; a<UNIQUE;a+t+}
{
ptr_owner = &Data.Owner [al;
ptr_treelist = &Data.Treelist[a];
ptr_cellid = &Data,Cellid[al;
if(*ptr_cellid == FALSE)
break;
CellsInShed++;
if(*ptr_owner == OWN_PI || *ptr_treelist == NONFOREST) //1if private lands {(both PI and
PNI) or nonforest
AllocNCK++;
//These ARE NOT eligible
else
AlloCCE++;
}
}
else 1f{GOAL_TO_USE == RX6)
{
for{a=0; a<UNIQUE; a++)
{
ptr_owner = &Data.Owner[a]
ptr_treelist = &Data.Treelist [al;
ptr_cellid = &Data.Cellid[a]l;

if{*ptr_cellid == FALSE)

break;
CellsInShed++;

if(*ptr_owner == QWN_PI

PNI} or nonforest
Al1locNQOK~++;

else
AllocOK++;

else
return FALSE;

//Fill the Values array in this order:
Values (0] = AllocOK;

Values[1l] = AllocNOK;

Values([2] = CellsInShed:

return TRUE;
}//end DetermineEligibleCells

‘ *ptr_treelist == NONFQREST)

287

//1if private lands (both PI and

//These ARE NOT eligible

R

int FillSolution{ulong Values[], struct SOLUTION Solution[], int Status)

P R R e S Y

(
/*

This function fills up the array of SOLUTION structures for a goal.
when this function is called up with

filled is the Minor, Cellid, and Treelist values.

What always gets

Status == FAKE, then it is being called after the landscape optimization (i.e. during
OutputPre- or PostSimAnalysisData) and the Goal & Hold were already found sc they will be

filled as well.

Also, for the Grow Only goal (Goal2), the Goal & Hold values can be used from what was
put in during initialization of the Data*.[] arrays - because Goal 9 and Hold Q0 was used.

*/
int b;
ushert *ptr_minor, *ptr_alloc, *ptr_stage, *ptr_buffer,

ulong *ptr_treelist, *ptr_cellid;
ulong AllocOK=0, AllocNCK=0,EligibleCell, CellsInShed=0Q;

*ptr_goal, *ptr_hold, *ptr_owner, *ptr_rule:

Jmmmmm e e End of variable defining ===-me-----cmmmcoo e

//Set some variables from the incoming Values array

AllocCK = vValues(0];
AllocNOK = Values([1l]:
CellsInshed = Values(2]:;

EligibleCell=0;
if {GOAL_TCO_USE == 1}
(

for (b=0; b<UNIQUE;b++}
(
ptr_cellid = &Data.Cellid([b]:
this cell
ptr_treelist =
value for this cell

&Data.Treelist [b];

//ptr_cellid has the cellid for

//ptr_treelist has the treelist

ptr_minor = &Data.Minor{b]:

ptr_alloc = &Data.Allocib];
ptr_stage = &Data.InitialStage(b];
ptr_buffer = &Data.Buffer(b];

ptr_goal = &Data.Goallbl;
ptr_hold = &Data.Hold[b];
if(*ptr_cellid == FALSE)

{

if (EligibleCell != AllocOK}
Bailout(51);

out, no more valid cells in Data.* array

a lake or one of those sliver subwatersheds

else
break; //just break

¥

if(*ptr_minor == WATER_BCDY || *ptr_minor == NODATAFLAG Il //1E
*ptr_alleoc == ALLOC_WILD || *ptr_treelist == NONFOREST ||

//if Wilderness or NonForest or

{*ptr_alloc == ALLOC_RESERVE && *ptr_stage > 9} |

//if in LSR and >15" CMD or
{*ptr_buffer == IN_BUFFER && *ptr_stage > 9))

//1f in BUFFER and »15" QMD...

//lock at
else

{

solution already found

continue;
next cell

Sclution[EligibleCell].Minor
Solution{EligibleCell] .Cellid
Solution[EligibleCell].Treelist

//Put in the Goal and Hold values found

if (Status == FAKE)
{
Solution[EligibleCell].Goal
Solution[EligibleCell] .Hold
}
EligibleCell++;
if (EligibleCell == allocOK)
break;
}
} //end for (b=0;b<UNIQUE;b++)
}
else if(GOAL_TO_USE == GROW_ONLY)
{
for (b=0;b<UNIQUE; b++)
{
ptr_cellid = &bata.Cellid[b};
this cell

ptr_treelist =

value for this cell
ptr_minor
ptr_alloc

ptr_goal =

if(*ptr_cellid

{

else
break;
out, no more valid cells in Data.* array
}
if(*ptr_minor == WATER_BODY || *ptr_minor ==
a lake or one of those sliver subwatersheds
*ptr_alloc == ALLOC_WILD || *ptr_treelist
//if Wilderness or NonForest or
continue;
//look at next cell
else
(

Only,

matter what

)

&Data.Treelist [b];

= &Data.Minor [bl;

= &Data.Alloc (bl
&Data.Goal [b];

== FALSE)

if(EligibleCell != AllocOK}
Bailout(51);

Solution[EligibleCell].Minor
Solution[EligibleCell).Cellid
Solution[EligihleCelll.Treelist

Solution[EligibleCell] .Goal

the Goal & Hold were initialized with correct values

Solution{EligibleCell] .Hold

288

= *ptr_minor;

= *ptr_cellid;

during landscape optimization when

NODATAFLAG

//NOTE: No need to have if(Status == FAKE) - the
EligibleCell++;
if(EligibleCell == RllocOK)

break;

} //end for(b=0;b<UNIQUE;b++)

)

else if{GOAL_TO_USE == FINNEY_ EFFECT)

{

for (b=0; b<UNIQUE; b++
{

ptr_cellid =

this cell

ptr_treelist =

value for this cell
ptr_minor
ptr_owner
ptr_rule
ptr_goal =

if{*ptr_ce
(

)

&Data.Cellid([b];

&Data.Treelist[b];

= &Data.Minor([b];

= &Data.Owner (b];
&Data.PRule[b];
&Data.Goal[b}];

11id == FALSE}

if(EligibleCell {= AllocOK)

Bailout (51);
else

= *ptr_treelist;

reusing a

= *ptr_goal;
= *ptr_hold;

//done

//ptr_cellid has the cellid for

//ptr_treelist has the treelist

/73ust break

I //if

NCNFOREST)

*ptr_minor;
*ptr_cellid;

= *ptr_treelist;
= *ptr_goal; //For Grow
= 0;

goal & hold get filled above no

//done

//ptr_cellid has the cellid for

//ptr_treelist has the treelist

289

break; //just break
out, no more valid cells in Data.* array

}

//6 Mar 00: Klaus suggested giving all private lands the PNV stand goal prescription because

for the
//Framework those lands are PI and they are doing cutting, so thig will at least simulate
something
if(*ptr_owner == OWN_PI || *ptr_treelist == NONFCREST) //if private lands {both PI and
PNI} or nonforest
(
if{ *ptr_owner == OWN_PI)

*ptr_goal = SG_PNV;

continue;
//look at next cell
}
else
{
Solution[EligibleCell] .Minor = *ptr_minor;
Solutionf[EligibleCell].Cellid = *ptr_cellid;
Soluticn[EligibleCell] .Treelist = *ptr_treelist;

I

OK, this may seem weird - but Data.PRule[], had either a 1 or 10 value and that can
be used directly

as the stand goal for eligible cells, However, they must have 1 subtracted from them
to maintain

the numbering system used for the stand goals.

Yy

Solution[EligibleCell].Goal = {*ptr_rule) - 1;
Solution[EligibleCell] .Hold = 0;

//NOTE: No need to have 1f(Status == FAKE) -~ the goal & hold get filled above no
matter what
EligibleCell++;
if (EligibleCell == AllocCK) //done
break;

}
}//end fortb=0 ...)
}
else if (GOAL_TQ_USE == RX6)
{

for (b=0; b<UNIQUE; b++)

(
ptr_cellid = &Data.Cellid[b]; //ptr_cellid has the cellid for
this cell
ptr_treelist = &Data.Treelist[b]; //ptr_treelist has the treelist
value for this cell
ptr_minor = &Data.Minor({b];
ptr_owner = &Data.Owner[b];
ptr_rule = &Data.PRule[b];
ptr_goal = &Data.Goal[b];
ptr_hold = &Data.Hold[b];
if (*ptr_cellid FALSE)
(
if (EligibleCell != AllccOK)
Bailout (51);
else
break; //just break

out, no more valid cells in Data.* array

}

//6 Mar 00: Klaus suggested giving all private lands the PNV stand goal prescription because

for the

//Framework those lands are PI and they are dcing cutting, so this will at least simulate
something

if(*ptr_owner == OWN_PI || *ptr_treelist == NONFOREST) //if private lands (both PI and
PNI) or nonforest

(

if (*ptr_owner OWN_PI)
*ptr_goal = SG_PNV;

continue;
//look at next cell

)

else

{
Solution[EligibleCell] .Minor = *ptr_miner;
Solution[EligibleCell].Cellid = *ptr_cellid;
Solution[EligibleCell].Treelist = *ptr_treelist;
I

OK, this may seem weird - but Data.PRule[], has values 1 thru 10 in it, which
represent the Maximum stand

goal prescription # that a cell can have {e.g. a value of 2 means it can have stand
goal 1 or 2}.

However, they must have 1 subtracted from them to maintain the numbering system used
for the stand goals.

290

*
/
Solution[EligibleCell) MaxGoal = (*ptr_rule) - 1;

//Put in the 3oal and Hold values found during landscape optimization when reusing a
solution already found

if (Status == FAKE)
{
Solution{EligibleCell] . Goal = *ptr_goal;
Solution[EligibleCell] .Hold = *ptr_hold;
}
EligibleCell++;
if (EligibleCell == AllocOK) //done

break;
}
}//end for(b=0 ...)

else
return FALSE;

return TRUE;
}//end FillSolution

PR R T T R

int FillValueToOptimize(}

R R L T T T A LR I T
(

/*

NOTE: Can be used for either a Subwatershed or Watershed search

This function will create a shortened version of the Premo data that was created

in the CreateSortedPremoBinaryFile() function. That structure has a different

record for every Treelist-Goal-Hold-Period combination whereas this functicn will

create an array of structures that has Treelist-Goal-Hold-Value[NP]-BigTrees[NP]-Rev{NP], and CFHarvest[NP].
Only the Treelist-Goal-Hold differentiate new records. The value that is placed

in the *[].Value[] spot is that value being OPTIMIZED. So for example, in goal 1 it will be the #of
BigTrees. The value in *(].BigTrees[] will always be the #of BigTrees {(so for goal 1, it will have the

same data as in *[].value{])

NOTE: The value stored will always be USHORT to help in reducing processing time.
Once a solution has been found, FillPremoData() will enter the real data as flocat or ushort.

Once this array of structures is completed and sorted, it will be written out to

a binary file to be used later on during the landscape optimization. Could recode later to
pass a pointer to a structure but this is OK for now.

*/

//1I0 variables
FILE *BinIn, *HeaderIn, *Index, *Bin0Out, *HeadercCut;
char Temp{256];
ulong RecordNo;

//etructures
struct PREMO_RECORD Key;
struct PREMO_RECORD *ptr_key;

int count, goal, Hold;

int ScanStatus, IndexNo, ctr;
ushort Per;

ulong Record;

ulong POT;

//For Time information
clock_t Start, Finish;
double Duration:

//for misc counting
int %x=0, y=0;

//calculate the global POT - this is how many actual structures (or records) are in the InitOpt array of structures
POT = ITL * GOALS * HOLDINO;
//printf{*So I just set POT to value of %lu\n",POT);

//++++++++++++++++++++ The "smaller” structure to hold value being optimized and BigTrees
e+t ++ e+
//declare and Initialize the array ofInitOpt[] structures - this is a compact version of the PInv structure further
below
struct OPTIMIZE_SINGLE_VALUE (*InitOpt) = new struct OPTIMIZE SINGLE VALUE[POT];
if (InitOpt == NULL)
printf({*Problems allocating memory for InitOpt with %lu records\n", POT);

memset (InitOpt, 0, sizeof (struct OPTIMIZE_SINGLE_VALUE) * POT);

//+++++++++++++++++++ The original structure that holds all the Premo data + +++

//Read in the binary file created by CreateSortedPremoBinaryFile() - it has all the data for the initial stands in
it

291

//See PremoStuff.cpp - I originally created this process to read in the Premo data so more info is located there

//Create and Open the Header and actual Binary file with PREMO data in it
sprintf(Temp, "%s%s\\Binary\\%s_Premo.bin", PREFIX,Initial3StandDataDir, ENVT};
BinIn = fopen(Temp, *rb*);

sprintf (Temp, *“%s%s\\Binary\\%s_Premo.hdr", PREFIX, InitialStandbataDir, ENVT);
HeaderIn = fopen{Temp, “r");

//Get the Number of records that are listed in the header file
fscanf (HeaderIn, "%1u", &RecordNo) ;

//Create an array of structures on the free store to hold these records
struct PREMO_RECORD (*PInv} = new struct PREMO_RECORD[RecordNol];
Potential Inventory

if(PInv == NULL)

//PInv stands for

printf{*Problems allocating memory for PInv[] with %lu elements\n", RecordNo*sizeof (PREMO_RECORD));

//Initialize a couple of things

memset(PInv, 0, sizeof(struct PREMO_RECORD! * RecordNo); //array of structures to hold all the input data

memset (&Key, 0, sizeof{ struct PREMO_RECORD) };
record in PInv

//Now just read in the binary data the same way it was written out in CreateSortedPremoBinaryFile()

fread (PInv, sizeof {PREMO_RECORD),RecordNc,BinIn};

//close up the files
fclose(BinIn);
fclose (HeaderlIn);

//Set an error checker to check the value of RecordNo

if (RecordNo != POT * NP)
Bailout{78);

//NOTE: PInv is sorted by: Treelist - Goal - Hold - Period

//Create a shortened version of PInv by placing egquivalent data in the array ofInitdpt structures. That way

InitOpt can be sorted

//and there will be few records to BSEARCH through because the values tc optimize on will ALL be stored in the
//InitOpt->Valuel] array {(which is accessible by finding only one record, not NP records!)

//I am assuming that a “...\treeindex.txt" file exists {(made during InitialStandOpt(})
sprintf(Temp, "%s%s¥d\\per0\\%s",PREFIX, INPUTS, GOAL_TO_USE, TREE_INDEX) ;

Index = fopen{Temp,"r");

if {Index == NULL)

//Key to use for searching for a particular

fprintf(stderr. "opening of %s failed(FillValueToOptimize{}): %s\n", Temp,strerror{errnol)

// First go through the file and COUNT the number of treeindexes
count = 0;
while ((ScanStatus=fscanf{Index,"%d",&IndexNo})!=EOF)
{
count = ++count;

}

// Rewind the file pointer so it is back at the beginning of the file

rewind{Index) ;

//&n error checker - these two should match
if(ITL != (unsigned)count)
Bailout(79);

// Start looking at each initial treelist, and for each Goal and Hold combo,
structures with

//the corresponding data in the array of PInv structures.

Record=0;

forlctr = 0; ctr < count; Ctr++)

{

£ill in the array of InitOpt

//for each treelist

fscanf (Index, “%d", &IndexNo) ; /fscan in the value - if this function used later,

watch out for treelist > 65,530

for (goal=0;g90al<GOALS; goal++)
{

for (Hold=0;Hold<4;Hold+=3) //for the "HoldFor" periods

{

//for each goal

//Start to fill in the array of InitOpt structures with the above data - this is

OPTIMIZE_SINGLE _VALUE type

InitOpt[Record].Treelist = {ulong) IndexNo;
InitOpt [Record] .Goal = (ushort)goal;
InitOpt [Record] .Hold = {ushort)Hold;

//5tart to make a key for this combination of IndexNo - goal - Hold - Elev
//The key is a PREMO_RECORD type s6 it can look through the PInv structure

Key.Treelist = {ulong)IndexNo;
Key.Goal = {ushort)goal;
Key.Hold = (ushort)Hocld;

for (Per=0; Per<NP; Per++)

{

//Finish off the Key with the period

Key.Period = {ushort)Per;

292

//Now use bsearch to find the matching record in the array of PInv
structures
ptr_key = (struct PREMO_RECORD*)bsearch(
&Key,
{void *)PInv,
(size_t)RecordNo,
sizeof(struct PREMO_RECORD),
LookAtPremoRecords };

if (ptr_key == NULL)
Bailout (75);

[/ RERE R R AR AR AR AR XK AR AR ARH a0ryal Value to OPTIMIZE
e R S SRR s
//Fill in the current InitOpt[Record].Value[Per] with the correct value
from the record ptr_key points to
if (GOAL_TO_USE == 1
InitOpt[Record] .Value[Per] = {ushort} (floor{ ptr_key->BigTrees
* ACREEQ)); //divide by BIGTREES_EXP when done
else if{GOAL TO USE == GROW_ONLY)
InitCpt [Record) .Value[Per] = 0;
//Grow Only, no need to put anything here
else if(GOAL_TO_USE == FINNEY_EFFECT)
InitOpt [Record] .Value[Per] = 0;
//using the "bricks", no need to put anything here
else if(GDAL _TO _USE == RX6)
InitOpt [Record].Value[Per] = (ushort) (£loor (ptr_key->BigTrees
* ACREEQ)); //divide by BIGTREES_EXP when done
else
Bailout (62} ;

JUREEEXKAKRRRKK KR AKR KRR RN XA RN * N The # of Big Trees
R e e e

//And then fill InitOpt[Record].BigTrees[Per] with the #of BigTrees for
that record...NO matter what goal!
InitOpt [Record].BigTrees[Per] = (float) (ptr_key->BigTrees * ACREEQ);
//need to divide by BIGTREES_EXP when done

/KA A KRR KA KRR KRR AKX KRR KRN H X2+ % The associated REVENUE
AR EKEE AR R AR AR A RN

//If the revenue is (-), then just make it 0 ...alsc maks sure no values
over ushort get in

1f({ ptr_key->Rev < 0)

InitOpt[Record] .Rev[Per] = (ushort}0;
else if(ptr_key->Rev > 65530)
InitOpt[Record].Rev[Per] = (ushort)B5530;
else
InitOpt[Record] .Rev[Per] = (ushort)ptr_key->Rev;

JREREKK KRR K EARAXRRAR KX R x kKK ** %%+ The associated CFHarvest
ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
//If the harvest is (-), then just make it 0 {should never happen!} ...also
make sure no values over ushort get in
1f(ptr_key->Harvest < 0)
InitOpt[Record].CFHarvest [Per] = {ushort)O;
else if(ptr_key->Harvest > 65530)
InitOpt[Record] .CFHarvest [Per] =
{ushort)65530;
else
InitOpt[Record] .CFHarvest [Per] =
{ushort}ptr_key->Harvest;

}//end for {Per=0; Per<NP;Per++)

Record++; //increment only when all
pPeriod values for one Treelist-Goal-Hold combo are entered

}//end of for(HoldPeriods...
}//end of for{goal....
} //end of for(ctr...

Start = clock(};
J/***EY Sort the array of InitOpt structures by Treelist-Goal-Hold

gsort{ (void*)InitOpt,
//base
(size_t)POT,
//count of records
sizeof(struct OPTIMIZE SINGLE VALUE), //size of each record
LOOKAEOSV) ;
//compare function

Finish = clock(};

Duration = ({double) (Finish-Start) / CLOCKS_PER_SEC };
//printf("***Finished sorting in %.21f secondsin',6 Duration);
//close the treeindex.txt file

fclose (Index);

//Create the output Binary file and header file

sprintf(Temp, "%s%s\\Binary\\%s_InitCpt.bin", PREFIX,InitialStandDataDir,ENVT} ;
BinOut = fopen(Temp, “"wh"};

sprintf{Temp, "%s%s\\Binary\\%s_InitCpt.hdr", PREFIX, InitialStandDataDir, ENVT);
HeaderQut = fopen(Temp, "w");

//Write out the header data -- need to know how many records there are
fprintf (HeaderOut, "%lu\n*, POT);

//And now write out all the records in the array of Inv structure
fwrite(InitOpt, sizeof (OPTIMIZE_SINGLE_VALUE],POT,Binout);

fclose (BinOut) ;
fclose (HeaderOut};

//delete any arrays on free store
delete [] InitOpt;
delete [] PInv;

return TRUE;

} //end of FillValueToOptimize()

F R L L S L e e L R LR
int LookAtOSV(const void *ptrl, const void *ptr2)
[R R AR R R A kA Rk kA kAR R AR KRR A K AR KK AR KRR KRR R AR AR R R AR R A KR AR A AR AR AR AR ARk R AR AR R AR AR
{

//Will gsort or bsearch an OPTIMIZE_SINGLE VALUE (OSV) type by Treelist-Goal-Hold

//Just to typecast them since we aren’'t actually passing in pointers
struct OPTIMIZE_SINGLE_VALUE *eleml;
struct OPTIMIZE_SINGLE VALUE *elemZ;

eleml = (struct OPTIMIZE_SINGLE_VALUE *)ptrl;
elem2 = (struct OPTIMIZE_SINGLE_VALUE *)ptr2;

if(eleml->Treelist < elem2->Treelist)
//First gort by Treelist
return -1;
if(eleml->Treelist > elem2->Treelist)
return 1;
else
//Then by Gecal
{

if{ eleml->Goal < elem2->Goal }

return -1;
1f(eleml->Goal > elem2->Goal)
return 1;
else
//Then by Hold

if(eleml->Hold < elem2->Hcld)

return -1;

if{ eleml->Hold > elem2->Hcld)
return 1;

else
return 0;
//FINISHED! .

}//end Hold
}//end Goal

}//end LookAtOSV

A R L

int LookAtSolutionMinor(const void *ptrl, const void *ptr2)
F e A L S S ST
{

//Will gsort or bsearch an SOLUTION type by Mincr in ascending order

//Just to typecast them since we aren't actually passing in peinters
struct SOLUTION *eleml;
struct SOLUTION *elem2;

eleml = (struct SOLUTION *lptrl;
elem2 = (struct SOLUTION *)}ptr2;

™
n

eleml->Minor < elem2->Minor)
//First by Minor
return -1;
if(eleml->Minor > elem2->Minor }
return 1;
else

return 0;
//FINISHED!!

}//end LookAtSclutionMinor

293

294

F R e e L e R R T ST T T e a e
int LookAtSolutionCellid{const void *ptrl, const veid *ptr2

F A R R e e R e T T SRS

(
//Will gsort or bsearch an SOLUTION type by Cellid in ascending order

//Just to typecast them since we aren’t actually passing in pointers
struct SOLUTION *eleml;
struct SOLUTION *elemZ;

eleml = (struct SOLUTION *)ptrl;
elem2 = (struct SOLUTION *)ptr2;

if(eleml->Cellid < elem2->Cellid } //First by Cellid
return -1;

if(eleml->Cellid > elem2->Cellid)
return 1;

return 0;
//FINISHED! !

}//end LookAtSolutionCellid

AR R e e e L A

int CompareEraMinor (const void *ptrl, const void *ptr2)
R e LA AR A A R R R R AR R T T L

(
//Will gsort or bsearch an ERA type by minor in ascending order
//Just to typecast them since we aren‘t actually passing in pointers
struct ERA *eleml;
struct ERA *elem2;
eleml = (struct ERA *)ptrl;
elem2 = (struct ERA *)ptr2;
if(eleml->Minor < elem2->Minor)} //First sort by
Minor

return -1;

eleml->Minor > elem2->Minor
return 1;

else

.
"

return 0;
//FINISHED! !

}//end LookAtEra

T R R LR e T R SRR R T T
AR AR AR R AR AR

double GetBaselineVTO(ulong count, struct SOLUTION Sclution([}, double Pervalues[], struct OPTIMIZE_SINGLE_VALUE
QoV[], ulong Records)

F R R A AL L e e e e e R R

R e T

{

I

This function can be used for any goal that has a single value to cptimize and actually

used FillValueToOptimize() (which create the array of structures currently being passed in as OV[]}).
*/

ulong a;

double SumValue = 0;
double Baseline, ReturnBaseline:

I
int x,y;

printf("\n\n**** AND NOW the OV structures in GetBaselineVTO!'!'in"};
for (x=0;x<30:x++)

(
printf ("OV[%d] :\t¥lu\t¥huitdhu", x, OV[x].Treelist, OVI[x].Goal, OVI[x].Hold}:
for(y=0; y<NP;y++)
printf (*\t¥hu*,0Vix].value[y]);
printf("\n*};
}

printf{"There are %lu records in the OV array\n",Records);

printf("\n\n**** AND NOW the Solution structures in GetBaselineVTO!!!!\n"};
for (x=0;x<30;x++)
printf("Solution[$d]:\t%hui\t%lultslult$hult$huin', x, Solution[x].Minor, Solutien[x].Cellid,
Solution[x].Treelist,
Solution[x].Goal, Solution[x].Hold);
*/

if (GOAL_TO_USE == 1)

{
//Call up GetSumBigTrees() to help determine a baseline to use for Big Tree goals
Baseline = GetSumBigTrees(count, Solution, OV, Records);

else

//Sum up the PerValues values and get the SumValue tc use in caluculating a single AvgValue that
represents
//the total deviation of all periodic "values" from a constant level.
for(a=0;a<NP; a++)
SumValue += PerValuesla];

Baseline = (SumValue / NF};

}//end else(GOAL_TO_USE ==1)

//Make adjustments to the baseline as needed
ReturnBaseline = Baseline * BASE_ADJ;

return ReturnBaseline;
}//end GetBaselineVTO

R T T e R R

Kk kk ok hkhkkhk ok ko

double GetSumBigTrees{ulong c¢ount, struct SOLUTION CS{], struct CPTIMIZE_SINGLE_VALUE OV[], ulonyg Records}

PR R R R R I I I I T T e
ek kR Rk kR kR Rk

{

/>

The ideal of this function is to find the SUM number of BigTrees (for all cells) per period.
The SUM will include using: 1) a grow only scenarioc {(goal 9}, 2) a Reduce

Wildfire only scenarioc {goal 0), and 3) enhance Fish Habitat only scenario{gcal 2) - adding
the # of trees, at cell acre equivalent / per period and dividing by 3. This will give me
something of an "average SUM" which can then be usged during the optimizaticn.

*/

int a, b, ¢, y, goal, hold;

float TempPeriodTotals[NP], SumBigTrees[NP];
double LargestSum=0;

struct OPTIMIZE_SINGLE_VALUE Key;
struct OPTIMIZE_SINGLE_VALUE *ptr_key;

S m e e e End of variable defining -----—--=~---c-s-----rmom oo

//Initialize the TempPeriodTotals[] and the SumBigTrees[] arrays
for(a=0;a<NP;a++}
{

TempPeriodTotals(a] = O;

SumBigTrees(al = 0;
}
//Create a temp array to keep track of those cells “already counted” ~ save processing time
ushort (*Counted} = new ushort[count];

if{ Counted == NULL)
printf (“There was NOT encugh memory for Counted with %lu elements‘n", count});

for{a=0;a<({signed)count;a++)
Counted(a] =

//Go through C38[} and find treelist currently in this initial solution
for(a=0;a<(signed}count;a++)
{
//First check and see if this Treelist has already been opened and accounted for
if{ Countedla] == TRUE) //YES, is has been, continue on to next cell
continue;

//Otherwise, start to make a key to loock for this treelist in the OV structures
Key.Treelist = Cs[a].Treelist;

//Make an inner loop to go through each of 3 differnt goal scenarios that will be used in getting the
“"average SUM"' value
for (b=0;b<3;b++)

{
//Get the "goal" value
if(b == 0)
goal = 0; //Reduce Wildfire stand goal
else if(b == 1)
goal = 2; //Enhance Fish Habitat stand goal
else
goal = 9; //Grow Cnly stand goal

//Get the *hold" value
dof{
hold = (rand(} % 4); //this gives 0,1,2,and 3....but it has to
either 0 or 3
Ywhile (hold == || hold == 2);

//Finish off the key
Key.Goal = (ushort)gcal;
Key.Hold = {(ushort)hold;

295

PR

PR

be

296

//Now use bsearch to find the matching record in the array of OV structures
ptr_key = {struct OPTIMIZE SINGLE_VALUE*)}bsearch{

&Key,

(void *)QV,

{size_t)Records,

sizeof(struct OPTIMIZE_SINGLE_VALUE),

LookAtOSV) ;
1f{ptr_key == NULL) //There had better ke cne!

Bailout({80);
else //Add the values for Big

Trees to the TempPeriodTotals[] [(which has sum for the 3 goal scenarios)

{

for (c=0;c<NP;c++)

TempPeriodTotals{c] += ptr_key->BigTrees[c] ;

}

}//end for (b=0;b<3;b++)

/*

The TempPeriodTotals[] values can be reused for all solution cells that have the same treelist. Scroll
through €g[] and find those that do have same treelist and make a flag in the Counted array if so.

*/

//First make contribution for this cell since it was first to have this treelist
for {y=0;y<NP;y++)
SumBigTrees|[y] += TempPeriodTotals(y];

//Set a flag in the Counted array
Counted[a] = TRUE; //Y¥ES, this cell has now been

accounted for

//Now start looking through remaining cells in C3{]

for {b=a+1;b<{signed)count;b++) //start looking
at next cell
{
if{ °S[b].Treselist == CS[a].Treelist) //¥E3, this cell does have the same
treelist
{
//Set an error checker - each treelist should be done once and this indicates a
second time
if(Counted[b] == TRUE)
Bailout (74);

//otherwise, add this treelist’s contribution again tc account for this cell
tor (y=0;y<NP;y++)
SumBigTrees[y] += TempPeriodTotals[y];

//and set the flag in the Counted array
Counted{b] = TRUE;

}//end for (b=a+l;b<{signed)count;b++)

//Clear up the TempPeriodTotals[] so it can be used for the next treelist without additive problem
for{y=0;y<NP;y++)
TempPeriodTotalsly] = 0;

}//end for(a=0;a<(signed)count;a++)

//The SUM values currently in SumBigTrees{] need each to be divided by 3 since there were 3 goal scenarios used in
calculating it
for{a=0;a<NP;a++)

SumBigTrees[a] = SumBigTrees[a] / 3:

//Look through SumBigTrees|[] and find the period with the largest value and use that as the return base
for (a=0;a<NP;a++)
{
if {SumBigTrees[a] > LargestSum)
LargestSum = SumBigTrees|a];
}

//Delete stuff on free store
delete [] Counted;

return LargestSum;
}//end GetSumBigTrees

P L R d L d L L e
Axw

void SwaplAdjust{ struct SOLUTION *ptr_cs, ushort NG, ushort NH, double PerValues|[], struct OPTIMIZE_SINGLE_VALUE
ovil,

ulong Records, struct ERA *ptr_era)
P R e B R A L L T

wx
{

/*

A move is being tested and needed is to subtract off the treelist-goal-hold “optimizing" values being moved

OUT of the solution and to add the treelist-goal-hold "optimizing" values for that being moved INTO the solution.

ALSO, subtract off the ERA values being moved off and add those values being moved intc the Era structure

NOTE: See long-winded note in CalculateSumPericdEra{} function about theory for this.

297

*/

int a,b;

struct OPTIMIZE_SINGLE_VALUE OVKey;

struct OPTIMIZE_SINGLE_VALUE *ptr_ovkey;

struct CURRENT_ERAS CellEraValues, ?*ptr_cev;

/) e e End of variable defining ---------ommmmomonn

//Initialize the QVKey
memset (&OVKey, 0, sizeof({struct OPTIMIZE_SINGLE_VALUE)):

// b4 +t +tt

/1 SUBTRACT OFF VALUES FOR PRESCRIPTION BEING MOVED OUT ot i 0 S0 o O o O 0 0
/7 ++t B T T T 4ttt

/7 =z=zm= ===c====

/7 Make a key for the OV structure

// s=====s=ssssssss=======ss========z== =

//First, make a key and look for stand being moved OUT of solution and reduce the PerValues array
OVKey.Treelist = ptr_cs->Treelist;

OVKey.Goal = ptr_cs->Goal;

OVKey.Hold = ptr_cs->Hold;

//Now use bsearch to find the matching record in the array of OV structures
ptr_ovkey = (struct CPTIMIZE_SINGLE_VALUE®*)Lsearch!

&OVKey,

{void *}lov,

{size_t)Records,

sizeof{ struct OPTIMIZE_SINGLE_VALUE),

LookAtOSV };

if (ptr_ovkey NULL) //There had hetter be one!
Bailout (80);

//First, subtract off values from the PerValues[] array
for(a=0;a<NP;a++)
PerValues[al -= ptr_ovkey->Value[a];

//Then subtract off the contribution this cell made to the subwatershed ERA value
for (a=0;a<NP;a++)

ptr_era->SumPeriodErala]) -= ptr_cs->PeriodErala);
/7 + o ++++ +
R e T CALCULATE NEW VALUES FOR PRESCRIPTION BEING MOVED INTC SOLUTION L0 e e e S e
A e S = R

memset (&0VKey, 0, sizeof(struct OPTIMIZE_SINGLE_VALUE));

//Make a key and f£ind the new prescription values in the OV[] structures

OVKey.Treelist = ptr_cs->Treelist;

//The treelist doesn‘t change!
OVKey.Goal = NG;
OVKey .Hold = NH;

//Now use bsearch to find the matching record in the array of OV structures
ptr_ovkey = (struct OPTIMIZE_SINGLE_VALUE*)bsearch1

&OVKey,

{void *)ovV,

{size_t)Records,

sizeof(struct CPTIMIZE SINGLE_VALUE),

LookAtOSV };

if {ptr_ovkey == NULL} //There had better be one!
Bailout (80);

/I =

// Assume that if to here then everything has been found

/i

//First, ADD the values from the PerValues|[] array
for (a=0; a<NP;a++)
PerValues[al += ptr_ovkey-»Valuelal;

I
Figuring out the new ERA values to add is a bit more complicated. Because I have not precalculated EVERY possible
PeriodEra[] value for every cell and every prescription (which I may want to do), I need to quickly calculate that
value for this new move. Call the same function as done in CalculateSumPeriodEra() except here I will assume that
the cell is in the solution so I don‘t need to do all the pre-checking it does.

*/

//clear the CellEraValues stuff before filling and sending off
memset (&CellEraValues, 0, sizeof(struct CURRENT_ERAS));

//Make a package of stuff to send off to get NetEra's calculated
CellEraValues.ptr_osv = ptr_ovkey;

298

CellEraValues.CurrentEra = { (float)ptr_cs-»>InitialEra / ERA_EXP) ; //last stored as modified

ushort

//Need to send a pointer to get values back
ptr_cev = &CellEravalues;

//Ship pointer off to function which will calculate NetEra’'s for each period
CalculateNetEras ({ptr_cev);

//Store the return values in the NetEra[] member in two places for each period
for (b=0;b<NF;b++)
{

ptr_cs->PeriodEral(b) = (ushort) (ptr_cev->NetEra(bl)
ptr_era->SumPeriocdEral[b] += (uleong) {ptr_cev->NetEra(bl);

}

}//end Swapladjust

J R B R A
int DecreaseShort(ulong count, ushort Short[] [GOALS] [HOLDNO])

R R R L Lt SR L e
{

ulong a;

ushort *ptr_short;

//printf{"Iterations to do is %lu\n", (signed)count*GOALS*HOLDNO) ;

#ifdef DEBUG_DECREASESHORT1
int b, c;
//Test, go through Short and see which one has a value, to see if
for{a=0;a<count;a++)
{
for (b=0;b<GOALS ; b++)
{
for (c=0; c<HOLDNO; c++)
{
if (Short[a]l[b]l[c] > 0)
printf("Move cell %lu, to goal %4 with Hold %d\n",a,b.c);

)
#endif

//Put a pcinter at start of Short and go through the entire array and decrease all values
//that are greater than 0 by -1.
ptr_short = &Short[0](0110];

for{a=0;a<count*GOALS*HOLDNO; a++)
{
if(*ptr_short > 0)
*ptr_short = *ptr_short - 1;

return TRUE;
}//end DecreseShort

J e e B S A
void InputAndCalculateSolutionEras(ulong Count, struct SOLUTION CS[] }
//««««««««««ggggggggg««««««ggg«gg«***««««««*«««««««*«**************w*****«**««««««««««««
{

/*

CS[] needs to have been sorted by Cellid before entering here.

The goal here is to lock at the array of CS structures, which has the Current Solution for the
entire watershed, with 5 member: Minor - Cellid - Treelist - Goal - HoldFor & PeriodEra[NP].
There are "Count" records of this structure.

This function will go cell-by-cell through the Data.* array and check every cell to see if it
was in the solution. If so, it will use the values in CS[].PeriodEra[] teo fill Data.Eral]l[].

IF there is no match, then the cell was NOT in the solution, so its initial Data.InitialEra[]
value needs to be packaged and sent to function to get it's proper ERA decay values - then
input those values into Data.Era[][].

*/

int a,b;
int InSeolutiocn;

//Key stuff for structures

struct SOLUTION SKey;

struct SOLUTION *ptr_skey;

struct CURRENT_ERAS CellEraValues, *ptr_cev;

/e e End of variable defining --------------o o ==

for {a=0;a<UNIQUE; a++)
{

if(Data.Cellid[a] == FALSE) //no more cells to check
break;

R R L L

299

7/ Determine if cell was actually in the solution

S B Lt E
//Make a key for the current cell using its cellid

SKey.Cellid = Data.Cellidla]l;

//Use bsearch on CS[] to see if this cell is in the solution
ptr_skey = (struct SOLUTION*)bsearch{

&SKey,

{void *)cCS,

{size_t)Count,

sizecof{ struct SCOLUTION)},

LockAtSolutionCellid };

//Make a flag to use below
if(ptr_skey == NULL |}

InSolution = FALSE; //cell not in solution
2lse

InScolution = TRUE;

A R R R R

77 THE CELL WAS IN THE SOLUTICN
R AR R kA R Ak A R kA Kk A R K KA AR R AR AR AR A A AR AR AR AR A AR AR AR AR h
if({ InSolution == TRUE }
{
//Just copy over the data stored in the PeriodEra[] member of CS
for (b=0;b<NP; b++)
Data.Erala) [b} = ptr_skey->PeriocdEralb)};

}
else

{

SRR R AR AR AR Ak A AR AR R AR AR AR AR AR R AR AR AR AR A AR AR AR R AR AR A A A AR AR R AN Ak

7/ Cell was NOT in the original solution

R R R et T T D S

//NOTE: these calculations could probably be done back in CaluculateSumPericdEra() and stored for these
Y

//cells not in the solution.

y*

Just slowly decay or "recover"' cells current Data.InitialEral] proportionally down to 0.

There is no documentation to do this but it should not matter because they don’t contribute to
anything.

I am thinking that later we may want to “recover" certain areas at different rates and track
how those

subwatershed that are "unmanaged" fair compare to those that are managed.

*/

//clear the CellEraValues stuff before filling and sending off
memset (&CellEraValues, 0, sizeof(struct CURRENT_ERAS));

//Make a package of stuff to send off to get NetEra’'s calculated

CellEraValues.CurrentEra = ((float)Data.InitialErala] / ERA_EXP)
//last stored as modified ushort
CellEraValues.Cell = a;

//Need to send a pointer to get values back
ptr_cev = &CellEraValues;

//Ship pointer off to function which will calculate DecayOnly NetEra's for each period
CalculateDecayOnlyNetEras (ptr_cev);

//1f new decayed NetEras were calculated, store their values in Data.Eral[l[] - otherwise
already initialized to zero
if(ptr_cev->NeedsDecay == TRUE }
(
for (b=0;b<NE;b++}
Data.Erala] [b] = (ushort} (ptr_cev->NetEra[b]);
}

}//end alge if(InSclution ...
}//end for(a=0 ...)

}//end InputAndCalculateSolutionEras

P e A S

int InputScolution(ulong Count, struct SOLUTION CS[])

DR R R R D D T L E b N T e E L T T b
(

/>

CS[] needs to have been sorted by Cellid before entering here,

The goal here is to loock at the array of C5 structures, which has the Current Solution for the
entire watershed, with 5 member: Minor - Cellid - Treelist - Goal - HoldFor.
There are "Count® records of this structure.

I am going to make the assumption that the Cellid's in C3[].Cellid are in ascending (row/column} order, because
they
were sorted by Cellid back in Goal*(). So I will start by locking at the first CS[].Cellid value and
find that CellId number in Data.Cellid (checking to see if CS[].Treelist matches Data.Treelist)...
if all checks out then put the values of CS[].Goal & CS[].Hold into Data.Goal and Data.Hold
*
/

ulong *ptr_cellid, *ptr_treelist, Cellid, Treelist;
ushort *ptr_goal, *ptr_hold, Goal, Hold;

int FoundMatch;
ulong a;

/- End of variable defining ---~

printf{*Inputting the solution just found into Datal].Goal * Datal].Hold\n"}:

//Put pointers at start of Data.* arrays

ptr_cellid = &Data.Cellid{0];
ptr_treelist = &Data.Treelist([0);
ptr_goal = &Data.Goal([0)];
ptr_hold = &Data.Hold[0Q}

for(a=0;a<Count;a++}

{

//Get Values for current cell in CS

Cellid = cSla).Cellid;
Treelist = CS[a].Treelist;

Goal = CS[a).Goal;
Hold = C¢Sf{a).Hold;

//Start looking through the Data.* arrays and find a match

FoundMatch = 0;
do(

if(*ptr_cellid == Cellid }

everything else!

//0k, the cellid’s match,

I= Treelist)

Bailout(31);

(
if{ *ptr_treelist
else
in the Goal and HoldFor values
(

*ptr_gecal = Geoal;
*ptr_hold = Hold;

FoundMatch = 1;

)

//increment pointers, whether or not a match was found
/ /REMEMBER- this works because both CS and Data.Cellid have cellid’s in "row/column" order

ptr_cellid++;
ptr_treelist++;
ptr_goal++;
ptr_hold++;

}while (FoundMatch == 0);
}//end for(a ...)

return TRUE;
}//end InputSolution

R R R R KRR KRR R KR KK R R KK R R R K R KRR R K R Ak ok kA kR KRR KR KK KR R KRR AR AR R R KRR AR AR AR

void BinarySaveGoalHold(void)

AR R R e R e T T A e A R A A AR AR AR AL A AR AR A

{
/*

This function will spit out the current configuration of Data.Goal and Data.Hold that
was found during the initial landscape optimization. It will do this by just sending

out all the values, in order, from those arrays.

When reading back in the data there will be no need to check positioning because (I hope)
the data is already in its correct spot. See the bottom of function ReadBinaryFiles() for

how this is done.
*/

FILE *BIN;
char GoalOutFile[150] ;
char HoldOutFile[150]=

ushort *ptr_goal;
ushort *ptr_hold;

//Make the correct output file names

sprintf (GoalOutFile, "%s%s%d\\%s_%s_goal.bin", PREFIX, RerunDir, GOAL_TO_USE, OPTPREFIX, ENVT);
sprintf(HoldOoutFile, “%s%s%d\\%s_%s_hold.bin", PREFIX,RerunDir, GOAL_TO_USE.OPTPREFIX, ENVT);

ptr_goal = &Data.Goall0];
ptr_hold = &Data.Hold[0]:

BIN = fopen(GoalOutFile, "wb");

fwrite{ptr_goal, sizeof (Data.Goal{0]},UNIQUE, BIN) ;

fclose (BIN);

BIN = fopen{HoldOutFile, "wb"};

fwrite(ptr_hold,sizeof{Data.Hold[0}),UNIQUE,BIN) :

frlose {(BIN) ;

}//end BinarySaveGoalHold

300

so should

//put

301

P R R e

void AsciiSaveGoalHold(void}

J R Rk ke k k ok kK kK Kk kK Sk ok ok ke ko ke k ek kK ko ke Rk kK ok ke ke kKR Rk KR kR ok ok kR Rk

{

printf({*\n*****%* Saving the current configuration of GOALS and HOLD from this simulation *******\n\n");

FILE *WRITE_GOAL, *WRITE_HOLD;
char Templ[250], Temp2([250];

//pointers
int *ptr_srp; //Starting Row Position
ushort ‘*ptr_gocal, *ptr_hold, *ptr_column;

//Misc. variables

int r,c,HowMany;

int ColumnsLeft, ctr;

ushort StartColumn, CutColumn;

//Make the correct output file names
sprintf (Templ, '%s%s%d\\%s_goal.bin", PREFIX,RerunDir, GOAL_TO_USE, ENVT);
sprintf (Temp2, "%s%s5%d\\%s_hold.bin", PREFIX,RerunDir,GOAL_TO_USE, ENVT);

//open up the files (to write)
WRITE_GOAL= fopen{Templ, "w"};
WRITE_HOLD = fopen(Temp2, "w"};

if (WRITE_GOAL == NULL}
fprintf (stderr, "opening of %s failed: %s\n", Templ, strerror(errnoj);
else
#ifdef DEBUG_OPEN1
printf("File %s opened with no problems in mode WRITE!\n", Templ);
#endif

if (WRITE_HOLD == NULL}
fprintf(stderr, "opening of %s failed: %s\n', Temp2, strerror(errno));
else
#ifdef DEBUG_OPEMN1
printf(“File %s opened with no problems in mode WRITE!\n", Temp2);

#endif

//write out the header data to the files

fprintf (WRITE_GOAL, "ncols\t\t%d\n", COLUMNS) ;

fprintf (WRITE_GOAL, "nrows\t\t%d\n", ROWS) ;

fprintf (WRITE_GCAL, "x1lcorner\t%.61f\n",F_XLL};

fprint £ (WRITE_GOAL, "yllcorner\t%.61f\n" ,F_YLL);

fprintf (WRITE_GOAL, "cellsize\t%d\n",CELLSIZE);

fprintf (WRITE_GQAL, "NODATA_value\t%d\n", NODATA) ;

fprint £ (WRITE_HOLD, "ncols\t\t%d\n", COLUMNS) ;

fprintf (WRITE_HOLD, "nrows\t\t%d\n", ROWS) ;

fprintf (WRITE_HOLD, "xllcorner’\t%.61£f\n", F_XLL];

fprint £ (WRITE_HOLD, "yllcorner\t%.61f\n", F_YLL);

fprint £ (WRITE_HOLD, *cellsize\t%d\n",CELLSIZE);

fprint f (WRITE_HOLD, "NODATA_value\t%d\n",K NODATA] ;

for {r=1;r<=ROWS; xr++)
{
ptr_srp = &link[r-1][1];
HowMany = *(ptr_srp+l)
StartColumn = Data.GridColumn[(*ptr_srp)-1]
ptr_column = &Data.GridColumn| (*ptr_srp)-~1]
ptr_goal = &Data.Goal[(*ptr_srp)-1];
ptr_hold = &Data.Hold[{*ptr_srp)-1];
//If the whole row is blank, print out NODATA and goto next row
if{ *ptr_srp == FALSE)} //means a zero was left in this spot during
MakeLink

for (c=1; c<=COLUMNS; c++)

{
fprintf (WRITE_GOAL, "%d ", NODATA);
fprintf (WRITE_HOLD, "%d *,NODATA);

}

//put in new lines
fprintf (WRITE_GOAL, "\n"};
fprint £ (WRITE_HOLD, "\n");

continue; //goto next row

}

//print out NODATA for those cells before data starts
for(c=1;c<StartColumn; c++)
{

fprint £ (WRITE_GOAL, "%d ", NODATA};

302

fprintf (WRITE_HOLD, "%d " ,NODATA};

//set some counters
OutColumn = StartColumn;
ctr = 0;

//print cut the Goal and Hold values for area on landscape by checking
//value in Data.GridColumn to match it with OutColumn value
dof
1f (*ptr_column == Outlolumn)
{
fprintf (WRITE_GOAL, "%$hu ",*ptr_goal)
fprintf {WRITE_HOLD, "%hu ", *ptr_hold);

ptr_goal++;
ptr_hold++;
ptr_column++;
OCutColumn++;
ctr++;

else //print out NODATA for the "gaps"

fprintf {WRITE_GOAL, "%4 " ,NODATA);
fprintf (WRITE_HOLD, "%d ", NODATA);

OutColumn++;
}while{ctr != HowMany);

//Check to see how many columns are left to do
ColumnsLeft = COLUMNS - (QutColumn-1};

if(ColumnsLeft == Q)

fprintf (WRITE_GOAL, “‘n");
fprintf (WRITE_HOLD, “\n"};

continue; //g0o to next row

//print out NODATA for those cells after the data that are left
for{c=0;c<Columnsleft;c++)
{
fprintf (WRITE_GOAL, "%d *,NODATA) ;
fprintf (WRITE _HOLD, "%d *,NODATA);
}

//put in a new line
fprintf (WRITE_GOAL, “\n");
fprintf (WRITE _HOLD, "‘n");

}//end of for{r=1;r<=ROWS;r++)

feclose (WRITE_GOAL) ;
felose (WRITE_HOLD) ;

}//end SaveGoalHold

F R e s I I T I T T
R R R Rk kR h
void PrintSclutionValues{ulong Count, struct SOLUTION CS[], struct OPTIMIZE SINGLE_VALUE OV{],

ulong Records, int SubEra(], int Status})
F R e R T I R R R T T o

Rk Rk ok ko
{

I

This functicns is to be called up after a heuristic search solution has been completed.

This will use the best solution found to add up the particular value being optimized and print those out.
*/

FILE *WriteOut;

char filename([256];

ulong a;
int b;

double PerValue[NP];
double SumSgDev = 0;
double Sumvalue = 0;

struct OPTIMIZE_SINGLE VALUE Key;
struct OPTIMIZE_SINGLE_VALUE *ptr_key;

e e e P END Variable defining ---------—----———————————~-- e
if(Status == ACTUAL)

sprintf{filename, "%s%s%d\\Actual_Totalvalue.txt",PREFIX,PreSimOutputDir, GOAL_TC_USE)
else

sprintf{filename, *%s%s%d\\Reuse_TotalValue.txt", PREFIX,PreSimQutputDir, GOAL_TO_USE);

//Qpen up the file for printing

WriteQut = fopen(filename, "w");

/*
Using the TREELIST, GOAL, and HOLD in the array of CS[] structures, find the matching set
in the array of OV structures. Once found, sum up the periodic values and store those

in PerValue[NP],

This functions assumes that the values found in Solution are the current one to evaluate.
*/

//Initialize the Pervaluel) array
memset{ PerValue, 0, sizeof{PerValue} };

for (a=0;a<Count;a++) //count is how many rows cf data there are (i.e. eligible cells found earlier)
{
//Make a Key using the Treelist-Goal-Hold values found for each record in the array of CS structures
Key.Treelist = (CS(a).Treelist;
Key.Gcal = CS[al.Goal;
Key.Hold = CS[a] .Hold;

//Now use bsearch to find the matching record in the array of OV structures
ptr_key = (struct OPTIMIZE_SINGLE_VALUE*)bsearch({

&Key,

{void *})ov,

{size_t)Records,

sizeof{ struct OPTIMIZE_SINGLE VALUE},

LookAtOSV };
if(ptr_key == NULL) //There had better be one!
{
printf{"Bad Key.Treelist = %lu...CS[].Treelist is %lu\n", Key.Treelist,CS5[a].Treelist};
printf({"Bad Key.Goal = %hu...CS5[].Goal is %lu\n",Key.Goal,CS[a].Goal);
printf{"Bad Key,Hold = %hu...CS{].Hold is %lu\n",Key.Hold,CS[a).Hold):
Bailout (80);
}
else //Sum up the periodic Values
{

for (b=0;b<NP;b++}
PerValue([b] += ptr_key->Valuelb};

/7

= PRINT CUT STUFF BELOW ==

fprintf (WriteQut, "\nThe Periodic Big Trees Totals are:\n");

303

fprintf {(WriteOut, "NOTE: These values are rounded INTEGER BigTrees values and will usually be less than

real valueinin*);

for{a=0;a<NP;a++)
fprintf {WriteQut, "Persd is %-.31£f\n",a+l,PerValue[a]/BIGTREES_EXP];

fprintf(WriteQut, *\n\nLoopsToDo: %lu\n",Count*LOOP_FACTOR};
fprintf (WriteQut, *“The ceonstraining Sub-Watershed ERA threshold were:\n*);
for (a=0;a<lNP;a++}
fprintf (WriteOut, "Per%d had a ERA threshold of %d\n",a+l, SubEralal};

feclose(WriteQut);

}//end PrintSolutionValues

R R L R L L R R A A e AL S S LS RS ST ST TS T P

void PrintSolutionEraValues{struct ERA Era[], ulong NoSheds, int Status!

P LR R L L L R L b b D e S L P SR S P

{

/* This will output a table with 6th field subwatershed id’s in Rows, and columns for the

four EvaluateThisPeriod[] periods, with values representing the Equivalent Roaded Acre (ERA}

value for that sub-watershed. This file will be comma delimited and can be imported into ArcInfo and
joined with the SubWatershed layer tc make maps showing the ERA’s - or the tables can be used stand-alone.

This will only handle the initial ERA values and only ouput 4 periods worth of data. Another function
will ouput the actual ERA values stored in the Data.*{] arrays after a full simulation.

NOTE: This function is using ERA values only for those cells in a "solution® - which is different than
what gets outputted in OutputEraValues() at end of simulation.
*/

FILE *WRITE_ERA;

char EraFile[256];

int a,b;

int Hit, PerA, PerB, PerC, PerD;

F et e Tt End of variable defining ----------~-~----somsmae oo

//Look at EvaluateThisPeriod and find the 4 evaluation periods there
Hit=0Q;
for (a=0;a<NP; a++)
{
if (EvaluateThisPeriod[a] > 0)
{

304

if(Hit == 4)
printf{"There are toc many EvaluateThisPeriodf] periods! - ignoring those past the
first four\n");
if{Hit == Q)
PerA = a;
else if(Hit == 1)
PerB = a;
else if(Hit == 2)
PerC = a;
else
PerD = a;
Hit++;

}
}//end for{(r=0;r<NP;r++)

// Create, Open, and Write data out to a file

if(Status == ACTUAL}

sprintf (EraFile, "%s%s%d\\Actual era.csv",PREFIX,PreSimOutputbir, GOAL_TO_USE);
else if(Status == LAST)

sprintf{EraFile, *"%s%s%d\\era.csv"', PREFIX,PostSimOutputDir, GOAL_TO_USE)
else

sprintf (EraFile, "%s3%s3%d\\Reuse_era.csv", PREFIX,PreSimOutputDir, GOAL_TO_USE) ;
WRITE_ERA = fopen(EraFile, “w");
if (WRITE_ERA == NULL)

fprintf {stderr, ‘opening of %s failed: %s\n", EraFile, strerror(errna}};

//No header line because ArcInfo won‘t import them
//Will output the actual ERA associated with the solution -- ** no TABS either (A/I doesn’t like them)
for{a=0;a<({signed)NoSheds; a++)

{

fprint £ (WRITE_ERA, *%hu, ",Erala].Minor);
for (b=0;b<NP;b++)
(
if{b == PerA || b == PerB || b == Per(C || b == PerD}
(
fprintf (WRITE_ERA, "%.2f “,((float)Era[a].SumPeriodEralb] / ERA_EXP) / Erala].Count
)s
if{b != PerD)
fprintf (WRITE_ERA, ", ") ;
}
H
fprintf (WRITE_ERA, "\n*"};
}
fclose (WRITE_ERA) ;

}//end PrintSolutionEravValues

F R R L R B A R L T
kR R kKK kK
void PrintSolutionBigTrees(ulong Count, struct SOLUTION CS[], struct OPTIMIZE_SINGLE VALUE OVI[],

ulong Records, int SubEral[], int Status)
//kkkkkkkkkkkkkkkk*kkﬁkkkkkkﬁkkkkkkkkk*kkkkkkkﬁﬁkkkkkkkkkﬁkkkkkkkkkkkkkkkkkkkﬁﬁkkﬁkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
kR K Kk K
{
/%
This functions is to be called up after a heuristic search solution has been completed.
This will use the best solution found to add up the Big Trees and print those out.

NOTE: This is sorta redundant because for now, geal 1 is optimizing BigTrees and so when the
PrintSolutionValues() gets printed, it should be the same as this - a double check.

*/

FILE *WriteOut;

char filename[256];

ulong a:;
int b;

double PerBigTrees[NP], SumBigTrees;

struct OPTIMIZE SINGLE VALUE Key;
struct OPTIMIZE SINGLE_VALUE *ptr_key;

/e END Variable defining ------=---------mmmm oo oo
if(Status == ACTUAL)

sprintf (filename, "%s%s%d\\Actual BigTrees.txt", PREFIX, PreSimOutputDir, GOAL_TO_USE);
else

sprintf (filename, “%s%s%d\\Reuse_BigTrees.txt",PREFIX, PreSimOutputDir, GOAL_TO_USE) ;

//0pen up the file for printing
WriteOut = fopen(filename, “w");

s
Using the TREELIST, GOAL, and HOLD in the array of CS[] structures, find the matching set
in the array of OV structures. Once found, sum up the BigTrees and store those

305

in PerBigTrees[NP],

This functions assumes that the values found in Solution are the current one to evaluate.
*/

//Initialize the PerBigTrees|[] array
menmset{ PerBigTrees, 0, sizeof{PerBigTrees));

for {a=0;a<Count;a++} //count is how many rows of data there are (i.e. eligible cells found earlier)
(
//Make a Key using the Treelist-Gecal-Hold values found for each record in the array of CS structures
Key.Treelist = (C5[a] .Treelist;
Key.Goal = (Sla] .Goal;
Key.Hold = (Csfa].Held;

//Now use bsearch to find the matching record in the array of OV structures
ptr_key = (struct OPTIMIZE_SINGLE_VALUE*)bsearchi

&Key,

(void *)jov,

(size_t)Records,

sizeof (struct OPTIMIZE_SINGLE_VALUE),

LookAtOSV) ;
if (ptr_key NULL} //There had better be one!
(
printf("Bad Key.Treelist = %lu...CS[].Treelist is %lu\n"',Key.Treelist.CS[a].Treelist);
printf("Bad Key.Goal = %hu...CS[].Goal is %lu\n",Key.Goal,CS[a].Goal);
printf("Bad Key,Hcld = $hu...CS[].Hold is %lu\n",Key.Hold,.CS[a].Hold);
Bailout(80);
}
else //Sum up the periodic Values
(
for (b=0; b<NP; b++)
PerBigTrees[b] += ptr_key->BigTrees[b];
}

//Add up the total sum of big trees
for (b=0; b<NP; b++)
SumBigTrees += PerBigTrees[b]/BIGTREES_EXF;

//

= PRINT QUT STUFF BELOW =

fprintf (WriteOut, "\nThe Periodic Big Trees Totals are:\n"):
for (a=0; a<NP; a++)
fprintf (WriteQut, "Per%d is %-.31f\n",a+l, PerBigTrees[a] /BIGTREES_EXFP) ;

fprintf (WriteOut, "\n\nThe total sum of Big Trees is: %.31f\n",SumBigTrees);
fprintf (WriteOut, “Which amounts to about %.31f per acre\n',SumBigTrees/(Count*ACREEQ)) ;

fclose(WriteOut);

}//end PrintSolutionBigTrees

GOAL_REUSE.CPP

/*
R I N O I N I T N I e I LT
This file will contain functions to control how to reuse data for prescriptions that

were already selected.

R R R R e L R S 22 r R R R s s R R R 2SR R R R SRR R R RS R T2

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <math.h>

#include “globals.h"

#include “data.h"

#include "goals.h" //for functions declared in goal_controller.cpp

//Functions used in this file
void ReuseGoal{int Goal);

//Declared in misc.cpp
extern int FillSubEraThresholds!(int SubEral]);

//Declared in ReadData.cpp
extern void ReadGoalHoldFound(int Geoal);

P AR B L e e T]

void ReuseGoal({int Goal)
//ﬁiiiiiiiiigtgggQgggiiiiiiiiﬁi******ii*i*iigggiiiii)r)r)rﬁ*iiiii)r)rkiiikikkkkikgk’kliiiiiii

(

/*

This function will assume that a GOAL-HOLD combination was already found for the particular
landscape being used and that binary files with the gocal & held are in the

...\RerunData\ directory. Because many of the output analysis data functions need to know
what the “solution space” (i.e. those cells that were actually in the solution) was, I found
it easier to pretend that an optimization process is happening except skip the heuristic part

306

since there is already an answer.
*/

FILE *BinIn, *HeaderlIn;
char Temp[256];
ulong Records;

int a;

ulong AllocOK, AllocNOK,CellsInShed;
ulong SolutionCounters[3];

ulong SolutionSheds;

int SubEral[NP];

[/~ mmmmmmme e End of variable defining --------ooo oo -

Printf ("\n\n******xxx********rrrrrrxx peyging and Recreating a solution for this goal %d
FREFFEERERRARRRRRAAARAAND Goal) ;

//First thing is to read in the GOAL & HOLD values already found
ReadGoalHoldFound(Goal}) ;

//Fill the FillValueToOptimize array before starting
if(FillValueToOptimize{) == FALSE)
Bailout(24);

//======z========= = READ in the InitOpt.bin file ====
//0pen the Header and actual Binary file containing the data found during FlllJalueToOptlml e
sprintf(Temp, "%s%s\\Binary\\%s_InitOpt.bin', PREFIX,InitialStandDataDir, ENVT);

BinIn = fopen{Temp, “rb");

0

sprintf(Temp, "%s%s\\Binary\\%s_InitOpt.hdr",PREFIX, InitialStandDataDir, ENVT);
HeaderIn = fopen(Temp, "r");

//Get the Number of records that are listed in the header file
fscanf (HeaderIn, "$1u", &Records}) ;

//Create an array of structures on the free store to hold these records
struct CPTIMIZE_SINGLE_VALUE (*OptValues) = new struct OPTIMIZE_SINGLE_VALUE Records];
if{ OptValues == NULL)
printf("Problems allocating memory for OptValues[l with %lu
elements\n", Records*sizeof {OPTIMIZE_SINGLE_VALUE)) ;

//Now just read in the binary data the same way it was written out in FillValueToOptimize!{)
fread{OptValues, sizeof (OPTIMIZE_SINGLE_VALUE),Records,BinIn);

//close up the files
fclose(BinIn) ;
fclose(HeaderIn) ;
//==================

Finished reading

//Initialize the SolutionCounters arraY and call up the DetermineEligibleCells(} function to £ill it up
for(a=0;a<3;a++)
SolutionCounters{al = 0;

printf("*** Going to determine the s=ligible cells for this solution and £ill up the array of SOLUTION structures
***\n"};

if (DetermineEligibleCells(SolutionCounters) == FALSE)
Bailout{82);

//The values now in SolutionCounters should bhe properly set

AllocOK = SolutionCounters([0];

AllocNOK = SolutionCounters[l];

CellsInShed = SolutionCounters[Z2];

printf("!!! There were %lu valid cells with cellids..... ",CellsInShed} ;

Printf(* and %lu cells that are eligible for the solution and %lu that are not.\n\n",AllocOK,AllocNCK);

//Print stuff to the stats.txt file
PrintToStat (3, (ulong)AllocOK);

//8et a checker to look for when there are [} eligible cells
if{ARllocOK == FALSE}
Bailout {89}

//Create an array of structures on the free store to hold the solution
struct SOLUTION {(*CurrentSolution) = new struct SOLUTION{AllocOK]:
if { CurrentSolution == NULL)
printf("Problems allocating memory for CurrentSclution|] with %lu elements\n",allocCK*sizeof (SOCLUTION)) ;

//Initialize
memset { CurrentSolution, 0, sizeof{struct SOLUTION) * AllocOK):

//Now £ill that array of SOLUTION structures with the Treelist - Minor - and Cellid of those eligible cells
if(FillSolution(SolutionCounters, CurrentSolution, FAKE) == FALSE)
Bailout (83);

printf ("Sorting the solution by subwatersheds....will take a few seconds\n'};

//Now sort the array of SOLUTION structures by MINOR . This will guarantee all the subwatersheds are in order
//Use mgsort because gsort takes way too long since there are not many unique Minor ID’s

mgsort({void*)CurrentSolution, / /base

{size_t)AllocOK, //count of # of arrays

307

sizeof {struct SOLUTION;, //size of each array

0, AllocOK-1, //current division (
always: 0, "Count*-1)

LockAtSolutionMinar J; //campare function

//Call up the CountSolutionWatersheds{) function to see how many subwatersheds are actually in the solution
SolutionSheds = CountSolutionWatersheds (AllocOK, CurrentSolution);
printf{"*** There were actually %lu Sub-Watersheds found in the solution for this goal ***\n",SolutionSheds) :

if(SolutionSheds == FALSE)
Bailout{84);

//Create the appropriate number of Solution_ERA structures and store them in an array
struct ERA (*S_Era) = new struct ERA[SolutianSheds];
if{S_Era == NULL)
printf ("Problems allocating memory for S_Era with %lu elements\n",SolutionSheds*sizeof (struct ERA));

//Initialize this array of ERA structures - this is important because Fill_SEra will do some += summing
memset (S_Era, Q, sizeof(struct ERA) * SolutionSheds };

//Fill the array of S_Era structures with appropriate values
if(Fill_SEra(SolutionSheds, S_Era, AllocOK, CurrentSolution) == FALSE)
Bailout (85);

//First, fill up the SubEra array with ERA thresholds to use when checking constraints
if{ FillSubEraThresholds (SubEra) == FALSE)
Bailout{94);

//First sort the array of CS structures by CELLID only. This is needed later

gsort({void*)CurrentSolution, //base
(size_t)AallocOK, //count cf # of
arrays
sizeof{struct SOLUTION), //size of each array
LockAtSolutionCellid)i //compare
function
if{ CalculateSumPeriodEra(SolutionSheds, S_Era, AllocQK, CurrentSalution, OptValues, Records) == FALSE)

Bailout{86):

A R L R e
KRR R R ARk

Jexxxxrarannnnnasr Seuff below would normally be found in a goal*_"heuristic*.cpp file {e.g. goall_deluge.cpp)
KRR R R AR A AR

R R S S R R R R S d T L 2 R S L L R R T T R T SR 2 TR S AT TP RSP

ERE KRR AR AR AR AR

J/***wkkrxkw ke xxu ke * ek These will print out ONLY those things for cells IN THE SOLUTION

1222020022002 22 T}

if(Goal != GROW_ONLY || Goal != FINNEY_EFFECT } //Grow-only & Finney-Effect didn‘t have any "value"
{

//Print out the Periodic values for the Value being optimized

PrintSolutionValues(AllocOK, CurrentSolution, Optvalues, Reccords, SubEra,REUSE);

//Print out the Big Trees
PrintSolutionBigTrees(AllocOK, CurrentSclution, OptValues, Records, SubEra, REUSE);

//Print out the ERA values in S_Era
PrintSolutionEraValues (S_Era,SolutionSheds, REUSE);

AR R Rk Ak Rk AR A kAR AR AR R KRR AR R KRR AR KRR AR AR IR AR A AR AR AR AR AR KRR AR AR R AR K AR A AR AR AR AR AR AR KRR AR AR Ak k
KRR R AR AR AR AR

J/xxxxxxrnxntantrarnr genff below would normally be found at end of goal*.cpp - after the heuristic code file is done
kAR Rk Ak R kR kA

R I T I O N T I T I I I T NN N T

KRR AR AR AR AR A

//NOTE: no need to call the InputSolution(} function because it only fills up the Data.Goal and Hold arrays
// and they already are (back in ReadGoalHoldFound{))

//Input the associated PeriodEral] wvalues found for those cells in the scolution, and calculate
//new Data.Era[][] values for those cells that were not in the solution.
InputAndCalculateSolutionBras(AllocOK, CurrentSolution):

//Delete stuff on Free store
delete [] OptValues;

delete [] CurrentSolution;
delete [] S_Era;

}//end ReuseGoal

GOALL.CPP

/*

R R N N N N N N I I T T N
This file will acts as a subordinate controller (tc goal_controller.cpp) - specifically for Goall.

It can call up either a TabuSearch or Deluge search for this particular goal. It does rely on some

functions in goal_controller.cpp.
R R R T I TN I T T

308

*/

#include <stdic.h>»

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <math.h>

#include "globals.h"

#include *“data.h*"

#include *goals.h" //for functions declared in goal_controller.cpp

//Functions used in this file
void Goall(void);
int InitialSolutionGoall(ulong count, struct SOLUTION CS[]};

//declared in goall_deluge.cpp
extern int DelugeGoall{ulong count, struct SOLUTION CS5[], struct OPTIMIZE_SINGLE_VALUE OV[], ulong Records

struct ERA S_Eral], ulong SoluticnSheds);

//declared in Constraints.cpp
extern int CheckConstraintsGoall(struct ERA Era[], ulong NoSheds, int SubErall)};

//Declared in misc.cpp
extern int FillSubEraThresholds{int SubEral]);

[/ Rk Rk Ak Ak ARk kA Ak A Ak Ak kA kA kK kK Kk h kK Ak ok ok kA kK Ak Kk kA kK kAR ok kA ok kA k kR kR kA kK A kR kK ko h k kR ok
void Goall{void}

[R Rk Rk ok kA ok kA kA K kR kA kA KA KK A KA K A KA KA KRR A AR A KA KA KR A AR AR KA KRR AR Ak KRR h kA KA K Ak Ak d kK h
FILE *BinIn, *HeaderlIn;

char Temp([256];

ulong Records;

int a, b;
ulong AllocOK, AllocNOK,CellsInShed;
ulong SolutionCounters[3]; //will get filled with AllocOK, AllocNOK

CellsInShed, by DetermineEligiblecCells()

ulong SolutionSheds;

int SubEra[NP];

e e LT T End variable defining ----=-===-~=--= - mmmm o mm——mmmmmmm e

//Fill the FillValueToOptimize array before starting
if{ FillValueToCptimize() == FALSE)
Bailout({24});

/== READ in the InitOpt.bin file =====

//0Open the Header and actual Binary file containing the data found during FillValueToOptimize()
sprintf{Temp, "%s%s\\Binary\\%s_InitOpt.bin", PREFIX, InitialStandbataDir, ENVT);

BinIn = fopen(Temp, "rb*);

sprintf(Temp, “%s%s\\Binary\\%s_InitOpt.hdr", PREFIX, InitialStandbataDir, ENVT};
HeaderIn = fopen{Temp, "r"};

//Get the Number of records that are listed in the header file
fscanf (HeaderIn, "%1lu", &Records) ;

//Create an array of structures on the free store to hold these records
struct OPTIMIZE_SINGLE_VALUE (*OptValues) = new struct OPTIMIZE SINGLE_VALUE [Records];
if(OptValues == NULL }

printf{"Problems allocating memory for OptValues[] with %lu
elements\n",Records*sizeof (OPTIMIZE_SINGLE_VALUE));

//Now just read in the binary data the same way it was written out in FillValueToOptimize ()}
fread{OptValues, sizeof (OPTIMIZE_SINGLE_VALUE),Records,BinIn);

//close up the files

fclose (BinIn);

fclose (HeaderIn);

7 Finished reading

//Initialize the SolutionCounters array and call up the DetermineEligibleCells() function to f£ill it up
for{a=0;a<3;a++)
SclutionCounters{al = 0;

printf{"*** Going to determine the eligible cells for this solution and fill up the array of SOLUTION structures
*xw Y ;

if{ DetermineEligibleCells{SolutionCounters) == FALSE)
Bailout({82);

//The values now in ScolutionCounters should be properly set

AllocOK = SolutionCounters{0];

AllocNOK = SolutionCountersfl];

CellsInShed = SolutionCounters[2];

printf("!!! There are %lu valid cells with cellids..... ", CellsInshed};

printf(" and %lu cells that are eligible for the solution and %lu that are not,\n\n",AllocOK,AllocNOK);

//Print stuff to the stats.txt file

309

PrintToStat (3, ({ulong)AllocOK);

//Set a checker to look for when there are ¢ eligible cells
if{AllocOK == FALSE)
Bailout (89);

//Create an array of structures on the free store to hold the solution
struct SOLUTION (*CurrentSolution) = new struct SOLUTION[AllocOK];
if{ CurrentSolution == NULL
printf{"Problems allocating memory for CurrentSolution[] with %1lu elements\n",AllocOK*sizeof {(SOLUTION});

//Initialize
memset { CurrentSolution, Q, sizeof (struct SOLUTION} * allocOK):

//Now £ill that array of SOLUTION structures with the Treelist - Minor - and Cellid of those eligible cells
if{ FillSolution{SolutionCounters, CurrentSclution, REAL) == FALSE }
Bailout{83);

printf{*Sorting the solution by subwatersheds....will take a few seconds\n");
//Now sort the array of SOLUTION structures by MINOR . This will guarantee all the subwatersheds are in order
//Use mgsort because gsort takes way too long since there are not many unigue Minor ID's
mgsort ({void*}CurrentSolution, / /base
(size_t)AllocOK, //count of # of arrays
sizeof(struct SOLUTICN), //size of each array
0, AllocOK-1, //current division (
always: 0, "Count"-1
LookAtSolutionMinor }; //compare function

//Call up the CountSolutionWatersheds() function to see how many subwatersheds are actually in the solution
SolutionSheds = CountSolutionWatersheds(AllocOK, CurrentSolution);
printf("*** There were actually %lu Sub-Watersheds found in the solution for this goal ***\n",SolutionSheds);

if(SolutionSheds == FALSE)
Bailout (84);

//Create the appropriate number of Solution_ERA structures and store them in an array
struct ERA (*S_Era}) = new struct ERA[SolutionSheds];
if(S_Era == NULL)
printf ("Problems allocating memory for S$_Era with %lu elements\n®, SolutionSheds*sizeof (struct ERA});

//Initialize this array of ERA structures - this is important because Fill SEra will do some += summing
memset (S_Era, 0, sizeof({struct ERA) * SolutionSheds);

//Fill the array of S_Era structures with appropriate wvalues
if{ Fill_SEra(SolutionSheds, S_Era, AllocOK, CurrentSolution) == FALSE }
Bailout(85);

//First, fill up the SubBra array with ERA thresholds to use when checking constraints
if (FillSubEraThresholds(SubEra) == FALSE
Bailout(94):

//First sort the array of CS structures by CELLID only. This is needed later

gsort{ {void*)CurrentSeclution, //base
{size_t)AllocOK, //count of # of
arrays
sizeof {(struct SOLUTION), //size of each array
LookAtSolutionCellid);: //compare
function
17, [==========
/7
//======s=z=========s=======s=s===== == =
printf("*** Starting to look for an initial solution for this goal that meets all the constraints ***\n");
//Set an error checker for this initial solution - if it fails X times then bailout
for (b=0;b<INITTAL_TRYS;b++)}
(
//Send the Solution to a function to get a random initial solution
if(InitialSolutionGeoall(AllocOK, CurrentSclution} = TRUE)
Bailout (25):
if(CalculateSumPeriodEra{SolutionSheds, S_Era, AllocOK, CurrentSolution, OptValues, Records) == FALSE)
Bailout(85);
if(CheckConstraintsGoall({S_Era,SolutionSheds, SubEra) == FALSE)
printf(tii11111] This initial solution failed - trying another tttrrfiiiin”);
else
break;
if (b == INITIAL_TRYS-1) //if it gets to here then X solutions failed so bailout
Bailout(87);
)
//===== =======
/7
//=====

printf ("Inputting and printing out the initial goal assignment to the
directory\n",GOAL_TO_USE) :

//Start by inputting the random solution into the Data.* arrays and pretending it was the final solutiocn
if(TnputSolution(AllocOK, CurrentScluticn) == FALSE)

310

Bailout {27} ;

//Now print that file out
OutputInitialGoal();

/7 === ====== ==== =
/7 CRLLING UP THE HEURISTIC
//============= == = == =
//OK, lets send everything to the appropriate HEURISTIC search function
if({ DelugeGoall(AllocOK, CurrentSolution, OptValues, Records, S_FEra, SolutionSheds) != TRUE}
Bailout{44);
/7 === == = =
/7 finished with heuristic
/7 ===== == ==

//Input the current solution into the Data.Gocal and Data.Hold arrays - regardless if Tabu or Deluge did it!
if (InputSolution{AllocOK, CurrentSolution) == FALSE }
Bailout(27};

//Also input the associated PeriodEra[] values found for those cells in the solution, and calculate
//new Data.Era[][] values for those cells that were not in the solution.
InputAndCalculateSolutionEras(AllocOK, CurrentSolution);

//Delete stuff on the free store
delete [] S_Era;

delete [] OptValues;

delete [] CurrentSolution;

} //end of Goall(}

AR R R R R R R R R R

int InitialSolutionGoall(uleng count, struct SOLUTION CS[])

L L L L T L D L LA R L L L L T TP
{

/* The object here to to just assign a random solution to the array of CS[] structures.

The GOAL number must be 0 - 9 inclusive. See StandOptStuff.cpp for what the goal numbers mean.
The HOLDFOR must be 0 or 3.
*/

int a;
int RGoal, RHold;

/7 - --- End of variable defining --
printf("Generating random Goal and Hold wvaluesin");

for (a=0;a<(signed)count;a++)

{
//Get the random Goal and Hold values
RGoal = (rand{) % 10); //this give 0-9
do{
RHold = (rand{} % 4); //this gives 0,1,2,and 3....but it has to be either 0
or 3

}while(RHold == 1 || RHold == 2);

//Store in CS[]
cS[al.Goal = {ushort)RGoal;
CS[al.Hold = {ushort)RHold;

}//end {a=0;a<count;a++)

return TRUE;
}//end of InitialSolutionGoall

GOALL_DELUGE . CPP

*
This file will hold the specific functions used for a Great Deluge Search on Goall.
L L L R I T e
*/

#include <stdio.h»>

#include <stdlib.h>»

#include <string.h>

#include <time.h>

#include <math.h>

#include "globals.h"

#include "data.h"

#include “goals.h" //for functions declared in goal_controller.cpp

//beclared in this file

int DelugeGoall{ulong count, struct SOLUTION CS[], struct OPTIMIZE_SINGLE _VALUE OV[], ulong Records,
struct ERA S _Era[]. ulong Solutionsheds);

//Declared in Constraints.cpp

extern int CheckConstraintsGoall(struct ERA Era[], ulong NoSheds, int Subkrall};

//Declared in misc.cpp

311

extern int FillSubEraThresholds{int SubEral]);

End of function declarabtiOng —=——— - === e o e e
J A e d

int DelugeGoall({uleong count, struct SOLUTION CS{], struct OPTIMIZE_SINGLE_VALUE OV[], ulong Records,

struct ERA S_Eral], ulong SolutionSheds}

A R Y

(

FILE *WRITE_BEST, *WRITE_RANDOM;
char filename_best[256), Temp[256];

//For Time information
double Start, Finish;
double Duration;

double PerValues[NP], PreMoveValues|[NP];

double InitialObj=0;

double LEVEL, PreMoveObj, MoveObj, BestObj,TestObj[GOALS], BestTestOhj;
ulong LoopsToDo=0, FirstThird, SecondThird;

ushort PreMovePeriodEra[NP];

ushort *ptr_cellera;

int a,b,x,loop, CopyToPre, ViolateConstraints, BetterThanZero;
float RandCore;

//stuff for the single swap move
ushort PreMoveGoal, PreMoveHold, MoveGcal, MoveHold, BestTestGoal:
ulong RCell;

//Key and pointers for structure stuff
struct SOLUTION *ptr_cs;

struct ERA EXKey;

struct ERA *ptr_ekey;

//Array to hold the varying Subwatershed ERA values

int SubEra[NP)};
L End of variable defining -----------===---------—mcooommmio oo

oI AN A e R

puts ("A\t\grrrrar wkraAn)
printf("\E\trrrrrn Starting GREAT DELUGE for GOAL #%d\t\t****+**\n" GOAL TO_USE);
puts ["\t\E*rrran EAkk A

e AN A LD

Start = clock{};

//Seed the random number generator
srand{time (NULL)) ;

printf {"NOTE: There are %lu cells in the solution for this goalin*,count});

//First, again £ill up the SubEra array with ERA thresholds to use when checking constraints -
if(FillSubEraThresholds(SubEra) == FALSE)
Bailout (94} ;

//Alsc create an array of structures to hold a PreMove copy of the current S_Eral[] & Copy of the best 5_Era found
struct ERA (*PreMoveEra} = new struct ERA[SclutionSheds];
struct ERA (*BestEra) = new struct ERA[SolutionSheds]:
if (PreMoveEra == NULL)

printf("Problems allocating memory for PreMoveEra with %lu elements\n', SolutionSheds*sizeof (struct ERA));
if(BestEra == NULL)

printf(“Problems allocating memcry for BestEra with %lu elements\n",SolutionSheds*sizeof (struct ERA));
//Initialize PreMoveEra & BestEra
memset { PreMoveEra, 0, sizeof(struct ERA) * SolutionSheds);
memset (BestEra, 0 , sizeof{struct ERA) * SolutionSheds};

//Also initialize the PerValues and PreMoveValues and PreMovePeriodEral] array
memset { PerValues, 0, sizeof{Pervalues));

memset (PreMoveValues, 0, sizeof(PreMoveValues));

memset { PreMovePeriodEra, 0, sizeof (PreMovePeriodEra) };

I+
Fill perValues[] with the appropriate values.

PerValues[] is KEY! It has the total "optimizing value® for the Pre-Move solution, for each of the periods.
This array can then be modified - the "value" for the unit-period being moved OUT of will be reduced

and the unit-period being moved INTO will be increased. After evaluation, PreMoveValues[] will be reinserted

NOTE: S_Eral] works the same way except it was initially filled up back in Fill_SEra() & CalculateSumPeriodEra()
---which were called while trying to establish the initial solution.
*
/
1f(Fill_PValues{count, CS, Records, OV, PerValues) == FALSE)}
Bailout (86);

//Create an array of structures on the free store to hold a copy of the BEST solution
struct SOLUTION (*Best) = new struct SOLUTION{count];
if(Best == NULL)}

printf{“Problems allocating memory for Best[] with %lu elements\n“, count*sizeof (struct SOLUTION));

//Initialize and copy the initial solution found into this array of Best[] & PreMoveCS[] structures
memset{ Best, 0, sizeof(struct SQLUTION) * count)};

memcpy{ Best, C8, sizeof{struct SOLUTION) * count);

//Also copy the current S_Era into the BestEra
memcpy(BestEra, S_Era, sizeof(struct ERA)} * SolutionSheds};

//NOTE: 11Feb00 - skipping this baseline stuff unless needed at later time

//First, send off the InitialSolution to get a Baseline; Do we really need to get a baseline?
//Baseline = GetBaselineVTO!/count, CS, pPerValues, OV, Records);
//Multiply the Baseline by NP because the cbjective will be to Maximize the Total # of Big Trees -

regardless of when

//Get the

//Baseline = Baseline * NP;

Initial Objective Value - just sum up all the trees in PerValues

for (b=0;b<NP; b++)

InitialObj += PerValues(b] ;

//Set some other cbjective value holders that will change
LEVEL = Initialobj;

PreMoveObj = InitialObj; //Make sure to reset after making a new
move!!
BestObj = InitialObj; - //reset as new best are found

printf("InitialObj is $%.31f\n",Initialobj);
printf ("LEVEL is %.31f\n",LEVEL);

//Create,

open,and write out the Initial Objective Value to a file for tracking all the best moves

sprintf(filename_best, "%s%s%d\\best.txt", PREFIX,OutputDelugeDir, GOAL_TO_USE);
WRITE_BEST = fopen{filename_best, "w"); //I'm not deing any error-checking here!
fprintf (WRITE_BEST, "%.41f\t%.41f\n",InitialObj,LEVEL);

//Also create and open the file to show which cells and goals are being changed - to evaluate if randomness is
working in heuristic

sprintf (Temp, "$s%s%d\\random.txt", PREFIX, PreSimOutputbDir, GOAL_TO_USE) ;

WRITE_RANDOM = fopen(Temp, “w");

if (WRITE_RANDOM == NULL)

printf(*Something wrong opening the %s file\n", Temp);

312

P AR R R R R e

Ak kAR AR ARk kA

/

Start the

Deluge Loop

F AR R R R R R e B T)

R Y

//Make the looping a function of how many cells are actually in the current solution

LoopsToDo

= (ulong) (count * LOOP_FACTOR] ; //count was passed in and represents % of

cells in the solution
FirstThird = (ulong) (LoopsToDo * .333333);
SecondThird = (ulong)FirstThird * 2;

printf(*Going to do %lu loops\n",LoopsToDo) ;

CopyToPre

= TRUE;

for (leop=0; loop<(signed) LoopsToDo; loop~++

(

//Always zero out the MoveObj
MoveCbj = 0;

//Copy the PerValues &the 5_Era structures - unless a previocus move failed, then they are already set
if(CopyToPre == TRUE}
{

memcpy (PreMovevalues, PerValues, sizeof(PerValues));

memcpyY (PreMoveEra, 5_Era, sizeof (struct ERA)*SolutionSheds };

}

//Pick a random cell in the C5 array to move
RandCore = (float}{rand() / (float)RAND_MAX);
RCell = (ulong)} {(RandCore * icount-1)); //will get 0 to "count’ [to use in array nctation]

PreMoveGoal = CS{RCell] .Geal;
PreMoveHold = CS[RCell].Hold;

//5et a pointer for this cell in the array of CS structures
ptr_cs = &CS(Rcell];

//Also set a pointer to the current cells values in PeriodEral
ptr_cellera = &CS[RCell].PericdEral0];

//Make a copy of the cells PericdEral] member tc ccpy back if final move is no good
memcpy (PreMovePeriodEra, ptr_cellera, sizeof (PreMovePeriodEra));

//a guick bailout if HOLDNO is not correct
if {HOLDNO > 2}
Bailout(28);

//Pick a new hold, but DO allcw it tc be same as PreMcveHcld - can change later if want to exclude
do{
MoveHold = (ushort)(rand() % 4);

*/

313

}while (MoveHold

= 1 || MoveHcld == 2j;

//Make a pointer to the prcper S_Era record - to pass to the SwaplAdjust function
memset {&EKey, 0 , sizeof (struct ERA));

EKey .Minor = ptr_cs->Mincr;

//Now use bsearch to find the matching Subwatershed in the array of Era structures
ptr_ekey = {struct ERA*)bsearch(

&EKey,

[void *)S_Era,

(size_t}SolutionSheds,

sizeocf(struct ERAj,

CompareEraMinor |} :

if (ptr_ekey NULL) //There had better be one!
Bailout (88);

AR A R R R R R

Everything above gets done only once per new move (i.e. picking a new cell to change). What happens next
is that I will check a small "neighborhocd" by evaluating all the stand goals - storing their obj. value

and then picking the stand goal that made the best move {also checking constraints) .
F R B L L R h E d bl R d el L 3 2 R e AR R e Rt i

//Always reinitialize TestCbj before next testing laop
memset{ TestObj, 0 , sizeof (TestObj});

for{a=0;a<GOALS;a++)

{
//reset some variables
ViolateConstraints = FALSE;

//Don't evaluate the current stand goal assignment for this cell - has 0 in TestObj[] already
if{ a == PreMoveGoal }
continue;

//Otherwise, call up SwaplAdjust with the current stand goal

//Note: CS.Goal & CS.Hold = not changed,

//BUT, CS.PeriodEra{], PerValues[], & S_Era.SumPeriodEral[] HAVE been changed!
SwaplAdjust (ptr_cs, a, MoveHold, PerValues, OV, Records, ptr_eskey);:

//Check to see if this test move violates constraints
if{ CheckConstraintsGoall{S_Era,SolutionSheds, SubEra) == FALSE)
ViolateConstraints = TRUE;

//Calculate the TestCbj value if constraints not violated - if constraints violated, TestObj[]

has 0 already

if{ ViolateConstraints == FALSE)}
{
for (x=0;%x<NP; x++)
TestObj{a] += PerValues([x] ;
}

//No matter whether or not this test move gets picked, reset some values that got adjusted

during SwaplAdjust

kKK KAk

LR R

the same

//These always reset to those values found when first picking which cell to move
memcpy (PerValues, PreMoveValues, sizeof (PreMoveValues) };

memcpy (S_Era, PreMoveEra, sizeof(struct ERA)*SolutionSheds) ;

memcpy (ptr_cellera, PreMovePeriodEra, sizeof (PreMovePeriodEra} };

}//end for(a=0

AR R R R R R R R SR N E

77 End of evaluating neighborhood for this particular cell
/R R Rk ok kKK KRk ok ok ke kot o ok kot ko ok ok ke ko ko ke ok ok Rk o o R Rk o o ok ke o ok ke ok

//Now look through the TestObj[] array and find which stand goal made the largest value ~ if they are all

//{and/or all equal to zero) then don’'t make any move with this cell and skip rest of loop and pick

another cell.

BestTestObj = 0;
BetterThanZero = FALSE;
for(a=0;a<GOALS; a++)

{
if({TestObj[a] > BestTestObj)
{
BetterThanZero = TRUE;
BestTestGoal = (signed}a;
BestTestObj = TestObjlal;
}

}//end forla=0

//1f nothing BetterThanZero was fcund, then all neighborhcod moves violated the constraints - skip rest

and pick another cell

1f(BetterThanZero == FALSE }
(
CopyToPre = FALSE;
continue;

else

314

CopyToPre = TRUE;

[/ +++++ttttttttttttttet++ IF TO HERE THEN A MOVE WAS MADE AND PASSED CONSTRAINTS +++++++++tstdsdtttists

/*
If to here, then at least one stand goal got a valid answer {although not necessarily a better one - that
will be checked below). Remember, that the current stand goal assignment should not have been picked

because it had

a TempObj[] value of 0, but double-check.

NOTE: constraints were already checked - if it failed then it received a zero in TestObj{] and should
not be picked anyways!

*/

//double checked that current stand goal was not picked
if(BestTestGoal == PreMoveGoal !}
Bailout (105);

//switch BestTestGoal value back to original variable called MoveGoal
MoveGoal = BestTestGoal;

//Call up SwaplAdjust again

/ /Remember everything was reset back to original values after looking at all the stand goals (the
neighborhood analysis)

SwaplAdjust(ptr_cs, MoveGoal, MoveHold, Pervalues, OV, Records, ptr_ekey);

//Brint out random move information to the random.txt file
if{loop % PRINT_LOOPS == 0} //This will be printed every "X" loops
fprintf (WRITE_RANDOM, “%lu \t%hul t%hu
\t%hultshu\n", RCell, PreMoveGoal, PreMoveHold, MoveGoal , MoveHold) ;

//See what the MoveObj is
for (x=0;x<NP;x++)

MoveObj += PerValues[x];

//double-checked that this MoveObj is the same as was calculated earlier

if{ MowveObj != BestTestObj)

Bailout{106);
if(loop % PRINT_LOOPS == 0) //This will be printed first, every "X loaps
{

printf{"\nJust had a MoveObj of %.41f and...", MoveObj);

fprintf (WRITE_BEST, "At loop %d, the current BEST is %.21f\n",loop, BestObj);

7/

= EVALUATION PROCESS

//This is a MAXIMIZATION problem - if MoveObj is > BestObj then it is already better, so just accept and
go to next loop
if (MoveCbj > BestObj}
{
if(loop % PRINT_LOOPS == 0)
printf {"Was a BEST move, LEVEL is %.41f, Best WaS %.21f, at loop
%d", LEVEL, BestObj, loop) ;

//1if this is the case, then current PerValues[] & S_Era are OK, but CS[] needs updated -
CS{].PeriodEra[] also OK

CS[RCell].Goal = MoveCGoal;

CS{RCell].Hold = MoveHold;

//Reset BestObj
BestObj = MoveObj;

//printf{"Raising LEVEL from %.61f to %.61f\n", LEVEL, LEVEL+RAIN);
LEVEL += RAIN;

//write out to file
//fprintf (WRITE_BEST, "%.41f\t%.41f\n",MoveObj, LEVEL);

//Save CS[] & S_Era[] separately so I can print out later
memcpy { Best, CS5, sizeof (struct SOLUTION) * count);
memcpy (BestEra, S_Era, sizeof(struct ERA) * SolutionSheds);

}
else //an INFERIOR move - use the GREAT DELUGE to decide if still want
to make
{
/1= = Use the Great Deluge logic =
if (MoveObj > LEVEL) //¥es, I do want to keep
it
{
if(loop % PRINT_LOOPS == 0)

printf ("Using GreatDeluge...KEEPING, LEVEL at %.21f, BEST at %.21f, at loop
%d*, LEVEL, BestObj, loop);

//if this is the case, then PerValues[] & S_Era are OK, but CS[] needs updated -
CS[].PeriodEra{] also OK

CS[RCell].Geoal = MoveGoal;

CS{RCell] .Hold = MoveHold;

//Adjust Level (raise it - maximization problem!}
LEVEL += RRIN;

315

else //NO, reject the inferior
solution...reset PerValues[] & S_Era, but CS5[] is OK
{
if(loop % PRINT_LOOPS == O)
printf("Using GreatDeluge...REJECTING, LEVEL at %.21f, BEST at %.21f, at
loop %d*,LEVEL, BestObj,loop);

if(loop > (signed) (LoopsToDo - 1lCCCCCO} }
{
if (LEVEL »>= BestObj)
LEVEL = LEVEL - 50;
}

//Move has been rejected - reset everything back to PreMove* values
memcpy (PerValues, PreMoveValues, sizeof (PreMoveValues));
memcpy (S_Era, PreMoveEra, sizeof{struct ERA}*SolutionSheds };

//Also put back the cells PeriodEra(] stuff
memcpy (ptr_cellera, pPreMovePeriodEra, sizeof(PreMovePeriodEra));

CopyToPre = FALSE; //Will tell top of loop not to copy these values back
into the Pre...[], they are already there!
}

== End of Great Deluge acceptance routine

}//end for(loop...}
printf("\n"}; //because of the way I have the print statements for my viewing

F R R A e e

//Copy the BestSolution back over to Solution & The BestEra back to S_Era so everything is kosher
memcpy (CS, Best, sizeof(struct SOLUTION) * count});
memcpy (S_Era, BestEra, sizeof(struct ERA) * SolutionSheds);

//close files
fclose (WRITE_BEST} ;
fclose (WRITE_RANDOM] ;

Finish = clock(};
Duration = { (double) (Finish-Start) / CLOCKS_PER_SEC) ;
printf{"\t\t**+*+++ GreatDeluge for goal %d took %.21f seconds******\n", GOAL TO USE,Duration };

//Testprint
printf (*"The best solution found has ERA values of:\n");
for{a=0;a<(signed)SclutionSheds;a++)

{
printf({"Subwatershed %hu has Count %lu: ",5 Eralal .Minor, S_Erafa].Count);
for (b=0; b<NP;b++)
printf("\t%.2f", ((float)S_Era[a].SumPeriodErafb] / ERA_EXP) / S_Eralal].Count};
printf("\n"};
}
J S D S L L L L AL L e
/7 Dcouble check
printf("\n\n= == Getting ready to DOUBLE CHECK sclution === \n")
//Resort the array of SOLUTION structures by MINOR . Thig¢ will guarantee all the subwatersheds are in order
//Use mgsort because gsort takes way too long since there are not many unigque Minor ID's
mgsort({ (void*)Cs, /ibase
(size_t)count, //count of # of arrays
sizeof (struct SOLUTION), //size of each array
0, count-1, //current division {
always: 0, “"Count*-1)
LookAtSolutionMinor }; //compare function
//Initialize this array of ERA structures - this is important because Fill_SEra will do some += summing

memset{ S_Era, 0, sizeof(struct ERA) * SolutionSheds };

//Fill the array of S_Era structures with appropriate values

if{ Fill_SEra(SolutionSheds, S_Era, count, CS) == FALSE)
Bailout(85};

//Resort the array of CS structures by CELLID only. This is needed by CalculateSumPeriodEra

gsort((void*)cCs, //base
(size_t)count, //count of # of
arrays
sizeof {struct SCLUTION), //eize of each array
LookAtSclutionCellid); //compare
function
if(CalculateSumPeriodEra(SolutionSheds, S_Era, count, CS, OV, Records) == FALSE)
Bailout(86);
printf ("=s======================== Finished double checking An\n");
/7 End DoubleCheck

R R R L SR

J/FFFEFFHA S A SR A x kA x kx4 % These will print out ONLY those things for cells IN THE SOLUTION **¥*#s*raxawawass

316

//Print out the Periodic values for the value being optimized
PrintSolutionValues(count, CS, OV, Records, SubEra, ACTUAL);

//Print out the Big Trees
PrintSolutionBigTrees{count, CS, OV, Records, SubEra, ACTUAL);

//Print out the ERA values in S_FEra
PrintSolutionEraValues{S_Era, SolutionSheds, ACTUAL};

//Delete stuff on the free store
delete (] PreMoveEra;

delete [] BestEra;

delete [] Best;

return TRUE;:
}//end DelugeGoall
GOALS.H
//Mostly some functions defined in GOAL_CONTROLLER.CPP and are used by almost all the GOAL*.cpp files.

extern int FillValueToOptimize (void);

extern double GetBaselineVTO(ulong count, struct S0LUTION Solution[], double PerValues(],

struct
OPTIMIZE_SINGLE_VALUE OV[], ulong Records);
extern void SwaplAdjust{ struct SOLUTION *ptr_cs, ushort NG, ushort NH, double PerValues[], struct
OPTIMIZE_SINGLE_VALUE oOV(],
ulong Records, struct ERA *ptr_era);
extern void PrintSolutionValues(ulong Count, struct SOLUTION €S[], struct OPTIMIZE_SINGLE VALUE OVI[],
ulong Records, int SubEral], int Status);

extern void PrintSolutionBigTrees{ulong Count, struct SOLUTION CS[], struct OPTIMIZE_SINGLE_VALUE OVI[],
ulong Records, int SubEral], int Status);

extern int DetermineEligibleCells(ulong vValues[]);

extern int FillSolution(ulong Values[], struct SOLUTION Solution[], int Status):
extern int LookAtOSV(const void *ptrl, const void *ptr2);

extern int CompareEraMinor({const void *ptrl, const void *ptr2);

extern int LookAtSolutionMinor (const void *ptrl, const void *ptr2):

extern int LookAtSolutionCellid(const void *ptrl, const void *ptr2);

extern ulong CountSolutionWatersheds{ulong count, struct SOLUTICN Solution[]};

extern int Fill_ PValues(ulong Count, struct SOLUTION CS[], ulong Records, struct OPTIMIZE_SINGLE_VALUE OV[], double
Valuel[]);

extern int InputSolution{ulong Count, struct SOLUTION CS[]);

extern void InputaAndCalculateScluticnEras{ulong Count, struct SOLUTICN CS[] };

extern void PrintSolutionEraValues(struct ERA Eral], ulony NoSheds, int Status);

extern int Fill_SEraf{ulong NoSub, struct ERA S_Era(], ulong Count, struct SOLUTION CS[]):
extern int FillEndingEra{ulong NoSub, struct ERA S_Era[]., ulong Count, struct SOLUTION CS[) };
extern void OutputInitialGeoal{void);

//this is really defined in EraStuff.cpp

extern int CalculateSumPeriodEra{ulong NoSub, struct ERA S_Era(], ulong Count, struct SOLUTICN CS(], struct
OPTIMIZE_SINGLE_VALUE OV[].

ulonyg Records) ;

MOZORT.CPP

PR

* *
e MYSOrt.C —=----mmmmmmmmmm e m *
* *

B e e L LY

#include <stdlib.h>
#include <string.h>

int mgsort(void *data, int size, int esize, int i, int k, int (*compare)
(const void *keyl, const void *key2));

static int merge (void *data, int esize, int i, int j, int k, int {*compare]
{const void *keyl, const veoid *key2}};

End of function definitions ---

———————————————————————————————— MYSOLEL === m—m o m oo

D R R R R R R N L 2 AR R R st

int mgsort{void *data, int size, int esize, int i, int k, int (*compare)
(const void *keyl, const void *key2))
TR g g T T T S T S TR S ST TR PRSP ST RN P R

(
int j:

R e e L

* *
* Stop the recursion when no more divisions can be made. *
* *

D R d R R 2 4 h s R R R T 2 2 2 A R aa AT

if (i < k) {

R R R R d AR e e

/

* *
* Determine where to divide the elements. *
* *
R R R R R O I T T
j = (int) (({i + k - 1)) / 2);

J R e L e
* *
* Recursively sort the two divisions. *
* *

D L R e T T

if (mgsort(data, size, esize, 1, j, compare) < 0)
return -1;

if (mgsort{data, size, esize, j + 1. k, compare) < 0O)
return -1;

R e e e et R e e A e

. *
* Merge the two sorted divisicns into a single sorted set. *
N »

D R L e]

if (merge(data, esize, i, j, k, compare) < 0)
return -1;

return 0;

R R e e

B R R e R L E T et e e e T
static int merge(void *data, int esize, int i, int j, int k, int (*compare)
{const void *keyl, const void *key2))

PR R e S R T

(

char *a = (char *)data,
*m;

int ipos,
jpos,
mpos;

R R e e e LR

. N
* Initialize the counters used in merging. *
N *

R)

ipos = i;
jpos = j + 1;
mpos = 0;

AR R R e e e e e A A R e R AR AR RS AR

* >

317

>

>

Allocate storage for the merged elements. *

>

B R e R R R R R)

if ((m
return -1;

= {char *)malloc(esize * ((k - 1) + 1})) == NULL}

P R e R e S e A

>

>

>

>

Continue while either division has elements to merge. *

>

LR R 2 S S A]

while (ipos <= j || jpos <= k) {

if {ipos > j) {

FAR R e e R e e e e e

* *
* The left division has no more elements to merge. *
* *

I R T N Ty
while (jpos <= k) {

memcpy (&m[mpos * esize], &aljpos * esize], esize);

jpos++;

MPOS++;
}
continue;
)

else 1f (jpos > k) {

AR e e R e

* *
* The right division has no more elements to merge. *
* *

R e R R R e R R R S L L A AT
while (ipos <= j) {

memcpy (&m[mpos * esize], &alipos * esize], esize);

ipos++;

mpOS++;
}
continue;

R R e

>

>

>

*
Append the next ordered element to the merged elements. *
*

R R AR R A Rk R A Kk kKR K R R R R KA N R R A A AR AR R A A AR R R A AR R R A AN R I A AN R I A AN KR AN AN R I A NN]

if

(compare(&a[ipos * esizel, galjpos * esize]l) < 0) {

memcpy (&m[mpos * esize], &al[ipos * esize], esize);
ipos++;
MPOS++;

else {

memcpy (&m[mpos * esize], &a[jpos * esize], esize);
jpos++;
MpOS++;

R et

>

>

>

Prepare to pass back the merged data.

>

>

>

R R e e

memcpy (&a[i * esize], m, esize * [({k - 1) + 1}};

P R e R e

>

>

>

Free the storage allocated for merging.

>

>

>

B L e]

free(m);

318

319

return 0;

AR R e s

//This PrepareFarsite.cpp file contains the functions that are used to prepare and run farsite within this
//SAFED program.

P AR R e R R R R e R T T R

VAR AR AR R R e e R e R e R R N A A AR R R T T

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math. h>
#include "globals.h®
#include "data.h"

//Functions defined here in PrepareFarsite.cpp
int PrepareFarsite(int period, int weather};

FILE *open_input(char *filename, int rw):
int close_file(FILE *f, char *filename);

void InitialFiles{void);
void RunMakeper0{void};

veid MakeRunfarsite(int p);

void WhichOutputs{int p};

void MakelIgnition{int p}:

void MakeFiresl(int p):

void prepare_run{int p, int TotalHours);

int IgnitionPoints{int p, int weather);

void PrepareFarsiteEnvt(int p, int drought);

void PrefireInfo(int p, int Hours, int Drought, int NoFires};

P AR R s S A e R R A

int PrepareFarsite(int period, int weather)
//****t*tt*t***************************t*tttttt************************tttttt*tt*t*ﬂt*t***********

{
// ***IMPORTANT ** Remember that the LayerFile is made in PrepareFlammap() now, they both use
same file
//Some local variables
int Hours, NoFires=0;

// Use to run all the PrepareFarsite functions

//Set the hours to burn as follows:

if(weather == 1)
Hours = 24; / /et
else ifl{weather 2}
Hours = 48; //Moderate
else
Hours = 96; //Drought..weather is either 3 or 4 (mild or severe drought!
MakeRunfarsite(period); //Make the

runit.bat file needed for each period

WhichOutputs{period); //Make the “"Farout" file
that specifies which output

//raster grids to make.

MakeIgnition(period); //Make the ignition.txt
file needed for each period

MakeFiresl(period); //Make the firesl.txt
file needed for each period

#ifndef RERUN_SIM
prepare_run{period, Hours}); //prepare run.txt to change the
start dates and how
//long the fire burns
NoFires = IgnitionPoints(period, weather); //Create the ignition points needed
for this period

#endif

PrepareFarsiteEnvt (period, weather); //Create the envt.txt file so that
we can make the

//necessary changes to it before it is used

320

PrefirelInfo(period, Hours,weather, NoFires});

return TRUE;
}//end of PrepareFarsite

N R bt

FILE *open_input(char *filename, int rw)
DY R R L L T L L L Lt

{
FILE *f;
errno = 0;
char mode[2];
if{ == 1) {mode[0] = ‘r’'; mode[l] = '\0';}
if(rw == 2) {mode[0] = 'w’; mode[l] = '\0';)}
if(filename == NULL) filename = "\0";
t = fopen(filename, mode);
if (f == NULL}
fprintf(stderr, "open_input(\"%s\") failed: %s\n", filename, strerror{errno));
return f;
)

P R R e e]

int close_file(FILE *f, char *filename)
R S R L R Rl T R R R e L 1

(
int & = 0;
if (f == NULL) return 0;
errno = 0;
s = fclose(f):
if {s == EOF) perror{"Close failed");
return s;
}

R e R S R L T L T T
veid InitialFiles(void)

P R e e R R R L e e e e S e

(

//This is to create the Batch file needed to change the directory and start process to pipe
//a file through Arc, which in turn will run the make_per0.aml.

//Will create two files. 1) a file called make_per{(.bat and the other called make_per0.txt
//which have a specific format as seen below.

//Don’'t need the period passed to this functicn because this will only be executed once
//and it will automatically put it in the per0 directory

FILE *OpenWrite;

char WriteOut[150};
char StartArc[150];
char ArcCommand[350];

//stuff for .bat file
char DirChange[100];
sprintf(StartArc, "type %s%s%d\\per0\\make_per0.txt | arc®,6 PREFIX, INPUTS,GOAL_TO_USE];

//stuft for the .txt file
sprintf (ArcCommand, "&r %s%s\\make_per0O.aml %s %s %d",PREFIX,AmlDir, MAIN USER, ENVT, FILE_TYPE);

//Prepare and write the make_per0.bat file and a command line tc change directories
sprintf (WriteOut, "%s%s%d\\per0\\make_per(.bat", PREFIX, INPUTS, GOAL_TO_USE);
sprintf (DirChange, "cd %s%s%d\\per0\\", PREFIX, INPUTS, GOAL_TO_USE};

CpenWrite = open_input(Writedut, 2}; //open in write
mode

fprintf(OpenWrite, “%s\n", DirChange);

fprintf {OpenWrite, “%s\n", Startarc);

close_file{OpenWrite, WriteCut);

//Prepare and write the make_per0.txt file
sprintf (WriteOut, *%s%s%d0\‘\make_per0.txt", FREFIX, INPUTS, GOAL_TC_USE);

OpenWrite = open_input{WriteCut, 2); //open in write
mode

fprintf (OpenWrite, "$s\n", ArcCommand);

close_file(OpenWrite, WriteOut};

//Call up the RunMakeper0O() to actually start the batch file

321

RunMakeper0{);
}

P R T e e L S RS]

void RunMakeper0 (void)
R L L L T L L L L L L
{

// This function will run the MAKE_PERO.BAT file which in turns calls up Arcinfc and then

/{ runs the make_per0.aml located in the g:/Model/amls/ directory. In essence, the initial

//grid files needed before pericd 1 starts will be created and put into either the ./perd/

//or ..\inputs\Constant* directory, so that when perl starts it can lock in that directory.

//For Time information
clock_t Start, Finish;
double Duration;

Start = clock();
char RunBatch[100];

//Make the command
sprintf (RunBatch, “%s%s5%d0\\make_per0.bat", PREFIX, INPUTS,GOAL_TC_USE};

system|(RunBatch) ;

Finish = clock(};
Duration = ((double) {Finish~Start) / CLOCKS_PER_SEC);
printf{"\n**It tock %.21f seconds to run the MakePer0.aml**\n", Duration };

A L

void MakeRunfarsite{int p)
B e R R e E L L T e e P e T e
{

//Make the RUNFARSITE.BAT file needed by Farsite - on the fly

FILE *OpenWrite;
char WriteQut[150);

char LayerFile[150];
char EnvtFile[150];
char IgnitionFile{150];
char RunFile[150];
char BarrierfFile[l150]:
char ChangesFile[150];
char OutputFiles(150};

End variable defining --

//String together the current period directory path and the appropriate file names

sprintf (WriteOut, "%s%s%d\\pertd\\runfarsite.bat", PREFIX, INPUTS, GOAL_TC_USE,p);

sprintf (LayerFile, "$s%$s%d)\ \peridi\layers.txt", PREFIX, INPUTS, GOAL_TO_USE,p);

sprintf (EnvtFile, "%s%s%d\\persd\\farsite_envt.txt", PREFIX, INPUTS, GOAL_TO_USE, p);

sprintf (IgnitionFile, “%s%s%d\\per%di\\ignition.txt", PREFIX, INPUTS, GOAL_TO_USE,p);

sprintf {RunFile, "$5%s%d\ \perkd\ \run. txt", PREFI¥, INPUTS, GOAL_TO_USE,p) ;

sprintf (CutputFiles, "%s%s%d\ \pertd\\Farsite_out.txt", PREFIX, OUTPUTS, GOAL_TO_USE,p);
sprintf (BarrierFile, “$s5%s\\barrier. txt", PREFIX, ConstantInput);

sprintf (ChangesFile, "%s%s\\changes. txt", PREFIX, ConstantInput};

OpenWrite = open_input(WriteOut, 2); //open in write mode

fprintf (OpenWrite, "%s%s %s %5 %s %s %s %s %s\n", PREFIX, FarsiteName, LayerFile, EnvtFile,
IgnitionFile, RunFile, QutputFiles, BarrierFile, ChangesFile);

close_file (OpenWrite, WriteOut);

e e T

void WhichOutputs{int p}
D R T L L L L T L L L T L L e ey
{
// Thig function will make a file called "...outputs\per*\Farsite_out.txt". Inside of this file
//will be a list of the raster grids we want Farsite to output. This file is specified in the
//above runit.bat file as the 6th parameter that Farsite is looking for and which the Farsite code
//calls the "QutputFile". In farsite, I have modified the code in Farread,cpp
ReadInputFiles::ReadRunSpecs
//to strip off the last 16 chararcters (\Farsite out.txt) and then search for the first occurance
//of "per" and set a pointer at the beginning of "per” to pass along and create output filenames
//such as "perl", “per2", ..., 'per20".

//A11 we want for now are the FLAME lengths and unless we need more that is all that is going in.
//The arrival grid will ALWAYS be made because that iz needed for Farsite to do its calculations.

FILE *QOpenWrite;

char WriteQut[50];

char Gridl[10} = "flame";
char Temp[1501;

322

//Make the correct filename
sprintf(Temp, "%s3s%d\\per%d\\Farsite_out.txt", PREFIX,OUTPUTS, GOAL_TO_USE,p);
sprintf(WriteOut, "%s",Temp);

OpenWrite = open_input {WriteQut, 2); //open in write mode
fprintf (OpenWrite, "%s\n",Gridl);

close_file(OpenWrite, WriteQut};

N A e

void MakelIgnition(int p)
e d R e R Rt R Lt L L T T S L L T

{

//Make the ignition.txt file which specifies to use firesl.txt as the file that has the name of
//the ascii files which have the coordinates for fire ignition sources - this is all screwy but
//that is how Farsite is coded and I have just followed along

FILE *OpenWrite;
char WriteQut[100];
char TextLine[100];

//Cat together the full directory path name and the file names
sprintf (TextLine, “%s%s%d\\per%diifiresl.txt", PREFIX, INPUTS,GOAL_TO_USE,p);
sprintf (WriteOut, "%s%s%d\\pertdiiignition.txt", PREFIX, INPUTS,GOAL_TQ_USE,p};

#ifdef DEBUG_MAKEIGNITION
//print out to see if they are correct
printf ("%s\n", TextLine);

¥endif
OpenWrite = open_input(WriteOut, 2}; //open in write
mode
fprintf (OpenWrite, "$s\n", TextLine};
close_file(OpenWrite, WriteOut};
}

R T B Lt S T T
void MakeFiresl{int p)

A e e

{

//Make the firesl.txt file which specifies the potential three ascii files that can be populated
//with data concerning fire ignition sources. They must be in the specified order because that
//1s how Farsite is looking for them

FILE *OpenWrite;
char WriteOut[50];
char Points[100], Lines[100}, Poly{100];

e e i End variable defining ----------ommmmm

//Make the full directory path name and the file names

sprintf (Points, "%s%s%d\\per%d\\igpoints.asc", PREFIX, INPUTS, GOAL_TO_USE,p);
sprintf(Lines, "%s%s%d\\per¥d\\iglines.asc", PREFIX, INPUTS,GOAL_TO_USE,p};
sprintf(Poly, "%s%s%d\\per¥d\\igpoly.asc", PREFIX, INPUTS,GOAL_TO_USE,p};
sprintf(WriteOut, “$s%s%d\\per%¥di\firesl.txt", PREFIX, INPUTS,GOAL_TO_USE,p;};

OpenWrite = open_input(WriteOut, 2); //open in write
mode
fprintf (CpenWrite, "%s\n", Points};
fprintf (OpenWrite, "%s\n",Lines};
fprintf (OpenWrite, "%s\n", Poly};
close_file(OpenWrite, WriteQut);

R R e

voild prepare_run{int p, int TotalHours)
P R R R L L L T T S L Lt

{

FILE *CpenWrite;
char RunFile[100];

char TimeStepf[5]1="0400"; // Change this value if needed to speed up processing
//HMay want to

come up with some sort of ratio of Time
//step to the

TotalHours because this really slows us

long fires.

res. is OK

//down with

323

int PerimeterRes = 200; // Change these two toc speed up if coarser

int DistanceRes = 200;

char RasterUnits[l0]=“metric";

int MonthStart, DayStart, HourStart;
int MonthEnd, DayEnd, HourEnd;
int rnd;

int DaysOfBurning, HoursLeft, MaxDay ;
int Xday, VisStep;

//Create a string with the actual run.txt file name with the full directory path
sprintf(RunFile, "%s%s%d\\per%di\‘run.txt", PREFIX, INPUTS, GOAL_TO_USE,p);

ek gk sk ok ok ok ok ok ok ok ok ok Sk sk ok ok ok ok Sk Sk kR Kk ko ko ok ke kK K K K K K ke K K K kR Rk ok ok ok ok ok ok ko ke ko

in June

/* We are going to generate new

dates and times according to the following process: The main program will send a
value to this function that is the # of hours to burn. The burn start month will be

randomly decided as either June or July. A random day and hour will then be picked and the

hours to burn will be added and the end hour, day, and month will be calculated.*/

] ek ek ok Wk ok ke R ok kR R kR K Kk kK K Kk K Kk k ko R Kk K Kk ok ko k ko A Kk Rk A Rk kAR Ak R kK Rk k kK ok kK k ok ok ke k ke k K

//Randomly generate number to determine if start month is june or july
rnd = {rand{() % 2);

//NEW~- Bernie changed windaweather files to have only one month of data AuglS5-Sept 14

//so make it always start in August (31 day month) (30 april 99)
MonthStart = 8;

//1if {rnd == 0} MonthStart = §; //for June

//else MonthStart = 7; //for July

//Randomly generate number to get which day of the month it is

——————————————————————————————— End variable defining --m-=--memer e e

//NEW{30April99) - must start on or after the 15th because of new .wnd and .wtr files
/*if (MonthStart 6) rnd = (rand(} % 30 + 1); //will get 0-29 and add 1 to get 1-30 days
else rnd = (rand{) % 31 + 1); //will get 0-30 and add 1
to get 1-31 days in July or August

*/
if (MonthStart == 6)
{

do{

rnd = (rand{} % 30 + 1};
Jwhile{rnd < 16}; //Farsite sometimes bail if start

date is the 15th - maybe because that is first line?

added!

month

}

else //only for July and August since they both have 31 days. Modify if other months

do(
rnd = {rand(} % 31 + 1);
Jwhileirnd < 16);
}
DayStart = rnd;

//Randomly generate number to get the start hour
//NEW - Bernie wants fire to always start from 0800 to 2000 hours

//and they should start on Even hours to match weather and wind files(30 April 99)

do

{

rnd = (rand(} % 20 + 1);
Jwhile{rnd < & || (rnd % 2) != 0);
HourStart = rnd;

//Determine how many days and left over hours there are from TotalHours
DaysCfBurning = (int) (TotalHours / 24);
HoursLeft = {int) {TotalHours % 24};

//S8et MaxDay and MaxHours to make sure days and hours added to start date don’t exceed a valid

switch(MonthStart}

{

case 6: MaxDay=30; break; //days in June
case 7: MaxDay=31l; break; //days in July
case 8: MaxDay=31; break; //days in August

}

//Calculate the ending Hours, days, and Month
Xday = 0;

HourEnd = HourStart + HoursLeft;

if (HourEnd > 24)

{

Xday = HourEnd / 24; // 1f more than 24 hours make another day

324

HourEnd = HourEnd % 24; //otherwise this is the final hour
}
DayEnd = DayStart + DaysOfBurning + Xday; //set ending day
if(DayEnd > MaxDay) //if days burning exceed allowable #days in a
month
{
MonthEnd = MonthStart + 1; //increment to next month
DayEnd = DayEnd % MaxDay; //reset ending day
}
else
MonthEnd = MonthStart; //otherwise fire ends in same month

//Set the Visible Time Step egual to that of the TOTALHOURS time
VisStep = TotalHours;

P A Y

//Prepare all the data to write back into a run.txt file so that it can be used by FARSITE

//It has to be written in this exact format otherwise Farsite will bomb out.
P R R 2L T I T T

OpenWrite = open_input (RunFile, 2);

fprintf (OpenWrite, "1998%.2d%.2d%.4d\n",MonthStart,DayStart, (HourStart*100))
fprintf (OpenWrite, *19938%.2d%.2d%.4d\n",MonthEnd,bayEnd, {HourEnd*100)};
fprintf (OpenWrite, "%s\n",TimeStep);

fprintf (OpenWrite, "%.4d\n", (VisStep*100)};

fprintf (OpenWrite, "%d\n",PerimeterRes};

fprintf (OpenWrite, "%d\n",DistanceRes);

fprintf (OpenWrite, “%s\n",RasterUnits);

close_file{OpenWrite, RunFile);

} //end of prepare_run

R R e 2

int IgnitionPoints{int p, int weather)
P R R e Y

{

/*
This function will generate fire ignition points for each period. The ocutput will be a file called

... \inputs\\per*\igpoints.asc which FARSITE will use. The format of the file is standard ARC/Info "ungenerate"
form:

PointID X-coord{in meters) y-coord{meters}
End
NOTE: The data stored in Data.*{](p] is that BEFORE any fire so that data is GOOD. After the fire

that information will be updated with new condition and can then be sent out for mapping, etc.
*/

int NoFires, NewPoint = 0;

int a,b, Row,Column, ContinueStatus, AnotherContinueStatus, EvalColumn;
FILE *OpenWrite;

char WriteQut[150];

ushort Pointsg[15][2], RowsAway, Columnsaway;

ulong *ptr_treelist;

int rnd;

float Xvalue, Yvalue;

int *ptr_srp; //Starting Row Position
ushort *ptr_gridcolumn, *ptr_veg, *ptr_fuel, *ptr_elev, *ptr_fire;
int r,c,HowMany;

e e End variable defining —-—--—~——~— -~ mm e o

//Initialize Points[][] which will hold the ROW and COLUMN value for selected ignition points
for{a=0;a<15;a++)
{
for (b=0;b<2;b++)
Points[a) [b] = 0;

//CHANGE: 7 June 99: Bernie now wants to have 5 - 15 ignition points regardless of
//whether it is a Wet, Moderate, or Drought period. The weather and wind files will adjust for conditions
//14 March 00 - changing to max of 14 - FARSITE sometimes "hangs" with 15 fires?777
do
{
NoFires = {rand{) % 14 + 1);
}while (NoFires < 5);

do
{
Row = { rand{) % ROWS + 1); //get 1 - ROWS
Column = (rand(}) % COLUMNS + 1); //get 1 - COLUMNS
rnd = { rand() % 100 + 1}; //assign random number to use faor

probabilistic comparisons later

325

//printf("Row is %d and Column is %d\n", Row, Column);

J /R A AR IR A KR A A AN R F A AR A KAk Kk ok k ok kkakwkh* CHECKER #1

L g R i AR R s i e

/= = Check for WATER condition and any other immediate disqualifiers
ptr_srp = &link[Row~-1])[1]

HowMany = *iptr_srp+l};

ptr_gridcolumn = &Data.GridColumn[{*ptr_srp}-1];

ptr_treelist = &Data.Treeligt[{*ptr_srp)-1];

ptr_veg = &Data.InitialVeg[(*ptr_srp)-11;

ptr_elev = &Data.Elev((*ptr_srpl-11;

ptr_fire = &Data.FireHistory[(*ptr_srp)-1]

ptr_fuel = &Data.FuelModel([(*ptr_srp)-1]{p-11;

//If the whole row is blank, pick another point
if{ *ptr_srp == FRLSE) //means a zero was left in this spot during MakeLink
continue;

ContinueStatus = 0;
for (c=0;c<HowMany; c++)
{
if{ *ptr_gridcelumn == Column) //This is the correct cell
{
// ****¥*¥* Do any CELL SPECIFIC checking below, using the same format

KA kAR A A AN A

//Check to see if the cell location was classified as water in the Initial
Vegeation classification

if(*ptr_veg == GIS_WATER)
//Yes it was
{
ContinueStatus = 1;
//FAIL, try another point
if(*ptr_fuel != 98 || *ptr_treelist != NONFOREST)

//should match with Fuel model 98 that was inputted in ReadData.cpp
Bailout (54);
break; //finished looking in this for...
loop

//Check to see 1f this cell is in or out of the polygons that delineate previous fire
history. If it
//1is out, give it a 40% chance of continuing because there are no fire history
polygons in the
//Nw portion of the Applegate and that would be crazy to exclude fire from starting
there.
//And only do this when not running with TINY or COMPARE watersheds {(they are too
small and no points get picked}
#if tdefined(TINY RUN) && !defined(COMPARE_RUN)
if({ *ptr_fire == NODATAFLAG) //is outside any fire history
polygons
{
if(rnd > 60)
//give it a 60% chance of occuring anyways
1
ContinueStatus = 1; //Fail, try
another point
break;
//finished looking in this for...loop

#endif

//Get a new random number

rnd = { rand{} % 100 + 1};

//put a probability factor in here to account for weather and elevation
liklihood

//{i.e. in Wet years, there is a smaller probablity that fires will occur
in high elevation)

//get those values from Bernie - this method may not be the most accurate
because new

//random numbers are compared against new random points and it could cycle
enough that

//ignition points get located in undesirable elevations just because of
cycling.

if(weather == 1)

//wet period

if{ *ptr_elev >= (3000*FT2M))
{
if{ rnd > 10)
//only 10% chance that this is allowable
{
ContinueStatus = 1;
/{Fail
break;
//finished looking in this for... loop
}
}
else if(*ptr_elev >= (1500*FT2M})
{

326

if{ rnd <= 10 || rnd > 25)
//only 15% chance that this is allowable
I
ContinueStatus = 1;
//Fail
break;
//finished looking in this for... loop
}
}
else
//less than 1500 feet in elevation
{
if(rnd <= 25)
//a 75% chance that this is allowable
{
ContinueStatus = 1;
//Fail
break;
//finished locking in this for... loop
)
3
else if(weather == 2}
//moderate period
{
if(*ptr_elev >= [3000*FTZM))
{
if(rnd > 15)
//only 15% chance that this is allowable
{
ContinueStatus = 1;
//Fail
break;
//finished looking in this for... loop
3
}
else if{ *ptr_elev >= (1500*FT2ZM))
{

if({ rnd <= 15 || md > 50)
//only 35% chance that this is allowable

{
ContinueStatus = 1;
//Fail
break;
//finished looking in this for... loop
}
3
else
//less than 1500 feet in elevation
{
if{ rnd <= 50)
//a 50% chance that this is allowable
{
ContinueStatus = 1;
//Pail
break;
//finished leocking in this for... loop
}
}
}
else
//drought period - either Mild or Severe
{
if{ *ptr_elev >= (3000*FT2M} }
{
if(rnd > 10)
//only 10% chance that this is allowable
{
ContinueStatus = 1;
//Fail
break;
//finished looking in this for... loop
3
}
else if(*ptr_elev »= [1500*FT2M))
if(rnd <= 10 || nd > 55)
//only 45% chance that this is allowable
{
ContinueStatus = 1;
//Fail
break;
//finished looking in this for... loop
, 3
else
//less than 1500 feet in elevation
{
if{ rnd <= 55)
//a 45% chance that this is allowable
{
ContinueStatus = 1;
//Fail

break;
//finished locking in this for... loop

327

}
}//end ot checking the weather and zlevation
}//end if{ *ptr_gridcolumn == Column)

ptr_gridcolumn++;
ptr_treelist++;
ptr_veg++;
ptr_elev++;
ptr_fire++;
ptr_fuel+=NP;

}//end for (¢=0;c<HowMany; c++)

if(ContinueStatus == 1)
continue; //get ancther
point

JIEEEEEEE SRS S A kR A KRR A KR R AR R AR Ak * x4 % CHECKER #2

R L g g s 2 L L

//Now check and make sure this cell ig not within a 1 mile "buffer" of the edge. Do this by

ensuring
//there is a miles worth of contigucus cells (MOC) BEFORE, AFTER, ABOVE, and BELOW the selected
cell.
//NOTE: All I'm checking here is to see if there is a valid cell in Grid.Gridcolumn - that DOES
NOT
//ensure there is data for all themes (i.e., fuel, etc.), only that there was NOT nodata there
when
//the Cellid.asc file was brought in. Check later to see if there is data for necessary
themes.
if (Row <= MOC} //the starting row is too close to begin
with, pick another point
continue;
if (Row >= (COLUMNS - MOC))
continue; //starting row is too close to bottom of

area, pick another point
if {Column <= MOC)

continue; //starting column is too close to left edge
of data
if(Column »>= (ROWS - MOC))
continue; //starting column is too close to right edge
of data
//we know the current evaluation row, look in link[][] and see if there is even any data in
that row
if (link{Row-1](2] == 0) //there is no data for this row - occurs above or below
the geo. extent of current envt.!
continue; //so pick another point
SRR R AR AR AR Ak Look ABOVE the cell for MOC valid cellg ***+*sss>trnshsrss

J/printf (v rxs**+++rr s Tooking ABOVE the cell for firepoint #%d
tttgt}t**ttt}t*tt*\n-/Newpoint+l);
ContinueStatus = 0;
for {r=Row-1; r>=Row-MOC;r--)
{
//printf ("Selected ROW is %d and COLUMN is %d....and now evaluating row
%d" ,Row,Column,r);

//we know the current evaluation row, get its SRP in link{][] and check that rows
Data.Gridcolumn values

ptr_srp = &link[r-1]1[1];

HowMany = *{ptr_srp+l);

if (HowMany == Q) //there are no columns of data for this row - bad!
{
//printf("...which is FALSE because of lack of LINES\n");
ContinueStatus = 1;
break; //quit looking above

because there are a shortage of lines above

}

//Set pointer where thig dgrid row starts in the Data.* arrays
ptr_gridcolumn = &Data.GridColumn[{*ptr_srp)-1];
AnotherContinueStatus = 0;
for(c=0;c<HowMany; c++)
(
if{ *ptr_gridcolumn == Column)
//YES, this row does have a cell in the same column

{

//printf{".. .which is TRUE\n");
AnotherContinueStatus = 1;
break;
//quit looking at this row in Data.Gridcolumn
}
ptr_gridcolumnt+;
}
i1f (AnotherContinueStatus == 1)
continue; //next
iteration of For(r=Row-1l...) - check next cell above
else

{

328

//printf{* .. . which is FALSE because there was NODATA above\n"};:
ContinueStatus = 1;
break; //no

column above was found

}
}//end for(r=Row-1;r>=Row-64;r--)

if (ContinueStatus == 1) //failed to have MOC above that
column, try another point
continue;

J FrEawmkkkkkkkwwkkxxxenxx BEnd of looking ABOVE the current cell
B 8 S

//NOTE: only gets here if everything above passes

[R Rk ko kxk Look BELOW the cell For MOC wvalid cellg **x*#+sstsxsxtxss

//printf (" wwwxsxsrtax Looking BELOW the cell for firepoint #%d
*ok ke ke ek \ 4 NewPoint+1)

ContinueStatus = 0;

for {r=Row+l; r<=Row+MOC;r++)

{

//printf(“"Selected ROW is %d and COLUMN is %d....and now evaluating row

%d",Row, Column, r};

//we know the current evaluation row, get its SRP in link[]{] and check that rows
Data.Gridcolumn values

ptr_srp = &link([r-1][1}:

HowMany = *{ptr_srp+l);

if (HowMany == 0} //there are no columns of data for this row - bad!
{
//printf{“.. which is FALSE because of lack of LINES\n"):
ContinueStatus = 1;
break; //quit looking above
because there are a shortage of lines below

//Set pointer where this grid row starts in the Data.* arrays
ptr_gridcolumn = &Data.GridColumn((*ptr_srp)-11;
AnothercontinueStatus = 0;
for{c=0; c<HowMany:c++)
(
Lf(*ptr_gridcolumn == Column)
//YES, this row does have a cell in the same column
{

//printfi"...which is TRUE\n"};
AnotherContinueStatus = 1;
break:;

//quit looking at this row in Data.Gridcolumn
)

ptr_gridcolumn++;

}
if (AnotherContinueStatus == 1)
continue; / /next
iteration of For{r=Row+l.,,) - check next cell below
else
{
//printf{*...which is FALSE because there was NODATA below\n");
ContinueStatus = 1;
break; //no
column below was found
}

}//end for (r=Row+l; r<=Row+MOC;Tr++)

if(ContinueStatus == 1) //failed to have MOC below that
column, try another point
continue;

J HEEakkaxxkawkkxkxwkkxt e End of looking BELOW the current cell
o e e e R e e e e e e e R kK e ke ok ok kR ok ke

//ﬁﬁﬁﬁﬁ#ﬁﬁ#ﬁﬁﬁﬁ**ﬁﬁﬁ Loock BEFQORE the Cell for MOC Valid CellS et A e e e e e e ek kR ke kR ke
//printf (" *#*w#x+**** I ooking BEFORE the cell for firepoint #%d
Wk Kk ko kk h ke 4\n o NewPoint+l)

//Set pointer where this grid row starts in the Data.* arrays
ptr_srp = &link[Row-1][1];

HowMany = *(ptr_srp+l);

ptr_gridcolumn = &Data.GridColumn((*ptr_srpi-11;:

//printf({*Selected ROW is %d and COLUMN is %d....",Row,Column);

//Increment the pointer up to where the actual Data.Gridcolumn matches the current evaluation
column
ContinueStatus = 0;
for (r=0; r<HowMany; r++)
{
if{ *ptr gridcolum == Column)
//found the match - leave ptr_gridcolumn here
{
ContinueStatus = 1;
break;

329

}
ptr_gridcolumn++;
}
if(ContinueStatus != 1) //This column, in this row, has
NODATA to begin with...pick another point
(
//printf(" .. .which is FALSE because this column has NODATA to begin with\n");
continue;
//get another point
}

//otherwise, ptr_gridcolumn shauld be sitting on the right spot...check the continuity for MOC

BEFORE
ContinueStatus = 0;
for{c=1;c<=MOC; c++)
(

//bump ptr_gridcolumn dovn the appropriate amount
ptr_gridcolumn--—;

//get the evaluation column
EvalColumn = Column - c;

//printf{"\n...now evaluating column %hu",EvalColumn} ;

if {(*ptr_gridcolumn != EvalColumn) //Discontinuity
{
//printf(". . .which is FALSE because there is NODATA here - DISCONTINUITY
BEFORE\n") ;
ContinueStatus = 1;

break;

}
}
if{ContinueStatus == 1) //There was discontinuity
(

//printf("...which is FALSE because column %d had nodata\n®,EvalColumn);

centinue;

//get another point

}
//printf(*...which is TRUE, there is continuity of data BEFORE\n"):

[/ XXX FF Ik xxxk*k*k*k*karr BEnd of looking BEFORE the current cell
B L T R S

//NOTE: only gets here if everything above passes

F e Look AFTER the cell for MOC valid cells ****s*trsaddhrssrx
//printf{* *x***xx***+ Looking AFTER the cell for firepoint #%d4
FrRF KA RR RN A XX\ " NewPoint+l) ;

//Set pointer where this grid row starts in the Data.* arrays
ptr_srp = &link[Row-1)[1];

HowMany = *(ptr_srp+l);

ptr_gridecolumn = &Data.GridColumn({*ptr_srp)-1];

//printfi{“Selected ROW is %d and COLUMN is %d....",Row,Column)};

//Increment the pointer up to where the actual Data.Gridecolumn matches the current evaluation

column
ContinueStatus = 0;
for(r=0;r<HowMany; r++)
if(*ptr_gridcolumn == Column)
//found the match - leave ptr_gridcolumn here
{
ContinueStatus = 1;
break;
}
ptr_gridcolumn++;
}
if (ContinueStatus '= 1) //This cclumn, in this row, has
NODATA to begin with...pick another point
(
//printf{"...which is FALSE because this column has NCODATA to begin with\n”);
continue;
//get another paint
}
//otherwise, ptr_gridecolumn should be sitting on the right spot...check the continuity for MOC
AFTER
ContinueStatus = 0;
for{c=1;c<=MOC; c++)
{

//bump ptr_gridecolunn up the appropriate amount
ptr_gridcolumn++;

330

//get the evaluation column
EvalColumn = Column + ¢;

//printf{"\n...now evaluating column %hu",EvalColumn};

if{*ptr_gridcolumn != EvalColumn) //Discontinuity
{
//printf{".. . which is FALSE because there is NODATA here - DISCONTINUITY
AFTER\n");
ContinueStatus = 1;
break;
}
}
if (ContinueStatus == 1) //There was discontinuity
(
//printf{"...which is FALSE because column %d had nodata\n",EvalColumn)
continue;
//get another point
}
//printf{"...which is TRUE, there is continuity of data AFTER\n");

J] *EEEkkAAkkwkakuwkkkrkcx End of looking AFTER the current cell
ek kR kR R Rk ko kR kK

END OF ALL ERROR AND VALIDITY CHECKERS FOR THIS SELECTED CELL =

/7

//NOTE: only gets here if all CHECKERS have passed
Points [NewFoint] [0] RoOW;
Points [NewPoint] [1] = Column;
NewPoint++;

}while (NewPoint != NoFires);

//for(c=0;c<NoFires; c++)
//printf(*$hult%hu\n*, Points[c] [0}, Points[c] [1]);

J Rk ke ek ke ko kK K ko Kk ke ke k kR ok ko k kR ok k k ko kR R Rk Kk kR ok kK ok Rk Kk k ok kK ko kK K Kk kR K

//Now calculate actual coordinates for the points and send them out to a file for Farsite to read in.
R L E b R R R

//first, create the file to send the point data to
sprintf(WriteOut, "%s¥s%d\\per%d\\igpoints.asc", PREFIX, INPUTS,GOAL_TO_USE,p};
OpenWrite = fopen(WriteQut, "w");

//1loop through the Points[][} array and convert each point

for (c=0;c<NoFires;c++) //There are only "NoFires" points stored in this array
(out of a possible 15)
(

RowsAway = ROWS -~ Points[c][0]); //really the Y-offset from the
lower left corner of original grid

ColumnsAway = COLUMNS - Foints[c][1]; //really the X-offset from the lower left

corner of original grid

XValue = (float)F_XLL + (CELLSIZE * ColumnsAway);
YValue = {float)F_YLL + (CELLSIZE * RowsAway):;

//print out the value
fprintf (OpenWrite, “$d\t%.4f\t%.4f\n",c+1,XValue,YValue);
}//end for(c=0;c<NoFires;c++)

//put in the final line in the igpoint.asc file
fprintf (OpenWrite, * \n"}; //needed by Farsite because this is
ArcInfo "ungenerate* format

fclose(OpenWrite);
return NoFires; //so this can be passed on to PreFireInfo()

}//end IgniticnPoints(}

J R R Ak ke ko kk k kA kK kA kA h kK kR Kk kA kKRR KAk k kA ok h kAR Kk R Ak k kA kK Ak Ak ok kkk k kA k k ok kkk kA ARk Ak ke k ko k ke ko h ke ko kkkkk

A R R

void PrepareFarsiteEnvt(int p, int drought)
L L L S AR T T P T

{
//The farsite_envt.txt file called by Farsite specifies some files that Farsite will
//use to set up the general parameters. We are going to need to change things like
//which weather and wind files it uses (based on whether it is a drought year or not).
//There may be additional reasons to change certain files at a later time.

//This file DOES NOT need to exist. It will be created from scratch using the data from bhelow.

char custom[20]="CUSTOM_FUEL_FILE", CustomFuelFile[60];
char conversion[20]}="CONVERSION_FILE", ConversionFile[60];

char weather (20]="WEATHER_FILE", WetWeatherFile[60];
char

ModWeatherFile (60} ;

periocd

char
DroWeatherFile[60Q];

char wind[20]="WIND_FILE", WetWindFile[60];

char
ModWindFile[60];
char
DroWindFile[60];

char fms[20]=*FUELMOISTURE_FILE", WetFMFile{60] ;
char

ModFMFile[60];

char

DroFMFile[60];

char adjustment [20]="ADJUSTMENT _FILE", WetAdjustFile[60];
char

ModAdjustFile [60];

char

DroadjustFile[60];

char acceleration[20]="ACCELERATION_FILE", AccelFile[60];

char spot{20]="SPOT_FILE", SpotFile{60];

//Put together all the filenames
sprintf (CustomPuelFile, “%s%s\\%s_farsite.fmd", PREFIX, ConstantInput, SHORT NAME) ;

sprintf{ConversionFile, *%s%s\\null.txt",PREFIX,ConstantInput);

sprintf (WetWeatherFile, “%s%s\\%s_wet.wtr", PREFIY, ConstantInput, SHORT_MNAME) ;
sprintf (MocdWeatherFile, "$s%s\\%s_mod.wtr", PREFIX, ConstantInput, SHORT_NAME});
sprint f (DroWeatherFile, "%s%s\\%s_dro.wtr", PREFIX, ConstantInput, SHORT NAME} ;

sprintf {WetWindFile, "%s%s\\%s_wet.wnd", PREFIX,ConstantInput, SHORT NAME} ;
sprintf(ModWindFile, "%s%s\\%s_mod.wnd", PREFIX,ConstantInput, SHORT_NAME) ;
sprintf(DroWindFile, "%s%s\\%s_dro.wnd", PREFIX,ConstantInput, SHORT_NAME) ;

sprintf(WetFMFile, “%s%s\\%s_wet.fms", PREFIX,ConstantInput, SHORT_NAME) ;
sprintf (ModFMFile, “%s%s\\%s_mod.fms", PREFIX, ConstantInput, SHORT_NAME) ;
sprint £ (DroFMFile, “%s%s\\%s_dro.fms", PREFIX,ConstantInput, SHORT_NAME} ;

sprintf{WetAdjustFile, "%s%s\\%s_wst.adj", PREFIX,ConstantInput, SHORT NAME};
sprint f (ModAdjustFile, "%s%s\\%s_mod.adj", PREFIX,ConstantInput, SHORT_NAME)
sprintf (DroAdjustFile, "%s%s\\%s_drc.adj", PREFIX, Constant Input, SHORT_NAME) ;

sprintf (AccelFile, "%s%s\\null.txt",K PREFIX,ConstantInput);
sprintf (SpotFile, "%s%s\\spotting.txt",6 PREFIX,ConstantInput};

//Use these to copy whichever of the above we want to a consistent output string name
char WriteOut[25Q];

char QutWeather[250];

char OutWind[250];

char QutMoisture[250];

char OutAdjustment{250];

FILE *OpenWrite;

//Now determine which of the files are going to be used
if (drought == 1)

(
strepy (QutWeather, WetwWeatherFile};
strepy (OutWind, WetiWindFile);
strcopy (OutMoisture, WetFMFile)
strepy (OutAdjustment, WetAdjustFile);
}
else if(drought == 2}

MODERATE period

mode

(
strepy (OutWeather, ModWeatherFile)
strepy (OQutWind, ModWwindFilej;
strcpy (OQutMoisture, ModFMFile);
strepy {Out2djustment, ModAdjustFile) ;
}
else
(
//1is a DROUGHT pericd (Mild or Severe)
strepy (QutWeather, DroWeatherFile);
strepy {OutWind, DroWindFile);
strepy (OutMoisture, DroFMFile);
strepy {(OutAddjustment, DroAdjustFilel ;
}

//Create a string with the actual envt.txt file name with the full directory path
sprintf(WriteQut, "%s%s%d\\per%d\\farsite_envt.txt", PREFIX, INPUTS, GOAL_TO_USE,p);
OpenWrite = open_input(WriteQut, 2);

fprintf (OpenWrite, "%s= \t%¥s\n", custom, CustomFuelFile);
fprintf (OpenWrite, "%s \t%s\n", conversion, ConversiconFile);

331

// is a WET

// is a

//open in write

fprintf {OpenWrite, "%s \t\t%s\n", weather, CutlWeather);
fprintf (OpenWrite, "%s \t\t%s\n", wind, CutWind);

fprintf (OpenWrite, "%s \t%s\n", fms, OutMoisture};

fprintf (OpenWrite, "%s \t%s\n", adjustment, CutAdjustment)
fprintf (OpenWrite, "%s \t%s\n", acceleration, AccelFile);
fprintf {OpenWrite, "%s \t\t%s\n", spot, SpotFile);
close_file(OpenWrite, WriteOut);

R e

void PrefireInfo(int p, int Hours, int Drought, int NoFires}
T R R L T T T T TP P

{
// A little script to display vital data such as #of fires, how many
// Before Farsite runs so we can see this on the screen
e Rt A RS A A e
printf (" \g\t **** \
if (Drought == 1)
printf(* \t\t **** pericd %d -- This is a WET period. \
else if (Drought == 2)
printf(* \t\t **** period %d -- This is a MODERATE period. A\
else if(Drought == 3)
printf (" \t\t **** pPeriod %d -- This is a MILD DROUGHT period. \t
else
printf (" \t\t **** Period %d -- This is a SEVERE DROUGHT periocd.\t
printf(* \t\t **** There will be %d fires this period
printf(" \t\t **** Burning for a total of %d hours. \
printf (" \g\t ***+
printf (" \t\t **** FARSITE is about to start and may take awhile
printf (" \t\t **** Sit back and enjoy the ride...................
printf(* \g\t ****
e e N A e e L L e
}

R R LT L)

#ifndef SORT_H
#define SORT_H

R

* *
B it Public Interface ---—--—--=—=ooo——o -—
* *

B L R L T T R T T T Ty

int issort{void *data, int size, int esize, int (*compare) (const void *keyl,
const void *key2)):

int gksort{void *data, int size, int esize, int i, int k, int (*compare)
(const void *keyl, const void *key2));

int mgsort(void *data, int size, int esize, int i, int k, int {(*compare)
(const void *keyl, const void *key2));

int ctsort(int *data, int size, int k);
int rxscrt(int *data, int size, int p, int k);

#endif

STANDDATA. CPP

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <math.h>

#include “globals.h® //to hold global DEFINES, etc..
#include "data.h

void StandDataController(struct NEW_STAND_DATA SD(], int Count, struct TREELIST _RECORD Records(l,

Ah kAR Ak Ak

EA KRR A KA K

hours, drought year,

Aok xR A\

ChrRAAn);
treraAnt, p);
E****\n*,p);
*rxAA\N",pi

****\n” ’p) H
\t****\n" ,NoFires};
t****\n" Hours);
Ne****\nt)
\EFFERARY)
\E****\n");
\E****\n")
*EEFFND\N")

void CalculateIndividualBasalCanopyWidth(struct TREELIST_RECORD Records[], int NoRecords);

void CalculateStandHeight (struct TREELIST_RECORD Records([],int NoRecords,struct NEW_STAND DATA StandDatal].

Count) ;

void CalculateStandHLC({struct TREELIST_RECCRD Records([], int NoRecords, struct NEW_STAND_DATA StandDatal(l,

Count) ;

332

int NcRecords);

int

333

void CalculateCBD(struct TREELIST _RECORD Records([], int NoRecords, struct NEW_STAND_DATA StandData(], int Count);

void CalculateStandClassification({struct TREELIST_RECORD Records[], int NoRecords, struct STAND_CLASS *Stand);

int SortTallestTreelistFirst{const void *ptrl, const void *ptr2);
int SortSmallestHlcFirst{const void *ptrl, const void *ptr2);
void RedoHleChd{void)}:

void NewStandHLC{ struct STAND_CLASS *Stand):

J R B R B
-

void StandDataController (struct NEW_STAND_DATA SD[], int Count, struct TREELIST RECORD Records{], int NoRecords)
L T e AR T
PR

{

/*

This function will farm out to other functions to calculate various NEW_STAND_DATA for the incoming
TREELIST_RECORD.

"Count" is which line to use in SD[] while Records will hold all the actual treelist records. Remember, that this
function is being called after an episodic disturbance which create a bunch of snags. Those snags are not

included in Records[] but that is OK, because these stand metrics being calculated are for live trees only.

*/

int a=0;

struct STAND_CLASS StandClass;

struct STAND_CLASS *ptr_stand;

R i T --- End of variable defining --------mommmm oo

//Initialize StandClass and its pointer
ptr_stand = &StandClass;
memset (ptr_stand, 0, sizeof(struct STAND_CLASS));

===== REMEMBER: All these functions are for live trees only ==

//First, get the BaSAL AREA and CANOPY WIDTH for each record
CalculateIndividualBasalCanopyWidth (Records, NoRecords);

//Get the three items we use in our Veg-Structural classification
CalculateStandClassification(Records, NoRecords, ptr_stand };

//Fill in SD with data returned from ptr_stand

SD[Count].Basal = ptr_stand-»>Basal;
SD[Count].VegClass = ptr_stand->VegClass:
SD[Count].Qmd = ptr_stand->0md;

SD[Count].CoverClass ptr_stand->CoverClass;
SD[Count].Closure = ptr_stand->Closure;

//Get the the average Stand Height
CalculateStandHeight (Records, NoRecords, SD, Count); //{NCTE: Records will be descending sorted by "Status"
and "Height" after this

//Get the HLC (or Base to Live Crown) -- being superceded by NewStandHLC for now 17Feb 00
//cCalculateStandHLC {Records, NoRecords, SD, Count }; //MOTE: Records will be ascending sorted by
"Status' and 'Hlc*

7/ NEW HLC stuffi!l}!
NewStandHLC {(ptr_stand);
SpD[Count] .HeightCrown = (ushort) {floor({ptr_stand->HeightCrown + .5}};

//Get the Crown Bulk Density for the stand -
CalculateCBD(Records, NoRecords, SD, Count);

}//end StandDataController

J R R A A AR S AR
-

void NewStandHLC(struct STAND_CLASS *Stand)

J R R L A e e R A A A SRS SR A AR
-

{

/>
Use the old matrix that Jim and Bernie developed to classify the HLC based on the stands VegClass and Structural
stage componet - which were already calculated and are in the *Stand structure function.
*
/
ushort VegClass, Qmd, CoverClass;
/== oo m e End of variable defining ----=--------m-omeee oo

//Grab values associated with current stand. It was calculated earlier in CalculateStandClassification()

VegClass = Stand->VegClass;
Qmd = Stand->Qmd;
CoverClass = Stand->»CoverClass;

//printf{* Got %hu %hu %hu here in CalculateNewHLC\n',6 VegClass, Qmd, CoverClass);

if(VegClass == VC_DH || vegClass == VC
{
if(Qmd == 0 }
stand->HeightCrown
else if (QOmd == 1)
Stand->HeightCrown=
else if(Qmd == 2)
Stand->HeightCrown
else if(Qmd == 3)

{
if(CoverClass == 0
Stand->He
else
Stand->He
}

else if(Qmd == 4)
Stand->HeightCrown

_OPEN)

= (float) {(1*M2FT) ;
(float) (3*M2ZFT);
= (float) (3*M2FT);
)
ightCrown = (float) (d*M2FT);

ightCrown = (float) [R*M2FT);

= {float) (8*M2FT):

334

else
Stand->HeightCrown = {(float} {8*M2FT);
¥
else if(VegClass == VC_PINE }| VegClass == VC_KP)}
{
if(Qmd == 0)
Stand->HeightCrown = (float) (1*M2FT);
else if (Omd == 1 }
stand->HeightCrown ={float) (3*M2FT):;
else if(Qmd == 2)
Stand->HeightCrown = {(float} {6*M2FT);
else if{Qmd == 3)
Stand->HeightCrown = (float) (l0*M2FT);
else if(Omd == 4)
Stand->HeightCrown = (fleoat) (10*M2FT};
else
Stand->HeightCrown = (float) (10*M2FT);
¥
else if{ VegClass == VC_CH || VegClass == VC_EH)
{
if(Qmd == 0 }
Stand->HeightCrown = (float) (1*M2FT};
else if(0md == 1)
Stand->HeightCrown= (float) (1*M2FT);
else if(Qmd == 2}
Stand->HeightCrown = (float) (1*M2FT};
else if(Qmd == 3)
Stand->HeightCrown = {float) (1*M2FT);
else 1f{Qmd == 4}
Stand->HeightCrown = {(float)} (1*M2FT);
else
Stand->HeightCrown = (float) (1*M2FT)};
}
else if{ VegClass == VC_MC || VegClass == VC_MC3)//I’m cheating here - Jim's matrix shows slight difference but I

"average" for the two

if(Omd ==)
Stand->HeightCrown

else if (Qmd == 1}
Stand->HeightCrown

else if (Qmd == 2)
Stand->HeightCrown

else if(Qmd == 3)

{

if (CoverClass == 0)
Stand->He
else
Stand->He
¥
else if (Cmd == 4)
Stand->HeightCrown
else
Stand->HeightCrown
}
else 1f(VegClass == VC_WF)
{

if(Qmd == 0 }
Stand->HeightCrown

else if(Qmd == 1)

{

if(CoverClass == 0)
Stand->He
else
Stand->He

else if{Cnmd == 2)

if (CoverClass == 0)

= {(float) (1*M2FT);
= (float) (1*M2FT) ;

= (float) {1*M2FT};

ightCrown = (float} (1*M2FT);

ightCrown = {float) (7*M2FT);

= (float) (1.5*M2ZFT);

= (float) (2*M2FT);

= (float) (1*M2FT};

ightCrown = (float) (1*M2FT);

ightCrown = (float) (3*M2FT);

Stand->HeightCrown = {(flouat) (L*M2FT}):
else
Stand->HeightCrown = (float) (4*M2FT);
¥
else 1f(Qmd == 3)
{
if(CoverClass == 0)
Stand->HeightCrown = (float) (1*M2FT);

else

Stand->HeightCrown

= (float} (7*M2FT) ;

)
else if(Omd == 4)
{
if (CoverClass == 0)
Stand->HeightCrown = (float) (2*M2FT);
else
Stand->HeightCrown = (float) (3*M2FT);
}
else
Stand->HeightCrown = (float) {10*M2FT};
}
else
{
if(omd == 0)
Stand-~>HeightCrown= (float) (1*M2FT);
else if{Qmd == 1}
{
if (CoverClass == 0)
Stand->HeightCrown = (float) {1*M2FT);
else
Stand->HeightCrown = {float) (5*M2FT);
}
else if(Qmd == 2)
{
if(CoverClass == Q)
Stand->HeightCrown = (float) (1*M2FT);
else
Stand->HeightCrown = (float) (3*M2FT);
}
else if(Qmd == 3)
{
if(CoverClass == 0)
Stand->HeightCrown = (float} {1*M2FT);
else
Stand~>HeightCrown= {float) {7*M2FT);
}
else if(Qmd == 4)
{
if (CoverClass == ()
Stand->HeightCrown = (float) (10*M2FT);
else
Stand->HelghtCrown = (float) {1*M2FT);
}
else
Stand->HeightCrown = (float) {10*M2FT);
}

}//end NewStandHLC

//should be for VC_RF only

335

R e e R AR

*

void CalculateCBD(struct TREELIST_RECORD Recordsl], int NoRecords, struct NEW_STAND_DATA StandDatal],

int Count)

R AL L]

*

{
I*

CBD calculations were in PREMO from stuff John put in based on something Jim A. gave us.

Will try and copy what he did here.
*/

int a;

double StandCBD=0;
float Dbh, Tpa;
double CbdCF, CbdM3;

//Calculate the entire stand CBD as a function of the individual species and equations for each

for (a=0;a<NoRecords;a++}

{
if (Records[a] .Status == LIVE)
{

//Set the Dbh & Tpa for ease of reading

Dbh = Records[a].Dbh;
Tpa = Records{a].Tpa;

if{Records|a} .Model

== BLACKOAK)

/10

StandCBD += 0.8 * Dbh * Tpa;
else if{Records(a].Model == DOUGFIR}

StandCBD += exp(-2.8462+1.7009*1log(2.54*Dbh))*Tpa*2.2046;
else if({Records[a] .Model == ICEDAR)

StandCBD += exp(-2.617+1.7824*1log(2.54*Dbh)) *Tpa*2.2046;

/71

/12

else if(Records[a].Mcdel == KPINE || Records([a].Model == PPINE)
//3 oxr 5
StandCBD += exp(-4.2612+2.0967*1log(2.54*Dbh)) *Tpa*2.2046€;
else if(Records[a).Model == MADRONE)
StandCBD += 1.4*Dbh*Tpa;
else 1f(Recordsla] .Model == RFIR || Records[a].Model == WFIR)
/716 or 9
StandCBD += exp(-3.4662+1.59278*%log(2.54*Dbh)) *Tpa*2.204€;
else if(Records[a].Model == SPINE)

StandCBD += exp(-3.9739+2.003%*1log(2.54*bbh))*Tpa*2.204¢&;
else if (Records(a].Model == TANOAK}

StandCBD += 5.0*Dbh*Tpa;
else

//all others
StandCBD += (400./40.)*Dbh*Tpa;
}

}//end forla=0 ...)

//Calculate the CBD per CF first;
CbdCF = StandCBD / ((StandData[Count].StandHeight - StandData[Count].HeightCrown) * 43560 };
// in lbs/ft3

1f(CbdCF < 0)
CbdCF = 0;

//Then calculate the CBD in kg per m3
ChadM3 = CbdCF * 16.02;
// kg per m3

//Store the kg per m3 data in Stand
//8tandData[Count] .Density = {ushort) (floor (CbdM3*DENSITY_EXP));

A R e e e e R R AR

// Below is the Bernie *tweak" 17FebD0

R R R AR T SRR AL S

ModChd = CbdM3 * (Standbata(Count).Closure * ACREEQ) ;

if({ ModChbd > .30)
ModCbd = .30;

//Store the kg per m? data in Stand
StandData[Count] .Density = {{ushort) (ModCbd*DENSITY_EXP}}

}//end CalculateCBD

336

/74

/117

/78

J] H R KR KR KRk ke kKR KRRk Kk Kk ok kK kK Rk kK Rk kA Rk ko ok kR R R R Rk ko R Rk R R Rk kR

ok x

void CalculatestandHLC (struct TREELIST_RECORD Records[], int NoRecords, struct NEW_STAND_DATA StandDatal], int

Count)

AR R e e e e e A AR SR AR A A AR AL AR AR R

*ox ok

{

int a;

double StandTpa=0, StandHlc;

double Threshold50, MidStoryThreshold, MidStoryTpa;

double Group;

double SumTpa=0;

int Tpa50, Tpa50Tree, Flag;

e e End of wvariable defining -------————"———=-“—c—cmm -

//Create an array to hold the HtlcGroup for the records - and initialize
int {*HlcGroup) = new int[NoRecords];
if({ HlcGroup NULL)
printf (*Problems allocating memory for HlcGroup with %1lu elements\n',K NoRecords});
memset (HlcGroup, 0, sizeof(*HlcGroup) * NoRecords);

//Fill the Records[].Hlc member and calculate the StandTpa
for {a=0;a<NoRecords;a++)

{
1f{ Records[al.Status == LIVE)
{
Records [a] .Hlc = Records(a).Height - ((Reccrds[a].Height * Records[a].Ratio) / 100 }
StandTpa += Records[a) .Tpa;
}
}

//The Hlc member needs to be sorted with smallest values first
gsort{ (void*)Records,
//base
[size_t)NoRecords,
//count of records
sizeof (struct TREELIST_RECORD) .,
//size of each record
SortSmallestHlcFirst };
//compare function

//test print

/%

i1f(Count == 0)

{

printf ("The Hlec member AFTER sorting\n");
for (a=0;a<NoRecords;a++)}

printf("Records{%d] .Hlc is %.21f and .Tpa is %.21f\n",a,Records{al.Hlc, Records[al.Tpa):;

}
*/

//Set some threshold values
Threshold50 = StandTpa * 0.1;
if (Threshold50 > 50)

Threshold50 = 50;

//printf{"\nThreshaldS0 just set to %.31f\n\n*, Threshold50);
MidStoryThreshold = StandTpa * 0.05

if (MidStoryThreshold > 5)
MidStoryThreshold = 5;

//1I don’t know why

//Fill the HtleGroup array

for (a=0;a<NaRecords;a++)

{
Group = Records[a].Hlc * 7.62 / 25 ;
HlcGrouplal = (int) (floor{Group + 0.5}};

//Now sum of Tpa for while threshold is not exceeded
a=0;

while(SumTpa < Threshold50)
(

//8tart locking from the top

SumTpa += Records[al.Tpa;
if{ SumTpa < Threshold50)
at+;

}

//1I don't know why

-~ no ideal why

//Get the next HtlcGroup after above threshold violated - and set a marker for that tree

TpaS0 = HlcGroup[a);
TpaS50Tree = a;
//printf ("Tpa50 set to %d with TpaS0Tree at ¥d\n", Tpa50, TpaSOHTree);

Flag=0;
while{ Flag ==)
{

//boing something here

MidStoryTpa = 0;

for(a=0; a<NoRecords;a++)

{

if(HlcGroupfa) > Tpa50 && HlcGrouplal < Tpa50+4
above TpaS50
MidStoryTpa += Records(a)].Tpa;
}

//Doing something here
if(MidStoryTpa > MidStoryThreshold)

{
Flag = 1;
StandHlc = Records[Tpa50Tree].Hlc;
}
else
{
a=0;
TpaS0++; //increment up 1’
while(Records{a].Hlc < {TpaS0 * 25 / 7.62) &&
at+;
Tpa50Tree = a;
}

//Doing something here
if{ Tpa50 > HlcGroup [NoRecords-1])
{
Flag =1;
StandHlc = Records[Tpa50Tree] Hlc;

}
}//end while
//printf{*Just got a stand HLC of %.31f\n", StandHlc);

//Store in the Stand structure
StandData[Count].HeightCrown = (ushort){ floor(StandHlc+0.5} };

//Delete stuff on free sStore
delete [] HlcGroup;

}//end CalculateStandHLC

a

<

(NoRecords-1}

//no ideal where equation came from

//Look for a 3

)

337

increment

338

J R L L L S R L T R T S TS S e
int SortSmallestHlcFirst(const void *ptrl, const void *ptr2)

R e

{

//Just to typecast them since we aren't actually passing in pointers
struct TREELIST_RECORD *eleml;
struct TREELIST_RECORD *elem2;

eleml = (struct TREELIST _RECORD *jptrl;
elem2 = (struct TREELIST_RECORD *)ptr2;

if({ eleml->Status < elem2->Status) //Sort by
Status first
return -1;
if(eleml->Status > elem2->Status }
return 1;
aelse
{
if{ eleml->Hlc < elem2->Hlc
Height to Live Crown

//Then sort by

return -1;
if{ eleml->Hlc > elem2->Hlc
return 1;

else
return 0;
//Finished
}

}//end SortSmallestHlcFirst

//*Q""**'Q"Qﬁ'*Qﬁﬁﬁ**ﬁﬁ*ﬁﬁﬁﬁQﬁﬁﬁﬁﬁﬁﬁ*Qﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ**QﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁQﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁQﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁQﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
wkw
void CalculateStandHeight(struct TREELIST_RECORD Records([], int NoRecords, struct NEW_STAND_DATA StandData[], int

Count)
//Qﬁﬁ*****ﬁﬁ*"ﬁ**ﬁ*ﬁﬁ**ﬁﬁﬁﬁﬁﬂﬁiiQiQiQﬁ*ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁQﬁﬁﬁﬁﬁﬁ*******Qﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ*ﬁﬁﬁﬁﬁ*ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

e
{
I
Calculate the average stand height by: 222277

Has something to do with finding the records for those largest records whose TPA average out to something

like NO_TALL_TREES (using 5 at first}. I think Jim A. came up with this strategy

*/

int a;

float TallTpa=0, HeightTallTrees=0, Tallest=0;

it i End of variable defining ---—-—--———-————————————— R el

//First, sort Records by height, with the Tallest trees first (and broken into LIVE, DWD, and SNAG)
gsort{ {void*)Records,
/ /base
{size_t)NoRecords,
//count of racords
sizeof (struct TREELIST_RECCRD),
//size aof each record
SortTallestTreelistFirst };
//compare function

a=0;
while{ TallTpa < NO_TALL_TREES && a < NoRecords)
{
if (Records[al.Status == LIVE}
{
TallTpa += Records[a].Tpa;

HeightTallTrees += Records[al.Height * Records([a].Tpa;

if(TallTpa > NO_TALL_TREES)
HeightTallTrees -= Records[al .Height * (TallTpa-NO_TALL_TREES);

at++;
y//end while{ ...

//Now average those trees out
if{TallTpa > 0 }

HeightTallTrees /= NO_TALL_TREES;
else

HeightTallTrees = Q;

//Store in the Stand structure
StandData[Count].StandHeight = (ushort) (floor (HeightTallTrees+0.5));

}//end CalculateStandHeight

R R

int SortTallestTreelistFirst(const void *ptrl, const void *ptr2)
B Lt e

339

//Just to typecast them since we aren’'t actually passing in pointers
struct TREELIST_RECORD *eleml;
struct TREELIST_RECORD *elem2;

eleml = (struct TREELIST_RECORD *)ptrl;
elem2 = (struct TREELIST_RECORD *)ptr2;

if({ eleml->Status > elem2->Status) //Sort by
Status first
return -1;
if{ eleml->Status < elem2->Status)
return 1;
else
{
if{ eleml->Height > elem2->Height)
//Then by height
return -1;
if(eleml->Height < elem2->Height)
return 1;
else
return Q;
//FINISHED
}

}//end SortTallestTreelistFirst

P R e R T L T
e

void CalculateIndividualBasalCanopyWidth(struct TREELIST_RECORD Records[], int NoRecords)

PR R e T
.

/>

This function will do two things:

1 - Calculate a Basal Area for each live tree record
2 - Calculate the canopy width for each live tree record

Not sure where PREMO got these canopy width coefficients but I am copying them straight from PREMO.

It appears that canopy width is a function of height (> or < 4.5 feet), some
coefficient based on the Model species code, and either Dbh or Height again.
*/

int a;

ushort SpeciesCode;

float Height, Dbh;

//Now idea where these came from!

double COL[TOTALSP]=(2.4922,4.4215,4.0920,2.8541,7.5183,2.8541,3.1146,3.2367,7.5183,3.8166);
double CO2[TOTALSP]={0.8544,0.5329,0.4912,0.6400,0.4461,0.6400,0.5780,0.6247,0.4461,0.5229);
double CO3[TOTALSP]={0.1400,0.5170,0.4120,0.4070,0.8150,0.4070,0.3450,0.4060,0.8150,0.4520};

S mm e e e End of variable defining ----~~-==e--o——o—-

//Lock at each record and calculate BA by formula in Forestry Handbook
for {a=0; a<NoRecords;a++)

{
if{ Records[al.Status == LIVE)
(
//Set some wvariable for ease
Dbh = Records[a] .Dbh;
Height = Records|a].Height;
SpeciesCode = Records([a].Model; //Use the modeling code

{value 0-9 to use in array subscript)
//Calculate Basal area and put in the current recard
records[al .Basal = (float) { pow(Dbh,2) * BASAIL_CONSTANT};

//Calculate Canopy Width and put in the current record
if (Height > 4.5)

Records[a] . CancpyWidth = {float}(COl[SpeciesCode] * pow(Dbh,COZ2[SpeciesCode])
Y
else
Records [a] .CanopyWidth = {float) (CO3[SpeciesCode] * Height)
}//end if(Status LIVE}

}//end foria=0 ...)

}//end CalculateRasalCanopyWidth

e R R R L L L O L R T T S LS
Ak Ak Rk Ak Ak k

void CalculateStandclassification{struct TREELIST_RECORD Records[], int NoRecords, struct STAND CLASS *Stand}
R L R L T L T T T T RN

AA kA A A A A A kA Ak

(
/*

340

The *Stand (pointer) gets filled with data and is sent back without regards to what structure it will be going
into.

The equations were taken from PREMO and I believe they come from the work Lou Beers outlined in his paper
"Methods used to calculate QMD, VeygType, and percent canopy closure on the Applegate watershed" 8-24-98

NOTE:
#define BLACKOAK [//used as array subscripts
#define DOUGFIR
#define ICEDAR
#define KPINE
#define MADRONE
#define PPINE
#define RFIR
#define SPINE
#¥define TANOAK
#define WFIR

PO T N

w ®

NOTE: scmetimes this functions gets called and only LiveRecords are passed in - sometimes not. So to be safe,
always check

that calculations are done for LIVE trees only.

*/

int a;

double TempCover, TotalCover=0, StandBa=0., AdjStandBa=0, StandTpa=0, AdjStandTpa=0, Omd, 2digmd;
double SpCover[TOTALSP];

double RealStandBasal=0;

/1 ===== - End of variable definitiOn ~———=———--=-—--ommmmmmmm oo

//Initialize SpCover (SpeciesCaover)
for (a=0; a<TOTALSE; a++)
SpCover[a] = 0;

/7
//Get an average stand Qmd
for (a=0; a<NoRecords;a++)

(

//Calculate the RealStandBasal for live trees only
if{ Records[a].Status == LIVE)
{
RealStandBasal += Records[a].Basal * Recordsla].Tpa;

if (Records[a].Dbh >=1) //Only those larger than 1' contribute when
calculate Vegclass only!
{
StandBa += Records[al.Basal * Records[a].Tpa;

StandTpa += Records(a].Tpa:

)
Omd = pow((StandBa / (BASAL CONSTANT*StandTpa)), 0.5):

//Put the RealStandBasal in the Stand structure
Stand-»Basal = (flocat)RealStandBasal;

/1= ==== == Get the AdjQmd ===s=ss===s====sss=sssssss =

//Go through records again and only count those that are larger than the above determined Qmd
for (a=0; a<NoRecords;a++)

{

if(Records{a}.Status == LIVE)
{
if {(Records[a].Dbh »= Qmd)
{
AdjStandBa += Records[a].Basal *
Records(al .Tpa;
AdjStandTpa += Records{a).Tpa;
TempCover = pow((Records{a].CanopyWidth/2)
,2) * PI * Records[a]l.Tpa; //only calculate once
TotalCover += TempCover;
SpCover [Records[a] .Model] += TempCover;
}

)

Adjgmd = pow((AdjStandBa / (BASAL_CONSTANT*AdjStandTra)), 0.5);

/1 = Get the Canopy Closure ==
//Not sure what PREMO is doing to the SpCover here - some compensation for sg ft. per acre or something
for{a=0; a<TOTALSP;a++)

SpCover({al = (SpCover[a] / TotalCover)*100;

//Adjust TotalCover for acres -
TotalCover = TotalCover / 435.6; /743,560 / 100%

//printf {"Just got a TotalCover of %.3lf\n",TotalCover);

//Put the TotalCover in Stand->Closure (this is the canopy closure percentage)
Stand->Closure = (ushort)TotalCover;

/7 ======= === Get the vegclassification code ====================
//Get the category which is used as our vegetation category for mapping and GIS stuff

341

//The following will try and copy what PREMO had, but may be slightly different to ease reading and coding
1f(SpCover [BLACKOAK] +
SpCover [DOUGFIR] +

SpCover [ICEDAR] +
SpCover [KPINE] +
SpCover [MADRONE] +
SpCover [PPINE] +
SpCover [RFIR] +
SpCover (SPINE] +
SpCover [TANOAK] +
SpCover [WFIR] < 20)
Stand->VegClass = VC_OPEN;
//Open (?)
else if(SpCover [BLACKOAK] + SpCover [MADRONE] + SpCover [TANQAK] > 30)
(
if(
SpCover [DOUGFIR] +
SpCover [ICEDAR] +
SpCover [KPINE] +
SpCover [PPINE] +
SpCover [RFIR] +
SpCover [SPINE] +
SpCover [WFIR] > 30)
Stand->VegClass = VC_CH;
//CH
else if(SpCover [BLACKOAK] + SpCover [TANOAK] > 50)
Stand->VegClass = VC_EH;
//EH
else
Stand-»>VegClass = VC_DH;
/ /DH
}
else if(SpCover[RFIR] + SpCover[WFIR] > 50)
{
if(SpCover[RFIR} > SpCover[WFIR])
Stand->VegClass = VC_RF;
//RF
else
Stand->VegClass = VC_WF;
/IWF
}

else if({ SpCover [KPINE] + SpCover [PPINE] + SpCover {SFINE] < 50)
Stand->VegClass = VC_MC;
//MC
else if{ SpCover [PPINE] + SpCover[SPINE] > SpCover[KPINE])
Stand->VegClass = VC_PINE;

//Pine
else
Stand->VegClass = VC_KP;
//KP
7/ Get the CoverClass category used as part of our structural stage

if(TotalCaver < 60 }
Stand->CoverClass = 0;

else

Stand->CoverClass = 1;
/7 Get the QMD category that is also used as part of our structural stage
if (AdjOmd < 5)

Stand->Qmd = 0;
else if (AdjOmd <« 9}

Stand->Qmd = 1;
else if(AdjQOmd < 15)

Stand->Qmd = 2;
else if (AdjQOmd < 21}

Stand->Qmd = 3;
else if (AdjQmd < 25)

Stand->Qmd = 4;
else if(AdjOmd < 32}

Stand->Qmd = 5;
else

Stand->Qmd = 6;

//Readjust the CoverClass for those stands that don’t have a cover component because of the QMD {the real young and
old stands)
if (Stand->Qmd == | | stand->gmd == || Stand-»>omd == 5

Stand->CoverClass = 0;

}//end CalculateStandClassification

B N R R R L Rl R
hkw

void RedoHleChd(void)
//kwk**kkk*kkkkkkkkkkkkkkkkk!kkkkkkkkk***t*k*k***kkt**kkkkkkkk**kkkkk*kkk*kkk**kkkkkk**kkkkkkkkkkkkkkkkkkkkkkkkkkkk
wh

{

7%

17Feb00 - Decided by Bernie and I that the HLC and CBD values coming from Premo were just not working. We

decided to try and use the old way of calculating HLC. The old way {(for HLC) is by using the Matrix that Jim Agee
and Bernie originally developed to classify based on the stands VegClass and Structural Stage. The

342

CBD measurements are more complicated and for now we are going to just "tweak" the values that are
being generated in Premo.

Values in Data.Vegcode are those 3 or 4 digits values that were either generated directly in PREMO or were slightly

medified by this progrom in FillPremoData(). Heidi gave me the following regarding what the PREMC codes meant:
1st digit = (veg. class)

1 CH #define VC_CH
2 DH #define VC_DH
3 EH #define VC_EH
4 CCP #define VC_KP
5 MC #define VC_MC
6 open ?22? #define VC_OPEN

7 Pine #define VC_PINE

8 RF #define VC_RF
9 WF #define VC_WF
{10)Not used in Premo #define VC_MC3

2nd digit = (QMD)

0 0-4.9

1 5-8.9

2 9-14.9

3 15-20.9

4 21-24.9

5 25-31.9

6 32+

3rd digit = (Canopy closure)

Q <= 60%

1 > 60%

Alterations: FillInitialPremoData() changed those with an original lst digit of 5 to ke either 5 (MC < 3000’} or 10
(MC > 100007},

so I can directly check for 5 or 10.

*/

int a, b;

ushort TempCede;

int TempVeg, TempDiam, TempCover;

float MedChd;

J e e m e mm e End of variable defining —————--=---"----mm——r oo -

printf("Recalculating the HLC and CBD with different algorithms than used in PREMO\n");

//Go through all of Data.*[]
for (a=0; a<UNIQUE; a++)

{
if (Data.Cellidla} == FALSE) //no more cells to check
break;
if (Data.Treelist[a] == NONFOREST)
continue;
for (b=0;b<NP;b++)}
{
T R R R R R R L L R B B R
/1 Do the new HLC
//****w************~w***************«***************************k***************************
TempCode = Data.Vegcode[a] [b]; //The actual 3 or 4 digit code from
PREMO
//extract the digits out
TempCover = TempCode%10; //last digit
for determining stage {(is closure, <=60% or > &0%)
TempDiam = ((TempCode-TempCover)%1G0) / 10; //next to last digit alsc for determining
stage {(is the QMD group)
TempVey = (TempCode-TempCode%100) / 100; //1lst or 1st two digits for
determining VegCode
if{ TempVeg == VC_DH || TempVeg == VC_OPEN}
{
if(TempDiam == ¢ }
Data.HLC[a) [b] = {ushort) (floor (1*M2FT + .5}};
else if(TempDiam ==)
Data.HLC[a] [b] = {ushort)} (floor (3*M2FT + .5)};
else if (TempDiam == 2)
Data.HLC[a]l[b] = {ushort) (floor(3*M2FT + .5});
alse if(TempDiam == 3)
{
if (TempCover == 0)
Data.HLC[al [b] = (ushort) (floor (4*M2FT + .5));
else
Data.HLC[al [b]l = (ushort!) (floor (8*M2FT + .5});
}
else if{TempDiam == 4)
Data.HLC[a] [b] = (ushort) (flooxr {8*M2FT + .5));
else
Data.HLC[a] [b] = (lushort) {fleoor (§*M2FT + .5});
}

else if(TempVeg == VC_PINE || TempVeg == VC_KP }

{
if(TempDiam == 0)
Data.HLC[a] [b] = (ushort) {floor (1*M2FT + .5));
else if (TempDiam == 1 }
Data.HLC[a] [bl= (ushort} {floor(3*M2FT + .5));
else if(TempDiam == 2)
Data.HLC[a] [b] = (ushort) (floor (6*M2FT + .5} ;
else if{TempDiam == 3)
Data.HLC[al[b] = (ushort) (£loor{10*M2FT + .5));
else if{TempDiam == 4)
Data.HLC[a) [b] = (ushort) (floor (10*M2FT + .5));
else
Data.HLC[a] [b] = (ushort) (£loor{10*M2FT + .5));
}
else if(TempVeg == VC_CH || TempVeg == VC_EH)
{
if{ TempDiam == ¢)
Data.HLC[a] [b] = (ushort) {floor (1*M2FT + .5));
else if{TempDiam == 1 }
Data.HLC[a] [b] = (ushort) (£looxr{1*M2FT + .5));
else if{TempDiam == 2)
Data.HLC[a] [(b] = (ushort) (floor (1*M2FT + .5));
else if(TempDiam == 3}
Data.HLC[a![b] = (ushort) (floor (1*M2FT + .5});
else if{TempDiam == 4)
Data.HLC[a] [b] = (ushort) (floox (1*M2FT + .5));
elge
Data.HLC[a] [b] = (ushort} {floor{(1*M2FT + .5));
}
else if{ TempVeg == VC_MC || TempVeg == VC_MC3 }
{
if { TempDiam ==)
Data.HLC[a] [b] = (ushort) (flooxr {1*M2FT + .5));
else if(TempDiam == 1)
Data.HLC[a] [b] = (ushort) {flooxr {1*M2FT + .5));
else if (TempDiam == 2)
Data.HLC[a] [b] = (ushort) (flooxr (1*M2FT + .5));
else if TempDiam == 3}
{
if{TempCover == 0)
Data.HLC[a] [b] = {ushort) (floor (1*M2FT +
else
Data.HLC[a] [b] = {ushort) (flooxr {7*M2FT +
}
else if(TempDiam == 4)
Data.HLC[al [b] = (ushort) {flooxr (1.5*M2FT + .5));
else
Data.HLC[a] [b] = (ushort) (floox (2*M2FT + .5));
}
else if{ TempVeg == VC_WF)
{
if (TempDiam ==)
Data.HLC[a] [b] = {ushort) (floox (1*M2FT + .5}};
else if (TempDiam == 1)
{
f(TempCover == 0)
Data.HLC[a] [b] = (ushort) (floor {1*M2FT +
else
Data_HLC[a] [b] = (ushort) (flooxr {3*M2FT +
¥
else if (TempDiam == 2}
{
if (TempCover == 0)
Data.HLC([a] (b] = {ushort) (flooxr {1*M2FT +
else
Data.HLC[a} [b] = {ushort) (flooxr {(4*M2FT +
else if{ TempDiam == 3)
{
if(TempCover == 0)
Data.HLC[a] [b] = {ushort) (floox {1*M2FT +
else
Data.HLC[a] {b] = (ushort) (floor (7*M2FT +
}
else if{ TempDiam == 4}
{
if (TempCover == ()
Data.HLC{a] [b] = {(ushort) (flooxr {2*M2FT +
else
Data.HLC[a] [b] = f{ushort}) (floor(3*M2FT +
}
else
Data.HLC{a] [bl = f{ushort) (flocor (10*M2FP + .5});
}
else
//should be for VC_RF only
{

if(TempDiam == }
Data.HLC{a] [b] = (ushort} (floor (1*M2FT + .5));
else if(TempDiam == 1)
{
if (TempCover == 0}
Data.HLC[a] [b] = {ushort) (floox (1*M2FT +
else
Data.HLC[al [b] = (ushort) {(£100xr{S*M2FT +

S50

wn

S5hh:

ur

.51

L3y

343

}
}//end for{a=0.,.

}//end RedoHlcChd

)

344

}
else if(TempDiam == 2}
{
if (TempCover == 0)
Data.HLC[a] [b] = {ushort) (floor {1*M2FT + .5}};
else
Data.HLC[a] [b] = (ushort) {floor (3*M2FT + .5))
}
else if!{ TempDiam == 3)
{
if (TempCover == 0)
Data.HLClal [b] = {ushort) (floor{1*M2FT + .5));
else
Data.HLC[a] [b] = {ushort) (floor {7*M2FT + .5});
}
else if{ TempDiam == 4)
{
1f (TempCover == 0}
Data.HLC[a] [b] = {ushort) (floor (10*M2FT + .5));
else
Data.HLC{a] [b] = {ushort) (floor {1*M2FT + .5}};
}
else
Data.HLC[a] [b] = {ushort) (floor (10*M2FT + .5)):

R AR S LR T RS SPEe

/7 Do the new CBD

R S R e e R R RSN

ModCbd = (float)({ (float)Data.CBDensity[a]lb] / DENSITY_EXP) * (Data.Closurela][k] * ACREEQ)

if{ ModCbd > .30)

Data.CBDensity(a][b] = (ushort) (.30 * DENSITY EXP);
else

Data.CBDensity[a] [b] = (ushort) (ModChd * DENSITY_EXP);

