
AN ABSTRACT OF THE THESIS OF

David H. Graetz for the degree of Master of Science in Forest Resources presented on

July 5, 2000. Title: The SafeD Model: Incorporating Episodic Disturbances and

Heuristic Programming into Forest Management Planning for the Applegate River

Watershed, Southwestern Oregon.

Abstract approved:_ Sign~tu~e-~edacte? __ !?;,~_ri_v_ac_y_. ______ _
K. Norman John1s&6

v'

A hybrid landscape optimization/simulation model called SafeD (S,imulation and

~nalysis of forests with ~pisodic Disturbances) was built to address the needs of forest

management planning in the Applegate River Watershed, southwestern Oregon (the

Applegate Project).

There are two goals of the Applegate Project: 1) search for forest policies and

practices that achieve goals set for the watershed; and 2) simulate forest condition over

time (in the context of possible stochastic disturbances) considering the effects of

different forest policies and practices.

The SafeD model implements a four-stage process to guide management of the

forested landscape to achieve specified goals over a planning horizoR (40 years). The

first stage develops stand prescriptions, for each recognized forest stand type and

condition, which are designed to achieve specific stand goals. The second stage selects

the prescription for each stand. The selection of prescriptions is accomplished using a

heuristic programming technique, called the Great Deluge Algorithm, which is designed

to find the "optimal" prescriptions that satisfy goals at the landscape level. In stage three

the episodic disturbance processes are initiated. The episodic disturbances includes fire

and insect attacks with weather patterns providing the stochastic element. Fire is spread

using the FARSITE fire spread model with fine-resolution landscape data (25 meters x 25

meters). Insect attacks occur during drought periods in stands with excess basal area.

Stage four is the re-analysis and re-selection of stand prescriptions (for the remaining

time in the planning period) to accommodate for disturbances in stage three.

A sample application of the SafeD model is presented here. Two landscape

scenarios were developed. The first scenario contains two landscape goals. One goal is

to produce the greatest amount of big trees (>= 15" DBH) across the landscape. The

second goal is actually a sub-watershed equivalent roaded acre (ERA) constraint. The

second scenario presents a grow-only strategy to encapsulate the idea of leaving a

landscape unmanaged. The results show several interesting conclusions which may have

implications for forest management practices in the Applegate River Watershed. First, in

order to maximize the number of big trees across the watershed timber harvesting will

need to occur. Second, the effects of episodic insect disturbance negate the need for as

much timber harvesting as would be projected without accounting for such disturbances.

And third, fire plays a significantly less role, in regards to tree mortality, than insects

will.

The SafeD Model: fucorporating Episodic Disturbances and Heuristic Programming into
Forest Management Planning for the Applegate River Watershed, Southwestern Oregon

by

David H. Graetz

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented July 5, 2000
Commencement June 2001

Master of Science thesis of David H. Graetz presented on July 5, 2000.

APPROVED:

Signature redacted for privacy.
~~-,-----------:,-r_,---, -

Major Professor, repre mg Forest Resources

Signature redacted for privacy.

~ir of Depa;m~nt of Forest Resources

Signature redacted for privacy.

Dean of G~~chool

I understand that my thesis will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my thesis to any reader
upon request.

Signature redacted for privacy.

David H. Graetz, Author

ACKNOWLEDGEMENTS

There are a number of individuals to whom I am greatly indebted to for their role

during these past three years which it has taken me to complete this thesis. I would like

to acknowledge them in chronological order: Debbie Johnson for her willingness to first

hire me at one job and then pass me along to the Applegate Project at the expense of that

job; Norm Johnson for taking a chance with me, for giving me guidance and vision

during the project, and allowing me to explore tasks I had no business exploring because

he knew I wanted a challenge; John Sessions for his technical expertise, his comradeship,

and his patience and understanding in answering my many questions; Bernie Bahro for

his fire expertise, his California connections, and for his friendship; and Jim Agee for all

his work in getting me various parameters for the project and his patience in explaining

them to me.

I would also like to recognize and thank Kay and Tony Davenport for their never­

ending supply of love and support. I know I'm getting too old to still be in school and

complaining about money but those days are about over (hey, only three more years for

my PhD.!).

My office-mates and peers who have put up with my gripes, solitude, and otherwise

non-social behavior deserve credit: Jonathan Brooks and Andy Herstrom. My future

advisor and mentor, Pete Bettinger, has been a great source of information and guidance

which I hope will continue.

Finally, I certainly can't forget to acknowledge the three most important sources of

inspiration in my life. I should list them in chronological order so I don't get myself in

too much trouble: Kido, my faithful dog who sometimes forgets that and runs away, but I

can understand it's in his blood and so I don't take it too personal; Dana, my faithful

girlfriend who sometimes forgets that and - oh wait, that was Kido - her love and energy

have pulled us this far and I hope that together we get further down the road of life; and

Zorra, Dana's faithful dog, for being a constant source of amusement and being just so

darn cute.

TABLE OF CONTENTS

INTRODUCTION ... 1

Introduction and Project Strategy .. 1

Science Team .. 2

Study Area Conditions and Management Guidelines ... 2

Problem Definition and Modeling Justification .. 5

LITERATlTRE REVIEW .. 7

Introduction ... 7

Landscape Analysis Modeling .. 7

Spatial Data and Desirable Model Characteristics .. 9

Classical Landscape Simulation and Modeling Approaches .. 11

Classical Landscape Optimization .. 12

Recent Landscape Analysis Models .. 15

Solution Techniques .. 22

Summary and Conclusions .. 28

BROAD OBJECTIVE ... 30

RESEARCH DESIGN .. 31

DATA AND COMPUTER RESOURCES ... 32

TABLE OF CONTENTS (Continued)

THE SAFED MODEL .. 34

General .. 34

Stage One .. 38

Stage Two .. 41

Stage Three .. 50

Stage Four ... 75

The SafeD Software Program ... 76

SAMPLE APPLICATION .. 77

Prescription Generation (stage one) .. 78

Landscape Optimization (stage two) ... 79

Landscape Simulation (stage three) .. 91

DISCUSSION AND FUTURE WORK .. 98

General Notes on SafeD Processes ... 99

Prescription Generation (stage one) .. 101

Landscape Optimization (stage two) ... 102

Landscape Simulation (stage three and four) .. 103

CONCLUDING REMARKS .. l 06

TABLE OF CONTENTS (Continued)

REFERENCES ... 108

APPENDICES .. 113

Appendix A: Vegetation and Structural Stage Classification 114

Appendix B: Plant Association Group (PAG) Assignment Rules 115

Appendix C: Insect Disturbance Rules .. 117

Appendix D: FOFEM Tables ... 119

Appendix E: Hazard Analysis ... 125

Appendix F: The SafeD Model Code .. 127

LIST OF FIGURES

Figure

1-1: Applegate River Watershed locator .. 3

1-2: Northwest Forest Plan land allocations4

2-1: Hierarchical chart of landscape analysis ... 8

2-2: Hierarchical chart of heuristics ... 25

2-3: Sample classification of Neighborhood Search techniques 26

6-1: Flowchart of SafeD modeling stages .. 36

6-2: Interactions between major components of the SafeD model 37

6-3: Flowchart of the Great Deluge Algorithm used by SafeD47

6-4: Example of a grid or raster structure ... 51

6-5: General flowchart of fire disturbance processes ... 60

6-6: Size distribution of historical wildfires ... 62

6-7: Area burned distribution of historical wildfires .. 62

7-1: Prescription allocation for the Big Trees scenario .. 84

7-2: Before-simulation harvest levels in the Big Trees scenario 89

7-3: After-simulation harvest levels in the Big Trees scenario .. 89

LIST OF TABLES

Table

2-1: Comparison matrix for recent landscape analysis models .. 21

5-1: Spatial data used for the Applegate Project .. 32

5.2: Example of items and codes found in a treelist.. ... 33

6-1: Landscape attributes used by the SafeD model .. 52

6-2: Initial debris pool loadings (in tons/acre) ... 55

6-3: Fuel Model (FM) classification matrix ... 56

6-4: Historical fire statistics ... 61

6-5: List of major inputs to the FARSITE model.. ... 64

6-6: Ignition-Elevation probability matrix ... 67

6-7: Fire duration times .. 68

6-8: PREMO-generated inputs to the FARSITE model.. ... 70

6-9: GIS-generated inputs to the FARSITE model .. 70

6-10: Example of information found in a weather file ... 72

6-11: Example of information found in a wind file ... 72

7-1: ERA thresholds used for the Big Trees scenario .. 83

7-2: Number of big trees before-simulation ... 86

7-3: Number of big trees after-simulation .. 86

7-4: Weather pattern used for both scenarios ... 92

7-5: Insect mortality statistics .. 93

7-6: Number of ignition points for both scenarios ... 94

7-7: Fire mortality statistics .. 94

LIST OF TABLES (Continued)

7-8: New prescriptions needed as a result of episodic disturbances 97

9-1: Comparison matrix for recent landscape analysis models and SafeD 107

LIST OF APPENDIX TABLES

Table

1. Acres in each vegetation - structural stage class .. 114

2. Oregon white oak ... 119

3. Douglas fir .. 120

4. Other hardwoods .. 121

5. Ponderosa pine ... 122

6. Sugar pine ... 123

7. White fir ... 124

The SafeD model: Incorporating Episodic Disturbances and Heuristic
Programming into Forest Management Planning in the Applegate River Watershed,

Southwestern Oregon

INTRODUCTION

Introduction and Project Strategy

This thesis presents my contribution and research for the Applegate River

Watershed Forest Simulation Project (hereafter called the Applegate Project). The

objective of the Applegate Project is to develop a forest landscape simulation model to

use in evaluating the potential effects of different policies and forest management

practices over time to achieve goals for the forest of the Applegate River Watershed in

the context of possible stochastic events. The resulting model has been named SafeD

~imulation and i!nalysis of forests with ~pisodic Disturbances).

A strategy was implemented to break the development of the SafeD model into

more manageable pieces. Stand level and landscape level goals were identified and serve

as the logical spatial scales which will be used in this paper. Stand level refers to

working at the scale of an individual stand and includes decisions on how to identify

stands, how to classify stands, how to grow stands, and how to harvest stands. The stand

level work done for the Applegate Project was completed by other team members.

Landscape level refers to working at the scale of the area of interest (the 493,000 acre

Applegate River Watershed). Decisions made at the landscape level are more complex to

describe and model but they are essential to study because they look at the interactions of

stands between each other and their role in a larger spatial context. There is some

overlap between the stand and landscape level work and I will highlight that which is

necessary to understand the work I completed at the landscape level. See Wedin (1999)

for a more thorough overview of the stand level work completed for the Applegate

Project.

2

My contribution to the Applegate Project was initially structured to provide

Geographic fuformation System (GIS) support. That was]ater expanded to include

undertaking the modeling effort and the development of the SafeD model. This thesis

paper will focus on the modeling effort and the SafeD model. The GIS component of the

Applegate Project, while an important and critical component, became secondary in the

work I completed for the project. To this end, the GIS work I completed for the project

will only be mentioned briefly and as needed.

Science Team

The Applegate Project consists of a collaborative science team represented by

various disciplines. Team members include: Dr. Jim Agee, Univ. of Washington,

College of Forest Resources; Bernie Bahro, USFS RS, Fire and Fuels Specialist; Don and

Ellen Goheen, USFS R6, fusect and Pathology Specialist; Dr. Norm Johnson, OSU, Dept.

of Forest Resources; Debbie Johnson, OSU, Research Forest; Jim Kayser, Biometrician;

Dr. Chris Maguire, OSU, Dept. of Forest Science; Dr. John Sessions, OSU, Dept. of

Forest Engineering; Heidi Wedin, OSU, graduate student in Dept. of Forest Resources;

and myself.

Study Area Conditions and Management Guidelines

The Applegate River watershed is located in southwestern Oregon (Figure 1-1).

The watershed is approximately 493,000 acres and drains into the Rogue River. Forest

Service (FS) and Bureau of Land Management (BLM) lands comprise nearly two-thirds

of the ownership and contain almost 80% of the forested lands. The watershed's 325,000

acres of federal lands were designated an Adaptive Management Area (AMA) in 1994

with the signing of the Northwest Forest Plan (USDA FS and USDI BLM, 1994). The

Applegate AMA includes several allocations within its boundaries (Figure 1-2): Matrix,

Riparian Reserves, and two Late-Successional Reserves (LSR). The remaining one-third

of the watershed is in private ownership (mostly non-industrial) and the Red Buttes

3

Wilderness (federal land not in the Applegate AMA). The private lands generally occupy

the valleys and lower elevations.

~ .. __]___,_____ J
Figure 1-1: Applegate River Watershed locator

Applegate Water•hed
Northwut Fcnnt Plan

lal'ld Allocation■

• Nll'\rlX ... lBLMAl',f!A·

□ ~~~r.::.:,1onal

:• .i~~i::=.-
□ P.i'lwtit'e:~btiw lend•

,Ffil:ltir1"~~ieritEl.1!f:f.er•·:

Figure 1-2: Northwest Forest Plan land allocations

An ecosystem health assessment of the Applegate AMA (USDI ELM and USDA

FS, 1994) found the following:

• Increased risk of insect attack because of high stand densities.

• A younger and denser stand make-up than pre-European settlement.

• Stocking that exceeds carrying capacity over much of watershed.

• Increased risk of fire because of increased fuel-loading and stand conditions.

The ELM (USDI ELM and USDA rS, 1994), in a joint effort with other federal

agencies within the watershed, sponsored the above ecosystem health assessment. The

final report outlined some general management goals which included:

4

1. Reduce stand densities (of both merchantable and non-merchantable trees)

and shrubs by thinning or prescribed fire.

2. Protect and restore riparian areas and late-successional habitat.

3. Increase the number of larger, older trees.

4. Promote, maintain, and restore shade intolerant species in designated Plant

Association Groups (PAG's).

Additionally, the Standards and Guidelines for Management of Habitat for Late­

Successional and Old-Growth Forest Related Species Within the Range of the Northern

Spotted Owl (USDA FS and USDI BLM, 1994) provided for the production of wood

commodities as a general management goal in the matrix allocation (but not necessarily

an exclusive goal); harvest is also allowed in the LSR's to meet ecological objectives.

Problem Definition and Modeling Justification

5

The broad goal stated earlier to provide the Applegate Partnership with a model to

simulate forest change over time and to find forest policies that would help the Applegate

Partnership achieve its goals was very challenging. There are two distinct components

within that goal: 1) search for forest policies and practices that achieve goals set for the

watershed; and 2) simulate forest condition over time (in the context of possible

stochastic disturbances) considering the effects of different forest policies and practices.

Searching for forest policies and practices that achieve goals has its roots in classical

forest planning; whereas simulating forest condition over time falls under the arena of

classical landscape simulations. Both will be discussed in the Literature Review section.

The Applegate Project attempts to bridge these two approaches by combining the spatial

simulation of forest development on a large landscape, including stochastic disturbances,

with the search for management actions that achieve multiple goals.

6

This problem involves the interaction of a variety of factors and processes, such as

forest growth and yield, succession, management actions, and stochastic disturbances.

There are various spatial and temporal scales at work which make the task more complex.

By defining these complex processes and their interactions logically and

mathematically, landscape simulation models make it possible to examine assumptions

about landscape change explicitly (Mladenoff and He, 1999). Perhaps Mladenoff and He

(1999) stated the most compelling justification for landscape simulation models:

... modeling allows us to deduce results that otherwise cannot be
investigated due to their complexity, such as landscape change over long
time periods and the ecological ramifications of large disturbances, or
diverse management regimes. (p. 125)

LITERATURE REVIEW

Introduction

The overall objective of the Applegate Project is to create a forest landscape

simulation model to use in evaluating the potential effects of different policies and forest

management practices over time to achieve goals for the forest of the Applegate River

Watershed in the context of possible stochastic events. My ability to meet this objective

requires a tool that can, 1) help evaluate the effects of different management policies and

practices and 2) enable me to search for ways to achieve the goals set for the watershed.

These policies and practices often span large temporal and spatial scales making

assessment particularly complex. Simulation models are often the only way to assess

7

such scenarios that cannot be tested under real-world conditions. Additionally,

optimization methods are commonly used to determine policies and practices that achieve

goals for landscapes. Thus, this literature review will first concentrate on the

development of landscape simulation models and approaches, and particularly those that

include stochastic elements (generally those which include natural disturbances). Then,

methodologies used in forest management planning at the landscape level will be

reviewed (landscape optimization). Lastly, I will review and characterize two landscape

simulation models and a hybrid landscape simulation/optimization model.

It should be noted that anywhere the words "landscape simulation" or "simulation

model" are seen in this thesis the intent is really "forest landscape simulation model". I

may also use the terms "landscape optimization" or "optimization model" ... again the

intent is really "forested landscape optimization". This literature review and any

discussion in this thesis are in reference to a forested landscape.

Landscape Analysis Modeling

I am using the term "landscape analysis" to encompass the idea of analyzing a large

forested landscape for an assessment, strategic planning, or other purpose. The central

theme of this literature review is to distinguish between "classical" landscape simulation

models and "classical" landscape optimization models; both of which fall under

8

landscape analysis. I am also using the term classical to imply a traditional way or

method of doing something. Figure 2-1 shows a hierarchical chart of these elements as I

wish for them to be understood in the context of this I iterature review.

·c1assical"
landscape

optimization

"Classical''
landscape
simuli3.ti

Figure 2-1: Hierarchical chart of landscape analysis

Hybrids:
simulation/

optimization

It is important to understand this structure because, as I will discuss, the SafeD

model is a hybrid simulation/optimization model. Classical landscape simulation models

typically show forest change over time as a function of known biological relationships

and human activities that occur on the land. These relationships can be either spatial or

non-spatial (distributional). Missing from classical simulation models is the ability to

"search" for alternatives regarding what activities to place on the land (e.g. harvest,

prescribe fire, hands-off) given a goal to reach. This ability to have a goal and search for

ways to achieve that goal is encapsulated in classical forest optimization models.

However, optimization models typically simplify biological relationships and do not

address stochastic elements - everything must be programmed a priori. It is my goal in

this literature review to demonstrate how these two approaches (simulation vs.

optimization) differ and to suggest that the SafeD model is an improvement in landscape

analysis modeling because it incorporates elements from both approaches.

In the course of this literature review I will compare and evaluate three antecedent

simulation and optimization models. To accomplish this a framework for comparison

should first be established. I have chosen to look at two general components of any type

of landscape analysis model: spatial data and desirable model characteristics.

Spatial Data and Desirable Model Characteristics

The "spatial data" components are those attributes that are related to the storage

9

and use of spatial data. Study area size is used to help evaluate if models are working at

the same scale. It may be unfair to compare a model that works on small landscapes (less

than 1,000 acres) with one that works on large landscapes (over 100,000 acres). Data

structure is the fundamental way in which the spatial data is stored and accessed for use.

Vector (or polygon) format means that spatiality is maintained through lookup tables;

raster format means that spatiality is inherent to the location of the data (as if on a grid).

Related to the scale issue is that of resolution. By resolution I am referring to the size of

the minimum mapping unit (MMU). In a raster model the MMU is often the size of each

grid pixel (and the MMU size is uniform) whereas in a polygon model the MMU size

may vary because polygons are seldom exactly the same size. By placing these attributes

in the spatial data component I am not implying that they are unimportant - just that I

have chosen not to evaluate them in a more critical manner as I will for the attributes in

the desirable model characteristics component.

I have determined seven desirable model characteristics which I feel will allow me

to evaluate whether or not a particular model would be suitable to address the needs of

the Applegate Project. These seven characteristics and the need for each are:

1. Recognize economical and ecological components: The Applegate Partnership

has indicated to the science team that they wish the model to have the ability to

evaluate both these components. An economical component is necessary because

there are real economic considerations the Partnership wishes to evaluate with

different management scenarios. As well, the ecological component is necessary

for the Partnership to assess the ecological effects of particular management

scenarios.

10

2. Optimize multiple goals: The Applegate Partnership has indicated they wish to

have the ability to set multiple landscape goals. Achievement of all goals is not

necessarily a "hard goal"; but the ability to try and reach multiple goals and

evaluate tradeoffs with different emphasis on goal-attainment is desired.

3. Represent forest management activities: Again, the Applegate Partnership has

expressed the desire to evaluate the tradeoffs associated with active management,

including timber harvest. Timber harvesting does occur within the Applegate

Watershed and current regulations (both federal and state) allow for continuing

harvesting.

4. Represent stochastic elements: Episodic disturbances are believed to play a

major role in tree mortality within the watershed. The driving forces for these

episodic disturbance events are stochastic in nature, for example drought. The

ability to represent these stochastic elements will enhance any simulation model

for the project.

5. Represent fire - spatially explicit: Fire has played a very important historical

role in the Applegate Watershed. Neglecting fire and its effect would seriously

skew and distort any simulation model for the watershed. Spatially explicit refers

to the ability for a model to locate where an event occurs and allows for the

spatial movement of events across the landscape. This is in contrast to a

distributional approach in which events and/or their effects are spread on a

"distributional" basis throughout some spatial unit.

6. Represent insects - spatially explicit: As with fire, mortality from insects has

had a significant effect on the current forests of the Applegate Watershed. The

current stand densities in the Applegate Watershed have high potential for future

insect attacks. The ability to account for the occurrence and severity of insect

attacks, in a spatially explicit manner, will greatly enhance any model applied to

the watershed.

7. Repeated simulations to assess variability: Any stochastic landscape model

should have the ability to run multiple times to assess variability. If a model was

completely deterministic then multiple runs would be unnecessary; each run

would be the same. On the other hand, stochastic models should have elements

that are different for each run. Having the ability to make multiple runs holding

certain landscape parameters constant and allowing the stochastic elements to

change gives a range of results that can form the basis for statistical analysis

including variation and average conditions.

Classical Landscape Simulation and Modeling Approaches

11

Many landscape simulation models are considered to lie within an area of ecology

called landscape ecology (Mladenoff and Baker, 1999). Landscape ecology can be

broadly described as the study of ecological phenomena on large land areas. Golley

(1993) suggested that landscape ecology, as applied in North America, derives its

theoretical framework from ecosystem and community ecology, and its applied

methodologies from environmental management. The development of classical

landscape simulation modeling has its roots in forest ecology at a spatial scale and

resolution fitting to the technology available at the time. Developments in this

technology rapidly expanded starting in the early 1980's and correspondingly, so did

landscape modeling. Mladenoff and Baker (1999) attribute two factors to the increasing

scale and resolution of landscape modeling; availability of 30-meter resolution Landsat

Thematic Mapper (TM) data and the rise of powerful small workstations with GIS

software.

However, many of the simulation models developed in the early 1980' s were still

not spatially explicit and instead relied on distribution approaches (the distribution of

land area among classes of landscape phenomena) (Mladenoff and Baker, 1999). This

may be attributed to the lag time generally associated with the availability of new

technology and the ability to use that technology. Kessells' (1979) gradient fire model

was an exceptional model for the time in that it used spatially estimated vegetation and

fuels data to simulate spatial fire patterns and post-fire succession.

A further development that helped propel landscape modeling was the introduction

of mathematical and physical theories about properties of arrays of cells (Mladenoff and

Baker, 1999). These theories and mathematical properties were around prior to the

12

1980's, but again, the proliferation of desktop computers gave landscape modelers the

necessary tool to explore and use this infonnation. Mladenoff and Baker (1999) discuss

the properties of cellular automata and percolation modeling and how these components

were incorporated into landscape simulation models.

Mladenoff and Baker (1999) give a concise review of early disturbance models

which I will summarize here. Many of the initial fire disturbance models were developed

to predict and understand fire behavior (for suppression) and were empirically based

(Van Wagner, 1969; Rothermel, 1972). Fire disturbance models eventually made their

way into forest management models (Kessell, 1979). Ecological research on forest

disturbances were important for providing a framework for later ecological-based

landscape simulation models. These disturbances include fire (Van Wagner, 1978;

Johnson, 1992) and windthrow (Runkle, 1982; Frelich and Lorimer, 1991).

Classical Landscape Optimization

Early Forest Management and Planning Models

There has historically been a very close association between forest planning models

and growth and yield models (Iverson and Alston, 1986). Mladenoff and Baker (1999)

state that some distinction of scale can be made which differentiate larger scale, strategic

planning or regional timber-supply models, and smaller scale, growth and yield models.

One of the best known forest management models is FORPLAN of the US Forest Service

(Iverson and Alston, 1986). However, early versions of models like FORPLAN were

often too simple and were criticized for lacking ecological dynamics and variability, or

spatial considerations (Johnson, 1992). Early models using Geographic Information

Systems (GIS) were more of a decision-making software than models in a strict sense,

and were not very ecologically driven (Mladenoff and Baker, 1999). As well, early GIS

forest planning models typically did not consider natural disturbance rates or variability,

or spatial interactions in their planning algorithms (Johnson and Scheurman, 1977;

Hoganson and Burke, 1997).

13

Landscape Optimization Approaches

Strategic forest planning primarily has been focused on setting the level of timber

harvest and the scheduling of timber harvest activities. Harvest levels based on

controlling the volume harvested, the area cut, or both volume and area, have historically

been calculated using simple formulas. Optimization models have recently become more

pervasive in both private and public forest planning. Optimization models work on the

principle that they attempt to maximize or minimize some quantity (usually called the

objective function or objective) subject to reaching policy goals, and given certain choices

for management that are allowed for individual parts of the forest or the entire forest.

Policy goals are commonly formulated as constraints in an optimization model.

Examples of objectives are to maximize timber harvest, maximize present net value

(PNV), or minimize cost. Examples of policy goals are to maintain a non-declining yield

of timber harvest over time, attain some distribution of acres among age-classes or seral

stages, or to limit the rate of harvest in different portions of the forest (Davis and

Johnson, 1987).

Policy goals are increasingly more complex and difficult to model. As a result,

optimization models have been reformulated as "goal programs" (Sessions et al., 1999).

In goal programming, constraints that were modeled as absolutes are transformed to

allow for under- or over-achievement with an associated penalty value. The objective is

generally to minimize the total penalty values. This formulation allows for recognition

that it may be necessary in the short-term (or smaller spatial scale) to sacrifice and accept

inferior values for some constraints in the course of achieving an overall better value in

the long-term (or larger spatial scale). Additionally, it instills a sense of "fairness" to the

model from often conflicting constraints given for various components of the model. For

example, it might be desired to improve the habitat of species X, which is met by having

eight snags per acre. At the same time, another goal may be to minimize the entire

number of snags across the landscape. By allowing policy goals to be target values rather

than absolutes, a solution might be found where six snags per acre can be created across

the landscape and the overall number of snags is close to being minimized; neither goal

was absolutely reached but each sacrificed a little in an acceptable compromise.

Additionally, by adjusting the target values (or weights) an analyst is able to explore the

solution space. Policy goals are often modified as the tradeoffs surface from these

adjustments.

Strategic planning systems based on forest-level optimization models have two

14

main components: 1) the model formulation and 2) the solution technique (Sessions et al.,

1999). I will discuss model formulation next and solution technique will be discussed

later in the literature review because it plays a more significant role in my contribution to

the Applegate Project.

Model Formulation

Model I and Model II:

Model I and Model II are terms used to label the two fundamentally different

model formulations for optimizing forested landscapes (Johnson and Scheurman, 1977;

Davis and Johnson, 1987). The main difference is in defining the decision variables for

management activities and the way in which future (regenerated) stands are handled

(Johnson and Scheurman, 1977). Model I defines decision variables that follow the life

history of a stand over all planning periods. In Model II a stand may pass through several

decision variables as stands are regenerated, grow, and die (Davis and Johnson, 1987).

A problem formulated as Model I can be formulated as Model II and vice versa.

However, there are certain strengths and weaknesses of each that should be noted. The

power of Model II comes from the ability to merge acres of like characteristics from

across the planning area as they are regeneration harvested (Sessions et al., 1999). Fewer

decision activities (thus fewer decision variables) are needed as acres are merged, but at

the cost of losing some spatial definition in the management of future stands (Sessions et

al., 1999). When such merging is not acceptable, Model I is usually a preferable

formulation (Sessions et al., 1999).

15

Model Ill:

Boychuk and Martell (1996) used the term Model III to describe a generalized

version of Model II whereby the stands pass through decision variables for reasons other

than harvest, such as natural disturbances. An early example of Model III is seen in Reed

and Enrico's model (1986) in which the expected burned area (from a wildfire) was

subtracted from each age class in each time period, and added along with the cutover area

to the youngest age class in the following period. Although Reed and Enrico (1986)

described their model as stochastic, they actually used a "mean value" approach - the

random proportion burned was replaced with its expected value (Boychuk and Martell,

1996). This approach has been found to have some problems. Hof et al. (1988) noted

that attempting to use a mean value approach to a problem in a stochastic system leads to

a high probability for infeasible solutions. Boychuk and Martell (1996) went on to

compare the results of a stochastic programming problem (SPP) and the corresponding

mean value problem when fire risk is considered in forest planning analysis. In the SPP

formulation they represented stochastic fire loss by a discrete two-point probability

distribution that yielded the desired mean and coefficient of variation. They compared

only the first period solution and found that the mean value solution gave a good

approximation to the SPP, but consistently over-harvested under some conditions

(Boychuk and Martell, 1996).

Recent Landscape Analysis Models

Introduction

The threads of development from landscape ecology, disturbance models, forest

management and planning models, new technology, and the cross-over of theories from

mathematics have all interacted to arrive at the present state of landscape analysis

modeling. There has also been a trend towards simulation models that are multi-scale

and multi-process (Mladenoff and Baker, 1999). There are those with a narrow focus

such as FARSITE (Finney, 1998) which uses grid-cell input data, a vector format to

model the spreading fire front, exogenous climate drivers that control fire spread, and a

spotting routine that is stochastic and leapfrogs local dynamics.

16

Some models have incorporated non-spatial fire effects into forest planning

approaches that seek management actions that achieve multiple goals (Reed and Enrico,

1986; Boychuk and Martell, 1996). Other models such as LANDIS (Mladenoff and He,

1999) have emphasized the ability to be spatially explicit while including stochastic

elements and forest succession. And lastly, models such as SAFE FOREST (Sessions et

al., 1999) have attempted to combine the spatial simulation of forest development on a

large landscape, including wildfire disturbance and effects, with the search for

management actions that achieve multiple goals. These multi-scale, multi-process

models all have their groundwork based on earlier simulation models but interact in a

spatially explicit format that is not simply neighborhood-based (Mladenoff and Baker,

1999).

Landscape Analysis Models

The SafeD model developed in this thesis is not without predecessors. Many

simulation and optimization models have laid the groundwork for the work I completed.

As I stated in the Literature Review introduction, it is my goal to distinguish between

classical simulation models and classical optimization models and to suggest that a

hybrid simulation/optimization model (such as SafeD) is an improvement. The two

previous sections discussed classical simulation and optimization models. However, to

further illustrate how a hybrid simulation/optimization model is an improvement in

landscape analysis modeling I have chosen three antecedent analysis models to evaluate.

The first two models, LANDIS and CLAMS, are forest simulation models - but not in a

strict classical sense. The last model, SAFE FOREST, is a hybrid simulation/optimization

model and is the most closely related to the SafeD model. I have chosen not to review

any early simulation or optimization models that would be considered "classical" because

landscape analysis modeling has progressed rapidly in recent years and I wish to evaluate

models that are comparable to the SafeD model. This is not to dismiss their importance

or role in landscape analysis modeling.

The LANDIS Model:

The LANDIS model by Mladenoff and He (1999) was designed to address the

following needs:

1. Simulate large landscapes that are heterogeneous in terms of site conditions and

initial vegetation conditions at the tree species level.

2. Simulate interaction of dominant forest disturbance regimes ... fire, windthrow,

and harvesting, with species-level forest succession.

3. Adapt to range of possible scales and map input-data of varied resolution.

4. Include spatially explicit ecological interaction, and mechanistic realism, while

having modest input parameter needs. (p. 125)

17

The above needs are requirements for most forest landscape models and Mladenoff

and He (1999) state they cannot all be optimized within a single model. The needs are

framed by temporal and spatial scale, data availability, and parameter information for the

area being modeled (Mladenoff and He, 1999).

The application of the model I reviewed was designed to look at how a regional

landscape would recover from its current condition if natural successional processes

operated, both with and without fire and wind disturbances (Mladenoff and He, 1999).

The LANDIS model used a 10-year time step (over a 500 year planning horizon) to

model a 3.7 million acre landscape in a transitional zone between boreal forest and

temperate forest in northwestern Wisconsin (Mladenoff and He, 1999). A grid data

structure was used with a grid-cell resolution of 200 meters x 200 meters.

Forest succession, seeding dynamics, and natural disturbances were the main

components of the LANDIS model. LANDIS was designed as a tool to study species­

level responses and changes in forest landscape pattern with varied natural and

anthropogenic disturbances. These included stochastic fire and windthrow disturbances

that moved on a cell-by-cell probability which the authors called spatially explicit

(Mladenoff and He, 1999). In other words, the fire and windthrow events (once decided

when and where they will happen or start) could move and spread across the landscape

subject to behavior constraints and probabilities based on an individual cells' attributes.

18

Multiple simulations were run to assess the variability of conditions on the

landscape, both with and without stochastic disturbances. With its ability to incorporate

natural stochastic disturbances the LANDIS model "serves as a useful baseline against

which to assess various landscape management or other change scenarios" (Mladenoff

and He, 1999).

The CLAMS Model:

The Coastal Landscape Analysis and Modeling Study (CLAMS) project is a current

effort to answer the question, "how [will] the current variety of land uses and forest

policies in the [Oregon] Coast Range ... affect biological diversity, watershed processes,

and economic and social outcomes" (Bettinger et al., 2000a). The CLAMS model

incorporates strategic goals (aggregate harvest levels across large areas, multiple owners,

and long periods) and tactical considerations (e.g., clearcut size limits, historical patch

size distributions) (Bettinger et al., 2000a). The total study area is the Coast Range of

Oregon (about 5 million acres) but the model runs independently for six "megasheds"

just over 800,000 acres each.

The CLAMS model has its framework rooted in a raster data structure with Landsat

TM data and digital elevation models (DEM) utilized in the preparation of model data

input (Bettinger et al., 2000a). However, once the data is entered into the model it is used

in a polygon format and spatial relationships are maintained through lookup tables.

Stochastic disturbances such as fire, windthrow, drought, and insect outbreaks are

currently not considered (Bettinger et al., 2000a).

The CLAMS model is a more detailed look at future conditions if current policies

and practices were left in place. The level of spatial detail in the CLAMS model is

remarkable for the size of the landscape being modeled.

The SAFE FOREST Model:

Authorized by Congressional funds in 1993 the Sierra Nevada Ecosystem Project

(SNEP, 1996) was created. The primary goal for the SNEP team was:

[to undertake] a scientific review of the remaining old growth in the
national forests of the Sierra Nevada in California, and for a study of the
entire Sierra Nevada ecosystem. (Johnson et al., 1998)

19

The project was an attempt to combine the spatial simulation of forest development

on a large landscape, including wildfire disturbance and effects, with the search for

management actions that achieve multiple goals. Many members of the scientific team

for the Applegate Project were involved with the SNEP work and many ideas and

methods have found their way from SNEP to the Applegate Project. For example,

episodic disturbances, particularly fire, were identified as key elements in the shaping of

the modern landscape within the Sierra. In fact, the effects and role of fire played such a

large part in the development of the landscape simulation model that the model itself was

dubbed "Simulation and Analysis of Fire Effects on FOREST" (SAFE FOREST)

(Sessions et al., 1999).

The SAFE FOREST model used a vector data structure in which spatial

relationships were kept through lookup tables. The main "modeling units" were called

LSOG (Late Successional Old Growth) which were areas judged to be relatively uniform

in type and distribution of vegetation patches (Johnson et al., 1998). The model was used

on a 1 million acre landscape centered in the Eldorado National Forest and intermingled

lands. Sessions et al. (1999) outlines a four-stage procedure for the SAFE FOREST

model:

1. Find the set of activities (management actions) that best meets the goals for areas

of late successional emphasis.

2. Find the set of activities that best meets the goals for the rest of forest.

3. Simulate the fires across the landscape for the planning periods based on

randomly selected weather.

4. Adjust the schedule of activities, outputs, and effects following the fires. (p. 237)

Five goals were identified and specified in hierarchical fashion (high-to-low): 1)

Increase the general extent and complexity of late-successional forests; 2) Reduce the

potential for high-severity fire; 3) Restore riparian areas and watersheds; 4) Reintroduce

historical ecosystem processes; and 5) Provide sustainable, cost-effective timber harvest

20

volume. The model search for management actions was designed such that achievement

of a higher-order goal would not be compromised by attempts to achieve a lower-order

goal (Sessions et al., 1999). Other considerations such as wildlife, silvicultural methods,

and goal alternatives were also incorporated into the study (Johnson et al., 1998).

Following assignment of activities in stages one and two, fire was placed upon the

landscape based on historical probabilities within each LSOG polygon (Sessions et al.,

1999). Stochastic weather and wind patterns were used to determine fire spread.

The effects of fire were then estimated using the vegetation structure and

composition at the time of the fire along with various topographic variables (Sessions et

al., 1999). This is a partial spatial approach. The fire itself was not spread in a spatially

explicit manner but the location of the fire within LSOG polygons and the use of

probabilities allowed for a "spatial generalization" of the spread and extent of a fire. It

should be noted that the SAFE FOREST partial spatial approach to spreading fire was a

significant leap in incorporating fire disturbance processes into landscape analysis

modeling. Multiple simulations were made to help assess the variability of wildfires

through time (Sessions et al., 1999).

Summary of Antecedent Models

Table 2-1 shows a comparison matrix for the spatial data and desirable model

characteristics of the three reviewed here. All three models recognize ecological

components and represent forest management activities. Only the SAFE FOREST model

has the ability to optimize multiple goals; which is an objective for the Applegate project.

There is a great disparity in the ability to represent stochastic elements which is the other

objective for the Applegate project. Both the LANDIS and SAFE FOREST model have

stochastic elements, however they are limited to representing fire disturbance only. Both

models ignore insects. The CLAMS model has no stochastic elements. Because there

are no stochastic elements the CLAMS model has no need to undertake repeated

simulations whereas the LANDIS and SAFE FOREST do.

21

LANDIS CLAMS SAFE
FOREST

Study area 1.5 million
5 million

1 million
acres with 8

rJl size acres acres - "megasheds" C:
~
C:
0 c.. s
0 Data structure raster vector u
~ ..,
~

0

-~ Resolution 200 meter x
~ varies c.. (MMU) 200 meter

vanes
Cl)

Recognize
economical

ecological both both
and

ecological

Optimize
multiple no no yes

- goals
fi
C: Represent 0 c.. forest e
0 management

yes yes yes
u
Vl activities
-~ _.
Vl ·c:: Represent
~ - stochastic ~ yes no - elements ~
.c
u
0 Represent
-0 FIRE-0

"partial" ~ Spatially
yes no

~

::0 Explicit
~ - Represent • cii
~ INSECTS -0

Spatially
no no no

Explicit

Repeated
simulations to . yes no yes

assess
variability

Table 2-1: Comparison matrix for recent landscape analysis models

22

Solution Techniques

Introduction

As I discussed earlier, there are two main components to strategic planning systems

based on forest-level optimization: 1) the model formulation and 2) the solution

technique (Sessions et al., 1999). Model formulation has been discussed. Solution

technique refers to the particular mathematical technique used to solve a problem. I will

discuss three broad classes of problem-solving techniques: linear programming, non­

linear programming, and heuristics

Linear, Integer, and Mixed-Integer Programming

Linear programming is a class of problem-solving methods used for problems

which are linear with respect to the relationships between the decision variables. Linear

programming (LP) techniques can be used to find the mathematically optimal solution

(Davis and Johnson, 1987). An optimal solution is the solution that gives the maximum

or minimum value for the objective function given the constraints. Harvest scheduling

models, such as FORPLAN (Johnson et al., 1980), rely on linear programming

techniques. However, large landscape simulations frequently have constraints expressed

in terms of maintaining a certain unit of area in a specific cover type and requires

decisions variables to be binary (zero or one). Traditional linear programming of these

types of problems is very difficult (Bettinger et al., 1997) and may require alternative

techniques such as integer or mixed-integer programming.

Linear programming can find the optimal solution for a model whose variables are

continuous. When decision variables are formulated as 0-1 variables the solution

technique is called integer programming (IP) or mixed-integer programming (MIP) when

both binary and continuous variables are present; both of which are considered extensions

of LP (Hof and Joyce, 1992). For example, a harvest scheduling problem may be

formulated such that the decision variables for a harvest unit are O (don't cut) or 1 (cut)

for each period in the planning horizon. Often the spatial relationship between units is

important and IP and MIP allow optimal solutions to be found when there are spatial

23

constraints (Hof et al., 1994). LP, IP, and MIP are useful techniques and many examples

can be found of their application in forestry (Hof and Joyce, 1992; Hof et al., 1994; Davis

and Johnson, 1987; Hoganson and Rose, 1984; Daust and Nelson, 1993; O'Hara et al.,

1989; Clements et al., 1990). As with LP techniques, both IP and MIP techniques fail for

problems where the decision variables are too many or are non-linearly related.

Nonlinear Programming

Linear, integer, and mixed-integer programming are suitable for problems where

the decision variables have linear properties (i.e., plus or minus, + -). When operators

other than these are present the problem is considered nonlinear (such as products,

powers, and logarithms). Nonlinear problem solving techniques have practical size

limitations on the decision variables and problems with convergence on local optimums.

Currently a class of problem-solving methods called heuristics is being used to solve

nonlinear forest management problems.

Heuristics

Zanakis and Evans (1981) trace the word heuristic from the Greek word

"heuriskein" meaning "to discover". In landscape modeling the term heuristic is used to

define a procedure to reduce search in problem-solving activities (Reeves, 1993).

Reducing search in problem-solving is a goal in landscape modeling driven by limited

computational capability and limited time; which can be related to the large number of

choices generally associated with landscape problems. Because the ideal behind reducing

search is to avoid looking at every possible problem solution (and thereby know the

absolute optimal), a heuristic can only be considered to be "searching" for the optimal

solution. This concept has led Reeves (1993 p6) to define heuristic as "a technique which

seeks good (i.e. near-optimal) solutions at a reasonable computational cost without being

able to guarantee either feasibility or optimality, or even in many cases to state how close

to optimality a particular feasible solution is". The utilization of heuristic programming

techniques may allow the integration of complex, and often non-linear relationships

found in forest simulation models.

Taxonomy o{Heuristic Methods:

24

There is a confusing array of references to heuristic techniques and classification in

the published literature. There appears to be general consensus in the implementation of

various heuristics but little recognition of an orderly schema of techniques. Perhaps that

is because there are many variations and hybrids that defy orderly classification. In my

search of forestry related literature regarding heuristics I have found a few discrete

differences between techniques that will serve to bring some order (Figures 2-2 and 2-3).

To begin with, heuristics are a class of problem-solving methods. As discussed

earlier other classes include linear programming, integer programming, and mixed­

integer programming. The next level down are paradigms. The three main paradigms

found in forestry related heuristics are evolutionary algorithms, neighborhood search, and

non-neighborhood search. These paradigms describes the fundamental difference in the

search strategies. Evolutionary algorithms can be described as those whose search

methods attempt to model natural selection and population genetics. Neighborhood

search techniques employ a searching strategy that involves a defined "neighborhood"

while non-neighborhood search strategies use some other search strategy.

A closer look at the neighborhood search paradigm reveals many variations and

hybridizations on the theme of a neighborhood. I have chosen to illustrate one variation

through a.filter that describes the extent of the neighborhood (Figure 2-3). Extensive

neighborhoods are those that involve looking at many other solution states before making

a decision to move from one state to another. Simple neighborhoods usually only look at

one or a few solution states before making a decision to move. Other filters that can be

used in evaluating neighborhood searches (or even non-neighborhood searches and

evolutionary algorithms) are whether or not a memory or acceptance criterion is

employed. Memory is the idea that a solution remembers where it has been and using

that knowledge in some decision-making process that determines how to move from one

solution state to another. Acceptance criteria techniques are those that use an acceptance

criteria (or a single criterion) as the major factor for deciding the quality of a move.

Filters are difficult to classify in a orderly fashion because most are used in a mix-and­

match hybridization fashion that suits the modeler. For each of the three paradigms

above there are many techniques which fall under each. Simulated annealing, the great

deluge algorithm, and tabu search are three such techniques that have been used in

forestry applications with success.

Evolutionary
Al orithms

! Genetic
! Algorithms
L----------'

Class HEURISTICS

Neigborhood
Search

(see figure J

, below) !
L------------------------1

Figure 2-2: Hierarchical chart of heuristics

Non­
neighborhood

search

"random" !
Monte-Carlo !

samplinQ_ ____ _!

25

Extensive
nei hborhoods

Tabu Search

Neigborhood
Search

Other Filters

- Memory
- Acceptance
criteria
-- Randomness

Simple
nei hborhoods

, Simulated I
---►, . I

u-~;;.~-·;~:
! Algorithm I
L------------------------1

Figure 2-3: Sample classification of Neighborhood Search techniques

Simulated Annealing:

Annealing is a natural process in which the internal elements of a cooling body

rearrange their order from a high-energy state to a low-energy state. In the high-energy

state the elements of a system are molten and move freely. As the system is cooled,

mobility is lost. If the system cools slowly (annealed), the elements crystallize into a

stable state of minimal energy. If the system cools quickly (quenched), the elements

harden into an unstable arrangement (Lockwood and Moore, 1993).

26

Simulated annealing (SA) is a heuristic programming technique that tries to mimic

the annealing process described above. An SA algorithm tentatively alters the

arrangement of elements in a system, evaluates the change in the objective function

value, and then conditionally accepts or rejects the new arrangement (Dowsland, 1993).

A "temperature" and "temperature reduction factor" are used in the SA process to

evaluate the change (i.e., describe the energy state) in the objective function. New

arrangements that improve the objective function are always accepted. Arrangements

that worsen the objective function (analogous to adding energy to the system) are further

evaluated by an additional acceptance criterion. In the early stages of the annealing

process the acceptance criterion is less stringent and allows the system to accept

27

arrangements that worsen the objective function more frequently. As the algorithm

reaches later stages the acceptance criterion becomes more stringent until, at some point,

arrangements that worsen the objective function are no longer accepted (Dowsland,

1993). The acceptance criterion prevents the objective function from "greedily"

converging on the closest local minima or maxima (Lockwood and Moore, 1993).

Example of the use of SA for forestry applications can be found in Murray and Church

(1995), Lockwood and Moore (1993), and Nelson and Liu (1994).

Great Deluge Algorithm:

The great deluge algorithm (GDA) is a recently developed variant on the above

simulated annealing method for solving discrete combinatorial problems. The GDA was

introduced by Gunter Dueck (1993) and proved superior to similar neighborhood search

algorithms in solving a 442-city and 532-city Traveling Salesman Problem. The form of

the GDA as presented by Dueck (1993) consisted of using a single parameter in the

determination of whether or not to keep an inferior intermediate solution. The use of one

parameter rather than two, as in a simulated annealing algorithm, is believed to de­

sensitize the algorithm thus leading to equally good results even when parameter

estimation and formulation is poor.

The GDA derives it name from the conceptual framework on which the algorithm

works. If a problem were constructed such that the objective is to find the highest

elevation in a fictitious country then the GDA would be one of maximization. The

algorithm would start at some unknown location in the country and then it would "rain

without end". The algorithm then walks around in this country trying to "keep its feet

dry". However, the algorithm will tolerate water up to its ankles and so is allowed to

walk in some inundated areas with the hope that there is dry land nearby. The water

continues to rise and thus the dry land and acceptable ankle-deep water diminishes until

the algorithm finally finds the "highest point" - determined by the fact that there is no

more land left to walk around in without water going past the ankles.

28

Tahu Search:

Tabu search is a heuristic programming technique that employs a "memory" while

aggressively exploring the solution space of an optimization problem. Exploration of the

solution space is accomplished by making "moves" in the system, where a move is

defined as the change in value of any one of the problem variables (VoB, 1993). A move

may improve or diminish the quality of the objective function (same idea as a new

arrangement as discussed in SA). A tabu search algorithm may contain a short- and long­

term memory to help the algorithm intensify and diversify. Intensification is the ability

to look around a particular area within a solution space without being confounded by

non-improving moves (VoB, 1993). This is accomplished by a short-term memory list

which restricts certain moves after the algorithm has made the move repeatedly. This

prevents local cycling whereby the algorithm continuously finds a local minima or

maxima (Glover and Laguna, 1993). Diversification is the ability to look in a completely

new area of a solution space (Bettinger, 1998). This is accomplished by a long-term

memory list which penalizes often-selected arrangements and forces the selection of new

arrangements, which may allow the algorithm to search into unexplored regions of the

solution space (VoB, 1993). Forestry applications of tabu search can be found in

problems that address the scheduling of timber harvest subject to adjacency requirements

(Murray and Church, 1995), and to harvest scheduling while meeting spatial goals for big

game (Bettinger et al., 1997).

Summary and Conclusions

Strategic forest planning has primarily focused on setting the level of timber

harvest and the scheduling of timber harvest activities. The SNEP and CLAMS projects

are two studies that have included the traditional analysis and scheduling of timber

harvest activities while also including the ability to model other policy goals, formulated

as constraints. The LANDIS model is a spatially explicit and stochastic model that

simulates forest landscape change over long time periods and over large, heterogeneous

landscapes. The SAFE FOREST model also included stochastic wildfire but its spatial

explicitness was limited to the size of its large modeling polygons.

29

As policy goals have become more complex, new programming techniques have

been employed to solve landscape problems. Linear programming, integer programming,

and mixed-integer programming are difficult to use for solving landscape-level spatial

problems; either as a result of computational limitations or because of the complexity of

the problem formulation (e.g., large number of choices or nonlinear operators) (Bettinger,

1998). Heuristic programming techniques have been found to be effective in solving

optimization problems and their use in forestry applications is becoming more common

(Lockwood and Moore, 1993; Murray and Church, 1995; Nelson and Liu, 1994). In

particular, the Great Deluge Algorithm has been shown to be effective in evaluating a

landscape problem with spatial constraints (Bettinger et al., 2000b).

With this literature review I hope to have demonstrated the three main drivers that

have led me to develop the SafeD model. First is the need for a hybrid

simulation/optimization model. The Applegate Partnership has expressed this need with

two of their goals: I) to simulate forest change over time and 2) to achieve goals set for

the watershed. Second is the need to use heuristics solution techniques to solve our

landscape problem. The number of decision variables associated with our problem and

the need for spatial constraints make the use of traditional linear and non-linear

programming problematic, if not impossible at this time. Finally, I have shown that an

evaluation of recent landscape models reveals limitations in their ability to address the

needs of the Applegate Project (see Table 2-1). The three models reviewed show at least

one "deficiency" in the desirable model characteristics rows. Therefore, I have set out to

build the SafeD model to both address the needs of the Applegate Partnership and to have

all the desirable model characteristics shown in the matrix.

30

BROAD OBJECTIVE

The broad objective is to develop a landscape simulation model for the Applegate

Partnership, land management agencies, and others to use in evaluating the potential

effects of different policies and forest management practices to achieve goals set for the

Applegate Watershed. These goals may include: I) limiting insect and windthrow

hazard, 2) limiting catastrophic fire hazard, 3) enhancing wildlife habitat, 4) improving

fish habitat, and 5) providing for economic returns through timber harvest. In meeting

these goals there may be a set of landscape sub-goals such as ensuring X number of snags

are left on every 40 acres, maximizing even-flow of timber, maximizing present net

value, maximizing wildlife habitat, or a combination of these. The actual goals used at

the landscape level for the Applegate Project will be discussed in the Methods section of

this thesis. There will be three main components of the overall simulation model

(SafeD): 1) a stand prescription model (PREMO), 2) a disturbance model (which includes

a fire model called FARSITE, an insect model, and a windthrow model), and 3) a

landscape optimization model .

The above objective describes the final product desired (the SafeD model),

however, there is a more subtle sub-objective that should be noted. Since the project will

be done in a compartmentalized fashion the "bringing together" of all pieces will be an

goal in itself. Management of the spatial data in a GIS, the stand prescription model, the

fire model, the insect and windthrow models, and the landscape model all need to be

integrated in the final step.

31

RESEARCH DESIGN

A four-stage process was developed to guide management of the landscape to

achieve specified goals over a planning horizon (40 years). The first stage is the

development of stand prescriptions, for each recognized forest stand type and condition,

which are designed to achieve specific stand goals. The second stage is the selection and

implementation of the prescription for each stand and to start the temporal "changing" of

the landscape. The selection of prescriptions will be accomplished using heuristic

programming techniques designed to find the "optimal" prescription that satisfies those

goals at the landscape level - some of which have a spatial nature to them. In stage three

the episodic disturbance processes are initiated. The episodic disturbances will include

fire, insect attacks, and windthrow. Disturbance models will be stochastic and spatially

explicit. Stage four is the re-analysis and re-selection of stand prescriptions (for the

remaining time in the planning period) to accommodate for disturbances in stage three.

Results from the final landscape model can be compared to simulations of the

landscape using other management approaches such as growth without active

management or treatment of stands in accordance with current policies (based on

ownership).

32

DATAAND COMPUTER RESOURCES

There are three broad classes of data that are utilized in the Applegate Project: 1)

GIS spatial and tabular data, 2) stand and plot data, and 3) model-generated data. The

spatial data originated in both raster and vector format but the SafeD model uses only

raster data (thus vector data is converted through GIS to raster before use). This spatial

data originated from a variety of sources with the main source being a database

commissioned by the Applegate Partnership and put together by Interrain Pacific (now

called EcoTrust), a Portland, Oregon company. The database is a compilation of spatial

data within the Applegate River Watershed and I made only minimal efforts to verify the

accuracy. See Table 5-1 for a description and brief explanation of the spatial data used.

DATA SOURCE2 DESCRIPTION
NAME1

,,, ""'·'··"·"·"······~,;;._..:,1'0'/;";;;;,,;,:;::o,,,,, , , ,,,,
""

Alloc CD Fed. land allocations (e.g. Matrix, LSR)
Aspect CD 0-359 degrees
Cellid Derived Unique ID for every 25 meter cell
Elev CD In meters
Firehist Derived Areas of previous fire history (as known)
Minor CD 61n-field watersheds
Owner CD Land ownership
Pag Derived Plant Association Group
Stage Derived Initial structural stage
Slope CD In degrees
Strbuf Derived 150-300 ft buffers around streams located on fed land
Treelist Derived Identifying lookup values to reference initial stand data
Veg Derived Initial vegetation classification
1. Data name is the name used in the SafeD model.

2. CD is the Applegate Watershed data produced by Interrain Pacific, Derived means that it was
produced through GIS by either modifying data on the above CD or through unique rules and
methods developed by the Aoolegate science team.

Table 5-1: Spatial data used for the Applegate Project

Associated with the spatial data are tabular data describing various attributes of the

spatial data. The stand and plot data consist of tabular information that describes the

biometric variables measured during plot exams by both the USDA Forest Service and

33

the USDI Bureau of Land Management (sources of original plot data). This data was

originally handled by science team member Kayser. My project deals only with the

ending "treelist" that result from an analysis of plot data. A treelist is a list of records for

a stand in which every record represents some tree or portion of a tree (on a per acre

basis) and all the necessary biometrics for that specific record (Table 5-2).

Items in a TREELIST

Plot# Status TPA
Model Report DBH Tree Crown

Condition
Code Code Height Ratio

l.,s•

Old plot 0 = Snag Unique Unique If "Status"
#- not 1 = Live code for code for is snag or
used by 2=Dwd species species dwd- code
SafeD for

condition

Table 5.2: Example of items and codes found in a treelist

Finally, when the model is run, we generate a number of intermediate data files.

Some of these files will be needed later in the mode], some will be needed for post­

evaluation or analysis, and some can be discarded after use. In general, these intermediate

data files are made in text format or stored in computer-coded arrays for later use.

A Gateway computer with a 18 GigaByte (GB) internal hard drive was purchased

and used for the Applegate Project. The operating system is Windows NT, Version 4.01

running on a Pentium ill Xeon 550 MHz CPU. All the model development, data storage,

and data management was done on this machine. Both spatial and tabular data were

stored on the hard drives and backed-up on a regular basis to a 4mm DAT tape.

Incremental backups occurred daily and ful] backups were done on a weekly basis.

The GIS work was completed using Arclnfo v.7.2. The SafeD model itself was

written in the C and C++ language (using Microsoft's Visual C++ v.5.0).

THE SAFED MODEL

General

The goal of the Applegate Project is to develop a landscape simulation model for

the Applegate Partnership, land management agencies, and others, to use in evaluating

the potential effects of different policies and forest management practices over time to

achieve goals for the forest of the Applegate River Watershed in the context of possible

stochastic events. The project is designed to incorporate guidelines set for AMA's. A

key feature of AMA's is to:

... provide for development and demonstration of monitoring protocols and
new approaches to land management that integrate economic and
ecological objectives based on credible development programs and
watershed and landscape analysis [The guiding technical objective] is
scientific and technical innovation and experimentation [such as the]
design and testing of effects of forest management activities at the
landscape level. (USDA Forest Service and USDI Bureau of Land
Management., 1994, p. D 2-4)

There are three main components to the overall simulation model - a stand

prescription optimization model, a landscape optimization model, and disturbance

34

models (which includes fire, insect, and windthrow models). The overall simulation

model is the model I am describing in this thesis, the SafeD model ~imulation and

~nalysis of forests with ~pisodic Disturbances). As I will describe in more detail the three

main components of the SafeD model are not necessarily embedded within the SafeD

model code itself. In other words, there are external models that the SafeD model is

dependent on. Handling the input and output of data from these external models is

accomplished by the SafeD model. The SafeD model is also responsible for all the

landscape optimization (to be discussed). The important point to remember is that the

SafeD model accomplishes many processes within itself but is dependent upon other

external models for some data and processes.

35

A four-stage process is used to test the impact of different management approaches

on the landscape over the planning horizon (40 years). See Figures 6-1 and 6-2 for a

flowchart of the following:

1. Stage one is the preparation of stand data and the development of stand prescriptions,

for each recognized forest stand type and condition, which are keyed to different

emphasis of the overall goals.

2. Stage two is the selection of a prescription for each stand based on the goals

established for the watershed. The selection of prescriptions is accomplished using

heuristic programming techniques designed to find a "near-optimal" spatial pattern

that satisfies landscape goals.

3. Stage three is the initiation of the episodic disturbance processes. This includes a

stochastic fire model, an insect model, and a windthrow model that are spatially

explicit.

4. Stage four is the adjustment of the stand prescription to accommodate for the effects

of disturbances in stage three and re-optimize at the stand and landscape level.

36

' " '"

Stage One:

"O
C:

.s

Classify satellite
Develop

imagery and
growth

Determine
develop ~

and yield
-. goals for the

vegetation
models

stands
classification

0 co
§ 1a
:;::;0
~
co

Develop and use PREMO for stands +--in the watershed
C.
a:,

a:.

Stage Two: Define Objective

C:
0

~

Define the landscape _., Function that
goals measures attainment -

of the landscape goals

N

"i~
~
0 Develop heuristic to select "optimal"
a:,
C. prescription for each stand over all time

,_
~

co u periods, given the landscape goals
Cl) ' "O
C:
co

...J

Stage Three:

C:
0

i

I
'

Enter next Calculate dynamic Initiate
simulation n variables related to ~ episodic -

period time disturbances

:i
E
u5
a:,
C.
co u rn

Calculate stand changes as a function -
of disturbances encountered

"O
C:
co

...J

Stage Four:

l
Use PREMO to

Adjust activities on the
develop new

landscape to account
prescriptions for all --+ for effects of
stands affected by

disturbances in stage
disturbances in stage

three
three

Figure 6-1: Flowchart of SafeD modeling stages

Stage 1

Treelist

PREMO

PREMO

Prescriptions

Stage 4

Stage 2

Landscape
Goals

The
SafeD
Model

Heuristic-derived
allocation of

prescriptions to
the landscape

Insect

Fire Disturbance

FARSITE

FLAMMAP

Stage 3

Figure 6-2: Interactions between major components of the Saf eD model

37

Stage One

Vegetation classes and structural stages for the watershed have been developed

using Landsat TM satellite imagery captured in August, 1993. Thirteen vegetation

38

classes and fifteen structural stages are recognized within the watershed (Appendix A).

Each combination of a vegetation class and structural stage could occur within three area­

types identified on the landscape: normal, thinned, and fuel break. The three area-types

were developed to address the fact that the Landsat image was taken in 1993 and

activities have occurred on the landscape since that time. Data was obtained indicating

that these activities included some thinning and fuel breaks. We were able to spatially

identify many areas where a post-1993 thinning or fuel break was present.

Additionally, seven Plant Association Groups (PA Gs) were developed by Agee

(1999) to help determine the successional pathways. Each stand was assigned a P AG

based on geology, elevation , precipitation, slope, and aspect. Appendix B shows the

rules for P AG assignment:

An important component within the SafeD model is the identification of what is a

"stand". The science team for the Applegate Project decided to break with traditional

stand delineation (spatially defining polygons with similar vegetative or other attributes)

and instead used each pixel from the classified Landsat TM imagery as the stand unit.

That is, each 25m. X 25m. pixel is a stand in the SafeD model. "Stand type" refers to the

unique combination of vegetation classification, structural stage classification, and area

type. There are nine forested vegetation classes (and four non-forest classes), eleven

forested structural stage classes (and four non-forest classes), and three area types. For

the initial conditions in the Applegate Watershed there is a potential for 297 (9 * 11 * 3)

unique stand types.

The first stage of the modeling process is the development of stand prescriptions

that integrates growth, mortality, and achievement of stand goals. This is done for each

of the unique stand types in the watershed. Project member Wedin (1999) developed the

stand prescription optimization model. Wedin used the growth relationships found in the

Forest Vegetation Simulator (FVS)(Dixon and Johnson, 1995) as the foundation for a

new stand prescription generator called PREMO (PREscription generator under Multiple

Objectives) (Wedin, 1999). Periodic insect, wind, and root disease mortality are

39

incorporated into PREMO. Relationships on decay of snags and down wood comes from

Mellen and Ager's (1998) coarse woody debris model.

PREMO is designed to take stand data, represented by a list of live trees, dead

trees, and down woody debris (called a treelist - see Data section), and create multiple

prescriptions for the stand in response to emphases on goals that might be used to guide

the management of the stand. A prescription, as I use in the context of the SafeD model,

is a series of treelists (for a single stand type) that reflect the actual dynamic condition of

the stand over the entire planning horizon. This is not the same as a "silvicultural

prescription" which contains very specific information regarding how and when to treat a

stand over the planning horizon. A prescription for the SafeD model is simply the ending

series of treelist with the assumption that all the silvicultural activities (or none) have

taken place and that growth and mortality is accounted for.

Five potential stand goals came out of discussions with the Applegate Partnership

and others: 1) limiting fire hazard; 2) limiting insect and wind-throw hazard; 3)

enhancing wildlife habitat; 4) improving fish habitat; and 5) providing a supply of timber

in a cost-efficient manner. The tools for manipulating stand condition in order to achieve

goals are growth, tree harvest, and snag creation. Measurements of goal attainment are

based on stand variables as calculated by investigating the modeled residual tree list

(standing live and dead trees, and down wood) or the modeled harvest treelist. Wedin

uses the RLS-PATH optimization algorithm (Yoshimoto et al., 1990) to find prescription

alternatives for each stand for each goal. More information on the stand prescription

optimization model can be found in Wedin (1999).

The science team developed a unique approach to account for stand mortality by

designing PREMO to function within the context of a larger landscape simulation model

(i.e. the SafeD model). The mortality equations normally used by FVS were left out of

PREMO and new periodic mortality equations were developed for PREMO to account

for periodic insect, wind, and root disease. However, a larger percentage of stand

mortality will occur episodically with the mortality occurring outside of PREMO (within

the SafeD model). The SafeD model is designed to track stand mortality and thus can be

used to evaluate whether or not the idea of representing stand mortality by episodic

events is feasible.

40

The idea behind stage one and the use of PREMO is important enough to re­

illustrate. Let's start with isolating a single stand type within the Applegate study area.

Again, for this project the stands were identified as 25 meter pixels. Two or multiple

adjacent pixels could be identical stand types but they are modeled and tracked as

separate entities. Now assume that the stand selected is of Red fir vegetation class, falls

into the structural stage class of 15" - 21" DBH with> 60% canopy closure, and the

area has not been modified since the 1993 Landsat image was taken (normal area type).

These three components identify unique stand types within the watershed. There are

many 25 meter pixels across the landscape that have these same components, and

therefore, are considered as being identical stand types.

The Red fir stand type just described has a treelist associated with it that provides a

description of the current stand in detail. We can manage that stand by allowing growth,

tree harvest, and snag creation. The question is, "What do we do to the stand?"

However, that can only be asked after answering the question, "What do you want the

stand to look like at the end of the planning horizon?" And the latter question is what is

used to identify a stand goal. If the stand goal is to create a stand that limits fire hazard,

then what we are really saying is, "I want a stand that exists in such a condition that if a

fire were to come through it, the adverse effects to the stand would be limited." Of

course parameters and equations would need to be in place to measure the effects to the

stand from the fire.

Now that we have identified a single stand goal for the Red fir stand type we can

look at ways to treat the stand (or not treat the stand) to achieve the goal. And that is one

of the functions of PREMO. PREMO tries to produce an "optimal" treatment (which

results in a prescription) for a stand that takes into consideration the existing stand

condition, the management activities available, and the desired ending stand condition.

However, PREMO has to be pre-programmed with equations and functions for each

desired stand goal. There are currently 19 stand goals available from PREMO:

1. Reduce fire risk
2. Reduce insect risk
3. Enhance fish habitat
4. Enhance wildlife habitat - complex structure
5. Enhance wildlife habitat - simple structure
6. Maximize PNV
7. Reduce fire and insect risk, and maximize PNV
8. Enhance fish and wildlife (complex) habitat, and maximize PNV
9. All goals with emphasis on maximize PNV
10. Grow only

41

11 - 19. Same as first nine except harvest not allowed until 3rd period (called Timing
Choices)

In stage one we generate prescriptions for each unique stand type identified for all

of the stand goals. Continuing with the Red fir example, PREMO will generate 19

different prescriptions for that stand type; each of which is optimized for a particular

stand goal. The next question to ask is, "Which prescription do I actually select to

implement?" and that is addressed in stage two. Again, see Wedin (1999) for a detailed

explanation of how PREMO works in stage one.

The PREMO runs are made prior to the simulation runs. The SafeD model expects

the prescriptions files to be available at run-time. The SafeD model is programmed to

execute the PREMO runs in real-time as well (meaning PREMO is executed during the

simulation run). This generally proves inefficient because multiple simulation runs are

made and the PREMO runs are only needed once to create the prescriptions for the initial

conditions (which do not change). If any changes to the PREMO code are made then

new PREMO runs are made.

Stage Two

Introduction

Stage two is a three-phase process which completes the selection of specific

prescriptions for each stand and is the core of the optimization part of the SafeD model.

The prescriptions developed by PREMO in stage one are optimized at the stand level

based on stand goals. The idea of stage two is to optimize the selection of specific stand

prescriptions based on landscape goals. The three phases to accomplish this are: 1)

define the landscape goals, 2) define an objective function that measures attainment of

the landscape goal and any constraining functions, and 3) develop a heuristic to

maximize (or minimize) for the objective function.

Phase one of stage two - Define the landscape goals

42

Potential landscape goals include the same five stand goals but applied at the

landscape scale (limiting fire hazard, limiting insect and wind-throw hazard, enhancing

wildlife habitat, improving fish habitat, and providing a positive PNV). Other potential

landscape goals are spatial in nature. Examples include ensuring X number of snags are

left on every 40 acres or maximizing even-flow of timber in area Y while improving fish

habitat in area Z. The original idea behind the Applegate Project was to give the

Applegate Partnership an opportunity to define the landscape goals and for the project

science team to develop some landscape goals as well. However, because of difficulties

encountered in the model development there was not enough time to coordinate with the

Applegate Partnership and establish a well-defined set of landscape goals they wish to

model. This left the process of defining the landscape goals to the science team.

The science team chose two landscape goals:

1) Big Trees - Maximize the number of big trees (> 30" DBH) across a managed

landscape.

2) ERA Constraint-Limit each 6th-field sub-watershed to an Equivalent Roaded

Acre threshold (ERA - to be discussed in phase two).

Two scenarios were developed to encapsulate the above landscape goals (first

scenario) and provide for an alternative landscape "goal" of leaving a landscape

unmanaged (second scenario). These two scenarios serve as the modeling alternatives

that will be referenced throughout this thesis (scenarios will always be capitalized in

remaining text; landscape and stand goals will not):

1) Grow Only - No management activities allowed in any stand.

2) Big Trees - Incorporate the big trees and ERA constraint goals.

43

The landscape goals are applied to a spatial sub-set of the entire Applegate

Watershed. I call this sub-set the "eligible" or "modeled" landscape. The modeled

landscape is a result of identifying those cells for which the SafeD model will keep track

of.

For the Grow Only scenario the Red Buttes Wilderness and all non-forested areas

are the only areas not modeled.

The modeled landscape for the Big Trees scenario are those forested cells that:

1. Are in a LSR with an initial stand quadratic mean diameter breast height
(QMDBH) <= 15"

2. Are on federal lands in identified stream buffers with an initial stand QMDBH
<= 15"

3. Are not in the Red Buttes Wilderness

The Grow Only scenario was chosen for its use as a "baseline" to measure other

scenarios against. The ideal of having a big tree goal on the landscape was positively

received during several discussions with the Applegate Partnership. The ERA constraint

goal was incorporated to allow me an opportunity to work with a multiple-goal scenario.

ERA thresholds were also discussed with the Applegate Partnership although no formal

guidelines or parameterization came from them.

Phase two of stage two - Define objective function and constraint functions

The Grow Only scenario does not require any objective function because no

decisions need to be made; the landscape is left alone to grow. The big trees goal in the

Big Trees scenario is formulated as a Model I nonlinear integer problem (see Literature

Review) where decision choices are represented by binary integer (0-1) variables. In this

case, the fundamental choice is whether or not to assign a particular stand prescription to

a stand. The objective function is to maximize the number of big trees across the

managed landscape. The objective function is formulated as:

maximize:

where:

t = period
n = total number of periods
k = stand (note: stands are 25 m. x 25 m.)
m = total number of eligible stands
J = prescription
q = total number of potential prescriptions
rk, t, j = total number of big trees (>= 30" DBH) in stand kin period t from
prescriptionj
Xk,j = 0-1 variable indicating prescriptionj is assigned to stand k

subject to:

INPUT CONSTRAINT

POLICY CONSTRAINT (sub-watershed disturbance)

44

A normalized numerical coefficient called the Equivalent Roaded Acre (ERA) will

be used to track overall land disturbance within each 6th field sub-watershed

(approximately 2,200 acres each). A road surface is considered to be the most extreme

type of disturbance in terms of increasing or concentrating water flows and sediment

production (Carlson and Christiansen, 1993). A road is given an ERA coefficient of 1.0.

Other types of disturbance are equated to a road surface by ERA coefficients reflecting

their relative level of disturbance. ERA coefficients are decayed over time to reflect

recovery.

The ERA constraint function is formulated as:

LP- ERA
k-I k < ERA_Thresholdt \It, w

p

where:

t == period
w == sub-watershed
k = stand in sub-watershed w
p = total stands in sub-watershed w
ERAk == ERA value for stand k in period t
ERA_ Thresholdt = ERA threshold for period t

Phase three of stage two - Develop heuristic to maximize the objective function

A heuristic optimization algorithm was developed to select the prescriptions for

each stand for the entire planning horizon to achieve the Big Trees landscape goal.

Heuristic programming is a broad term used here to describe a method of solving large,

multi-variable, combinatorial optimization problems. Simulated annealing, the great

deluge algorithm, genetic algorithms, and tabu search are examples of heuristic

45

algorithms (often just called heuristics). Heuristics find optimal or near-optimal solutions

through various processes that allow the algorithm to employ a search or sampling

strategy of the possible solutions. Some unique elements of heuristics include: 1) they

do not look at all the possible solutions; 2) they may have some sort of "memory" which

prevent the algorithm from continuously looking in one "area" for a solution; 3) they tend

to have a set of rules that allows the algorithm to accept inferior solutions, to avoid being

trapped in local optima, with the idea that it may lead to a better solution; and 4) they are

not guaranteed to find the mathematically optimal solution, in fact they may not find a

feasible solution at all (see discussion on heuristics in Literature Review).

I chose to use the Great Deluge Algorithm (GDA) as described by Dueck (1993).

The GDA requires only one acceptance criteria parameter which makes it easier to

implement than other similar techniques. As described in the literature review the GDA

rests on the notion that given a starting value, inferior solution values are acceptable

subject to an increasing "level". The difference between the level and the best solution

value ever found decreases as the algorithm progresses by a single parameter called

"rain". This idea works for both minimization and maximization problems.

46

The solution given by the GDA heuristic will be a near-optimal solution to the

underlying landscape question "Which prescription do I choose for each stand (from the

available set of prescription alternatives developed by PREMO) that optimizes the

landscape given a set of landscape goals." Figure 6-3 shows a flowchart for a generalized

version of the GOA heuristic used.

Great Deluge
Algorithm for the

SafeD model

No

ave as best
solution and reset

BOVto MOV

Increase LEVEL
by "Rain"

Yes

Yes

Generate feasible
random solution

and calculate
initial Objective

Value (OV) I ~~~EL
---~ _ .. ·_···_····_····~·· ····················Best Objective Value (BOV)

Pick random stand
to evaluate for a

move

Make a random
move in stand

selected

oes move violate
constraint?

No

s MOV better
than BOV?

No

Is MOV better
than current

LEVEL?

I

Yes

No

Best solution configuration

Reject move

No

Iteration
hreshold met?

Yes-{~ __ E_N_□_~)--◄>-----Yes

Figure 6-3: Flowchart of the Great Deluge Algorithm used by Saf eD

47

48

Only the Big Trees scenario required a problem-solving heuristic. The Grow Only

scenario had no decision variables; the landscape is left alone to grow without any

management actions. The computer code written for the GDA heuristic is embedded

within several functions of the overall SafeD model code. The entire code can be seen in

Appendix F. A rough description of the GDA implemented for the Big Trees scenario

follows:

A completely random solution is generated. A solution is defined

as the allocation of a stand prescription to each stand on the managed

landscape. The Big Trees scenario had 2,289,823 stands that were eligible

for management (353,491 acres). There were 19 different stand

prescriptions that could be assigned to any single stand (see stage one). A

random solution is generated by randomly assigning one of the 19

available prescriptions to each of the stands. Once that is completed the

solution is evaluated to ensure it is feasible - in other words, it does not

violate any constraint. The only constraint imposed for the Big Trees

scenario was a sub-watershed ERA threshold. The Saf eD model

calculates an ERA value for each of the 218 sub-watersheds in the

Applegate River Watershed. If any one of those sub-watersheds has an

ERA value higher than the allowed threshold value the entire random

solution is discarded and another generated. This process continues until a

feasible random solution is obtained for the starting point.

Once there is a valid initial solution the initial objective value

(OY) is calculated. For the Big Trees scenario the OY is the total sum of

all trees greater than or equal to 30" DBH on the managed landscape

across the entire planning horizon. This value is initially calculated by

looking at each stand, finding the appropriate treelist and summing the

number of eligible trees. After the initial OY is calculated two key

variables are set. First is the best objective value (BOY). Since the initial

OY is the only one found it is also set as the BOY. Next set is the

LEVEL. The LEVEL is the allowable value below (for a maximization

problem) which a new OV cannot drop. The initial OV, the BOV, and the

LEVEL are now set and the GDA algorithm is ready to enter into a

problem-solving iteration (looping) process.

The first step (or top) in the GDA loop is to make a "move". A

move constitutes some change or deviation in the state of the solution. I

chose to make neighborhood moves by randomly selecting one of the

stands in the current solution and assigning a new random stand

prescription allocation. The only restrictions in place for the move is that I

can't pick the same stand twice in a row and I can't reassign the same

prescription (with over 2 million stands to randomly chose from the first

restriction was really unnecessary). The solution in place before making a

move is always stored in case the move proves to violate any constraints.

After the move is made the move solution is evaluated to see if does

violate the ERA threshold constraint. If it does violate the ERA threshold

constraint, the move is rejected, the stored pre-move solution is returned,

and the next loop is executed. If the move does not violate the ERA

threshold constraint the move objective value (MOV) is calculated using

the objective function described earlier.

At this point the GDA has changed the solution from its previous

state and the critical question is to decide whether or not to accept the

move and continue the looping process or reject the move and continue the

looping process. First the GDA asks, "Is the MOV better than the current

BOV (better meaning a higher number) ?" If so, the current configuration

of the solution is saved, the BOV is reset to the value of MOV, and the

LEVEL is increased by the rain parameter. The rain parameter is a

constant value determined through a trial-and-error process (see Dueck,

1993). A check is made to see if the GDA looping threshold has been

reached. The looping threshold is another value determined through a

trial-and-error process. If so, the GDA ends; if not, the GDA returns to

the top of the loop and picks another random stand to evaluate for a move.

49

However, if the MOV is not better than the current BOV the GDA asks,

"Is the MOV better than the current LEVEL value?". If so, the current

configuration of the solution is saved and the LEVEL is increased by the

rain parameter. Notice that the BOV is not reset this time. A check is

made to see if the GDA looping threshold has been reached. If so, the

GDA ends; if not, the GDA returns to the top of the loop. Lastly, if the

MOV was not better than the current LEVEL value, the move is rejected,

the stored pre-move solution is returned, and the GDA checks the looping

threshold and continues as described above.

50

This marks the end of the three main phases of stage two. Once the GDA is

completed and a solution is found the SafeD model needs to run through some internal C

code to account for the solution variables found. This is a programming process and

basically entails the storing of specific values for each stand within the computer's

memory. Most of this data is related to information obtained from treelist which are

stored on the computer's hard drive. Storing the information in memory allows the

SafeD model to access the data faster and thus run faster in stages three and four.

Stage Three

Introduction

Stage three begins the movement from period to period for each period in the

planning horizon. The Applegate Project was originally designed to be a 100-year

planning horizon with twenty 5-year periods. Due to computer processing time

limitations, this was later reduced to a 40-year planning horizon with eight 5-year

periods. The programming implementation permits an unlimited number of 5-year

periods - as long as certain stand and parameter data are available. Stage three is the core

of the simulation part of the SafeD model. There are five main parts to stage three with

many components to each part:

51

1. Determine weather
2. Adjust fuel loads
3. Apply insect disturbance
4. Apply fire disturbance
5. Hazard analysis

Before I begin the discussion on the five parts of stage three I need to clarify some

details about how the SafeD model stores and handles data for the landscape. The

concepts I describe next are important for understanding the processes that occur in stage

three. The words cell and pixel are often used interchangeably - they refer to the same

thing. A structure which can be visualized by a series of "cells" or "pixels" in row and

column format is called either a grid- or raster-based structure, as seen in Figure 6-4.

Cell or Pixel

Figure 6-4: Example of a grid or raster structure

Each cell (or pixel) has the same dimensions (length and width). A landscape, such

as the Applegate Watershed, can be broken up into cells by superimposing this grid. I

have already discussed that the stands for the Applegate Project are 25 m. x 25 m. pixels.

All of the landscape attributes stored within the SafeD model originates from data that is

raster-based. I am using the term landscape attribute to refer to any attribute, either

assigned or calculated, for each individual stand (or pixel in this case). Every cell for the

Applegate Watershed has landscape attribute information stored in the SafeD model.

Some of the landscape attributes do not change over the planning horizon (slope, aspect,

elevation, PAG, etc.); and others change each simulation period (debris pools, fuel

models, basal area, etc.). A complete list of the landscape attributes used within the

SafeD model, a brief description of each, and the data source can be seen in Table 6-1.

52

Landscape attribute
Ei.;:

_,
!'."!\i',i

4~-~

Brief Descrip;tij~ Source*
name in SafeD

'''''·"•··•:•,•:•,•>·"•'·'' .,.,., ... , ... ·,.,.,·,,." .• ,,"."··•:•:•:•:•:/,:,:-:-:·:;c:,:::•::.:.:.·;..•:,,., ..•• - ''" ""'

Cellid Unique value to identify each cell GIS

Treelist Lookup value to associate with treclist data GIS

Elevation Stored in meters GIS

Aspect 0 - 360 degrees GIS

Slope Stored in percent GIS

Goal Lookup value to identify stand goal SafeD generated

Owner Code for ownership GIS

PAG Plant Association Group value GIS

Allocation Federal land allocation - n/a to private lands GIS

Sub-watershed Identification of 6th field sub-watersheds GIS

Hold Lookup value to identify stand goal SafeD generated

Buffer 0-1 value to identify federal lands in stream buffers GIS

Fire History 0-1 value to identify areas with know fire history GIS

Initial Vegetation Code indicating initial vegetation (l-13) GIS

Initial Structural Stage Code indicating initial structural stage (1-15) GIS

Duff Debris pool PREMO & SafeD

Litter Debris pool PREMO & SafeD

Class25 Debris pool PREMO & SafeD

Classl Debris pool PREMO & SafeD

Class3 Debris pool PREMO & SafeD

Class6 Debris pool PREMO & SafeD

Class12 Debris pool PREMO & SafcD

ClassOver 12 Debris pool PREMO & SafeD

Fuel Model Code to indicate fuel model SafeD generated

ERA Equivalent Roaded Acre value SafeD generated

Flame Height To store current periods flame height calculation FARSITE

Basal Stand basal area PREMO

Closure Stand canopy closure PREMO

CBD Stand crown bulk density PREMO

HLC Stand Height to Live Crown PREMO

Stand Height Stand Height PREMO

Big Trees Number of big trees (>= 30" DBH) in the stand PREMO

Vegcode Single code for hoth veg. class and structural stage PREMO

CF Harvest Cubic feet of harvest from the stand PREMO

Source*:
GIS - data originated in a GIS system through various processes.
SafeD generated - data was generated internally within the SafeD model.
PREMO & SafeD - combination of data generated within PREMO and modified by the SafeD model.
FARSITE - third party program that generates fire information.
PREMO - data originated through the growth and vield process in PREMO.

Table 6-1: Landscape attributes used by the SafeD model

53

Determine weather

Weather is a stochastic variable within the SafeD model. The science team chose

to use precipitation data obtained from a weather station in Medford, Oregon (iust outside

the Applegate Watershed to the east). The variation in precipitation was calculated from

this data and three weather patterns were categorized: Wet, Moderate, and Drought.

Within the drought-type pattern two levels exist: Mild and Severe. The weather pattern is

currently used for two purposes: 1) the insects and, 2) fire disturbances (the weather role

will be discussed in upcoming sections for these disturbances). Determining the weather

pattern for any given period was based on a probability matrix and a random number

generator.

The probability matrix for 5-year weather patterns in the Applegate Watershed is:

Wet
Moderate
Drought

10%
65%
25% (two levels of drought - see below)

A random number generator is used with the SafeD model. I will briefly describe

the process here because random numbers are used a few more times within the SafeD

model and I feel it is important to clarify how they work. The ideal behind probabilities

and random numbers is to generate a number between 0 and 1, which can correspond to

probability values of 0% to 100% (which if divided by 100 is Oto 1). I ask the C

language to generate a random number then compare that random number against the

probability matrix to determine the weather pattern. If it was determined to be a drought

period I would check what the weather pattern was during the previous period (which is

stored in memory). If the previous period was also a drought period the current period

was considered a severe drought; otherwise it was a mild drought. Only one severe

drought period was allowed per 100-years. If a severe drought already occurred and the

random number generator was calling for another one, I would cycle with new random

numbers until either a wet or moderate weather pattern was found.

54

Adjust fuel loads

One of the experimental ideas the science team wanted to try in the Applegate

Project was the calculation of fuel loads and the classification of each stand into fuel

models based on current tree]ist data and fuel loads during each simulation period. We

call this process "dynamic fuel modeling" to reflect the ideal that the fuel loads are

changing each period because of stochastic disturbances, tree growth, tree and snag

decay, and harvest which we cannot determine a priori. Science team members Agee

(1999) and Bahro (personal comm .. , various dates 1998-2000) developed the rules and

processes for our dynamic fuel modeling; I was responsible for implementing their rules

and processes into the SafeD model. To that end, I cannot discuss in detail the

background or particulars in the development of dynamic fuel modeling. However, I will

address what I implemented into the SafeD model. There are two components that I will

be discussing in this section. The first is the accumulation and decay of debris pools into

fuel loads. Second is the categorization of fuel loads into fuel models. It should be

noted that much of the work done by the Applegate Project science team for dynamic fuel

modeling was based on methodology from the Fire and Fuels Extension to the Forest

Vegetation Simulator (FVS) by Beukema et al. (1998).

Most biomass from above-ground sources can be collected into debris pools as that

material falls to the ground. Debris pools are diameter size categories for classification

of this material. The SafeD model tracks the amount of material falling into each debris

pool as well as account for decay of material already in the pools.

Initialization of debris pools for each stand really occurs once at the end of stage

two - before the SafeD model enters stage three. Initialization is not related to the

allocation of stand prescriptions; it is an independent process that happens regardless of

what management actions are decided upon. The science team chose to initialize the

debris pools based on the vegetation classification of each stand. Table 6-2 shows the

initial values for each debris pool in each vegetation category in tons/acre.

55

Debris pools (diameter size class in inches)

v e2etaU()!} Duff Litter 0 - .25" .25- I" I - 3" 3 -6" 6 - 12" > 12"

Barren

Water
Not needed

Shrub

Grass/Forbs

Red fir 30 .7 .7 2.6 3.6 5 4 5

Mixed conifer
5 2.5 .2 .8 l.2 1 1 1

< 3000'

White fir 30 .6 .8 2.7 2.7 4.5 5 7

Pine 5 2.5 .2 .8 l.2 1 1 1

Closed cone
5 2.6 .3 .3 .4 1 2 3

pine

Deciduous
2.3 1 .3 2.4 5 1 2 2

hardwood

Conifer
5 2.5 .2 .8 l.2 1 1 1

hardwood

Evergreen
3.7 1.8 .3 1.6 3.1 1 1.5 l.5

hardwood
Mixed conifer

10 1.4 .9 2.1 3.8 3 9.5 9.5 > 3000'

Table 6-2: Initial debris pool loadings (in tons/acre)

The science team then divided these debris pools into three fuel load categories: 1-

hour, IO-hour, and 100-hour fuels. Not all the pools were used to categorize the fuel

loads. Of the eight pools listed only four are needed to make the fuel loads:

• 1- hour =
• IO-hour =
• 100-hour =

Litter + 0 - .25"
.25 - l"
1 - 3"

These three fuel load categories along with topographic and vegetation data are

then used to assign a particular fuel model to each stand. A fuel model is a stylized and

simplified description of fuel for a mathematical fire behavior model. The properties that

56

define fuel models include load and surface-area-to-volume ratio for each class (live and

dead), fuel bed depth, and moisture of extinction (Anderson, 1982). Fuel model codes

are standardized within the fire modeling community such that a fuel model 8 means

something whether you are in the Pacific Northwest or Florida. Table 6-3 shows the fuel

model (FM) classification matrix used for the SafeD model:

IF Vegetation is Barren, Water, Shrub, Grass/forbs
Barren .. .
Water
Grass/Forbs .. .
Shrub

< 3000' •••
> 3000' •••

FM99
FM98
FM 1

FM4
FM 19

ELSE IF stand QMDBH < 5" or (stand QMDBH < 8.9" and canopy closure < 60%)
> 3000' .. FM 5
< 3000'

vegetation is Pine .. .
vegetation is Deciduous hardwood
others .. .

FM2
FM 17
FM6

ELSE IF vegetation is deciduous hardwood that has< 60% canopy closure or a stand
QMDBH of 5 - 8.9" and > 60% canopy closure . FM 6

ELSE IF 1-hour fuel load <= 1.5
10-hour < 1 FM 18
10-hour 1 - 4.5 FM 8
10-hour > 4.5 FM 11

ELSE IF 1-hour fuel load 1.5 - 2.5
10-hour < 1
10-hour 1 - 1.9

100-hour <= 1
others

10-hour 2 -6
10-hour > 6

ELSE

FM20

FM2
FM23
FM31
FM 32

IO-hour< 1 ... FM 9
10-hour 1 - 3

100-hour<=3.5 ... FM 16
others , ... FM 10

10-hour > 3 ... FM 12

Table 6-3: Fuel Model (FM) classification matrix

57

I have discussed two processes regarding dynamic fuel modeling: the initialization

of debris pools and classification into fuel loads for the initial vegetation on the landscape

(time O - start of the simulation - stage two); and the classification of fuel loads into fuel

models regardless of the period. This brings me back to the dynamic fuel modeling

processes that occur in stage three. There are basically three steps to the dynamic fuel

modeling process that occur at the beginning of every period. Those three steps are: 1)

decay debris pools, 2) add new contributions to debris pools, and 3) reclassify debris

pools into fuel loads and those fuel loads into new fuel models.

Decay rates for the debris pools were established by Agee (1999) and implemented

in the SafeD model as follows:

Duff and litter pools
► Every period (5-years), decay 2% of litter
► Decay 3% of duff for each year
► Take 16% of remaining litter and move it to duff

Remaining debris pools

Pool diameter size Rate
► 0 -.25" decay 12% per year
► .25- 1" decay 12% per year
► 1 - 3" decay 9% per year
► 3 - 6" decay 1.5% per year
► 6- 12" decay 1.5% per year
► > 12" decay 1.5% per year

At the start of a period the SafeD model goes to each of the stands and decays the

debris pools associated with the stand. This is done on a stand-by-stand basis. Once the

decay step is completed, new net contributions to the debris pools are added. Net

contributions to debris pools are a function of stand composition, structure, growth,

mortality, and harvest. This information is actually calculated inside the PREMO

program back in stage one as part of the prescription development. I will not address the

calculations of net contributions in this thesis because if falls outside the scope of work I

completed; I simply used the output data from PREMO (see Wedin, 1999). In essence,

the SafeD model goes through the entire landscape on a stand-by-stand basis and

58

determines which PREMO output data is needed for the stand. The SafeD model stores

the new net contributions for each stand in that period and now each stand has updated

debris pool information - decay and new contributions are accounted for. The final step

in the dynamic fuel modeling process is the recalculation of fuel loads based on the new

debris pools and the further classification into fuel models as previously described.

During each simulation period there are two types of episodic disturbances that the

SafeD model incorporates: insects and fire. The two components of stage three that I

have just discussed (determine weather and adjust fuel loads) must occur every period

before any type of episodic disturbance. Their function is to prepare and "update" the

landscape attributes stored within the SafeD model such that when an episodic

disturbance occurs the landscape attributes are current.

Apply insect disturbance

Another experimental idea the science team wished to try in the Applegate Project

was that of having a stochastic insect disturbance regime which is spatial in nature. The

rules for insect disturbance were based on expert advice and the intent was not to provide

a precise set of triggers and impacts, but to simulate expected losses over the long run.

Science team member Agee (1999) provided the research and rules for the insect

disturbances.

The SafeD model embeds episodic mortality from insects in stochastic drought­

related pulses. That is, only during drought periods is there episodic insect mortality.

The rules for insect disturbances have two components: a basal area threshold is met and

triggered; then a severity is applied. Three separate insect keys were developed:

Key
1) Douglas-fir
2) True fir
3) Pines

Example of insects
(Douglas-fir beetle, flatheaded borer)
(fir engraver)
(pine engraver, western and mountain pine beetle)

If a simulation period is assigned a wet or moderate weather pattern at the

beginning of stage three then there is no insect mortality and the SafeD model skips the

whole insect disturbance processes. Otherwise, both mild drought and severe drought

weather patterns will trigger an insect disturbance. If a drought-type period is

59

encountered the SafeD model goes through the landscape on a stand-by-stand basis and

determines if basal area thresholds are exceeded; if so, then severity (mortality) rules are

applied. The basal area thresholds are a function of the stand PAG and which of the three

insect keys is being evaluated (all three keys are evaluated - one at a time). Severity is

applied to the individual treelist associated with the stand being evaluated. The insect

disturbance rules for the three insect keys are shown in Appendix C.

Once the severity is applied to all the stands for each of the three insect keys the

SafeD model runs through the landscape and re-calculates new stand level data for each

of the stands hit by insects. Stand level data are single values for particular attributes

which describe the stand as a whole. For example, a stand may have hundreds of

individual trees, each having their own basal area; when pulled together as a stand those

individual basal areas are collapsed into a single basal area value. PREMO calculates

and outputs stand level data back in stage one (and the SafeD model reads and stores that

data in stage one as well), but the SafeD model needs to make new calculations for each

stand that encounters an episodic disturbance during the simulation periods. New stand

level data that are calculated include: basal area, canopy cover, vegetation classification,

structural stage, height, height to live crown, and crown bulk density. The particular

methods used to calculate these values will not be addressed in this thesis. The origin of

the equations used are embedded in the PREMO program (see Wedin, 1999).

Apply fire disturbance

The last episodic disturbance event that occurs every period is fire. Wildfire has

played a significant role on the vegetative development in the watershed. The intent of

the Applegate Project is to project past wildfire statistics into parameters that can be used

for future wpdfire simulations. Fire spread was accomplished using an external program

called F ARSITE (Finney, 1998). Science team members Agee and Bahro have provided

the fire expertise for the project (this includes compiling past wildfire statistics and

setting all the parameterization of data for input into FARSITE). The fire disturbance

portion of the SafeD model is significant. My role in terms of this thesis is the

preparation of data for input into Farsite and the execution of processes developed by the

science team. I will detail that information generated specifically by the SafeD model

60

and I will attempt to make brief discussions on the rest. Figure 6-5 shows a general flow

of the processes that occur within the SafeD model for the episodic fire disturbance:

Prepare
FARSITE inputs

LJ (landscape
attributes,

parameterization n
files, ignition

points)

Fire Disturbance Processes
Within the SafeD Model

Suspend Read and
Apply First

SafeD and ~ store ~
Order Fire

execute FARSITE
Effects

FARSITE
~ ~ Model

output
(FOFEM)

LJ

n

Figure 6-5: General flowchart of fire disturbance processes

Past Wildfire Statistics:

Recalculate
current stand

data

We have data on all wildfire activity since 1916 within the watershed boundaries.

We also have data for wildfires on state and BLM lands that surround the watershed since

1960. Lastly, we have data on wildfires in the Rogue River and Klamath National Forest

since 1960 and 1970 respectively (these two forests are in the proximity of the Applegate

Watershed). Statistics assembled by Agee (1999) on all the historical data shows

considerable variation in acres burned and number of fires, even when time periods and

areas are standardized (Table 6-4) The highest variation is in acres burned per 5-year

period, with lower variation in the number of fires per 5-year period.

Applegate
Watershed
Surrounding State
andBLM
Rogue River N.F'.

Klamath N.F.

Variation
in acres
burned by
5-yr
periods 1

l78x

15x

13x

67x

Variation
in number
of fires by
5-yr
periods 1

'
2

30x

2x

2.4x

Percent of
fires larger
than 10
acres

3.6

3.5

Percent
area burned
>10
acres/year

95

1 expressed as a ratio of the highest to lowest area burned in a 5-yr period
2 10-acre and larger fires only
3 expressed per 500,000 acres (approx. size of the Applegate Watershed)

Table 6-4: Historical fire statistics

61

Mean area
burned per
5-yr

"d3 peno •

2,158

3,499

485

24,357

Seven fire size classes were evaluated for further statistics. These seven classes

are:

A = 0 - 0.25 acres
B = 0.25 - 10 acres
C = 10-100 acres
D = 100- 300 acres
E = 300 - 1000 acres
F = 1000 - 3000 acres
G = > 3000 acres

Using these fire size classes the science team looked at the size distribution and the

area burned. Figures 6-6 and 6-7 show those results (note: not all the areas from Table

6-4 are included).

90
80

Size Distribution of Wildfires

□ Applegate

II State/BLM
70
60

m Rogue River N.F.

Percent of Fires
50
40
30
20
10

A B C D

Size Class

Figure 6-6: Size distribution of historical wildfires

Area Burned by Wildfire

40 ,~----~
35 ■ Applegate
3o State/BLM
25

Percent Area Burned 20
15
10
5
oL....a.!!!!!!g__,.IIIIIIL"!:.i....

A B C D

E

Size Class

Figure 6-7: Area burned distribution of historical wildfires

F G

E F G

The above information led to parameters which describe a "Base-Case Fire"

scenario for each 5-year period. The Base-Case Fire is an attempt to parameterize past

fire activity for describing the "best" scenario one could hope for in the future. In other

62

words, if simulations calculate fire statistics (overtime) that mimic the Base-Case Fire

scenario then this could be suggestive of a landscape that is encountering fire (and

effects) similar to the historical data. The Base-Case Fire can then be used as a

comparative against actual fire simulations within the SafeD model during the entire

planning horizon. Parameters derived from the Base-Case Fire were used by science

team members Agee and Bahro to calibrate input variables to the fire spread model

FARSITE.

Introduction to F ARSITE:

63

FARSITE (Fire Area Simulator) is a two-dimensional deterministic fire growth (or

spread) model developed by Mark Finney, now of the U.S. Forest Service Fire Science

Laboratory in Missoula, MT.. The Farsite model incorporates existing fire behavior

models of surface fire spread, crown fire spread, spotting, point-source fire acceleration,

and fuel moisture (Finney, 1998). A vector propagation technique for fire perimeter

expansion that controls for both space and time resolution of fire growth is built into the

FARSITE model. Vector fire perimeters (polygons) are produced at specified time

intervals. The vertices of these polygons contain information on the fire's spread rate and

intensity, which are interpolated to produce raster maps of fire behavior (Finney, 1998).

F ARSITE Inputs:

The version of FARSITE used for this project is a DOS-based version that the

SafeD model calls up. However, a number of spatial landscape attributes (in grid

structure), an ignition location file, and other parameterization files must be created and

ready for FARSITE to use each period. A list of significant input attributes and files is

seen below in Table 6-5 (this is not an exhaustive list of FARSITE inputs):

64

'"" , -¥-

Type of Input Responsible Source
rFuei"Model }Landscape attribute

•.

SafeD
•··

·•

iJgnilion Locations !: rtandscape .metric. (in vector format) SafeD) i·••.• . .. <: .·.

Date and Time Info
..

]?~t~meterization file •. SafoD
•. •. •• .

.: •. · .. <
Canopy Cover Landscape attribute PREMO
Crown Height Landscape attribute PREMO
Height to Live Crown Landscape attribute PREMO
Crown Bulk Density Landscape attribute PREMO
Elevation Landscape attribute Constant - GIS
Slope Landscape attribute Constant - GIS
Aspect Landscape attribute Constant - GIS
Weather Info Parameterization file Constant - science team
Wind Info Parameterization file Constant - science team

Table 6-5: List of major inputs to the FARSITE model

SafeD-Generated Inputs:

Only three items needed by FARSITE are generated specifically by the SafeD

model each period (Fuel model, Ignition Locations, and the Date and Time File). The

rest are either generated by PREMO or are constants developed through GIS or by the

science team. I will first discuss the three inputs which the SafeD model is specifically

responsible for.

Fuel Model

Fuel models provide the physical description of the surface fuel complex that is

used to determine surface fire behavior. Inherent to fuel models are loadings (weight) by

size class and dead or live categories, ratios of surface area to volume, and bulk depth

(Finney, 1998).

Ignition Locations

FARSITE is used only once per 5-year period. The challenge the science team

faced was to calibrate the past wildfire statistics into meaningful attributes that can be

used to parameterize F ARSITE inputs. In the case of ignition point locations a strategy

was developed to allow the simulation of 5-year's worth of fires within a single run of

•·

65

FARSITE. There are three components to this strategy: 1) determine how many fires

there will be during the 5-year period, 2) determine how long they will bum, and 3)

determine where the individual ignition points will be. The second component (how long

they bum) will be discussed later when I detail information on the Date and Time File.

The initial idea to determine how many fire ignition points there are per 5-year

period was to allow a range based on the weather pattern determined for that period

(Agee, 1999). That ideal was later superceded by having a single range of ignition points

regardless of the weather pattern (Bahro, personal comm., Oct. 1999). For my thesis

work the range was determined as 5 - 15 ignition points per 5-year period. The actual

number is selected by the SafeD model with a random number generator. It should be

noted that ignition points are x,y coordinates (for each point) that FARSITE uses as the

source of an individual fire. Within the SafeD model each cell (or stand or pixel) has an

x,y value associated with the center-point of the cell. When I refer to a "point" in this

discussion I am making an abstraction of a cell as a point represented by its center x,y

coordinates.

Once the number of ignition points is determined, the next step is to allocate those

ignition points on the landscape. A sequence of rules were developed to help guide the

selection of each ignition point. For each of then ignition points determined in a given

period all of the below rules must be checked before the ignition point is accepted. A

brief description of these rules is as follows:

1. A probability is assigned for the likelihood of an ignition point occurring in areas

with no previous fire history.

2. Ignition points can not be located in water.

3. Probabilities are assigned to the likelihood of ignition points occurring within

certain elevation bands as a function of the weather pattern.

4. Ignition points can not be located within one mile of landscape border.

1) A probability is assigned for the likelihood of an ignition point occurring in areas with
no previous fire history:

Table 6-1 at the beginning of the Stage Three section shows an input landscape

attribute called "fire history". The fire history attribute is a simple 0-1 variable (for each

66

cell) indicating whether or not we have data indicating the occurrence of previous fire

activity within the cell. That information stems from the Past Wildfire Statistics section

earlier. During the ignition point selecting process the fire history attribute is evaluated

to determine if there has been previous fire activity in the cell (value 1) or not (value 0).

If there has not been previous fire activity within the cell there is only a 60% chance that

the cell is allowed to be selected. A 60% chance was determined through a trial-and­

error process by the science team that produced a reasonable allocation of fire ignition

locations within and outside of "fire history" polygons. Random numbers are used to

compare against the given probability.

2) Ignition points can not be located in water:

A simple check is made to determine if the ignition point is being selected from

water on the landscape. Several input landscape attribute themes have information

regarding the presence or absence of water.

3) Probabilities are assigned to the likelihood of ignition points occurring within certain
elevation bands as a function of the weather pattern:

For each of the three main weather patterns (wet, moderate, drought) a probability

matrix is used to determine the likelihood of ignition point locations within certain

elevation bands (Bahro, personal comm., June 1999). Table 6-6 shows this matrix:

Weather
Probability

>= 3,000 feet 10%
1,500 - 3,000 feet 15%
0 - 1,500 feet 75%

>= 3,000 feet 15%
1,500 - 3,000 feet 35%
0 - 1,500 feet 50%

!DROUGHT
>= 3,000 feet 10%
1,500 - 3,000 feet 45%
0 - 1,500 feet 45%

Table 6-6: Ignition-Elevation probability matrix

The elevation at each potential ignition point is evaluated against this matrix to

determine if the point is acceptable. Once again random numbers are used to compare

against the given probability.

4) Ignition points can not be located within one mile of landscape border:

67

The final check for any potential ignition point is to ensure that the point is not

located within one linear mile of the landscape edge. This is to give room for the fire to

spread in any direction without immediately running off the landscape - where there is no

data available. The one mile buffer is a value I determined from trial and error. The

SafeD model allows for this distance to be modified.

Date and Time Information

The Date and Time file is a text file that sets some timing and resolution parameters

for FARSITE to use. Included in this file is information on:

1. Date and time of fire start and fire end
2. Timestep
3. Distance resolution
4. Perimeter resolution

68

1) Date and time of fire start and fire end:

The science team chose to use the number of ignition points and the burning

duration as the controllers in trying to mimic a Base-Case Fire. This is because these are

two user-inputs to the F ARSITE program. I have already discussed the strategy behind

the number of ignition points. The burning duration is the second controller which

specifies a starting date and time for the fires and a ending date and time. The date is

important as another stochastic element (see Weather and Wind Files sections later).

Agee (1999) calibrated the initial rules for determining how long fires would burn

as a function of the weather pattern assigned to the period. These rules were later

modified by science team member Bahro (personal comm., April, 1999) as shown in

Table 6-7.

Wet

Table 6-7: Fire duration times

2) Timestep:

Duration
24 hours
48 hours
96 hours

FARSITE uses the timestep and spread rate of the fire to compute the distance

traveled by fire at the vertices of the fire edge (recall that FARSITE uses a vector model

of fire growth) (Finney, 1998). The timestep can be viewed as the maximum amount of

time that landscape and environmental conditions are assumed constant so that fire

growth can be projected. A timestep of 4 hours was found to satisfy our need for speedy

computation without greatly affecting the precision or capabilities of FARSITE.

3) Distance resolution:

Distance resolution is the maximum horizontal spread distance allowed before new

information from the landscape is required. It is the resolution in the radial spread

direction. The distance resolution is also used by FARSITE to dynamically adjust the

timestep to achieve a specified level of spatial detail. For example, assume a hypothetical

69

fire in which the timestep is four hours and the distance resolution is 200 meters. If after

two hours the fire has burned in a radial distance of 201 meters then FARSITE will

automatically reset the current timestep instead of waiting for the original four hours to

complete. We used a distance resolution of 200 meters (eight 25 meter cells in a radial

distance).

4) Perimeter resolution:

Perimeter resolution is the maximum distance allowed between vertices of the fire

polygon (Finney, 1998). This value is related to the level of detail wanted to describe the

outer perimeter of fires. A larger perimeter resolution results in coarser fire polygons.

We used a perimeter resolution of 200 meters.

PREMO-Generated Inputs:

There are four landscape attributes needed by F ARSITE which are generated by

PREMO in stage one and stored for use during the simulation by SafeD: canopy cover,

crown height, height to live crown, and crown bulk density (Table 6-8). Because the

calculation of these attributes is done in PREMO I will not discuss how they are

generated (see Wedin, 1999).

Landscape Attribute:
Calculated in PREMO

Canopy Cover

Crown Height

Height to Live Crown

Crown Bulk Densit

70

Used to determine an average shading of the surface fuels that affects
fuel moisture calculations. It also helps determine the wind reduction
factor that decreased wind speed from the reference velocity of the input
stream (6.1 m ahove the vegetation) to a level that affects the surface
fire.
Affects the relative positioning of a logarithmic wind profile that is
extended above the terrain. Along with canopy cover, this influences
the wind reduction factor, the starting position of embers lofted by
torching trees, and the trajectory of embers descending through the wind
profile.
Used only with the surface fire intensity and foliar moisture content to
determine the threshold for transition to crown fire.
Used to determine the threshold for achieving active crown fire.

* Source: This is a modification of Table 1 found in Finney, 1998.

Table 6-8: PREMO-generated inputs to the F ARSITE model

GIS-Generated Inputs:

There are three landscape attributes which I call constant (they don't change) and

are generated through GIS processes before the simulation starts: elevation, slope, and

aspect (Table 6-9). They are stored within the SafeD model during stage one and used

whenever appropriate.

Landscape Attribute:
Constant GIS­

enerated
Elevation

Slope

As ect

Used for adiabatic adjustment of temperature and humidity from the
reference elevation in ut with the weather stream.
Used for computing direct effects on fire spread, and along with Aspect,
for determining the angle of incident solar radiation (along with latitude,
date, and time of day) and transforming spread rates and directions from
the surface to horizontal coordinates.
See slope.

* Source: This is a modification of Table 1 found in Finney, 1998.

Table 6-9: GIS-generated inputs to the F ARSITE model

Science Team Generated Inputs:

There are five parameterization files that are needed by F ARSITE and are created

prior to the start of a simulation by the science team. These five files are also constant

throughout the simulation although the possibility exists for them to be dynamically

changed during the simulation. All five files are simple ASCII text files which can be

created with any text/word processor.

Weather Information

71

The weather file consists of daily observations of minimum and maximum

temperature and humidity, and of precipitation at a specified elevation (example in Table

6-10). Science team member Bahro produced the weather file we used from weather data

collected within and around the Applegate Watershed. The dates were confined to a

range from August 15th to September 13th
. In theory FARSITE will accept a weather

(and wind file) with information for every day of the year. The science team felt that it

was important to restrict the weather and wind dates to the August-September timeframe

to help attain fires that mimic the Base Case Fire scenario (Agee, 1999). The SafeD

model does have a stochastic element built into the date selecting process. A random

number generator selects (for a single nm of FARSITE during a given simulation period)

the actual starting date (confined to the above timeframe). Additionally, three weather

files and three wind files were created; one for each of the three main weather patterns

(wet, moderate, drought). The weather and wind files used depends on the weather

pattern assigned to the simulation period.

The weather file data is used to generalize a diurnal weather pattern for a

designated portion of the landscape so that dead woody fuel moistures can be calculated

(Finney, 1998). Adiabatic adjustment from the input elevations to any cell on the

landscape determines the local temperature and humidity (Finney, 1998).

Hour
Month Day PPT AM PM

8 15 0 500 1300
8 16 0 400 1300
8 17 0 500 1300

Temperature
Min Max
51 65
53 67
56 57

Relative
Humidity

72

Max Min Elevation
88 28 3500
91 26 3500
82 25 3500

Table 6-10: Example of information found in a weather file

Wind Information

The wind file consists of observations of wind speed, wind direction, and cloud

cover (example in Table 6-11). As with the weather file, the wind file data is assumed to

apply unifom1ly to the landscape. Wind inputs are required to reflect "open" conditions

at 6.1 meters above the top of the vegetation (Finney, 1998). Wind speed is assumed to

be parallel to the terrain and for forested terrain the open wind speed is reduced locally by

the canopy cover landscape metric (Finney, 1998). Science team member Bahro

developed the wind file used in the simulation.

Month Day
8 15
8 15
8 16

Hour­
Minute

200
2200
400

Open Wind
Speed (mph)

2
7
7

I

I

Table 6-11: Example of information found in a wind file

F ARSITE Execution:

Wind
Direction

(degrees Az)

159
29
162

Cloud Cover
(percent)

0
0
0

I have discussed the fire spread model FARSITE and all the significant inputs to

run the model. FARSITE is an external DOS-based program that must be called up by

the SafeD model to run. That is accomplished by sending an "execution" statement to the

computer which temporarily suspends the SafeD model and starts the FARSITE model.

However, before that is initiated all the necessary landscape metrics, parameterization

files, and the ignition point locations must be created and in the format required by

FARSITE.

FARSITE has the capability to output a number of landscape raster files that

describe fire spread parameters. These output files include:

1. Time of arrival
2. Fireline intensity
3. Flame length
4. Rate of spread
5. Heat per unit area
6. Crown - No crown
7. Spread direction

73

Of these seven outputs only the flamelength output is utilized by the SafeD model.

The flamelength is used to apply specific mortality rates to the individual treelist

associated with stands affected by fire. The other six outputs describe other

characteristics associated with a fire and they are being considered for inclusion in future

work of the SafeD model (they may be helpful in the parameterization of future inputs).

First Order Fire Effects Model:

The First Order Fire Effects Model (FOFEM) is a model that quantifies the djrect

or immediate consequences of fire (Reinhardt et al., 1997). These consequences include:

tree mortality, fuel consumption, mineral soil exposure, and smoke. The science team

chose to use the FOFEM to quantify tree mortality as a result of flamelength.

FOFEM mortality tables were developed that describe a mortality rate for specific

species with specific diameters given a specific flamelength. Those tables can be seen in

Appendix D. This information is related to the treelist associated with any stand at the

time a fire occurs on it. The process works like this:

1. A fire occurs during a simulation period. F ARSITE outputs a flamelength grid

specifying the actual flamelength associated with those cells in which fire

occurred.

2. That information is read into the SafeD model which in turn identifies which

treelist is associated with each cell affected by fire. Those treelists are "gathered"

up to have FOFEM applied to them. A treelist will typically have multiple

species of trees associated with it. Each species has different fire mortality rates

associated with it

3. Once #2 above is determined the SafeD model goes through each individual

record in the treelist and applies a specific mortality rate as a function of the

species, diameter, and flamelength (as seen in Appendix D).

74

4. The mortality records calculated are appended to the end of the treelist and given

a code to indicate the record is now a snag.

Recalculate Current Stand Data:

Once the FOFEM effects are applied to all the stands affected by fire during the

simulation period the SafeD model runs through the landscape and re-calculates new

stand level data for each of those stands. This is the same process as described at the end

of the Apply Insect Disturbance section.

This ends the processes that occur in stage three of the SafeD modeling strategy.

The science team developed rules to include a wind-throw episodic disturbance but I

have not included that into the SafeD model at this time. Wind-throw generally occurs in

the higher elevations and the mortality is relatively insignificant compared to insects and

fire. Future work on the Safe model could include wind-throw disturbance.

Hazard Analysis

The SafeD model incorporates two hazard analyses - insect hazard and flame

hazard. However, at this time the hazard analyses are not used for any processes or

evaluations that occur within the SafeD model. They were an experimental idea for the

project to which significant time was devoted to developing code to accomplish them.

The analyses are done at specific times during stage three and the outputs are used for

mapping purposes only. Appendix E details the hazard analysis processes. Future work

on the SafeD model should include looking at the hazard analysis during each period and

adjusting activities to mitigate areas that are at high risk.

Stage Four

Stage four is the "adjustment stage". The flowchart seen back in Figure 6-1 lists

the three main components of stage four as:

75

1. Use PREMO to develop new prescriptions for all stands affected by disturbances

in stage three.

2. Adjust activities on the landscape to account for effects of disturbances in stage

three.

3. Return to stage three for the next period until end of planning horizon.

The original idea behind stage four was to track all the stands that were affected by

episodic disturbances during the period (either insect and/or fire) and track which 6th
-

field sub-watershed those stands were in. Then PREMO would generate a new array of

prescriptions for each effected. Landscape goals, at the sub-watershed level, would be

developed (or given) for which a new heuristic would be used to chose the allocation of

prescriptions to the effected stands. However, time did not allow me to implement this

strategy into the SafeD model.

Stage four has been simplified to the following steps:

1. Determine which stands were hit by either insects, fire, or both.

2. Let PREMO generate a new prescription for each stand that reflects the current

prescription already assigned to the stand (i.e., it has the same stand goal and

timing-choice assignment as discussed in the Stage One section).

3. Store the new prescription information for each stand and return to the beginning

of stage three for the next period.

The modified strategy for stage four is a simple "prescription in - prescription out".

Any stand on the landscape hit by an episodic disturbance during the period is tracked.

At the end of the period all the stands hit are evaluated to find the number of new unique

stand prescriptions that need to be re-generated. The variables that describe a new unique

stand prescription are: the current stand prescription; which insects affected the stand, if

any; and the flame length associated with the fire that hit the stand, if any. All three of

76

these variables must be identical for separate stands to receive an identical new

prescription. PREMO is then used to generate a single prescription for each unique stand

combination that has the same stand prescription allocation and timing-choice assigned

prior to the disturbance.

Once the period representing the end of the planning horizon has been reached the

simulation component of the SafeD model is complete. The SafeD model will calculate

landscape variables such as acres per vegetation and structural stage class, how many

acres were effected by disturbances in each period, the level of harvest, and a few others

that will be discussed in the Sample Application section.

The SafeD Software Program

The SafeD model was written in the C and C++ language. Appendix F is a print­

out of the full code used for this thesis. The over 12,000 lines of code are written in a

hierarchical structure that starts from a function called Main. The Main function is the

controller function which calls up other controlling functions that are specific to the tasks

needed. I started the coding process in November 1998 and finished in January 2000.

The code is a DOS-Windows based program with no user interface at this time. Any

modifications or changes to variables must be accomplished within the un-compiled code

and then recompiled before executing the program.

77

SAMPLE APPLICATION

The results I will discuss are an example of an application of the SafeD model for

the Applegate River Watershed. The purpose of this example is two-fold:

1. To exercise the SafeD model to see how it works.
2. To begin to understand the relationships modeled for the Applegate River

Watershed.

Understanding these two purposes is very important to understanding the results

found in this section. In the Literature Review I discussed the limitations of other

landscape models to address the goals set for the Applegate Project. This led to the idea

of developing a hybrid optimization/simulation model (i.e. the SafeD model). But the

processes and steps to build such a model were not in place - the science team needed to

develop them as the model itself was developed. In the end there was an amount of

uncertainty as to whether or not the SafeD model would function as designed. In other

words, could the model do what it was designed to do? This sample application will

demonstrate how the SafeD model functions.

The second purpose of this example is to begin to understand the relationships

modeled. Those relationships, for example, may pertain to the growth and yield

functions, the episodic disturbances, or the optimization process. To understand these

relationships there must be an application such as the example I will discuss in this

section.

I will use the term "simulation run" to express the notion of executing the SafeD

model from start to finish. I will also frequently use the word "cell" to reference a stand

in the discussion on landscape optimization.

One of the Desirable Model Characteristics shown in Table 2-1 is the ability for a

model to have repeated simulations to assess variability. Repeated simulations are

appropriate if there are some stochastic or probabilistic elements to the model. The

episodic disturbances in the SafeD model are driven by stochastic weather patterns.

Also, the FARSITE fire spread model has a stochastic element that determines the

torching behavior of fires. The SafeD model has the capability to produce "repeat

simulations" whereby non-stochastic elements can be re-used by the model for n

78

simulations - and allow the stochastic elements to change. The resulting data can then be

used to assess variability. The results I wi11 discuss in this thesis are the product of a

single "typical" run of the SafeD model. I actually made five simulation runs of both the

Grow Only and Big Trees scenario. However, this was in part a testing process. I needed

to ensure that the model itself worked as expected. The science team as a whole is

responsible for assessing the variability of the outputs and, as I have discussed, the

science team has not had that opportunity.

Prescription Generation (stage one)

The initial landscape on the Applegate Watershed is broken into 133 unique stand

types based on vegetation classification, structural stage classification, and area type (see

discussion in Stage One of The SafeD Model). These 133 unique stand types exist

regardless if the model is run for the Grow Only or Big Trees landscape goal. It takes

PREMO 37 minutes to generate 19 prescriptions for each of the 133 unique stands. A

total of 2,527 prescription files are generated and stored in this time.

Initial runs of PREMO (using a variety of prescription choices) showed stand basal

areas that were much higher than expected. I tried to determine why that was happening

but was unsuccessful. It is likely that there was not enough periodic mortality occurring

within PREMO. Yet this was consistent with a strategy the science team was trying to

accomplish in testing whether or not stand mortality could be better represented by

episodic disturbance events. Without the episodic mortality occurring (in the SafeD

model) the periodic mortality (in PREMO) is expected to be somewhat low. However,

the cause-and-effect links have not all been determined and I was skeptical of leaving

such high stand basal areas. To compensate I increased the periodic mortality rate inside

PREMO.

The mortality increase I specified in PREMO greatly affected the number of big

trees. The mortality functions I used selects (i.e. kills) trees in a descending order of tree

qiameter - starting with the tallest tree in a treelist. 67% of the mortality from the

PREMO function I used comes from trees greater than 20" DBH and the remaining

mortality occurs in trees less than 20" but greater than 8" DBH. This did have some

79

desirable results (stand basal areas were reduced to a more expected level) but the effect

on the number of big trees was greater than desired.

Landscape Optimization (stage two)

The Modeled Landscape

I described earlier the idea of the "modeled" or "eligible" landscape in regards to

the two scenarios demonstrated in this thesis. This modeled landscape is rea11y a function

of how I chose to store, track, and count information regarding the scenario being

modeled. For the Grow Only scenario the Red Buttes Wilderness and all non-forested

areas are the only areas not modeled. There were a total of 2,637,289 cells that were

modeled (407,131 acres). The modeled landscape for the Big Trees scenario was

developed using different rules (see discussion in Stage Two of The SafeD Model). The

result was 2,289,823 eligible cells for 353,491 acres. For the analysis of the Big Trees

scenario I could have chosen to track information for those acres that were included in

the Grow Only scenario but not the Big Trees scenario (407,131 - 353,491 = 53,640

acres). This capability was not programmed into the SafeD model but should be included

in future work.

The Great Deluge Algorithm (GDA)

The GDA was used only for the Big Trees scenario. The problem was solved ten

times during the development process. The rain amount, the looping threshold, and other

move strategies were tried during this process with similar results. I used a single run of

the GDA as the basis for the remaining simulation work. Note that the remaining

discussion on the GDA is based on this single run (again, which was similar to the

previous 10 developmental runs).

The GDA found a solution for the Big Trees scenario in 8 hours. A rain amount of

0.001 was found to be effective during the GDA development. A looping threshold of

29,767,699 feasible moves was set through a trial-and-error process. Feasible means that

the move does not violate any constraint; it may or may not be a better move. This works

out to a potential for each eligible cell to move 13 times. In terms of computer

processing time there are an average of 1,033 moves evaluated every second.

80

The solution found by the GDA for the Big Trees scenario is spatially and

temporally feasible with regards to the big trees goal and ERA constraint. However, I

cannot guarantee any level of optimality for the solution found. Several factors stand in

the way of obtaining and/or measuring the success of the GDA:

1. A lack of independent solutions.

2. Recognition that the GDA parameters need more calibration.

3. Uncertainty that Objective Function is sufficient for the problem size.

4. Uncertainty with input stand data.

A lack of independent solutions:

I ran and documented only one solution of the GDA for this thesis. Statistical

inference methods which can be used to validate heuristic solutions require multiple

solutions. Because the landscape optimization portion of the SafeD model is only one

component of the overall SafeD model I chose not to spend additional time in obtaining

multiple solutions. Future work on the SafeD model should include processes to obtain

multiple solutions and use statistical inference to describe the optimality of the solution.

Recognition that the GDA parameters need more calibration:

The rain amount, looping threshold, and move strategy I used for the GDA were

satisfactory but not necessarily the best. At the end of the 8-hour run the GDA was still

occasionally finding improving solutions. I noticed the same phenomenon during the

developmental runs. This could indicate that I need to increase the looping threshold

(which determines when the GDA will stop). I did try varying the rain amount and

varying the move strategies during the developmental runs but saw no significant

improvement. The cause-and-effect linkages between all the parameters are difficult to

interpret so I would anticipate that the searching strategies could be improved.

81

Uncertainty that Obiective Function is sufficient for the problem size:

The formulation of the Objective Function may not be sensitive enough to measure

significant changes in the Objective Value (OV) as the result of a move on the landscape.

The OV is a straight calculation of the number of big trees across the managed landscape

during all time periods. A move constitutes changing the prescription allocation of one

stand. To evaluate a move the Objective Function subtracts out the number of big trees

associated with the pre-move prescription for the stand and adds in the new big trees for

the new prescription. Because the stands are so small (25 m. x 25 m. = 0.15 acres) the

number of big trees in each stand is very small as well. However, the number of big trees

across the landscape is very large. It is possible that the ODA is continuously accepting

inferior moves because making any move changes the OV so minutely (either positively

or negatively) that it is always above the ODA threshold LEVEL for acceptance. This

could also be a precision problem in that the number of decimal places used in the

Objective Function is insufficient. There is another way to illustrate this problem. There

are 2,289,823 stands in the solution with each having 19 potential prescriptions

allocations. I am taking one stand and changing it to one new prescription. I see this

with an analogy of dropping one drop of oil in a swimming pool and asking "can you

detect the oil?".

Uncertainty with input stand data:

For the Big Trees scenario the ODA required data from PREMO regarding the

number of big trees associated with all the prescriptions. I have already discussed that

the big trees data from PREMO is questionable. The way in which the data is biased will

influence the ODA results. If all the prescriptions are equally biased then perhaps the

relative proportion of big trees with the current data is good enough to use. It is more

likely that some prescriptions will have a far greater number of big trees and some

prescriptions will have far less than the prescriptions I used for this simulation. Without

further investigation into the PREMO calibration, conclusions should be seen as

tentative.

ERA Thresholds

There were no ERA thresholds placed on the Grow Only scenario. As mentioned

in the ERA discussion (in Stage Two of The SafeD Model), ERA values account for

vegetation alteration that could affect soil erosion and/or peak flows caused by

management activities and fire - and there are no management activities in the Grow

Only scenario.

82

For the Big Trees scenario various ERA thresholds were tried. During the

development process I tried two strategies: 1) keep a constant ERA threshold for all sub­

watersheds over all time periods, and 2) have a ERA threshold vary with each period but

applied equally to all sub-watersheds. There was no guideline predicating which strategy

I should use so for the final simulation run I chose the latter strategy. My decision was

based on the fact that I felt this strategy better represented the idea of allowing more

activity to occur in the earlier periods than in the latter periods. Given the current

conditions of the watershed (overstocked, high densities), heavier activities may need to

occur in the earlier periods to reduce current fire hazards and to achieve the big trees

stand goal.

The ERA threshold values I used were based on trial-and-error. I used ERA values

from the SNEP project (SNEP, 1996) and Carlson and Christiansen (1993) to establish a

rough starting point. During the development of the GDA I would lower the ERA

threshold values to find the lowest threshold values (per period) that allowed the GDA to

find solutions. Once the GDA started having a difficult time finding solutions with a set

of ERA thresholds I stopped lowering the values (Table 7-1). The solution found does

not violate the ERA threshold in any period for any sub-watershed

83

ERA Threshold (for
each sub-watershed)

Period 1 0.12
Period 2 0.12
Period 3 0.12
Period 4 0.12
Period 5 0.12
Period 6 0.10
Period 7 0.09
Period 8 0.09

Table 7-1: ERA thresholds used for the Big Trees scenario

Prescription Allocation

This section describes the allocation of stand prescription choices during stage two

of the simulation process. The Grow Only scenario had no management choices. The

Big Trees scenario tried to allocate prescriptions across the landscape to maximize the

number of big trees (>= 30" DBH) over the entire planning horizon on those stands

eligible for management. Recall from the discussion in Stage One that there are 19

prescription choices for each stand:

1. Reduce fire risk
2. Reduce insect risk
3. Enhance fish habitat
4. Enhance wildlife habitat - complex structure
5. Enhance wildlife habitat - simple structure
6. Maximize PNV
7. Reduce fire and insect risk, and maximize PNV
8. Enhance fish and wildlife (complex) habitat, and maximize PNV
9. All goals with emphasis on maximize PNV
10. Grow only
11 - 19. Same as first nine except harvest not allowed until 3rd period

84

The GDA has the ability to implicitly consider a large number of prescription

allocation combinations across the managed landscape; limited by the looping threshold.

The Big Trees scenario demonstrated in this thesis consists of over 2.2 million stands

(353,491 acres) with 19 prescription choices for each stand. The number of unique

prescription combinations that are possible to allocate can be expressed as: XY

where:
X = the number of prescription choices (19)
Y = the number of unique stands (2,289,823)

The GDA allocated the prescriptions as seen in Figure 7-1 (prescriptions 11-19 are

grouped with its corresponding 1-9 value):

a, 60,000 -+------

~
(.)

<C

40,000 -+-----

20,000

0
Reduce fire Reduce Enhance Enhance Enhance Maximize Reduce fire Enhance All goals Grow only Non-Forest

risk insect risk fish habitat wildlife wildlife PNV and insect 1ish and with
habitat - habitat - risk. and wildlife emphasis
complex simple maximize (complex) on

PNV habitat, maximize
and PNV

maximize
PNV

Figure 7-1: Prescription allocation for the Big Trees scenario

85

There was an almost even allocation of prescriptions 1 through 9 across the

landscape. The grow only prescription allocation is larger because it includes acreage for

those forested areas that were not in the eligible landscape (e.g. the Red Buttes

Wilderness). The non-forest acreage (71,552) remains constant for either scenario.

There are two possibilities which may explain the results demonstrated. First, the

method which I used to track and graph the prescriptions combined two equivalent

prescriptions which differed only in their timing choice. For example, the "reduce fire

risk" prescription shown in Figure 7-1 is actually a combination of the acres associated

with a reduce fire risk - timing choice O (harvest allowed starting immediately) with the

reduce fire risk- timing choice 3 (harvest allowed starting in 3 periods). It may be that

by breaking and tracking the prescriptions and their timing choice separately (for each of

the stand goals) that a more informative reflection of the allocation can be seen.

Secondly, the apparent even allocation of prescriptions may be a product of the

randomization processes that occurred within the GDA. An initial feasible random

solution is generated by the computer at the start of the GDA. There are no constraints

on the randomness. The computer language used to code the SafeD model (C and C++)

bases its random number generator on a even-distribution. Given that, one would expect

every stand prescription to be equally represented in the initial random solution. The

objective of the GDA was to search the "neighborhood" of this initial solution. The GDA

accomplished this searching by randomly changing the prescription allocation of a single

stand (called a "move"). The GDA process I used made only 29,767,699 moves. On

average this allowed each stand in the solution to be moved 13 times. I cannot assure that

happened. It may be that a great number of stands were never evaluated for a move. Of

the 29 million moves that were made the new prescriptions evaluated were still based on

a even-distribution random number generator.

The two possibilities just discussed and the uncertainties associated with the GDA

make interpretation of the prescription allocation difficult. Visual examination of the

prescription allocation revealed no obvious spatial correlation.

86

Number of Big Trees

The number of big trees per period was calculated for both scenarios before and

after the actual simulation part of the model. The before-simulation calculation

represents the big trees that are anticipated on the landscape given no episodic

disturbances (Table 7-2). This value was calculated in the Objective Function and is the

optimized value from the optimization part of the SafeD model in stage two. The after­

simulation calculation represents the actual big trees found on the landscape after all

episodic disturbances (in stage three) are accounted for (Table 7-3).

Grow Only Scenario Big Trees Scenario
Total Per-Acre Total Per-Acre

Period 1 1,244,286 "3.06 •• 1,078,513 3.05
Period 2 726,171 1.78 871,672 2.47
Period 3 415,453 1.02 768,810 2.17
Period 4 252,352 0.62 511,887 1.45
Period 5 176,376 0.43 317,953 0.90
Period 6 123,648 0.30 284,984 0.81
Period 7 95,577 0.23 253,853 0.72
Period 8 84,382 0.21 244,375 0.69

Table 7-2: Number of big trees before-simulation

Grow Only Scenario Big Trees Scenario
Total Per-Acre Total Per-Acre

Period 1 1,244,286 3.06 1,078,513 3.05
Period 2 726,612 1.78 871,587 2.47
Period 3 416,374 1.02 768,885 2.18
Period 4 235,916 0.58 498,023 1.41
Period 5 156,999 0.39 269,517 0.76
Period 6 110,320 0.27 273,074 0.77
Period 7 85,964 0.21 221,834 0.63
Period 8 76,564 i 0.19 183,562 0.52

Table 7-3: Number of big trees after-simulation

87

The Grow Only scenario did not actively manage for big trees but the information

is useful as a comparison. The values shown are the total number of big trees, per period,

within the modeled landscape only. The modeled landscape acreages are different for the

two scenarios (see earlier discussion in The Modeled Landscape section) so the values

are normalized to a per-acre value. Values for each period are calculated after growth for

the period but before the occurrence of any episodic disturbance. Therefore the values in

period 1 do not change for the before and after-simulation calculations.

fu period 1 the number of big trees per-acre is nearly identical for the two

scenarios. This would make sense because at period 1 there has been only 5-years of

growth and the two scenarios are fairly similar in their modeled landscape. For the

remaining periods the Big Trees scenario has a greater number of big trees per-acre than

the Grow Only scenario. The main difference is the Big Trees scenario allocated

prescriptions across the landscape that include timber harvesting and the Grow Only

scenario did not. Without greater evaluation of the cause-and-effects of all the processes

within the SafeD model I think a simple correlation can be made in regard to timber

harvesting and the number of big trees: timber harvesting (as implemented within the

PREMO prescriptions) increases the number of big trees because the growing space is

allocated to fewer trees. PREMO does have restrictions on the level of harvest and rules

regarding the silvicultural methods used (e.g., whether the harvest comes from "below"

or "above"; and which species) (see Wedin, 1999).

The notion that timber harvest increases the number of big trees is not unusual.

Assuming that a harvest is not a clear-cut (clear-cuts were not allowed by PREMO) then

the stand will experience an "opening-up" effect. In general this allows for greater

diameter growth of the residual stand. This is in contrast to an young, unmanaged stand

(i.e. grow only) where the stand components may be forced to compete in a vertical

nature because there isn't enough room to grow in a horizontal nature. This tends to lead

to less diameter growth.

The big trees results illustrate the PREMO mis-calibration that I discussed earlier.

The number of big trees drops from over 1.2 million to just over 84,000 in the before­

simulation, Grow Only scenario. This is not expected. I would expect that given an un­

managed landscape the number of big trees would increase. However, as I already

mentioned, I believe I adjusted the PREMO mortality function to such a degree that too

many big trees died. An examination of all the big trees results show a substantial

decrease in the number of big trees over the 40-year planning horizon. However,

relatively speaking, the Big Trees scenario did seem to produce a greater number of big

trees per-acre in both the before- and after-simulation analysis.

Harvest Levels

88

The Big Trees scenario does allow timber harvest to occur. Timber harvesting is

not the goal of the Big Trees scenario - rather timber harvesting occurs as a by-product of

the landscape optimization which is driven by the landscape goal to produce big trees

across the landscape. The Grow Only scenario precludes timber harvest on the modeled

landscape. This scenario was developed to serve as a baseline in comparing what

happens to a landscape in which management activities are allowed to take place versus a

landscape that is left unmanaged.

All of the prescriptions developed by PREMO in stage one use timber harvesting as

an activity to achieve their respective stand goals (except for the grow only stand

prescription) (Wedin, 1999). Therefore, for the Big Trees scenario, all of the

prescriptions selected (described above in the Prescription Allocation section) have

harvest levels associated with them. Those levels are tracked by the SafeD model

(Figures 7-2 and 7-3). As with the big trees results there are two occasions when I

evaluate the harvest levels: 1) before-simulation, and 2) after-simulation. The before­

simulation values represent the predicted level of harvest given no episodic disturbances.

The after-simulation values are the levels after episodic disturbances occurred on the

landscape and after management activities were adjusted to account for the effects of

those disturbances.

3.00E+08 -r---------------------------,

2.50E+08 -+--------

i u. 2.00E+08 -+------
u
:c
~

~
w 1.50E+08
>
Q)
..J ..
(I)
Q)

1.00E+0B >
lii ::c

5.00E+07

0.00E+00

2 3 4 5

Period

■ Harvest On Non­
Federal Lands

□ Harvest On Federal
Lands

6 7 8

Figure 7-2: Before-simulation harvest levels in the Big Trees scenario

3.00E+0B ~-----------------------------.

2.50E+08 +-----

! 2.00E+0B -+--------
u
:a
~

~

1 1.50E+08

..J ..
(I)
Q) 1.00E+0B i::
m
::c

5.00E+07

0.00E+00

2 3 4

■ Harvest On Non-Federal
Lands

□ Harvest On Federal Lands

5 6 7 8

Period

89

------ _J

Figure 7-3: After-simulation harvest levels in the Big Trees scenario

90

The before-simulation results (Figure 7-2) show a significant harvest increase in

period 4. This could probably be attributed to the prescription timing choices. Each

prescription generated by PREMO in stage one has two timing choices for harvest

activities: 1) harvest could occur immediately in period 1, or 2) harvest is not allowed for

an additional 3 periods (i.e., period 4). The SafeD model currently does not track the

prescription allocation by these two timing choices so I cannot determine the effect that

the timing choice is having on the harvest levels.

The after-simulation result (i.e., episodic disturbance occurred) shows a rather

different picture in terms of harvest levels. To understand something of what may be

going on I must first restate that the only difference between the before- and after­

simulation is that episodic disturbances and their effects have occurred. The two episodic

disturbances included in the SafeD model are fire and insects. Fire occurs every period

regardless of the weather pattern and insects occur only during periods with a drought­

type weather pattern. As I will discuss in the results of the landscape simulation (stage

three) there is a mild drought in period 3 and a severe drought in period 4. Any

differences that are seen between the before- and after-simulation harvest level results are

related to effects and adjustments caused by these episodic disturbances.

The before- and after-simulation harvest level values for periods 1, 2, and 3 will

reflect only the fire disturbance. Episodic insect disturbance did occur in period 3 but

harvest levels are calculated from PREMO after growth (for the period) and before any

episodic disturbance. Therefore, the effects of any episodic disturbance in a given period

will not be displayed until the following period. The fires encountered in periods 1, 2,

and 3 were insignificant in size and this is reflected in the relatively unchanged before­

and after-simulation harvest levels.

The after-simulation period 4 harvest level is significantly less than the before­

simulation value. The before-simulation harvest level for period 4 is roughly 275 million

cubic feet (MMCF). The after-simulation harvest level for period 4 drops to only 80

MMCF - a decrease of 195 MMCF. Recall that values displayed for period 4 reflect

episodic disturbances that occurred in period 3. It is the occurrence of the first episodic

insect disturbance event in period 3 that contributes to this dramatic decrease in harvest

91

levels. A severe drought occurs in period 4 and again a significant decrease in harvest

levels are seen in period 5. There is no accounting for salvage harvest that occurs after an

episodic disturbance. If there were the after-simulation harvest levels would be higher.

The total acres affected by insects is so high (see tables in the following Landscape

Simulation section), especially compared to the acres affected by fire, that it leaves little

doubt about the cause-and-effect relationship between episodic insect disturbance and

harvest levels in the Big Trees scenario: mortality caused by insect disturbance is going

to greatly reduce harvest levels. Without accounting for episodic insect disturbance

within the watershed any projections of harvest levels may be incorrect. Keep in mind

that this is only one landscape goal evaluation (Big Trees scenario) and that other

landscape scenarios may be developed which have alternative conclusions.

Landscape Simulation (stage three)

The simulation component of the SafeD model begins in stage three of the overall

modeling strategy. Once a solution for a particular scenario is found in stage two that

solution is stored and available for re-use in subsequent simulation runs.

To make a fair comparison of the results between the two scenarios all the

stochastic elements (that SafeD generates) were held constant for each scenario. Those

elements include:

1. The weather (influences insect and fire disturbances)
2. The number of fire ignition points per period (influences fire disturbance only)
3. The location of those ignition points (influences fire disturbance only)
4. The time and dates of fire burn (influences fire disturbance only)

92

Table 7-4 shows the weather pattern used for all simulation mns.

Period 1 Moderate
Period 2 Moderate
Period 3 Mild Drought
Period 4 Severe Drought
Period 5 Moderate
Period 6 Wet
Period 7 Moderate
Period 8 Moderate

Table 7-4: Weather pattern used for both scenarios

Three statistics are compiled for each episodic disturbance that occurs during the

simulation: 1) the acres affected by the disturbance, 2) the number of big trees killed by

the disturbance (normalized to a per-acre value), and 3) the stand basal area (sq. ft.) that

is killed by the disturbance (reflects all size classes). The episodic disturbances were not

spatially limited to the landscape eligible for management (i.e., the modeled landscape) -

they could occur in both managed and unmanaged areas.

Insects

The episodic insect disturbance is triggered by drought-type weather patterns.

Only periods 3 and 4 are drought-type for the simulation runs. There are 15 years of

growth before the first insect disturbance in period 3. The average number of big trees

per-acre killed was much higher in both periods for the Big Trees scenario (Table 7-5)

than the Grow Only scenario. This is probably due to there being more big trees

available in the Big Trees scenario during both periods (Table 7-3) However, the basal

area killed is nearly identical for both scenarios in both periods. There are over 8,000

more acres affected by insects in the Grow Only scenario during periods 3 and 4.

93

Grow • Bi~ Trees Scenarfo
of big Stand

Acres
affected

of big
trees
killed

(per-acre)

Stand
basal area

killed
(sf/acre)

Acres
affected

trees
killed

basal area
killed

Period 3 .09 9.8 405,660
: Period 4 414,075 ' .05 17 404,293

Table 7-5: Insect mortality statistics

In the Grow Only scenario stands (which were initially considered overstocked -

see Introduction) accumulate their basal area from the smaller diameter classes because

of the lack of growing space to create larger diameter trees. This would help explain the

lower number of big trees killed - there are less available. On the other hand, the Big

Trees scenario tried to manage the landscape so that there were big trees and thus, more

should be available during insect disturbance.

The stand basal area killed in periods 3 and 4 support a priori expectations. Period

3, which had a mild drought weather pattern, had roughly 10 sq.ft.I acre of basal area

killed within each scenario. Referring to the modeling rules for thresholds and severity

(Appendix C), this value "appears" consistent with the desired mortality (that is, the

severity level applied per the rules). Period 4, a severe drought period, had roughly 18

sq.ft./acre of basal area killed within each scenario. Again, this appears consistent with

the rules developed by the science team. Data needed to calculate actual harvest volume

loss due to insects is currently not tracked by the SafeD model.

The forested acres effected by insects in both period 3 and 4 in both scenarios

indicates that insects will play a major role in stand mortality. For the Grow Only

scenario over 98% of the forested landscape is affected by insects. For the Big Trees

scenario 96% of the forested landscape is affected in periods 3 and 4.

The rules for insect disturbance were developed to simulate expected losses over

the long run (Agee, 1999). As to whether or not the implementation of these rules

behaved in their predicted way I cannot determine. The science team members

responsible for the insect modeling rules have not had a chance to thoroughly study these

results. The implementation of the rules needs more review by the science team.

Fire

The number of fire ignition points and their location were constant for the two

landscape scenarios and for the five simulation runs for each scenario (Table 7-6).

However, each period within a simulation had different ignition points and locations.

I;
of fire
ignition

.... ··~J~oints
Period 1 14
Period 2 6
Period 3 13
Period 4 10
Period 5 14
Period 6 12
Period 7 8
Period 8 6

Table 7-6: Number of ignition points for both scenarios

Fires occurred every period regardless of the weather pattern. The weather

determined the wind, weather, and fuel moisture file FARSITE used (see discussion in

Stage Three of The SafeD Model). Table 7-7 shows the fire statistics.

Big Trees Scenario
of big Stand # of big Stand

94

trees basal area trees basal area
Acres killed killed Acres killed killed

affected (er-acre) (sf/acre.) affected (per-acre) (sf/acre.)
Period 1 570 .27 115 1,028 .36 . 130
Period 2 504·· .26 161 490 .33 167
Period 3 1,802 .08 168 1,842 019 '' 170
Period 4 563 .03 147 521 .05 144

. Period 5 124 .02 146 91 .01 ··116
Period 6 92 .01 122 85 .02 132
Period 7 106 .01 132 67 .01 134
Period 8 113 .01 134 116 .03 137

Table 7-7: Fire mortality statistics

95

Only during period 3 did fires in both scenarios approach the Base-Case Fire mean

area burned of 2,158 acres (the historical average). Otherwise the average acres burned

per period in both scenarios fell below historic values. The fires were larger in the Big

Trees scenario for periods 1,3, and 8.

The number of big trees killed (per-acre) was higher for the Big Trees scenario in

all but periods 5 and 7. In period 5 the Grow Only scenario killed .02 big trees per-acre

compared to .01 for the Big Trees scenario; and both were even at .01 big trees killed

during period 7.

The average stand basal area killed was higher in all but period 4 in the Big Trees

scenario. The greatest difference was in period 5 with the Grow Only scenario losing 146

sq. ft. of basal area compared to 176 sq. ft. in the Big Trees scenario.

The number of big trees killed by fire decreases significantly in both scenarios

during periods 3 and 4. This corresponds with a significant drop in the PREMO

calculation of big trees regardless of episodic disturbance (Table 7-2). Additionally,

periods 3 and 4 are the two drought-type periods and encounter insect disturbance before

the fires.

Evaluating the effectiveness of the episodic fire disturbance is based on two things:

1) Are the resulting fires and their associated flame lengths reasonable?
2) Do the fires approach the Base-Case Fire scenario (i.e., the historical record)?

Are the resulting fires and their associated flame lengths reasonable:

The flame lengths associated with all the fires (in all periods) for all the simulation

runs made for this thesis were evaluated for "reasonableness". I used informal

guidelines (Bahro, personal comm., Feb 2000) because no formal protocol has been

established by the science team. In essence, I checked the flame length of each stand hit

by a fire to see if it exceeded a threshold. The threshold, established at 20 feet, was used

only to see if there were large number of stands that were exceeding that value. If a few

stands exceeded the threshold there is not much of a concern because it is possible for

flame lengths to reach that value. However, if I encountered many stands in many fires

that were exceeding the threshold a flag was set to indicate that maybe the fire spread

model was not operating properly or the inputs were not reasonable. There were no

incidences of the threshold being exceeded to a great extent in any fire during all the

simulation runs.

Do the fires approach the Base-Case Fire scenario:

96

The Base-Case Fire is an attempt to parameterize past fire activity for describing

the "best" scenario one could hope for in the future. The average acreage burned for a 5-

year period in the Base-Case Fire scenario is 2,158 acres. That value is approached only

in period 3 for both the Grow Only and Big Trees scenario. Period 3 had a mild drought

weather pattern.

The reason for the disparity between the anticipated Base-Case Fire scenario and

the results for these simulations is unclear at this time. The science team has not had the

opportunity to complete an evaluation of the input fire parameters. This should be

included in future work.

New Prescriptions

The number of new prescriptions needed for the Big Trees scenario is significantly

greater than the Grow Only scenario for all periods except period 5 (Table 7-8). Period 8

is not shown because new prescriptions are not generated after period 8 - the simulation

ends. The heterogeneity or homogeneity of the stand types affected by the episodic

disturbance greatly affects the number of new prescriptions needed. In the Grow Only

scenario there was only one stand prescription assigned to all the initial stands - grow

only. The Big Trees scenario had a suite of 19 different prescriptions that were allocated

across the landscape. Because the current prescription is one of the three variables that

identify a new unique stand prescription I expected an increase in the number of new

prescriptions needed for the Big Trees scenario.

The number of new prescriptions needed in periods 3 and 4 for the Big Trees

scenario is significant. On the average PREMO can generate prescriptions at the rate of

5,000 per hour for prescriptions needing at least five periods worth of data. This

translates into an approximate 4-hour process for PREMO to generate a single

prescription for each of the new unique stand prescriptions needed in periods 3 and 4 for

the Big Trees scenario.

97

.OrnwOnl Scenario
Total Total

acres hit #of new acres hit # of new
by insects prescriptions by insects prescriptions
and fire needed and fire needed

Period 1 570 242 1,028
Period 2 504 199 490
Period 3 415,886 2,415 407,502
Period 4 414,638 2,336 404,814
Period 5 124 133 91 22
Period 6 92 115 85
Period 7 106 111 67

f>~ItQ~l n/a n/a n/a n/a

Table 7-8: New prescriptions needed as a result of episodic disturbances

98

DISCUSSION AND FUTURE WORK

At the beginning of the Sample Application section I outlined two purposes for the

application I have discussed:

1. To exercise the SafeD model to see how it works.
2. To begin to understand the relationships modeled for the Applegate River

Watershed.

These two purposes were in context for the goal of the Applegate Project:

"To develop a forest landscape simulation model to use in evaluating the
potential effects of different policies and forest management practices over
time to achieve goals for the forest of the Applegate River Watershed in
the context of possible stochastic events."

The sample application of the SafeD model demonstrates the development of a

hybrid optimization/simulation model. It also demonstrates the need for further

calibration and parameterization. However, that should not overshadow the

accomplishment in creating the SafeD model.

The four-stage process designed for the SafeD model was a mixture of traditional

modeling techniques and traditional strategic forest planning with some innovative

strategies to overcome deficiencies or short-comings identified in these traditional

methods. Stage one incorporates the widely-used FVS growth and yield model, but

without the standard mortality equations, in a new prescription generator called PREMO.

Stage two uses a heuristic programming technique, the Great Deluge Algorithm, to find a

solution for a large landscape problem. Stages three and four incorporate the stochastic

nature of episodic disturbances with processes for fire and insect disturbance events -

then account for their effects and allowing management to react.

99

General Notes on SafeD Processes

Stand Delineation

The science team chose to break with traditional stand delineation (spatially

defining polygons with similar vegetative or other attributes) and instead used each pixel

from a classified Landsat TM image as a stand unit. This strategy was developed in part

to allow the SafeD model to track the episodic fire disturbance at a fine-resolution (25 m.

x 25 m.) and account for the effects of fires to specific stands. This is in contrast to

applying fire disturbance effects to larger spatial units on a distribution approach (e.g.,

see discussion on the SAFE FOREST model in the Literature Review). This strategy has

some drawbacks which should be addressed.

Allowing each 25 meter pixel to represent a stand is difficult to implement from a

tactical standpoint. It is unlikely that if one stand is different from its surrounding stands

(for this example we assume the surrounding stands are identical) that the single stand

would actually be treated or managed uniquely. But this must be weighed with the fact

that it is possible for this single stand to react differently to episodic disturbances such as

fire or insects. After running the simulations presented in this thesis I have come to two

seemingly contradictory conclusions about the stand delineation strategy we used: 1) that

the use of 25 meter pixels as stands may be ineffective for use when confronted with a

large landscape-level problem, and 2) that the use of 25 meter pixels as stands enhances

the ability to account for the effects of episodic disturbances.

I have discussed the results of the GOA heuristic I used to solve the landscape

problem associated with the Big Trees scenario. By using 25 meter pixels as stands the

problem has over 2.2 million decision variables for the stands alone. The potential

b f • b" • f d • • • 19J?million Th GDA num er o umque com mat10ns o stan s to prescnpt10ns 1s --- . e

evaluated only 29 million of those combinations. After running these simulations I am

left with the feeling that another approach to stand delineation may be more suitable in

regards to solving a landscape-level problem. The CLAMS project (Bettinger et al.,

2000a) is using a strategy that aggregates Landsat TM pixels into larger basic simulation

units (BSU) based on vegetation, stand structure, and other attributes. These BSU's are

100

then combined (using unique intersections of an additional set of attributes) to form even

larger management "parcels". These parcels serve as the management decision unit.

However, the attributes of the individual BSU' s that make up a parcel are maintained and

tracked during the simulation. I feel a similar strategy that aggregates data for

management decisions but maintains finer resolution data for episodic disturbances may

prove useful for the SafeD model in future work.

However, the use of 25 meter pixels as stands was essential to our efforts to apply

episodic disturbance on the landscape. The FARSITE fire spread model will accept input

landscape data at any resolution (i.e., the size of the pixels). By delineating stands at 25

meters we were able to provide a detailed description of the fuel model and other

necessary attributes for FARSITE at the pixel level. These attributes reflected the stand

more accurately in that they were not calculated as a percentage of some larger stand unit.

Future efforts on the SafeD model should explore other options for stand

delineation. I would hesitate to state that using 25 meter pixels as stand units is

impossible; I have shown that it can be done. I would only suggest that the usefulness of

maintaining such fine-resolution stand data may prove futile with large landscape

problems.

Variability Assessment

The results seen in this thesis are from a single simulation run of both the Grow

Only scenario and the Big Trees scenario. I did make five simulations runs of each but

not all the data was maintained because they were done while I was finishing "checking­

out" that the model worked. The issues surrounding variability of the results are

important. Trends can be seen with multiple simulations that may not appear with a

single simulation. Future work on the SafeD model should incorporate a more thorough

variability assessment.

101

Prescription Generation (stage one)

PREMO

There are some limitations and considerations in regards to PREMO; both in the

theory behind PREMO achieving stand optimality and in the implementation of PREMO

with regards to this thesis. See Wedin (1999) for her discussion on the theory of PREMO

and its ability to achieve stand optimality. This thesis is concerned with the

implementation of PREMO.

PREMO was designed to generate a suite of goal-oriented optimized prescriptions

for the Applegate River Watershed. It has an automated approach in that the goals are

pre-programmed, the growth and yield equations are pre-programmed (for known

vegetation in the watershed), and the optimization search procedures are also pre­

programmed. This is a departure from traditional prescription generation in which a

modeler works with a growth and yield model and through manual trial-and-error to

develop good prescriptions. The PREMO approach has two distinct advantages: 1) it has

the ability to develop "optimal" prescriptions if a stand goal has been identified and

variables are in place to measure attainment of optimality; and 2) it has the ability to

create these new prescriptions "on-the-fly" during a simulation - they do not have to be

created a priori.

The SafeD model takes full-advantage of PREMO. The suite of prescriptions

generated by PREMO in stage one are optimized for specific stand goals for each of the

existing stands on the watershed. Having this suite of prescriptions to explore allows the

landscape optimization component of the SafeD model to work effectively. PREMO can

generate the prescriptions for the initial landscape in only 37 minutes - that's over 2,500

prescriptions. Any change in the weights or variables used within PREMO can be

accomplished with minimal effect on the total simulation time. If traditional methods are

used to generate optimal prescriptions it would not be unreasonable to expect delays of

days or even weeks to incorporate such changes. However, future work on the SafeD

model should include making the PREMO model more efficient.

102

The ability for PREMO to generate on-the-fly prescriptions proved crucial to the

development of the SafeD model. The behavior, extent, and effect of stochastic episodic

disturbances cannot be predicted .. The idea of trying to develop a suite of prescriptions a

priori that would account for any episodic disturbance, in any period, for any

combination of disturbance type and severity is unreasonable for the spatial resolution we

are using for the Applegate Project. For example, ultimately there were over 43,000 new

prescriptions needed for the Big Trees scenario over the entire planning horizon (see

Table 7-8). It would have been nearly impossible for the science team to predict which

new prescriptions were needed during the simulation. Therefore, a suite of millions of

prescriptions would be needed. In the end, only the 43,000 were used. The time and

effort saved by not creating a suite of millions of prescriptions should certainly be

considered a benefit.

The issues surrounding my discussion on mortality in PREMO are unresolved.

Future work should also include ensuring that PREMO behaves in a predictable way.

Landscape Optimization (stage two)

The landscape optimization (stage two) required the use of a heuristic technique to

obtain a solution to the landscape problem presented. The large number of integer

variables and the complexity of the evaluation procedures make locating an optimal

solution with traditional mathematical programming techniques (e.g., integer

programming) a computationally difficult process. A comparison of the heuristic

algorithm used for this thesis with other algorithms is not presented because no existing

algorithm uses the same evaluation procedures for the landscape goal presented in this

thesis.

I have demonstrated the use of the Great Deluge Algorithm in obtaining a solution

for a large landscape in which the problem is to simultaneously meet a landscape goal

subject to a spatial constraint. I ensure that the land management activities are

compatible with the landscape goal by always staying in the feasible region of possible

solutions.

103

Future work should incorporate processes to address the deficiencies I noted

regarding the ability to measure the success of the landscape optimization. This includes:

1) obtaining multiple solutions, 2) more effort on calibration, 3) ensuring the Objective

Function is sufficient for the problem, and 3) ensure the quality of the input stand data.

Landscape Simulation (stage three and four)

Episodic Disturbances (stage three)

Stage three of the SafeD model is the landscape simulation. The unique

contribution of the SafeD model is the incorporation of episodic disturbances (insects and

fire). Furthermore, the spatial resolution used (25 m. x 25 m.) to initiate, distribute, and

track the episodic disturbances (and effects) demonstrates an improved strategy over

traditional methods of applying disturbance effects on a distributional approach.

The results seen from the simulations presented in this thesis present three

interesting conclusions which may have significant implications for forest management

practices and polices in the Applegate River Watershed. First, this thesis has shown that

to achieve a landscape goal of maximizing the number of big trees across the landscape

timber harvesting will need to occur. The Grow Only scenario had significantly less big

trees than the Big Trees scenario (which included timber harvesting) both in the before­

and after-simulation analysis. Secondly, the effects of episodic insect disturbance is

going to negate the need for as much timber harvesting that would be projected without

accounting for such disturbances. And third, fire is going to play a significantly less role,

in regards to tree mortality, than insects will.

The first conclusion, that timber harvest needs to occur to achieve a landscape goal

of big trees, is somewhat expected. There are currently high stand densities in the

watershed. Those densities must be reduced to achieve diameter growth. Therefore, the

forests in the watershed need to be managed. Management can come from one of two

ways: 1) timber harvesting, or 2) episodic disturbances. If we ignore episodic

disturbances for the moment, then the results seen in this thesis demonstrate that

management with timber harvesting will produce more big trees than a "hands-off'

104

approach. However, if we consider episodic disturbances then the other two conclusions

I stated come into play.

The second conclusion, that episodic insect disturbance is going to negate the need

for timber harvesting in the Big Trees scenario, is seen in Figures 7-2 and 7-3. The after­

simulation harvest levels dropped significantly in the periods following the first episodic

insect disturbance (period 3). However, there are still more big trees in the Big Trees

scenario, which allowed timber harvesting, than in the Grow Only scenario. The

occurrence of the episodic insects in periods 3 and 4 greatly reduced the harvest levels. It

should be noted that the SafeD model has no salvage prescription to account for those

trees killed by insects and harvested while they are still useful (that capability would

increase the harvest level values).

The third conclusion, that fire is going to play a significantly less role in tree

mortality, is seen by comparing Tables 7-5 and 7-7. In either scenario the fires affected

less than 5,000 total acres during the entire 40-year planning horizon. The insects

affected over 400,000 acres during each of the two periods they occurred. This is a

significant finding. Current management policies in the watershed are directed towards

fire reduction. These results are showing that fire is insignificant compared to the

mortality insects will cause.

Future work to the SafeD model should include more evaluation of the episodic

disturbance processes. There are two questions that should be addressed: 1) are the

episodic disturbances doing what we want them to do in regards to mortality; and 2) is

this method of representing mortality through episodic disturbances really a viable

altemati ve?

Re-Optimization (stage four)

I discussed a modified strategy that we chose for stage four at the end of the

discussion in The SafeD model. In essence, the idea of re-optimizing the selection of

stand prescriptions proved too complicated for implementation at this time. The simpler

strategy used for this thesis makes an assumption that should be addressed in future work;

that the same prescription allocation should be prescribed to a stand after the occurrence

105

of any episodic disturbance on that stand. It may be more useful to evaluate the stand

from a different view and consider "now that this stand has been affected by an episodic

disturbance, what do I want to do to it in relation to other management considerations?"

106

CONCLUDING REMARKS

The goal of developing a forest landscape simulation model to use in evaluating the

potential effects of different policies and forest management practices over time while

achieving goals for the forest in the context of stochastic events has been met with the

SafeD model. However, the SafeD model is in its infancy and this thesis presents only a

single application - revealing some accomplishments and deficiencies in both the ideas

behind the model and the parameters and processes used within the model.

The focus of this thesis has been to highlight my contribution to the Applegate

Project: the development of a hybrid landscape optimization/simulation model that

incorporates episodic disturbance at a fine-resolution - the SafeD model. This is an

original contribution to the landscape modeling field. Traditional landscape optimization

and landscape simulation models have worked on parallel tracks, often in isolation of one

another. The SAFE FOREST model (Sessions, 1999) is the predecessor to the SafeD

model in bridging the gap between optimization and simulation models. The

optimization component (stage two) of the SafeD model is an improvement in traditional

landscape optimization for two reasons: 1) the linkage to the simulation component of

the model, and 2) the use of heuristic programming techniques to solve a large landscape

problem. Furthermore, the SafeD model is an improvement over traditional landscape

simulation models for two reasons: 1) the maintenance of fine spatial resolution, and 2)

the incorporation of episodic disturbances, particularly insects. Additionally, by

maintaining a fine-resolution of data we are able to use the well-documented and widely­

used fire spread model called FARSITE (Finney, 1998).

In the Literature Review section I showed three antecedent landscape models in a

comparison matrix. Table 9-1 shows the same matrix with the addition of the SafeD

model. Although there is more work to do in testing and development of the SafeD

model it does meet the goals laid out in the matrix. Success of the SafeD model should

be judged on the successful completion in meeting these goals. In this regard I feel the

development and sample application of the SafeD model has been a success.

107

• e.e ..

'
SAFE LANDIS CLAMS SafeD FOREST

•··.•·

Study area 1 million 1.5 million
5 million

493,000 acres with 8
V'J size acres acres apres "megasheds" Q
ii)
C
0
0. e
0 Data structure vector raster vector raster u
~
~

0
.•.

-~ Resolution 200 meter x 25meterX
~ varies varies 0.. (MMU) 200 meter 25meter (/}

. .•.;

Recognize
. ·.·

economical
both ecological both both and

ecological ..

Optimize
multiple yes no no yes

.... goals
C ..
a) ... •• .. •· C Represent 0
0.. forest E
0 management

yes yes yes yes
u
V'J activities (.)

·;;
(I)

·c: Represent
ii)

Stochastic g yes yes no yes ... elements ~
..c .. u .·.•·

~ Represent
-r:)

FIRE-0
"partial" ~ Spatially

yes no yes
ii)

::0 Explicit
~ ... Represent • iii
ii)

INSECTS -0
Spatially

no no no yes

Explicit
······•· ..

Repeated
simulations to

assess
yes yes yes yes

variability ..

Table 9-1: Comparison matrix for recent landscape analysis models and SafeD

REFERENCES

Agee, Jim. 1999. Rules for potential vegetation; Rules for regeneration; Rules for
disturbance; FOFEM tables; Fire and fuel inputs; A mimic of natural fire.
September 1]1h document outlining inputs to the SafeD model. Unpublished.

Anderson, H.E .. 1982. Aids to determining fuels for estimating fire behavior. Gen.
Tech. Report INT-122. U .S.Dept. of Agriculture, Forest Service, Rocky
Mountain Research Station.

108

Bettinger, Pete, J. Sessions, and K. Boston. 1997. Using Tabu search to schedule timber
harvests subject to spatial wildlife goals for big game. Ecological Modelling.
94:111-123.

Bettinger, Pete, J. Sessions, and K.N. Johnson. 1998. Ensuring the compatibility of
aquatic habitat and commodity production goals in eastern Oregon with a tabu
search procedure. Forest Science. 44(1):96-112.

Bettinger, Pete, I.Sessions, T. Spies, J. Brooks, and A. Herstrom. 2000a. Landscape
Simulation Model for Coastal Oregon Landscape Analysis and Modeling. Paper
3379 of Forest Research Laboratory, Oregon State University. (in review) Forest
Science.

Bettinger, Pete, D. Graetz, K. Boston, J. Sessions, W. Chung. 2000b. Eight heuristic
planning techniques applied to three increasingly difficult wildlife planning
problems. (in review) Forest Science. May 2000. 69pp ..

Beukema, S.J., E. Reinhardt, J.A. Greenough, W.A. Kurz, N. Crookston, and D.C.E.
Robinson. 1998. Fire and fuels extension: model description, working draft.
Prepared by ESSA Technologies Ltd., Vancouver, BC for USDA Forest Service,
Rocky Mountain Research Station, Missoula, MT. 58 pp ..

Boychuk, D., and D. Martell. 1996. A multistage stochastic programming model for
sustainable forest-level timber supply under risk of fire. Forest Science.
42(1): 10-26.

Carlson, Joan and C. Christiansen. 1993. Eldorado National Forest: Cumulative off-site
watershed effects (CWE) analysis process - Draft Version 1.1. Eldorado National
Forest, Supervisor's Office. Placerville, CA.

Clements, Stephen E., P.L. Dallain, and M.S. Jamnick. 1990. An operational, spatially
constrained harvest scheduling model. Canadian Journal of Forest Research.
20: 1438-1447.

109

Daust, David K., and J.D. Nelson. 1993. Spatial reduction factors for strata-based harvest
schedules. Forest Science. 39(1): 152-165.

Davis, L.S. and K.N Johnson. 1987. Forest management. Third edition. McGraw-Hill,
New York. 790 pp ..

Dixon, Gary and Ralph Johnson. 1995. The Klamath Mountains geographic variant of
the Forest Vegetation Simulator Version 6.1. USDA Forest Service, Washington
Office, Forest Management Service Center, Fort Collins, CO. l 9p. FMSC Internal
Report.

Dowsland, Kathryn A. 1993. Simulated Annealing. P.20-69 in Modem heuristic
techniques for combinatorial problems. Reeves, C.R. (ed.). John Wiley & Sons,
Inc., New York.

Dueck, Gunter. 1993. New optimization heuristics - The great deluge algorithm and the
Record-to-Record travel. Journal of Computational Physics. 104: 86-92.

Finney, Mark A. 1998. FARSITE: Fire Area Simulator-model development and
evaluation. Res.Pap. RMRS-RP-4, Ogden, UT: US.Dept. of Agriculture, Forest
Service, Rocky Mountain Research Station. 47 pp ..

Finney, Mark A.. 1999. FLAMMAP Model. Unpublished description. Systems for
Environmental Management. Missoula, MT.

Frelich, L.E. and C.G. Lorimer. 1991. Natural disturbance regimes in hemlock­
hardwood forests of the upper Great Lakes region. Ecological Monographs.
61:159-162.

Glover, Frank, and M. Laguna. 1993. Tabu search. P.70-150 in Modern heuristic
techniques for combinatorial problems. Reeves, C.R. (ed.). John Wiley & Sons,
Inc., New York.

Golley, F.B. 1993. Development of landscape ecology and its relation to environmental
management. In Eastsideforest ecosystem health assessment. Volume II.
Ecosystem management: principles and applications. M.E. Jensen and P.S.
Bourgeron (ed.). pp. 37-44. USDA Forest Service, Missoula, MT, USA.

Hof, J.G., K.S. Robinson, and D.R. Betters. 1988. Optimization with expected values of
random yield coefficients in renewable resource linear programs. Forest Science.
34(3):634-646.

Hof, J.G, and L. Joyce. 1992. Spatial optimization for wildlife and timber in managed
forest ecosystems. Forest Science. 38:489-508.

110

Hof, J.G., M. Bevers, L. Joyce, B. Kent. 1994. An integer programming approach for
spatially and temporally optimizing wildlife populations. Forest Science. 40: 177-
191.

Hoganson, H.M., and D. Rose. 1984. A simulation approach for optimal timber
management scheduling. Forest Science. 30(1):220-238.

Hoganson, H.M. and T.E. Burk. 1997. Models as tools for forest management planning.
Commonwealth Forestry Review. 76: 11-17.

Iverson, D.C. and R.M. Alston. 1986. The genesis of FORPLAN: A historical and
analytical review of Forest Service planning models. USDA Forest Service,
General Technical Report INT-214.

Johnson, K.N., and H.L. Scheurman. 1977. Techniques for prescribing optimal timber
harvest and investment under different objectives - discussion and synthesis.
Forest Science Monograph 18. Washington DC: Socienty of American Foresters.

Johnson, K.N., D.B. Jones, and B.M. Kent. 1980. Forest Planning Model (FORPLAN).
User's Guide and Operations Manual. USDA Forest Service, Fort Collins, Co.
251 pp ..

Johnson, K.N. 1992. Consideration of watersheds in long-term forest planning models:
The case of FORPLAN and its use on the national forest. In Watershed
management: Balancing sustainability and environmental change. R.J. Naiman
(ed.). pp. 347-360. Springer-Verlag: New York, NY.

Johnson, K.N., J. Sessions, J. Franklin, and J. Gabriel. 1998. Integrating wildfire into
strategic planning for Sierra Nevada forests. Journal of Forestry. 96(1):42-49.

Kessell, S.R.. 1979. Gradient modeling: resource and fire management. Springer­
Verlag, New York.

Lockwood, Carey, and T. Moore. 1993. Harvest scheduling with spatial constraints: a
simulated annealing approach. Canadian Journal of Forest Research. 23(3):468-
478.

Mellen, K., and A. Ager. 1998. Coarse Woody Debris Model - Version 1.2. USDA
Forest Service, Mt. Hood and Gifford Pinchot National Forest.

Mladenoff, David and W. Baker. 1999. Development of forest and landscape modeling
approaches. Pp. 1-13 in "Spatial Modeling of Forest Landscape Change:
approaches and applications",. Mladenoff, David and W. Baker (Eds).
Cambridge University Press, UK..

111

Mladenoff, David and H.S. He. 1999. Design, behavior and application of LANDIS, an
object-oriented model of forest landscape disturbance and succession. Pp. 125-
162 in "Spatial Modeling of Forest Landscape Change: approaches and
applications". Mladenoff, David and W. Baker (Eds). Cambridge University
Press, UK..

Murray, Alan T., and R.L. Church. 1995. Heuristic solution approaches to operational
forest planning problems. OR Spektrum [Operations Research]. 17: 193-203.

Nelson, John, and G. Liu. 1994. Scheduling cut blocks with simulated annealing.
Canadian Journal of Forest Research. 24(2): 365-372.

O'Hara, A.J., B.A. Faaland, and B.B. Bare. 1989. Spatially constrained timber harvest
scheduling. Canadian Journal of Forest Research. 19:715-724.

Reed, W.J. and D. Enrico. 1986. Optimal harvest scheduling at the forest level in the
presence of the risk of fire. Canadian Journal of Forestry Research. 16: 266-278.

Reeves, Colin R. 1993. Modem heuristic techniques for combinatorial problems. Editor.
John Wiley & Sons, Inc., New York.

Reinhardt, Elizabeth D., R. Keane, and J. Brown. 1997. First Order Fire Effects Model:
FOFEM 4.0, user's guide. GTR, INT-GTR-344. Ogden, UT: U.S. Dept. of
Agriculture, Forest Service, Intermountain Research Station. 65 p ..

Rothermel, Richard C. 1972. A Mathematical Model for Predicting Fire Spread in
Wildland Fuels. Research Paper. INT-115. Ogden, UT: U.S. Dept. of
Agriculture. Forest Service, Intermountain Forest and Range Experiment Station.

Runkle, J.R .. 1982. Patterns of disturbance in some old-growth mesic forest of eastern
North America. Ecology. 63: 1533-1546.

Sessions, John, K.N. Johnson, J. Franklin, and J. Gabriel. 1999. Achieving sustainable
forest structures on fire-prove landscapes while pursuing multiple goals. Pp. 210-
255 in "Spatial Modeling of Forest Landscape Change: approaches and
applications", Mladenoff, David and W. Baker (Eds.). Cambridge University
Press, UK..

(SNEP) Sierra Nevada Ecosystem Project. 1996. Status of the Sierra Nevada: Final
Report to Congress by the Sierra Nevada Ecosystem Project (SNEP), Wildland
Resource Center Report No. 36, 3 volumes, University of California, Davis,
Calif..

112

USDA Forest Service and USDI Bureau of Land Management. 1994. Record of
Decision for Amendments to Forest Service and Bureau of Land Management
Planning Documents Within the Range of the Northern Spotted Owl; Standards
and Guidelines for Management of Habitat for Late-Successional and Old-Growth
Forest Related Species Within the Range of the Northern Spotted Owl.
Washington, DC: U.S. Government Printing Office.

USDI Bureau of Land Management, Medford District, USDA Forest Service, Rogue
River National Forest, USDA Forest Service, Siskiyou National Forest, USDA
Forest Service, PNW Research Station. 1994. Applegate Adaptive Management
Area Ecosystem Health Assessment. Pp. 1-76.

Van Wagner, C.E .. 1969. A simple fire growth model. Forestry Chronicl. 45:103-4.

Van Wagner, C.E.. 1978. Age class distribution and the forest fire cycle. Canadian
Journal of Forest Research. 8:220-7.

VoB, Stefan. 1993. Tahu search: applications and prospects. Pp. 333-353 in Network
optimization problems, Du, D.Z., and P.M. Pardalos (eds.). World Scientific
Publishing Co., Singapore.

Wedin, Heidi. 1999. Stand Level Prescription Generation under Multiple Objectives.
M.S. Thesis. Oregon State University, Corvallis, OR. 178 p.

Yoshimoto, A., R.G. Haight, and J.D. Brodie. 1990. A comparison of the pattern search
algorithm and the modified PATH algorithm for optimizing an individual tree
model. Forest Science. 36:394-412.

Zanakis, S.H., and J.R. Evans. 1981. Heuristic "optimization": why, when, and how to
use it. Interfaces. 11 (5):84-89.

113

APPENDICES

Appendix A: Vegetation and Structural Stage Classification

"~'"'"" ,.,a,1er "''hrub IGra,sW • • . , Mixed ~hite ,,.,,, ,v., .. , i<>• -
0

.i:;. Red fir omfer . Pine
,.,s . <3000' ir

Decidu M' ·
Closed ous Conifer Evergree !x~d
cone •. . • n ornfer:

. 11ardwo hardwood h r·d d ~ .3000,
pine od . a woo ~ • Totals

Barren 7, 16E 7,168

Waler

~hrub
!3rass/
• orbs

) • 4.9"
lllcc%
> • 8.9'
keoo/o
'c
5 -8.9"
>a60o/o
':c
) -

I 4,9" <

><>%cc
) .
14.9"
>•60'%
C

15·
20.9" ~
60%cc
15- .:
20.9" :
>=60%
:c
)1 •

24.9" ~
60%cci

'5. .'
31.9" •
1Acc"A;i
32"+ l
all cc 01;

1,565

30,34e

32,47::

571 1,087

1,083

781 1,29E

8,842

1,710 13 1,07(

3,193 30,33C 4,732

850 66C 2,594

3,199 31e 4,77E

1,934 3,971 12,494

21 342

1,565

30,345

32,473

1,952 906 4,56E 4,92E 7,80E 1,662 23,482

3,71(373 5,37~ 18,560 1,581: 3,816 34,504

43E 369 807

10,352 20,493 14,253 88c 35C 48,41 C

15,054 7,122 50,879 17,772 8,022 107,691

4,354 3,681 2,416 72 1,797 15,117

3,401 39,803 5,522 21,924 114,90e

92E 644 5,67E

6,311 3,87C 18,474

1M 27,569 46,112

5,571 5,93

rro1als 7,168 1,565 30,345 32,473 11,457 47,106 27,306 36,932 1,648 44,643 137,150 33,645 81,225 4921111..'l

Table 1: Acres in each vegetation - structural stage class

114

Appendix B: Plant Association Group (PAG) Assignment Rules

Plant Association Groups (PAGs)
1. Douglas-fir/Dry
2. Douglas-fir/Wet
3. White fir/Dry
4. White fir/Wet
5. Red fir
6. Jeffrey pine
7. Pine/oak

Codes used:
Ppt
Elevation
Slope
Aspect

Geology serpentine
Other .

1. Elevation ::::; 2000

= precipitation in inches
= values in feet
= values in%
= values in degrees

Rules for Assigning PAGs to Each Stand

2A. Slope ::::; 15%
2B. Slope > 15%

3A. Aspect 135-225
3B. Aspect other

4. Elevation > 2000 and ::::; 2500
5A. Ppt ::::; 35 .
5B. Ppt. > 35

6A. Ppt::::; 40
6B. Ppt. > 40 .

7. Elevation > 2500 and ::::; 3500
8A. Ppt ::::; 40 .
8B. Ppt > 40

9A. Aspect 1-45 and 316-360
9B. Aspect Other

l0A. Aspect 226-315 and 46-135
10B. Aspect 136-225.

PAG
Jeffrey pine
Continue

Pine/oak
Continue to 3
Pine/oak
Douglas-fir/Dry

Pine/oak

Douglas-fir/Dry
Douglas-fir/Wet

Douglas-fir/Dry

White fir/Dry

Douglas-fir/Wet
Douglas-fir/Dry

115

11. Elevation > 3500 and ~ 4000
12A. Aspect271-360and 1-90
12B. Aspect 91-270 .

13. Elevation > 4000 and~ 4500
14A. Ppt. ~ 45
14B. Ppt. > 45

15A. Aspect 136-225.
15B. Aspect46-135 and226-315
15C. Aspect 316-360 and 1-45

16. Elevation > 4500 and ~ 5000
17A. Ppt ~ 50

18A. Aspect 136-225.
18B. Aspect 91-135 and 226-270
18C. Aspect 271-360 and 1-90

17B. Ppt > 50
19A. Aspect 136-225.
19B. Aspect 46-135 and 226-315
19C. Aspect 316-360 and 1-45

20. Elevation > 5000 and ~ 5500
21A. Ppt ~ 50

22A. Aspect 158-202 .
22B. Aspect 136-157 and 203-225
22C. Aspect 226-360 and 1-135

21B. Ppt > 50 and~ 60
23A. Aspect 46-315 .
23B. Aspect 316-360 and 1-45

21C. Ppt > 60
24A. Aspect 271-360 and 1-90.
24B. Aspect 91-270

25. Elevation > 5500 and~ 6000
26A. Ppt ~ 60

27 A. Aspect 136-225 .
27B. Aspect 1-135 and 226-360

26B. Ppt > 60

28. Elevation > 6000.

Douglas-fir/Wet
White fir/Dry

Douglas-fir/Wet

Douglas-fir/Wet
White fir/Dry
White fir/Wet

Douglas-fir/Wet
White fir /Dry
White fir/Wet

White fir/Dry
White fir/Wet
Red fir

Douglas-fir/Wet
White fir/Dry
White fir-Wet

White fir/Wet
Red fir

Red fir
White fir/Wet

White fir/Wet
Red fir
Red fir

Red fir

116

Appendix C: Insect Disturbance Rules

DOUGLAS-FIR KEY

Thresholds of basal area (ba) per PAG

White fir/dry and Douglas-fir/wet: > 250 sq ft/ac.
> 120 sq ft/ac.
> 80 sq ft/ac.

Douglas-fir/dry:
Pine/Oak:

Severity (applied to treelist)

Mild drought:
Severe drought:

TRUE FIRKEY

I 0% of ba of Douglas-fir killed (>IO" DBH)
20% of ba of Douglas-fir killed (> 10" DBH)

Thresholds of basal area (ba) per PAG

Red fir or White fir/wet: > 250 sq ft/ac.
> 120 sq ft/ac.
any

White fir/dry:
Douglas-fir (wet or dry):
Pine/Oak: any

Severity (applied to treelist)

Red fir series:
Mild drought:
Severe drought:

White fir series:
Mild drought:
Severe drought:

Douglas-fir series:
Mild drought:
Severe drought:

Pine/Oak:
Mild drought:
Severe drought:

10% of ba of White and Red fir killed (all sizes)
20% of ba of White and Red fir killed (all sizes)

10% of ba of White fir killed (all sizes)
20% of ba of White fir killed (all sizes)

20% of ba of White fir killed (all sizes)
40% of ba of White fir killed (all sizes)

40% of ba of White fir killed (all sizes)
60% of ba of White fir killed (all sizes)

117

PINES KEY

Thresholds of basal area (ba) per PA G

Jeffrey pine and Pine/Oak:
Douglas-fir/dry and White fir/dry:
Douglas-fir/wet, White fir/wet, and Red fir:

Severity (applied to treelist)

> 80 sq ft/ac.
> 120 sq ft/ac.
> 180 sq ft/ac.

Mild drought:
Severe drought:

10% of ba of all pines killed, largest first
30% of ba of all pines killed, largest first

118

119

Appendix D: FOFEM Tables

Each of the six tables below represent the FOFEM mortality index used for the

particular species indicated. The columns are broken into two foot flamelength intervals.

The rows are DBH intervals. The table value is a percentage such that a value of 0.65

means that 65% of the trees-per-acre are killed.

Flamelength Category
2 4 6 8 10 12 14 1

1 1 1 1 1 1 1 1
r 0.9 1 1 1 1 1 1

0.85 0.95 1 1 1 1 1
0.75 0.95 1 1 1 1 1

0.65 0.85 1 1 1 1 1
1 0.45 0.7 0.95 1 1 1 1

1 0.4 0.65 0.9 1 1 1 1

1 0.35 0.6 0.8 1 1 1 1
~ 1
0

0.3 0.55 0.75 1 1 1 1
C) 1 0.25 0.5 0.75 0.95 1 1 1 Q) -l1l 0.2 0.45 0.65 0.85 1 1 1 (.)

:c 2 0.2 0.4 0.65 0.85 0.95 1 1
CD
0 0.2 0.35 0.55 0.85 0.95 1 1

0.2 0.3 0.55 0.75 0.95 1 1

2 0.15 0.25 0.5 0.75 0.95 1 1

0.1 0.25 0.45 0.75 0.9 1 1

0.1 0.25 0.45 0.75 0.9 1 1

0.1 0.25 0.45 0.65 0.85 1 1

0.1 0.2 0.35 0.65 0.8 1 1

0.1 0.2 0.35 0.55 0.75 1 1

4 0.1 0.2 0.35 0.55 0.75 0.9 1

Table 2: Oregon white oak

1

1
1
1

1
1

1
1
1
1
1

1
1
1
1

1

1
1
1
1

1

120

Flamelength Category
2 4 6 8 10 12 14 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0.6 1 1 1 1 1 1 1

0.5 0.9 1 1 1 1 1 1

0.3 0.6 1 1 1 1 1 1

1 0.3 0.3 0.9 1 1 1 1 1

1 0.2 0.2 0.8 1 1 1 1 1

1 0.1 0.1 0.6 1 1 1 1 1
~ 1
0

0.1 0.1 0.4 0.9 1 1 1 1
Ol 1 0.1 0.1 0.2 0.9 0.9 0.9 0.9 0. Q)

iii 0.1 0.1 0.2 0.7 0.9 0.9 0.9 0. 0
I 0.1 0.1 0.1 0.6 0.9 0.9 0.9 0.
cc
Cl 0 0 0.1 0.5 0.9 0.9 0.9 0.

0 0 0.1 0.4 0.8 0.9 0.9 0.
0 0 0 0.3 0.8 0.9 0.9 0.
0 0 0 0.2 0.7 0.9 0.9 0.
0 0 0 0.1 0.6 0.9 0.9 0.
0 0 0 0.1 0.6 0.8 0.8 0.

3 0 0 0 0.1 0.5 0.8 0.8 0.
0 0 0 0.1 0.4 0.8 0.8 0.

0 0 0 0.1 0.3 0.7 0.8 0.

Table 3: Douglas fir

121

Flamelength Category

2 4 6 8 10 12 14 16

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0.95 1 1 1 1 1 1 1

0.75 0.95 1 1 1 1 1 1

0.7 0.95 1 1 1 1

1 0.7 0.9 1 1 1 1 1 1

1 0.6 0.85 1 1 1 1 1 1

1 0.6 0.8 0.95 1 1 1 1 1
~
0

1 0.55 0.75 0.95 1 1 1 1 1
Cl 1 0.5 0.65 0.9 1 1 1 1 1 <I) -<ll 0.5 0.65 0.85 1 1 1 1 1 0
I 0.4 0.65 0.85 1 1 1
cc
0 0.4 0.65 0.85 1 1 1

0.35 0.65 0.85 0.95 1 1 1 1

0.3 0.65 0.85 0.95 1 1 1 1

0.3 0.65 0.85 0.95 1 1 1 1

0.25 0.4 0.55 0.9 1 1 1 1

0.25 0.4 0.55 0.8 1 1 1 1

0.25 0.35 0.55 0.8 1 1 1 1

0.25 0.3 0.45 0.7 1 1

0.25 0.3 0.45 0.65 0.95 1 1 1

Table 4: Other hardwoods

122

Flamelength Category
2 4 6 8 10 12 14 1

1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1

0.7 1 1 1 1 1 1 1

0.6 0.6 1 1 1 1 1 1

0.4 0.4 1 1 1 1 1 1

1 0.3 0.3 0.7 1 1 1 1 1

1 0.2 0.2 0.3 1 1 1 1 1

1 0.2 0.2 0.2 1 1 1 1 1

~ 1
0

0.1 0.1 0.1 0.8 1 1 1 1
0) 1 0.1 0.1 0.1 0.5 1 1 1 1 Q) -Cll 2 0.1 0.1 0.1 0.3 1 1 1 1 (.)

I 2 0.1 0.1 0.1 0.1 0.9 0.9 0.9 0.
m

0.1 0 2 0.1 0.1 0.1 0.9 0.9 0.9 0.
2 0.1 0.1 0.1 0.1 0.7 0.9 0.9 0.
2 0 0 0 0 0.5 0.9 0.9 0.
3 0 0 0 0 0.4 0.9 0.9 0.

0 0 0 0 0.2 0.9 0.9 0.
3 0 0 0 0 0.1 0.8 0.9 0.
3 0 0 0 0 0.1 0.8 0.9 0.
3 0 0 0 0 0.1 0.7 0.8 0.

4 0 0 0 0 0 0.6 0.8 0.

Table 5: Ponderosa pine

123

Flamelength Category
2 4 6 8 10 12 14 1

1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1
0.7 1 1 1 1 1 1 1

0.7 0.7 1 1 1 1 1 1
0.6 0.6 0.9 1 1 1 1 1

1 0.6 0.6 0.7 1 1 1 1 1

1 0.5 0.5 0.5 1 1 1 1 1

1 0.5 0.5 0.5 0.9 1 1 1 1
C'
0

1 0.4 0.4 0.4 0.7 1 1 1 1
Cl 1 0.4 0.4 0.4 0.5 1 1 1 1 (]) -ctS 0.3 0.3 0.3 0.3 0.9 1 1 1 0
I 0.3 0.3 0.3 0.3 0.8 1 1 1
co
Cl 2 0.3 0.3 0.3 0.3 0.6 1 1 1

2 0.2 0.2 0.2 0.2 0.4 0.9 1 1

2 0.2 0.2 0.2 0.2 0.3 0.9 1 1

3 0.2 0.2 0.2 0.2 0.2 0.8 1 1

0.2 0.2 0.2 0.2 0.2 0.7 1 1

3 0.1 0.1 0.1 0.1 0.1 0.5 0.9 1

3 0.1 0.1 0.1 0.1 0.1 0.4 0.9 1

3 0.1 0.1 0.1 0.1 0.1 0.3 0.8 1

0.1 0.1 0.1 0.1 0.1 0.2 0.8 1

Table 6: Sugar pine

124

Flamelength Category
2 4 6 8 10 12 14 1

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

0.7 1 1 1 1 1 1 1
0.6 0.9 1 1 1 1 1 1
0.5 0.6 1 1 1 1 1 1

1 0.4 0.4 0.9 1 1 1 1 1
1 0.4 0.4 0.7 1 1 1 1 1
1 0.3 0.3 0.5 0.9 1 1 1 1

~
0

1 0.2 0.2 0.3 0.8 1 1 1 1
C) 1 0.2 0.2 0.2 0.7 1 1 1 1 a, -t'tl 2 0.2 0.2 0.2 0.5 0.9 1 1 1 (.)

:c 2 0.1 0.1 0.1 0.4 0.8 1 1 1
CD
Cl 2 0.1 0.1 0.1 0.3 0.7 0.9 1 1

2 0.1 0.1 0.1 0.2 0.6 0.9 1 1
2 0.1 0.1 0.1 0.1 0.5 0.9 0.9 0.
3 0.1 0.1 0.1 0.1 0.4 0.8 0.9 0.

0.1 0.1 0.1 0.1 0.3 0.7 0.9 0.
0.1 0.1 0.1 0.1 0.2 0.6 0.9 0.

3 0 0 0 0.1 0.2 0.5 0.8 0.
3 0 0 0 0 0.1 0.4 0.8 0.
4 0 0 0 0 0.1 0.3 0.7 0.

Table 7: White fir

125

Appendix E: Hazard Analysis

There are two separate hazard analyses which are then combined to form a single

overall episodic disturbance hazard analysis for the watershed. Both occur at specific

times during stage three of the modeling process.

The insect hazard analysis is a simple look at the landscape to determine if

individual stands would be affected by insects if the current simulation period was a

drought type period. Regardless of what the weather pattern actually is for the current

simulation period the insect hazard analysis assumes there is drought type weather; it's a

"what if' scenario. It is a Yes-No analysis and no attempt is made to calculate actual

severity. The rules for determining whether or not a stand is hit by insects are found in

the section titled Apply Insect Disturbance. This analysis is done on a stand-by-stand

basis. Once completed the SafeD model stores a 0-1 variable indicating whether or not

each particular stand is susceptible to insect mortality.

The flame hazard analysis is a more complicated look at the landscape involving

the calculation of a flame height for each stand under the assumption that a theoretical

fire has occurred in the stand. An external program called FLAMMAP is used for this

analysis. FLAMMAP is a raster-based program that takes particular landscape attributes

and weather stream information to calculate a flame height for each pixel; in our case

each pixel is a stand. FLAMMAP is a recently developed program written by the same

developer of FARSITE (Finney, 1999). Our use of FLAMMAP is on an experimental

basis. The science team felt comfortable using FLAMMAP at this time because of

related work completed by Finney and the Fire Science Laboratory (see previous Apply

Fire Disturbance section). Future work on the SafeD model should incorporate better

documentation on FLAMMAP as it becomes available.

What is important to understand about our flame hazard analysis (in relation to my

thesis) is how the SafeD model prepares the input data for FLAMMAP. FLAMMAP

needs five landscape attribute grids and several parameterization and weather stream files

to work. The five landscape attribute grids are: fuel model, canopy closure, height to

live crown, crown bulk density, and stand height. This information is currently stored

within the SafeD model and it must be exported to an external ASCII file that the

FLAMMAP program can read. The parameterization files are some "setup" files that

FLAMMAP looks for to calibrate itself. These files include information about where

files are to be stored and read; what type of output files are wanted from FLAMMAP;

and where the weather stream files are located.

In any given simulation period the flame hazard analysis is started by having the

SafeD model export the current five landscape attribute grids to the hard drive of the

computer and create the needed parameterization files for FLAMMAP. The SafeD

model then "calls up" FLAMMAP. Upon completion FLAMMAP will create a

126

landscape grid that represents the potential flame height for each cell. The SafeD model

reads that information in and temporarily stores it. Flame height is an important indicator

of the potential effects a fire will have on a stand. Flame height can be related through

the First Order Fire Effects Model (FOFEM) to obtain tree mortality (as discussed in the

Apply Fire Disturbance section). The flame hazard analysis is completed by dividing the

calculated flame height into four hazard categories: Low, 0-4 feet; Moderate, 4-8 feet;

High, 8-12 feet; Extreme,> 12 feet.

The last step of the overall hazard analysis is the combining of the insect and fire

hazard analyses. This actually occurs outside of the SafeD model. As I described above,

both the insect and fire hazard analyses output data to the hard drive during each

simulation period. At the end of the entire simulation I combine the two analyses from

each period into a single insect-fire hazard rating through a GIS. It should be noted that

we are currently using these analyses for mapping purposes only. This is why the

combining process is done after the entire simulation and outside of the SafeD model - it

saves computing time.

127

Appendix F: The SafeD Model Code

MAIN.CPP
I**

Start of the BIG program to run SafeD, ,..,·hich will:
1) Call up Premo(heidi's prescription generator) and get prescriptions
2) Pick and optimize prescription selection
3) Initiate episodic disturbances
4) React to disturbances
5) [eventually: Re-optimize stand prescriptions and prescription selection]

-- Coding started 20 Nov, 1998 David Graetz
* * * * * * * * * * * * * * * * ** * * * * * * * * * * ** * * * * * ** ** * * * * * *******I
#include <stdio. h>
#include <Stdlib. h>
#include <String. h>
#include <time. h>
#include <math.h>
#include nglobals.hH
#include gmain.h"
#include "data.h"

//to hold global DEFINES, etc ..
//externa.l functions called up within main I)

//Hold the prototypes for various structures
I I***

ulong NATLN; // A global variable to hold the NextAvaiableTreeListNumber
int WEATHER; // To pass along what the weather status is for a period
int SimWeather fNP]; / / To hold the weather status for entire simulation

//A global array to use for toggling whether to run certain portions at different period (l=yes, O=no) Can only
have 4 periods with 1
int EvaluateThisPeriod[NP]; //see EvaluatePeriods{) in misc.cpp

int UniqueMinor[MAX_SUBWATERSHEDS]; //To hold the ID's for all the different sub-watersheds
int US'#; I /The number of Unique Sub-
Watersheds
I I * * * * * * * * ** * * * * * ** ** ** ** * * ** * * * * * * * * * * * ** ** * * * * * ** * * * * * * * *
// main

II

II

SafeD PROGRAM

/ / * *** * * * * * ** * ** * * * * * * * * * * * ** * * * * * * * * * * * * * ** * * * * * ** * * * * * * * * ** * * * * * * ** * * * * ** * * * * * * * * * **
I! * * * * * * * *** * * ** * * * * * * * * * * * ** * * * * * * * * * * * * * * * ** * * * ** ** * * *
int main ()

// A couple of variables to hold temporary names of files
char run_flammap[250J=•", run_farsite[250]="n;
ulong FirstTreelistThisPeriod;

//-------------------------- End of variable defining-----------------------------------­
/ !Seed the random number generator
srand (time (NULL));

//================================-=========-=---===========-=---
//Ensure that all the needed directories are made
#ifdef MAKE_DIRECTORIES
MakeDirectories();
exit(O);
#endif

//=============-=======================-===========--=-=--=====

EvaluatePeriods (EvaluateThisPeriod); //Fill up the EvaluateThisPeriod array

I /Set the grid environment scope for amls - This must be done after EvaluatePeriods () ! !
EnvScope(EvaluateThisPeriod);

128

Weather Status (SimWeather);
type

//Fill up the SimWeather array with weather

Wet, 2=Moderate, 3= Drought, 4 = Severe Drought
DeleteOldStuff();
\outputs\prescription\modeled* directory before each run

StartTreeDamageFile();
opened later in program in append mode

#ifdef FRAMEWORK_PROJECT
CopyExecutables();
fl:endif

#ifdef NEW_LANDSCAPE_FILES
InitialFiles ();
files ready for perO
exit(!);
fl:endif

//for testing

set the correct global environment #define

#ifdef FREQUENCY_ANALYSIS
TimingChoicePrequency () ;
exit (1);
#endif

/ /Clean up the

//Create a new file that can be

//Get the initial GIS

I /Be sure to

/ / tog:;,le which ones and always exit after

//===============--===========================-====-=--=========-----------===-------------------------------------

I/*** ALWAYS NEED ! ! ! ! ****

129

CreateMainData ();
arrays

//Make the initial Data.* structure

//REMEMBER: The Data.Goal and Data.Hold arrays get filled here if #define
RERUN_SIM, otherwise

// they will be picked and inputted into the Data.* arrays in
PickPrescriptions ()

//--=====-===

I I * * * * * * * * *** * * * * * * * * * * * * * * ** ** * * * * * * * * * * * * ** * * * *
//*** ALWAYS NEED ! ! l l ****
//Fill up the global UniqueMinor[] array and get the global USW value
USW = CountSubWatersheds(UniqueMinor) ;
/ / * * * ** * * * * * * * ** ** * * * * * * ** * * * * ** * * * * * *

//==========-==
#ifdef OWNERSHIP_ANALYSIS
from that
OWnershipByMinor (USW, UniqueMinor) ;
exit (1);

#endif

//must be after CreateMainData - needs info

/ / = = = = = == = ====== = = = = == == == = = = =:, = = = = = = = = === = = = = = = = = = - = = -· = = = = - = = = = = = = == ==-==== = = = =

I I * * * * * * * * * *** ******** ****** ** * * * * ** ** * * * ""* * * ** ** ** * * * * * ***
//WARNING - Use the below function ONLY when I need to COMPLETELY redo initial prescriptions (see globals .h)
#ifdef INITIAL_PREMO
//InitialPremo();
goals, for all the initial stands
CreateSortedPremoBinaryFile();
exit(O); //for testing
#endif

//Run StandOpt. exe for all the

I I ** * * * * * * * * * * * * ** * * * * * * * * * * ** ** * * ** * * **

//---------a===•====••========•==================
//*** ALWAYS NEED!!!! ****
//Get the initial fuel model and tuel loadings
InitialFuelController ();

I !Also initiaiize background ERA values for everyone
InitialEraValues ();
//=========a===============•=====================

I I ** * * * **** * * * ** **
/ /Determine or reload the prescriptions to use
#ifdef OPTIMIZE
HoldaO

//and I don't want to use default Goal=9,

PickPrescriptions(GOAL_TO_USE);

/*
//see below for goal It meanings

1 Even-flow of timber by sub-watershed w/ full range of activities allowed in LSR's and Riparian reserves
Grow Only
The Finney-Effect Mbricks" - for FRAMEWORK only

4 Rx6 - of the Framework alternatives
• I
#else
ReuseBestPrescription{GOAL_TO_USE);
#endif
//exit(O); //for testing - if goal maps and stuff are needed be sure to run
OutputPreSimAnalysisData ()
I I ** * * * * * * *** ************** ** * * * * * * * ** * * * * * * * * * * * * * * * * ***** ****** * * **

I I + + + + + + + + + + + ++ + + ++ ++ + + + + ++ ++ + + + + + + +

#ifdef ALL_GOALS_BIGTREES
I /Do an analysis and see what the Big Trees values are if using one solid goal assignment across landscape (for all
10 goals).
I /NOTE: needs to have the "InitOpt. bin" file create for the landscape goal, so PickPrescription () needs to have
been run for goal
OutputPotentialBigTreesAllStandGoals()~
#endif
I I+++

//========-===================-==================
//*** ALWAYS NEED ! ! ! ! ****
// Fill up the Data.*[] arrays with Premo data
Fi llini tialPremoData (O) ;

//exit(l} ~

!/===

DoubleCheckVegcodes () ;

//period O indicates an initial run,

I I++
// Redo the HLC and CBD measurements
RedoHlcCbd I I ;
I I++

I I * ***** * * * * * * ** ** * * * * * * **"' ** * * *
I /NEED FOR ANALYSIS AND MAPS TO SHo:q '"'1HAT IS HAPPENING or HAPPENED BEFORE ENTERING SIMULATION PERIODS
#ifndef RERUN_SIM
if (OutputPreSimAnalysisData () == FALSE)

Bailout{52);
:Jl:endif
//exit(O); //for testing

130

I I * * * * * * * * * * * ** * * * * * * * * * ** * * * * * * ***

/ /goto END;

//Set the variable NATLN' (Next Available Tree List Number) at this point and updated throughout program
NATLN = FIRST_AVAILABLE_TREELIST;

II --

// --------------- All the above needs to take place before Period 1 occurs.

II --

for(period=l;period<=NP;period++}
{

I I***•***•**
// It is assumed, that when SafeD enters Period l, that there has been 5 yrs of growth
// and harvest in Premo. Premo works by taking a Time O treelist, harvesting (if at all) right
// away and then growing forward 5 years (and accounting for periodic mortality). So SafeD will
// assume that the Premo values stored fer Period 1 are values that represent activity and growth.
I I**

//print some stuff to screen
StartPeriodinfo(period);

/ /Get the weather to pass on
WEATHER= SimWeather[period-1];

//set weather to while developing
/ /WEATHER = 3;

model

/ /Delete the stuff (if any) in the Modified directory before ANY disturbance
DeleteModified();

//Adjust the fuel loadings for decay and new fuel loading contributions - and then calculate new fuel

AdjustFuelStuffForGrowth(period);

!!============================ Start Episodic Disturbances

// At period 1, this means there has been Syrs flperiod) of harvest and growth (i.e.
management) before 1st disturbance

I I - ---- ========================== ==== === ======================== ====== = = = == ==== == = == = ===== ===== == = = = == ===

FirstTreelistThisPeriod ~ NATLN';

//Send out a file to show where the potential Bug problems are this period (assuming a drought year)
MapPotentialBugs(period);

// ******************* First disturbance to occur will be insects ***********************
:/tifdef USE_BUGS

:/tendif

if(ApplyinsectDisturbance(period, WE.~THER, FirstTreelistThisPeriod) == FALSE)
Bailout(76};

I***•**•**********************
NOTE: The insects did some damage and their effects to HLC, ST..~DHEIGHT, CBD, and CLOSURE
were recalculated - but we do not have anything to update their effects to the fuel loadings
thus the FuelModels are not changing. - This is OK according to Bernie 16Feb00

* * * * * * ** * * * * * * * * * * ** * * ** ** * ** ** *******I

//Output landscape data for Flammap and Farsite for this period (FUEL, HEIGHT, BLC, CBD, and CLOSURE)
if(OutputCurrentLandscapeData(period) == FALSE)

Bailout (50);

/ /Output some random fuel loads and fuel model for evaluation
OutputFuelLoadsModel(period);

//*********************** Prepare and run FLAMM...'!..P
if (PrepareFlammap (period, WE.~THER) FALSE)

Bailout (0);

#i fde f USE_FLAMMAP I I****** RUN FL.AMMA.P and output the results to ... \outputs\ \per*\ f lammap. asc

#endif

if (Ev'aluateThisPeriod[period-1] -= TRUE)
{

sprintf {run_f lammap, "%s%s%d\ \per%d\ '-runflammap. bat", PREFIX, INPUTS, GOAL_TO_USE,period);
system(run_flarnmap);
CleanAndSave (period, FLAMMA.P ,ACTUAL);
InOutFlammapResults(period, ACTUAL};

//*********************** Prepare and run FARSITE
if(PrepareFarsite(period,Y'JEATHER} FALSE)

Bailout (l);

#ifdef USE_FARSITE //****** RUN FARSITE - apply the effects and update data
sprintf (run_farsite, "%s%s%d\ \per%d\ \runfarsite. bat", PREFIX, INPUTS, GOAL_TO_USE, period) ;
system(run_farsite);

131

CleanAndSave (period, FARSITE,ACTUAL);
ApplyFireDisturbance(period, FirstTreelistThisPeriod};

out - double check before running for real
/ /stuff in CountFireHit () commented

iendif / /use_farsite

data
//After all the disturbances, figure out which stands were hit - make new Premo runs - and input the new

if (period ! = NP)
//Don't do on last periodl
ManageNewPremoRuns(FirstTreelistThisPeriod, period);

//A double check to make sure vegcodes are OK before outputting
DoubleCheckVegcodes (};

//Output the current VEGCODES for GIS mapping
if (EvaluateThisPeriod[period-1] "'"' TRUE)

OutputVegcodes(period);

EndPeriodinfo(period);
}/ /end of for(period=l;period<=NP;period++)

II--

! I --- END OF PERIOD RUNS ---

II --

1/END,

//ANALYSIS AND MAPS TO SHOW WHAT HAPPENED AFTER THE SIMULATION
if (OutputPostSimAnalysisData(} == FALSE}

Bailout(52l;

return TRUE;
}//end main program

//------------ Variable and functions called or used in main() ------------------------

//variables to use within main(}
int period;

//define in StandOptStuff.cpp
extern void InitialPremo{void);
extern void FillinitialPremoData(int per);
extern void CreateSortedPremoBinaryFile(void);
extern int ManageNewPremoRuns(ulong FTL, int Per);

//defined in ReadData.cpp
extern int CreateMainData(void);

//defined in PrepareFarsite.cpp
extern int PrepareFarsite(int period, int weather);
extern void InitialFiles (void);

//defined in PrepareFlarnmap.cpp
extern int PrepareFlammap(int period, int ·weather);
extern void InOutFlarnmapResults(int p, int Status);

//defined in ArcinfoController.cpp These are not called up an:tmore
extern void VectorResults(int p};
extern void VegCodeMapping(int status);

//defined in FireEffects.cpp
extern int ApplyFireDisturbance(int period, ulong FTTP};
extern void DoubleCheckVegcodes(void);

/ /defined in Misc.cpp
extern void MakeDirectories (void};
extern void EnvScope(int Eval(NP]};
extern int CountSubWatersheds(int UM{]};
extern void StartPeriodinfo(int p};
extern void EndPeriodinfo(int p);
extern void DeleteOldStuff(void);
extern int WeatherStatus(int Weather[NP]);
extern int EvaluatePeriods (int Eval [NP]);
extern void Bailout { int ErrorNumber);
extern void CleanAndSave(int Per, int Program, int Status);
extern void DeleteModified(void);
extern void CopyExecutables(void);
extern void StartTreeDamageFile(void);

//defined in goal_controller.cpp
extern void PickPrescriptions (int goal) ;
extern void ReuseBestPrescription(int goal);

//defined in OutputData.cpp

extern int OutputCurrentLandscapeData(int Perl;
extern int OutputPreSimAnalysisData (void) ;
extern int OutputPostSimAnalysisData (void) ;
extern void TimingChoiceFrequency(void);
extern void OWnershipByMinor(int USW, int UniqueMinor[]);
extern void OutputFuelLoadsModel(int Per);
extern void OutputPotentialBigTreesAllStandGoals(void);
extern void OutputVegcodes(int Per);

/ /defined in Insects. cpp
extern int ApplyinsectDisturbance(int Per, int Weather, ulong FTTP};
extern void MapPotentialBugs(int Per);

//defined in CormnonDisturbance.cpp
extern void StartPtrTpinfo(struct PTR_TFP *ptr_info, ulong FirstTreelist);

//define in FuelEra.cpp
extern void InitialFuelController(void};
extern void AdjustFuelStuffForGrowth (int ActualPer};

//define in EraStuff.cpp
extern void InitialEraValues(void);

//defined in StandData.cpp
extern void RedoHlcCbd(void);

GL03A .. LS.H

/ / * ** * * * * * * ** * * * * * * * ** * ** * * * * ** * * * * * * * * * * * * * * ** * * * * * ** * * * * ** ** * * * ** * * * * * * * * * * ** * * * * *
II Common Macros and #define for any project
/ / ** * * * * * * * * * * * * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * * * * *.., * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * ** *

//Make sure only one "*_PROJECT'' is used below - ,.-,·ill tell which *_Globals,h file to use
#define APPLEGATE_PROJECT
/ /#define FRAMEWORK_PROJECT

I I==========------- -- = === = = = ===== = = = = = = = = = = = = = = = -----------= = -= = = = = = = = = = = = = = = == = = == = = =• • • • • • • • • • • • • = -= -= = =• = • • =
//============•=••••=••·········---------------------------=---------------=====---------------------=••=•=••==

/ /Miscellaneous DO NOT CHANGE
typedef unsigned short ushort;
typedef unsigned long ulong;
#define FALSE
#define TRUE
#define REAL
#define FAKE

0
1

132

#define PREDICTED //used as a toggle when inputting some data
(e.g. InputFlammap()
#define ACTUAL II

#define REUSE 2
#define LAST 3
#define FLAMMAP // toggle to indicate stuff for
FLAMMAP
#define FARSITE 2 // toggle to indicate stuff for
FARSITE
#define SAFED 3 // for general SAFED stuff
#define SWAPl 1 // toggle for a one-swap move
#define SWAP2 2 // toggle for a two-swap move
#define FILE_TYPE 2 II 1 AsciiFiles, 2 -BINARY files

I/***** TOGGLE switches to indicate whether or not to use certain parts of code (comment or uncomment as needed)
/ /#define NEW_LANDSCAPE_FILES / /'..,hen changes have been made to original GIS data - will call up Arcinfo
and create new
//#define MAKE_DIRECTORIES
//#define SAVE_FOR_RERUN
to be used
#define RERUN_SIM
previous run and want comparison
//#define OPTIMIZE
//#define INITIAL_PREMO

//for a new project using a new DRIVE PREFIX only
//use to save certain large files if RERUN_SIM is going

/ /use if this is simulation run is Identical to

I /Otherwise, Goal defaults to 9 and Hold defaults to 0
//Run PREMO for all the initial stands

II*** These toggles should almost always be on when running full, actual simulations
#define CREATE_TREE_INDEX //Toggle for the CreateTreeindex function call in ReadData .. cpp
#define USE_BUGS
#define USE_FLAMMAP
#define USE_FARSITE
#define END_PERIOD_PREMO

//Whether or not to actually run FLAMMA.P each period
//Whether or not to actually run FA..RSITE each period

//Whether or not to actually run PREMO at end of period

//***** ALWAYS USE THE BEST GOAL-HOLD FOUND IF NOT ACTUAL~Y OPTIMIZING ON THIS Rlill
#ifndef OPTIMIZE
#define USE_BEST_GOAL_HOLD
in Read.Data.cpp)
#endif

//Only to read in a previous goal and hold solution found (used

//***** Switches to use for PRE or POST-SIMULATION ANALYSIS - will control what data gets outputted - may not need
all these
#define ACRES_HARVEST
#define MAP _GOALS

//***** DIFFERENT ANALYSIS TO RUN BEFORE SIMULATIONS - called up in main.cpp and have an exit(l) statement after

/Ito evaluate harvest timing choices from prescriptions
//to see what the% ownership is by 6th field subwatershed

133

//#define FREQUENCY_J\NALYSIS
//#define OWNERSHIP_ANALYSIS
.ff:def ine ALL_GOALS_BIGTREES
the stand goals applied only

//to see BigTrees for one landscape goal for each of

//***** Goal variables
#define APPLE_ERA 1
#define GROW_ONLY
#define FINNEY_EFFECT / /The finney '"bricks"
#define RX6

//JoAnn's rules to mimic alternative of the Framework stuff
#define GOAL_TO_USE (GROW_ONLY) //which of the landscape goals to run - see rnain.cpp
for values

//*****Seta little error checker for conflicts with the above ll'defines - will print up on debug window in
compiler
#if defined(RERUN_SIM) && defined(OPTIMIZE)
#error ERROR: Can't have RERUN_SIM and SAVE_GOAL_HOLD defined at the same time
#endif

#if defined(RERUN_SIM) && defined(S.ZI.VE_FOR_RERDN)
ierror ERROR: Can't have RERUN_SIM and SA'1E_FOR_RERUN defined at the same time
#endif

#if defined(RERUN_SIM) && defined(PREDICTED_FLAMMAP}
lferror ERROR; Can't have RERUN_SIM and PREDICTED_FLAMMAP defined at the same time
lfendif

#if defined(APPLEGATE_PROJECT) && GOAL_TO_USE == FINNEY_EFFECT
#error ERROR: The Applegate project does not have rules set up to apply the Finney Effect
#endif

#if defined(APPLEGATE_PROJECT) && GOAL_TO_USE == RX6
#error ERROR: The Applegate project does not have rules set up to apply the RX6 landscape goal
#endif

//Stand Goal globals
lfdefine SG_FIRE
lfdefine SG - INSECTS 1
lfdefine SG FISH -
#define SG_WILDLIFE_S
#define SG_WILDLIFE_C 4
#define SG_PNV
#define SG_COMBOl 6
#define SG COMB02 -
#define SG - COMBO_ALL
#define SG_GROWONLY 9

I/***** Switched for which heuristic I want to use
#define DELUGE
I I# define ANNEAL

I/***** Another prefix for filenames
lfi fdef TABUSEARCH
lfdefine OPTPREFIX "T"
lfelif defined(DELUGE}
#define OPTPREFIX ~o"
#else
#define OPTPREFIX "A"
#endif

I/***** for any heuristic

0

//Tag on to TabuSearch files

/ /Tag on to Deluge files

//Tag on to Simulated Annealing files

#define FIRST_SWAPlCHANCE . 5 0
//50t chance of making a one-swap move during second 1/3 of DelugeLoops

#define SECOND_SWAPlCHANCE . 25
//25t chance of making a one-swap move

#define PRINT_LOOPS

hf (GOAL_ TO_USE == 1)
#define BAS E_ADJ

//Adjustment to the Baseline, determined in GetBaselineVTOI}
#else
#define BASE_ADJ

lfendif

I/***** Some stuff for TABU search

2000

(double}l

(double} 1. 5

lfdefine PENALTY! 1000000 / /penalty assigned when current "move" is already in
solution or is TABU
#define TABULOOP
#define TL ONG

100
15

TabuLong before getting a penalty in Short
#define TSHORT 11
come back into solution in the short term
#define LT_PENALTY 6
enter TLONG times

//***** Stuff for The Great Deluge
#if (GOAL_TO_USE == l)
#define LOOP_FACTOR

I /Number of iterations to run the tabu search
//Number of times a move can enter

/ /Number of iterations a move can't

//Penalty assigned to Short because move has

13
//Multiplied by# of cells in solution-control how many deluge loops

#define RAIN
/ /The RAIN amount to use

#else
#define LOOP _FACTOR

:#define RAIN

#endif

//***** Stuff for Simulating Annealing
#if (GOAL_TO_USE == 1)

#define INITIAL_TEMP

#define LOOPS_AT_ONE_TEMP
#define COOLING_RATE
#define MIN_TEMP
#define DELTA_FACTOR

idefine PENALTY
=#else //default
#define INITIAL_TEMP

idefine LOOPS_AT_ONE_TEMP
#define COOLING_RATE
#define MIN_TEMP
#define DELTA_FACTOR
idefine PENALTY
#endif

I/***** Common Math values & EXPansion values
#define DG2RD O. 017453292

Degree to Radians
#define RD2DG 57. 29577951

Radians to Degrees
#define M2FT 3. 28084
#define FT2M .3048
#define PI

200

#define BASAL_CONSTANT (PI / (4'1441 I

=#define TONS
- this replaces all but D-squared

2000

1000000000

. 99
1000

10

10

50000000000

.985
500000
3

10

I double I . 001

(double) .01

// PI / 180

// 180 / PI

// Meters to feet
// Feet to Meters

3 .141592653 589
//Formula for BA is: {PI * D-squared) / (4 * 144)

I I lbs per ton

134

#define FUEL_LOAD_EXP 10

10

/ /value to * real fuel loadings to
fit ushort and not lose precision
idefine BASAL_EXP
fit ushort
idefine DENSIT'.l_EXP
CB Density to fit ushor t
#define 8 IGTREES_EXP
fit ushort
#define ERA_EXP
to fit ushort
idefine BIG_TREE_SIZE
are evaluating

100

10

100

30

//Expansion value for Basal area to

//Expansion value for

//Expansion value for BigTrees to

//Expansion value for Era

//In INCES, size of big trees we

//**
I!------------- The directory paths that are used throughout the SafeD program ----------
//**
idefine INPUTS
idefine Constantinput
idefine Comrnonini t ial
idefine TREE_INDEX
idefine IT_INDEX

idefine PremoProgName
idefine Farsi teName
idefine FlammapName
idefine FarsiteOutputl
idefine RerunDir
idefine AmlDir

idefine OUTPUTS
idefine VectorOutDir
:#define RasterOUtDir
idefine ErrorDir
ide fine MapDir
idefine GeneralDataDir
idefine PreSimOutputDir
idefine PostSimOutputDir
idefine OutputDelugeDir
idefine Ini tialStandDataDir
idefine ModeledStandDataDir
idefine InitialPresDir
idefine ModeledPresDir
idefine P_ToModDir
idefine P_ModDir

"\\model\ \inputs\ \goal''
"\\model\\inputs\\Constant"
"\\model\ \inputs\ \Cornmonini tial"
"treeindex.txt"
"Initial Tree index. txt"

"\\model\\standopt\\Prerno\\Debug\\Premo.exe"
"\\model\ \ f arsi te \ \ farsi te \\Debug\\ farsi te. exe ''
"\\model\ \ f larnmap\ \ f larnmap\ \Debug\\ f larnmap. exe"
"\\model\ \SafeD\ \per"
"\\model\\RerunData\\goal"

"\\model\ \amls"

"\\model\ \outputs\ \goal"
"\\model\ \outputs\ \vector_out"
"\\model\\outputs\\raster_out"
"\\rnodel\\outputs\\Errors"

"\\model\\outputs\\final_maps"
"\\rnodel\\outputs\\GeneralData"
"\\model\ \outputs\\ PreSimData \\goal"

"\\model\ \outputs\\ PostSirnData \ \goal N

''\\model \ \outputs\ \Deluge\ \goal"
"\\model\\outputs\\StandData\\Initial"
"\\model\ \outputs\ \StandData\ \Modeled"

"\\model\ \outputs\ \prescriptions\\ initial"
"\\model\ \outputs\ \prescriptions\ \modeled"
"\\model\ \outputs\ \prescriptions\ \ToModify"
•·\\model \\outputs\ \prescriptions\ \Modified"

//**
I!------------- Some DEBUG toggles that can be used to turn onJoff printf statements -----
//**
idefine DEBUG_COUNTCELLID
=#define DEBUG_ VEGCODES
idefine DEBUG_MAINDATA
=#define DEBUG_IGPOINTS

idefine DEBUG_FLAMLAYERS
idefine DEBUG_FLAMMAPENVT

#define DEBUG_COUNTSUB
#define DEBUG_DELUGE
#define DEBUG_OBJVALUES
#define DEBUG_DECREASESHORT
#define DEBUG_DELUGEGOALl
#define DEBUG_MAINGOAL2
#define DEBUG_INITIAL_GOAL2
#define DEBUG_FILLVALUESTOOPTIMIZE
#define DEBUG_LOA

135

I I***
// This must be last because many of the macros in the below file require #defines from abo'Je

I I************************************ k * * * ** ** * * * * * k k ** * * * * * * * * * * * * * * * *
#ifdef APPLEGATE_PROJECT
#include •Applegate_Globals.h"
#elif defined(FRAMEWORK_PROJECT)
include •Framework_Globals. h"
#endif

APPT..EGA..'T'E_GT..UBALS. H

I I ** * * * * r• * * ** ** * * * * * * * * * * * * * * * * *
II
I I

Specific macros and #defines for the APPLEGATE project
* ** * * * * ** * * * * * * ** * * ** ** * * * * * * * * * * * * * * *

:ft.cdefine MAIN_USER "applegate"
variables
:ft.cdefine SHORT_NAME ~apple"
PrepareFlammap - for misc. files used by those programs
#define PREFIX "g:~
for sprintf(} calls
#define PREMO_TOGGLE

/ /pass this to any AMLs so they can set proper

/ /mostly used in Prepare Farsi te () and

//Used to set the beginning directory path

II----------------------- Uncomment the en'Jironment to use---­
#de fine WHOLE_RUN
/ /#define LITTLE_RUN
//#define COMPARE_RUN
/ /#define TINY_RUN
II--------------------------------

//For output .asc files to use in Arcinfo
#define CELLSIZE 25
METERS
#define NODATA -9999

//cell-dependent math conversions
#define ACREEQ (CELLSIZE * CELLSIZE * .000247)

:ft.cdefine NODATAFLAG
cell, but there

65000

Cellid. 65000 works as long as no theme data is suppose

value.
#define NONFOREST
non-forest types

209

my treelist values may be>= than NODATAFLAG (65000)

209 flag which already gets nothing done to it in PREMO
#define FIRST_,AVAILABLE_TREELIST 210

'/MUST BE IN

//The equivalent acres in one cell

//indicates input data theme had a NODATA value in this

/ /was a 'Jalid

//to have that

//Easier way to track - this is the flag for

//Also, because

//give it the

#define FUEL_FLAG 999

//For loops, etc
#define NP
#define YIP
#define GOALS
have
#define HOLDNO
evaluate from prescription generator
#define LANDSCAPE_GOALS
making directories for new projects

10

/ /Number of Periods
I /Years In Period

//# of stand goals (in PREMO) that we can

//How many "HoldFor" periods we have to

//The number of landscape goals programmed in - used in

#define MAX_SUBWATERSHEDS 221 //The max number of Unique 6th-field Subwatersheds (use Max value
+ l to handle NODATA in GIS)
#define WATER_BODY
coverage
#define VEGCLASSES
initial classification
#define STAGES
from initial classification
#define FILES

220

13

at 12 (don't need PRULE used in Framework stuff)

15

12

//Misc variables to use with the original GIS layers
#define IN_BUFFER 100
(Fed lands only) for Data.Buffer[]
#define IN_OLDFIRE 100
Data.FireHistory[]

//ID assigned to water bodies in the subwatershed GIS

/ /The number of original Vegetation Classes from

//The number of original Sera! Stage Classes

//The number of input landscape files - leave

1 /V'lhether or not a cell is in the Fed stream buffers

/1Whether or not a cell is in an old fire polygon, for

I;••••• Variable for the Subwatershed ERA threshold - can vary for each period
#define INITIAL_TRYS 5 //How many times to use the below ERA
threshold values before failing

136

#define PERl_ERA 12 // is really 0.28 or something like that (i.e. divided by ERA_EXP

#define PER2 ERA 12 -

#define PER3_ERA 12
#define PER4_ERA 12
#define PERS_ERA 12
#define PER6_ERA 10

:ftdefine PER7 _ERA 9
:ftdefine PER8_ERA 9 / /There must be at least the same number as Number of Periods

//Codes to use when calling up FillPremoData after a disturbance - have no meaning, only for checking
#define FIRE 9997
#define BUGS 9998

//Codes to use when evaluating
#define OWN_PNI
#define OWN_PI
#define OWN_BLM

#define OWN_USFS 76
#define OWN_STATE 89
#define OWN_MISC 124

OWNERSHIP
33
36
69

- these codes were used in Finalo'Wl1.own_code of GIS data
/ /Private Non-Industrial
! /Private Industrial
//Bureau of Land Management

/ /US Forest Service
//State Lands
//Miscellaneous owner

//Codes to use when evaluating L.l\ND ALLOCATION - the codes were used in Finalown.land_code of GIS data
#define ALLOC_NF O //Non-Federal and Private lands
#define ALLOC_RESERVE 41 / /Federal "Late Successional Reserves"
#define ALLOC_WILD 51 //Federal "VJilderness''
#define ALLOC__MATRIX 71 //Federal "Matrix" lands

//GIS Codes for Plant Association Groups
#define PAG_DFDRY 1 //These are the values generated in GIS when
creating the Pag layer
#define PAG_OFWET
#define PAG_JEFFPINE
#define PAG_REDFIR
#define PAG_PINEOAK
#define PAG_WFDRY
#define PAG_WPWET
#define PAG_WATER
#define PAG_BARREN

//GIS Codes for intial vegetation classification
#define GIS_BARREN 1
#define GIS_WATER
#define GIS_SHRTJB
#define GIS_GRASS

2
3
4

//This is really for the Framework - but I need the PRULE to be defined within the code., .. ignore for the Applegate
#if (GOAL_TO_USE FINNEY_EFFECT)
#define PRULE 2 //which "Prescription RULE" grid to use for
the run l=JoAnn's, 2=FinneyEffect
#else
#define PRULE
#endif
II=•--=-===•====-===================================
II CODES SPECIFIC FOR ACTUAL TREELIST DATA

II==

#define TOTALSP
are

10 //The number of treelist species codes there

#define NO_TALL__TREES / /The number of tallest trees to use as a group to
average out and get the stand.height

//Codes for species within Treelist
#define BLACKOAK 0
#define DOUGFIR
#define ICEDAR
#define KPINE
#define MADRONE
#define PPINE
#define RFIR
#define SPINE
#define TANOAK
#define WFIR

;;~status~ codes within Treelist
#define SNAG
#define LIVE
#define DWD

//Premo codes for VegClassification
#define VC_CH
#define VC_DH
#define VC_EH
#define VC_KP
#define VC_MC
#define VC_OPEN
#define VC_PINE
#:define VC_RF
#define VC_WF
#define VC_MC3

2

VC is '"Jeg Class"
l
2
3

8
9
10

//***** Variables for EvaluateThisPeriod put them in chronological order
#define PERl 1 //actual year is {Syr * X
this one
#define PER2 4

.... i.e. 5 for

#define PER3 6
#define PER4 8
#if I PER4 > NP)
#error ERROR: Can't have a higher evaluation period than the Number of Periods (NP) in the simulation
#endif

#ifdef WHOLE_RUN
#define ENVT "wholeN
#define ROWS 2497
#define COLUMNS 3071
#define XLL 445525
#define YLL 4638800
#define UNIQUE 3191999
#define F _XLL 445525. 000000
#define F _YLL 4638800. 000000

137

#define MOC (5280 * FT2M / CELLSIZE) / /The nurnber of cells it takes
to make a linear mile { Mile
#endif

#ifdef LITI'LE_RUN
#define ENVT "little"
#define ROWS 945
#define COLUMNS 976
#define XLL 496385
#define YLL 4653248
#define UNIQUE 467878
#define F_XLL 4963B5.906250
#define F_YLL 4653248.000000
#define MOC

Of Cells MOC I

WHOLE_RUN- lowering because this test area is too small
#endif

#ifdef COMPARE_RUN
#define ENVT "compare"
#define ROWS 264
#define COLUMNS 363
#define XLL 479753
#define YLL 4646797
#define UNIQUE 95832
#define F_XLL 479753. 851912
#define F_YLL 4646797.395176
#define MOC
\.ffiOLE_RUN- lowering because this test area is too small
#endif

#ifdef TINY__RUN
#define ENVT "tiny"
#define ROWS 12
#define COLUMNS 12
#define XLL 488517
#define YLL 4653108
#define UNIQUE 144
#define F_XLL 488517.851912
#define F_YLL 4653108. 395176
#define MOC
WHOLE_RUN- lowering because this test area is too small
#endif

MISC .C?P

30

/* This Misc. cpp code will hold Miscellaneous functions used by various other
pieces of the SafeD program. They are here because at the time of
construction I did not think they fit an"j"N'here more specific
• I

#include <stdio. h>
#include <stdlib.h>
#include <string. h>
#include <direct .h>
#include <time.h>
#include "globals.hn
#include Ndata.h"

//functions used in Misc.cpp
void MakeDirectories(void);
void Bailout (int ErrorNumber);
void EnvScope(int Eval[NP]);
int CountSubvvatersheds(int UM[]);
void StartPeriodinfo(int p);
void EndPeriodinfo (int p);
void DeleteOldStuff(void);
void DeleteinitialStuff (void);
int WeatherStatus(int Weather[NP])i
int EvaluatePeriods(int Eval[NP]);
void CleanAndSave (int Per, int Program, int Sta.tus);
int FillSubEraValues(int SubEra[]);
void DeleteModified (void);
void DeleteToModify(void);
void CopyExecutables(void};
void PrintToStat(int Line, ulong Value);

//see #define MOC in #ifdef

//see #define MOC in #ifdef

//see #define MOC in #ifdef

void StartTreeDamageFile(void);

//Global to use for printing out total* of subwatershed
extern int USW;

//defined in FlammapStuff .cpp - used here again to make sure that file is deleted
extern void DeleteFar(int p);

I I**

void PrintToStat(int Line, ulong Value)
I I**•***
(

/*
This function will print various STATistic intormaticn to a file called ... \presimdata \goalJ \Stats. txt
The file will be created on first call, otherwise appended to. See switch statement below for
what gets printed out.
* I
FILE *OUT;
char Temp[300];
//------------------------- End of variable defining --

/ /Always create the correct file name
sprintf (Temp, "%s%s%d\ \stats. txt", PREFIX, PostSimOutputDir, GOAL_TO_USE);

I /Open the file in the correct mode
if { Line == 1)

OUT fopen(Temp, Nw");
else

OUT fopen(Temp, "a+");

switch {Line)
(

case 1:
fprintf (OUT, "TOTAL CELLS: %lu
break:

\t\t%.2lf acres\n", Value, (double)Value * ACREEQ);

case 2:
fprintf (OUT, "FORESTED CELLS: %lu
break;

\t\t%.2lf a.cres\n',Value, (double)Value * ACREEQ};

case 3:

case 4:

case 5:

case 6:

default:

fprintf (OUT, •CELLS IN SOLUTION: %lu
break;

fprintf (OUT, •TOTAL SUBWATERSHED:
fprintf (OUT, NSUBWATERSHEDS IN SOLUTION:
break;

fprintf (OUT, "ACRES HIT BY FIRE:
break;

fprintf (OUT, •ACRES HIT BY INSECTS:
break;

\t\t%.2lf acres\n"/Value, (double)·Jalue * ACREEQ);

\t\t\t%d\n" ,USW);
\ t \ t \ t%lu \n 11

, Value);

\t\t\t%.2lf\n", (double)•Jalue * ACREEQ);

\t\t\t%.2lf\n", (double)Value * ACREEQ);

fprintf(OUT, •No ideal what I'm printing - sending bad Line value to PrintToStat! ! ! \n"};

fclose(OUT);

) I I end PrintToStat

I I**
void StartTreeDamageFile(void)
I I***"'************************
(

/*
This function will create a new file for every simulation, which can get opened in _i\ppend+ mode during
each simulation and will contain data relating to how many/much trees are affected by either fire or
insects during given periods.
*/
FILE *OUT;
char Temp[300];
//------------------------- End of variable defining---­
/ /Always create the correct file name
sprintf (Temp, "%s%s\ \goal%d\ \TreeDamage. txt', PREFIX, GeneralDataDir, GOAL_TO_USE);

/ /Then just open and close the file to create it for later use - this •,._•ill delete any old copies
OUT = fopen (Temp, "wH);
fclose (OUT);

} //end StartTreeDamageFile

I I**
void Bailout (int ErrorNumber)
I I**

//This function will create a text file with a error message before exiting
//the program because of some error condition

char ErrorMessage [250J;

138

FILE *WriteOut;
char filename [100];

sprintf (filename, "%s%s\ \Error. txt", PREFIX, ErrorDir};

/ /Open up the Error. txt file
WriteOut =- fopen(filename, "w"); //no errcr checking

//Get the appr:::ipriate ErrorMessage to write out
switch (ErrorNU.mber)
{
case O:

case 1:

case 2:
CELLID asc") ;

case 3:

case 4:
TREELIST.asc");

case 5:

case 6:
OWNER.asc~};

case 7:

case 8:
ASPECT. asc") ;

case 9:

sprintf (ErrorMessage, "%s", "Something wrong in preparing FLAMMAP files");
printf("Something wrong in preparing FL..;MMAP files\n");

break;
sprintf(ErrorMessage, "'ts", "Something wrong in preparing FARSITE files");
printf("Something wrong in preparing FARSITE files\n");

break;
sprintf(ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in

printf ("Something wrong with the number of Rows and Columns in CELLID. asc\n");
break;

sprintf(ErrorMessage, "%s", "Something wrong with the X and Y origins in CELLID.asc\n");
printf(''Something wrong with the X and Y origins in CELLID.asc\n");

break;
sprintf (ErrorMessage, "%s '', '' Something wrong with the number of Rows and Columns in

printf(~Something wrong with the number of Rows and Columns in TREELIST.asc\n"};
break;

sprintf(ErrorMessage, "%s", "Something wrong with the X and Y origins in TREELIST,asc\n"};
printf("Something wrong with the X and Y origins in TREELIST.asc\n");

break;
sprintf(ErrorMessage, "%s", "Something wrong •..,·ith the number of Rows and Columns in

printf("Something wrong with the number of Rows and Columns in OWNER.asc\n");
break;

sprintf(ErrorMessage, "%s", "Something wrcng with the X and Y origins in 0%'NER.asc\n");
printf("Something wrong with the X and Y crigins in OWNER.asc\n"};

break;
sprintf(ErrorMessage, "'ts", "Something wrong with the nu..'Tiber of Rows and Columns in

printf("Something wrong with the number of Rows and Columns in ASPECT asc\n");
break;
sprintf(ErrorMessage, "%s", "Something wrong with the X and Y origins in ASPECT.asc\n");
printf("Something wrong with the X and 'i origins in ASPECT25.asc\n");

break;

139

case 10: sprintf(ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in SLOPE,asc");
printf("Something wrcng with the number cf Rcws and Column.s in SLOPE.asc\n");

break;
case 11: sprintf(ErrorMessage, "%s", "Something wrong with the X and Y origins in SLOPE.asc\n");

printf("Something wrcng with the X and Y origins in SLOPE25.asc\n"};
break;

case 12: sprintf(ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in ELEV.asc"l;
printf("Something wrong with the number of Rows and Cclumns in ELEV.asc\n");

break;
case 13: sprintf (ErrorMessage, '' %s", "Something wrong with the X and Y origins in ELEV. asc \n");

printf("Something wrong with the X and 'i origins in ELEV.asc\n"l;
break;

case 14: sprintf (ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in MINOR. asc" l;
printf("Something wrong with the number of Rows and Columns in MINOR.asc\n"};

break;
case 15: sprintf(ErrorMessage, "%s", "Something wrong with the X and Y origins in MINOR.asc\n");

printf("Something wrong with the x and Y origins in MINOR.asc\n");
break;

case 16: sprintf (ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in ALLOC. asc");
printf("Something wrong with the number of Rows and Columns in ALLOC.asc\n");

break;
case 17; sprintf(ErrorMessage, "%s", "Something wrong with the X and Y origins in ALLOC,asc\n");

printf("Something wrong with the X and Y origins in ALLOC.asc\n");
break;

case 18: sprintf(ErrorMessage, "'ts", "Something wrong with the number of Rows and Columns in
STRBUF.asc•);

printf("Something wrong with the number of Rows and Columns in STRBUF.asc\n");
break;

case 19: sprintf(ErrorMessage, "%s··, "Something wrong with the X and Y or:igins in STRBUF.asc\n");
printf("Something wrong with the X and Y origins in STRBUF.asc\n");

break;
case 20~ sprintf (ErrorMessage, "%s", "There appears to be no treelist available for an IndexN"o - see

screen•);

break;
case 21: sprintf (ErrorMessage, "%s", "NOT READY FOR THAT TYPE OF DISTURKLI.NCE in FillPremoOata () \n") ;

printf ("NOT READY FOR THAT TYPE OF DISTURBANCE in FillPremoData (J \n");
break;

case 22: sprintf (ErrorMessage, "%s", '"/llhile updating Data.* arrays after disturbance (FillPremoData), New
Treelist # and Old Treelist # don't match - and they should!");

printf ("While updating Data. "Ir arrays after disturbance, New Tree list # and Old Treelist # don't
match - and they should!");

break;
case 23: sprintf(ErrorMessage, "%s", ''Periods not matching while inputing V_*_*.txt (or SD*) file\n");

printf("Periods not matching while inputing V_*_*.txt (or SD*} file\n");
break.;

case 24: sprintf{ErrorMessage, "%s", ucould not create and fill the AllCFHarvest array in

140

Optimize. cpp\n");

goal \n•);

printf("Could not create and fill the AllCFHarvest array in Optimize.cpp\n");
break;

case 25: sprintf (ErrorMessage, "%s", "Something wrong in generating an initial random solution for this

printf ("Something wrong in generating an initial random solution for this goal \n");

break;
case 26: sprintf(ErrorMessage, "'ts", '·Could not find an answer using TabuSearch for Goal

#%d" , GOAL_TO_USE) ;

printf ("Could not find an answer using TabuSearch for Goal #%d", GOAL_TO_USE);
break;

case 27: sprint£ (ErrorMessage, "%s", "Could not input the solution for this goal - see screen");

break;
case 28: sprintf (ErrorMessage, "%s", "! ! ! ! ! It/ARNING ! ! ! ! ! Not set up to handle more than %d HoldFor

values yet\n• ,HOLDNO);
printf (" ! ! ! ! ! l;Li\PNING ! ! ! ! ! Not set up to handle more than %d HoldFor values yet\n", HOLDNO);

break;
case 29: sprintf (ErrorMessage, "%s", "Something wrong in decreasJ..ng TabuShort");

printf("Something wrong in decreasing TabuShort");
break;

case 30: sprintf(ErrorMessage, "%s", gSomething ,,,:rang trying to print the Periodic Values from VTO"};
printf { "Something wrong trying to print the Periodic Values from VTO");

break;
case 31: sprintf(ErrorMessage, "%s", "Mismatch of data while trying to Input a Solution'};

printf ("Mismatch of data while trying to Input a Solution"};
break;

case 32: sprintf(ErrorMessage, "%s", •·while updating Data.Treelist (UpdateData(} in
FireEffects.cpp) ... Old and New Treelist #'s do not match ... and they should!"};

printf(•While updating Data.Treelist in FireEffects ... Old and New Treelist #'s do not
match ... and they should! •) ;

break;
case 33: sprintf(ErrorMessage, "%s", ·•In FOFEM(} .received a model species code> 9, which is invalid");

printf ("In FOFEMf} ... received a model species code > 9, which is invalid");
break;

case 34: sprintf(ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in VEG.asc");
printf(•Something wrong with the number of Rows and Columns in VEG.asc\n"};

break;
case 35: sprintf(ErrorMessage, "%sg, "Something wrong with the X and Y origins in VEG.asc\n"};

printf(•something w·rong with the X and Y origins in VEG.asc\n");
break;

case 36: sprintf (ErrorMessage, "%s", •·something wrong with the number of Rows and Columns in STAGE.asc"};
printf ("Something wrong with the nurrl)er of Rows and Columns in STAGE. asc \n"};

break;
case 37: sprintf (ErrorMessage, "%s", "Something wrong •,,;i th the X and Y origins in STAGE. asc\n"};

printf("Something wrong with the X and Y origins in STAGE.asc\n"l;
break;

case 38: sprintf(ErrorMessage, ~is", "Something wrong with the number of Rows and Columns in
CLOSURE. asc") ;

printf("Something wrong with the numl1er of Rows and Columns in CLOSURE.asc\n"};
break;

case 39; sprintf (ErrorMessage, "%s", "Something wrong with the X and Y origins in CLOSURE asc\n"};
printf("Sornething wrong with the X and Y origins in CLOSURE.asc\ng);

break;
case 40: sprintf(ErrorMessage, "%s", "Looping is not set up in InitialStandOpt(} to handle more than 2

HoldFors"} ;
printf("Looping is not set up in InitialStandOpt() to handle more than 2 HoldFors");
break;

case 41: sprintf(ErrorMessage, "%s", "HAVING TROUBLES FINIDING A TREELIST-GOAL-HOLD combo in the
ValueToOptimize array") ;

printf("HAVING TROUBLES FINIDING A TREELIST-GOAL-HOLD combo in the ValueToOptimize array\n");
break;
case 42: sprintf(ErrorMessage, "%s", "Something wrong with the number of Rows and Columns in FLAMMAP.fml

or FLAME. ASC") ;
printf ("Something wrong with the number of P.ows and Columns in FLAMMAP. fml or FLAME. ASC\n" l ;

break;
case 43: sprintf (ErrorMessage, "%s 11

,
11 Something wrong with the X and Y origins in FLAMMAP. fml or

FLl\ME.ASC\n" I;
printf(~something wrong with the X and Y origins in FLAHMAP.fml or FLAME.ASC\n");

break;
case 44: sprintf(ErrorMessage, "%s", "Could not find an answer using GreatDeluge or Annealing for Goal

#%d" ,GOAL_TO_USE);

printf ("Could not find an answer using GreatDeluge or Annealing for Goal #%d'", GOAL_TO_USE);
break;

case 45: sprintf (ErrorMessage, "%s", "Something wrong with the nwnber of Rows and Columns in GOAL. asc •) ;
printf(gSomething wrong with the number of Rows and Columns in GOAL.asc\n");

break;
case 46: sprintf(ErrorMessage, "%s", "Something wrong with the X and Y origins in GOAL.asc\n");

printf(hSomething wrong with the X and Y origins in GOAL.asc\n");
break;

case 47: sprintf(ErrorMessage, ''%s", "Something wrong with the number of Rows and Columns in HOLD.asc");
printf("Something wrong with the number of Rows and Columns in HOLD.asc\n"l;

break;
case 48: sprintf(ErrorMessage, "%s", "Something wrong with the X and Y origins in HOLD.asc\n"l;

printf(hSomething wrong with the X and Y orJ..gins in HOLD.asc\n");
break;

141

case 49: sprintf(ErrorMessage, "%s", "Have a BASAL, CLOSURE, or CED input value over 655 in a SD_*_*_.txt

printf("Have a BASAL, CLOSURE, or CBD input value over ES5 in a SD_*_*_,txt file\n");
break;

case 50: sprintf(ErrarMessage, ''%s", "Something "vJrong while trying to create new Flarnmap and Farsite
input data \n") ;

printf("Samething wrong while making new Flamrnap and Farsite input data for next period\n");
break;
case 51: sprintf(ErrorMessage, "%s", "In Goal*.cpp, EligibleCell and AllocOK do NOT match - something

wrong\n");

printf("In Goal*.cpp, EligibleCell and AllocOK do NOT match - something wrong\n");
break;

case 52: sprintf(ErrorMessage, "%s", "Something wrong while trying to output Analysis data\n" l;
printf ("Something •.,,rrong while trying to output Analysis data\n");

break;
case 53: sprintf(ErrorMessage, ''%s", "Can't harvest where there is a treelist of NONFOREST! ! !\n");

printf("Can't harvest where there is a treelist of NONFOREST!!!\n"/;
break;

case 54: sprintf(ErrorMessage, "%s" "Data.Vegcode has a code for water and the fuel model is NOT 98\n");
pr intf (wData. Vegcode has a code for water and the fuel model is NOT 98 - - Igni tionPoints () \n") ;

break;
case 55: sprintf(ErrorMessage, "%s" "Something wrong with the nu..-nber of Rows and Columns in

FIREHIST. asc") ;
printf("Something wrong with the number of Rows and Columns in FIREHIST.asc\n");

break;
case 56: sprintf(ErrorMessage, "%s'", "Something wrong with the X and Y origins in FIREHIST.asc\n");

printf("Something wrong •.~·ith the X and Y origins in FIREHIST.asc\n'');
break;

case 57: sprintf(ErrorMessage 1 "%s" 1 "Something wrong trying to Run and Fill data with predicted
FLAMMAP\n• I ;

printf("Something wrong trying to Run and Fill data with predicted FLAMMAP\n");
break;

case 58: sprintf(ErrorMessage, "%s", "Something wrong trying to output the PredictedFlarnmapPT values\n");
printf("Something wrong trying to output the PredictedFlammapFT values\n");

break;
case 59: sprintf(ErrorMessage, "%s", ''Appears to be a mismatch between Veg and Stage in 1st four

categories\n");
printf("Appears to be a mismatch between Veg and Stage in 1st four categories\n");

break;
case 60: sprintf(ErrorMessage, "%s", "In InputPremoData there is a treelist of 209 and IS NOT water,

barren, etc. \n");
printf("In InputPremoData there is a treelist of 209 and IS NOT water, barren, etc. \n");

break;
case 61: sprintf(ErrorMessage, "%s", "Could not create and fill the AllBigTrees array in

Optimize. cpp\n");
printf("Could not create and fill the AllBigTrees array in Optimize.cpp\n");

break;
case 62: sprintf(ErrorMessage, "%s" "The Landscape Goal value in globals.h is not

valid (FillValueToOptimize ()) ! \n");
printf ("The Landscape Goal value in globals. h is not valid! (FillvalueToOptimize ()) \n");
break;

case 63: sprintf(ErrorMessage, "%s", "In OutputForestDistribution(l a cell has NONFOREST treelist but not
NONFOREST vegcode \n") ;

printf("In OutputForestDistribution() a cell has NONFOREST treelist but not NONFOREST
vegcode\n"}; break;

case 64: sprintf(ErrorMessage, "%s", "In OutputForestDistribution(J problems figuring a VegCode from
PREMO values\n");

printf("In OutputForestDistribution() problems figuring a Veg:::ode from PREMO values\n");
breaki
case 65: sprintf(ErrorMessage, "~s", "In OutputForestDistribution() problems figuring a StageCode from

PREMO values\n");
printf ("In OutputForestDistribution() problems figuring a Stage:=ode from PREMO values\n");
break;

case 66: sprintf(ErrorMessage, "%s", ''Problem opening the current binary file\n");
printf("Problem opening the current binary file\n");

break;
case 67: sprintf(ErrorMessage, "%s", "Problems generating in the MakeLink() function - undetermined\n");

printf("Problems generating in the MakeLink() function - undetermined\n");
break;

case 68: sprintf(ErrorMessage, "%s", "Not set up to handle more than X number of input landscape files -
see #define FILES\n");

FILES In" I;
printf("Not set up to handle more than X number of input landscape files - see #define
break;

case 69: sprintf(ErrorMessage, "'ts'', "ROWS and COLln.ms wrong in binary file - undetermined which

printf (nROWS and COLUMNS wrong in binary file - undetermined which file\n");
break;

case 70: sprintf(ErrorMessage, •1 %s·•, "XLL and YLL wrong in binary file - undetermined which file\n");
printf (NXLL and YLL wrong in binary file - undetermined ·1:hich file\n");

break;
case 71: sprintf(ErrorMessage, "%s", "BYTEORDER •.,,rrong in binary file - undetermined which file\n");

printf ("BYTEORDER wrong in binary file - undetermined which file\n" l;
break;

case 72: sprintf(ErrorMessage, "%s", "There are more than 4 periods marked as TRUE in
EvaluateThisPer iod [] \n") ;

printf("There are more than 4 periods marked as TRUE in EvaluateThisPeriod[)\n');
break;

case 73: sprintf(ErrorMessage, "%s", ''Problems in FillAvginitialGoal6/)\n");
pr int f (~ Problems in Fi llAvgini ti al Go al 6 () \n") ;

break;
case 74: sprintf(ErrorMessage, "%s", "In GetSumBigTrees() - encountered a duplicate Treelist value -

should not! \n") ~

print£ ("In GetSumBigTrees () - encountered a duplicate Tree list value - should not l \n");
break;

case 75: sprintf(ErrorMessage, "%s", "Couldn't find a \"Key\" during bsearch() in FillPremoData() or
FillValueToOptimize () or InputNewPremoStandData (J \n"};

142

printf("Couldn't find a \"Key\" during bsearch{) in Fi11PremoData() or FillVa1ueToOptimize() or
InputNewPremoStandData(l \n"); break;

insect,

case 76: sprintf{ErrorMessa.ge, "%s", "Something went wrong in the App1yinsectDisturbance routine\n");
printf("Something went wrong in the ApplyinsectDisturbance routine\n");
break;

case 77: sprintf (ErrorMessage, "'ts", "WARNING. . . Count and Record do not match when determining Total,
or fire occurances\n");

occurances\n");
case 78:

printf (~WARNING Count and Record do not match when determining Total, insect, or fire
break;

sprintf (ErrorMessage, "%s", "In Fi 11 ValueToOptimize there is a mismatch of Record.No and POT *
NP!!!! \n" l;

printf(~In Fi11Va1ueTo0ptimize there is a mismatch of Record.No and POT* NP l ! ! t\n");
break;

case 79: sprintf(ErrorMessage, "%s", "In FillValueToOptimize there is a mismatch of ITL and count

printf ("In Fill ValueToOptimize there is a mismatch of ITL and count ! ! ! ! \n");
break;

case 80: sprintf(ErrorMessage, "%s", "Cou1dn't find a \"Key\" during bsearch() GetBaseline'JTO(/,
AdjustValuesSwap*(l,
Ini tialSolutionGoall (J , GetSumBigTrees, Fill_SEra_PValues (} , OutputBigTrees () , Ca 1 cu1 ateSumPeriodEra () \n") ;

printf("Couldn't find a \"Key\" during bsearch() GetBaselineVTO() or A.djustValuesSwap*(),
InitialSolutionGoall () , GetSumBigTrees, Fill_SEra_PVa 1 ues () , OutputBigTrees (J , Ca1 cu1 ateSumPeriodEra () \n");

break;
case 81: sprintf (ErrorMessage, "%s", "There are mere subwatersheds than the global variable

MAX_SUBWATERSHEDS\n" I;
printf (~There are more subwatersheds than the globa1 variab1 e MAX_SUBW.'\TERSHEDS\n");

break;
case 82: sprintf \ErrorMessage, "ts", "Problems determining the e1 igible cells in

DetermineEligibleCells()\n~);
printf { •Problems determining the eligible cells in DetermineEligibleCells () \n"};

break;
case 83: sprintf(ErrorMessage, "%s", "Problems filling the solution during FillSelution()-maybe a goa1

not defined! \n");
printf ("Problems filling the solution during FillSolution i) -maybe a goal not defined! \n");

break;
case 84: sprint f (ErrorMessage, "%s", "Showing there are O sub-watersheds after

CountSolutionWatersheds () \n");
printf("Showing there are O sub-watersheds after CountSolutionWatersheds()\n'); break;

case 85: sprintf(ErrorMessage, "%s", "Mismatch with the #of tota1 or cells or #of Sub-watersheds in
Fill_SBra () or Fill_PerValues () \n") ;

printf ("Mismatch with the #of total or cells or ~of Sub-watersheds in Fill_SEra () or
Fill_PerValues () \n"); break;

case 86: sprintf (ErrorMessage, "%s", "In CalculateSumPeriodEra () there was a problem\n");
print f (P In Calcula teSumPeriodEra (} there '.~·as a prob1 ern\n") ; break;

case 87: sprintf(ErrorMessage, "%s", "X random initial so1utions failed - try changing the SubEra[]
values \n") ;

printf (~id random initial solutions failed - try changing the SubEra [] values\n" 1 INITIAL_TRYS};
break;
case 88: sprintf (ErrorMessage, "%s", "Couldn't find a \"Key\" during bsearch (J in CompareEraMinor (l \n ··);

printf (•couldn't find a \~Key\" during bsearch () in CompareEraMinor { l \n"); break;
case 89: sprintf(ErrorMessage, "%s", "No eligible cells found for this goa1 - something wrong\n");

printf ("\a\a\a\a\a\a\aNo eligible cells- something wrong!!! \n"); break;
case 90: sprintf(ErrorMessage, •·%s", '"The number of unique combinations of variables for

Apply[Insect) [Fire) [Total l Disturbance do not match! \n") ;
printf(w\a\aThe number of unique combinations of variables for

Apply[Insect] [Fire) [Total]Disturbance do not match! \n"}; break;
case 91: sprintf(ErrorMessage, "%:s", "Ce11ids and or Tree1ist va1ues not matching in UpdateDataTreelist(}

or UpdateDataWithNewStandData() \n•·);
printf(•\a\aCellids and or Tree1ist values not matching in UpdateDataTreelist() er

UpdateDataWithNewStandData{) \n"); break;
case 92: sprintf(BrrorMessage, "%s", '"Showing DougFir as TRUE with Pag series that should be

FALSB{ApplyinsectSeverity) \n");
printf("\a\aShowing DougFir as TRUE with Pag series that should be

FALSB(ApplyinsectSeverity) \n"); break;
case 93: sprintf(ErrorMessage, "%s", "Received an invalid Pag value in one of the Insect Mortality

functions\n");
printf("\a\aRecei'.red an in'.ralid Fag value in one of the Insect Mortality functions\n");

break;
case 94: sprintf(ErrorMessage, "%s", "FillSubEraValues failed - probably ha'.re more than periods defined

than it knows how to fill\n");

to fill\n");
printf ("\a\aFillSubEraValues failed - prcbably have more than periods defined than it knows how
break;

case 95: sprintf(ErrorMessage, 1·%s 1
·, "Couldn't find a \"Key\" during bsearch() in

UpdateDa taWi thNewStandDa ta () \n") ;
printf("Couldn't find a \"Key\" during bsearch() in UpdateDataWithNewStandData(}\n"};

break;
case 96: sprintf (ErrorMessage, "%s", "Records and RecordsNeeded not matching while creating new Premo

Stand Data Inv structures\n");
printf("Records and RecordsNeeded not matching while creating new Premo Stand Data Inv

structures \n") ; break;
case 97: sprintf (ErrorMessage. "%s", "Mismatch of numbers when counting and filling data for Allinfo(] or

UniqueList [) \n");
printf ("Mismatch of numbers when counting and filling data for Allinfe [) or UniqueList [J \n");

break;
case 98: sprintf(ErrorMessage, •·%s", "Couldn't find an initial treelist in the Treeindex.txt fi1e during

Initial FuelEra stuff\n");

stuff\n");
printf(~couldn't find an initial treelist in the Treeindex.txt file during Initial FuelEra
break;

case 99: sprintf(ErrorMessage, ''%s", "Record count not matching when trying to fill up TREELIST_RECORDS
stuff\n");

printf ("Record count not matching when trying to fi 11 up TREELIST_RECORDS stuff\n") ;
break;
case 100: sprintf (ErrorMessage, "%s", "Got an unrecognizable VegClass during InitalizeFuelLoadings () \n"};

printf (''Got an unrecognizable VegClass during InitalizeFuelLoadings \) \n") ; break;
case 101: sprintf (ErrorMessage, "%s", "Couldn't find a \"Key\" during bsearch () in

LoadinitialFuelModels () \n");
printf ("Couldn't find a \"Key\" during bsearch () in LoadinitialFuelModels {) \n") ;

break;

143

case 102: sprintf (ErrorMessage 1 "%s", ''Found a mismatch of NONFOREST fuel models during a Period run of
FuelDecayAndContribution(} \n");

printf("Found a mismatch of NONFOREST fuel models during a Period run of
FuelDecayAndContribution() \n"); break;

case 103: sprintf (ErrorMessage, "%s", "In CalculateSurnPeriodEra () a Cell id is showing up whose parent
Subwateshed was not in S_Era[J\n");

printf(~In CalculateSumPeriodEra() a Cellid is showing up '-~·hose parent Subwateshed was not in
S_Era [] \n"); break;

case 104: sprintf(ErrorMessage, "%s", "The CS.MaxGoal and CS.Goal values do not match for a SG_FIRE cell
- and they should\n 1');

printf ("The CS .MaxGoal and CS .Goal -,.,.alues do not :natch for a SG_FIRE cell - and they
should \n") ; break;

case 105: sprintf(ErrorMessage, "%s", "The current stand goal assignment got reselected during a
neigborhood search - should not! \n") ;

printf("The current stand goal assignment got reselected during a neigborhood search - should
not! \n"); break;

case 106: sprintf(ErrorMessage, "%s", "The current MoveObj value is not matching what was calculated
earlier in TestObj [], they should! \n");

printf{"The current MoveObj value is not matching what was calculated earlier in TestObj[],
they should! \n"); break;

default: sprintf(ErrorMessage, "%s" 1 "Not sure what the heck the problem is!");
break;

//write out the ErrorMessage
fprintf (Wri teOut, "%s" , ErrorMessage) ;

//close the file
fclose(WriteOut);

//Now exit the program
exit(O);

)//end of Bailout

I I**
void EnvScope(int E'val[NP])
I/**

/*This function is to make a text file called ... \model \outputs\final_maps\envt. txt that will
contain five lines - see below.
* I

FILE *OpenWrite;
int r, count, a;
char Temp[l50];
int SubEra [NP};
char output [10];
//-------------------------------- end of variable defining------------------------------

/I******************************* APPLEGATE *
jj:ifdef APPLEGATE_PROJECT
ll=if ! defined(WHOLE_RUN) && ! defined(COMPARE_RUN) && ! defined(THJ"Y_RUN) && ! defined{LITTLE_RUN)

printf("Environment scope not properly defined in Applegate_Globals.h ... bailing\n");
exit (0);

#endif
#ifdef WHOLE_RUN

sprintf{output, ~%s",ENVT);
printf("\n\t\t\t********* USING THE ENTIRE APPLEGATE EN\TIRONMENT **********\n\n\n");

#endif

#ifdef LI'ITLE_RUN
sprintf(output, "%s",ENVT);
printf("\n\t\t\t********* USING THE LITTLE APPLEGATE ENVIRONMENT **********\n\n\n");

#endif

#ifdef COMPARE_RUN
sprintf (output, "%s", ENVT};
printf("\n\t\t\t********* USING THE COMPARE ENVIRONMENT "*********\n\n\n");

#endif

#ifdef TINY_RUN
sprintf (output, "%s", ENVT);
printf(•\n\t\t\t********* USING THE TINY ENVIRONMENT **********\n\n\n");

#endif
#endif //#ifdef APPLEGATE

I I******************************* FRAMEWORK *
#ifdef FRAMEWORK_PROJECT
#if tdefined(ELTA)

#endif

printf ("Environment scope not properly defined in Frarnework_Globals. h ... bailing\n") ;
exit {0);

#ifdef ELTA

sprintf(output, "%s" ,ENVT);

printf("\n\t\t\t********* USING THE ELDORADO-TAHOE N.F. EN\TIRONMENT **********\n\n\n");
#-endif
#endif I lhfdef FRAMEWORK_PROJECT

I I======================-==--===========----- --- - - - - - ---------------- - - - ---- -- ----------
11 Create and write out info to the file
I I== ==c = == == = ===========

//Create and open the file
sprintf (Temp," %s%s\ \Envt. t:x:t", PREFIX, MapDir) ;
OpenWrite: fopen(Temp, nwH);

II ************* LINE 1 *****************

//open in write mode

144

fprintf(OpenWrite, "%s\nM ,output);
the amls to use

//put in the ··environment code'· for

II ************* LINE 2 *****************

/ /NEW: 5 Nov: Add in a second line that is used as a toggle for the Al'1L in determining if it should
//create new ASCII files or new BINARY files for the initial landscape data
if(FILE_TYPE == 1)

//create ASCII files
else

fprintf (OpenWrite, •· 1 \n '');

fprintf (OpenWrite, "2\n"); //create BINARY files

I I LINE 3

//Third line will now have the GOAL_TO_USE in this file instead of the old way of putting in a separte goal.txt
file
fprintf (OpenWrite, '"%d\n" ,GOAL_TO_USE);

II LINE 4 **

//Now add in a line that has four values - each representing a period that we want to evaluate/map etc .. These
//values are from the Eval[] array passed in to this function
count=O;
for (r=O; r<NP; r++)
(

if(Eval[r] == TRUE)
(

count++;
if(count > 4)

Bailout(72);
else
fprintf(OpenWrite, "%d

fprintf (OpenWrite, M \n");
Arcinfo needs it

I I * * * * * * * * * * * * * LINE 5 * * * * * * * * * * * * * * * * *

",r+l);

/ /New line because

// The fifth line will have all the period ERA thresholds on the same line separated by at least a space
//Set and error checker because this isn't set up for more than 8 periods right now
if(NP > 8 I

printf("Will also need to change stuff in the EnvScope() function to handle more than 8 periods\n"};

// first initialize the SubEra array
for(a=O;a<NP;a++)

SubEra[a] = O;

/ /using the
SubEra[O]
SubEra[l]
SubEra[2]
SubEra[3]
SubEra[4]
SubEra I 5 l
SubEra I 6 l
SubEra[7]

globals.h #define PER1,2,3,4_ERA put the threshold in the SubEra[] array
PERl_ERA;
PER2_ERA;
PER3_ERA;
PER4_ERA;
PERS_ERA;
PER6_ERA;
PER7_ERA;
PER8_ERA;

for (r=O; r<NP; r++)
fprintf (OpenWrite, "'td

fprintf (OpenWrite, "\n");
Arcinfo needs it

/ /Close the file
fclose(OpenWrite);

}//end EnvScope

SubEra [r]) ;

I I**•+******* ~ ~ ~

int WeatherStatus(int Weather[NPJ)
! I**

//Fills up the Weather[] array with codes to use for Weather Type:
// 1 = Wet, 2 = Moderate, 3 = Mild Drought, 4 = Severe Drought
// Will always ouput these codes to .. \perO\weather.txt file so I can reenter the same
/ / weather pattern if I am Re-Runnirn;r a simulation

//New line because

//NOTE: added do loop to make sure there was at least one drought period during a simulation

int a;
char WeatherFile[150];
sprintf (WeatherFile, "%s'ts%d\ \perO \\weather. txt", PREFIX, INPUTS, GOAL_TO_USE);

145

//-- End of variable defining---

//First, initialize the array - regardless if RERUN_SIM
for(a=O;a<NP;a++)

Weather[a] = O;

#ifndef RERUN_SIM

int rnd, Current, Continue, PreviousNeather, HadSevere
FILE *WriteOut;

FALSE, AtLeastOneDrought;

/ /Now fill up the array. If there are Two drought periods in a row, then it is a SEVERE drought on the
//second occurance, and that can happen only ONCE during the entire simulation
do

//Reset this for each do loop try
PreviousWeather = FALSE;
AtLeastOneDrought FALSE;

for(a=O;a<NP;a++}
(

do
(

rnd = { rand(} % 100 + 1) ;

//printf ("RND in WeatherStatus is: %d\n", rnd);

if {rnd <= 25) // a 251; chance
that it IS a drought period

chance of a moderate period

chance of a wet period

Current 3;
else if{rnd > 25 && rnd <= 90)

Current= 2;

else
Current 1;

//If this is a drought, then see if previous period was also a drought
if(Current== 3)
(

//65%

//10%

//Set the toggle to exit the big do loop - drought must be in 1st
4 periods

if(a< 4
AtLeastOneDrought TRUE;

if(PreviousWeather =- 3) //Yes, 2 droughts in a
row SEVERE drought, but can only occur once!

SEVERE - ok, accept

code to indicate a severe drought

if (HadSevere FALSE)

else

:"1eather[al = 4;

Continue = TRUE;
Previ::ius:\leather = Current;
HadSevere = TRUE;

//otherwise, pick another weather for this period
Continue FALSE;

else
//previous period was not a drought, so this is ok, accept

else

\,•,1eather{a] "' Current;
Continue = TRUE;
Previ:::ius:\leather = Current;

//Is a Moderate or Wet year, accept and get next period
(

)while(Continue

) //end for (a=O; a<NP; a++}
)while(AtLeastOneDrought ==FALSE);

v'ieather{a] = Current;
Previous'.'Jeather = Current;
Continue= TRUE;

FALSE);

//this is first

I /Now write the current schedule out to a text file to use if the next simulation run is a RERUN_SIM
WriteOut = fopen(WeatherFile, "w" l; //no error checking

for (aa::;Q; a<NP; a++}
fpr int f (Wr i teOu t, fl %d\n" , \•leather [a] } ;

fclose (WriteOut};
#end if

#i fde f RERUN_SIM
FILE ..,Readin;

//open the weather file, read in the weather and store them in T,-.J'eather []
Readin fopen(WeatherFile, "r"); //no error checking

for(a;Q;a<NP;a++)
fscanf (Readin, "%d", &Weather [a]};

fclose(Readin);
#endif

return TRUE;

) //end Weather Status (}

I I**
int EvaluatePeriods (int Eval [NP])
I I**

//This function will look at the four f.define PERl,2,3,4 variables and set an appropriate
//flag of value 'l' in the Ev-al[] array - which is used throughout program to determine
//whether or not to do things. Mostly used for the periods will be mapped.

int a;

//first initialize the incoming array
for(a=O;a<NP;a++)

Eval[a] = O;

//using -#define PERl,2,3,4 put a flag in the Eval[] array
Eval [PERl-1] 1;
Eval [PER2-1] 1;
Eval [PER3-1] 1;
Eval [PER4-1] 1;

/*
for! a=O; a<NP; a++)
(

if(Eval[a] == 1)

//need correct array notation

printf(~Period %d (year %d) will be evaluated\n" ,a+l, (a+1)*5 J;
)
* I

return TRUE;
) I /end EvaluatePeriods

I I**
int FillSubEraThresholds{int SubEra[]l
I I**
{

/*
This fnnction will fill the incoming SubEra array with the thresholds defined in globals.h
When checking the subwatershed ERA threshold constraint during the landscape optimization,
this will allow a higher threshold in earlier periods and the ability to change that
threshold as time goes on.
* I

int a;

//----------------------------- End of variable defining---------------------------------

//Set and error checker because this isn't set up for more than 8 periods right now
if (NP > 8)

return FALSE;

//first initialize the incoming array
for(a=O;a<NP;a++l

SubEra [a] = 0;

//using the
SubEra [OJ
SubEra [1]
SubEra [2]
SubEra [3 J
SubEra[4]
SubEra[SJ
SubEra[6]
SubEra[7]

globals.h
PERl_ERA;
PER2_ERA;
PER3_ERA;
PER4_ERA;
PERS_ERA;
PER6_ERA;
PER7_ERA;
PER8_ERA;

#define PER1,2,3,4_ERA put the threshold in the SubEra[] array

return TRUE;
}//end FillSubEraValues

I I**
int CountSubWatersheds (int UM [])
I I********* • ..,***
{

/*

146

Whenever called up, it does 2 things:
1) Fills the global UM[] array with SubWatershed :fi''s
2) Returns the number of unique subwatersheds

This function works without using the structures that are seen later in the program because
it is done so early - just after reading the data into the Data.* arrays. However,
the above global array and the return value (set to USW in main()) are useable by all
other functions.
* I
int b,c,next,there;
ushort *ptr_minor;
int *ptr_um; 1 iptr_um is pointer to UM:[]

/1---------------------------------- End of variable defining-----------------------------

147

printf(0 *** Going to count up the total# of sub-watersheds there are ... this number will include GIS slivers and
water bodies ***\n");

//Initialize the UniqueMinor[] array.
for (c= 0; c<MAX_SUBWATERSHEDS; c++)

UM[c] = O;

//pick out the unique numbers in Data.Minor
next""- 0;
for(c=O;c<UNIQUE;c++)
{

there = O:
ptr_minor=&Data.Minor[c];

if (*ptr_minor =- OJ
break:

are

for (b= 0; b<MAX_SUBWATERSHEDS; b++)
{

ptr_wn = &UM[b];
if((*ptr_minor) == (*ptr_um)
{

if (there 0)
{

UM[next]
next++;

if (next > MAX_SUBWATERSHEDS)
Bailout(Bl);

there= l;
break;

*ptr_minor;

//assumes Data.Minor was initialized with O's and there

//no actual Minor sub-watershed values of 0

//means the value is already in the UnigueMinor[] array

printf (" ! ! ! There were %d UNIQUE sub-watersheds found ... HOWEVER, they may not a:!-1 be in the solution\n", next) ;

return next;

) //end of CountSubWatersheds

/ / * * * * * * * * * * * * * * ** * * * * * * * * * * **
void StartPeriodinfo(int p)
I I**

//A little screen notice that the period has starte and everything has checked out OK

puts { "\n \n \t \ t****************** ** "* "*" ******** **** *********** ** "*****" "** "*");
puts("\t\t*** ***");
printf(N\t\t*** PERIOD 'td is starting - Buckle UP! \t """\n",p/;
puts("\t\t*** ***") ;
puts (" \t\t****************** "**" "**""" "* "******" "**************" *"*""""" 11

);

I I**
void EndPeriodinfo(int p)
I I**

//A little screen notice that the period has ended and everything has checked out
//OK and program is continuing on to next period

puts ("\n \n \ t \ t * * * ** ** * ** * * * * * * * * * * * * * ** * * * * * * * *") ;
puts{"\t\t*** ");
printf("\t\t***
puts ("\t\t***
puts ("\t\t**1<

PERIOD %ct has ended - continuing
to next period if applicable.

\t "**\n" ,p_\;
***");
***");

puts ("\ t \ t * * * *** * * ** 11, 11, 11, ** * * * * *" / ;

I I**

void DeleteOldStuff(void)
I I** 1,:-*

/*This will simply delete everything out of the \outputs\prescriptions\modeled* directory
so only new prescription data (for this run of Safe) will be in there. */

char DeleteOldPrescriptions[250];
char DeleteOldStandData[250J;
char JunkFile[J00];

//Make the JunkFile which screen outputs can be redirected to
sprintf (JunkFile, "%s%s\ \Junk. txt '', PREFIX, ErrorDir);

I /Make the strings for the system call
sprint f (DeleteOldPrescriptions, "del %s%s\ \ *. txt > %s", PREFIX, ModeledPresDir, JunkFile) ;
sprintf(DeleteOldStandData, "del %s%s*.txt > %s",PREFIX,MudeledStandDataDir,JunkFile);

puts(''=====================================-------==-==========================-================-=========="),
printf("Getting ready to delete all the files currently in: \\outputs\\prescriptions\\modeled*\n"l;
printf (nand those in ... \ \outputs\ \Stand.Data\ \modeled\\ *\n");
puts(''===");

system(DeleteOldPrescriptions);
system(DeleteOldStandDatal;
) I /end of DeleteOldStuff

I I*************************************** 1,:-* .,. * * * * * * * * * * * *
void Deleteini tialStuf f (void)
I I**

{

/*This will simply delete everything out of the \outputs\prescriptiuns\initial* directory
so only new prescription data (for this run of safe) will be in there. */

char DeleteOldPrescriptions[250];
char DeleteOldStand.Data(250J;
char JunkFile[300];

//Make the JunkFile which screen outputs can be redirected to
sprintf (JunkFile, "%s%s\ \Junk. txt", PREFIX, ErrorDir);

/ /Make the strings for the system call
sprintf (DeleteOldPrescriptions, "del 'ts%s\ \ *. txt > %s", PREFIX, InitialPresDir, JunkFile};
sprintf (DeleteOldStandData, "del %s%s\ \ *. txt > %s", PREFIX, InitialStandDataDir ,JunkFile);

puts("==-=='');
printf\NGetting ready to delete all the files currently in: .. ,\\outputs\\prescriptiuns\\Initial*\n");
printf{"and those in ... \\outputs\\StandData\\Initial*\n");
puts("=====================================------==-==-==========-=======================-==---------======');

system(DeleteOldPrescriptions);
system(DeleteOldStandData);
)//end of DeleteinitialStuff

I I**
void CleanAndSave(int Per, int Program, int Status}
I I**

/* This function will be called up after running FLAMMAP and FARSITE to clean up files and
save those that are necessary.

12Nov: Not actually doing any saving yet!
*I

/ /Files that will potentially be used
char DelBlcFile[256];
char DelCbdFile[256];
char DelHeightFile[256];
char De1Fue1File[256];
char DelClosureFile[256];

filenames
Ndel %s%s%d\ \per%d\ \blc. asc", PREFIX, INPUTS, GOAL_TO_USE, Per);
Mdel %s%s%d\ \per%d\ \cbd. asc 11

, PREFIX, INPUTS, GOAL_TO_USE, Per);
Ndel %s%s%d\ \per%d\ \height. asc", PREFIX, INPUTS, GOAL_TO_USE, Per);
"del %s%s%d\ \per%d\ \fuel, asc 11

, PREFIX, INPUTS, GOAL_TO._USE, Per);

//Create the appropriate
sprintf (DelBlcFile,
sprintf(DelCbdFile,
sprintf (DelHeightFile,
sprintf (DelFuelFile,
sprint£ (DelClosureFile, ndel %s%s%d\ \per%d\ \closure. asc", PREFIX, INPUTS, GOAL_TO_USE, Per);

//During simulation period - delete the landscape ASCII files after Flammap uses - Farsite will use the
"layers.far" binary file!
if (Program == FLAMMAP && Status == ACTU.Zl,L)
{

system(DelBlcF ile) ;
system(DelCbdFile);
system (DelHeightFile) ;
system(DelFuelFile);
system(DelClosureFile);

148

149

/ /Call up the DeleteFar () function after FAR.SITE is finished for an ACTUAL run - the Layers. far file is a binary
//file created by Finney's program and has all the landscape data - it is huge and we don't need except during
//the period.
if (Program == FARSITE && Status === ACTUAL)
(

DeleteFar(Per);

if(EvaluateThisPeriod[Per-1]
(

system(DelBlcFile);

FALSE)

stops Farsite from stalling
system(DelCbdFile);
system(DelHeightFile);
system(DelFuelFile);
system(DelClosureFile);

} //end CleanAndSave

//moving these here to see if it

I I**
void DeleteModified(voidl
I I**

/*This will simply delete everything out of the \outputs\prescriptions\Modified* directory
so only new treelist data during a period will be in there.
* I

char DeleteMod[256];

sprintf {DeleteMod, ~ del %s%s\ \ *. txt", PREFIX, P _ModDir J ;

puts("\n===----===============-=-====================---------------=======
"I;
printf ("Getting ready to delete all the files currently in .. \\model\ \outputs\ \prescriptions\ \Modified*. txt\n");
puts("===----==~)

system(DeleteMod);

}//end of DeleteModified

I I**
void DeleteToModify(void)
I I**

/*This will simply delete everything out of the \outputs\prescriptions\ToModify* directory
so only new treelist data during a period will be in there.
*/

char Delete(256];

sprintf (Delete, "del %s%s\ \ *. txt", PREFIX, P_ToModDir};

puts("\n======-----=-===-======--
");

printf("Getting ready to delete all the files currently in ... \\model\\outputs\\prescriptions\\ToModify*.txt\n");
puts("===----==~=================")

system(Delete);

}//end of DeleteToModify

I I***•~*************************************
void MakeDirectories(voidl
I I***~*****'"'*'"''"'*********
(
/*

This function is designed to check and make sure that all the directories that are going to
be used throughout the program exist already and if they don't exist then to create them -
otherwise, if the program tries to write a file out to a non-existent directory it bails.
* I
char TestDir[250];
int a,b;
//------------------------------- End of variable defining-------------------------------

//Always change to the appropriate DRIVE because I think some of these calls won't work across drive letters?
sprint£ (TestDir, 11%s 11

, PREFIX}; //This directory has to be made by hand for
this code to work!!!!!
_chdir(TestDir);

//First make the main MODEL directory
sprintf (TestDir, "%s\ \Model", PREFIX);
if(_chdir{TestDir} ;

_mkdir (TestDir};

I I***
// Make all the directories under MODEL
I I***
sprintf (TestDir, "%s\ \Model\ \amls", PREFIX);
if(_chdir(TestDir))

_mkdir (TestDir};

sprintf (TestDir, "%s\ \Model\\ farsite" , PREFIX) ;
if(_chdir(TestDir))

_mkdir(TestDir);

sprintf (TestDir, "%s \\Model\\ f lamrnap" , PREFIX) ;
if (_chdir(TestDir) }

_mkdir (TestDir);

sprintf (Tes tDir, • %s \\Model\\ inputs" , PREFIX) ;
if(_chdir(TestDir))

_mkdir(TestDir);

sprintf (TestDir, • %s \\Model\\ outputs", PREFIX) ;
if(_chdir(TestDir))

_mkdir(TestDir);

sprintf (Tes tDir, • %s\ \Model\ \RerunData", PREFIX);
if(_chdir(TestDir})

_mkdir (TestDir};

sprintf(TestDir, "%s\\Model\\SafeD" ,PREFIX);
if (_chdir (TestDir))

_mkdir (TestDir};

sprintf (TestDir, "%s\ \Model\ \standopt", PREFIX) i

if(_chdir(TestDir))
_mkdir (TestDir);

I I***
I/ Make directories under Model\ \amls

I I***

sprintf (TestDir, "%s\ \Model\ \amls\ \info", PREFIX);
if I _chdir(TestDir) }

_mkdir (TestDirl;

I I***

// Make directories under Model\\farsite

I I***

sprintf (TestDir, • %s\ \Model\\ farsite \ \ tarsite 11
, PREFIX) ;

if(_chdir(TestDir))
_mkdir (TestDir};

sprintf (TestDir, "%s\ \Model\ \farsite\ \ farsite\ \Debug", PREFIX);
if(_chdir(TestDir})

_mkdir(TestDir);

I I***

I I Make directories under Model\\ flammap

I I***

sprintf (TestDir, • %s\ \Model\ \tlammap\ \ flammap", PREFIX) ;
if{ _chdir{TestDir})

_mkdir(TestDir);

sprintf (TestDir, •ts\ \Model\\ f lammap\ \ tlammap\ \Debug", PREFIX) ;
if(_chdir(TestDir))

_mkdir(TestDir);

I I**'***************************************'''*'****
// Make directories under Model\\inputs
I I***

sprintf (TestDir, "%s\ \Model\\ inputs\ \Constant", PREFIX) ;
if (_chdir (TestDirJ)

_mkdir(TestDir};

sprintf (TestDir, "%s \ \Mode 1 \\inputs\ \Constant\\ into" , PREFIX) ;
if(_chdir(TestDir))

_mkdir (TestDir};

sprintf {TestDir, "%s\ \Model\\ inputs\ \Commoninitial", PREFIX);
if (_chdir(TestDir))

_mkdir(TestDir);

sprintf (TestDir, "%s\ \Model\\ inputs\ \Commoninitial \\into 11
, PREFIX) ;

if (_chdir (TestDir))
_mkdir(TestDir);

I /-----For the goals under inputs
for (a=:l; a<=LANDSCAPE_GOALS; a++)
{

sprintf (TestDir, N%s\ \Model\\ inputs\ \goa1%d", PREFIX, a);
if(_chdir(TestDir))

_mkdir{TestDir);

150

//For the periods under each goal
for(b=Oib<=NP;b++)
(

sprintf (TestDir, "%s \\Model\ \inputs\ \goal%d\ \per%d", PREFIX, a, b);
if (_chdir (TestDir))

_rnkdir (TestDir);

sprint£ (TestDir, "%s\ \Model\ \inputs\ \goal%d\ \per%d\ \info", PREFIX, a, b);
if(_chdir(TestDir))

_mkdir \TestDir};

I I**
II Make directories under Model\ \outputs

I I**********************************""***********""**

/ /--======================== DELUGE ====================================
sprint£ (TestDir, u%s\ \Model\ \outputs\ \Deluge", PREFIX) i
if(_chdir(TestDir))

_mkdir(TestDir);

I /-----For the goals under Deluge
for {a=l; a<=LANDSCAPE_GOALS;a++)
(

sprintf (TestDir, "%s\ \Model\ \outputs\ \Deluge\ \goal%d", PREFIX, a);
if(_chdir(TestDir) }

_rnkdir (TestDir};

I I==:======================= ERRORS ================---=================
sprintf (TestDir, "%s\ \Model\ \outputs\ \Errors", PREFIX);
if (_chdir (TestDir))

_rnkdir(TestDir);

I I========================== FINAL_MAP S ========== = = - -- ============= -=======
sprint£ (TestDir, "%s\ \Model\ \outputs\\ tinal_maps", PREFIX);
if(_chdir(TestDir))

_rnkdir(Testoir);

sprintf (TestDir, "%s\ \Model\ \outputs\\ f inal_maps\ \PlotFiles", PREFIX);
if(_chdir(TestDir))

_mkdir (TestDir);

sprintf (TestDir, "%s\ \Model\ \outputs\ \final_maps\ \info", PREFIX);
if(_chdir(TestDir))

_rnkdir (TestDir) ;

I I========================== GeneralData ------------------------------------
sprintf (TestDir, "%s\ \Model\ \outputs\ \GeneralData", PREFIX);
if(_chdir(TestDir) }

_rnkdir (Testoir);

//-----For the goals under GeneralData
for (a=l; a<=LANDSCAPE_GOALS; a++)
{

sprintf (TestDir, "%s\ \Model\ \outputs\ \GeneralData\ \goal%d ·, PREFIX, a);
if(_chdir(TestDir))

_mkdir (TestDir);

I I ====a===================== PERIOD IS I =============---====================
I /-----For the goals under outputs
for (a=l; a<=LANDSCAPE_GOALS; a++ l
{

sprintf (TestDir, "%s\ \Model\\ outputs\ \goal%d", PREFIX, a);
if(_chdir(TestDir))

_rnkdir (TestDir);

//For the periods under each goal
for(b=O;b<=NP;b++)
{

sprintf (TestDir, "%s\ \Model\ \outputs\ \goal%d\ \per%d", PREFIX, a, b);
if(_chdir(TestDir))

_rnkdir (TestDir);

sprintf (TestDir, "%s\ \Model\ \outputs\ \goal%d\ \per%d\ \info", PREFIX, a, b);
if{ _chdir(TestDir))

_mkdir (TestDir);

I I========================== POSTS IMDATA - ---------====-------------- ---- - - - -

sprintf (TestDir, "%s\ \Model\ \outputs\\ PostSimData ',PREFIX);
if(_chdir(TestDir))

_mkdir (TestDir);

I /-----For the goals under PostSimData
for (a=l; a..:::=LANDSCAPB_GOALS; a+-+)
(

sprintf (TestDir, "%s\ \Model\ \outputs\ \PostSimData\ \goal%d", PREFIX, a);
if(_chdir(TestDir))

151

_mkdir(TestDir};

sprintf (TestDir, "%s\ \Model\ \outputs\\ PostSimData \ \goal%d\ \info" , PREFIX, a) ;
if(_chdir(TestDir))

_mkdir (TestDir};

I I========================== PRES IMDATA = ===============------ - - - ---========
sprintf (TestDir, "%s\ \Model\ \outputs\ \PreSimData", PREFIX);
if (_chdir(TestDir} }

_mkdir (TestDir);

//-----For the goals under PreSimData
for(a;l;a<~LANDSCAPE_GOALS;a++)
(

sprintf (TestDir, "%s \\Model\ \outputs\\ PreSirnData \ \goa1%d" , PREFIX, a) ;
if(_chdir(TestDir))

_mkdir (TestDir);

sprintf (TestDir, "%s\ \Model\ \outputs\\ PreSimData \ \goal%d\ \info" , PREFIX, a J ;
if(_chdir(TestDir))

_mkdir (TestDir);

I 1-------------------------- PRESCRIPTIONS ------------------------------------
sprintf (TestDir, "%s\ \Model\ \outputs\ \Prescriptions", PREFIX) ;
if(_chdir(TestDir))

_mkdir (TestDir) ;

sprintf (TestDir, "%s\ \Model\ \outputs\ \Prescriptions\ \Initial", PREFIX};
ifi _chdir(TestDir))

_mkdir (TestDir);

spr intf (TestDir, "%s\ \Model\ \outputs\\ Prescriptions\ \Modeled", PREFIX) ;
if(_chdir{TestDirJ)

_mkdir (TestDir) ;

sprintf (TestDir, M%s\ \Model\ \outputs\ \Prescriptions\ \Modified", PREFIX);
if(_chdir(TestDir))

_mkdir ITestDir);

spr intf (TestDir, "%s\ \Model\ \outputs\ \Prescriptions\\ ToModify" , PREFIX/ ;
if(_chdir(TestDir))

_mkdir (TestDir);

I I========================== RASTER_OUT .• == == ==== == =-- - = = ============== == = ==
sprintf (TestDir, M %s\ \Model\ \outputs\ \raster_ou t" , PREFIX) ;
if(_chdir(TestDir))

_mkdir (TestDir);

sprintf (TestDir, 11 %s\ \Model\ \outputs\ \ras ter_out \\info" , PREFIX) ;
if(_chdir(TestDirl)

_mkdir (TestDir);

I I==----=-=-------=--======= STANDDATA =============---====================
spr intf (TestDir, "%s\ \Model\ \outputs\\ StandData" , PREFIX) ;
if(_chdir(TestDir) l

_mkdir (TestDir l ;

sprintf (TestDir, "%s\ \Model\ \outputs\ \StandData \\Initial" , PREFIX) ;
if(_chdir(TestDir))

_mkdir (TestDir);

sprintf (TestDir, "%s\ \Model\ \outputs\ \StandData\ \Initial\ \binary", PREFIX);
if(_chdir(TestDir))

_mkdir (TestDir);

spr intf (TestDir, "%s\ \Model\ \outputs\ \Standt:ata \\Modeled" , PREFIX) ;
if(_chdir(TestDir))

_mkdir(TestDir);

I I========================== VECTOR_OUT ====================================
spr intf (TestDir, ~ %s\ \Model\ \outputs\\ vector_out '', PREFIX) ;
if(_chdir(TestDir))

_mkdir (TestDir);

sprintf (TestDir, ~ %s\ \Model\ \outputs\\ vector_out \\info 11
, PREFIX) ;

if(_chdir(TestDir))
_mkdir (TestDir);

I I***
II Make directories under Model\\RerunData

I I***"***
//-----For the goals under RerunData
for (a=l; a<=LANDSCAPE_GOALS; a++)
{

sprintf (TestDir, "%s\ \Model\\ RerunData \ \goal %d", PREFIX, a} ;
if(_chdir(TestDir))

_mkdir (TestDir);

152

I I***
I I Make directories under Model\\SafeD
I I***

sprintf (TestDir 1 "%s\ \Model\ \SafeD\ \SafeD", PREFIX) ;
if(_chdir(TestDir))

_mkdir (TestDir);

sprintf (TestDir, "%s\ \Model\ \SafeD\ \5afeD\ \Debug", PREFIX);
if(_chdir(TestDir))

_mkdir (TestDir);

I I**********************************~**
I I Make directories under Model\\standopt
! I******************************* 1r ** * * * * ** * * * * * * * * *** * * * * * * * * * * * * * * * * * *

sprintf(TestDir, ~is\\Model\\standopt\\Premo" ,PREFIX);
if(_chdir(TestDir) l

_mkdir (Tes tDir) ;

sprintf (TestDir, N%s\ \Model\ \standopt\ \Premo\ \Debug", PREFIX);
if (_chdir(TestDir))

_mkdir(TestDir);

}//end MakeDirectories

/I*** ... ***************
void CopyExecutables(voidJ
I/************************************* 1r * * * * * * * * * * * * * * * ** * * * * * * * * ** * * * * * * * * * * ** **

//Copy some executables from their debug directory in the Applegate directories over to the Framework
char Kil1File[256};
char CopyFile[256J;
char JunkFile[300J;

I /Make the JunkFile which screen outputs can be redirected to
sprintf (JunkFile, "%s%s \ \Junk. txt", PREFIX, ErrorDir) ;

//The PREMO executable
sprintf (KillFile, "del %s%s > %s", PREFIX, PremoProgNarne, JunkFile);
sprintf(CopyFile, "copy g:%s %s%s > %su,PremoProgNarne,PREFIX,PremoProgName,JunkFile);
system(CopyFile);

I /The FLAMMAP executable
sprintf (KillFile, "del %s%s > %s", PREFIX, FlarnmapName, JunkFile};
sprintf(CopyFile, "copy g:%s %s%s > %s",FlarnmapName,PREFIX,FlammapName,JunkFile);
system(CopyFile);

//The FARSITE executable
//sprintf(KillFile, "del %s%s > %s",PREFIX,FarsiteName,JunkFile);
//sprintf(CopyFile, "copy g:%s %s%s > %s",FarsiteName,PREFIX,FarsiteName,JunkFile);
I /system(CopyFile);

} //end CopyExecutables

DATA.H

I*
18 Aug 99 - I made this header file to store the definition for several variables
that were being used by all the *.cpp files. Rather than put these at top of each
file I can update these right here, only once and they will all have the new definition
*I

//in Misc .cpp
extern void Bailout (int ErrorNurnber) ;
void PrintToStat(int Line, ulong Value);

//in mgsort , cpp
extern int mgsort(void *data, int size, int esize, int i, int k, int (*compare)

(canst void *keyl, const void *key2));

//An array to use for toggling whether to run certain portions at different period (l=yes, D=no)
extern int EvaluateThisPeriod[NP]; //YES for periods ? (see misc.cpp)

//defined in ReadData.cpp
extern struct Main{

ulong Cellid[UNIQUE];
Applegate watershed

ushort GridRow[UNIQUE];
ushort GridColumn[UNIQUE];
ulong Treelist [UNIQUE];
ushort Elev [UNIQUE];
ushort Aspect [UNIQUE] i
ushort Slope [UNIQUE] ;
ushort Goal [UNIQUE};
ushort Q,,,mer [UNIQUE];
ushort Pag [UNIQUE);

I I

I I

Values for entire

in meters

153

ushort Alloc [UNIQUE];
allocation for stream buffers - use Data .Buffer

ushort Minor[UNIQUE];
ushort Hold[UNIQUE];
ushort Buffer[UNIQUE];

only!! NODATAFLAG = noBuff, 100 = in Buffer
ushort FireHistory[UNIQUE];

NODATAFLAG = not in, 100 = in old polygon
ushort InitialVeg[UNIQUE];
ushort InitialStage [UNIQUE);
ushort PRule[UNIQUE];

//Get calculated within SafeD
ushort InitialDuff [UNIQUE];

divided by TONS - convert back by
ushort InitialLitter [UNIQUE);

FUEL_LOAD_EXP to make ushort}

ushort Initia1Class25 [UNIQUE];
ushort InitialClassl [UNIQUE];
ushort Initia1Class3 [UNIQUE];
ushort Initia1Class6 [UNIQUE];
ushort Initia1Classl2 [UNIQUE];
ushort Initia1Class0verl2 [UNIQUE];
ushort InitialFuelModel[UNIQUE];
ushort InitialEra [UNIQUE];
ushort FuelModel [UNIQUE] [NP];
ushort Duff[UNIQUE] [NP];

FUEL_LOAD_EXP
ushort Flame[UNIQUE];

length interval from a FARSITE run

value

//Data that will come from Premo
ushort Basal [UNIQUE] [NP];

ushort Closure[UNIQUE] [NP];
ushort CBDensity[UNIQUE} [NP);
ushort HLC[UNIQUE] [NP];
ushort StandHeight[UNIQUE] [NP];
ushort BigTrees[UNIQUE] [NP];
ushort Era [UNIQUE] [NPJ;

get REAL value
ushort Vegcode[UNIQUE} [NP];
float CFHarvest[UNIQUE] [NP];
ushort Litter [UNIQUE] [NP];

divided (/) by TONS -- Premo * by TONS
ushort Class25[TJNIQUEJ [NP];

big to fit in ushort. Convert
ushort Classl[UNIQUE] [NP];
ushort Class3[UNIQUE] [NP];
ushort Class6[UNIQUE] [NP];
ushort Class12[UNIQUE] [NP];
ushort ClassOverl2 [UNIQUE] [NP];
) Data;

extern int 1 ink [ROWS] [3) ;

struct PREMO_RECORD

//Key data

};

ulong Treelist;
ushort
ushort
ushort

Goal;
Hold;
Period;

I /Regular attribute data
ushort
ushort
ushort
ushort
ushort
float
ushort
ushort
float

Basal;
closure;
Density;
HeightCrown;
StandHeight;
Rev;
BigTrees;
Vegcode;
Harvest;

//Fuel loading stuff
ushort Litter;
ushort Class25;
ushort
ushort
ushort
ushort
ushort

Class!;
Class3;
Class6;
Classl2;
ClassOverl2;

struct PTR_PREMO_RECORD

};

struct
ulong

PREMO_RECORD *CurrentSD;
Records;

154

Does NOT include an

// Stream buffers on FED land

,'/ Old fire perimeters

// These initial Fuel Loadings will be

// multiplying by TONS when using. {also using

//Divided by TONS - and multiply by

//Will hold the current flame

//converting ... divide by 10 to get REAL

// Truncating to closest integer
/ / converting ... divide by 100 to get REAL value

// Truncating to closest integer
// Truncating to closest integer

// converting ... divide by 10 to get REAL value
II converting ... divide by 100 to

II
//------- All these fuel loadings will be

//------- when it outputted and some are too

/,------- when needed back to TONS.

155

struct TREELIST_RECORD

ushort Plot;
ushort Status;
float Tpa;
ushort Model;
ushort Report;
float Dbh;

float Height;
float Ratio;
ushort Condition;

//These may get calculated, but there should be one :or each line in a treelist record
float Basal;
float CanopyWidth;
float Hlc;

};

struct OPTIMIZE_SINGLE_VALUE

//Key data
ulong Treelist;
ushort Goal;
ushort Hold;

//attribute data
ushort Value[NP];

other Float/Double data
float BigTrees[NP];
ushort Rev[NP];
ushort CFHarvest[NP];

};

struct SOLUTION

//Key data
ushort
ulong
ulong
ushort
ushort
ushort
ushort

Minor;
Cell id;
Treelist;
Goal;
Hold;
InitialEra;
MaxGoal;

allowed to be chosen for a cell
ushort PeriodEra[NP];

have correct values for given solution
};

struct P_INFO

ulong
ushort
ushort

Treelist;
Goal;
Hold;

};

struct ERA

};

//Key data
ushort Minor;

//attribute data
ulong
ulong
ulong

Count;
SuminitialEra;
SumPeriodEra[NP];

struct TREELIST_FOR_PREMO

};

ulong
ushort
ushort
ulong

OldTreelist;
Goal;
Hold;
NewTreelist;

struct HIT_BY_DISTURB

//Key data
ulong Treelist;
ushort Goal;
ushort Hold;

ushort
ushort
ushort
ushort

Pag;
DougFir;
TrueFir;
Pine;

//Holds data on a "Prescription" basis - neglects individual cell variation

//This will have "rounded" values if using BigTrees or

//Holds data on an individual cell basis

11For the framework - this is the Highest stand goal number

//These get updated as heuristic is running and at end should

//Holds data on a SUBWATERSHED basis

1 /not really used - gets filled in FillS_Era

//These 4 are only used for INSECTS

ushort Interval; //This is> 0 only when used for FIRE

//regular attribute data
ulong cellid;
ulong Newl'reelist;

);

struct

);

struct

);

struct

};

struct

UNIQUE_INSECT

//Key data
ulong Tree list;
ushort Goal;
ushort Hold;
ushort Pag;
ushort DougFir;
ushort TrueFir;
ushort Pine;

1 /regular attribute data
ulong NewTreelist;

UNIQUE_FIRE
i !Key data
ulong Tree list;
ushort Goal;
ushort Hold;
ushort Interval;

//regular attribute data
ulong NewTreelist;

FOFEM_MATRIX

double B0[21] [Bl;
double DF[21] [BJ;
double HW[21] [BJ;
double PP[21] [BJ;
double SP[21] [BJ;
double WF [211[8];

NEW_STAND_DATA

ulong
float
ushort

Treelist;
Basal;
VegClass;

values 1-9
ushort
ushort
ushort
ushort
ushort
ushort

float
actually happening

Qmd;
CoverClass;
Closure;
Density;
HeightCrown;
StandHeight;

BigTreesKilled;

float BasalAreaKilled;
};

156

//Part or All of these may get used at any time, depending on what's needed

//These 3 are part of our Veg-Structural classification

// values 0-6
// O is <60%, 1 is >:::: 60%

//The 't canopy closure

//These are used post-disturbance to track how much damage is

struct STAND_CLASS
anywhere

11This is used a temporary holder of data to pass in to certain functions from

(

values 1-9

);

float
ushort

ushort
ushort
ushort
float

Basal;
VegClass;

Qmd;

CoverClass;
Closure;
HeightCrown;

struct INITIAL_FUELS

actually

ulong
ushort
ushort

double
double
double
double
double
double
double
double
double
double
double

define
double
double

double
double

a

Treelist;
Goal;
Hold;

Duff;
Litter;
Class25;
Class!;
Class3;
Class6All;
Class6Partl;
Class6Part2;
Classl2;
Class0Verl2;
HourlFuels;

fuel model
HourlOFuels;
HourlOOFuels;

MC_Duff;
MC_Litter;

/tThese 3 are part of our Veg-Structural classification

// values 0-6
// O is <60%, 1 is>= 60%

1/The % canopy closure

//These are the different "pools" of wood to use

//0-,25"
I/ . 25 - 1"
I! 1 - 3"
// 3 - 6 11 total of Part! and Part2

// - 6 1
' from: crown lift, harvest crowns, background breakage

stump to dwd // - 6" from:
! ! 6 - 12"
// Over 12"

//These are groupings that Jim and Bernie use to

//"parallel" ·variables for when stand is MC > 3000'

double MC_Class25;
double MC_Classl;
double MC_Class3;
double MC_Class6All;
double MC_Class6Partl;
double MC_Class6Part2;
double MC_Class12;
double MC_Class0verl2;
double MC_HourlFuels;
double MC_HourlOFuels;
double MC_HourlOOFuels;

float Basal;
ushort VegClass; //These 3 are part of our Veg-Structural classification

values 1-9
ushort Qmd; I I •~ralues 0-6
ushort CoverClass;
ushort Closure;

I I O is <60%, 1 is >= 60%
//The% canopy closure

ushort FuelModel;
ushort MC_Fue !Mode 1;

);

s true t CURRENT_ERAS

};

struct OPTIMIZE_SINGLE_VALUE *ptr_osv;
float NetEra [NP];
float CurrentEra;
int
int

Cell;
NeedsDecay;

PREt·lOS'rUFF .CPP

//to hold the cell array position value
/ /defa'...llts to FALSE, check for TRUE when needed

I/***""*"******************************
// This PremoStuff.cpp file will hold the functions, etc. that are used in conjunction with
// Heidi's Stand Optimizer program (PREMO}.
I I***

#;include <stdio.h>
#;include <stdlib.h>
#;include <string.h>
#;include <time. h>
#include <math. h>
#include 0 globals.h"
#include "data.h"

//These functions will control stuff for Time O - for the initial Premo runs
void CreateTreeindex(void);
void InitialPremo(void);
void FillinitialPremoData(int per);
void CopyStandOpt(int Treelist, int Goal, int Hold);
void CreateSortedPremoBinaryFile(void);
int LookAtPremoRecords(const void *ptrl, canst void *ptr2);

//These functions will control stuff for post-disturbance Premo runs (i.e. starting Time period ll
int ManageNewPremoRuns(ulong FTL, int Per);
int CountTotalHit(ulong FTL);
int FillHi tListForPremo (struct HIT_BY_DISTURB HitList [] ulong FTL) ;
int FillForPremo(struct TREELIST_FOR_PREMO FP[], struct HIT_BY_DISTURB HitList[], int Count);
void MakeNewPremoRuns(struct TREELIST_FOR_PREMO FP[], int Count, int ActualPer);
void CreatePostDisturbanceStandDataStructure(struct TREELIST_FOR_PREMO FP[], int Count, int ActualPer,struct
PTR_PREMO_RECORD *ptr_info);
void InputNewPremoStandData(struct PTR_PREMO_RECORD *ptr_info, int ActualPer, ulong FTL, int HitCount);
int CompareHitListForNewPremo (canst void *ptrl, const void *ptr2) ;
int CountUnigueNewPremoHits(struct HIT_BY_DISTURB HitList[], int Count);

//In Misc.cpp
extern void DeleteinitialStuff (void);

I I in StandData. cpp
extern void NewStandHLC(struct ST.AND_CL.~SS *Stand) ;

//A couple of globals to use for figuring out number of InitialTreeList and Potential prescriptions
ulong ITL;
//------------------------------- End of function definitions ----------------------------------

I/**.,,****************.,,**
int ManageNewPremoRuns(ulong FTL, int Per)
I/**

/*
This function will control how end-of-period Premo runs are handled. The same stratemr as that used
for the individual disturbances will be employed. Also, the same strategy used to fill up the
Data.*[] arrays with initial Premo data will also be employed. Basically;

1) Figure out all the cells hit by any disturbance
2) Figure out UNIQUE combinations of variables that will affect how many Premo calls to make (this will

157

vary, see NOTE: in code after FillHitListForPremo () is called up.
3) Store info on those unique c:::imbinations and call up Premo appropriately
4) Create storage for all Stand Data created by Premo
5) Fill the storage up appropriately
6) Finally, transfer that data back into the Data.*[] arrays

NOTE: keep in mind that there will be MANY treelist in the \m:::idified\ directory that do NOT get
sent to Premo. They may have been modified once by an early disturbance and then (assume that
only one cell had that particular treelist) let's say an:::ither disturbance in the same period hits
the same cell. The updates will be done to the already modified treelist and a NEW treelist will
be generated - thus, the old one is no longer a factor in this period /unless another stand was also
using it and was NOT hit by another disturbance). In any case, this is all tracked but the result may
be an apparant loss of treelist being used for new Premo calls, but that is not the case.

• I

int a=O, HitCount, Records, Unique, Unique2;

158

struct PTR_PREMO_RECORD *ptr_info; ;;will point to the "Sdinfo" structure - for the memset & function calls
struct PTR_PREMO_RECORD Sdinfo;
//----------------------------------- End of variable defining---------------------------------

//First count how many different stands were hit this peri:::id
HitCount = CountTotalHit(FTL);

//If there are no cells getting hit by any disturbances, then just return back to main
if (HitCount == FALSE
{

printf (~ ! ! ! There were NO cells effected by disturbances this period - that is odd ! ! ! \n N);

return TRUE;

//create an array of structures on the free store t:::i hold info on all the different cells
struct HIT_BY_DISTURB {*HitList} = new struct HIT_BY_DISTURB[HitCount];
if (HitList == NULL)

printf("Problems allocating memory for HitList[] with %d records\n",HitCount);

//Initialize
memset(HitList, 0, sizeof{struct HIT_BY_DISTURB) * Hitcount);

//Fill up the array of HitList structures
Records= FillHitListForPremo(HitList, FTL);
if(Records l= HitCount)

Bailout (77);

/*
NOTE: At this time, we are considering not re-optimizing the landscape prescription selection after a period is
over. The
current strategy is to just re-use the current G8AL-H8LD assignment for each cell. That has a HUGE effect on the
next
part - Sorting and Identifying unique combinations of cells that need new PREMO runs. By not re-optimizing at the
landscape
level we can sort and identify unique combinations in HitList [] by Tree list - Goal - Hold.
In the future, if stand re-optimization takes place, new Compare*,CountUnique*, and Fill* type functions will have
to
be developed to correctly account for new strategy (e.g. sort and get unique Treelist-Interval combination only/.
•;
//sort those records by: Treelist-Goal-Hold
printf("\nGetting ready to sort the stands by Treelist-Goal-Hold this will take awhile for %lu
cells\n\n" ,HitCount);

/ /Sort HitList by Treelist-Goal-Hold-Flame
mg sort ((void*) Hi tList,

//base
HitCount,

//count of records
sizeof(struct HIT_BY_DISTURB),

record
0, HitCount-1,

//current division (always: 0, Count-1)
CompareHitListFcrNewPremo

//compare function

//size of each

/ /Count up how many of those records in HitList are actually unique cornbinati:::ins of Treelist-Goal-Hold
//REMEMBER: May have to develop new function if landscape reoptimization occurs at end of each period
Unique= CountUniqueNewPremoHits(HitList,HitCount);
printf (" ! ! ! There were actually %d unique records that will each require a PREMO run\n", Unique};

//Create an array of structures to hold data pertaining to each unique T-G-H combination
struct TREELIST_FOR_PREMO (*ForPremo) new struct TREELIST_F8R_PREMO[Unique];
if (ForPremo == NULL l

printf("Problems allocating memory for ForPremo[] with %d records\n",Unique);
//Initialize
memset(ForPremo, 0, sizeof(struct TREELIST_FOR_PREM8) *Unique);

//Fill up the array of ForPremo structures and make sure same# of records processed
Unique2 = FillForPremo(ForPremo, HitList, HitCount);
if (Unique2 ! = Unique)

Bailout(90};

//Send ForPremo off to have the Freme runs made
i fde f END_PERIOD_PREMO
MakeNewPremoRuns(ForPremo, unique, Perl;
#endif

159

//Initialize a structure that will hold data pertaining to the new Stand Data ''Inv" structure that will get create
ptr_info = &Sdinfo;
memset (ptr_info, 0, sizeof (struct PTR_PREMO_RECORD)) ;

//Create a sorted structure to hold all the new StandData
CreatePostDisturbanceStandDataStructure(ForPremo,Unique,Per,ptr_info);

/ /Input all the new Stand Data into the Data.* [] arrays
InputNewPrem.oStandData{ptr_info,Per, FTL, ~itCount);

//Now that we are done with the Stand Data Inv[) memory block, delete it!
delete [J ptr_info->CurrentSD;

//and delete other stuff on free store
delete [] HitList~
delete [] ForPremo;

return TRUE;

)//end ManageNewPremoRuns

I I***

void InputNewPremoStand.Data(struct PTR_PREMO_RECORD *ptr_info, int ActualPer, ulong FTL, int HitCountl
I I***

(
;•
This function will essentially work the same way as FillinitialPremoData() does except in deciding which CELLS to
fill.

1) Use same strategy as in CountTotalHit () to determine if a Data.* [) cell got hit. IF SO then
2) Grab the current Treelist, Goal, and Hold, of that cell and make a "key"
3) Use that key to search the sorted array of "Inv" structures and find the match
4) Once a match is found, fill up the appropriate Data.*[) arrays with data from the matching key!

The Inv structure should have been sorted in CreatePostDisturbanceStandDataStructure() before getting here
*/
int a,y;
int Count, ArrayPer;

//structures
struct PREMO_RECORD Key;
struct PREMO_RECORD *ptr_record;
struct PREMO_RECORD *Inv;

//-------------------------------- End of variable defining--

puts ("\n * ") ;
printf(" Updating the Data.*[][] arrays with new data from the prescription optimizer *******\n'');
puts (" * **** * * * * * ** *** **** * * * * * * * ** * ** * ** * * * * * * * * ** * ** * * * ** * * * * * * * * * * * * ** * * ** "'* * \n") ;

//Reassign ptr_info->CurrentSD to the new pointer Inv so it's easier to write and access
Inv= ptr_info->CurrentSD;

//Start going through the Data.*[] arrays and find those that were hit by a disturbance this period
Count = 0;
for (a=0; a<UNIQUE; a++)
(

if(Data. Cellid[a]
through arrays

break;

FALSE i

if(Data.Treelist[a] >= FTL)
hit by something

(

//done looking

/ /This cell l.iAS

/ /Start to make some of the "Key" for this cell to use in looking for the correct record in the
array of Inv structures

Key.Treelist
Key.Goal
Key.Hold

Data.Treelist[a];
Data.Goal [al;
Data.Hold[a];

/ /make another loop to account for the period
//*** IMPORTANT: note this starts filling in data for the FOLLOWING period - not this period!
for(y=ActualPer+l;y<=NP;y++)
(

/ /Finish off the key with the actual search period
Key.Period (ushort)y;

//Make the ArrayPer variable
ArrayPer = y-1;

/ /Now use bsearch to find the matching record in the array of Premoin'J structures

ptr_record = (struct PREMO_RECORD*)bsearch{
&Key,
(void *)Inv,
(size_t) ptr _info->Records,
sizeof(struct PREMO_RECORD),
Look.AtPremoRecords);

if (ptr_record == NULL)
Bailout (75);

160

//Check to see if the 1legcode value is Mixed Conifer - if so it must be broken into >
or < 3000'

if ((int) (ptr_record->"1egcode / 100) == ~.rc_MC
(

if(Data.Elev[a] >= (3COC*FT2H))

//It's over 3,000 ft
Data. 'legcode [a] [ArrayPer] ptr_record-

>Vegcode + 500;

>Vegcode;

else

>Vegcode;

/ /This will give it 10**
else

Data 'legcode [a] [ArrayPer)
/ /Leave as is

Data.Vegcode[a] [ArrayPerJ
//Leave as is

ptr_record-

ptr_record-

//Fill in the rest of Data.*[] arrays with the data accessible from the pointer
returned above

//Everyone should already have the proper t~~e
Data.Basal[a] [ArrayPerJ ptr_record->Basal;

ptr_record->Closure;
ptr_record->Density;

ptr_record->HeightCrown;
ptr_record->StandHeight;

ptr_record->BigTrees;
ptr_record->Harvest;

Data.Closure[a] [ArrayPerl
Data.CBDensity[a} [ArrayPer]
Data.HLC[a] [ArrayPer]
Data.StandHeight[a] [ArrayPer]
Data.BigTrees[a] [ArrayPerJ
Data.CFHarvest[a] [ArrayPer]

Data.Litter[a] [ArrayPer]
Data Class25 [a] [ArrayPer]
Data.Classl[a} [ArrayPer]
Data.Class3[a] [ArrayPer]
Data Class6[a] [ArrayPer]
Data Classl2 [a] [ArrayPer]
Data ClassOverl2 [a] [ArrayPer]

}//end for(y=O

Count++;

}//end if(Data.Treelist
}//end for(a=O ..)

ptr_record->Litter;
ptr_record->Class25;
ptr_record->Classl;
ptr_record->Class3;
Ptr_record->Class6;
ptr_record->Classl2;

ptr_record->Class0verl2;

//Error check that the correct number of cells updated - same checker is in ManageNewPremoRuns(}
if(Count != HitCount)

Bailout(77};

}//end InputNewPrernoStandData

I I***

void CreatePostDisturbanceStandDataStructure(struct TREELIST_FOR_PREMO FP[], int Count, int ActualPer, struct
PTR_PREMO_RECORD .,,.ptr_info}
I I***

/*
This function will pretty much do the same thing as was done in the CreateSortedPremoBinaryFile(}
function that was used at Time 0. Basically, read and store all the data for all the new
SD_*_*_*.txt files that were just created after the Premo runs at the end of a period. Then sort
that data appropriately so that another function can go through the Data.*[] arrays and find
those cells that were hit by disturbance(s} this period and then find their new stand data.

17 FEB 00 - adding modification to stand HLC and CBD calculations here because it is easier to have
the Inv[] structure below just have the correct values now rather than waiting.

REMEMBER: at period NP, this will create "0" RecordsNeeded and thus will be skipped - Oh, back in main() this
function does NOT get called on last period any1,,;ays, duh.
*/
FILE *Datain;
char Temp [256];

ulong RecordsNeeded, Record, Treelist;
ushort Goal, Hold;
int a,y,r=O;
int DataPeriod;
double RealBasal, RealClosure, RealCBD, RealHLC, RealHeight, RealRev, RealBigTrees, Harvest;
ushort VegCode;
double RealLi tter, Rea1Class2 5, RealClassl, Rea1Class3, Rea1Class6, Rea1Classl2, Rea1Class0verl2;
double Load.Factor;
double ModCbd;
struct STAND_CLASS StandClass;

struct STAND_CLASS *ptr_stand;
ushort TempCode;
int TempVeg, TernpDiam, TempCover;
//--------------------------- End of variable defining--------------------------------------

//Determine the actual # of records

161

//NOTE: May need to change below if re-optimizing at stand level to include records for each GOAL and HOLD comb.
also
RecordsNeeded ~Count* (NP-ActualPer);

if(RecordsNeeded == FALSE)
return;

//Create an array of structures on the free store to hold these
struct PREMO_RECORD (*Inv) = new struct PREMO_RECORD[RecordsNeeded];
if (Inv =::; NULL)

printf ("Problems allocating memory for Inv[] with %lu elements\n", RecordsNeeded*sizeof (PREMO_RECORD)) ;

//Initialize
memset (Inv, 0, sizeof (struct PREMO_RECORD) * RecordsNeeded) ;

//***************** Start pumping data into the array of Inv[l structures **********************

//Set the LoadFactor that will be used to convert the incoming FuelLoadings (which are in LBS) to TONS but
//keeping some precision by multiplying by FUEL_LOAD_EXP
LoadFactor = TONS * FUEL_LOAD_EXP;

Record=O;
for(a=O;a<Count;a++)
FP structure

//for each record in the

{

period

//Get the treelist, goal, and hold to be used
Treelist FP[a] .NewTreelist;
Goal FP[a].Goal;
Hold FP [a] .Hold;

//Start by opening the correct SD_*_*_*.txt file ONCE - always in the "\modeled\" directory at end of

sprintf {Temp, "%s%s\ \SD_%d_%d_%d. txt", PREFIX, HodeledStandDataDir, Treelist,Goal, Hold);
Datain = fopen(Temp, nr");
if (Datain == NULL)

fprintf (stderr, "opening of %s failed: %s\n" ,Temp, strerror(errno));

//The SD_*_*_*.txt files will have a line of data for the incoming treelist at and it is NOT needed.
//SafeD works by assuming the the 2nd period listed is after Harvest activities and 5-yr growth
fscanf(Datain,~%d %1£ %lf %1£ %1£ %lf %lf %lf %hu %1£ %1£ %lf %lf %lf %lf %lf %lf &DataPeriod,

&RealBasal,
&RealClosure, &RealCBD, &RealHLC, &RealHeight, &RealRev, &RealBigTrees, &VegCode, &Harvest,
&RealLitter, &Rea1Class25, &RealClassl, &Rea1Class3, &Rea1Class6, &Rea1Classl2,

&Rea1Class0Verl2) ;

//Now scan in all the data ONCE and store in the array of Inv structures
//I assume that the SD_*_*_* have Period "ActualPer" + 1 on line 2
for{y=ActualPer+l;y<=NP;y++)
(

//First, scan in the lines from SD* - this current period data is "over" and we don't need this
fscanf (Datain, "%d %lf %lf %lf %lf %lf %lf %lf %hu %lf %lf %1£ %lf %lf %lf %lf %lf",

&DataPeriod, &RealBasal,
&RealClosure, &RealCBD, &RealHLC, &RealHeight, &RealRev, &RealBigTrees, &VegCode,

&Harvest,
&RealLitter, &Rea1Class25, &Realclassl, &Rea1Class3, &Rea1Class6, &Rea1Classl2,

&Rea1Class0verl2);

if(DataPeriod != YI
{

print£ ("problem with period values in the PREMO files for %lu %hu
%hu\n" ,Treelist,Goal,Hold);

65535 thingy! !

getchar(}; //make program pause here

//Check and make sure values that eventually will be converted to USHORT are OK in terms of

if (RealBasal >= 6553 11 RealCBD >= 655 11 RealBigTrees >"" 6553 11 RealLitter >= 6553*TONS 11
Rea1Class25 >= 6553*TONS 1

1
RealClassl >= 6553*TONS 11 Rea1Class3 >= 6553*TONS 11

Rea1Class6 >= 6553*TONS 11 Rea1Class12 >= 6553*TONS 11 Rea1Class0ver12 >= 6553*TONS)

printf ("Guilty is: Tree %d Goal %d and Hold %d\n", Treelist, Goal, Hold);
Bailout(49);

Inv[Record].Treelist
Inv[Record] .Goal
Inv[Record].Hold
Inv[Record] .Perivd

Inv[Record].Basal
Inv[Record] .Closure
Inv[Record] .Stand.Height
Inv[Record] .Rev
Inv[Record] .BigTrees

{ ulong) Tree! is t;
(ushort)Goal;
(ushort) Hold;
{ushort)y;

//This is the next period!
(ushorti (floor(RealBasal * BA.SAL_EXP));
{ushort) (floor (RealClosure} } ;
{ushort) (floor (Rea.lHeight + 0. 5)) ;

(float)RealRev;
(ushort) (floor(RealBigTrees * BIGTREES_EXP) J;

Inv [Record] . Vegcode
Inv[Record] .Harvest

VegCode;
\float)Harvest * (float)ACREEQ;

162

//The incoming fuel loads are in LBS - convert to TONS but keep so~e precision by multiplying
by FUEL_LOAD_EXP

Inv[Record].Litter
Inv[Record].Class25
Inv[Record].Classl
Inv [Record] . Class]
Inv[Record] .Class6
Inv[Record] .Classl2
Inv[Record] .Class0verl2

// Below is the Bernie "tweak" for CBD

ModCbd = RealCBD * { RealClosure * ACREEQ) ;

if(ModCbd > .30
ModCbd .30;

else if{ModCbd <)

ModCbd O;

(ushort) (RealLitter/LoadFactor);

(ushort) (RealClass25/LoadFactor);
(ushort) (RealClassl/LoadFactor);
(ushort) (RealClass3/LoadFactor);
(ushort} (RealClass6/LoadFactor);
(ushort} (RealClassl2/LoadFactor);
(ushort;, (P.ea1Class0verl2 / LoadFac tor) ;

17Feb00

//Store the kg per m3 data in the Inv[] structure
Inv[Record] .Density= (ushort) (floor(ModCbd~DENSITY_EXP}};

// Call up the new Stand HLC function 17Feb00
// Use the method employed in StandDataControllerl)
I I***
/ /Initialize StandClass and its pointer
ptr_stand = &StandClass;
memset(ptr_stand, 0, sizeof(struct STAND_CLASS));

//Fill some items in ptr_stand-> before sending off
ptr_stand->Closure = Inv[Record] .Closure;

25Feb .. why do this?

TempCode = Inv[Record] .Vegcode; / /The actual 3 or digit
code from PREMO

//NOTE: This TempCude Premo value DOES NOT have the modified MC vegclass to distinguish
between

will
I IMC < 3000 and MC > 3000. HOWEVER, this is OK for here because the NewStandHLC () function

//give the same HLC either way.

//extract the digits out
TempCover = TempCode%10;

for determining stage (is closure, <=60% or> 60%)
//last digit

TempDiam = ((TempCode-TempCover) %100) / 10;
stage (is the QMD group)

//next to last digit also for determining

TernpVeg = (TempCode-TempCode%100) / 100;
VegCode

//Put those values in ptr_stand->
ptr_stand->VegClass (ushort)TempVeg;
ptr_stand->Qmd = (ushort/ Temi,:Diam;
ptr_stand->CoverClass (ushort)TempCover;

//1st digit for determining

// NEW HLC stuff!!!!!
NewStandHLC(ptr_stand);
Inv[Record] .HeightCro·""11 (ushort) (floor(ptr_stand->HeightCrovm + .5));

Record++;
this counter up

}/ /end for(y=O;y<NP;y++)

fclose(Datain);
}//end for(a = O; a< Count; a++)

if(Record != RecordsNeeded)
Bailout (96) ;

//Sort the current Inv structures by Treelist-Goal-Hold-Period
qsort ((void*} Inv,

I !base
(size_t)RecordsNeeded,

//count of records
sizeof(struct PREMO_RECORD),
//size of each record
LookAtPremoRecords J;

//compare function

//BE SURE to increment

//Tell ptr_info where the memory is that holds this Inv[] stuff and how many records there are
ptr_info->CurrentSD = Inv; / /although Inv is an array of structures, by itself it
points to the memory block
ptr_info->Records RecordsNeeded;

//NOTE: Don't delete the Inv[] structures here, they will be used in another function

}//end CreatePostDisturbanceStandDataStructure

I I**
void MakeNewPremoRuns(struct TREELIST_FOR_PREMO FP[], int Count, int ActualPer)
I I**

// Make Premo runs for those treelist hit by some type of disturbance this past period

FILE *OpenBatch;
char Batch[250], Parameters[250], JunkFile[256], RunPremo[256];

int a;

//For timing stuff
clock_t Start, Finish;
double Duration;

//---------------------------- End of variable defining-------------------------------------­

/*

163

printf ("\n \n------------- The FP structures as MakeNewPremoRuns sees it -----------------------------------\n") ;
for(a=O;a<Count;a++)

printf ("FP [%d] : Treelis t: %lu \ tGoal: %hu\ tHold: %hu \ tinterval: %hu \n", a, FP [a] . Treelis t,
FP[a] .Goal, FP[a] .Hold,

FP[a] .Interval);
*/

//Start the overall clock
Start= clock();

//Make the JunkFile which screen outputs can be redirected to
sprintf {JunkFi le, '"ts%s\ \Junk. txt" , PREFIX, Error Dir) ;

//Go through the FP structures and make Premo calls for all needed records
for(a=O;a<Count;a~~,
each record in the FP structures

/*
Premo wants the following information passed in as a parameter for each call

1) The full pathname of the Premo program itself
2) The current period
3) Treelist number
4) Goal number
5) Hold number
*/

//Create a batch file to use to call up Premo
sprintf (Batch, "%s%s%d\ \per%d\ \Premo bat", PREFIX, OUTPUTS, GOAL_TO_USE, Actual Per) ;

/ /Create the argument line that will get inputted into the above batch file
sprintf(Parameters, "%s%s %d %lu %hu %hu %d",

PREFIX,PremoProgName,
ActualPer,
FP[aJ .NewTreelist,
FP[a] .Goal,
FP[a] .Hold,
PREMO_ TOGGLE) ;

//Open the batch file and write out the Para.meters line and then close the file
OpenBatch = fopen(Batch, "w") ;
if (OpenBatch == NULL}

fprintf(stderr, "Opening of %s failed: %s\n~, Batch, strerror(errno) } ;
fprintf (OpenBatch, "%s\n", Parameters);
fclose(OpenBatch);

//Fill the RunPremo array with the Batch file name and the screen output redirection file na.me
sprintf (RunPremo, "%s > %s\n" ,Batch, JunkFile);

//timing info local to this loop
//clock_t Start, Finish;
//double Duration;

// Call up PREMO and run it with the above .bat file
//Start= clock();
system(RunPremo);
//Finish= clock();
I /Duration = ((double) (Finish-Start) / CLOCKS_PER_SEC
//printf("**That prescription took %.2lf seconds**\n", Duration);

//end of for(a=O ...

Finish = clock();
Duration= ((double) (Finish-Start) / CLOCKS_PER_SEC);
printf("**All of those prescription took %.2lf seconds**\n", Duration);
printf{"===========================~===:,n,n''),

for(a=O;a<lO;a++)
printf ("\a"); //an alarm to tell it's finished

//for

}//end MakeNewPremoRuns

I I**
int FillForPremo(struct TREELIST_FOR_PREMO FF[], struct HIT_BY_DISTURB HitList[], int Count)
I I**
(

I /Go through Hi tList [] again and find those actual Unique combinations of Treelist-Goal-Hold counted ear lier
I I and this time fill up the FP structure
int a, b, Unique;
ulong EvalTreelist;
ushort EvalGoal, EvalHold;

//---------------------------- End of variable defining---­
Unique = O;

164

b = O; //This must be
reset because above it left loop with value of Count
for (a=O; a<Count; }
loop
(

if(b == Count}
incremental method, b will reach end first but a doesn't know that

break;

Unique++;
as do others because a gets reset in other loop

//Set the initial
EvalTreelist
EvalGoal
EvalHold

Eval* variables
HitList[a] .Treelist;
HitList[a] .Goal;
HitList [al .Hold;

//Insert those values in the array of FF structures
FP[U'nique-1] .NewTreelist EvalTreelist;
FP [Unique-!] .Goal ;:;: EvalGoal;
FP[Unique-1] .Hold = EvalHold;

//a will get increment by other

//because of weird

,-/first one always counts

//sin~ HitList is already sorted, start at next record and look downward until no longer a match
for (b=a+l ;b<Count;}
(

if(

else

HitList[bl .Treelist
HitList [bl . Goal
HitList [bl, Hold

b++;

EvalTreelist &&
EvalGoal &&

:::::::: EvalHold

//Then look at next record

/ /Set the "a" variable to where "b" is because this is the next unique match
a ::: b;-
break;

}//end for(b=a+l;b<Count;b++)
}//end for(a=O;a<Count;a++)

return Unique;

}//end FillForPremo

I I**
int FillHitListForPremo (struct HIT_BY_DISTURB Hi tList [] , ulong FTL)
I I**
(

I*
Use the same rules as in the CountTotalHit() function to determine whether or not a cell was
hit by ANY type of disturbance this period.

NOTE: The array of HitList structures are type HIT_BY_DISTURB which is a structure type
developed to hold data after indi,Jidual disturbances. It became apparent that I could just
re-use this structure type to hold information for all the cells at the end of a period. Just
be aware how certain members are being used.

Treelist; Normally would hold an OLD treelist value but in this case holds the updated and current treelist value

* I
int a, Count;

I!----------------------- End of variable defining -----------------------------

//Fill up HitList
Count= O;-
for (a=O; a<UNIQUE; a++ l
(

if(Data.Cellid(a]
break;

arrays

FALSE I

if(Data.Treelist[aJ >= FTL)
(

H tList(Count] .Treelist
H tList[Count] .Goal
H tList [Count] . Hold

Data.Treelist[a];
Data.Goal[a];
Data.Hold[a];

I/done looking through

HitList [Count] .Cellid Data,Cellid[a];

Count++;

return Count;

} //end FillHitListForPremo

I I**
int CountTotalHit(ulong FTL)

I I**

/*
After all the disturbances in a period - the best way to see if a cell has been hit by ANY
type of disturbance is to look through the entire Data.* [] arrays and count hm,; many ha'Je
a current Treelist value>= to the FirstTreelist value used in the pericd.

REMEMBER: this works because the Treelist value is updated right after each disturbance
*/
int a, Count=O;
//-------------------------------- End of variable defining------------------------

for (a=O; a<UNIQUE; a++)
{

FALSE)

165

if(Data.Cellid[a]
break;

arrays
//done locking through

if{ Data.Treelist[a} >:::: FTL)
Count++;

return Count;
}//end CountTotalHit

I I**
void InitialPremo(void}

I I*******************************'************************************'********'*••••*•••'*'*'
{

/* This function has 'IWO roles one is to create a Rl}NSTANDOPT.KZ\..T file for E""VERY stand {cell) that
needs to be optimized. Second, once that .bat file is created this function will call up Heidi's program
(currently called Premo.exe) and pass the arguments from the .bat file to it,
* I

FILE *Index, *OpenBatch;
char TreeFileName [200} ="", Garbage [200] = 11 11

, Temp [256 J , Temp2 [2 56] , JunkFi le [256] ;
int ScanStatus, IndexNo, count, ctr, goal, HoldPeriods;

/*
GOALS numbers as used in PREMO are:
O=-Fire, !=Insects, 2=Fish,

3 =1-Jildlif e-corrplex, 4=Wildlif e-simple,
6-=Fire, Insects, PNV 7 =Fish, Wildlife, PNV

9:GrowOnly
10 Non-forest(no goal associated} - only seen at end of simulation when outputting a goal value to map
* I

//For Time information
//clock_t Start, Finish;
//double Duration;

//----------------------------- End of variable defining---

//First, delete the old prescriptions in the
DeleteinitialStuff (};

. \initial\ directories

//Make the JunkFile which screen outputs can be redirected to
sprintf (JunkFile, "%s%s\ \Junk. txt", PREFIX, ErrcrDir};

// I will assume that the treelist index.txt file is completely filled with valid stands and files
sprintf (Temp, "%s%s%d\ \perO\ \%s", PREFIX, INPUTS, GOAL_TO_USE TREE_INDEX);
Index = fopen(Temp, "r");

if (Index c::,== NULL}
fprintf (stderr, "opening of %s failed: %s\n", Temp, strerror(errno}};

I I First go through the file and COUNT the number of files
count = O;
while ((ScanStatus=fscanf(Index, "%d",&Inde:<l'Jo)) !=EOF)
{

count = ++count;

// Rewind the file pointer so it is back at the beginning of the file
rewind (Index) ;

// Now create a string that will be thro¼'Il into each runstandopt .bat file during the looping
// and then execute the .bat file for each stand
for(ctr
(

O; ctr< count,- ctr~~)

fscanf (Index, ~ %d n, &Index.No) ;

printf("Working on Treelist %d\n",IndexNo);

for (goal=O; goal<GOALS; goal++ j
(

//for each treelist

//Scan the index no

//for each goal

//Set a quick error if I change the# of HoldFor periods and I forget to fix this code
if (HOLDNO > 2)

Bailout (40);

for (HoldPer iods=O; Hold Per iods<4; HoldPer iods+;;;J)
(

//for the two Hold "for" periods

166

/ /Instead of running PREMO for GrowOnly prescriptions with multiple "hold" values,
just

//copy the files from the hold==O stuff into new files
if(goal 9 && HoldPeriods > 0)
(

CopyStandOpt(IndexNo,goal,HoldPeriods};
continue;

iteration of the for(HoldPeriods ...) loop
)

//next

sprintf(Temp, "%s%s O %d %d %d %d\n",PREFIX,PremoProgName, IndexNo, goal,
HoldPeriods, PREMO_TOGGLE);

sprintf (Temp2, "%s%s%d\ \perO\ \Premo. bat", PREFIX, INPUTS, GOAL_TO_USE) ;

I /Open the PremoBatchFile and put in command line
OpenBatch = fopen (Temp2, "w") ;
if (OpenBatch == NULL)

fprintf(stderr, "opening of %s.bat failed: %s\n", Temp2 ,strerror(errno});
fprintf (OpenBatch, "%s\n", Temp);
fclose(OpenBatch);

//Refill Temp with the batch file name and the screen output redirection
sprintf(Ternp, "'ts> %s",Temp2,JunkFile);

// Call up PREMO and run it with the above .bat file
I /Start = clock () ;
sys tern (Temp) ;
//Finish = clock ();
/ /Durati0n = ((double) (Finish-Start) / CLOCKS_PER_SEC) ;
//printf{"**That prescription took %.2lf seconds**\n", Duration};

}//end of for(HoldPeriods ...
}//end of for(goal
//end of for(ctr .. .

fclose (Index) ;

for(ctr=O;ctr<lO;ctr++)
printf (~\a");

]//end of InitialStandOpt

//an alarm

I I**
void CopyStandOpt(int Treelist, int Goal, int Hold)
/I**

/*This function will copy over those PRESCRIPTION, VEGCODE, and STAND DATA files that were
generated for a Grow Only goal with a held value of 0. Any addition hold values are redundant
because hold refers to how many periods to "hold" before allowing cutting and in the Grow Only
there is no cutting - thus they will be the same. At this time, I still need the files to
exist on the hard drive with the unique name.
*!
char CopyPres(300];
char CopyStand[300];
char JunkFile[300];

//Make the JunkFile which screen outputs can be redirected to
sprintf (JunkFile, "%s%s\ \Junk. txt", PREFIX, ErrorDir};

if(Treelist == NONFOREST}
return;

if(Treelist < NONFOREST)
(

//do nothing

//copy stuff from/to the ::::NITIAL directory

sprintf (CopyPres, "copy %s%s\ \P_%d_%d_O. txt %s%s\ \P_'td_%d_%d. txt
%s" , PREFIX, Ini tialPresDir, Tree list, Goal,

PREFIX, InitialPresDir, Treelist, Goal, Hold, JunkFile) -,
sprintf (Copy Stand, "copy %s%s \ \.SD_%d_%d_O. txt %s%s\ \SD_%d_%d_%d. txt

%s", PREFIX, InitialStandDataDir, Tree list, Goal,

PREFIX,InitialStandDataDir,Treelist,Goal,Hold,JunkFile);
)

167

else
directory
{

//copy stuff from/to the MODELED

sprintf(CopyPres, "copy %s%s\\P_%d_%d_O.txt %s%s\\P_%d_%d_%d.txt >
%:s", PREFIX,ModeledPresDir,Treelist,Goal,

PREFIX,ModeledPresDir,Treelist,Goal,Hold,JunkFile);

sprint£ (CopyStand, "copy %s%s\ \SD_id_%d_O. txt %s%s\ \SD_%d_%d_%d. txt >
%:s", PREFIX,ModeledStandDataDir, Treelist, Goal,

PREFIX,ModeledStandDataDir,Treelist,Goal,Hold,JunkFile);
}

//now execute those system calls
system(CopyPres);
system(CopyStand);

}//end CopyStandOpt

I I**
void CreateTreeindex(void)
I I***********************************"'*"'**

// This function is to look at Data. Tree list and make a list of
/ / all the unique treelist values that occur. I will then take each of those unique values and
II look for them in the Initialtreeindex.txt and create a new text file which contains ONLY those
// index numbers for treelist values that were found in Data.Treelist

int b,c,next,there;
ulong *ptr_utl;
FILE *Master,*Current;
int ScanStatus,IndexNo,Found;
char TreeFileName [256], Temp [256], Temp2 [256];
ulong *ptr_treelist;
int NumberTreelist = 0;
//------------------------------- End of variable defining---

//First, count the total number of 'Jalues in Data.Treelist
for(c=O;c<UNIQUE;c++)
{

ptr_treelist = &Data.Treelist[c];
if(*ptr_treelist != 0 && *ptr_treelist 1 = NONFOREST)

NumberTreelist++;

/ /printf ("\nThere are %d values (not necessarily unique} in Data. Treelist \n\n" ,NUlTlberTreelist);

//Create and initialize the UniqueTreeList(] array on the free store
ulong (*UniqueTreeList} = new ulong[NurnberTreelist];
if (UniqueTreeList == NULL)

printf("Problems allocating memory for UniqueTreeList with %lu elements\n" ,NumberTreelist);

memset (UniqueTreeList, 0, sizeof (UniqueTreeList (0]) *NurnberTreelist);

//Then, pick out the unique numbers in Data_Treelist
next= O;
for (c=O; C<UNIQUE; c++)
{

there = O;
ptr_treelist=&Data Treelist[c];

if(*ptr_treelist == 0)
break;

there are no treelist values of 0

if(*ptr_treelist =: NONFOREST}
continue;

continue on to next

for (b=O; b<NumberTreelist; b++)
{

ptr_utl = &UniqueTreeList [bl;

array

if ((*ptr_treelist) == { *ptr_utl)
(

if(there == 0)
(

there = l;
break;

UniqueTreeList[next]
next++;

*ptr_treelist;

//assumes Data.Treelist was initialized with O's and

//don't put these in the file -

//utl stands for UniqueTreeList

//means the value is already in the UniqueTreeList[]

I /Now create a TREEINDEX. txt file to be placed in the / inputs/per □ directory so that the Premo Stuff. cpp

// functions can open that file and run Premo for these initial treelist.
sprintf (Temp, "%s%s\ \%s", PREFIX, Constantinput, IT_INDEX);
sprintf (Temp2, "%s%s%d\ \per0\ \ %s", PREFIX, INPUTS, GOAL_TO_USE, TREE_INDEX};

Master = fopen(Temp, "r");
Current = fopen (Temp2, "w") ;

if (Master == NULL 11 Current ="" NULL)
fprintf (stderr, "Opening of %s or %s failed: %s\n", Temp, Temp2, strerror (errno));

//Now look through the UniqueTreeList[] array and for each of the values in it, find the file location
//from the InitialTreeindex. txt and send both that file directory and the unique tree list value to a new
//text file called Tree index. txt (placed in the / inputs/perO/ directory

for(c=O;c<next;c++)
(

Found= O;
while ({ScanStatus=fscanf (Master, "%d %s 1

·, &IndexNo, TreeFileName)} t =EOF}

if (Index.No== (int)UniqueTreeList[c])

fprintf (Current, •1 %d\n", IndexNo);

Found ::: l;

}//end of while

if (Found == Ol

rewind(Master);
break;

printf("There appears to be no treelist available for IndexNo: %d - Bailing
out!\n•,uniqueTreeList[c]);

Bailout i20};

}//end of for(c=O;c<next;c++)

fclose (Master) ;
fclose(Currentl;

//delete stuff on free store
delete [] UniqueTreeList;

/ /Set the global variable ITL so the value of next
ITL = next;

) //end of CreateTreeindex function

I I***********************••••*•••**•***************************•***************••••••••*******
void CreateSortedPremoBinaryFile(void)
I I***"'************************
{
;•
This function will create a sorted binary file that contains all the SD_*_*_*. txt
data for the current landscape. This file only needs to be created when PREMO has been
ran on the initial files (i.e. after a change in PREMO coding). The resulting binary file
can then be read in later during FillinitialPremoDatai).

* I

FILE *Index, *Datain, *BinOut, *HeaderOut;
char Temp [256];
int ScanStatus,Treelist,count, NonForestCount, RealCount, ctr, goal, HoldPeriods;
int y;
ulong RecordsNeeded, Record;
int DataPeriod;
double RealBasal, RealClosure, RealCBD, RealHLC, RealHeight, RealRev, RealBigTrees, Harvest;
ushort VegCode;
double RealLi tter, Rea1Class25, RealClass 1, Rea1Class3, Rea1Class6, Rea1Classl2, Rea1Class0verl2;
double LoadFactor;
//----------------------------- End of variable defining--

//Figure out how many records there are going to be
/ /I will assume that the treelist index. txt file is completely filled with valid stands and files
sprintf (Temp, "%s%s%d\ \perO\ \%s N, PREFIX, INPUTS, GOAL_TO_USE, TREE_INDEX);
Index = fopen(Temp, "r" l;
if (Index == NULL)

fprintf(stderr, •opening of 'ts failed: %s\n", Temp, strerror (errno)),

J J First go through the file and COUNT the number of files
count = 0;
NonForestCount=O;
while ((ScanStatus=fscanf (Index, "%d", &Treelistl) ! =EOF)

if(Treelist == NONFOREST)
NonForestCount++;

count ++count;

RealCount count - NonForestCount;

168

//printf("There are %d files in the treeindex.txt file but only %dare Forest type\n",count,RealCount);

// Rewind the file pointer so it is back at the beginning of the file
rewind (Index) ;

//Determine the actual # of records

169

RecordsNeeded RealCount * GOALS * HOLDNO * NP; //Use RealCount because records for NONFOREST are not
needed

//Create an array of structures on the free store to hold these
struct PREMO_RECORD (*Inv) = new struct PREMO_RECORD [RecordsNeeded];
if (Inv == NULL)

printf(hProblems allocating memory for Inv[] with %lu elements\n",RecordsNeeded*sizeoffPREMO_RECORD));
//Initialize
memset(Inv, 0, sizeof(struct PREMO_RECORDi * RecordsNeeded };

//***************** Start pumping data into the array of Inv[] structures **********************

//Set the LoadFactor that will be used to convert the incoming FuelLoadings (which are in LBS} to TONS but
//keeping some precision by multiplying by FUEL_LOAD_EXP
LoadFactor =TONS* FUEL_LOAD_EXP;

Record=O;

for(ctr=O;ctr<count;ctr++l //for all the treelist
listed in the treeindex.txt file

fscanf (Index, "%d~, &Treelist};

if(Treelist == NONFOREST)
continue;

for (goal=O; goal..:::GOALS; goal++)
(

//Scan the actual treelist number

//no need to do these

//for each goal

//Set a guick error if I change the# of HoldFor periods and I forget to fix this code
if(HOLDNO > 2)

Bailout(40);

for (HoldPer iods=O; HoldPer iods<4; HoldPeriods+=3)
(

//for the two Hold "for'' periods

//Start by opening the correct SD_*_*_*.txt file ONCE
sprintf /Temp,

w %s%s\ \ SD_ 'td_ %ct_ 'td. txt M , PREFIX, Ini tialStandDa taDir, Treelist, goal, HoldPer iods) ;
Dataln = fopen(Ternp, "r");

is NOT needed.

growth

&DataPeriod, &RealBasal,

&VegCode, &Harvest,

if (Datain == NULL}
fprintf(stderr, "opening of %s failed: %s\n",Temp, strerrorlerrno));

//The SD_*_*_*.txt files will have a line of data for the incoming treelist at and it

//SafeD works by assuming the the 1st period is after Harvest activities and 5-yr

fscanf (Datain, "%d %lf %lf %lf %lf %lf %lf %lf %hu %lf %lf %lf %lf %lf %lf %lf %lf",

&RealClosure, &RealCBD, &RealHLC, &RealHeight, &RealRev, &RealBigTrees,

&RealLitter, &Rea1Class25, &RealClassl, &Rea1Class3, &Rea1Class6,
&Rea1Class12, &RealClassOverl2) ;

//Now scan in all the data ONCE and store in the array of Inv structures
/II assume that the SD_*_*_* have Period 1 on line 2
for (y=O; y<NP; y++)
(

//First, scan in the lines from SD*

%lf %lf",
fscanf(Datain, "%d %lf %lf %lf %lf %lf %lf %lf %hu %lf %lf %lf Hf Hf %lf

&DataPeriod, &RealBasal,

&RealBigTrees, &VegCode, &Harvest,

&Rea1Classl2 1 &Rea1Class0ver12);

are OK in terms of 65535 thingy-! !

RealLitter >= 6553*TONS / /

>= 6553*TONS 11

Rea1Class0verl2 >= 6553 *TONS)

Treelist, goal, HoldPeriods,y+l);

&RealClosure, &RealCBD, &RealHLC, &RealHeight, &RealRev,

&RealLi t ter, &Rea1Class25, &RealClassl, &Rea1Class3, &Rea1Class6,

if(DataPeriod != y+l)
printf ("problem with period values in the PREMO files\n");

//Check and make sure values that eventually will be converted to USHORT

if(RealBasal >= 6553 I I RealCBD >= 655 I I RealBigTrees >= 6553 I I

Rea1Class25 6553""TONS 11 RealClassl

Rea1Class6 >= 6553*TONS 11 Realclassl2

6553 *TONS 11 Rea1Class3

6553*TONS 11

printf ("Guilty is: Tree %d Goal %d and Hold %d in period %d\n",

Bailout (49);

* BASAL_EXP));

(ushort) (floor (RealClosure));

DENSITY _EXP I) ;

O. 5 I I;

+ O. 51 I;

//Just .1.n case
if(RealCBD < 0

RealCBD -== O;

Inv [Record] . Treelist
Inv[Record] .Goal
Inv[Record] .Hold
Inv(Record] .Period
Inv,: Record] . Basal

Inv:Record] .Closure

Inv[Record] .Density

Inv [Record] . HeightCro 1,m

Inv[Record] .Stand.Height

Inv[Record] .Rev
Inv[Record] .BigTrees

(ushort} (floor(RealBigTrees * BIGTREES_EXP}};
Inv: Record] . Vegcode
Inv:Record) .Harvest

(ulong) Treelist;
(ushort) goal;
(ushort}HoldPeriods;
(ushort)y;

170

(ushort) (floor(RealBasal

{ushort) (floor (RealCBD *

(ushort) (floor(RealHLC +

(ushort) (floor {RealHeight

/float}RealRev;

VegCode;
(float/Harvest;

//The incoming fuel loads are in LBS - convert to TONS but keep some
precision by multiplying by FUEL_LCAD_EXP

Inv[Record] .Litter
(ushort) (RealLi tter /LoadFactor) ;

Inv [Record] . Class2 5
(ushort) (RealClass25/LoadFactor);

Inv[Record] .Classl
(ushort) (RealClassl/LoadFactor);

Inv:Record] .Class3
(ushort) (Rea1Class3 /LoadFactor) ;

Inv:Record] .class6
(ushort) (RealClass6/LoadFactor) ;

Inv [Record] . Classl2
(ushort) (RealClassl.2/LoadFactori;

Inv[RecordJ .Class0verl2
(ushort) (RealClassOverl2/LoadFactor);

Record++;
SURE to increment this counter up

}//end for(y=O;y<NP;y++}

fclose (Datain);
)//end for(HoldPeriods=O

} //end for (goal=O ~ goal<GOALS; goal++)
}//end for(ctr O; ctr< count; ctr++)

fclose (Index);

//***** Sort the array by Treelist-Goal-Hold-Ele,.,·-Period and prepare to write out the results
qsort((void*) Inv,

/ /base
(size_t) RecordsNeeded,

//count of records
sizeof (struct PREMO_RECORD) ,
//size of each record
LookAtPrernoRecords);

//compare function

//Create the output Binary file and header tile
sprint£ (Temp, 1'%s%s\ \Binary\ \%s_Premo bin", PREFIX, InitialstandDataDir, ENVT) ;
BinOut = £open (Temp, •wb~) ;

sprint£ (Temp, "%s%s\ \Binary\ \%s_Premo. hdr", ?REFIX, InitialStandDataDir, E:t-TVT) ;
HeaderOut = fopen(Temp, "w");

//Write out the header data -- need to know how many records there are
fprintf (HeaderOut, 11%lu\n", RecordsNeeded) ;

//And now write out all the records in the array of Inv structure
fwrite(Inv, sizeof(PREMO_RECORD) ,RecordsNeeded,BinOut);

fclose (BinOut};
fclose (HeaderOut};

delete [] Inv;
}//end CreateSortedPremoBinaryFile

I/**********************************"""""*"""""*** ************1<*** * ********* **** **** ** * ***** **
int LookAtPrernoRecords(const void *ptrl, const void *ptr2)

//Just to typecast them since we aren't actually passing in pointers
struct PREMO_RECORD *eleml;
struct PREMO_RECORD *elem2;

//BE

eleml
elem2

(struct PREMO_RECORD *)ptrl;
(s true t PREMO_RECORD *) ptr2 ;

if(eleml->Treelist < elem2->Treelist
//First sort by Treelist

return -1;
if(eleml->Treelist > elem2->Treelist

return 1;
else

//Then by Goal

if(eleml->Goal < elern2->Goal

return - 1;
if (eleml->Goal > elem2->Goal

return l;
else

//Then by Hold

if (elernl->Hold < elern2->Hold

return -1:
if { eleml->Hold > elem2->Hold

return l;
else

//Then by Period

if{ elernl->Period < elem2->Period

return -1;
if(elernl->Period > elem2->Period

return l;
else

return O;
I !FINISHED!!

)!/end Period
}//end Hold

}//end Goal

)//end LookAtPremoRecord

I I**
void FillinitialPremoData(int per)
I I**
(
/*

This function will be called up only at period 0, which is before main()
starts into the NP period loop. This function needs to COMPLETELY fill up the
Data.* array for all NP periods with the initial data derived from the prescription generator.

Filling in the initial data will be done by using the sorted binary file created during
CreateSortedPremoBinaryFile()
* I

//IO variables
FILE *Binin, *Headerin;
char Temp[256];

I I structures
struct PREMO_RECORD Key;
struct PREMO_RECORD *ptr_record;

/ /pointers
ulong *ptr_treel ist;
ushort *ptr_goal, *ptr_hold, *ptr_elev, *ptr_vegcode;

int x,y, count;
ulong RecordNo;

I /For Time information
clock_t Start, Finish;
double Duration;

171

// -------------------------------End of variable defining--­

Start = clock ();

printf("\n\n==--------================­
========\n");
printf("\t\t*** Filling the Data.* arrays with Binary data from PREMO ***\n");

//Create and Open the Header and actual Binary file with PREMO data in it
sprintf (Temp, "%s%s\ \Binary\ \%s_Premo bin", PREFIX, InitialStandDataDir, ENVT};
Binin = fopen(Temp, "rb");

sprintf (Temp, "%s%s\ \Binary\ \%s_Premo hdr", PREFIX, InitialStandDataDir, ENVT);
Headerin • fopen(Temp, "r");

I !Get the Nwnber of records that are listed in the header file

fscanf (Header In," %lu ■, &RecordNo};

//Create an array of structures on the free store to hold these records
struct PREMO_RECORD (*Prernoinv} = new struct PREMO_RECORD[RecordNo];
if { Premo Inv == NULL)

172

printf ("Problems allocating memory for Premo Inv [] with %lu elements\n", RecordNo*sizeof (PREMO_RECORD));

//Initialize a couple of things
rnemset(Premoinv, 0, sizeof(struct PREMO_RECORD) *Record.No);
rnernset(&Key, 0, sizeof{ struct PREHO_RECORD)) ;

//Now just read in the binary data the same way it was written out in CreateSortedPremoBinaryFile()
fread(Premoinv, sizeof{PREMO_RECORD),RecordNo,Binin);

//close up the files
£close (Binin) i
£close (Headerin);

I !Go one-by-one through the Data.* stands and get the Treelist-goal-hold-Period and then use that as
//a key to do a binary search on the Premoinv structures and find the correct data
//I assume that all Data.* arrays are tilled and that the first Data.Treelist element
//has a value in it - if I hit a Data.Treelist == O then there are no more to do on landscape
for (count=O; count<lThHQUE; count++) / /go one-by-one through Data. Treelist []
(

/!Set the primary pointers to the Data.* arrays
ptr_treelist &Data. Treelist [count];
ptr_goal &Data.Goal[count];
ptr_hold = &Data.Hold[count];
ptr_elev = &Data.Elev[count];
ptr_vegcode &Data.Vegcode[countJ [O];

//Set a break if we get a treelist
if (*ptr_treelist == FALSE)

break;

0 ... signals the end of data in the Data.*[] arrays

NONFOREST
//If this cell is NONFOREST then make some adjustments to fuel models and fill Data.Vegcode[] [] with

if (*ptr_treelist == NONFOREST)
(

//NOTE: the NONFOREST Data.InitialFuelModel[] and Data.FuelModel[J [] were filled up back in the
function

//LoadinitialFuelModels.AndLoads(). I am not going to double-check here that it was done
although I have

/ /ran test to make sure.

//Assign a goal of "1:)" to indicate this is GROW-ONLY (non-forest)
*ptr_goal = 10;

//Set all Data.Vegcode values to NONFOREST
for(x=O;x<NP;x++)
(

*ptr_vegcode NONFOREST;
ptr_vegcode++;

continue;
for(count=O;count<UNIQUE ...) loop

//should continue next iteration of big

} //end if (*ptr_treelist == NONFOREST}

;;--------------------- End of what to do if the initial treelist is NONFOREST ""=======""------------

else if(*ptr_vegcode == 0) //This treelist-goal combination has NOT been inputted
yet

/ /All the
Vegcodes should be Oat beginning of simulation

I /Start to make some of the "Key" for this cell to use in looking for the correct
//record in the array of Premoinv structures
Key.Treelist (ulong)*ptr_treelist;
Key.Goal (ushorti*ptr_goal;
Key .Hold (ushort l *ptr_hold;

//make another loop to account for the period
for(y=O;y<NP;y++)
(

Key.Period= (ushort)y;

//printf("Key: %lu %hu %hu %hu %hu\n",Key.Treelist,Key.Goal,Key.Hold,Key.Periodl;

//Now use bsearch to find the matching record in the array of Premoinv structures
ptr_record "" {struct PREMO RECORD*) bsearch (

&Key,
/void *)Premoinv,
(size_t)RecordNo,
sizeof(struct PREMO_RECORD),
Look.AtPremoRecords) ;

if (ptr_record == NULL)
Bailout(75);

173

I /Check to see it the 1/egcode value is Mixed Conifer - if so it must be broken into >
or< 3000'

if((int) (ptr_record->Vegcode / 100) == 5)
(

if(*ptr_elev >= (3:):):)*FT2M))

//It's over 3,000 tt
Data. 1/egcode[count] [yJ ptr_record-

>Vegcode + 500; //This will give it 18**
else

>Vegcode;
Data. 1/egcode[count] [y]

/ /Leave as is
ptr_record-

>Vegcode;

else
Data. '1egcode [count] [y]
/ /Leave as is

if(Data.1.iegcode[count] [yJ > 1061 }

ptr_record-

print±("Got a B.W vegcode value during fill data with initial PREMO
data\n");

/ /Fill in the rest of Data.* [] arrays with the data accessible from the pointer
returned above

//Everyone should already have the proper type - converted back in
CreateSortedPremoBinaryFile()

Data.Basal[count] [y]
Data. Closure [count] [y]
Data.CBDensity[count] [y]
Data. HLC [count] [y]
Data.StandHeight[count] [y]
Data. BigTrees [count] [y]
Data. CFHarvest [count] [y]

ptr_record->Basal;
ptr_record->Closure;

ptr_rer.ord->Density;
ptr_record->HeightCrown;

ptr_record->StandHei~ht;
ptr_record->BigTrees;

ptr_record->Harvest;

//Fuel Loads ·,..,rere also properly converted back in CreateSortedPremoBinaryFile (}
Data.Litter[count] [y]
Data.Class25 [count] [yJ
Data.Classl[count] [y]
Data.Class3 [count] [y]
Data.Class6 [count] [y]
Data. Classl2 [count] [y]
Data.Class0verl2 [count] [y]

}//end for(y=O;y<NP;y++)
}//end of if(*ptr_vegcode == 0)

} / /end for (count=O; count<UNIQUE; count++)

//delete any arrays on free store
delete [] Premoinv;

Finish= clock(};
Duration= ((double} (Finish-Start) / CLOCKS_PER_SEC };

ptr_record->Li t ter;
ptr_record->Class25;
ptr_record->Classl;
ptr_record->Class3;
ptr_record->Class6;
ptr_record->Classl2;

ptr_record->-Class0verl2;

printf("\t\tTo fill the Data.* arrays with PREMO stand data took %.2lf seconds\n", Duration);
printf(u===
====\n");
}//end of FillPremoData

I I**
int CompareHitListForNewPremo (canst void *ptrl I const 'i.'Oid *ptr2 J
I I**

/ /Just to typecast them since we aren't actually passing in pointers
struct HIT_BY_DISTURB *eleml;
struct HIT_BY_DISTURB *elem2;

eleml
elern2

(struct HIT_BY_DISTURB *)ptrl;
(struct HIT_BY_DISTURB *)ptr2;

if{ eleml->Treelist < elem2->Treelist
//First sort by Treelist

return -1;
if(eleml->Treelist > elem2->Treelist)

return l;
else

//Then by Goal

if(eleml->Goal < elem2->Goal

return -1;
if(eleml->Goal > elem2->Goal

return l;
else

//Then by Hold

if(elernl->Hold < elem.2->Hold

return -1;
if(eleml->Hold > elem2->Hold

return l;

else

return O;
/ /FINISHED l !

}//end Hold
}//end Goal

}//end CompareHitListForNewPremo

I I**
int CountUniqueNewPremoHits(struct HIT_BY_DISTURB HitList[], int Count)

I I**

/ /Go through HitList l] and find how many actual Unique combinations of Treelist-Goal-Hold

int a,b,Unigue;
ulong EvalTreelist;
ushort EvalGoal, EvalHold;
//------------------------- end of variable defining---------------------------------------

Unique= O;
b = O;
for(a=O;a<Count;)
loop
(

if (b == Count l
incremental method, b will reach end first but a doesn't know that

break;

//a will get increment by other

/ /because of weird

174

Unique++; //first one always counts
as do others because a gets reset in other loop

//Set the initial Eval* variables
EvalTreelist HitList [a]. Treelist;
EvalGoal HitList[a] .Goal;
EvalHold HitList [a] .Hold;

//sine HitList is already sorted, start at next record and look do·~mward until no longer a match
for(b=a+l;b<Count;)
(

if(HitList[b] .Treelist
HitList[b] .Goal
HitList [b] .Hold
)

b++,­
//look at next record

else

EvalTreelist &.&.

EvalGoal &.&.

== EvalHold

I !Set the "a" variable to where ''b" is because this is the next unique match
a = b;
break;

}//end for(b"'a+l;b<Count;b++)
} / /end for (a=O; a<COunt; a++)

return Unique;
}//end CountUniqueNewPremoHits

REl8DAT.t'~. '~PP

II This READDATA.cpp file is to hold the functions used to populate the DATA structure.
// This structure has arrays that hold a bunch of input data themes.

II There is also a link[][] array created that is the array used to "link" any input data into the
II the arrays in DATA by means of a row/column search and linkage.

#include <stdio. h>
#include <Stdlib.h>
#include <String.h>
#include <math.h>
#include <time. h>
#include "globals. h"

/ /OK, see if I can make a structure called hData" to store the maindata.
//Using a structure to keep memory usage down because only the Cell id and
//Treelist needs to be ulong(4bytes each element) and the others can be ushort.
//I could just declare each one separately but I want some practice with structures(

struct Main(
ulong Cellid[UNIQUE];

Applegate watershed
ushort GridRow[UNIQUEJ;
ushort GridColumn[UNIQUE];
ulong Treelist[UNIQUE];
ushort Elev[UNIQUE];
ushort Aspect[UNIQUE];
ushort Slope[UNIQUE];
ushort Goal[UNIQUE];
ushort OWner (UNIQUE];

II

II

Values for entire

in meters

ushort Pag [UNIQUE];
ushort Alloc [UNIQUE];

allocation for stream buffers - use Data.Buffer
ushort Minor[UNIQUEJ;
ushort Hold [UNIQUE];
ushort Buffer[UNIQUE];

only!! NODATAFLAG = noBuff, 100 = in Buffer
ushort FireHistory[UNIQUE];

NODATAFLAG = not in, 100 = in old polygon
ushort InitialVeg[UNIQUE];
ushort InitialStage [UNIQUE];
ushort PRule[UNIQUE];

//Get calculated within SafeD
ushort InitialDuff [UNIQUE];

divided by TONS - convert back by
ushort InitialLitter [UNIQUE],-

FUEL_LOAD_EXP to make ushort)
ushort Initia1Class25 [UNIQUE),·
ushort InitialClassl [UNIQUE];
ushort Initia1Class3 [UNIQUE];
ushort Initia1Class6 [UNIQUE];
ushort Initia1Classl2 [UNIQUE];
ushort Initia1Class0verl2 [UNIQUE];
ushort InitialFuelModel[UNIQUE];
ushort Ini tialEra [UNIQUE J ;
ushort FuelModel [UNIQUE] [NP) ;
ushort Duff [UNIQUE] [NP];

F'UEL LOAD_EXP
ushort Flame [UNIQUE];

length interval from a FARSITE run

value

//Data that will come from Premo
ushort Basal[UNIQUE] [NP];

ushort Closure [UNIQUE] [NP];
ushort CBDensity(UNIQUE] (NP];
ushort HLC[UNIQUE] [NP];
ushort StandHeight[UNIQUE] [NP];
ushort BigTrees[UNIQUE] [NP];
ushort Era[UNIQUE][NP];

get REAL value
ushort Vegcode[UNIQUE] [NP];
float CFHarvest[UNIQUE] [NP];
ushort Litter[UNIQUE] [NP];

divided (/} by TONS -- Premo * by TONS
ushort Class25 [UNIQUE] (NP];

big to fit in ushort. Convert
ushort Classl[UNIQUE] [NP];
ushort Class3 [UNIQUE] [NP];
ushort Class6 (UNIQUE] [NP];
ushort Classl2[UNIQUE] [NP];
ushort Class0verl2 [UNIQUE] [NP];
} Data;

175

II Does NOT include an

// Stream buffers on FED land

JI Old fire perimeters

// These initial Fuel Loadings will be

// multiplying by TONS when using. (also using

//Divided by TONS - and multiply by

//Will hold the current flame

//converting ... divide by 10 to get REAL

// Truncating to closest integer
I/ converting, .. divide by 100 to get REAL value

// Truncating to closest integer
/I Truncating to closest integer

// converting ... divide by 10 to get REAL value

I I

/ / converting ... divide by 100 to

II

.'/------- All these fuel loadings will be

I I - - - - - - - when it outputted and some are too

//------- when needed back to TONS.

//Array to hold the •linkage" for filling up the arrays in the Data structure
int link[ROWSJ [3];

//functions used in ReadData.cpp
int CreateMainData(void);
int AsciiReadCell(void};
//int AsciiReadData (void);
int MakeLink (void);
int BinaryReadData(void);
long CheckHeader(int File);
void ReadGoalHoldFound(int Goal);

//defined in StandOptStuf f. cpp
extern void CreateTreeindex(void);

//defined in Misc. cpp
extern void Bailout (int ErrorNumber);
extern void PrintToStat(int, ulong Value);

int CreateMainData(void)

//For Ascii reading

//both binary and ascii ways can use this
//For Binary reading

// ** ~ ~ ~ ~ ~ ~ ~ ~ ~· ~***

11= i fde f USE_BEST_GOAL_HOLD
printf("\n\n******** Creating and initializing the main Data.*[] arrays. ***********\n"};
printf(N******** Will be using GOAL and HOLD values from previous simulation. ***********~*\n\n"};

ielse
printf("\n\n******** Creating and initializing the main Data.*[] arrays.

iendif

int r,s;
/ /For Time information
clock_t Start, Finish;
double Duration;

********~**\n"};

/ /Initialize all the arrays of the Data.* arrays w/ 0' s or other data
for(r=O;r<UNIQUE;r++)
{

Data. Cell id [r]
Data.GridRow[r]
Data. GridColumn {r]
Data. Treelist [r]
Data.Elev[r]
Data.Aspect[r]
Data. Slope [r]
Data.Omi.er[r]
Data. Pag[r]
Data.Alloc [r]
Data.Minor[r]
Data.Buffer[r]

O;

O;

0;

O;
0;

O;

O;

0;
0;

0;
0;

0;
0;
O·

176

0;

Data. FireHistory[r]
Data. Initial Veg [r]
Data. InitialStage [r]
Data. Flame [r]
Data.Goal[r]

O;
9; / /Goal will get a "real" value in

PickPrescription - defaults to 9 (GrowOnly)
Data.Hold[r]

(available to cut in period l}

Data. InitialDuff [r]
Data. InitialLitter [r]
Data. Initia1Class2 5 [r]
Data. InitialClassl [r]
Data. Initia1Class3 [r]
Data. Initia1Class6 [r]
Data. Initia1Classl2 [r]
Data. Initia1Class0ver12 [r]
Data.InitialFuelModel[r)
Data. InitialEra [r]
Data. PRule [r]

for(s=O;s<NP;s++)
prescription is selected

{

0;
= 0;

0;
0;
0;
0;
0.

0;
0;

0;

0;

0;

/ Isa.me with Hold - defaults to

/ /These all will get filled after

Data.Vegcode[r] [sJ
Data.CFHarvest[r] [s]
Data. Basal [r] [s]
Data.Closure[r] [s]

0;
0;

0;
0; //remember: the SD_*_*_*.txt file DOES have

canopy closure
Data.FuelModel[r] [s]
Data.CBDensity[rl [s]
Data. HLC [r] [s]
Data. StandHeight[r] [s]
Data.BigTrees [r] [s]
Data.Era[r] [s]
Data.Duff [r] [s]
Data.Litter[r] [s]
Data.Class25[r] [s]
Data.Classl[r] [s]
Data.Class3[r] [s]
Data.Class6 [r] [s]
Data.Class12[r] [s]
Data.Class0verl2 [r] [s]

0;
0;

0;

0;

0;
O;

O;
O;

O •
0;
O;

0;

O·
0;

printf ("--------Finished initializing, now to start filling in with data-----------\n");

Start ::: clock();

/ /NEW: Nov 99. Call up functions to reaci either ASCII or BINARY files {use #define FILE TYPE toggle)

#if (FILE_TYPE == 1)
//Read in the ASCII files

puts ("\n \n* * * * * ** * * * * * * * * * * * * * * ** * WARNING * ** * * WARNING * * * * * WARNING * * * * * * * * * * * * * ** * * *** * * * * * *" / ;
puts("***** *****'');
puts("***** ASCII reading method has not been completely updated yet - will not input*****");
puts(u**** the Slope, Aspect and Pag files - BAILING N0'."1! and see AsciiReadData() *****"!;
puts("***** *****");
puts ("* * * * * * ** * ** ** * * * * ** ** * * * * * * * * * * * * * ** * * * * * * **"} ;

exit(l);

/ /call up these routines to fill the Data.* [] and link[] [] arrays
if(AsciiReadCell())
(if (MakeLink ())

(//if(AsciiReadData())
{

Finish= clock/);
Duration = ((double) {Finish-Start) / CLOCKS_PER_SEC) ;
printf/"\n**Rea.ding the initial data in ASCII format took %,2lf

seconds** \n", Duration) ;

177

#else
I /Read in the

BINARY files
//call up these routines to fill the Data.*[] and link[][] a::::-::::-ay
if(BinaryReadData())
{

Finish =- clock {) ;
Duration= { {double) (Finish-Start) / CLOCKS_PER_SEC);
printf{"\n**Reading the initial data in BINARY fo::-rnat t,-i--ik %.2lf seconds**\n", Duration};

#endif //if (FILE_TYPE==l)

I/***************** TREEINDEX Creation ************** * **""""" "*" *
//Create the Treelndex.txt file now, because too many other things rely on it
#ifdef CREATE_TREE_INDEX
CreateTreeindex();
PREMO

//undefine & create new file with just 1 or 2 values when running test en

#endif
I/***.,.~

re turn TRUE;

)//end of CreateMainData

I I * * * * * * * * * ***** * ** * ** ** k * k k ** * * * * * * * * * * *
I I * * * * * * * * * ** **** ** * * **** * * * * * k ** * * * * * * * * * *
// Start of functions to handle irnpo:::-ting the data in BINARY format
I I ************************ **** ******** ** * *** *** * * * ** ·~·· **** ***** k "** ************* k k k
I I * * * * ** * * * * * * * * ******** * * ** * * * * * * * ** * * * * * * * * * * ** ** * * * * * * * * * * *
I I "'*** k k k k k k k k
int BinaryReadData(void)
I I ************************************ ************** * "* k k k k k k k "*
{

FILE *BIN;
char InFile[l50]="";
int r,c;
ulong cell;
long CellidND; //hold the returned NoData value
from CheckHeader(J for Cellid - it is reused
long ND; //hold other returned NoData values
from CheckHeader ()
int FileNo;
float RawValue;

//Create a temporary array to store the input Cellid binary data, which has data for every cell
float (*TempCellid) [COLUMNS] = new float[ROWSJ [COLUMNS]; //RO'i'1S"COLU:MNS is how many elements are in the

initial grid/binary file
if (TempCellid == NULL)

printf ("There was NOT enough memory for TempCellid with %lu elements\n", ROWS*COLUMNS);

/ /Initialize the TempCellid array
for(r=O;r<ROWS;r++}
{

for (c=O; c<COLUMNS;c++)
TempCellid[r] [c] 0;

//Check the header data associated with this binary file and get the returned NODATA value
CellidND = Checkl-Ieader (O l;

/ /******read in every element of the Cellid data and store in the Tei.-npCellid array
spr intf (InFile, • tsts \ \cellid_ %s. bin" , PREFIX, Constantinpu t, ENVT) ;
BIN= fopen(InFile, •rb•);
if(fread(TempCellid,sizeof(TempCellid) ,ROWS*COLUMNS,BIN) != ROWS*COLUMNS/ //TempCellid is only a pointer!!

Bailout (66);
else

printf ("**Binary file %s OK**\n", InFile);
fclose (BIN};

//Using the same criteria as reading in the old ASCII files, (i.e. checking for NODATAJ fill the actual
//Data.Cellid[J array with only those values needing tracked and fill Data.GridRow[] with
//the original ROW cell number and the Data.GridColwnn[] with original COLUMN cell.
cell = 0;
for(r=l;r<=ROWS;r++)
{

for {c=l; c<=COLUMNS; c++}
{

if {TempCellid(r-1] [c-1] ! = CellidND)
{

Data.Cellid[cell] = (ulong}TempCellid[r-1] [c-1];
Data.GridRow[cell] = (ushort/r;

/ /original grid row
Data.GridColumn[cell] = /ushort)c;

/ /original column row
cell++;

//The CELLID value

//Call up the MakeLink() to create the link[][] array used thrcughcut this program
if I MakeLink () ~~ FALSE)

Bailout (67);

;•
Loop through and read in the Input Landscape files. This is being done one file at a time so
only one Tempinput has to be created. The TempCellid[] [] created above will act as the
template for reading in the current landscape file.
• I

I /Create a temporary array to store the input binary data, ,.vhich has data for every cell
/ /NOTE: These input binary files a.re generated by Arcinfo as FLOATing numbers so use that as t:,rpe and typecast
later as needed

178

float (*Templnput) [COLUMNS] = new float [ROWS] [:='OLUMNS];
binary file

//ROWS*COLUMNS is how many elements are in the initial

if (Templnput == NULL)
printf("There was NOT enough memory for Ternplnput ,.,;ith %lu elements\n",ROV·JS*COLUMNS);

for (FileNo=l; FileNo<=FILES; Fi leNo++)
(

/*I am going to hard-wire codes to use for REQUIRED input landscape files:
1 Treelist
2
3
4
5
6
7
8
9

Elevation
Aspect
Slope
Ownership
Plant Association Group
Allocation (for federal lands)
Minor (sub-watersheds)
Buffer (stream buffers on federal lands)

10 Fire History
11 Initial Veg
12 InitialStage
13 Prescription Rule allocation for Framework only

There will be Switch statements both below and in the CheckHeader() f~nction so if new required files are added
be sure to modify code in both places.
*/

switch (Fi leNo)
(

case 1:

case 2:

case 3:

case 4:

case 5:

case 6:

case 7:

case 8:

case 9:

case 10:

case 11:

case 12:

case 13:

default:

sprint£ f InFi le, "%s%s\ \ tree list_ %s bin", PREFIX, Commonini tial, EWJT) ;
break;

sprintf (InFile, "%s%s\ \elev_%s. bin", PREFIX, Constantinput, ENV'T) i

break;

sprint£ (InFi le, "%s%s\ \aspect_ %s. bin", PREFIX, Constant Input, EN'ilT} ;

break;

sprint£ (InFile, "%s%s\ \slope_'ts. bin", PREFIX, Constant Input, ENVT);
break;

sprint£ (InFile, "%s%s\ \owner_%s. bin/I, PREFIX, Constant Input, ENVT);
break;

sprint£ i InFile, "%s%s\ \pag_%s .bin", PREFIX, Constantinput, EI\fVT};

break;

sprint£ (InPile, M %s%s\ \alloc_'ts. bin", PREFIX, Constantinput, ENVT};

break;

sprint£ { InFile, "%s%s\ \minor_ %s. bin" , PREFIX, Constant Input I EN'JT) ;
break;

sprintf (InFile, ~%s%s \ \s trbuf_%s .bin 11
, PREFIX, Constant.Input, EI\fVT);

breaki

sprintf (InF ile 1 • %s%s \ \ f irehist_%s. bin 11
, PREFIX, Cons tantinpu t, ENv'T) ;

breaki

sprintf (InFile, "%s%s\ \veg_%s .bin", PREFIX, Commoninit.ial, ENVT);
break;

sprintf (InFile, "%s%s\ \stage_%s. bin", PREFIX, Commoninitial, ENVT);
break;

sprint£ (InFile, "%s%s\ \rule%d_%5 .bin", PREFIX, Const.ant.Input., PRULE, ENVT);
break;

Bailout(68);

/ /Initialize and Re-Initialize the Tempinput array to prepare and hold new data
for(r=O;r<ROWS;r++)
(

for (c=O; c..::COLUMNS; c++)
Ternpinput [r] [c] O •

I !Check the header data associated with this binary file - program will bail if header file is bad
ND= CheckHeader(FileNo);

//******read in every element of the current binary data and store in the Tempinput array
BIN= fopen(InFile, •rb•);
if(fread(Tempinput,sizeof(Tempinput),R0 1,IJS*COLUMNS,BINJ != ROWS"COLUMNS) //Tempinput is only a pointer!!

Bailout(66);
fclose (BIN};

/*

Use the same criteria as reading in the original Cellid.bin file. If there was a valid value in the TempCellid
spot
then input data from the same spot from Tempinput. Also, check the current value in Templnput and if it has

179

a NoData value (according to its .hdr file) then put a NODATAFL.~G in the spot(because most nodata will be -9999 and
mose of these are ushort which can't handle that value).
*/
cell= O; //keep track of which array element to fill
for {r=l; r<:=ROWS; r++}
(

for (c=l; c<==COLUMNS; c++}
(

if(TempCellid[r-1] [c-1] != CellidND) //The original Cellid - if not NoData, then
grab it

/ /first grab the raw float value
RawValue = Tempinput[r-lJ [c-1];

//Now switch to the appropriate file so data can be placed properly and conversion
made

switch(FileNo)
(
case 1:

iffRawValue == ND)
NoData for this file in this spot, put NONFOREST •.ralue in

Data.Treelist[cell] = (ulong)NONFOREST;
else

/ /RaWValue is good, just convert to correct type and put in right spot
Data.Treelist[cell] = {ulong)RawValue;

break;
case 2:

if (RawValue == ND)
NoData for this file in this spot, put NODATAFLAG in

Data.Elev(cell] = (ushort:•NODATAFLAG;
else

//Rawvalue is good, just convert to correct type and put in right spot
Data.Elev[cellJ = (ushort)RawValue;

break;
case 3:

if /RawValue ND)
NoData for this file in this spot, put NODATAFLAG in

Data Aspect[cell]
else

(ushort)NODATAFLAG;

/ /RawValue is good, just convert to correct type and put in right spot
Data.Aspect[cell) = (ushort)RawValue;

break;
case 4:

if (RawValue == ND)
NoData for this file in this spot, put NODATAFLAG in

Data.Slope[cellJ = (ushort)NODATAFLAG;
else

//RawValue is good, just convert to correct type and put in right spot
Data,Slope[cellJ = (ushort)RawValue;

break;
case 5:

if (RawValue ND)
NoData for this file in this spot, put NODATAFLAG in

Data.O..mer[cell] = (ushort)NODATAFLAG;
else

//RawValue is good, just convert to correct type and put in right spot
Data.Cr.-mericell) = (ushort)EawValue;

break;
case 6:

if (RawValue == ND)
NoData for this file in this spot, put NODATAFLAG in

Data.Pag[cell]
else

(ushort) NODATAFLAG;

//RawValue is good, just convert to correct type and put in right spot
Data.Pag[cell} = (ushort)Ra',·Nalue;

break;
case 7:

if(RawValue == ND)
NoData for this file in this spot, put NODATAFLAG in

Data.Alloc[cell] = {ushort)NODATAFLAG;
else

/;RawValue is good, just convert to correct type and put in right spot
Data.Alloc[cell] = (ushort)RawValue;

break;

/ /There is

//There is

/ /There is

//There is

//There is

//There is

//There is

NoData for

NoData for

NoData for

case 8:
if(RawValue == ND)

this file in this spot, put NODATAFLAG in
Data.Minor [cell] = (ushort)NODATAFLAG;

else
/ /RawValue is good, just convert to correct type and put in right spot

Data .Minor [cell] = (ushort) RawValue;
break;

case 9:
it(RawValue ND)

this file in this spot, put NODATAFLAG in
Data .Buffer[cell] (ushort)NODATAFLAG;

else
//RawValue is good, just ccnvert to correct type and put in right spot

Data.Butfer[cell] = (ushort)RawValue;
break;

case 10:
if (RawValue == ND}

this file in this spot, put NODATAFLAG in
Data. F ireHis tory [cell] = (ushort) NOD.i\T.i\FL."!..G;

else
//RawValue is good, just convert to correct type and put in right spot

Data.FireHistory[cell] = (ushort)RawValue;
break;

case 11:
if (RawValue ND)

NoData for this file in this spot, put NODATAFLAG in
Data InitialVeg[cell] = (ushort)NODATAFLAG;

else
//RawValue is good, just convert to correct type and put in right spot

Data.InitialVeg[cell] = (ushort}RawValue;
break;

case 12:
if(RawValue == ND)

NoData for this file in this spot, put NODATAFLAG in
Data. Ini tialStage [cell]

else
(ushort) NODATAFLAG;

//Rawvalue is good, just convert to correct type and put in right spot
Data,InitialStage[cell] = (ushort)RawValue;

break;
case lJ:

if(RawValue ND}
NoData for this file in this spot, put NODATAFLAG in

Data.PRule[cell] = (ushort)NODATAFLAG;
else

//Rawvalue is good, just convert to correct type and put in right spJt
Data.PRule[cell] = (ushort)RawValue;

break;

default:
Bailout (68) ;

}//end s·witch

//increment array position counter
cell++;

}//end if(TernpCellid[r-1] [c-1] != CellidND)

JI /end for{r=l;r<=ROWS;r++)

printf("**Binary file %s has been inputted and is OK**\n", InFile);

}//end for(FileNo=O;FileNo<:FILES;FileNo++)

//Delete the TempCellid and Tempinput arrays from free store since they is no longer needed
delete [] TempCellid;
delete [] Tempinput;

return TRUE;
} //end BinaryReadDa ta

I /There is

//There is

//There is

/ /There is

I /There is

I /There is

I/**
void ReadGoalHoldFound(int Goal}
I/**

I*

* I

This function is to read in the binary files for a GOAL-HOLD solution
from a previous simulation run, and reenter those values into Data.Goal[] & Data.Hold[]_
These binary files were generated in BinarySaveGoalHold, found in "goal_controller.cpp.

For GROW_ONLY goal, just skip this function because the Goal-Hold values default to 9-0
during initialization in CreateMainData() _

FILE *BIN;
char GoalinFile[256];
char HoldinFile[256];

180

ushort *ptr_goal;
ushort *ptr_hold;

//--------------------------------- End of variable defining---

printf ("**Reading binary GOAL and HOLD values from previous simulation. \n") i

if (Goal !== GROW_ONLY)

//Make the correct output file names
sprintf (GoalinFile, "%s%s%d\ \ %s_%s_goal .bin", PREFIX, RerunDir, GOAL_TO_USE, OPTPREFIX, ENVT) ;
sprintf (HoldinFile, "%s%s%d\ \'ts_%s_hold.bin", PREFIX, RerunDir, GOAL_TO_USE, OPTPREFIX, ENVT);

//Now read them back in
ptr_goal &Data.Goal[O];
ptr_hold = &Data.Hold[O];

BIN = fopen(GoalinFile, "rb'');
if I BIN == NULL I

printf (•THERE IS NO OLD GOAL FILE FOR THIS LANDSCAPE - BAILING!!!! \n");
fread (ptr_goal, sizeof {Data. Goal [0]), UNIQUE, BIN) ;
fclose (BIN);

BIN = fopen(HoldinFile, "rb'');
if I BIN == NULL I

printf (nTHERE IS NO OLD HOLD FILE FOR THIS LANDSCAPE - BAILING!! 1 ! \n");
fread(ptr_hold,sizeof{Data.Hold[O]) ,UNIQUE,BIN);
fclose (BIN);

}//end ReadGoalHoldFound

I I * * * * * * * * * * * * ****** ** * ** *** ** *
long CheckHeader(int File}
I I * ** * * * * * * * * * * * * ** * * ** ** *** ** * * * * * * * * * * * * * * * ** * * * * * * ** * * * * * * * * * *
(
/*
Input code values (•File•) and what data they are referring to:

Cellid
Treelist
Elevation
Aspect
Slope
Ownership
Plant Association Group
Allocation (for federal lands)
Minor (sub-watersheds)
Buffer (stream buffers on federal lands)

10 Fire History
11 Initial Veg
12 Initial Stage
13 Prescription Rule allocation for Framework only
*/

FILE *IN;
char HeaderFile[lSO];
char garbage[l3];
char ByteOrder[lO];
int Row, Column;
long Nodata;
double xll, yll, junk;

/ /Get the appropriate file to check
switch(File)
(

case O:
sprintf (HeaderFile, "%s%s\ \cellid_%s. hdr", PREFIX, Constantinput, ENVT);

case 1:
sprintf (HeaderFile, "%s%s\ \ treelist_%s. hdr", PREFIX, Commoninitial, ENVT) ;

case 2:

case 3:

case 4:

case 5:

case 6:

case 7:

case 8:

case 9:

case 10:

case 11:

case 12:

sprintf (HeaderFile, "%s%s \ \elev_%s. hdr", PREFIX, Constantinput, ENVT) ;

sprintf (HeaderFile, "%s%s \ \aspect_%s. hdr", PREFIX, Constantinput, ENVT) ;

sprintf (HeaderFile, "'ts'ts\ \slope_%s.hdr", PREFIX, Constantinput, ENVT);

sprintf (HeaderFile, "%s%s\ \oWTier_llis.hdr", PREFIX, Constantinput, ENVT);

sprintf (HeaderFile, "%s%s\ \pag_%s.hdr", PREFIX, Constantinput 1 ENVT);

sprintf (Header File, "%s%s\ \alloc_ %s. hdr", PREFIX, Constantinput, ENVT) ;

sprintf (HeaderFile, ~%s%s\ \minor_%s. hdr", PREFIX, Constantinput, ENVT) ;

sprintf (HeaderFile, "%s%s\ \strbuf_%s. hdr", PREFIX, Constant Input, ENVT);

sprintf (HeaderFile, ~%s%s\ \ firehist_'ts. hdr", PREFIX, Constantlnput, ENVT) ;

sprintf (HeaderFile, n%.s%s\ \veg_%s, hdr", PREFIX, Commonini tial, ENVT);

break;

break;

break;

break;

break;

break;

break;

break;

break;

break;

break;

break;

181

sprintf (HeaderF ile, "%s%s\ \ stage_%s. hdr" , PREFIX, Comrnonlni tial, ENVT) ;
case 13:

sprintf (HeaderFile, "%s%s\ \rule%d_%s. hdr'', PREFIX, Constantinput, PRULE, ENVT);

default:
Bailout (68) i

IN= fopen(HeaderFile, NrM);

if(IN == NULL)
printf (~Problem opening HeaderFile %s\n", HeaderFile);

//Now scan in the header data and verify that it is OK
fscanf(IN,"%s %d %s %d %s %lf %s %lf %s %lf %s %ld %s %S

182

break;

break;

garbage, &Column, garbage, &Row, garbage, &xll, garbage, &yll,
garbage, &junk, garbage, &Nodata, garbage, ByteOrder);

//Check the number of Rows and Columns for this data
if (Column ! = COLUMNS 11 Row ! = ROWS)

Bailout(69);

//Check the grid origin for this data
if((int) (xll) != XLL 11 (int) lyll) '= YLL)

Bailout(70);

//Check to make sure the ByteOrder is correct
if(strcmp(strlwr(ByteOrder), "lsbfirst" J)

which it should be!
Bailout (71);

fclose (IN);

/ /write out a little OK line
printf(''Header file %sis OK\n",HeaderFile);

I/ convert to lowercase and test against II lsbfirst 11
-

//When finished, return the current Nodata value so it can be used during input into the Data.* arrays
return Nodata;
}//end CheckHeader

I I * ** * * * * * * ** * * * * * * ** * * * * * * * * * * * * * * * ** * ** *.., * * * * * * * * * * * * *
I I * * * ** * * * * * * ** * * * * ** ** * * * * * * * * * * * * * *** * ** ** * * * * * * ** * * * * * * * * * * * * *
// Function used regardless of whether BINARY or ASCII method used
I I * * * *** * *** * * ** * * * **** * * * * * * * * * * ** ** * * * * * ** * * * * ** ** * * * * * * *"' * * *
I I * * * * * ** * * * * ** * * * * **** * * * ** * * * * *** *** **** ** * * ** * * * * * * * * * * ** * * ** * * * * * * ** * * * * * * * * * * * * *
I I * * * * * * * * * ** ** * * * * **** * * * * * * * * * ** ** * * * * *
int MakeLink (void}
I I * * * * * * * * * ** * * * * * * **••••••••• *
(

II---------------- Create and fill the LINK array for later use-----------­
/*
This function can be used whether the data was read in ASCII or BINARY format because
it uses the values found in Data.Gridrow, which is populated by either method
• I

int r,c,Start,HowMany;
int *ptr_link;
ushort *ptr_gridrow;

int ctr;
ulong NumberCellid, *ptr_cellid;
//----------------------------- End of variable defining

/ /Initialize the LINK array - with row numbers 1-N and O's -- see below for more
ptr_link = &link[O] [Ol;
for(r=l;r<ROWS+l;r++)
(

*ptr_link = r;
ptr_link++;
for (c=O; c<2; c++}
(

*ptr_link O;
ptr_link++;

/ /Fill the array called Link, which has 3 columns: The first
//represents the original ROW number and the second has its starting row position
//in any of the Data.* arrays (not the array subscript)and the third column is how
I /many values are going into the Data.* arrays for that row.
//The link array will have spaces for ALL
//rows, regardless if data actually gets put in (will have O's if nodata for the whole row).

Start= O;
for (r=l; r<=ROWS;r++)
(

ptr_gridrow = &Data.GridRow[Start];
ptr_link = &link[r-1] [ll;

if(*ptr_gridrow == (ushort)r)
{

*ptr_link ::: {Start+l);
HowMany l;
do
{

ptr_gridrow++;
HowMany++;

} while *ptr_gridrow == (ushort)r);

Start= Start+ (HowMany-1);
*(ptr_link+l) (HowMany-1);

/ /count the number of values in the CELLIO column
for (ctr=O i ctr<UNIQUE; ctr++)
{

ptr_cellid=&Data. Cell id [ctr l ;
if(*ptr_cellid != 0)

NumberCellid = ctr+l;

printf (nThere are %lu unique cellids\n" ,NurnberCellid);
printf("First CELLID is: %lu and the last CELLID is: tlu\n",Data.Cellid[O],

oat a. Cell id [NurnberCellid-1]) ;

//Call up the PrintToStat() function to fill up with the total cell count info.
PrintToStat(l, (ulong)Numbercellid);

return TRUE;
}//end of MakeLink()

I I * ** * * ** * * ** * * * * * * * * * * * ** ** * * * * * * * * * * * * * * * ** * * * * * * * * * * * ***** *** *** * * * * * * ** * * * * * * * * * *
I I * * * * * ** * * * * * * ** * * * ** * * ** * *** * ***** * * * * ** * * * * * * * * * * * * * * *** **
// Start of functions to handle importing the data in ASCII format

I I * * * * * * * * ** * * * * * * * * * * * ***** * * ** * ** * * * * * ** * * * * * * * * * • * * * * * * * * * * * * * * * ** * ** * ** * * * * * * * * * *
I I * * * * * * * ** ** *** ** * * * * * ***** * * * *** * * * * * * * * * ** * * * * * * * * * * ** * ** *** * * * * * * * * * * * * * * * ** * * * * *

I I * * * * * * * * ** * * ***** ** * * ****** * * ***** * * * * * * * • * ** * * * * * ** ** * * * **** *
int AsciiReadCell(void)

I I * * * * * * ** * ** * * * * * * * *** * **** * * * ** ** * ****** * * *' * * * * * * * * '* * * * '* '* *
(

FILE *READ_CELL;
char garbage[13];
int Row, Column;
int r,c;
long int TestValue,Nodata;
ulong ConvertTest,cell;
double xll, yll, junk;
char Temp[lSO];

//Open the cellid.asc file and check validity
sprint f (Ternp, ~ %s%s\ \cellid_%s. asc" , PREFIX, Const an tinpu t, ENVT} ;

READ_CELL = fopen (Temp, "r") ;

if (READ_CELL == NULL)
fprintf(stderr, "opening of %s failed: %s\n", Temp, strerror(errno)};

else
iifdef DEBUG_OPENl

printf("File: %s opened with no problems in mode READ!\n",Temp);
#endif

fscanf (REAO_CELL, "%s %d %s %d %s %lf %s %lf %s %lf %s %ld",
garbage, &Column, garbage, &Row, garbage, &xll,

garbage, &yll,
garbage, &junk, garbage, &Nodata);

//Do some error checking and bail if input data is not correct
if(Column COLUMNS && Row == ROWS)

printf ("Rows and columns for CELLIO. a.Sc are OK\n");
else

Bailout (2);

//Do some error checking and bail if input data is not correct
if(floor(xll) XLL && floor(yll) == YLL)

printf("X and Y origin for CELLID.asc are OK\n"};
else

Bailout(]);
// ============= Enter CELLIO data into the maindata array =-============---===========

-# i fde f DEBUG_STRUCT
//print :)Ut the above to see if initialized correctly
printf ("Cellid \ tF.ow\ tColurnn \ t Tlist \ tUni t \n" } ;
for (r=O; r<lJNIQUE; r++)
(

183

184

printf ("'tlu\ t'thu\ t'thu\ t %bu\ t'fihu\n", Data. Cellid[r], Data. GridRow[rJ,
Data.GridColurnn[r],Data.Treelist[r] [OJ ,Data Unit[r]};

iendif

//Fill the Data.Cellid with valid CELLID values and Data.GridRow with the
I I original ROW cell number and the Data. Gr idColumn with original CCLUMN cell.
cell = O;

row

#ifdef DEBUG_STRUCT

for (r=l; r<=RO~!S, r++)
(

for (c=l; c<=COLUMNS; c++)
(

fscanf (READ_CELL, "%ld", &Testvalue);
if{TestValue != Nodata)
(

ConvertTest = (ulong/TestValue;
Data.Cellid[cell] = ConvertTest;
Data.GridRow[cell] = (ushort)r;

Data.GridColurnn[cell] = (ushort)c;
cell++;

/ /print out the above to see if filled correctly
print£ ("Cell id\ tRow\ tColurnn \ tTlist \ tUni t \n 11

) ;

for(r=O;r<UNIQUE;r++)
(

//The CELLID value
/:original grid

/ /original column row

pr intf ("'tlu \ t'thu \ t'thu \ t.%hu\ t%hu \n 11
, Data. Cell id [r] , Data. GridRow [rJ ,

Data.GridColumn[r] ,Data.Treelist[r) [O],Data.Unit[r]);

:fl:endif

£close (READ_CELL);

return TRUE;
}//end of AsciiReadCell

FUELSTUFF. CPP

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include "globals .h"
iinclude ·•ctata.h·'

I/------------ For FUEL stuff
void InitialFuelController (void);
ulong CountLandscape(void);

//to hold global DEFINES, etc ..

ulong FillAllinfo(struct P_INFO Allinfo[J
int CompareAllinfoTreelist(const void *ptrl, canst void *ptr2);
ulong CountUniqueAllinfoTree(struct P_INFO Allinfo[], ulong Count);
ulong FillFuelsWi thTreelist (struct P_INFO All Info [] . ulong Count, struct INITIAL_FUELS Fuels []) ;
void InitialFuelLoad(struct INITIAL_FUELS Fuels[], ulong Count);
void Ini tializeFuelLoadings (struct INITIAL_FUELS Fuels [], int Ctr);
void DetermineinitialFuelModel(struct INITIAL_FUELS Fuels[], ulong Count);
void LoadinitialFuelModelsAndLoads(struct INITIAL_FUELS Fuels[], ulong Count);
void AdjustFuelStuffForGrowth(int ActualPer);
void FuelDecayAndContribution(int ActualPer);
void CalculateAndFillSimFuelModel (int ActualPer);
void DoubleCheckFuels(voidl;

void CountTreelistRecords(int HowMany[], char Filename[]);
void FillTreelistRecords(char Filename[], struct TREELIST_RECORD Snags[], struct TREELIST_RECORD Live[],

struct TREELIST_RECORD CWd[], int HowMany[]);
int CompareFuelsForTreelist(const void *ptrl, const void *ptr2);

/ /Definined in StandData. cpp
extern void CalculateindividualBasalCanopyWidth(struct TREELIST_RECORD Records[], int NoRecords);
extern void CalculateStandClassification(struct TREELIST_RECORD Records [], int NoRecords, struct STAND CL.ZI..SS
*Stand);

//--
I/***"********* Ir********** Ir****

void AdjustFuelStuffForGrowth(int ActualPer}
I/*** Ir***************

/*

This may prove to be a time-hog but for nm1i· this function will operate on a cell-by-cell basis. The reason is
that, in
theory, I feel it may be very difficult to track all the potential different fuel loadings by "groups" of cells
that

185

have identical loadings and other parameters (such as elevation, canopy closure, Qmd, etc.) that are all used to
differentiate into fuel models.
* I
//For Time information
clock_t Start, Finish;
double Duration;

II -------------------------------End of variable defining---

Start = clock (};

printf ("Going to calculate fuel decay and contribution ! ! \n'');

//First, Decay and add on the Net Fuel Loading contributions to each cell
FuelDecayAndContribution(ActualPer·f;

//Now go through and recalculate fuel models for every cell
CalculateAndFillSimFuelModel (Actual Per);

Finish = clock I);
Duration= ((double) (Finish-Start) / CLOCKS_PER_SEC);
printf ("\n\nit took % . 2lf seconds to run FuelDecayAndContribution () & CalculateAndFillSimFuelModel () \n", Duration
);

printf(•=====--=-=-==-=======================================
=;;=\n •);

}//end AdjustFuelStuffForGrowth

I I***

void CalculateAndFillSimFuelModel(int ActualPer)
I I***'*****••••••"*••••"***********"******"*******************"************

/*
At this point, the fuel loadings should have been adjusted for the current period by FuelDecayAndContribution().
It is
now simply a matter of going to each cell and determining the fuel model using the rules Jim & Bernie developed for
•Reclassificaiton of Fuel Model after the First Period" as seen in Jim's Sept. 17, 1999 documentation.
*/

int a;
int ArrayPer;
int TempCode, TempCover, TempDiam, TempVeg;
int HourlFuels, Hourl0Fuels, Hourl00Fuels;
//--------------------------------- End of variable defining--

// Set the ArrayPer variable
ArrayPer = ActualPer - l;

for(a=O;a<UNIQUE;a++)
(

if(Data.Cellid[a] ==FALSE)
break;

if(Data.Treelist[a] NONFORE.ST)

continue;
//Go on to next cell - already double checked in FuelDecay.:i:l.ndContribution(}

/ /No more to check

//Break apart Data.Vegcode to identify the pieces because that is a piece the fuel model matrix needs
//REMEMBER: The TempCode could have 5 or 10 for TempVeg
TernpCode Data.Vegcode[a] [ArrayPer]; //The actual 3 or 4 digit code from PREMO
TempCover = TempCode%10; //last digit

for determining stage (0 is <= 60%, l is > 60%

TempDiam ((TempCode-TempCover) %100 / 10; / /next to last digit also for determining stage (is the
QMD group)

TempVeg
determining VegCode

= (TempCode-TempCode%100) / 100;

/ /Now go through the classification matrix
if(TempDiam == 0 I I (TempDiam <=l && TempCover 0))
(

if(Data.Elev[a] > (3000*FT2M) l
Data.FuelModel [a] [ArrayPer] 5;

else

if (Temp'Jeg == VC_PINE)
Data.FuelModel(a] [ArrayPer] 2;

else if (TempVeg =-= VC_DH)
Data FuelModel[a] [ArrayPer] 17;

else
Data FuelModel[a] [ArrayPer] 6;

// 1st or 1st t·,,w digits for

else if(TempVeg == VC_DH && (TempCover 0 I I (TempDiam <= l && TempCove~ 1 l I I
Data.FuelModel[a] (ArrayPer] = 6;

else

186

//Create the 1 1 10 1 100 hour variables to reduce computation and ease of seeing what's going on
HourlFuels = Data.Litter[a] [ArrayPer] + Data.Class25[a] [ArrayPer];
HourlOFuels = Data.Classl[a] [ArrayPer];
HourlOOFuels Data Class3[a] [ArrayPerJ;

//REMEMBER: The Data. "fuel load''[][] values are modified ushort - must expand Jims variables
by FUEL_LOAD_EXP to match

/ /Also: Jim's values are in TONS
if (HourlFuels <= l. 5 * FUEL_LOAD_EXP)
(

if(HourlOFuels < 1 * FUEL_LOAD_EXP
Data. FuelModel [a] [ArrayPerj = 18;

else ifl HourlOFuels < 4.5 * FUEL_LOAD_EXP)
Data.FueU!odel(a] [ArrayPer] 8;

else
Data.FuelModel[a] [ArrayPer] 11;

else if (Hour !Fuels <= 2. 5 * FUEL_LOAD_EXP }

else

if(HourlOFuels < 1 * FUEL_LOAD_EXP)
Data. FuelModel [a] [ArrayPer] 20;

else if(HourlOFuels < 2 * FUEL_LOAD_EXP)

if(HourlOOFuels <= 1 * FUEL_LOAD_EXP
Data.FuelModel[aJ [ArrayPer] 2·

else
Data. Fuel~•1odel [a] [ArrayPer] 23;

else if { HourlOFuels <= 6 * FUEL_LOAD_EXP)
Data.FuelModel[a] [ArrayPer] 31;

else
Data. FuelModel [a] [ArrayPer] 32;

if(HourlOFuels < l * FUEL_LOAD_EXP}
Data.FuelHodel{a] [ArrayPer] = 9;

else if\ HourlOFuels < 3 * FUEL_LOAD_EXP)

else

if(HourlOOFuels <= 3.5 * FUEL_LOAD_EXP
Data.Fuel~•1odel [a] [ArrayPer) 16:

else
Data.FuelModel[a] [ArrayPer] 10;

Data.FuelModel{a] [ArrayPer] 12;

} //end of main else for the class. matrix

} //end for (a=O ...)

}//end CalculateAndFillSim.FuelModel

I I***

void FuelDecayAndContribution{int ActualPer)
I I** k * * * * * * * * * * * * ** ** * * * * * * * * k * * * * * * * * * * * * *

(

/*
This function will take care of decay existing fuel loads and then adding on the Net Contribution of fuel loads to
get
a new fuel load, for each cell.

Because all Fuel Loading values are stored as modified ushort (to maintain some precision) all Data.* values need
to be first
divided by FUEL_LOAD_EXP and then multiplied by TONS before Decaying! The AfterDecay* (AD~) values can then be
reversed
{divide by TONS and multiply by FUEL_LOAD_EXP) and directly added to the values in Data."fuel load
class•[] {ArrayPer]. I will
use a new variable called FACTOR that will do the equivalent.

The decay rates are a combination of those found in Table 4. of
•Fire and Fuels Extension: Model Description - 1a;orking Draft" by ESSA Technologies Ltd (Beukema et al.) - Feb 16,
1999.
Also, Jim Agee updated the DUFF and LITTER decay rates in his writeup (dated Sept 17,1999) in Section 6. Additions
to Fire and
Fuels Extension {FFE) of FVS.

* I
int a;
int ArrayPer, ArrayPrevPer;
int AD_Duff, AD_Litter, AD_Class25, AD_Classl, AD_ClassJ, AD_Class6, AD_Classl2, AD_Class0verl2; //AD is "After
Decay"
int FACTOR, MoveLitter;
//--------------------------- End of variable defining---­
/ /printf { "Here in FuelDecayAndContribution for period 'td\n", Actual Per) ;

//Set the FACTOR variable so it's not always recalculated
FACTOR = TONS I FUEL_LOAD_EXP;

//Set the variables for ease of figuring out what array spots to use
ArrayPer ~ ActualPer - l;
ArrayPrevPer = ArrayPer - l;

//Go one-by-one through the Data.* array
for (a.:;:0; a<UNIQUE; a++)
{

if (Data Cell id [a]
break;

if {Data. Tree list [a]
{

FALSE I

NONFOREST)

//Do a quick check and make sure Fuel
if (Data.FuelModel [a] [ArrayPer] == 99

Data.FuelModel[a] [ArrayPer]
Data.Fuel:Model(a] [ArrayPer]

{)
else

Bailout(l02);

continue;

I /No more to check

Models are OK
11 Data. FuelModel [a] [ArrayPer] == 98 11

4 I I Data.FuelModel[a] [ArrayPer]
1 I

i/Go on to next cell

187

19 I I

I**

Decay
Fuels

The AD_* variables will be "reset" after each cell and they represent the current ACTUAL value
of the fuel load.

NOTE: All these variables get factored out to LBS-ACRE to help not lose precision.
NOTE: is not clear if existing duff should be decayed first then litter stuff added on. The

way
Jim's notes specified to move litter to duff first, then decay but wording was a bit confusing.

* ** * * * *** * * * * * * * * ** ** * * * * * * * * * * * ** * * * * * ** ** * *
********* I

/*

if(ActualPer == 1)
{

printf ("InitialFuelLoadings { in LBS-ACRE): \n ·•);
pr intf (N %d\ t'td\ t'td\ t'td\ t'td\ t'td\ t%d \ t %d \n '',Data. Ini tialDuf f [a] *FACTOR, Data. Ini tialLi tter [a] *FACTOR,

Data.Initia1Class25[a]*FACTOR, Data InitialClassl(a]*FACTOR, Data.Initia1Class3[a]*FACTOR,
Data. Ini tia1Class6 [a] *FACTOR,

Data.Initia1Classl2[a]*FACTOR, Data.Initia1Class0verl2[a]*FACTOR);
* I

//In period 1, the actual fuel loads to decay are really those found in the Initial* arrays
AD_Class25 = (int)((Data.Initia1Class25[a]*FACTOR) ,,. pow(.88,

YIP) I;
(int) (
(int) (
(inti I

(Data. Ini tialClassl [a] *FACTOR)
(Data. Ini tia1Class3 [a] *FACTOR}
[Data. Ini tialClass 6 [a] *FACTOR)

*pow(.88, YIP)};
* pow (. 91, YIP)) ;
* pow(.985, YIP));

AD_Classl
AD_Class3
AD_Class6
AD_Class12 = (int) ((Data.Initia1Classl2[a]*FACTOR) * pow(.985,

YIP) I;
AD_Class0Verl2 = (int) ((Data.Initia1Class0verl2[a]*FACTOR) * pow(.985, YIP));

//The duff & litter are handled a bit differently per Jim Agee. His rules:
// 1) Take 2% of incoming litter and vaporize it - this really means the "existing·•

litter - the 2% is for all 5 Years
AD_Litter = (int) ((Data.InitialLitter[a]*FACTOR) * .98);
// 2) Then take 1/6 of total litter and move it to duff
MoveLitter = (int) (AD_Litter * .16666);
AD_Duff = MoveLitter;
AD_Litter = AD_Litter - MoveLitter;
// 3) Decay duff at 3% a year - REMEMBER to "plus-add" this on
AD_Duff += (int)((Data.InitialDuff[a]*FACTOR) * pow(.97,YIP));

/ /printf ("AfterDecay values for period 1 \n'·);
/ /pr intf ("%d\ t%d\ t%d\ t%d\ t%d\ t'td \ t%d\ t%d\n", AD_Duf f, AD_Li tter, AD_Class25, AD_Classl, AD_Class3, AD_Class6,
AD_Classl2, AD_Class0verl2);

)

else

//For all other periods, the actual loads to decay are those from the previous period
AD_Class25 = (int) ((Data .Class25 [a] [ArrayPrevPer] *FACTOR)

pow(.88, YIP));

AD_Classl (int) ((Data.Classl[a} [ArrayPrevPer}*FACTOR) * pow(. 88,
);

AD_Class3 \int) ((Data.Class3 [a] [ArrayPrevPer] *FACTOR) * pow(. 91,
);

AD_Class6 lint) ((Data.Class6[a] [ArrayPrevPer]*FACTOR) * pow(. 985,
YIP));

AD_Classl2 = (int) ((Data.Class12[a] [ArrayPrevPer]*FACTOR)
pow(.985, YIP));

AD_ClassWer 12 (int) ((Data.Class0verl2[a] [ArrayPrevPer]*FACTOR) * pow(. 985,
YIP));

I /The duff & litter are handled a bit differently per Jim Agee. His rules:
// 1) Take 2% of incoming litter and vaporize it - this really means the "existing"

litter - the 2% is for all 5 Years
AD_Litter = (int/ ((Data.Litter[a] [ArrayPrevPer]*FACTOR) ,,. .98) ;
// 2) Then take 1/6 of total litter and move it to duff
MoveLitter = (int) {AD~Litter * .16666);

YIP)

YIP)

AD_Duff = MoveLitter;
AD_Litter = AD_Litter - MoveLitter;
// 3) Decay duff at 3% a year - REMEMBER to "plus-add" this on
AD_Duff += (int)({Data Duff[aJ[ArrayPrevPerJ*FACTOR/ * pow(.97,YIP) };

}//end else if(ActualPer == l)
/*
printf (".And those fuel loadings to add on are: \n");

188

printf ("%d\ t%d\ t'td\ t'td\ t'td\ t%d\ t%d\ t%d\n" , Data.Duff [a] [ArrayPer] *FACTOR, Data. Litter [a] (ArrayPer] *FACTOR,
Data.Class25(a] [ArrayPer]*FACTOR, Data.Classl[a] [ArrayPer}*FACTOR, Data.Class3[a] [ArrayPer]*FACTOR,

Data Class6[a] [ArrayPer]*FACTOR,
Data.Class12[a] [ArrayPer]*FACTOR, Data.Class0verl2[a] [ArrayPer]*FACTOR);

*/

I I***

// Add Net Contributions
I I**'''********'''''''*****

//The AD_* variables now have the current ~i\fter Decay fuel load values in LBS-ACRE. These should be
converted

//back to the modified ushort TONS-ACRE and then added on the current modified ushort TONS-ACRE values
that

I /are stored in the current periods net contribution Data." fuel Load" [] [] as they were calculated in
Premo;

/ /REMEMBER: there are no NEi-'l net contributions to Duff from Premo - it was all handled in above decay
from litter

Data .Duff [a] [ArrayPer)
Data. Litter [a] [ArrayPer]

FACTOR);

FACTOR);

FACTOR);

FACTOR);

FACTOR);

FACTOR);

/*

Data.Class25[a] [ArrayPer]

Data.Classl[a] [ArrayPer]

Data.Class3 [a] [ArrayPer]

Data.Class6[a] [ArrayPer]

Data.Classl2 [a] [ArrayPer]

Data.Class0verl2[a] [ArrayPer]

= (ushort J (AD_Duf f / FACTOR);
(ushort)Data.Litter[a] [ArrayPerj

(ushort) Data. Class25 [a] [ArrayPer]

(ushort) Data. Classl [a] [ArrayPer]

(ushort)Data.Class3[a] [ArrayPer]

(ushort)Data.Class6[aJ [ArrayPer]

(ushort)Data.Classl2[a] [ArrayPer]

(ushort)Data.Class0verl2[a] (ArrayPerJ + (AD_Class0verl2

+ (AD_Litter /

+ (AD_Class25 /

+ (AD_Classl I

+ (AD_ClassJ 1

+ (AD_Class6 1

+ (AD_Classl2

FACTOR);

printf(•Resulting in these FinalFuelLoadings in modified TONS-ACRE (divide by 10 to get real value) Note some
precision loss:\n");
printf ("'thu \ t%hu \ t%hu \ t%hu \ t%hu \ t%hu \ t%hu \ t%hu \n \n '' , Data.Duff [a] [ArrayPer] , Data. Litter [a] [ArrayPerJ ,

Data .Class25 [a] [ArrayPer], Data.Classl[a] [ArrayPer], Data. Class] [a] [ArrayPer],
Data.Class6[a] [ArrayPer],

Data.Classl2[a] [ArrayPer], Data.Class0ver12[a] [Ar~ayPer]);
*/

)//end for(a=O ...)

)//end FuelDecayAndContibution

I I••**''''********************''***

void InitialFuelController(void)

I I***

ulong ForestCells, SecondForestCount;
ulong Unique, SecondUnique;

I I------------------------------------- End of variable defining --- - - -------------------- - ---------- --- - -------­

printf (• \n \n----- --------------------------- --\n") ;
printf (• Initializing Fuel Loadings \n");
printf("======~=============================\n"),

ForestCells = CountLandscape();
printf ("There are %lu forested cells in this landscape (probably more than in a Solution! l \n", ForestCells l;

//Send data out to stat.txt file
PrintToStat(2, (ulong)ForestCells};

/ /Allocate an array of P_INFO structures to hold each "ForestCells 11 combination of Treelist-Goal-Hold
struct P_INFO{*Allinfo) :::: new struct P_INFO[ForestCells];
if (Allinfo == NULL)

printf ("Problems allocating memory fer All Info [] with %lu records\n" , ForestCells) ;
//Initialize
rnemset(Allinfo, 0, sizeof(struct P_INFO) * ForestCells) ;

//Fill up Allinfo with the Treelist 8oal Hc,ld for all those cells that are forested
SecondForestCount = FillAllinfo (Allinfo);
if(SecondForestCount l= ForestCells)

Bailout (97);

//Sort those records in Allinfo - use rngsort because there may be alot of records
mgsort({void*}Allinfo,

ForestCells,
records

//base
//count of

sizeof(struct P_INFO),
0, ForestCells-1,

always: 0, "count"-1)

//size of each record
//current division (

CornpareAll Inf oTreelis t); //compare function

//NOTE: At Time O - the Goal & Hold do not matter for the initialization of the FUEL LOADINGS - only different
treelist !

//Now go through and count the Unique Treelist in Allinfo
Unique = CountUnigueAllinfoTree (Allinfo, ForestCells);
printf (•There were actually %lu UNIQUE Treelist for the forested ~ells\n", Unique);

//Create a structure to hold new Fuel Loading information for those unique Treelist
struct INITIAL_FUELS{*Fuels) = new struct INITIAL_FUELS[Unique];
if (Fuels == NULL)

printf("Problems allocating memory for Fuels[] with %lu records\n'",Unigue);
//Initialize
memset(Fuels, 0, sizeof(struct INITIAL_FUELSI *Unique);

/ /Now fill up the Fuels structures
SecondUnigue = FillFuelsWithTreelist\Allinfo, Forestcells, Fuels);
if(SecondUnique !=Unique)

Bailout (97);

//Can delete the Allinfo structures now they are broken down into unique records
delete l] All Info;

//Get the initial (i.e. default) fuel loadings that will be used for the entire landscape
InitialFuelLoad (Fuels, Unique);

189

//Now with those fuel loadings, get the initial fuel model assignment at Time O - REMEMBER: not used, stands need
to grow to Per 1 first!
DetermineinitialFuelModel (Fuels, Unique/;

//Finally, go through the Data.*[} arrays and load in the actual initial fuel model
LoadinitialFuelModelsAndLoads(Fuels, Unique);

//Delete stuff on free store
delete [] Fuels;

//Go through and make sure everyone has fuel loads and model
DoubleCheckFuels();

print f ("=== \n") ,
printf (M Finished with initial fuels and starting to initialize Background ERA values \n" l ;
printf("-------------------======================--=======================================--===\n\n"),

)//end InitialFuelController

I I***
void LoadinitialFuelModelsAndLoads(struct INITIAL_FUELS Fuels[], ulong Count)
I I***

/*
This function will fill up the InitialFuelModel[] and the Intial fuel loading arrays (e.g. InitialDuff,
InitialLitter, etc) .
with the data currently stored in Fuels.
*/

int a,b;
struct INITIAL_FUELS Key;
struct INITIAL_FUELS *ptr_record;
//------------------------------------ End of variable defining ---

//Go through all of Data.*[] and load up the fuel model appropriately
for (a=O; a<UNIQUE; a++)
(

if(Data.Cellid[aJ
break;

FALSE) / /no more cells to check

//Always reinitialize the key to make sure no junk in it
memset(&Key, 0, sizeof {stru~t INITIAL_FUELS)) ;

if(Data.Treelist[a] == NONFOREST)
(

/ /Assign a new fuel model based on Jim Agee' s paper ''Reclassification of Fuel Model after the
First Period"

the same!

the same!

if (Data. InitialVeg[a] == GIS_BARREN)

if (Data. InitialStage [a]
Bailout (59);

else

GIS_BARREN)

Data.InitialFuelModel[a] = 99;

//BARREN - both should be

//~~d all of this cell's FuelModel[J [] should be 99
for(b=O;b<NP;b++)

Data.FuelModel[a] [bl = 99;

else if(Data.InitialVeq[a] GIS_\"IATER) //WATER - both should be

the same!

if(Data.InitialStage[a]
Bailout(59);

else

GIS_WATERI

Data. InitialFuelMcJdel [al = 98;

//Ar,d all of this cell's FuelModel[] [] should be 98
for,: b•O; b<NP; b+ +)

Data.FuelModel[a] [b] = 98;

190

else if(Data.InitialVeg[a] GIS SHRUB) //SHRUB - both should be

if (Data. InitialStage[a]
Bailout (59);

GIS_SHRUB)

if{ Data.Ele~J[a] < (3000*FT2M)

(
//check elevation

else

Data.InitialFuelModel[a] = 4;

I I And all of this cell's FuelModel [] [] should be 4
for (b=O;b<NP;b++)

Data.FuelModel[a] [b] = 4;

Data. InitialFuelModel [a] = 19;

//And a.11 of this cell's FuelModel[] [] should be 19
for(b~O;b<NP;b++)

Data.FuelModel[a.l [bl = 19;

else if (Data. Initial Veg [a] GIS_GR.A.SS) / /GRASS/FORBS - both

should be the same!

else

if(Data.InitialStage[a]
Bailout (59);

else

GIS_GRASS)

Data. InitialFuelModel [a] = 1;

//And all of this cell's FuelModel [] [] should be l
for(b=O;b<NP;b++)

Data. FuelModel!a] [b] = l;

Bailout (60);

}//end if(Data.Treelist ~= NONFOREST
else //Use the Treelist value to make a key and look fur tha.t key->Treelist in the Fuels

structure and populate with that
(

//Always reinitialize the key to make sure no junk in it
memset(&Key, 0, sizeof(struct INITIAL __ FUELS)) ;

I I Make the key
Key.Treelist = Data,Treelist[a];

/ /Now do a bsearch for that key on the Fuels structure
//NOTE: The Fuels structure should already be sorted by treelist because it was created from

another treelist-sorted structure

stand

ptr_record = (struct INITIAL_FUELS*)bsearch(
&Key,
{void *)Fuels,
{size_t)Count,
sizeof(struct INITIAL_FUELS),
CompareFuelsForTreelist) ;

if(ptr_record == mrLL)
Bailout (101) ;

I I===============================•===-===
// First enter the fuel loads determined earlier
/ /REGARDLESS - always load in the Initial Fuel loadings at this point for all FOREST cells
I/NOTE: the fuel loading data in ptr_record-> is already in correct units
//==--=---
if ((ptr_reccJrd->VegCla.ss VC_MCl && (Data.Elev[a] > (3000*FT2M))) //See if a VC_MC type

else

Data. Ini tialDuf f [a]
Data.InitialLitter[a]
Data.Initia1Class25[a]
Data. InitialClassl [a]
Data.InitialClassJ[a}
Data. Initia1Class6 [a]
Data. Initia1Class12 la]
Data_ Ini t ia1Class0ver12 [a]

(ushort)ptr_record->MC_Duff;
(ushort)ptr_record->MC_Litter;
(ushort)ptr_record->MC_Class25;
(ushort) ptr_record->MC_C la.ssl;
(ushort)ptr_record->MC_ClassJ;
(ushort) ptr_record->MC_Cla.ss6Al 1;
(ushort)ptr_record->MC_Class12;

(ushort) ptr_record->MC_Class0verl2;

Data. Ini tialDuf f [a]
Data.InitialLitter[a]
Data.Initia1Class25[a]
Data. Initialclassl [al
Data.Initia1Class3[a]
Data. Ini tia1Class6 [a]
Data. Initia1Classl2 [a]
Data. Initia1Class0verl2 [al

(ushort)ptr_record->Duff;
(ushort) ptr _record->Li t ter i

(ushort) ptr _record->Class25;
(ushort) ptr_record->Classl;
(ushort)ptr_record->Class3;
(ushort) ptr_record->Class6All;
(ushort) ptr_record->Classl2;

(ushort) ptr_record->ClassOverl2 i

I I====================== -- - - - -=--=========== = === =
// Then load the fuel model calculated earlier
I I==
if(ptr_record->VegClass == VC_MC }
{

//If elev> 3000 1 then need to check the MC_FuelModel
if(Data.Elev[a] > (3000*FT2M))
{

else

//Check for the FUEL FLAG
if(ptr_record->MC_FuelModel l= FUEL_FLAG)

Data.InitialFuelModel[aJ ptr_record->MC_FuelModel;
else

Data. InitialFuelModel [aJ 5;

//Check for the FUEL_FLAG
if(ptr_record->MC_FuelModel ~= FUEL_FLAG)

Data.InitialFuelModel[a] = ptr_record->MC_FuelModel;
else

if (ptr_record->·JegClass == ·JC_PINE)
Data.InitialFuelModel[a] = 2;

else if (ptr_record->VegClass == ·Jc_DH)
Data.InitialFuelModel[a] 17;

else
Data.InitialFuelModel[a] 6;

} //end if VegClass
else

TJC_MC

{

//First just check for the FUEL_FLAG
if(ptr_record->FuelModel != FUEL_FLAG

Data.InitialFuelModel[a] = ptr_record->FuelModel;
else

if(Data.Elev[a] > (3000*FT2M))

else
{

Data.InitialFuelModel[a] 5;

if(ptr_record->VegClass == VC_PINE)
Data.InitialFuelModel[a] = 2;

else if(ptr_record->VegClass == VC_DH)
Data. Ini tialFuelModel [a] 17;

else
Data. InitialFuelModel [a] 6;

}//end VegClass VC_MC

}//end ELSE treelist NONFOREST

}//endfor(a=O , ..)

}//end LoadinitialFuelModelsAndLoads

I I**
int CompareFuelsForTreelist {canst ,,aid *ptrl, const void *ptr2)
I I**

/ /Just to typecast them since we aren't actually passing in pointers
struct INITIAL_FUELS *eleml;
struct INITIAL_FUELS *elem2;

elem.1
elem2

(struct INITIAL_FUELS *)ptrl;
(struct INITIAL_FUELS *} ptr2;

if { eleml->Treelist < elem2->Treelist)
/ /Compare by Treelist

return -1;
if(eleml->Treelist > elem2->Treelist

return l;
else

return O;
}//end CornpareFuelsForTreelist

//FINISHED

191

192

I I***

void DetermineinitialFuelModel(struct INITIAL_FUELS Fuels[), ulong Count)
I I***

/*
The initial fuel model assignment is a bit un-necessary anymore. Originally, Jim and Bernie developed a matrix
using the VegClass and Structural Stage to determine the initial tuel model at Time 0. They later developed
a new classification of fuel models for after the first period that was based on fuel loadings (stuff in
the struct Fuels{] }. However, we don't really need a fuel model at Time O because that is the start of the
simulation. What really happens is that we enter Time 1 and Premo spits out growth and yield data for a period
of 5 yrs after the initial period. That means there has been harvest and growth and this all occurs PRIOR to
initiating a fire in Time 1. So fuel models for after Time O will get calculated later. Regardless, this function
is something of a check so we can see what the initial fuel assignment is given the current landscape.

This will use the same rules Jim & Bernie developed for "Reclassificaiton of Fuel Model after the First Period" as
seen in Jim's Sept. 17, 1999 documentation. This is different than original plan to use the GIS matrix mentioned
earlier.

*/

int a;

//------------------------------------ End of variable defining---

//The Fuels structure should already be sorted by treelist because it was created from another treelist-sorted
structure
//for (a=O;a<Count;a++)
// printf(' 1 %lu\n~ 1 Fuels[a] .Treelist);

//The Fuels structure should have the necessary information now to actually determine the Fuel Model per Jim Agee's
rules
for(a=O;a<(signed)Count;a++)
{

//Jim has a weird rule at first, and the only way I can figure out how to handle it without going through
the entire

//Data.* [] array and recalculating the the below IF statements is to set a "flag'' for this condition. So
when

elevation

60 I I

this

//it comes time to fill up Data.*[] if I get the FUEL_FLAG I know to make another calculation bdsed on

if(Fuels(a) .Qmd == 0 11 (Fuels(a] .Qmd
{

1 && Fuels[a] .Closure< 60))

Fuels [a]. FuelModel = FUEL_FLAG;

if(Fuels[a] .VegClass == VC_MC}
Fuels[a] .MC_FuelModel = FUEL_FLAG;

else if(Fuels[a) .VegClass == VC_DH && (Fuels[a] .Closure< 60 11 (Fuels[a] .Qmd <=l && Fuels[a] .Closure

Fuels[a].FuelModel = 6; //Don't need a MC_FuelModel because it had to be VC_DH ta get

else

//This should take care of EVERYTHING else that doesn't get coded out above

//REMEMBER: The Fuels[].* values are modified ushort - must expand Jirns variables by
FUEL_LOAD_EXP to match

//Also: Jim's values are in TONS
/ /Use the 1, 10, &. 100 hour fuel loadings
if{ Fuels[a] .HourlFuels <= 1.5 * FUEL_LOAD_EXP
(

if(Fuels[a] .HourlOFuels < 1 * FUEL_LOAD_EXP
Fuels[a) .FuelModel = 18;

else if(Fuels[a] .HourlOFuels < 4.5 * FUEL_LOAD_EXP
Fuels[aJ .FuelModel 8;

else
Fuels[a] .FuelModel 11;

else if(Fuels[a].HourlFuels <= 2.5 * FUEL_LOAD_EXP)

if (Fuels [a] .HourlOFuels < 1 * FUEL_LOA.D_EXP
Fuels[a] .FuelModel 20;

else

else if (Fuels [a]. HourlOFuels < 2 * FUEL_LOAD_EXP

if(Fuels[a] .HourlOOFuels <= 1 * FUEL_LOAD EXP
Fuels [a] . FuelModel 2;

else
Fuels[aJ .FuelModel 23;

else if (Fuels [a} .HourlOFuels <= 6 * FUEL_LO.W_EXP
Fuels[a] .FuelModel 31;

else
Fuels[a] .FuelModel 32;

if(Fuels[a] .HourlOFuels < 1 * FUEL_LOAD_EXP)
Fuels[a] .FuelModel = 9;

else if(Fuels[a] .HourlOFuels <= 3 * FUEL_LOAD_EXP

if(Fuels[a] .HourlOOFuels <= 3.5 * FUEL_LOAD_EXP
Fuels[a] .FuelModel 16;

else
Fuels[a] .FuelModel 10;

else
Fuels[a] .FuelModel 12;

I /Now check and see if this is a VC_MC and if so also populate the MC_ -i. stuff

if(Fuels[a] .VegClass == VC_MC
{

I /Use the 1, 10, & 100 hour fuel loadings
if(Fuels[a] .MC_HourlFuels <= 1.5 * FUEL_LOAD_EXP)
{

if(Fuels[a] .MC_HourlOFuels < 1 * FUEL_LOAD_EXP
Fuels[a] .MC_FuelModel = 18;

else if(Fuels[a] .MC_HourlOFuels < 4.5 * FUEL_LOAD_EXP
Fuels[a] .MC_FuelModel 8;

else
Fuels [a] . MC_FuelModel 11;

else if(Fuels[a].MC_HourlFuels <= 2.5 * FUEL_LOAD_EXP

else

if(Fuels[a] .MC_HourlOFuels < 1 * FUEL_LOAD_EXP
Fuels [a] .MC __ F'uelModel 20;

else if (Fuels (a] .MC_HourlOFuels < 2 * FUEL_LOAD_EXP }

if(Fuels[a] .MC_HourlOOFuels 1 -i. FUEL_LOAD_EXP
Fuels [a] .MC_FuelModel 2;

else
Fuels[a] .MC_FuelModel 23;

else if (Fuels [a] .MC_HourlOFuels <;;: 6 * FUEL_LOAD_EXP
Fuels[a] MC FuelModel 31;

else
Fuels[a] MC FuelModel 32;

if(Fuels[aJ .MC_HourlOFuels < 1 * FUEL_LOAD_EXP)
Fuels [a] .MC_FuelModel = 9;

else if(Fuels[a] .MC_HourlOFuels < 3 * FUEL_LOAD_EXP
{

if (Fuels [a] .MC_HourlOOFuels . 5 * FUEL LOAD EXP

Fuels [a] .MC_FuelModel 16;
else

Fuels[a] .MC_FuelModel 10;

else
Fuels [a] . MC __ FuelModel 12;

}//end if(Fuels[a] .VegClass VC_MC

} / /end of the main ELSE statement

/ /printf ("Just got FuelModel %bu and MC_FuelModel %hu\n", Fuels (a]. FuelModel, Fuels [a] .MC_FuelModel};

}//end for(a=O

}//end DetermineFuelModel

I I***
void InitialFuelLoad(struct INITIAL_FUELS Fuels[], ulong Count)
I I*** k k * * "'* k k k k k k * k * "'* * * * * * * * * * * * * * ** * * * * * * * * * * * ** * * * ******** ****

int a, b, Found;
FILE *Open;
char Temp(250], Actua1File[250];
int HowMany [3] ,-

ulong Treelist, TestTree;
int SnagCount, LiveCount, DwdCount;
struct STMID_CLASS StandClass;
struct STMID_CLASS *ptr_stand;
//----------------------------- End of variable defining------------------------

//for (a==O; a< (signed) Count; a++)
/ / pr intf ("Fuels [%d] : \ t%lu \ t%hu \ t%hu \n", a, Fuels [a] . Treelist, Fuels [a] . Goal, Fuels [a] . Hold} ;

//Grab the Treelist for each of the records in the UL structures
for (a==O; a< (signed) Count; a++)
{

//Initialize the HowMany array
for(b==O;b<3;b++)

HowMany[b] = O;

//Initialize StandClass and its pointer
ptr_stand = &StandClass;
memset(ptr_stand, 0, sizeof(struct STAND_CLASS));

//Since this is period O use all the ORIGINAL treelist files. Because there were
//many more initial treelist created than we use, the treelist # has to be used
//to index the particular file we want. This is the same method that Premo uses.

193

Treelist = Fuels[a] .Treeli.st;

//Create a string to hold the name of the "InitialTreeindex.txt·' filename
sprintf (Temp, ~%s%s\ \!!is'', PREFIX, Constant Input, IT_INDEX) ;

//Open the Treeindex.txt file
Open = fopen{Temp, "r");
if (Open == NULL)

fprintf(stderr, 'Opening of %s failed: %s\n", Temp, strerror(errno));

//Scroll through the IntialTreeindex and find the current treelist and its actual file pathname
Found = FALSE;
while(fscanf{Open, ''%lu %s",&:TestTree, ActualFile) != EOF J
{

if (TestTree == Treelist)
(

/ /Have the match

//printf("Found %s\n",Actua1File);
Found = TRUE;
break;

)//end while

//Test to make sure the file was found
if (Found == FALSE)

Bailout{98);

//Close the open file
fclose (Open);

//Count how many SNAGS-LIVE-DWD records there are in the treelist
CountTreelistRecords(HowMany, ActualFile);

//Allocate free store memory for each of J
struct TREELIST_RECORD (* SnagRecords}
st:cuct TREELIST_RECORD (*LiveRecords)
st:cuct TREELIST_RECORD (*DwdRecords}

if (SnagRecords == NULL)

types of TREELIST_RECORD structures
new struct TREELIST_RECORD[HowMany[OJ};
new struct TREELIST_RECORD(HowMany[l]];
new struct TREELIST_RECORD[HowMany[2]];

pr intf (•Problems al locating memory for .SnagRecords [] with %d records \n" , HowMany [0]) ;
if(LiveRecords == NULL)

printf (•Problems allocating memory for LiveRecords [] with %d records\n", HowMany[l]);
if (Dwd.Records == NULL)

pr intf (•Problems allocating memory for D\•ld.Records [] with %d records \n", HowMany [2]) ;

//Initialize
memset(SnagRecords, 0, sizeof(struct TREELIST_RECORD} * HowMany[O]);
memset(LiveRecords, 0, sizeof(struct TREELIST_RECORD) * HowMany[l]);
memset(Dwd.Records, 0, sizeof(struct TREELIST_RECORD) * HowMany[2]);

/ /Send off Records to get filled with the treelist data and verify numbers
FillTreelistRecords{ActualFile, SnagRecords, LiveRecords, DwdRecords, HowMany);

//Set some counters for how many records are in each type
SnagCount HowMany[O];
LiveCount HowMany[l];
DwdCount HowMany [2] ;

//Get the BASAL ARRA and CANOPY WIDTH for the LiveRecords
CalculateindividualBasalCanopyWidth(LiveRecords, LiveCount);

//Get the three items we use in our Veg-Structural classification
CalculateStandClassif ication (LiveRecords, LiveCount, ptr_stand) ;

//Put the values now found in StandClass into Fuels
Fuels[a] .Basal = ptr_stand->Basal;
Fuels[a] .VegClass = ptr_stand->VegClass;
Fuels [a] .Qmd = ptr_stand->Qmd;
Fuels[a].CoverClass = ptr_stand->CoverClass;
Fuels[aJ.Closure = ptr_stand->Closure;

194

//printf(•%s has classification %hu%hu%hu and Basal %.2f\n",Actua1File, Fuels[a].VegClass, Fuels[a].Qmd,
Fuels[a] .CoverClass, Fuels(al .Basal);

/ /Now send data off to initialize the Fuel Loadings
InitializeFuelLoadings (Fuels, a);

//Delete stuff on free store
delete I'] SnagRecords;
delete [] LiveRecords;
delete [] DwdRecords;

}/ /end for(a=O

}//end InitialFuelLoad

I I***

void InitializeFuelLoadings (struct INITIAL_FUELS Fuels[], int Ctr}
I I***

{
/*
As far as I can tell, these are the default values that Jim Agee wants to use instead of Table 4.2 of

195

"Fire and Fuels Extension: Model Description - Working Draft·', by ESSA Tec!'.,nologies Ltd (Beukema et al.) - Feb 16,
1999.
Jim's version is dated 7-27-99 and he labels as Table 4.2 as well. This is in his section of the writeup
he did (dated Sept 17,1999) in Section 6. Additions to Fire and Fuels Extension (FFE) of FVS.

NOTE: There was no documentation on ·what to do with VC_OPE."'J . That classificaition is a strange one that I
believe
Lou Beers and Heidi put in Premo without discussing what it meant. It ~AS NOT part of our original veg
classification
scheme and thus Jim Agee did not know to code that one out. For now, I will assume that VC_OPEN is a product of
those young stands (probably down in the valleys) that have a mix component so I will use DH values for it.??????

* I

ushort VegClass;

//--------------------------------- End of variable defining -------------- - ------------------------------

/ /Grab the VegClass associated with current stand. It was calculated earlier in CalculateStandclassification
VegClass = Fuels[Ctr] .VegClass;

//************ Assign default fuel loadings depending upon initial vegclass ***********************
if(VegClass == VC_CH 11 VegClass == VC_MC 11 Vegclass VC_PINE

//1,5,7

Fuels [Ctr] .Duff
Fuels [Ctr]. Litter
Fuels [Ctr] .Class25
Fuels [Ctr] .Class!
Fuels [Ctr] .Class]
Fuels[Ctr] .Class6All
Fuels [Ctr] .Class6Partl
Fuels[Ctr] .Class6Part2
Fuels [Ctr]. Classl2
Fuels [Ctr] .Class0verl2

if (VegClass

I /5
VC_MC)

(

Fuels [Ctr} .MC_Duff
Fuels [Ctr] .MC_Litter
Fuels [Ctr). MC_Class25
Fuels[Ctr].MC_Classl
Fuels [Ctr] .MC_ClassJ

= 5.0 * FUEL_LOAD_EXP;
2.5 * FUEL_LOAD_EXP;
0 . 2 * FUEL_LOAD_EXP;
0. 8 * FUEL_LOAD_EXP ,-
1. 2 * FUEL_LOAD_EXP;
1.0 * FUEL_LOAD_EXP;
1.0 * FUEL_LOAD_EXP;

0;
1.0 * FUEL_LOAD_EXP;
1.0 * FUEL_LOAD_EXP;

//Parallel variables for MC> 3000'

Fuels [Ctr] .MC_Class6All
Fuels [Ctr] .MC_Class6Partl

Fuels [Ctr] .MC_Class6Part2
Fuels [Ctr] .MC_Classl2
Fuels[Ctr] .MC_Classoverl2

l O . 0 * FUEL_LOAD EXP;
1. 4 * FUEL_LOAD_EXP;
0.9 * FUEL_LOAD_EXP;
2. 1 FUEL_LOAD_EXP;
3.8 * FUEL_LOAD_EXP;
3 . 0 * FUEL_LOAD_EXP;

3 . 0 * FUEL_LOAD_EXP;
0;

9. 5 * FUEL_LOAD_EXP;
9. 5 * FUEL_LOAD_EXP;

else if (VegClass VC_DH

Fuels [Ctr] . Duff
Fuels[Ctr] .Litter
Fuels [Ctr] . Class2 5
Fuels [Ctr] . Class!
Fuels [Ctr] .Class3
Fuels [Ctr] . Class6All
Fuels[Ctr].Class6Partl
Fuels [Ctr] .Class6Part2
Fuels [Ctr] .Classl2
Fuels [Ctr] .ClassOverl2

else if (VegClass == VC_EH

Fuels [Ctr] .Duff
Fuels[Ctr] .Litter
Fuels [Ctr] .Class25
Fuels[Ctr] .Classl
Fuels[Ctr] .Class3
Fuels[Ctr] .Class6All
Fuels[Ctr] .Class6Partl
Fuels [Ctr] . Class6Part2
Fuels [Ctr] . Class12
Fuels [Ctr] . ClassOver 12

else if(VegClass == VC_KP

Fuels [Ctr] .Duff
Fuels[Ctr] .Litter
Fuels [Ctr] .Class25
Fuels [Ctr] .Classl
Fuels [Ctr] .Class]
Fuels [Ctr] . Class6All
Fuels [Ctr] . Class6Partl

Fuels [Ctr] . Class6Part2
Fuels[Ctr] .Classl2
Fuels[Ctr].Class0verl2

= 2.3 * FUEL_LOAD_EXP;
l . 0 * FUEL_LOAD_EXP;

. 3 * FUEL_LOAD _EXP;
2. 4 * FUEL_LOAD_EXP;
5. 0 * FUEL_LOAD_EXP;
1.0 FUEL_LOAD_EXP;
1.0 * FUEL_LOAD_EXP;
0;

2.0 * FUEL_LOAD_EXP;
2.0 FUEL_LOAD_EXP;

I /3

= 3.7 * FUEL_LOAD_EXP;
1.8 * FUEL_LOAD_EXP;
0.3 * FUEL_LOAD_EXP;
l . 6 * FUEL_LOAD_EXP;
3 . * FUEL_LOAD_EXP;
l . 0 * FUEL_LOAD_EXP;
l . 0 * FUEL_LOAD_EXP;
0;

l . 5 * FUEL_LOAD_EXP;
1 . 5 * FUEL_LOAD_EXP;

I I 4

= 5.0 * FUEL_LOAD_EXP;

2. 6 * FUEL_LOAD_EXP;
0. 3 * FUEL_LOAD_EXP;
0. 3 * FUEL_LOAD_EXP;
0. 4 * FUEL_LOAD_EXP;
l. * FUEL_LOAD_EXP;
1 . * FUEL_LOAD_EXP;

0;
2. 0 * FUEL_LOAD_EXP;
3.0 * FUEL_LOAD_EXP;

else if{ VegClass VC_RF

Fuels [Ctr] .Duff
Fuels[Ctr].Litter
Fuels [Ctr]. Class25
Fuels [Ctr] . Classl
Fuels [Ctr] . Class3
Fuels [Ctr] . Class6All
Fuels[Ctr].Class6Partl
Fuels [Ctr]. Class6Part2
Fuels [Ctr] . Classl2
Fuels [Ctr] .Class0verl2

else if(VegClass == VC_WF

Fuels [Ctr]. Duff
Fuels[Ctr].Litter
Fuels [Ctr]. Class25
Fuels [Ctr J . Classl
Fuels [Ctr] .Class3
Fuels [Ctr] .Class6All
Fuels[Ctr] .Class6Partl
Fuels [Ctr] .Class6Part2
Fuels[Ctr] .Classl2
Fuels [Ctr] . Class0verl2

118

= 30.0 ~ FUEL_LOAD_EXP;
0.7 * FUEL LOAD_EXP;
0.7 * FUEL_LOAD_EXP;
2. 6 * FUEL_LOAD_EXP;
3.6 * FUEL_LOAD_EXP;
15 . 0 * FUEL_LOAD_EXP;
~. 0 * FUEL LOAD EXP;
0;
4.0 * FUEL_LOAD_EXP;
5. 0 * FUEL_LOAD_EXP;

/19

= JO. 0 * FUEL_LOAD_EXP;
0. 6 * FlJEL_LOAD_EXP;
0 . 8 * FUEL_LOAD_EX.P;
2.7 * FUEL_LOAD_EXP;
2.7 * FUEL_LOAD_EXP;
4.5 * FUEL_LOAD_EXP;
4.5 * FUEL_LOAD_EXP;
0.

5. 0 * FUEL_LOAD_EXP;
7.0 * FUEL_LOAD_EXP;

196

else if (VegClass == VC_OPE!ll)
VC_DH so the program wouldn't bail
{

//John did not have this ceded in PREMO - I put same values as

else

Fuels [Ctr}. Duff
Fuels [Ctr]. Litter
Fuels [Ctr]. Class25
Fuels [Ctr] . Classl
Fuels [Ctr] . Class3
Fuels [Ctr] .Class6All
Fuels [Ctr] .Class6Partl
Fuels [Ctr] .Class6Part2
Fuels [Ctr]. Classl2
Fuels [Ctr] . Class0verl2

Bailout(lOO);

//Now group up the needed components to
Fuels (Ctr]. HourlFuels
Fuels(Ctr].HourlOFuels
Fuels(Ctr] .HourlOOFuels

//Make the parallel groups for when MC

= 2 . 3 * FUEL_LOAD_EXP;
1. 0 * FUEL_LO_Z:.D_EXP;
0 . 3 * FUEL_LOAD_EXP;
2. 4 * FUEL_LOAD_EXP;
5.0 * FUEL_LOAD_EXP;
1. 0 * FUEL_LOAD_EXP;
1.0 * FUEL_LOAD_EXP;
O;
2.0 * FUEL_LOAD_EXP;
2. 0 FUEL_LOAD_EXP;

make the 1,10, and 100 hour fuel laddings
Fuels[Ctr] .Litter+ Fuels(Ctr] .Class25;
Fuels[Ctr].Classl;
Fuels [Ctr] .Class3;

if(VegClass == VCJ,1C) //Parallel variables tor MC > 3000'
{

Fuels[Ctr] .MC_HourlFuels
Fuels [Ctr] .MC_HourlOFuels
Fuels [Ctr] .MC_Hourl00Fuels

) / /End InitializeFuelLoadings

Fuels[Ctr] .MC_Litter + Fuels[Ctr] .MC_Class25;
Fuels[Ctr] .MC_Classl;
Fuels[Ctr] .MC_ClassJ;

void FillTreelistRecords{char Filename[], struct TREELIST_RECORD Snags[], struct TREELIST_RECORD Live[],
struct TREELIST_RECORD Dwd[], int HowMany[])

//5

I I*"'"'"'*"'"'"'"'"'"'"'"'"'"'"'"'"'"'*****"'"'**"'************************"'***

FILE *IN;

ushort TestPlot, TestStatus;
int SnagCount, LiveCount, DwdCount;
I!---------------------------------- End of variable defining -·----··- -- --------------

/ /Open up the filename passed in
IN = fopen(Filename, •r• J;

SnagCount = 0;
LiveCount = O;
DwdCount = 0;
while(fscanf(IN, "%hu %hu ~,&TestPlct, &TestStatus) EOF
{

if{TestStatus == SNAG)
{

Snags (SnagCount] . Plot
Snags [SnagCount]. Status

//Scan the rest in

//Put everything in Snags

TestPlot;
Test Status;

fscanf(IN, "%f %hu %hu %f %f %f %hu" ,&.Snags[SnagCcunt] .Tpa,&.Snags[SnagCount] .Model,
&Snags[SnagCount].Report,

&Snags[SnagCount] .Dbh, &Snags[SnagCount} .Height,&Snags[SnagCount] .Ratio,
&Snags[SnagCount].Condition);

SnagCount++;

else if (TestStatus =-= LIVE) //Put everything in Live

Live[LiveCount] .Plot
Live[LiveCount] .Status

I I Scan the rest in

TestPlot i

TestStatus;

fscanf(IN, "%f %hu %hu %f %f %f',&Live[LiveCount] .Tpa, &Live[Li•JeCount] .Model,
&Live[LiveCount] .Report,

&Live [LiveCountJ .Dbh, &Live[LiveCountJ .Height, &Li•Je[::..,iveCount] .Ratio);

else

LiveCount++;

Dwd[DwdCount] .Plet
Dwd[DwdCount] .Status

I/ Scan the rest in

TestPlot;
TestStatus;

//Put ever~thing in Dwd

fscanf(IN, "%f %hu %hu %f %f %f %hu",&D,.-."d.[Dw"d.Count] .Tpa,&Dwd[DwdCount] .Model,
&Dwd[DwdCount].Report,

&Dwd[DwdCount] .Dbh, &Dwd[DwdCount] .Height,&Dwd[DwdCount] .Ratio,
&Dwd[Dwd.Count] .Condition} i

}//end while

fclose (IN) ;

DwdCount++;

I /Error check how many records just went into the different *Records structures
if(SnagCount != HowMany[O])
(

printf("Number of SnagRecords not matching between ExtractTreelist & FillRecords ... bailing\n"};
Bailout{99);

if(LiveCount != HowMany[l])
(

printf ("Number of LiveRecords not matching bet•...,·een ExtractTreelist & FillRecords .. bailing\n");
Bailout (99);

if(Th,;dCount != HowMany[2]l
(

print£ ("Number of Dwdecords not matching between Extract:Treelist & Fill Records, .. bailing\n");
Bailout(99);

} //end FillRecords

I I***
void CountTreelistRecords(int HowMany[], char Filename[}}

I I************..,**

FILE *Open;
double Plot,Status,Tpa,Model,Report,Dbh,Height,Ratio,Dead;

I I-------------------------------- -- --- End of variable defining ---------- -- - -------- ----------

//Open up the filename passed in
Open= fopen(Filename, "r 6

);

//Start going through and counting records
while(fscanf(Open, M%lfM,&Plot) l= EOF)
(

//Scan in the next 7 variables

//if Plot is EOF then file end has been reached

fscanf {Open, •%lf %lf %1£ %lf %1£ %1£ %1£", &Status, &Tpa, &Model, &Rep::irt, &Dbh, &Height, &Ratio);

//Some Dbh O's may have slipped in treelist, catch and give them a small dbh
if (Dbh 0)

Dbh = 0.1;

//For Snags and DWD
if(Status != LIVE)

fscanf(Open, "%lf" , &Dead);

/ /Tally up the actual records for each "Live·' type
if (Status == SNAG)

HowMany[O)++;
else if (Status == LIVE)

else

}//end while

I /Close the file
fclose (Open);

HowMany[l] ++;

HowMany [2 J ++;

}//end CountTreelistRecords

I I**
ulong CountLandscape(void)

I I**

197

/* Count how many FOREST CELLS there are on the landscape - these are all the cells
eligible to receive a prescription.
*/

ulong Count=O;
int a;

//------------------------------ End of variable defining---------------------------------­

for (a=-0; a<UNIQUE; a++l
(

FALSE I

198

if(Data.Cellid[a]
break; / /no more data to check

if(Data.Treelist{aJ != NONFOREST)
Count++;

return Count;
}//end CountLandscape

I I**
ulong FillAllinfo (struct P_INFO Allinfo [])

I I**
(

//Same thing as CountLandscape() except this time fill up the Allinfo structures
/*
Sometimes this function is called and that is really needed is the Treelist value - Cut
this function will always fill up Goal & H,)ld so it is more versatile and if a calling
functions doesn't need them - so be it! (e.g. the initial fuel loading stuff)
* I

int a;
ulong Count=O;

//---------------------------------- End of variable defining----------------------------

for (a=O; a<UNIQUE; a++)
(

if (Data.Cellid[a} FALSE)
break; //no more data to check

if(Data.Treelist[a] != NONFOREST)
(

All Info [Count] . Tree list
Allinfo[Count] .Goal
Allinfo[Count] .Hold

Count++;

return Count;
} / /end FillAllinfo

Data.Treelist[a];
Data.Goal [a];
Data.Hold[a];

I/**
int Cornpare.AllinfoTreelist(const void *ptrl, const void *ptr2)

I I**
(

/ /Just to typecast them since ,.,,re aren't actually passing in pointers
struct P_INFO *eleml;
struct P_INFO *elem2;

eleml
eiem2

(struct P_INFO *)ptrl;
(struct P_INFO *)ptr2;

if(elemi->Treelist < elem2->Treelist
//Sort by Treelist

return -1;
if(eleml->Treelist > elem2->Treelist

return l;
else

return O;
I I FINISHED! !

} //end CompareAllinfo

I I**********************************.,,***
ulong CountUniqueAllinfoTree(struct P_INFO Allinfo[], ulong Count)

I I**
(

I !Go through the array of Allinfo structures and count how· many unique TREELIST there are.
ulong a,b;
ulong Unique;
ulong EvalTreelist;
//------------------------ End of variable defining-------------------------------------

Unique = O;
b = O;

for(a=0;a<Count;)
loop
(

if(b == Count)
incremental method, b will reach end first but a doesn't know that

break;

199

//a will get increment by other

//because of weird

Unique++; //first one always counts
as do others because a gets reset in other loop

//Set the initial Eval* variables
EvalTreelist = All Info [a J . Tree list;

//since Allinfo is already sorted, start at next record and look downward until no longer a match
for(b=a+l;b<Count;)
(

if I Allinfo[b] .Treelist
b++;

//look at next record
else

EvalTreelist i

//Set the "a'' variable to where "b" is because this is the next unique match
a = b;

break;

}//end for(b=a+l;b<Count;b++)
)//end for(a=D;a<Count;a++)

return Unique;
)//end CountUniqueAllinfoTree

I I**
ulong FillPuelsWithTreelist{struct P_INFO Allinfo[], ulong Count, struct INITIAL_FUELS Fuels[])
I I***;,.**

//Same thing as CountUniqueAllinfo, except fill up Fuels at same time

ulong a,b;
ulong Unique;
ulong EvalTreelist;
//------------------------ End of variable defining-------------------------------------

Unique = 0;
b = O;
for {a=0; a<Count;)
loop
(

if lb == Count I
incremental method, b will reach end first but a doesn't know that

break;

Unique++;
as do others because a gets reset in other loop

//Set the initial Eval* variables
EvalTreelist = Allinfo{a] .Treelist;

//Put these in UniqueList
Fuels[Unique-1] .Treelist EvalTreelist;

//a will get increment by other

//because of weird

//first one always counts

//since Allinfo is already sorted, start at next record and look downward until no longer a match
for(b=a+l;b<Count;)
(

if(Allinfo[b] .Treelist

b++;
//look at next record

else

EvalTreelist

/ /Set the "a" variable to where "b" is because this is the next unique match
a = b;
break;

}//end for(b=a+l;b<Count;b++}
)//end for(a=0;a<Count;a++)

return Unique;
} //end FillFuelsWithTreelist

I I***
void DoubleCheckFuels(void)
I I***

/*
Go through the entire Data.*[] arrays and make sure every cell has some fuel loadings and a valid fuel model
associated w-i th it.
* I
int a;
//-------------------------------- End of variable defining---

for (a=0; a<UNIQUE; a++)

if(Data.Cellid[a]
break;

FALSE)

if(Data.Treelist[a] == NONFOREST}
(

//No fuel loads in Nonforest stuff - but check for a fuel model
if{Data.InitialFuelModel[a] == O)

printf ("Cell id %lu has no fuel model \n", Data. Cell id [a]);

200

else //check both the class3 fuel loading and the fuel model - could also check more FuelLoadings if
wanted

if (Data. Initia1Class3 [a] == 0 11 Data. InitialFuelModel [a] == 0)
pr intf ("Cell id 'tlu has no fuel load and-or fuel model \n", Data. Cell id [a]) ;

}//end for(a=O ... I

}//end DoubleCheckFuels

ERA.STUFF. CPP

#include <stdio. h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include "globals.h"
#include "data.h"

//to hold global DEFINES, etc.

//Functions defined here in EraStuff. cpp
void InitialEraValues (void);
int CalculateSumPer iodEra {ulong NoSub, struct ERA S_Era [] , ulong Count, struct SOLUTION CS [], struct
OPTIMIZE_S INGLE_ VALUE av [l '

ulong Records);
void CalculateNetEras (struct CURRENT_ERAS *CellEra) ;
void CalculateDecayOnlyN"etEras(struct CURRENT_ERAS *CellEra);

//External functions
extern int LookAtOSV(const void *ptrl, const void *ptr2};
extern int CompareEraMinor{const void *ptrl, const void Aptr2);
extern int LookAtSolutionCellid(const void *ptrl, const void *ptr2);

int CalculateSumPeriodEra(ulong NoSub, struct ERA S_Era[], ulong Count, struct SOLUTION CS[J, struct
OPTIMIZE_SINGLE_VALUE OV [],

ulong Records)
I I***

(

;•
NOTE, CS[] is sorted by Cellid in ascending order

S_Era[J is sorted by Minor in ascending order
OV[] sorted by TREELIST-GOAL-HOLD in ascending order

This functions should get called first after making a random initial solution. Using that solution fill up and
calculate
every cells ERA value for the simulation period. For those cells actually in the solution the periodic ERA's are a
function of:

- Their InitialEra
- ERA recovery
- New ERA contribution due to harvesting
- continuing recovery

For those cells NOT actually in the current solution, the periodic ERA values are a function of:

- Their InitialEra
- ERA recovery

To do this: look at every cell and do a BSEARCH to see if its subwatershed is in solution. If so, get the
solution
TREELIST-GOAL-HOLD and BSEARCH those values in OV[]. Once found calculate periodic ER.A's as noted below and store
in
the S_ERA structure and CS[] structure.

Another STRATEGY note (because I keep forgetting how this works in long run):
The CS[J structure contains a member called CS.PeriodEra[] that will hold the individual contribution that a cell
makes to the
overall Subwatershed ERA value stored in the S_Era.SumPeriodEra[]. Until a final solution is found there is no
need to
store individual ERA values in the permanent Data. Era [] array because it will change during the solution finding
process. So

201

this function is very important because it goes through the entire Data.* arrays and accounts for EVERY cell that
IS in the
solution AND for every cell that is in a subwatershed that IS in the solution. Those are two distinct things. The
S_Era.SumPeriodEra[] values recognize that some cells contribute to the subwatershed ERA value even though they are
not
in solution.
In the end, as a solution is being found by the heuristic, when a ''move" is made (which only involves moving Goal­
Hold values
from cells that are IN the solution) the contribution that a cell made that is being moved OUT of the solution can
be

subtracted by finding its individual contribution in CS.PeriodEra[] and subtracting that from S_Era.SumPeriodEra[]
and the
new move contribution can be found by taking the new prescription (Treelist-Goal-Hold) and find that prescription
in
the OV[] structure and recalculate the same as is done here-> and added to the S_Era.SumPeriodEra[] and restore in
the
CS.PeriodEra[].
*/

int a, b;
int InSolution;

//Keys and pointers for structures

struct ERA Key;
struct ERA ""ptr_record;
struct SOLUTION SKey;
struct SOLUTION ""ptr_skey i

struct OPTIMIZE_SINGLE_VALUE OVKey;
struct OPTIMIZE_SINGLE_VALUE -,,.ptr_ovkey;
struct CURRENT_ERAS CellEraValues, ""ptr_cev;

/ /For Time information
clock_t Start, Finish;
double Duration;

//------------------------------------ End of variable defining--­

printf ("Calculating the SurnPeriodEra ~] and CS [] . PeriodEra [] values for this solution\n");

//Always zero out the values in S_Era[J .SumPeriodEra[J at start since they are += and may get called multiple times
for(a=O;a<(signed)NoSub;a++)
(

for (b=O i b<NP;b++ l
S_Era [a] . SurnPeriodEra[b] 0;

Start = clock ();

for (a=O; a<UNIQUE; a++)
(

if(Data.Cellid[a]
break;

FALSE I

I /NOTE: This starts off the same way as Fill_SEra () does

I !no more cells to check

//Since there are no restrictions such as not counting wilderness, every cell has a contribution to

cumulative ERA
//as long as its subwatershed is in the solution. Make a key with the subwatershed ID and search for it
Key.Minor = Data.Minor[a]:

/*
A cell ALWAYS contributes to the S_Era(] .SurnPeriodicEra[] values if its "parent" subwatershed is in

S_Era[] .Minor.
The tricky part is to track whetr:.~~r a particular cell is being "managed" (i.e. in the solution) becaust:!

its
SumPeriodicEra[] values are calculated differently. */

//Use bsearch on S_Era to see if this subwatershed is in solution
ptr_record = (struct ERA*)bsearch(

&Key1
(void *)S_Era,
(size_t)NoSub,
sizeof (struct ERA) 1

CompareEraMinor / ;

//+++
++++++++++++++++

//++++++++++++++++++++++++++++++++++ SUBWATERSHED IS NOT IN SOLUTION
++

//+++

if (ptr_record == NULL }
(

/*
There are basically a couple of reasons that this subwatershed is not in the solution:
1) It just isn't! For example, a subwatershed with only wilderness will most likely not be in

the solution
2) Something has gone wrong.

Do a double check by verifying that the actual Cell id is not in CS [] .
*/

//First, verify that this cellid is not in the solution (should not since it's pQrent
subwatershed was not!)

processing time
//There shouldn't be many subwatershed NOT in solution so this should not take up too much

//Make a key for the current cell using its cellid
SKey.Cellid Data.Cellid[a];

//Use bsearch on CS(] to see if this cell is in the solution
ptr_skey = {struct SOLUTION*)bsearch(

&SKey,
{void *)CS,
(size_t) Count,
sizeof (struct SOLUTION),
LookAtSolutionCellid);

202

if (ptr_skey ! = NULL)

Bailout(lOJ);

}//end if(ptr_record ==NULL)

/ /if it finds this key in CS then something
is wrong!

I I+++
++++++++++++++++

I/++ SUBWATERSHED IS IN SOLUTION
++

I I+++

else
(

So this cell's parent subwatershed IS in the solution, but the cell itself may not be. T'No
things need to happen:

1) Determir.ed whether the cell itself is in the solution and
2) account for this cells contribution to the S_Era[] .SumPeriodEra[] & CS[] .PeriodEra[]

since it's parent subwatershed is in solution.
• I

//First, determine whether or not this cellid is in the solution

//Make a key for the current cell using its cellid
SKey.Cellid Data.Cellid[a];

//Use bsearch on CS[] to see if this cell is in the solution
ptr_skey = (struct SOLUTION*)bsearch(

&SKey,
(void *)CS,
(size_t) Count,
sizeof (struct SOLUTION),
LookAtSolutionCellid };

/ /Make a flag to use below
if(ptr_skey == NULL

InSolution F.ALSE; //cell not in solution
else

InSolution TRUE;

I I**
II

AND CELL IS NOT IN SOLUTION

I I***"'"'*"'**•**
if(InSolution ==FALSE)
(

proportionally down to 0.

contribute to anything.

and track how those

Since there is no possibility of activity taking place
in this cell, just slowly decay or ''recover" it's current Data.InitialEra[]

There is no documentation to do this but it should not matter because they don't

I am thinking that later we may want to "recover" certain areas at different rates

subwatershed that are "unmanaged" fair compare to those that are managed.

This cell will still contribute to the S_Era.SumPeriodEra[] values, but how they are
calculated is different

activities and so there are
than if it was in solution because this cell (not being in the solution) cannot have

no ne·.-.· net increases in ERA values.
• I
//cleal.· the CellEraValues stuff before filling and sending off
rnemset (&CellEraValues, 0, sizeof { struct CURRENT_ERAS)) ;

//Make a package of stuff to send off to get NetEra's calculated
CellEraValues.CurrentEra = { (float)Data.InitialEra[a] / ERA_EXP) ;

//last stored as modified ushort

period

CellEraValues.Cell

//Need to send a pointer to get values back
ptr_cev =. &CellEraValues;

//Ship pointer off to function which ·~:ill calculate DecayOnly NetEra• s for each

CalculateDecayOnlyNetEras(ptr_cev);

I I If new ::lecayed NetEras •.,;ere calculated, store their contribution to the
SumPeriodEra[]

if(ptr_cev->NeedsDecay == TRUE

for(b:O;b<NP;b++J
ptr_record->SumPeriodEra[b] += (ulong} (ptr_cev->NetEra[b]);

}//end if(InSolution FALSE)

I I"'***
II

AND CELL IS IN SOLUTION

I I************************************ k k k k k k ******* * * * * * * * * * * * **** * * * * * * * * * ****** k k k k+

else

/*
Finally, down to the nitty-gritty. This cell is in the solution and its parent

subwatershed is in solution.
The S_Era.SumPeriodEra[] and CS(] .PeriodEra(] values are therefore a function of

reco·very and net addition due to
activities occuring in a period.
* I
//Make a key for this cells Treelist-Goal-Hold as seen in the CS[] structures
OVKey 'l'reelist
OVKey Goal
OVKey Hold

ptr_skey->Treelist;
ptr_skey->Goal;

= ptr_skey->Hold;

//Use bsearch on OV[] to access this prescriptions Rev and CFHarvest values
ptr_ovkey = (struct OPTIMIZE_SINGLE_VALUE*Jbsearch(

&O'VKey,
(void *)OV,
(size_t) Records,
sizeof(struct OPTIMIZE_SINGLE_VALUE),
LookA tOSV) ;

if (ptr_ovkey == NULL)
(

//there had better be one!

printf ("Can't find key: Treelist = %lu, Goal = %bu, and Hold
%hu\n~,OVKey Treelist,OVKey.Goal,OVKey Hold);

Bailout(80);

//clear the CellEraValues stuff before filling and sending off
memset (&CellEraValues, 0, sizeof (struct CURRENT_ERAS} } ;

/ /Make a package of stuff to send off to get NetEra' s calculated
CellEraValues. ptr_osv = ptr_o·vkey;
CellEraValues.CurrentEra = \ (float)Data.InitialEra[a] / ERA_EXP

//last stored as modified ushort

//Need to send a pointer to get values back
ptr_cev = &CellEra·values;

//Ship pointer off to function which will calculate NetEra's for each period
CalculateNetEras(ptr_cev);

//Store the return values in the NetEra[] member in two places for each period
for(b=O;b<NP;b++)
(

ptr_skey->PeriodEra[b]
ptr_record->SumPeriodEra[b]

= (ushort) (ptr_cev->NetEra[b]J;
(ulong) (ptr_cev->NetEra[b]);

//.~lso store Data.InitialEra[] in the solution structure - is needed when making
moves in heuristic process

ptr_skey->InitialEra
//double check how this get used later!!

}//end else if(InSolution
}//end else if(ptr_record == MJLL)

}//end for(a=O ...)

/ /Testprint
/*
printf ("The SumPeriodEra values here in CalculateSumPeriodEra are\n");
for(a=O;a<(signed)NoSub;a++}
{

= Data. InitialEra[a];

printf ("Subwatershed %bu has Count %lu: ",S_Era[a] .Minor, S_Era[a] .Count);

for(b~O;b<NP;b++)
printf("\t%.2f·', { (float)S_Era[a] .SumPeriodEra[b] / ERA_EXP) / S_Era[a] ,Count);

printf("\n'');

}

*/

Finish clock();
Duration = ((double) (Finish-Start) CLOCKS_PER_SEC);

203

204

printf(w! !Took %.2lf seconds to calculate SurnPeriodEra[] and CS.PeriodEra[;for the entire landscape**\n", Duration
);

return TRUE;

) / I end CalculateSumPer iodEra

I I***"'*****

void InitialEraValues(void)
/I** **;,-**************************

{

/*
Give background ERA values to all of the landscape - including those that are NONFOREST
For now there are only a few "rules" that give different background levels. I am
completely making these rules up - based on some values I have seen in the draft document,
wEldorado National Forest: Cumulative Ott-Site Watershed Effects (CWE) Analysis Process" version 1.1
dated June, 1993.

There is plenty of room here to develop new rules and I will implement those at later dates as more
information is given to me regarding what background values are appropriate
* I

int a;

//----------------------------- End of variable defining------------------------------------

/ /Go through all of Data.* []
for (a=a: a<UNIQUE; a++)
(

if(Data.Cellid[a]
break;

FALSE) / /no more cells to check

if(Data.Minor[a] == WATER_BODY J
a.a - just skip and leave at O

//Data.InitialEra[J already initialized to

continue;

if(Data.Alloc[a] == ALLOC_¼ILD
a.a - just skip and leave at a

//Data.InitialEra(J already initialized to

continue;

if(Data.InitialVeg[a]
skip and leave at a

GIS_WATER //Data. InitialEra [] already initialized to a. 0 - just

continue;

/ /REMEMBER: I made this up with some "guidance" from document
if(Data.Buffer[a] == IN_BUFFER)

//These should have low background values
Data. InitialEra[a] = (ushort) (. 01 * ERA_EXP) ;

else if(Data.Owner[a] == OWN_PI)
//Private Industrial should be highest

Data.InitialEra[a] = (ushort) (.08 * ERA_EXP) ;
else if(Data.Alloc[a] == ALLOC_MATRIX)

/ /Assume all Matrix lands have had previous activity
Data.InitialEra[a] = (ushort)(.08 * ERA_EXP);

else if(Data.Owner[aJ == :Ji:'1/N_STATE 11 Data.Owner[a] == OWN_MISC
get fairly high value

Data.Initia1Er3.[a] [ushort)(.07 * ERA_EXP);
else

Data. Initial Era [a] (ushort) (. 05 * ERA_EXP) ;
/ /all remaining - give mz>'.2+<1:ate value

) / /end for (a=O ...)

printf { 11 =====-=-========================"-=======================\n") ,
printf { 11 Finished initializing Background ERA values \n");
printf { "======-==========-================•=="'=======•========== \n \n") ,

}//end InitialEraValues

I I***
void CalculateDecayOnlyNetEras(struct CURRENT_ER.AS *CellEra J
I I***********-,..***
{

/*
This function will calculate the Net Period Era's for any cell that is being DECAYED only.
That is, there is definately NO activity going on in it. That may be due to it not being
in the solution at all, or if the cells parent subwatershed is in the soluticn this cell
may still not be in the solution.

/ I State and misc lands

NOTE: The entire structure CellEra was zero'ed out before being called so it is safe to assume
that the NetEra(] array is zero at start
* I

int b;
float Subtract, LastEra;
//---------------------------- End of variable defining---------------------------------

//NOTE: could code so this function is not called if a cell has these next attributes, but is easier to do only
once here!
//Determine if one of those cells that received an InitialEra of 0, if so then NetEra[] is fine
if(Data.Minor[CellEra->Cell] == WATER_BODY) //NetEra[] already initialized to 0.0 - just
return and leave at a

205

return;

if (Data.Alloc[CellEra->Cell}
return and leave at 0

//NetEra[) already initialized to 0.0 - just

return;

if (Data.Initial Veg [CellEra->Cell]
leave at 0

GIS_WATER //NetEra[] already initialized to 0.0 - just return and

return;

/ /If cell passes the above break statements, set the flag to tell calling function that new non-zero values are in
NetEra
CellEra->NeedsDecay = TRUE;

//Otherwise, "recoverN proportionally from its Data.Initial.Sra[J value
Last Era :::: CellEra->CurrentEra; / /CurrentEra has the Data. InitialEra [} value
for this cell
Subtract :::: (CellEra->CurrentEra / NP * 2) i //This is rounding, but that's OK - the * 2 is because initial
ERA are low!

for(b=O;b<NP;b++)
(

LastEra = LastEra - Subtract;

if (LastEra < 0)
LastEra = 0;

CellEra->NetEra [b] = Last Era * ERA_EXP;

)//end for(b=O ...)

)//end CalculateDecayOnlyNetEras

void CalculateNetEras(struct CURRENT_EAAS *CellEra}

11••···
(

This function will calculate Net Period Eras for any cell , for all periods. The Era
coefficients used here are a mixture of stuff, See comment at start of InitialEravalues()
for source of most Era data.
• I

int b;
float CurrentEra;
int LastCutPer, UseAlternate;
float EraSitePrep, EraHarvest, EraRecovery, ThisPeriodHSP, LastPeriodHSPi

//----------------------------- End of variable defining---------------------------------------

//--==============================••·••================-
// Calculate Net losses and additions
//===================-==========•=••·••=================

LastCutPer = -1;

for(b=O;b<NPib++)
(

//reset some variables every period
EraSi tePrep :-:: 0;
EraHarvest
UseAlternate
if lb > 0)
(

= O;
FALSE;

LastPeriodHSP This Per iodHSP;
ThisPeriodHSP O;

else //first period only

Thi sPer iodHSP O;
Las tPer iodHSP O •

I I******************** RECOVERY ****** * * * * * * * * * * * * * * * * * * *** * * *
//First there is always some "recovery" from previous period
if (b == 0 I

above stuff
else

EraRecovery "' (float) (CellEra->CurrentEra / NP * 2); I !recover the same as

//Recovery is function of last time there was harvest - these values could easily be modified
if not working

if I (b - 11 -- LastCutPer
//last harvest was 1 periocl ago

EraRecovery = (float) .08;
else if((b - 2) =>= LastCutPer I

//last harvest was 2 period ago
EraRecovery = {float) .02;

else if((b - 3) -- LastCutPer I
//last harvest was 3 period ago

EraRecovery = (float) .02;

Barber)

else
Era Recovery

//recover the same as above stuff
(float) {CellEra->CurrentEra / NP * 2};

//******************* NE"V'i ADDITIONS ****************************
if (CellEra->ptr_osv->CFHarvest '.b) > O)
{

// There was Harvest this pericd

I I -- ---===-========================= - - - - -- -- - - -- - - = - == ========= - = =--- - - - - =---============ = = = ==== ----

; !ERA for SitePrep a functicn of Revenue generated that period (per discussion with Klaus

if (CellEra->ptr __ osv->Rev [b] < 500 J

EraSitePrep = 0;
else if(CellEra->ptr_csv->Rev[b] > 2500

EraSitePrep = (float)O.l;

206

else I I seal e the ERA for those revenues between
500 - 2500 dollars from O. 0 - 0 .1

EraSitePrep (float) ((CellEra->ptr_osv->Rev[b] - 500) * .00005) ;// .00005 is .l /
2000 with 2000 being the range of $ values

I I---=-==================- - - ==- -====== = = == = = = = = = = = = = = = == == = = = = == = ==== = = ====================== = === = = =
//ERA for Harvest from pg 89 of SNEP Addendum {chap 2). ERA=max(0.01 * mbf, .08} <= 0.2

I I===------==========--=--------= - -=== == = == = = = = = == = ======== = = = === ====== ================ = == = === = = = = = =

EraSitePrep

contribution

it was

on to

//NOTE: CFHarvest value needs to be converted to MCF and then using conversion of 5 to get MBF
EraHarvest = (float) (0.01 * (.001 ~ CellEra->ptr_osv->CFHarvest[b] * 5));

if(EraHarvest < 0.08 }
EraHarvest = (float)0.08;

I /must be at least O 08
else if{ EraHarvest > 0.2)

EraHarvest = (float)0.2;
//but not greater than 0.20

/*
Because of problem where a stand may be cut in multiple periods with increasing EraHarvest and

values, the CurrentEra must be controlled or it skyrockets. To compensate, calculate the total

from EraHarvest & EraSitePrep, if it is higher that the previous periods calculations (assuming

also harvested in previcus period) take the difference of the two and add ONLY that difference

CurrentEra and don't add any EraRecovery.
*/
ThisPeriodHSP = EraHarvest + EraSitePrep;

if(LastCutPer =z (b-1;,
UseAlternate = TRUE;

LastCutPer = b;

}//end if(ptr_ovkey->

if (UseAlternate == TRUE)
(

if(ThisPeriodHSP > LastPeriodHSP j

CurrentEra CurrentEra + (ThisPeriodHSP - LastPeriodHSP);
else

CurrentEra CurrentEra;

else //OK, calculate a new CurrentEra by subtracting Recovery values and adding SitePrep and Harvest
values

CurrentEra CurrentEra - EraRecovery + EraHarvest + EraSitePrep ;

I /Don't let the CurrentEra "recover" itself below O - or constrict it to never be less than its
InitialEra[]

if (CurrentEra < 0 l
CurrentEra = O;

I /Store that value in the NetEra[] :nember
CellEra->NetEra[b] (CurrentEra * ERA_EXP);

)//end for(b=O ___)

}//end CalculateNetEras

OUTHITD?.TA. CPP

#include <stdio. h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include "globals .h ~

#include "data.h"
#include "goals. h H

/ /defined here in OutputData.cpp
int OutputCurrentLandscapeData(int Per);
int OutputPreSimAnalysisData (void};
int OutputPostSimAnalysisData (void};
void OutputAcresHarvest(int Status);
void OutputMapGoals(int Status};
void OutputForestDistribution(int Status);
void LevelOfActivity(int Status};
void TimingChoiceFrequency(void};
void OwnershipByMinor(int USW, int UniqueMinor[]);
void OutputFuelLoadsModel(int Per};
void OutputPotentialBigTreesAllStandGoals (void);
void OutputEndingSolution.Metrics (void) ;
void OutputVegcodes(int Per);
void OutputinitialGoal(void);

//defined in ReadData.cpp
extern int CreateMainData (void);

//defined in FuelStuff.cpp
extern ulong CountLandscape(void);
extern ulong FillAllinfo(struct P_INFO .i:1..llinfo[]) ;
extern int CompareAllinfoTreelist(const void *ptrl, const void *ptr2);
extern ulong CountUniqueAllinfoTree(struct P_INFO Allinfo[J, ulong Count);

I I * * * * * ** * * * *********** **
int OutputPreSimAnalysisData (void}
I I **** * * * * * ** * * * ******* ** * * ** * * * * * * * * * * * * *
(
/* This function doesn't care whether optimization was done at the Watershed or Subwatershed level.
It will output data to use in either making maps in Arcinfo or for making graphs in Excel - as well
as providing general statistical ddtd regdrding various elements we want to look at.

There are several pieces of data thdt Cdn be extracted for a Pre-Simulation analysis. This controlling
function can be used to 'toggle' which ones we ·.~·ant, because in the end, in may be faster to run
some simulations without doing all these analysis and outputting.
• I

pr int f ('' \n \ t \t \ t \ t:::s:::::==:::: Generating data for PRE-SIMULATION analysis ---------\n"} ;

/ /For Time information
clock_t Start, Finish;
double Duration;

//********************** Some function Calling Controled by using #defines in global.h *******************
Start : clock ();

OutputFuelLoadsModel(0);

OutputForestDistribution(PREDICTED); !/This should get done no matter what!

//NOTE: output of initial EF.A values is done in GoalController.cpp with PrintinitialEraValues()

if (GOAL_TO_USE ! = GROW_ONLY)
(

if def ACRES_HARVEST

I /Gro·.~· Only - don't need harvest and acres or goal

207

LevelOfActivity (PREDICTED);
OutputAcresHarvest (PREDICTED},­

used in Excel
//Ascii file that can be

Arcinfo

#endif

iifdef MAP_GOALS
OutputMapGoals(PREDICTED};

#endif

}//end if(GOAL_TO)USE != GROW_ONLY)

Finish = clock();
Duration = ((double} (Finish-Start} / CLOCKS_PER_SEC) ;

/ /Grid format file for

printf("\n**It took %.2lf seconds to output the PRE-SIMULATION anylysis data**\n", Duration l;

return TRUE;
} / /end OutputPreSimAnalysisData {void);

I I ****** ** * * **
int OutputPostSirnAnalysisData (void)
I I * *** * ** * * ** ** * * * * * * ** * * * * * * * * * * * * * * * *
(
/*
This function is pretty much identical to the above OutputPreSimAnalysisData (), except that
this will send a parameter 'ACTUAL' to various ouput functions so they know to ouput
results in the .. \PostSimData\goal*\ directories.

This function doesn't care whether optimization was done at the Watershed or Subwdtershed level.
It will output data to use in either making maps in Arcinfo or for ~aking graphs in Excel - as well
as providing general statistical data regarding various elements we want to look at.

There are several pieces of data that can be extracted for a Post-Simulation analysis. This controlling
function can be used to 'toggle' which ones we want, because in the end, in may be faster to run
some simulations without doing all these analysis and outputting.
* I

printf("\n\t\t\t\t====== Generating data for POST-SIMUL..ll.TION analysis ---------\n");

//For Time information
clock_t Start, Finish;
double Duration;

//********************** Function Calling Controled by using 'F'defines in global.h *******************
Start = clock () ;

OutputEndingSolutionMetrics();

OutputForestDistribution(ACTUAL);

if (GOAL_ TO_USE ! ; GROW_ONLY I
(

i fde f ACRES_HARVEST

//This should get done no matter what!

//Grow Only - don't need harvest and acres or goal

208

LevelOfActivity {ACTUAL);
OutputAcresHarvest(ACTUAL);

Excel
//Ascii file that can be used in

#endif

#ifdef MAP_GOALS //DON'T NEED UNTIL l".'E COME UP WITH RE-OPTIMIZING
ROUTINES DURING SIMULATION - SAME AS PRE-SIM

/ /OutputMapGoals (ACTU.A.L)
Arcinfo

#endif
}//end if(GOAL_TO)USE !•GROW_ONLY)

Finish= clock();
Duration = ((double) (Finish-Start) / CLOCKS_PER_SEC) ;

//Grid format file for

printf(~\n**It took %. 2lf seconds to output the l?OST-SIMULATION anylysis data**\n", Duration) ;

return TRUE;
} //end OutputPostSimAnalysisData (void);

/ / ** * * * **
void OUtputEndingSolutionMetrics(void)
I I * * * * * * * * * * * * * * * * ** * * ** * * * * ** +-* * * * * * +-+-* * * * *
(

/*

This function will only get called in OutputPostSiITLi:uialysisData() and it is
designed to first create a SOLUTION structure that is identical to the solution used
for this goal - and then fill it up with values as seen below in code.
* I
FILE *WriteOut;
char filename[256];

int a, b;
ulong AllocOK, AllocNOK,CellsinShed;
ulong SolutionCounters[3];

double PerBigTrees[NP];
double SumBigTrees = 0;
ulong *ptr_cellid;
ushort *ptr_bigtrees;
int FoundMatch;
ulong Cellid;
ulong SolutionSheds;

//------------------------------------ End variable defining--­
printf("\n\n*** Calculating new Solution Metrics (e.g. EraValues, BigTrees} - will take a few moments ***\n\n");

! I***

// Determine the "Solution"
I I
// This creates a ffbogusH solution but allows this function to use the Solution structure for calls
II to other functions that want that type of structure as a parameter.
I /-Ir**

//Initialize the SolutionCounters array and call up the DetermineEligibleCells() function to fill it up
for (a=O; a<3; a++)

SolutionCounters [a] = 0;

if (DetermineEligibleCells (SolutionCounters l FALSE)
Bailout (82);

//The values now in SolutionCounters should be properly set
AllocOK = SolutionCounters [0];
AllocNOK SolutionCounters[l];
CellsinShed = SolutionCounters[2] i

//Set a checker to look for when there are O eligible cells
if (AllocOK == FALSE)

Bailout(89);

//Create an array of structures on the free store to hold the solution
struct SOLUTION (*Solution) = new struct SOLUTION[AllocOK];
if (Solution == NULL)

209

printf ("Problems allocating memory for Solution [] with 'tlu elements\n", AllocOK*sizeof (SOLUTION));

//Initialize
memset(Solution, 0, sizeof(struct SOLUTION) * AllocOK l;

/ /Now fill that array of SOLUTION structures with the Treelist - Minor - Cellid - GOAL - and HOLD of those eligible
cells
if(FillSolution(SolutionCounters, Solution, FAKE) =:FALSE)

Bailout(83) ~

//Now sort the array of SOLUTION structures by MINOR This will guarantee all the subwatersheds are in order
//Use mgsort because gsort takes way too long since there are not many unique Minor ID's
mgsort ((void*) Solution, / /base

(size_t)AllocOK, //count of# of arrays
sizeof (struct SOLUTION), //size of each array
O, AllocOK-1, / /current division

always: 0, "CountN-1)
Look.AtSolutionMinor); //compare function

//==================================~==End of defining and filling Solution=======================================

I I***
II Determine and print out the ERl\
values
I I***

//Call up the CountSolutionWatersheds() function to see how many subwatersheds are actually in the solution
SolutionSheds = CountSolutionWatersheds{AllocOK, Solution);

if (SolutionSheds == FALSE
Bailout(84);

//Create the appropriate number of Solution_ERA structures and store them in an array
struct ERA (*S_Era) = new struct ERA[SolutionSheds];
if (S_Era == NULL)

printf ("Problems allocating memory for S_Era with %lu elernents\n", SolutionSheds*sizeof (struct ERl\));

//Initialize this array of ER..Z.. structures - this is important because Fill_SEra will de some += summing
memset(S_Era, 0, sizeof(struct ERA) * SolutionSheds) i

//Fill the array of S_Era structures with appropriate values
be printed after this!

NOTE: the ERA values are ready to

if(FillEndingEra(SolutionSheds, S_Era, AllocOK, Solution) ==FALSE)
Bailout(85);

//Print out the ERA values in S_Era
PrintSolutionEraValues(S_Era,SolutionSheds, LAST);

//----------------------------------- end of doing ERA stuff ----------========-=--------=-==--=======-=---

I* ** * * * * * * * * * * * * * * ** * * * * * * ** * * * * * * * * * * ** * **
BIG

TREES
Since the Solution structure was filled during the above call to FillSolution () I can use that to access
those cells that were actually in the solution. Remember that the Solution structure gets filled with
a Treelist, Goal, & Hold but they don't mean anything here. All that matters is the Cellid and then
to find that Cellid in the Data.*[] arrays and count up the stored Data.BigTrees[] [], which should be
an accurate reflection of what was on the landscape during each period.

***** ** ** * * * * * * ** ** * * * * * * * * * *

printf ("Counting up the ENDING # of Big Trees for this goal and solution\n\n");

//Resort the array of Solution structures by CELLID
qsort ((void*) Solution,

(size_t) AllocOK,
arrays

function

sizeof (struct SOLUTION),
LookAtSolutionCellid

//Initialize the PerBigTrees(] array
for\a=O;a<NP;a++)

PerBigTrees[a] = O;

//Put pointers at start of Data.* arrays
ptr_cellid = &Data.Cellid[O];
ptr_bigtrees = &Data.BigTrees[O] [OJ;

for\a=O;a<(signed)AllocOK;a++)
{

};

//base
//count of F of

//size uf each array
//compare

//REMEMBER- this works because both Solution and Data.Cellid have cellid's in "row/column" order

//Get Values for current cell in CS
Cellid = Solution[a] .Cellid;

//Start looking through the Data.* arrays and find a match
Found.Match = 0;

210

do{
if (*ptr_cellid Cellid) //Ok, the cell id's match, so should

everything else!

for(b=O;b<NP;b++)
{

PerBigTrees [bl += ((*ptr_bigtrees) * ACREEQ);
ptr_bigtrees++;

last period - this will bump the pointer to period 1 of next cell

Found.Match l;

//increment cellid pointer, •.,;hether or not a match was found
ptr_cellid++;

//increment ptr_bigtrees only if no :natch found yet
if(Found.Match == 0)

ptr_bigtrees+:.:NP;

)while(FoundMatch == 0);

) //end for la ...)

/ /Add up the total sum of big trees
for (b=O ;b<NP ;b++)

SumBigTrees += PerBigTrees[b]/BIGTREES_EXP;

I I ======================= PRINT OUT STUFF BELO!i',1 :a:==================================
I !Create and open the file
sprintf (filename, "%s%s%d\ \BigTreeG. txt", PREFIX, PostSimOutputDir, GOAL_ TO_USE);
WriteOut = fopen(filename, ''w");

fprintf (WriteOut, ~ \nThe Periodic Big Trees Totals are: \n") ;
for\ a=O; a<N:P; a++)

fprint f (Wri teOut, "Per%d is %- . 31 f\n", a+l, PerBigTrees [a) /BIGTREES_EXP) ;

fprintf(WriteOut,"\n\nThe total sum of Big Trees is: %.3lf\n",SumBigTrees);
fprintf(WriteOut,''Which amounts to about %.3lf per acre\n",SumBigTrees/(AllocOK*ACREEQ));

fclose {Wri teOut) ;

I /Delete stuff on free store
delete [] Solution;
delete [] S_Era;

) //end OutputEndingSolutionMet:rics

II**
void OutputFuelLoadsModel(int Perl
II**
(

/*
This will output a file that has the following columns;

Treelist Duff
FuelModel

Litter Class25 Class! Class3 Class6 Class12 Class0ver12

//on

Pag Elev VegCode

Since this is just an analysis function to help Bernie and Jim look at how their fuel model classification scheme
using fuel loads is working, I have two options: 1) print 01.,1t data for every individual cell in the entire
landscape, or
2) print out data for all unique combinations of the above columns. Neither of those choices are good. With over
two million cells for the entire landscape, #1 is just too unwieldy, and #2 would take too much time and I don't
feel like
coding in. So a compromise: I will randomly pick a # and use that as my starting point in the Data.* [] arrays and
just
output data fo:r the next 50 cells - then pick another random #: and dn the same for another 50 cells. So this will
always
output data for 100 cells across the landscape. I don't think it's important that we know exactly •.,;here they are
but that
could be accounted for if wanted later (using the GridRow and GridColumn[] arrays) .

* I
char Index[250], Actua1File[250], OutFile[2SO];
FILE *Open, *WriteOUt;

ulong a, rnd, Found;
int ArrayPer, Elev;
ulong TestTree;
char *Name;
char SepChar [J J = ~ \ \ \ \ " ;
char LastName [20];
//------------------------------------- End of variable defining--

printf (~ \n \n---=-\n") ;

printf (" Outputting Fuel Loads and Fuel Model \n" ;, ;
printf (~ --\n \n") ;

//Set the ArrayPer
ArrayPer = Per - 1;

//Create a string to hold the name of the "InitialTreeindex.txt" filename
sprintf (Index, "%s%s\ \%s", PREFIX, Constant Input, IT_INDEX);

//Create and open the output file stuff
sprintf (OutFile, n%s%s\ \goal%d\ \Pericd_%d_Fue1Loads. txt", PREFIX, GeneralDataDir, GOAL_TO_USE, Per};
WriteOut = fopen(OutFile, "w"); //No error checking!

/ /Print out some misc. stuff
fprintf (WriteOut, •The fuel loading values are in TONS-ACRE\n") i

211

fprintf (WriteOut, "There may be some discrepancy with the Treelist type and what was used to initialize loadings in
Period O\n");
fprintf(WriteOut, "Elev: 0 is< 3000' and 1 is>= 3000'\n"};
fprintf (WriteOut, nThis is an output for Period %d\n\n\n", Per,f;

/ /print out column labels
fprintf (Wri teOut, •TreelistFile\ tDuf f Litter Class25
Class0verl2 Pag Elev Vegcode FuelModel\n");
fprintf (WriteOut,

============================== \n" I ,

//Get a random# to use for the first 50 cells
do{

Class! Class] Class6 Classl2

rnd = (ulong) {rand() % UNIQUE};
)while(rnd > UNIQUE - (UNIQUE/2)); //Make it way less because of how many Nodata cells
that there are

//Now go through the Data.*[] array for 50 cells starting at cell "rnd"
for { a=rnd; a<rnd+50; a++)
{

if(Data.Cellid[a]
break;

//Get the Elev variable
if (Data.Elev[a] > {300:J*FT2H)

Elev l;
else

Elev a;

I I**""""""""""""""*******""""""*******
//For period O analysis, get the original treelist actually used - not the Treelist ff
if(Per == 0)
{

//Open the Treeindex.txt file
Open = fopen(Index, "r");
if (Open == NULL)

fprintf (stderr, "Opening of %s failed: %s\n", Index, strerror(errno));

//Scroll through the IntialTreeindex and find the current treelist and its actual file pathname
Found= Fl'I.LSE;
while (fscanf (Open, "%lu %s", &.Test Tree, ActualFile) ! = EOF i
(

if(TestTree == Data.Treelist[a])
(

}//end while

Found= TRUE;
break;

//Test to make sure the file was found
if(Found== FALSE)

Bailout (98 l ;

//Close the file
fclose (Open);

//Have the match

//Extract off the last piece of ActualFile to tell what the treelist is actually for
Name = strtok(ActualFile, SepChar);
while(Name ! = NULL)
(

sprintf (LastNarne, "%s" ,Name/;
Name = strtok(NULL, SepChar);

fprintf(WriteOut, "%s\t" ,LastName);
fprintf(WriteOut, "%-12.lf", ((float)Data.InitialDuff[a] / FUEL_LOAD_EXP));
fprintf (Wri teOut, "%-12 .1 f" , ((float) Data. Ini tialLi t ter {a] / FUEL_LOAD_EXP)) ;
fprintf (Wri teOut, "%-12 .1 f ' , ((float) Data. Ini tia1Class2 5 (a] / FUEL_LOAD_EXP)) ;
fprintf (Wri teOut, 11 %-12 .1 f" , ((float) Data. Ini tialClassl I a] / FUEL_LOAD_EXP)) ;
fprintf (Wri teOut, 11 %-12 .1 f" , ((f !oat) Data. Ini tialClassJ [a] / FUEL_LOAD_EXP)) ;
fprintf (Wri teOut, 11 %-12. lf" , ((f !oat) Data. Ini tia1Class6 {a] / FUEL_LOAD_EXP)) ;
fprintf(WriteOut, 11 %-12.lf", ({float)Data.Initia1Classl2[a] / FlJEL_LOlill_EXP));
fprintf (Wri teOut, 11 %-12. lf" , ((f !oat j Data. Ini tialClassOver 12 [a] / FUEL_LOAD_EXP)) ;
fprintf(WriteOut, "%hu\t'',Data.Pag[a]);
fprintf(WriteOut, "%d\t" ,Elev);
fprintf(WriteOut, "0\t");

//There •1,•as no Vegcode stored for the initial data!

else

fprintf (WriteOut, "%hu\n", Data. InitialFuelModel [a]);

if(Data.Treelist[a] < FIRST~AVAILABLE_TREELIST)
{

//Open the Treeindex.txt file
Open = fopen (Index, "r") ;
if (Open == NULL l

212

fprintf(stderr, "Opening of %s failed: %s\n", Index, strerror(errno));

//Scroll through the IntialTreeindex and find the current treelist and its actual
file pathname

Found ::: FALSE;

while(fscanf(Open, "%lu %s",&TestTree, ActualFile) != EOF
{

if(TestTree == Data.Treelist[a])
{

Found TRUE;
break;

} //end while.

//Test to make sure the file was found
if(Found== FALSE)

Bailout (98);

//Close the file
fclose(Open);

/ /Have the match

//Extract off the last piece of ActualFile to tell what the treelist is actually for
Name= strtok(ActualFile,SepChar};

else

while(Name != NULL J
{

sprintf {LastNarne, "%s" ,Name);
Name= strtok(NULL,SepChar};

fprintf(';'l/riteOut, "%s\t" ,LastName);

fprintf(WriteOut, "%hu\t\t ",Data.Treelist[a] Ji

//Do all of this regardless of treelist *
fprintf(WriteOut, "%-12.lf", ((float)Data.Duff[a] [ArrayPer] / FUEL_LOAD_EXP));
fprintf(WriteOut, "%-12.lf", ((float)Data.Litter[a] [ArrayPer] / FUEL_LOAD_EXP));
fprintf (WriteOut, "%-12. lf", ((float) Data. Class25 [al [.!1.rrayPer] / FUEL_LOAD_EXP)) ;
fpr intf (Wr i teOut, "%-12. lf" , ((float) Data. Classl [a] [Array Per] / FUEL_L01ill_EXP)) ;
fpr intf (Wr i teOut, "%-12. lf" , I (float) Data. Class3 La] [ArrayPer] / FUEL_LOAD_EXP)) ;
fpr intf (Wr i teOut, "%-12 . lf" , ((float) Data. Class6 [a] [ArrayPer] / FUEL_LOI-..D_EXP)) ;
fpr intf (Wr i teou t, "%-12. lf" , I (float) Data. Class12 [a] [ArrayPer] / FUEL_LOAD_EXP)) ;
fprintf (Wri teOut, "%-12. lf", ((float) Data. Class0verl2 [a] [ArrayPer] / FUEL_LOAD_EXP));
fprintf (Wri teOut, "%bu\ t", Data. Pag [a]);
fprintf(WriteOut, "%d\t",Elev);
fprintf (Wri teOut, "%bu\ t", Data. Veg code [a] [ArrayPer]);

fprintf (WriteOut, "%hu\n", Data. FuelModel [a] [ArrayPer]};

} / /end for (a=rnd ...)

//================================-=-•======= The seccnd random fifty

/ /Get a random # to use for the second SO cells
do{

rnd = (ulong) (rand() % UNIQUE);
}while(rnd > UNIQUE - IUNIQUE/2) I;
are

//Make it way less because of Ncdata cells that there

//Now go through the Data.*[] array for 50 cells starting at cell "rnd"
for(a=rnd;a<rnd+SO;a++)
{

if{Data.Cellid[a]
break;

FALSE)

//Get the Elev variable
if(Data.Elev[a] > (JOOO*FT2M}

Elev l;
else

Elev O;

//For period O analysis, get the original treelist actually used - not the Treelist #
if(Per == 0)
{

//Open the Treeindex.txt file
Open = fopen (Index, 11 r 11

) ;

else

file pathname

213

if (Open == NULL)
fprintf(stderr, "Opening of %s failed: %s\n", Index, strerror(errno));

//Scroll through the IntialTreeindex and find the current treelist and its actual file pathname
Found= FALSE;
while(fscanf(Open, "%lu %s",&TestTree, ActualFile) 1 = EOF)
{

if(TestTree == Data.Treelist[a]) //Ha•1e the match
{

}//end while ...

Found TRUE;
break;

//Test to make sure the file was found
if(Found== FALSE)

Bailout(98);

//Close the file
fclose (Open);

//Extract off the last piece of ActualFile to tell what the treelist is actually for
Name= strtok{ActualFile,SepChar);
while (Name ! = NULL)
{

sprintf (LastName, "%s" ,Name);

Name = strtok (NULL, SepChar} ;

fprintf {WriteOut, "%s\t" ,LastNarne);
fprintf (Wri teOut, "%-12. 1 f 11

, ((float} Data. Ini tialDuf f [a] / FUEL_LOAD_EXP}) ;
fprint f (Wri teOut, "%-12 .1 f" , ((float) Data. Ini tialLi tter [a] / FUEL_LOAD_EXP)) ;
fprintf {Wri teOut, "%-12. lf" , ((float) Data. Ini tia1Class25 [a] / FUEL_LOAD_EXP)) ;
fprintf (Wri teOut, 11 %-12 .1 f" , ((float) Data. Ini tialClassl [a] FUEL_LOAD_EXP)) ;
fpr intf {Wri teOut, "%-12. lf" , ((float) Data. Ini tia1Class3 [a] / FUEL_LOAD_EXP)) ;
fprintf (Wri teOut, '' %-12. 1 f '' , ((float) Data. Ini tia1Class6 [a] ,' FUEL_LOAD_EXP)) ;
fprintf {Wri teOut, "%-12. lf", ((float) Data. Ini tia1Classl2 [a J / FUEL_LOAD_EXP)) ;
fprint f {Wri teOut, "%-12. 1 f" , ((float) Data. Ini tia1Class0verl2 [a] / FUEL_LOAD_EXP)) ;
fprintf{WriteOut, "%hu\t" ,Data.Pag[a));
fprintf{WriteOut, "%d\t" ,Ele•J);
fprintf{WriteOut, "0\t");

//There was no Vegcode stored for the initial datal
fprintf(WriteOut, "%hu\n" ,Data.InitialFuelModel[a]);

if(Data.Treelist[a] < FIRST_AVAILABLE_TREELIST}
{

else

//Open the Treeindex. txt file
Open = fopen (Index, "r"');
if (Open == NULL)

fprintf{stderr, "Opening of %s failed: 'ts\n"', Index, strerror(errno));

//Scroll through the IntialTreeindex and find the current treelist and its actual

Found= FALSE;
while(fscanf(Open, "%lu %s·',&TestTree, ActualFile) != EOF
{

if(TestTree == Data.Treelist[a]j
{

Found TRUE;
break;

}//end while.

//Test to make sure the file was found
if(Found== FALSE)

Bailout{98);

/ /Close the file
fclose {Open);

/ /Have the match

//Extract off the last piece of ActualFile to tell what the treelist is actually for
Name= strtok(ActualFile,SepChar);
while \Name ! "' NULL)
{

sprintf (LastNarne, "%s" ,Name);
Name= strtok(NULL,SepChar);

fprintf(WriteOut, "is\t",LastName);

fprintfP,•JriteOut, "%hu\t\t ",Data.Treelist[a;};

//Do all of this regardless of treelist #
fprintf (WriteOut, "%-12. lf", ((float) Data.Duff [a] [ArrayPer] / FUEL_LOAD_EXP)) ;
fprintf(WriteOut, "%-12.lf", ((float)Data.Litter[aJ (ArrayPer] / FUEL_LOAD_EXP));
fprintf(WriteOut, ''%-12.lf", ((float)Data.Class25[a][ArrayPer] / FUEL_LOAD_EXP)};

fprintf {WriteOut, "%-12. lf", ((float) Data. Classl [a] (ArrayPer] FUEL_LOAD_EXP));
fprintf {Wri teOut 1 "%-12 lf ··, ((float} Data. Class3 [a] [Array Per] FUEL_LOAD_EXP)) ;
fprintf {WriteOut, "%-12. lf ., , ((float) Data. Class6 [a] [Array Per] / FUEL_LOAD_EXP));
fprintf (WriteOut, "%-12 lf ., , ((float) Data. Classl2 [a] [ArrayPer] / FUEL_LOAD_EXP));

fprintf {Wri teOut, w%-12. lf", ((float) Data. Class0verl2 [al [ArrayPer] / FUEL_LOAD_EXP));
fprintf{WriteOut, w%hu\t",Data.Pag[a]);
fprintf(WriteOut, ''%d\t'',Elev);
fprintf {Wri teOut, "'thu\ t", Data. Vegcode [a] [ArrayPer]) ;

fprintf{WriteOut, "%hu\n",Data.Fue1Model[a] [ArrayPer]);

} //end of the second for (a=rnd . . .)

fclose(WriteOut);

}//end OutputFuelLoadsModel

I I * * * * * * * * * ** ** * * * ** * ** * * * * * *
int OutputCurrentLandscapeData(int Per)
I I * * ** * * * * ** * * * * * * * * * * * * * * ** * * * * ** * * * * * * * * * * * * * * ** * * ** * * * * ** * * * *

/ ;NOTE: the incoming '' Per" is the correct period to which this data goes {not array subscript)

//NOTE 18NOV99: I would eventually like to get Finney to rewrite Farsite and Flammap to input binary files
/ /He has expressed that he could do it later but for now all must be Ase ii files

214

printf(•\n====== Outputting landscape data (Fuel, BLC, CED, Stand Height, and Closure) for period %d .. ,PRE-FIRE!
---------\nw,Per);

//Variables for writing the output files
FILE *WRITE_BLC, *WRITE_CBD, *WRITE_HEIGHT, *\,\'RITE_FUEL, *WRITE_CLOSURE;
char BLCFile[256], CBDFile[256J, HeightFile[256], Fue1File[256], ClosureFile[256];

int *ptr_srp;
ushort *ptr_column;
int r, c, HowMany;
int ColumnsLeft, ctr;
ushort StartColumn, OutColumn;
ushort OutClosure;

//Starting Row Position

ushort *ptr_blc, *ptr_cbd, *ptr_height, *ptr_fuel, *ptr_closure;

//For Time information
clock_t Start, Finish;
double Duration;
1/-------------------------------------end variables==

Start = clock () ;

//Make the correct output file names
sprintf (BLCFile, "%:s%:s%:d\ \per%d\ \blc. asc", PREFIX, INPUTS, GOAL_TO_USE, ?er);
sprintf (CBDFile, w%:s%:s%:d\ \per%:d\ \cbd. asc", PREFIX, INPUTS, GOAL_TO_USE, Per);
sprintf (HeightFile, "%:s%:s%:d\ \per%d\ \height. asc", PREFIX, INPUTS, GOAL_TO __ USE, Per) ;
sprintf (FuelFile, w%:s%:s%:d\ \per%d\ \fuel. asc" 1 PREFIX, INPUTS, GOAL_TO_USE, Per);
sprintf (ClosureFile, n%:s%:s%:d\ \per%d\ \closure. asc", PREFIX, INPUTS, GOAL_TO_USE, Per) ;

I /open up the files to write to
WRITE_BLC fopen(BLCFile, "w");
WRITE_CBD fopen (CBDFile, "w");
WRITE_HEIGHT fopen(HeightFile, "w") ,-

WRITE_FUEL = fopen(FuelFile, "w");

WRITE_CLOSURE fopen(ClosureFile, "w");

if (WRITE_BLC -- NULL)
fprintf (stderr, wopening oE %s failed:

if (WRITE_CBD -- NULL)
fprintf (stderr, •opening oE %s failed:

if (WRITE_HEIGHT -- NULL)
fprintf (stderr, nopening of %s failed:

if (WRITE_FUEL -- NULL)
fprintf (stderr, wopening of %s failed:

if (WRITE_CLOSURE == NULL)
fprintf (stderr, wopening of %s failed:

//write out the header data to each of the files
fprintf {WRITE_BLC, wncols\t\t%d\n" ,COLUMNS);
fprintf (WRITE_BLC, "nrows \ t \ t%d\n", R0:"1S) ;
fprintf {WRITB_BLC, wxllcorner\ t%. 6lf \n", F _XLL);
fprintf {WRITE_BLC, wyllcorner\ t%. 6lf \n", F _YLL);
fprintf {WRITE_BLC, "cellsize\ t%d\n", CELLSIZE);
fprintf {WRITE_BLC, wNODATA_value\t%d\n" ,NODATA);

fprintf {WRITE_CBD, "ncols \ t \ t%d\n", COLUMNS);
fprintf (WRITE_CBD, "nrows\t\t%d\n~ ,ROWS);
fprintf {WRITE_CBD, "xllcorner\ t%, 61 f \n", F _XLL);
fprintf {WRITE_CBD, "yllcorner\ t%. 61 f \n", F _YLL);
fprintf (WRITB_CBD, wcellsize\t%d\n", CELLSIZE);
fprintf (WRITE_CBD, "NODATA_value\ t%d\n", NODA TA};

%s\n",

%s\n",

%s\n",

%s\n",

%s\n",

BLCFile, strerror(errno));

CBDFile, strerror(errno));

HeightFile, s trerror \ errno)) ;

FuelFile, strerror(errno));

ClosureFile, strerror(errno)};

fprintf (WRITE_HEIGHT, Hncols\ t\ t'td\n", COLUMNS) ;
fprintf (WRITE_HEIGHT, "nrows\ t\ t'td\n", ROWS);
fprintf (WRITE_HEIGHT, "xllcorner\ t%. 6lf\n", F _XLL);
fprintf (WRITE_HEIGHT, "yllcorner\ t%. 6lf\n", F _YLL) ;
fprintf (WRITE_HEIGHT, "cellsize\ t'td\n", CELLSIZE);
fprintf (WRITE_HEIGHT, "NODATA_value\ t%d\n", NODA TA);

fprintf (WRITE_FUEL, •ncols\ t \ t%d\n", COLUMNS) ;
fprintf (WRITE_FUEL, •nrows\ t\ t%d\n", RO\elS i ;
fprintf (WRITE_FUEL, •xllcorner\ t% _ 6lf \n", F _XLL) ;
fprintf (WRITE_FUEL, ~yllcorner\ t%. 6lf\n", F _YLL);
fprintf IWRITE_FUEL, ~ cellsize\ t%d\n" , CELLSIZE) ;
fprintf (WRITE_FUEL, hNODATA_value\ t%d\n", NODATA) ;

fprintf(WRITE_CLOSURE, "ncols\t\t%d\n" ,COLUMNS);
fprintf(WRITE_CLOSURE, ~nrows\t\t%d\n" ,ROWS);
fprintf (WRITE_CLOSURE, •xllcorner\ t%. 6lf\n", F _XLL);
fprintf (WRITE_CLOSURE, •yllcorner\ t%. 6lf \n 11

, F _YLL);
fprintf (WRITE_CLOSURE, •cellsize\ t%d\n", CELLSIZE};
fprintf (WRITE_CLOSURE, •NODATA_value\ t%d\n", NODATA};

for (r=l; r<=ROWS ;r++)
{

a pointer!

ptr_srp = &link[r-1] (1];
HowMany = * (ptr_srp+l);
StartColumn = Data.GridColumn [(*ptr_srp} -11;

&Data. GridColumn [("ptr_srp) -1];
&Data HLC[l*ptr_srp)-1] [Per-1];

ptr_colurnn
ptr_blc =
ptr_cbd =
ptr_height
ptr_fuel =
ptr_closure

&Data CBDensity [(*ptr_srp} -lJ [Per-1];
&Data. StandHeight [{ *ptr_srp) -1] [Per-1] ;

&Data.FuelModel[(*ptr_srr::)-1] [Per-1];
&Data. Closure [(*ptr_srp) -1] [Per-1];

//If the whole row is blank, print out NODATA and goto next row
if(*ptr_srp == FALSE) / /means a zero was left in this spct during Ma.keLink
{

for (c=l; c<=COLUMNS; c++)
{

fprintf (WRITE_BLC, "%d II, NODATA) ;
fprintf (':i/RITE_CBD, 11 %d ", NODATA};
fprintf (WRITE_HEIGHT, "'td ", NODATA);
fprintf(':i/RITE_FUEL, "%d ",NODATA);
fprintf (r,'JRITE_CLOSURE, "%d ",NODATA);

/ /put in new lines
fprintf (WRITE_BLC, "\n");
fprintf(WRITE_CBD, "\n");
fprintf (WRITE_HEIGHT, "\n '') ;
fprintf(WRITE_FUEL, "\n");
fprintf (WRITE_CLOSURE, "\n");

continue; I I go to next row

/ /print out NODATA for those cells before data starts
for (c=l: c<StartColurnn; c++)
(

fprintf (WRITE_BLC, "%d ", NODATA);
fprintf {WRITE_CBD, "%d ", NODATA);
fprintf (WRITE_HEIGHT, "%d ",NODATA};
fprintf (WRITE_FUEL, "%d 11 ,NODATA);
fprintf (WRITE_CLOSURE, "%d ",NODATA);

I I set some counters
OutColumn = StartColumn;
ctr = 0;

/ /print out values for area on landscape by checking
//value in Data.GridColurnn to match it with OutColumn value
do{

if (*ptr_column == Ou tColumn)
(

fprintf (WRITE_BLC, "%hu 11
, *ptr_blc);

fprintf{WRITE_CBD, "%.2f 11
, (float)*ptr_cbd / DENSITY_EXP);

fprintf {WRITE_HEIGHT, "%hu 11
, *ptr_height);

fprintf (WRITE_FUEL, "%hu ", *ptr_fuel/;

215

/ /not

before writing out
//Check Data.Closure[][] and reclassify data into the 4 categories that Farsite wants

if(*ptr_closure <- 10)
Ou tClosure 1;

else if (*ptr_closure > 10 && *ptr_closure < :ol
OutClosure 2;

else if(*ptr_closure >= 50 && *ptr_closure < 80)
OutClosure 3;

else
OutClosure 4 •

fprintf (lf,JRITE_CLOSURE, "%hu ",OutClosure);

ptr_blc+=NP;
ptr_cbd+=NP;
ptr_height+=NP;
ptr_fuel+=NPi
ptr_closure+;;:;;NP;

ptr_column++;
Outcolurnn++;
ctr++;

else I /print out NODATA for the "gaps"

fprintf(V'lRITE_BLC 1 "%d ",NODATA);
fprintf(WRITE_CBD 1 "'td ",NODATA);
fprintf(WRITE_HEIGHT, "%d ",NODATA) i

fprintf(WRITE_FUEL, ''%d ",NODATA);
fprintf (WRITE_CLOSURE, "%d ",NODATA);

OutColumn++;

)while(ctr != HowMany);

//Check to see how many columns are left to do
ColumnsLeft = COLUMNS - (OutColumn-1);

if(ColuronsLeft == D)
{

fprintf (WRITE_BLC, "\n 11);
fprintf(WRITE_CBD, "\n") i

fprintf (WRITE_HEIGHT, '' \n");
fprintf (WRITE_FUEL, "\n");
fprintf(WRITE_CLOSURE, "\n");

continue; //go to next row

/ /print out NODATA for those cells after the data that are left
for (c=O; c<ColuronsLef t; c++)
{

fprintf{WRITE_BLC, "%d ",NODATA);
fprintf(WRITE_CBD, "%d '' ,NODATA);
fprintf{WRITE_HEIGHT, "%d ",NODATA);
fprintf {WRITE_FUEL, "%d ",NODATA};
fprintf(WRITE_CLOSURE, "%d ",NODATA);

//put in a new line
fprintf(WRITE_BLC, "\n'');
fprintf(WRITE_CBD, "\n");
fprintf \WRITE_HEIGHT, '' \n");
fprintf(WRITE_FUEL, "\n");
fprintf (WRITE_CLOSURE, "\n");

)//end of for(r=l;r<=ROWS;r++)

fclose (WRITE_BLC);
fclose (WRITE_CBD);
fclose(WRITE_HEIGHT);
fclose (WRITE_FUEL);
fclose (WRITE_CLOSURE);

Finish = clock ();
Duration = ((double) (Finish-Start) / CLOCKS ___ PER_SEC) ;

216

printf("\n**It took %.2lf sec::>nds t::> output this periods BLC, CED, HEIGHT, FUEL and CLOSlJRE files**\n", Duration) ;

return TRUE;

)//end OutputCurrentLandscapeData

I I * * * * * * * * * ** ** * * *** ** ** ** ** * * * * ** * * * * *
void OutputAcresHarvest(int Status)
I I * * * * * * * * * ** * * * * * * ** * * * * * * * * * ** ** **** ** * * * *
{

/ /Variable for writing the output files
FILE *WriteExcel;
char Ex.celFile [150];

I /Acre counters {number of cells)
ulong NonForestCells = O, TotalCellCount = O;
ulong GoalCells[GOALS], CellsTouched[NP], FedTouched(NP], NonFedTouched[NP];
double Fed.Harvest[NPJ, NonFedHarvest[NP],TotalFedHarvest=O, TotalNonFedHarvest=O;

int r,c;
ulong *ptr_cellid, *ptr_treelist;
ushort *ptr_goal, *ptr_o",,,ffier, *ptr_minor 1 *ptr_buffer;
float *ptr_harvest;

I I------------- - ----- -- -- - ------------ - end variables == = = = == ======= = ======-=-======---=----------- --- -- - - - ---

//Make some output filenames and open files
if(Status == FREDICTED)

spr intf (ExcelFile, ~ %s%s%d\ \ acres harvest. txt" , PREFIX, PreSimOu tputDir, GO.A.L_TO_USE) ;
else

sprintf (ExcelFile, "%s%s%d\ \acres_harvest. txt", PREFIX, PostSimOutputDir, GO.A.L_TO_USE);

WriteExcel =
if (WriteExcel

fopen (ExcelFile, "w"};

NULL)
fprintf (stderr, "opening of %s failed: %s\n", ExcelFile, strerror (errnol);

/ /Initialize arrays
for (r=O; r<GOALS; r++)

GoalCells[r] O;

for(r=D;r<NP;r++)
(

CellsTouched[r] = O;
FedTouched[r] = O;
NonFedTouched[rJ = 0;
FedHarvest[r] = O;
NonFedHarvest[r] = O;

//Start at beginning of Data.*[] arrays and keep tally of items to output.
for(r~O;r<UNIQUE;r++)
(

value

//set pointers
ptr_cellid =
ptr_treelist
ptr_goal =
ptr_owner =
ptr_minor =
ptr_buffer =
ptr_harvest =

&.Data. Cellid[r);
&Data Treelist[r];

&Data.Goal [r];
&Data.Qv,ner[r];
&Data .Minor [r];

&Data Buffer[r];
&Data. CFHarvest [r) [0] ; //values stored are a PER ACRE

if (*ptr_cellid == FALSE)
break;

//no more records to check in array

TotalCellCount++;

//set an error checker
if(*ptr_harvest > 0 && *ptr_treelist

Bailout (53);
NONFORESTI

217

//First, lets track how many acres were assigned to each goal
if (*ptr_treelist == NONFOREST) //These were NON-FOREST,

so track separately
NonForestCells++;

else
GoalCells[*ptr_goal]++;

//Then track Harvest Levels and Activity levels by Ownership and periods
for (c=O; c<NP; c++)
{

if(*ptr_harvest > 0)
activity for this cell in this period

(

CellsTouched [c] ++;
cells touched per period

if (*ptr_owner
levels by Fed and NonFed

OWN_USFS I I *ptr_owner

FedTouched I c] ++;

01'\'N_BLM)

FedHarvest[c]+= (*ptr_harvest)*ACREEQ;

else

ptr_harvest++;

}//end for(r=O; r<UNIQUE;r++)

#ifdef DEBUG_OUT_ACRES_HARVEST
//print out GoalCells
for{r=O; r<GOALS; r++)

NonFedTouched[c]++;
NonFedHarvest[c]+= (*ptr_harvest)*ACREEQ;

//increment to next period

printf { •There are %lu cells with goal %d\n", Goalcells [r], r)
printf ("and %lu cells that were Non-Forest\n~ ,NonForestCells);

printf("\nThere are a total of %.2lf acres in this simulation\n",TotalCellCount*ACREEQ);

TotalFedHarvest = O;

//Yes, there was Harvest

//increment counter for

/ 1 track cells touched &

TotalNonFedHarvest O;
for (r=O; r<NP; r++)
(

218

printf("Period %d:\tAcres of FedTouched = %.2lf and Harvest
Harvest % . 2lf\n" 1

%.2lf, \tAcres of NonFedTouched = %.21£ and

r+l, FedTouched[r]*ACREEQ, FedHarvest(r], NonFedTouched[r]*ACREEQ, NonFedHarvest[r]);

TotalFedHarvest+= FedHarvest{r];
TotalNonFedHarvest += NonFedHarvest[r];

printf(u\nTotal harvest on Federal Land (USFS, BLM) is %.2lf CF, and NonFederal land is %.2lf\n",TotalFedHarvest,
#endif

TotalNonFedHarvesti;

//Print out data to use in EXCEL
fprintf (WriteExcel, "AcresFed\ tHarvestFed\ t\ t\ tAcresNonFed\ tHarvestNonFed\n");
for (r=O; r<NP; r++ l

fprintf (WriteExcel, "%-6. 3lf \ t\ t%-10. 3 lf \ t \ t\ t%-6. 2lf\ t\ t%-1D. 2lf\n",
FedTouched[rl *ACREEQ, FedHarvest [r], NonFedTouched[r) "ACREEQ, NonFed.Harvest [r]);

//close the files
fclose(WriteExcel);

) / /end OutputAcresHarvest

I I ""* * ** * * * ** * ** * ** * ** * * * * * * * ** ** ** * * * * * * * * * *
void OutputMapGoals(int Status)
I I * * * * **"" * ** * ** * * * * * * * * *"" * * ** *** ** ** * * * *** * * * * * * * * "* ** * * * * * * ** **
{

/*The current goal assignment is outputted to ... \ouputs\PreSimData\goal*\goal.asc in this function.
There is also one outputted to ... \ouputs\rerun_data\goal. (.asc or .bin) during optimization routine and
there is no difference except that the one in .. *\rerun_data\ is always made in binary format.

* I

//Variable for writing the output files
FILE *WriteGoal;
char Goa1File[256];

int *ptr_srp; / /Starting Row Position
ushort *ptr_column, *ptr_goal;
int r,c,HowMany;
int ColurnnsLeft, ctr;
ushort StartColumn, OutColurnn;
//-- End of variable defining---

/ /Make some filename and open
if (Status PREDICTED)

sprintf (GodlFile, "%s%s%d\ \goal, dSC", PREFIX, PreSimOutputDir, GOAL_TO_USE);
else

sprintf (GoalFile, "%s%s%d\ \goal. asc", PREFIX, PostSimOutputDir, GOAL_TO_USE);

WriteGoal fopen(GoalFile, "w'');
if (WriteGoal -""= NULL)

fprintf(stderr, "opening of %s failed: %s\n", GoalFile, strerror(errno)};

//Print out an ascii file that is in row/column format which contains the GOAL values for every cell
//This file can be used in Arcinfo to make maps!

MakeLink

//write out the header data
fprintf (Wri teGoal, "ncols\ t \ t%d\n", COLUMNS);
fprintf (WriteGoal, "nrows \ t \ t%d\n", ROWS);
fpr intf (Wr i teGoal, "xllcorner\ t%. 61 f \n" , F _XLL) ;
fprint f (Wri teGoal, "yllcorner\ t%. 6 lf \n" , F _YLLJ ;
fprintf (Wri teGoal, "cellsize \ t%d \n" , CELLSIZE) ;
fprintf (WriteGoal, "NODATA__value\t%d\n" ,NODAT.~);

for(r=l;r<=ROWS;r++)
(

ptr_srp = &link(r-11 (11;
HowMany = *(ptr_srp+l);
StartColumn = Data.GridColumn[(*ptr_srp) -1];
ptr_colurnn = &Data.GridColumn[{*ptr_srp)-1];
ptr_goal = &Data.Goal [(*ptr_srp)-1];

//If the whole row is blank, print out NODATA and goto next row
if(*ptr_srp ==FALSE) //means a zero was left in this spot during

for {c=l; c<=COLUMNS; c++)
fprintf (VVriteGoal, "%d ",NODATA);

//put in new lines
fprintf(WriteGoal, "\n");

fclose(WriteGoal};
}//end MapGoals

continue; I /goto next row

//print out NODATA for those cells before data starts
for (c=l; c<StartColumn; c++)

fprintf(WriteGoal, "%d ",NODATA);

//set some counters
OutColumn = StartColumn;
ctr= C;

/ /print out 'Jalues for area on landscape by checking
//value in Data.GridColumn to match it with OutColumn value
do(

}while (ctr

if\ *ptr_colum."1. ="= OutColumn)
(

fprintf {WriteGoal, "%bu ", *ptr_goal);

ptr_goal++;
ptr_column++;
OutColumn++;
ctr++;

else //print out NODATA for the "gaps"
(

fprintf {';-.JriteGoal, "%d ",NODATA);

Outcolumn++;

HowMany) ;

//Check to see how many columns are left to do
ColumnsLeft = COLln-INS - (OutColumn-1);

if(ColumnsLeft == 0)
{

fprintf (WriteGoal, "\n");

continue; //go to next row

//print out NODATA for those cells after the data that are left
for {c;:;C; c<ColumnsLeft i c++)

fprintf (Wri teGoal, 11 %d 11
, NODATA};

//put in a new line
fprintf {WriteGoal, "\n");

}//end of for(r=l;r<=ROWS;r++)

I I * * ** ** ***** * * * * ** * * * * * * * * * * * * ** * * * * * * * * * * * ** * * * * * * * ** * * * ** * * **
void OutputPorestoistribution(int Status}
I I * * * * ** ** ** * * * * * * * * * ** ** * * ** * * * * * * **

//Variable for writing the output files
FILE *WRITE_VEG, *WRITE_STAGE, *WRITE_COMBO;
char VegDistFile[l50], StageDistFile[lSO], CornboFile[lSO];

I I Acre counters (number of cells)
ulong NonForestCells, TotalCellCount,PerTotal;

//Arrays to hold# of cells for various combination
ulong EntireVeg[NP] [VEGCLASSES+l],
AllFedVeg [NP] [VEGCLASSES+l], FedNM\l"eg [NP] [VEGCLASSES+l], AllNonFedVeg [NP] [VEGCLASSES+l] ;
ulong EntireStage[NPJ [STAGES], AllFedStage[NP] [STAGES] ,FedNMStage[NP] [STAGES] ,AllNonFedStage[NP] [STAGES];
ulong Combo[STAGES] [VEGCLASSES+l] [NP];

int r,c,t;
ulong *ptr_cellid, *ptr_treelist;
ushort *ptr_owner, *ptr_buffer, *ptr_vegcode, *ptr_'Jeg, *ptr_stage, *ptr_alloc;
ushort TernpCode;
int VegCode, StageCode, TempVeg, TempDiam, TempCover;
//=========================-======---==end variables==~===============;:;=====================================
I•

219

Here's the conversion. Values in Data.Vegcode are those J or 4 digits 'Jalues that were either generated directly
in PREMO or were slightly modified by this progrom in FillPremoData(). Heidi gave me the following regarding
what the PREMO codes meant:

1st digit = (veg. class}
1 CH
2 DH

EH
4 CCP
5 MC
6 open ????
7 Pine

RF
9 WF

2nd digit= (QMD)

0 0-4.9
5-8.9

2 9-14.9
15-20.9

4 21-24.9
25-31.9
32+

3rd digit= (Canopy closure}
0 <= 60%

> 60%

Alterations:

FillinitialPremoData() changed those with an original 1st digit of 5 to be either 5 (MC < 3000') or 10 (MC >
10000'),
so I can directly check for 5 or 10.

The digit assignment from PREMO is not consistent with the already established values
I use for maps in Arcinfo and other tracking so I will use the following conversion matrix:

220

GIS codes 1-4 are for: Barren, Water, Shrub, Grass/Forbs respectivly. Either Vegetation or Seral Stage. These
were
considered NONFOREST cells in the simulation and should have both a NONFOREST flag in Data.'Jegcode and
Data. Treelist.
However, the original classification (barren, water, shrub, qrass/£orbs} was kept in Data.Initial'Jeg &

Data.InitialStage (1-4).

is for the 1st digit(s) only = VEGETATION CLASS (note: this
PREMO
position)

'meaning' GIS VEGETATION code (this is what I will use to place in correct array

1
2

4

CH

DH
EH
CCP

classifying anything as 4** so don't worry if none seen
5 MC<3000'
6 'open'
classification - will have to eventually decide what it
7 Pine
8 RF
9 t"1F
10 MC>3C0C' 13

(note: this is for the 2nd & 3rd digit (or 4-5 if 1st
PREMO PREMO 'meaning'
2nd 3rd DBH

is!

-;-,,as a

(this is what I will use to place in correct array positicn)

0 or 1 0-4. 9"
1
1 1
2 0
2
3 0

4 0
4
5 0 or l 25-31.9"
6 0 or 1 32+"
• I

//NOTE= change these to use memset!

//Initialize the arrays
for(r=O;r<NP;r++)
(

for (c=O; C<VEGCLASSES+ l i c + +)
(

EntireVeg[rl [cl "' O;
AllFedVeg[r] [c] = 0;
FedNMVeg(r] [c] = 0;
AllNonFedVeg[rl [cl = O;

for(r=O;r<NP;r++)
(

for(c=O;c<STAGES;c++l
(

EntireStage[rl [c] = O;
AllFedStage[r] [cl = 0;
FedNMStage [r] [c] = 0;
AllNonFedStage[r] [c] = O·

for(r=O;r<STAGES;r++)
(

for (c=O; C<VEGCLASSES+ 1; c++)
(

for (t=O; t<NP; t++)
(

Cornbo[rl [cl [tl 0;

5-8. 9 .,

5-8. 9"
9-14.9"
9-14.9"
15-20.9"
15-20.9"
21-24.9"
21-24 . 9"
any

14

10 I only

any

<=60%
>60%
<=60%
>60%

any

11
10
12

//PREMO appears not to be

/ /This was not part of original

= SERAL STAGE !

Canopy GIS SERAL STAGE code

<=60%
>60't
<=60%
>60%

10
11
12
13
14

15

//The arrays to hold Vegetation data

//The arrays to hold Seral Stage data

//The array to hold the VegStageCombo data

}}}

//Start at beginning of Data.*[] arrays and keep tally of items to output.
NonForestCells=O;
TotalCellCount=O;
for(r=O; r<UNIQUE;r++}
(

//set pointers
ptr_cellid =
ptr_treelist
ptr_owner =
ptr_alloc =
ptr _buffer =
ptr_vegcode
ptr_veg =
ptr_stage =

if (""ptr_cellid
break;

TotalCellCount++;

&Data.Cellid[r];
&Data.Treelist[r];

&Data .Owner [r];
&Data.Alloc[r];

&Data .Buffer [r];
&Data.Vegcode[r] [OJ;
&Data.InitialVeg[rJ;

&Data. Ini tialStage (r] ;

FALSE) //no more records to check in array

//Check the cells treelist if NONFOREST, then its 'ptr_vegcode' should be NONFOREST as well, so use
initial Veg & Stage

if(""ptr_treelist == NONFOREST)
(

NonForestCel ls++:

if(*ptr_vegcode != NONFOREST)
Bailout(63);

//keep track of these

//problem - this should be NONFOREST

category -,,-,,-,,
// -,,-,,-,,-,, otherwise, look at ptr_veg & ptr_stage and track those ,~,alues by correct ovmership

//since all arrays were initialized with zero's, I will just increment up a 'hit' which can
then be counted for acres

//For the EntireStage and EntireVeg arrays
for (c=O; c<NP; c-+-+ ',
(

EntireVeg [c] [(*ptr_veg) -1] ++;
subtract 1 to get array notation

- This gets filled no matter what

//*ptr_veg should have its original veg -

221

Entire5tage[c] [(*ptr_stage)-1]-+-+;
subtract 1 to get array notation

//*ptr_stage should have its original stage-

for each period

Federal ownership

to indicate whether

at Data. Buffer

IN_BUFFER)

Combo [(*ptr_stage} -1] [I *ptr_veg) -1] [c] ++;

}//end for(c=O;c<NP;c++l

//For the AllFed* arrays && the FedNM* array
if (*ptr_owner == rn,;TN_BLM 11 *ptr_owner OWN_USFS)
(

for (c=-0; c<NP; c++)

AllFedVeg[c] [(*ptr_veg}-1]++;
AllFedStage[c] [(*ptr_stage)-1]++;

//Track the intersection of these

//All

//NOTE: The stream buffer behavior is a bit wierd. Data.Allee does NOT have a code

//a cell is in a riparian reserve, that data is in Data.Buffer. So make sure to look

if (*ptr_alloc == ALLOC_RESERVE 11 *ptr_alloc
//LSR, Wilderness, & Riparian

{
for (c=O; C<NP; c++)
(

ALLOC_WILD 11 *ptr_buffer ==

FedNM'Jeg[c] [(*ptr_veg)-1]++;
FedNMStage[c] [(*ptr_stage)-1]++;

//For the NON-FEDERAL lands, AllNonFed*[] []
if (*ptr_owner ! = OWN_BLM && "ptr _owner ! = rn,.JN_USFS
(

for(c=O;c<NP;c++)
(

AllNonFedVeg[cJ [(*ptr_veg}-1]-+-+;
AllNonFedStage[cJ [(*ptr_stage}-1]++;

//these are NonFederal lands

}//end if(*ptr_treelist NONFOF.EST)

else
Data.Vegcode[] [] and track by same categories

(

//For all NonForest cells, convert the values in

//first, extract each periods vegcode and break it apart to get the correct GIS Veg and Stage
values

for(c=O;c<NP;c++)
(

code from PREMO
TempCode Data.i/egcode[r] [cl;

//extract the digits out
TempCover = TempCode%10;

222

/ /The actual or 4 digit

//last digit for determining stage (is closure, <~60% or> 60%)
TempDiillO ::: I !TempCode-TempCover) %100) / 10;

determining stage (is the QMD gr::mp)
//next to last digit also for

TernpVeg = (TempCode-TempCode%100) / 100;
for determining VegCode

//Use TempVeg to determine proper GIS VegCode
switch •:TempVeg)
(

VegC:::ide 11; break;
i/egCode 10; break;
VegCode 12; break;
i/egCode 9; break;
'i/egCode 6; break;
i/egCode 14; break;
VegCode 8; break;
VegCode 5; break;
VegCode 7; break;

//1st or 1st two digits

I /CH
//DH
//EH
//CCP
//MC < 3000'
// 'open'
//pine
//RF
//V'IF

case 1:
case 2:
case

case
case 5 •
case 6:
case 7
case 8.
case 9
case 10: \iegCode = 13; break; !IMC > 3000'

default;
program with proper error message

Bailout (64);

any closure

II <=60%

II >60%

break;

I I <=60%

I I >60%

break;

II <=60%

;; >60%

break;

II <=60%

II >60%

break;

any closure

any closure

exit the program with proper

//Use TernpDiam and TempCover to determine proper StageCode
switch (TempDiam)
(

case StageCode = 5; break;

case 1 if(TempCover -- 0 J
StageCode 6;

else
StageC:::ide 7;

case 2; if(TempCover D)

Stage Code 8;

else
StageCode 9;

case 3; if(TempCover 0 I
StageCode 10;

else
Stage::'ode 11;

case 4; if (TempCover D)

StageC:::ide 12;

else
StageCode 13;

C"'3.Se 5: StageCode 14; break;

case 6: StageCode 15; break;

default: Bailout(65};
error message

//This will exit the

I I 5-B. 9"

//9-14.9"

//15-20.9"

//21-24. 9"

/ /0-4. 9

I /25-31. 9"

//32+ I

/ /This will

//********** Now fill the appropriate cell tracking arrays based on ownership breakdown**********

//For the EntireStage and EntireVeg arrays
EntireVeg [c] [VegCode-1] ++;

- These get filled no matter what

//subtract 1 to get array notation

Federal ownership

IN_BUFFERJ

Entire5tage [c] [StageCode-1] ++;

Combo[StageCode-1] [VegCode-lJ [c)++;

//For the AllFed* arrays && the FedNM* array
if (*ptr_owner == OWN_BLM 11 *ptr_o•,,:ner OWN_USFS)

AllFedVeg[c] [VegC:::ide-1]++;
AllFedStage[c] [StageCode-lJ++;

if (*ptr_alloc
//LSR,Riparian,& wilderness

ALLOC_RESERVE I I *ptr_al loc

I /All

ALLOC_l"lILD I I *ptr_buffer

FedNMVeg[c] [VegCode-1]++;

FedNMStage [c] [StageCode-1] ++;

I /For the NON-FEDERAL lands, AllNonFed* [] []
if (*ptr_owner ! = OWN_BLM: && -1rptr_owner ! = OWN_USFS)
{

//these are NonFederal lands

AllNonFedVeg[c] [VegCode-1]++;
AllNonFedStage[c] [StageCode-lJ++;

}//end for{c=O;c<NP;c-1--1-)

}//end else if(*ptr_treelist == NONFOREST)

} / /end for {r=O; r<UNIQUE,· r++)

/ /printf ("Checked all the cells during OutputForestDistribution\n");

II *************************** Print out the data 1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<*1<1<1<1<1<1<1-:1.**************1<*1<1<

//Make some output filenames and open files

if(Status == PREDICTED) / /This is PreSimulation data
{

sprintf (VegDistFile, "%s%s%d\ \ VegDist, txt ', PREFIX, PreSimOutputDir, GOAL_TO_USE) ;
sprintf (StageDistFile, "%s%s%d\ \StageDist. txt", PREFIX, PreSimOutputDir, GOAL_TO_USE};
sprintf (ComboFile, "%s%s%d\ \ComboDist. txt ', PREFIX, PreSimOutputDir, GO.ZI.L_TO_USE) ;

223

else
data
{

//This is PostSimulation

sprintf (VegDistFile, "%s%s'td\ \ VegDist. txt '', PREFIX, PostSimOutputDir, GOAL_TO_USE) ;
sprintf (StageDistFile, "%s%s%d\ \StageDist. txt", PREFIX, PostSimOutputDir, GOAL_TO_USE};
sprintf (ComboFile, "%s%s%d\ \ComboDist. txt", PREFIX, PostSimOutputDir, GOAL_TO_USE};

WRITE_VEG = fopen (VegDistFile, "w~);
WRITE_STAGE= fopen(StageDistFile, "·w");

WRITE_COMBO = fopen(ComboFile, "w");

if (WRITE_VEG == NULL)
fprintf(stderr, "opening of %s failed: %s\n", VegDistFile, strerror(errno));

if (WRITE_STAGE == NULL)
fprintf(stderr, 11opening of %s failed: %s\n", StageDistFile, strerror(errno));

if (WRITE_COMBO == NULL)
fprintf(stderr, '1 opening of %s failed: %s\n", ComboFile, strerror{errno));

//Put out the combo file first, it will have a Stage-Veg acre matrix for each period

for (c=O; c<NP; c++)
{

I /For each period

fprintf (WRITE_COMBO, "Per%d\ tl \ t2 \ t3 \ t4 \ tS \ t6\ t"7 \ t8\ t9 \ tlO\ tll \ t12 \ t13 \ t14 \n", c+l);
fprin t f (WRITE_COMBO, "---------- --- ------- - - - - - - -- -- - - - - - --- - - - --- -- - ------ ----------------------- - --------- - -----­
----------------------In'),
for{r=O;r<STAGES;r++)
{

fprintf (WRITE_COMBO, "%d\ t", r+l);
for {t=O; t<VEGCLASSES+l ,· t++)
{

fprintf (WRITE_COMBO, "%-6. Of\ t", Combo [r] [t] [c] *ACREEQ);

fprintf (WRITE_COMBO, "\n");

fprintf (WRITE_COMBO, • \n\n\n");

J

//Put in some header lines for the Entire* arrays
fprintf (WRITE_VEG, •Entire\ tl \ t2\ t3 \ t4\ tS \ t6\ t7\ t8 \ t9\ tlO\ tll \ tl2\ tl3 \ tl4 \n");
fprintf (WRITE_VEG, • ------------- - - - ---- - -- -- ---------- -- - - -- - - - - - - - - - - - - ------------- - - -- - ---- -- - ----- - - -- - - - - - -- -
--------------------In" I;
fprintf (WRITE_STAGE, •Entire\ tl \ t2\ t3\ t4 \ t5 \ t6\ t7 \ t8 \ t9\ tlO \ tll \ t12\ t13 \ tl4 \ tlS \n") ;
fprintf(WRITE_STAGE, •--­
---------------------------------------\n"),
for(r=O;r<NP;r++)
{

//Put in the period
fprintf(WRITE_VEG, •%d~,r+l);
fpr int f (WRITE_STAGE, ~ %d" , r+ 1) ;

I /The Veg acres
PerTotal=O;
for (c=O; c<VEGCLASSES+l; c++}
{

PerTotal+=EntireVeg[r] (c];
fprintf (WRITE_VEG, "\ t%-6. 0 f" , EntireVeg [r] [c] * ACREEQ} ;

fprintf (WRITE_VEG, '' \ t \ t%-8. 2f", PerTotal 1r.ZI.CREEQ);

//The Stage acres
PerTotal=O;

for(c=O; c<STAGES;c++)
(

PerTotal+=EntireStage(r] [cl;

fpr intf (WRITE_STAGE, "\ t%-6. Of", EntireStage [r] [c] * ACREEQ) ;

fprintf (WRITE_STAGE, N \ t \ t%-8. 2f", PerTotal *ACREEQ}-.

//Put in a new line
fprintf(WRITE_VEG, "\n");
fprintf (WRITE_STAGE, "\n");

//A couple of spaces to separate next array data
fprintf (WRITE_VEG, •\n\n");
fprintf (WRITE_STAGE, •\n\nN);

//Put in some header lines for AllFed* arrays
fprintf (WRITE_VEG, • AllFed\ tl \ t2 \ t3 \ t4 \ t5 \ t6\ t7 \ t8 \ t9\ tlO \ tll \ tl2 \ tl3 \ t14 \ n") ;

224

fprintf (WRITE_VEG, • ----------- - ----~--- ____ --- ______ . __ _

--------------------\n•),
fprintf {WRITE_STAGE, •AllFed\ tl \ t2\ t3 \ t4 \ t5\ t6\ t7 \ t8 \ t9\ tlO\ tll \ tl2\ tl3 \ tl3 \ tlS \n") ;
fpr int f { WRITE_STAGE, ■ ----------- - - - - ---- --- - --- - - - - - - - - - - - - - - - -- --- - -- - - --- - - - - ----- - ------ - - - - - - - -- - - - ---- -- - -- - -

---------------------------------------\n"),
for (r=O;r<NP; r++ l
(

//Put in the period
fprintf (WRITE_VEG, "%d", r+l) ;
fprintf (WRITE_STAGE, "%d", r+l l ;

/ /The Veg acres
PerTo tal= 0;
for (c=O; c<VEGCLASSES+l; c++)
(

PerTotal+=AllFedVeg [r] [c];
fprintf (WRITE_VEG, N \ t%-6. Of 11

, AllFedVeg [r] [c] *ACREEQ);

fprintf {WRITE_VEG, "\ t \ t%-8. 2 f", PerTotal * ACREEQ l ;

//The Stage acres
PerTotal=O;
for (c=O; C<STAGES; c++ l
{

PerTotal+=AllFedStage[r: [c];
fprintf(WRITE_STAGE, "\t%-6.0f 11 ,AllFedStage[r] [cl *ACREEQ);

fprintf (WRITE_STAGE, "\ t \ t%-8. 2f 11
, PerTotal*ACREEC) ;

/ /Put in a new line
fprintf (WRITE_VEG, "\n 11

);

fprintf (WRITE_STAGE, '' \n"};

//A couple of spaces to separate next array data
fprintf (WRITE_VEG, "\n\n'');
fprintf(WRITE_STAGE, u\n\n"l;

//Put in some header lines for FedNM* arrays
fprintf (WRITE_VEG, "FedNM\ tl \ t2 \ t3 \ t4 \ tS\ t6\ t7 \ t8 \ t9\ tlO\ tll \ tl2 \ tl3 \ tl4 \n") ;
fprintf (WRITE_VEG, "------------------ - - ------ - ---------------------- - - --- - - - - - - -- - - - -- ------------ --- - - - - - - -- ----­
--------------------\n") '
fprintf (WRITE_STAGE, NFedNM\ tl \ t2\ t3 \ t4 \ tS \ t6\ t7 \ tR\ t9\ tlO\ tll \ tl2\ tl3 \ tl3 \ tlS \n"};
fpr intf (WRITE_STAGE, '' -------------- - - -- ----- - - ----- ------- - - - - - - ------- - - --- ---

------------------------------- ---- - - - - \n") ;

for (r=O ;r<NP; r++)
(

//Put in the period
fprintf (WRITE._VEG, "%d'', r+l) ;
fprintf(WRITE_STAGE, ''%d" ,r+ll;

/ /The Veg acres
PerTotal=O;
for (c=O; c<VEGCLASSES+l; c++)
(

PerTotal+=Fed.NMVeg[rJ [c];
fprintf(WRITE_VEG, "\t%-6.0f",FedN'.MVeg[r] [c]*ACREEQ};

fprintf {WRITE_ VEG, "\ t \ t%-8. 2 f 11
, PerTotal *ACREEQ) ;

/ /The Stage acres
PerTotal=O;
for { c=O; c<STAGES; c++)
(

PerTotal+=FedNMStage[r] [c];
fprintf(WRITE_STAGE, "\t%-6.0f 11 ,FedNMStag2[r] [c]*ACREEQ);

fprintf (WRITE_STAGE, "\ t \ t%-8. 2 f 11
, PerTotal *ACREEQ) ;

//Put in a new line
fprintf (WRITE_VEG, • \n");
fprintf (WRITE_STAGE, "\n");

//A couple of spaces to separate next array data

fprintf(WRITE_VEG, "\n\n'');
fprintf (WRITE_STAGE, "\n\n'');

//Put in some header lines for AllNonFed* arrays
fprintf (WRITE_VEG, "NonFed\ tl \t2 \t3 \t4 \t5\t6\ t7 \ t8 \ t9\ tlO I tll I tl2 \ tl3 \ tl4 \n" I;

225

fprintf(WRITE_VEG, n __ _

--------------------In" I,
fprintf (WRITE_STAGE, "NonFed\ tl \t2 \ t3 \ t4 \ t5\ t6\ t7 \ t8 \ t9\ tlO\ tll \ tl2 \ tl3 \ tl3 \ tl5 \n '') ;
fpr intf (WRITE_STAGE, "------------- - - - ------------- --- - - - ---- --- - - - -- ------------ ----------------- - - - ------- - --- ---

------- - -------- -------------------- -- -\n"},
for(r=O;r<NP;r++)
(

//Put in the period
fprintf (WRITE_VEG, n%d'', r+l);
fprintf{WRITE_STAGE, "%d",r+l};

/ /The Veg acres
PerTotal=O;
for (c=O; c<VEGCLASSES+l; c++)
(

PerTotal+=AllNonFedVeg[r] [c];
fprintf(WRITE_VEG, "\t%-6.0f",AllNonFedVeg[r] [c]*ACREEQ);

fpr intf (WRITE_VEG, "\ t \ t%-8. 2 f", PerTotal * .<!.CREEQ) ;

//The Stage acres
PerTotal=O;
for (c=O; c<STAGES; c++)
(

PerTotal+=AllNonFedStage [r) [c] i

fprintf (WRITE_STAGE, "\ t%-6. Of", AllNonFedStage [r] [c] *ACREEQ) ;

fprintf(WRITE_STAGE, "\t\t%-3.2f" ,PerTotal*ACREEQ);

I I Put in a new line
fprintf (WRITE_VEG, "\n"};
fprintf (WRITE_STAGE, "\n"};

fclose(WRITE_VEG);
fclose(WRITE_STAGE);
fclose (WRITE_COMBO) ;
) //end OutputForestDistribution

I I ************** ************** * * * * * * ** * * * *** *** * * **** *** ********
void LevelOfActivity(int Status}
I I ************** ******************* * ***** ******* * *** * * *** *******
(

/* This will output a table with 6th field subwatershed id's in Rows,
and columns for the four EvaluateThisPeriodl.l periods, with values representing how many
acres were "touched". This file will also have its first column (after
the id) with the total acres in that subwatershed and th con the total forested acres.
This file will be comma delimited and can be imported into Arcinfo and joined with the
SubWatershed layer to make maps showing the LevelOfActivity - or the
tables can be used stand-alone.

NOTE: This function is not looking at a "solution" to determine the LOA, but that should be negligible because
this tracks harvest values and a cell not in the solution for a particular landscape goal will not have any
harvest associated with it anyways!
*/

//These globals were filled when main(l called up CountSublt.'atersheds
extern int UniqueMinor[300];
extern int USW;

int a, r, SearchShed;
ushort *ptr_minor;
ulong *ptr_treelist;
int PerA, PerB, Pere, PerD, Hit;

FILE *WRITE_LOA;
char LoaFile[256];

//-------------------------------- End of Variables

printf { "There are %d 6th-field subwatersheds in LevelOfActivity\n', US1.\I);

//Create on FreeStore an array to hold rows for each subwatershed and 7 columr.s:
// [] [O]=ID [] [l]=TotalCells [] [2]=ForestedCells [] [3]=Cells in Per"A"
// [] [4]=Cells in Per"B" [] [S]=Cells in Per"C" [] [6]=Cells in Per"D"
ulong (*LOA) [71 = new ulong[USW] [7];
if (LOA == NULL)

printf ("There was NOT enough memor-.1 for LOA with %lu elements\n", USW""7);

//initialize the LOA array
for(r=O;r<USW;r++l
(

for(a=O;a<7;a++)
(

LOA[rl [a] O;
))

//Look at EvaluateThisPeriod and find the 4 evaluation periods there

Hit=O;
for(r=O;r<NP;r++l
{

if(EvaluateThisPeriod[r] > 0)
(

if(Hit 4)
{

226

printf ("There are toe many EvaluateThisPeriod[] periods! - ignoring those past the
first four\n");

break;

if (Hit == 0)
PerA = r;

else if(Hit == 1)
PerB = r;

else if(Hit == 2)
Pere r;

else
PerD r;

Hit++;

}//end for(r=O;r<NP;r++)

//printf("Evaluating Periods: %d, %d, %d, %d\n",PerA+l, PerB+l, PerC+l, PerD+l);

//Start the search process
for(r=O;r<USW;r++)
(

SearchShed = UniqueMinor[rj;

if { SearchShed == WATER_BODY I I Search Shed
continue;

//Put ID in LOA
LOA[r)[O] = SearchShed;

.NODAT AFLAG)

/ /Using SearchShed, look through all of Data.Min::ir for that value
for (a=O; a<t.JNIQUE; a++)
{

ptr_minor = &Data.Minor[a];
ptr_treelist = &Data.Treelist[a];

if { "'ptr_minor ::::= O)
break; //assumes Data Minor was initialized with O's

and there are
//nc actual Minor sub-

watershed values of 0

if((ushort)SearchShed == *ptr_minor
{

//YES, they match

//Tally up the total acres for this subwatershed
LOA[r] [l]++;

/ /Tally up the actual forested acres
if (*ptr_treelist ! .. NONFOREST)

LOA[r] [2]++;

//Look at appropriate Data.CFHarvest elements to see if there was activity or not
//If there was, tally up the number of cells as appropriate
if(Data.CFHarvest[a] [PerA] > 0) //There was a harvest in Period "Aw

LOA[r) [3)++;

if(Data.CFHarv~st[a] [PerB] > 0)
LOA[r) [4) ++;

if(Data CFHarvest[a] [PerC] > 0 }
LOA[r) [5)++;

if{ Data.CFHarvest[a] [PerD] > 0)
LOA[r) [6)++;

}//end for(a=O;a<UNIQUE;a++)

//There was a harvest in Period "B"

//There was a harvest in Period "C"

//There was a harvest in Period "D"

}//end for(r=O;r<USW;r~~)

// Create, Open, and Write data out to a file
if (Status == PREDICTED)

/ /This is PreSimulation data
sprint f (LoaFi le, 11 %s%s%d\ \ loa. csv" , PREFIX, PreSirnOu tputDir, GOAL_TO_USE) ;

else

WRITE_LOA

/ /This is PostSimulation data
sprint f (LoaFi le, 11 %s%s%d\ \ loa. csv" . PREFIX. PostSimOutputDir, GOAL_TO_USE) ;

if (WRITE_LOA
fopen(LoaFile, "w11

);

NULL)
fprintf(stderr, "opening of %s failed: %s\n", LoaFile, strerror(errno});

//No header line because Arcinfc won't import them~ see top of function for format

227

/ /Will output the actual acres associated with the cell count found -- ** no TABS either (A/I doesn't like them)
for { r=O; r<USW; r·H·)
{

if (LDA[r] [OJ > 0 I
{

fprintf (WRITE_LOA, "%lu, ", LOA [r] [OJI; //the ID is stored here - don't convert to
acres

for(a=l;a<7;a++)
(

fprintf (WRITE_LOA, "%-7. 2f", LOA[r] [a] *ACREEQ) ;
if (a < 6)

//don't want comma after last value - screws Arcinfo up
fprintf (WRITE_LOA, ", "l ;

delete [] LOA;

fclose (Y,JRITE_LOA);

fprintf (WRITE_LOA, "\n"};

) //end LevelOfActivity

I I ******************************* * * * * * * * * * ** ** ** * * * * * * * *
void TimingChoiceFrequency(void)
I I ************** ************ * * ** * * * * * * * * * * ** ** * * * * * * * * * * * * * * * ** ** * ** ** * * * * *
{

/*
The objective is to look at all the SD_*_*_~.txt files for ALL the possible prescriptions that could
be chosen for the initial landscape (ALL means for all 10 stand goals and 2 "hold" periods for all existing
tree list l}.

This function will count up the total number of prescriptions opened and track, by period, how many prescriptions
had harvesting (i.e. thinnings) occuring in each period. This frequency can then be compared to the
harvest values that are seen after a landscape optimization and notice if harvest flow is occuring with period
peaks that also have a high frequency of prescriptions with harvesting in that period (even-flow may be
difficult to achieve because of that.
* I

FILE *Index, *SD, *WriteOut;
char Garbage[l00]="",Temp[256], SDFile[256];
int ScanStatus,IndexNo,count, ctr, goal, HoldPeriods:
int TotalFiles, y;

int AF[NP] i

double TotalVolume [NP];
int DataPeriod:
double RealBasal, RealClosure, RealCBD, RealHLC, RealHeight, RealRev, RealBigTrees, Harvest, SD_Era;
ushort VegCode, Real Litter, Rea1Class25, RealClassl, Rea1Class3, Rea1Class6, Rea1Classl2, Rea1ClassOver12;

//-- End of variable defining--­

/ !Create the Data.*[] arrays so Data.Treelist gets made for the particular ENVIRONMEN'l' defined
CreateMainData () ;

// initialize array
for(y=O;y<NP;y+?}
{

AF[y]=O;
Total Volume [y) O;

// I will assume that the tree list index. txt file is completely filled with valid stands and files
sprintf (Temp, "%s%s%d\ \per0\ \ %s", PREFIX, INPUTS, GOAL_TO_USE, TREE_INDEX};
Index = fopen(Temp, "r");

if (Index== NULL)
fprintf(stderr, "opening of %s failed: %s\n", Temp, strerror(errno));

// First go through the file and COUNT the number of files
count = 0;
while ((ScanStatus=fscanf (Index, "'td", &IndexNo)) ! =EOF)
{

count = ++count;

printf(~\n\nThere are %d files in the Tree Index File\n\n",count};

// Rewind the file pointer so it is back at the beginning of the file
rewind (Index) ;

//For each treelist-goal-hold possibility, go through read the SD_*_*_.txt file and track periodic harvest
frequency
TotalFiles=O;
for (ctr
{

O; ctr< count; ctr?+)

fscanf (Index, ~ %d", &IndexNo};

//flag for NONFOREST values
if (IndexNo -=-= NONFOREST}

continue;

//for each treelist

//Scan the index no.

for (goal=O; goal<GOALS; goal++)
(

//for each goal

//Set a quick error if I change the# of HoldFor periods and I forget to fix this code
if(HOLDNO > 2)

Bailout(40);

for(HoldPeriods=O;HoldPeriods<4;HoldPeriods+=3)
(

TotalFiles++;

//for the two Hold "for" periods

//Make the appr:::ipriate file name and actually open the SD_-"_.>:-_.>:-.txt file
sprintf(SDFile,

"%s%s\ \SD_%d._%d_%d. txt y, PREFIX, InitialStandDataDir, IndexNo, goal, H:::ildPeri:::idsi;
SD = fopen(SDFile, "r");
if (SD == NULL)

228

fprintf(stderr, "opening of %s failed: %s\n", SDFile, strerror(errno));

//First, scan in the the first line from the SD* file-which is for Time 0, do not
want

fscanf(SD,"ld %lf llf llf llf llf %lf %lf llf lhu llf llf llf llf llf llf llf %lf",
&DataPeriod, &RealBasal,

&RealClosure, &RealCBD, &RealHLC, &RealHeight, &RealRev, &RealBigTrees,
&SD_Era, &VegCode, &Harvest,

&Rea1Classl2, &Rea1Class0Verl2 l ;
&RealLitter, &Rea1Class25, &RealClassl, &Rea1Class3, &Rea1Class6,

for (y=l; y<=NP; y++)
(

//Now actually scan in the data for all the modeling periods

llf %lf",
fscanf(SD, "%d %lf %lf %lf %lf %lf llf %1f %lf %hu %lf %lf %lf %lf Uf Uf

&DataPeriod, &Real Basal,
&RealClosure, &RealCBD, &RealHLC, &RealHeight, &RealRev,

&RealBigTrees, &SD_Era, &VegCode, &Harvest,

&Rea1Classl2, &Rea1Class0verl2) ;
&RealLitter, &Rea1Class25, &RealClassl, &Rea1Class3, &Rea1Class6,

if (Harvest > O && y < HoldPeriods)
printf("Prescripti:)n P_%d_%d_%d,txt has harvest occuring before

HoldPeriod expires! \n n, IndexNo, goal, HoldPeriods) ;

if(DataPeriod !~ y)
printf("PROBLEM - there aren't NP periods in file %s\n",SDFile);

//If there is a value> O for Harvest, increment the AF[y) array by one
//And track the total volume
if(Harvest > O)
{

AF[y-1]++;
TotalVolume[y-1] += Harvest;

}//end for(y=l;y<=NP;y++}

fclose (SD);

)//end for(ctr 0; ctr< count; ctr++)

fclose(Index);

//print out the results to screen
printf ("------------------ Harvest Frequency Analysis %d files------ ----------\n '', TotalFiles) ;
puts (~ ");
for(y=O;y<NP;y++)

printf (•Period %d: \ t%d\ t\ t%, Of\ t\ t%, 3 lf\n", y+l, AF [y] , (float) AF [yJ /TotalFiles* 100, TcJtalVolume [yJ / AF [yJ
);

//and print out results to a file
sprintf (Temp, •%s%s\ \Harvest Frequency. txt", PREFIX, GeneralDataDir) ;
WriteOut = fopen(Temp, •wy);

error checking
/ /no

fprintf (WriteOut, •================== Harvest Frequency ~i:..nalysis ====== %d files==============\n\n", TotalFiles};
fprintf (WriteOut, "\t\tNo. of \t\tPercent o::\tAvg, Volume\n"};
fprintf (Wri teOut, 11

\ t Prescriptions\ t \ t Total\ t \ tper prescription \n") ;
fprintf (WriteOut, n\n");
for(y=O;y<NP;y++)

fprintf {WriteOut, "Period %d: \ t%d\t\ t%. Of\ t \ t%, 3lf\n", y+l, AF [y], (float}
AF [y] /TotalFiles*lOO ,TotalVolume [y] /AF [y] /;

£close (WriteOut);

) I I end TimingChoiceFreguency

I I ** *** * * * * ** * * * * * * ** * * ** * ** * * * *** *** ** * * * * * * * * * * * * ** * * **
void OwnershipByMinor { int USW, int UniqueMinor [] l
I I * * * * ** * * * * * * ** * * * * * * * * ** * * * * * ** ** * * * * ** * * * * * * * * * ** * * 1c• * * * * * * * * * * * * * * * * * * *

//Figure out the majority owner for each subwatershed
/ /NOTE: This is not a nperfect" method and is suited to be changed as seen fit

FILE *WriteOut;
char Temp[256];
int Shed,CurrentShed;

int r;

//-------------------------------- End of variable defining---

//Make an array on free store that will store, for each subwatershed, the# of cells by owTiership category
//rows: subwatershed columns: [OJ ,subwatershed # [l] ,Federal(BLM, USFS} [2] ,All Others
ulong {*MO) [3] = new ulong[USW] [3];

//MinorO-..,;ner (MO)

if (MO =• NULL)
printf("There was NOT enough memory for MO with %lu elements\n•·, USW*2);

JI initialize the array
for (r=O; r<USW; r++)
(

MO[r] [O]=O;
MO[r] [1]=0;
MO[r] [2]=0;

//Start to look at each sub-watershed, one at a time, and track o-wnership
for(Shed=O;Shed<USW;Shed++}
(

//get the appropriate 8ub-watershed value from the UniqueMinor array
CurrentShed=UniqueMinor[Shed];

MO[Shed] [0] = (ulong)CurrentShed; //populate the Subwatershed #

//Start looking through Data.* arrays and find subwatersheds with this value and track ownership
for(r=O;r<UNIQUE;r++)
(

if (Data.Minor [r]
break,-

FALSE)

229

if (Data.Minor[r] NODATAFLAG I //Some of those GIS s li 'Jers or bad
data

continue,-

if (Data.Minor[r] == V'JATER_BODY}
continue,-

//These are lakes, etc.

if (Data. Treelist [r] NONFOREST) //don't count those that are nonforest
anyways

continue;

//Now make a switch according to which goal is being evaluated and make sure to evaluate only
/ /those cells that are elegible for that goal an}'Way
switch (GOAL_TO_USE)
(

case 1:
if (Data .Al loc [r) == ALLOC_WILD 11 (Data .Al loc [r] == ALLOC_RESERVE &&

Data.InitialStage[r) > 9} I I
(Data. Buffer [r]
continue,-

IN_BUFFER && Data.InitialStage[r] > 9J l

case 2:

default:

break;

if(Data.Alloc[r]
continue;

break;

break;

ALLOC_WILD)

//Only gets to here if all above have passed and no continue statement was encountered
if(Data.Minor[r] == (ushort)CurrentShedl
(

if(Data.Owner[r] == OWN_BLM 11 Data.Owner[r]
MO[Shed] [l]++;

else

) //end for (r=O; r<lJNIQUE; r++)
)//end for(Shed=O;Shed<USW;Shed++}

/ /print results

MO[.Shed] [2]++;

printf("Subwatershed #\tMajority Owner\n");
printf(~==\n");
for (r=O; r<USW;r++)
(

printf ("Uu ; ", MO [r] [0]);

if(MO[r] [1] > MO[r] [2] I
printf ("\ t\ tFEDERAL\n");

else if(MO[r] [1] < MO[r] [2] I
printf ("\ t \tNONfedera l \n'·);

else
printf (-\ t\ tequal \n"};

//and print out results to a file
sprintf (Temp, "%s%s\ \Goal%d_OWnerMinor. txt", PREFIX, GeneralDataDir, GOAL_TO_USE);

OWN_USFS)

WriteOut = fopen(Temp, "w");

error checking
fprintf(WriteOut, MSubwatershed #\tMajority Owner\n");
fpr intf (Wr iteOut, M --\ n"} ;

for(r=0;r<USW;r++)
(

fprintf(WriteOut, "%lu :",MO[r][O]};

if(MO[r] [11 > MO[rl [21)
fprintf(WriteOut, "\t\tFEDERAL\n");

else if(MO[rl [11 < MO[rl [21 I
fprintf(WriteOut, "\t\tNONfederal\n");

else
fprintf(WriteOut, "\t\tequal\n");

fclose(WriteOut);

delete [] MO;

} //end OwnershipByMinor

I I ************ *****************************"***** *******"""" "** """""""" "********** ********** ** ** ** *
void OutputPotentialBigTreesAllStandGoals/void)
I I ***""""" "*" "**** "*""""" "*** "** "******* "** "***** ****
(

I*
Output the number of BigTrees associated with the eligible solution area Eor any one goal applied
as the only solution. That is, pretend that only one goal is selected, and one hold value, and
call that the ''solution" and then count up the Big Trees.

This function will simply use the same rules used to define the Solution cells for a particular goal
- and then use those cells to look up their associated big trees from the PREMO data.
*/

FILE *Binin, *Headerin, *WriteOut;
char Temp[256l;
ulong Records;

int a, b,x;
ulong c;
ulong AllocOK, AllocNOK,CellsinShed;
ulong SolutionCounters{J];
CellsinShed, by DetermineEligibleCells ()

double PerBigTrees [NP];
double SumBigTrees = 0;

struct OPTIMIZE_SINGLE_VALUE Key;
struct OPTIMIZE_SINGLE_VALUE *ptr_key;

//will get filled with AllocOK, AllocNOK,

230

//no

//------------------------------------ End variable defining---

//Create the output file for the data generated here
sprintf (Temp, •%s%s%d\ \All_BigTrees. txt", PREFIX, PreSimOutputDir, GOAL_TO_USE);

/ /Open up the file for printing
WriteOut = fopen(Temp, "w");

//Open the Header and actual Binary file containing the data found during FillValueToOptimize()
sprintf (Temp, "%:s%:s\ \Binary\ \%s_InitOpt .bin", PREFIX, InitialStandDataDir, ENVT) i

Binin = fopen (Tetnp, "rb");

sprintf (Temp, '' %s%s\ \Binary\ \%s_InitOpt. hdr", PREFIX, InitialStandDataDir, ENVT);
Headerin = fopen(Temp, "r'');

/ /Get the Number of records that are listed in the header file
fscanf (Headerin, "%:lu", &Records);

//Create an array of structures on the free store to hold these records
struct OPTIMIZE_SINGLE_VALUE (*OptValues) = new struct OPTIMIZE_SINGLE_VALUE[Records];
if (OptValues == NULL)

printf("Problems allocating memory tor OptValues[] with %lu
elements\n", Records*sizeof (OPTIMIZE_SINGLE_VALUE));

I /Now just read in the binary data the same way it was written out in FillVctlueToOptimize ()
fread{OptValues, sizeof(OPTIMIZE_SINGLE_VALUE),Records,Binin);

I /close up the files
fclose (Binin);
fclose(Headerin);

//Initialize the SolutionCounters array and call up the DetermineEligibleCells(l function to fill it up
for (a=O; a<3; a+-+-)

SolutionCounters[a] = O;

printf("*** Going to determine the eligible cells for this solution and fill up the array of SOLUTION structures
*** \n");

if (DetermineEligibleCells (Sol utionCounters)
Bailout (82);

FALSE)

//The values now in SolutionCounters should be properly set
AllocOK = SolutionCounters[O];
AllocNOK SolutionCounters[l];
CellsinShed SolutionCounters[2];

printf i '' ! ! ! There are %lu valid cells with cell ids ", CellsinShedJ;

231

printf (" and %lu cells that are eligible for the solution and %lu that are not. \n\n" ,AllocOK,AllocNOK);

I /Set a checker to look for when there are C eligible cells
if (AllocOK == FALSE)

Bailout (89);

//Create an array of structures on the free store to hold the solution
struct SOLUTION (*Solution) = new struct SOLUTION[AllocOK];
if (Solution == NULL)

printf("Problems allocating memory for Solution[] with %lu elements\n",AllocOK*sizeof(SOLUTION)l;

//Initialize
memset(Solution, 0, sizeof(struct SOLUTION) * AllocOK l;

//Now fill that array of SOLUTION structures with the Treelist - Minor - Cellid - GOAL - and HOLD of those eligible
cells
if (FillSolution(SolutionCounters, Solution, REAL) == FALSE l

Bailout (83);

for (a=D; a< { signed) AllocOK; a++)
Solution(a] .Hold = O; //assign a Hold value of Oto all cells

I******"'"***

All the above stuff only needs to be done once. At this point the Solution structure is filled up with the
Treelist-Cellid-Minor values for all the eligible cells in this solution. TO simulate the ideal of applying
one goal across the landscape, just make a loop to fill all of the Solution.Goal[] members with one goal value.
Then use that as the Key when searching the above OptValues[] structure and copy what was done in the
OutputBigTreesForSolution() function to output the big tree values
* * ** * * * * * * * *** * * * * * * * * * * * * ... * * * * * * * * * * * * * * * * ** * * * * * * *"'" * * *"'" "'"* * * * * ** ** * * ***** ** **** * * * * * * * *
**** I

/ /MAKE a loop to do this for each of the StandGoals possible
for (x=O; x<GOALS; x++ l
(

earlier)

structures

//First, assign goal "x" to all the cells in the Solution structure
for (a;:::Q; a< (signed) AllocOK; a++)

Solution[a] .Goal= (ushort)x;

//Re=initialize the PerBigTrees[J array
for(a=O;a<NP;a++l

PerBigTrees[a] = O;

I/ Also reset SumBigTrees
SurnBigTrees=O;

for(c=O;c<AllocOK;c++) / / AllocOK is how many rows of data there are (i.e. eligible cells found

//Make a Key using the Treelist-Goal-Hold values found for each record in the array of Solution

Key. Treelist
Key.Goal
Key .Hold

Solution[c] .Treelist;
Solution[c1 .Goal;
Solution[c] .Hold;

/ /will all have the value of "x"
//will all be 0

//Now use bsearch to find the matching record in the array of OV structures
ptr_key = (struct OPTIMIZB_SINGLE_VALUE*}bsearch(

&Key,
(void *) OptValues,
(size_t) Records,
sizeof (struct OPTIMIZE_SINGLE_'i.iALUE),
Look.AtOSV) ;

if(ptr_key == NULL)
{

//There had better be one!

printf ("Can't find key number %lu: Treelist = %lu. Goal = %hu, and Hold
%hu\n",c,Key.Treelist,Key.Goal,Key.Hold:,;

Bailout (80 j ;

else //Sum up the periodic
Values

for (b=O; b<NP; b++)
PerBigTrees [b] +- ptr_key->BigTrees [b];

}//end for(c ...)

//******** When outputting the# of Big Trees, remember that data was entered by multiplying by 10 - so
divide to get real value

I I Add up the total sum of big trees

for (b=O; b<NP; b++)

SumBigTrees += PerBigTrees(b]/BIGTREES_EXP;

fprintf (WriteOut, 11 \n\nSTAND GOAL: %d\n" ,x);
fprintf(WriteOut, NThese are Big Trees that were in the Solution area only ... which amounted to %.2lf

acres\n", AllocOK*.'1.CREEQ);
fprintf (WriteOut, w \nThe Period Big Trees Totals are: \n") ,­
for (a=O; a<NP; a++)

fprintf (WriteOut, "Per%d is %- . 3 lf \n", a+l, PerBigTrees (a] /BIGTREES_EXP);
fprintf(WriteOut,"The total sum of Big Trees is: %.3lf\n",SumBigTrees):
fprintf (WriteOut, "Which amounts to about % . 3lf per acre\n", SumBigTrees/ IAllocOK* ACREEQ)) ;

) II end for (x=O . . .)

fclose(WriteOut);

//delete stuff on free store
delete [] Solution;
delete [] OptValues;

) //end OutputPotentialBigTreesAllGoals

I I * * * * * * * * * * * * * * ** * * * * * ** * * * * ** * * * * * * * * **
void OutputVegcodes(int Per)
I I * * * * * * * * ** * * ** * * * * * * * * * * * * ** k * * * * * * * * * * *

/ /NOTE: the incoming "Per" is the correct period to which this data goes (not array subscript)

//Output the GIS vegcode variable so they can be pulled into a GIS and mapped

FILE *WRITE_VEG;
char VegcodeFile[256];

int *ptr_srp; //Starting Row Position
ushort *ptr_column;
int r, c, HowMany;
int ColumnsLef t, ctr;
ushort StartColurnn, OutColumn;
ushort *ptr_vegcode;

/I------------------------ --- -- --- ---- -end variables =========== ==== = = = === = = = = = === =======--=-======= ---------

//Make the correct output file name and open it
sprintf {VegcodeFile, "'ts'ts%d\ \per%d\ \ veg code. asc '' , PREFIX, OUTPUTS, GOAL_TO_USE, Per} ;
WRITE_VEG = fopen(VegcodeFile, "w");
if (WRITE_VEG == NULL)

fprintf (stderr, Nopening of %s failed: %s\n", VegcodeFile, strerrorlerrno));

//Start writting data to the file

fprintf (WRITE_VEG, "ncols \t \t%d\n", COLUMNS) ;
fprintf (WRITE_VEG, "nrows\t\t'td\n" ,R0\11/S);
fprintf (WRITE_VEG, "xllcorner\ t%. 6lf \n", P _XLL);
fprintf (WRITE_VEG, "yllcorner\ t%, 6lf \n", P _YLL);
fprintf {WRITE_VEG, "cellsize\t%d\n" ,CELLSIZE);
fprintf (WRITE_VEG, 11NODATA_value\t%d\n" ,NODATA);

for (r=l; r<=ROWS;r++)
{

ptr_srp = &link[r-1] [1];
HowMany = * (ptr_srp+ 1) ;
StartColumn =
ptr_column =
ptr_vegcode =

Data.GridColumn[(*ptr_srp)-1];
&Data,GridColumn[(*ptr_srp)-1];
&Data.Vegcode[(*ptr_srp)-ll [Per-1];

/ /If the whole row is blank, print out NODATA and goto next row

/ /not a pointer!

if(*ptr_srp ==FALSE) //means a zero was left in this spot during MakeLink
(

for (c=l; c<=COLUMNS; c++)
fprintf (~'VRITE_VEG, "%d ",NODAT.'1.);

//put in new line
fprintf (WRITE_VEG, "\n");

continue; //goto next row

//print out NODATA for those cells before data starts
for(c=-1; c<StartColumn; c++)

fprintf(WRITE_VEG, "%d ",NODATA};

//set some counters
OutColwnn = StartColurnn;
ctr = 0;

//print out values for area on landscape by checking
//value in Data.GridColurnn to match it with OutColumn value
do{

if (*ptr_colurnn :;;;; OutColurnn)
(

fprintf{WRITE_VEG, "%bu '' ,*ptr_vegcode);

ptr_vegcode+=NP;

232

ptr_column++;
OutColumn++;
ctr++;

else //print out NODATA for the "gaps"
(

fprintf('i\1RITE_VEG, "%d ",NODATA};

OutColumn++;

}while(ctr != HowMany);

//Check to see how many columns are left to de
ColumnsLeft = COLUMNS - (OutColumn-1);

if(ColumnsLeft == 0)
(

fprintf (WRITE_VEG, "\n");

continue; //go to next row

/ /print out NODATA for those cells after the data that are left
for (c=0; c<ColurnnsLef t; c++)

fprintf(WRITE_VEG, "%d ",NODATA);

//put in a new line
fprintf (WRITE_VEG, "\n");

}//end of for(r=l;r<=ROWS;r++)

fclose (WRITE_VEG);

return;

} //end OutputVegcodes

void OutputinitialGoal(void)

{

I*
After an initial Stand Goal selection has been made, this will spit cut :he goals in a binary
file that can be brought into Arcinfo <.'l.nd mapped and/or used fer compari,3on after the heuristic
has found the final solution.

This function assumes that the initial goal assignment was inserted into the Data. Goal array by
calling InputSolution() after the random initial stuff.
* I

FILE *BinOut, *HeaderOUt;
char Temp[256J;

int *ptr_srp;
ushort *ptr_colurnn;
int r, c, HowMany;
int ColurnnsLeft, ctr;
ushort StartColumn, OutCol urnn;
ushort *ptr_goal;
float *ptr_goalout;

//Starting Row Position

//-------------------------- End of variable defining--------------------------------------

233

/ /Use this to store all the NODATA and actual values - so I can spit out a binary file at end of function - ready
for Arcinfo input
float (*GoalOut) [COLUMNS] = new float[ROWS] [COLUMN"S];
if (GoalOut == NULL)

printf("There was NOT enough memory for GcalOut with %lu elements\n",ROWS*COLlTI-iNS);
//Initialize
memset(GoalOut, 0, sizeof(GoalOut[OJ[O]) * RO.aJS * COLUMNS);

11----------================----------------=====-============-------------=-=================
// Store the Data.Goal[] data in the GoalOut[] [] array and place a NODATA value in the correct
// spots. This is all to ease the transition into Arcinfc. This way, I can spit out a
// small binary file with the values and NODATA which AI can iust read in.
II-------=-----------==--=-----=-===-

//Use the same procedure that is done with the other Output*() functions
for(r=l;r<=ROWS;r++)
(

ptr_srp =
HowMany =
StartColumn
ptr_column
ptr_goal

&link[r-1] [l];

* (ptr_srp+l l ;
Data. GridCol umn[{ *ptr_srp) -1];
&.Data GridColumn[{ *ptr_srp) -1];

&.Data.Goal [(*ptr_srp)-1];

//If the whole row is blank, store NODATA and goto next row

//not a pointer!

if (*ptr_srp == FALSE) / /means a zero was 1 eft in this spct during MakeLink
(

for (c=l;c<=COLUMNS; c++)

GoalOut(r-lJ [c-1] = /float)NOD.::...TA;

continue; //goto next row

//store NODATA for those cells before data starts
for (c=l.; C<StartCol.umn; c++)

Goal Out [r-1] [c-1) = (float)}JODATA;

//set some counters
OutColumn = StartColurnn;
ctr= O;

//store values for area on landscape by checking
/ /value in Oata.GridColurnn to match it with OutColumn value
do(

if (*ptr_column == OutColurnn)
(

Goal0ut[r-1] (0utColumn· l]

ptr_column++;
OutColumn++;
ctr++;

{float) *ptr_goal;

else //print out NODATA for the "gaps"
(

Goal0ut [r-1] [0utColumn-1} = (float)N0DATA;

Ou tColurn.n++;

)while(ctr !::: HowMany) ;

//Check to see how many columns are left to do
ColumnsLeft = COLUMNS - {OutColurn.n-1 l;

if(ColumnsLeft == O)
continue; //go to next row

//print out NODATA for those cells after the data that are left
for (c=O; c<ColumnsLeft; c++)

GoalOut[r-1] [{OutColumn-ll+c] ~ {float)NODATA;

)//end of for{r=l;r<=ROWS;r++)

I I===============================-=---=-==---=-=-==-==-==

II Put a pointer at start of GoalOut and purge that data as a binary file
ptr_goalout = &GoalOut [0] [0];

I /Create the output Binary file and header file
sprintf (Temp, "tststd\ \InitGoal. bin", PREFIX, PreSimOutputDir, GOAL_TO_tJSE);
BinOut = fopen (Temp, "wb");

sprintf (Temp, "%s%s%d\ \InitGoal hdr", PREFIX, PreSimOutputDir, GOAL_TO_USE};
HeaderOut = fopen (Temp, "w");

/ /Write out the header data -- exact format for Arcinfo
fprintf {HeaderOut, "ncols\ t\ t%d\n", COLUMNS):
fprintf (HeaderOut, "nrows\ t\ t%d\n", ROWS);
fpr intf (HeaderOut, "xllcorner\ t%. 61 f \n", F _XLL) ;
fprintf (HeaderOut, ''yllcorner\t%. 6lf\n", F_YLL);
fprintf (HeaderOut, "cellsize\ t%d\n", CELLSIZE) ;
fprintf (HeaderOut, "NODATA_value\t%d\n" ,NODATA);
fprintf (HeaderOut, Nbyteorder\tLSBFIRST\n");

//And now write out all the records in GoalOut
fwrite(ptr_goalout, sizeof(float) ,ROWS*COLUMNS,BinOut);

fclose (BinOut);
fclose (HeaderOutl;

//delete stuff on free store
delete [] GoalOut;

} //end Outputini tialGoal

INSEC':'S CE•P

/*
This sauce code will hold all the functions needed to ini tia.te a.nd wreak havoc on
stands due to episodic insect outbreaks.

The insect disturbance is based on two corrponents: 1st, a threshold is met (which
is a function of the weather) and 2nd, a severity is applied.

* I

#include <stdio. h>
#include <stdlib.h>
#include <String.h>

234

#include <time .h>
#include "globals. h"
#include "data.h"

11--------------------------------- EXTERNALS-----------------------------------
//defined in main.cpp
extern ulong NATLN;

//define in Misc.cpp
extern void DeleteToModify(void);

//defined in CornmonDisturbance
extern void ExtractTreelist(struct TREELIST_FOR_PREMO TP[], int Count, int Per, ulong FTL);
extern void PrintNewTreelist(struct TREELIST_RECORD Records[], int Count, struct TREELIST_RECORD NewSnags(],

235

int SnagCount,
ulong Tree! ist) ;
extern void UpdateDataTreelist(struct HIT_BY_DISTURB AllHit[], int AllCcunt};
extern void UpdateDataWithNewStandData(struct HIT_BY_DISTURB HitList[], int HitCount, struct NEW_STAND_DATA SD[],
int Unique, int Per);

//defined in StandData.cpp
extern void StandoataController(struct NEW_STAND_DATA SD[1, int Count, struct TREELIST_RECORD Records[], int
NoRecords) ;
extern void CalculateindividualBasalCanopyWidth(struct TREELIST_RECORD Records[}, int NoRecords);

11----------------------------- ---- - INTERN-~LS-- - - -------- - -- - - - - -- -- - - - ----------- - - - -- - - - ----

int ApplyinsectDisturbance (int Per, int T,-.Jeather, ulong FTTP};
int CountinsectHit(int Per);
int FillinsectHitList (struct HIT_BY_DISTURB HitList [], int Per);
int CountUniqueinsectHits(struct HIT_BY_DISTURB HitList[], int Count);
int FillUniqueinsectStructures(struct UNIQUE_INSECT UnigueList[], struct TREELIST_FOR_PREMO ToPremo[J,

struct HIT_BY_DISTURB HitList[], int Count);
void ApplyinsectSeverityCalculateStandData (struct UNIQUE_INSECT UL [], int Count, struct NE1;LSTAND_DATA StandData [],
int Weather};
int DougFirMortality(struct TREELIST_RECORD Records[], int Count, struct TREELIST_RECORD NewSnags[],

int SnagCount,
ushort Pag, int Weather, struct NE'iLSTAND_DATA *ptr_sd) ;
int TrueFirMortality(struct TREELIST_RECORD Records[], int Count, struct TREELIST_RECORD NewSnags[],

int SnagCount,
ushort Fag, int Weather, struct NEW_ST.f'.ND_DATA 1cptr_sd};
int PineMortality(struct TREELIST_RECORD Records[], int Count, struct TREELIST_RECORD NewSnags[],

int SnagCount,
ushort Pag, int Weather, struct NEW_.STAND_DATA *ptr_sd) ;
int CompareHitListForBugs(const void *ptrl, canst void *ptr2);
void MapPotentialBugs(int Per);

//--------------------------•---•---- end of function definitions for this code ---------------------------------

I I***•**********************************

int ApplyinsectDisturbance (int Per, int ;ieather, ulong FTTP)
I/*****•**

//Weather values are:
// 1 = Wet, 2 Moderate,

PAG values are:

1 Douglas fir Dry
2 Douglas fir I Wet
3 Jeffrey pine
4 Red fir
5 Pine I Oak
6 White fir I Dry
7 White fir I Wet

Water
Barren

* I

int ActualPer, ArrayPer;
int a=D, HitCount~ Records, Unique, Unigue2;
char WeatherType[5D];

//For Time information
clock_t Start, Finish;
double Duration;

Mild Drought, Severe Drought

//------------------------------------- End of variable defining---

/ /Create the WeatherType string
if (Weather == 1)

sprintf (Weatherfype, "Wet");
else if(Weather == 2)

sprintf (WeatherType, "Moderate");
else if (Weather == 3)

sprintf (WeatherType, "Mild Drought");
else

sprintf (WeatherType, "Severe Drought");

//REMEMBER: Per is the actual period, not array subscript - reset Per
.'l..c tual Per Per;
ArrayPer Per-1;

if(Weather== 1 I I Weather== 2)
{

236

printf ("\n \ t * * * * * ** * * * * ** ** * ** ** ** * * * * * * * * * ** * * * * * **
************\n");

printf ("\t
printf(K\t\t
printf { "\t\t

INSECTS \n" I ;
Not a drought period (%s) \n", WeatherT-ype};

There will be NO episodic insect attacks\n");

printf { "\ t * * * * * * * ** * ** * * * * * * * * * * * * * * * * * * ** ** * * * * ** ** * * * * * *
**********\nu);

return TRUE;

else

printf {" \n \ t * * * * * ** * * * ** ** * * * * * * ** * ** * * * * * * * * * * * * * *
************\n");

printf("\t
printf (~\t\t
printf("\t\t

Starting episodic disturbances for INSECTS \n" J i

This is a drought-type period (%s) \n", \''.1eatherT:ype);
There \"1ILL be episodic insect attacks -- bzzzzz ! \n" Ii

printf ("\ t****************** ********** *** **** ** ** * * * *** *************** * *** * * *** * * ***

//Count up how many cells were hit by insects this period
HitCount = CountinsectHit(ArrayPer};
printf (11 \n\nFor Period %d, just counted %d cells being attacked for % . Olf
acres\n", Actual Per, HitCount, HitCount *ACREEQ);

/ /Print out the number of acres hit
PrintToStat(6, HitCountl;

//If there are no cells getting hit by insects, then just return back to main
if (HitCount == FALSE
{

printf (11 ! ! ! There were NO cells effected by insects - skipping INSECT DISTURB}1J.JCE routines ! ! ! \n");
return TRUE;

I /create an array of structures on the free store to hold info on all the cells being hit
struct HIT_BY_DISTURB (*HitList) = new struct HIT_BY_DISTURB[HitCount];
if(HitList == NULL)

printf("Problems allocating memory for HitList[] with %d records\n" ,HitCount);

//Initialize
memset(HitList, 0, sizeof(struct HIT_BY_DISTURB) * HitCountl;

/ /Fill up the array of HitList structures
Records = FillinsectHitList (HitList, ArrayPer);
if (Records ! = HitCount)

Bailout (77);

printf ("\nGetting ready to sort the stands by Treelist-Goal-Hold-Pag-DougFir-TrueFir-Pine this will take awhile
for %lu cells\n\n 11 ,HitCount);
Start = clock (l;

I /sort those records by: Treelist-Goal-Hold-Pag-DougFir-TrueFir-Pine
mgsort ((void*) HitList,

I !base
HitCount,

I /count of records
sizeof (struct HIT_BY_DISTURB),

record
0, HitCount-1,

//current division (always: 0, Ccunt-1
CompareHitListForBugs);

function

Finish = clock();
Duration= { (double) (Finish-Start) / CLOCKS_PER_SEC);

//size of each

/ /compare

//printf(11 ***Finished sorting in %.2lf seconds, now going to determine how many unique combinations of the above
sort there are\nn,Duration);

I /Count up how many of those records in HitList are actually unique combinations of Treelist-Goal-Hold-Pag-DougFir­
TrueFir-Pine
Unique = CountUnigueinsectHits (HitList,HitCount);
printf(11 ! ! !There were actually %d unique records that will each require a PREMO run\n" ,Unique);

!*
Create different structures to hold various information (may share some common data, but are "packaged"
different l
Each of these 3 will hold information ONLY for those unique combinations of Treelist-Goal-Hold-Pag-DougFir-TrueFir­
Pine

1 - an array of structures to hold data pertaining to which insect type{s) are attacking and treelist values
2 - an array of structures to hold old and new treelist values to use ,.-:hen period is ever and need to make new
Premo calls
3 - an array of structures to hold new Stand Data that will need to be updated in the Data.* arrays BEFORE next
disturbance
* I

struct UNIQUE_INSECT (*UniqueList) = new struct UNIQUE_INSECT [Unique] ;
struct TREELIST_FOR_PREMO (*ToPremo) new struct TREELIST_FOR_PREMO [Unique];
struct NEW_STAND_DATA(*Stand.Data) = new struct NEW_STAND_DATA[Unique];
if (UniqueList == NULL)

printf("Problems allocating memory for UniqueList[J with %d records\n",Unique);
if (To Premo == NULL)

printf("Problems allocating memory for ToPremo[] ,,,;ith %d records\n",Unique);
if(StandData ==NULL)

printf("Problems allocating memory for StandData[J with %d records\n'·,unique);
//Initialize
memset(UniqueList, 0, sizeof(struct UNIQUE_INSECT) * Unique);
memset(ToPremo, 0, sizeof(struct TREELIST_FOR_PREMO) *Unique);
memset (StandData, 0, sizeof (struct NEW_STAND_DATA) * Unique);

//Fill up the UniqueList and ToPremo structures and make sure same# of records processed
Unique2 = FillUniqueinsectStructures(UniqueList,ToPremo,HitList,HitCount);
if(Unique2 !~ Unique)

Bailout(90);

/ /Update the treelist values in Data. Treelist []

237

UpdateDataTreelist(HitList, HitCount); //REMEMBER -
HitList will be sorted by CELLID after this

//Extract the current period treelist from the appropriate prescriptions or copy from the \modified\ directory
ExtractTreelist(ToPremo,Unique,ActualFer,FTTP);

I /Now apply the severity to those treelist just extracted - A "'JD calculate new stand data for each treelist
ApplyinsectSeverityCalculateStandData(UniqueList, Unique, StandData, Weather);

//Now that StandData is filled up, send off with HitList (which ~ust be sorted by CELLIO) to modify the data in the
Data* [] arrays
UpdateData'iiJithNewStandData(HitList, HitCount, StandData, Unique, ArrayPer);

//Delete all the treelist files in the ToModify directory since they have been modified and now sit in \Modified\
directory
DeleteToModify();

//delete free store stuff
delete [] HitList;
delete [] UniqueList;
delete [] StandData;
delete [] ToPremo;

return TRUE;
}//end ApplyinsectDisturbance

I I***

void ApplyinsectSeverityCalculateStandData(struct UNIQUE_INSECT UL[], int Count, struct NEW_STAND_DATA StandData[],
int Weather)
I I***

/*
PAG values are:

1 Douglas fir Dry
2 Douglas fir I Wet
3 Jeffrey pine
4 Red fir
5 Pine I Oak
6 White fir I Dry
7 White fir Wet
8 Water
9 Barren

This function will take each of the records in the array of UL [] structures, find the extracted treeL.st which is
sitting
in the .. \prescriptions\ ToModify\ * directory (with the label T_ "NewTreelist". txt) . Each treelist will be read in,
stored
in some fashion, and then specific mortality functions will co~e into play as a function of the PAG and which
insect
group or groups (DougFir,TrueFir,Pine) caused the treelist to get created as a unique combination in the first
place.
*/

FILE *IN;
char Temp[256];

int a, b, ReadStatus, NoRecords, NewSnagCount;
ulong Treelist;
ushort Fag;

ushort Plot, Status, Model, Report, Condition;
float Tpa, Dbh, Height, Ratio;
struct NEW_STAND_DATA *ptr_sd;

//--------------------------------- End of variable defining---

printf("\n*** Starting to apply specific mortality equations to the %ct unique stands hit by insects ***\n",Count);

I I Start a loop to do this for every record in the array of UL structures
for (a=O; a<Count; a++)

//Set a pointer to the current Stand.Data[] space
ptr_sd = &StandData[a];

/ /Grab the data that will identify the file needed in the .. \ToModify* directory
Treelist = UL[a] .NewTreelist;

//Create a string to hold the filename~ Always in the ToModDir
sprintf (Temp, "%s%s \ \T_%1u. txt", PREFIX, P_ToModDir, Treelist);

//Open the file for reading
IN == fopen(Temp, "r");
if(IN NULL)

fprintf(stderr, "Opening of %s failed (ApplyinsectSeverity): %s\n" ,Temp, strerror(errno));

//Go through the file and count how many lines(records) there actually are
NoRecords=O;
while(Read.Status= fscanf(IN, 11 ihu %hu %f %hu %hu %f %f %f",&Plot,&Status,

&Tpa,&:Model,&Report,&Dbh,&Height,&Ratio) != EOF)
(

NoRecords++;

238

if(Status != LIVE) //Not a live tree so it will also have a code for the Condition
fscanf{IN, "%hu", &Condition};

}//end while(ReadStatus ...)

//Rewind back to the beginning of the file
rewind (IN) ;

/ /printf ("There were %d lines in T_%lu. txt \n", NoRecords, Treelist l;

//Allocate free store memory for NoRecords amount of TREELIST_RECORD structures
struct TREELIST_RECORD (*Records) = new struct TREELIST_RECORD[NoRecords];
if(Records == NULL)

printf ("Problems allocating memory for Records [] with %d records \n", NoRecords) i

//Initialize
memset(Records, 0, sizeof(struct TREELIST_RECORD) * NoRecords);

//Also allocate memcry for 100 records to hold data for NewSnags created
struct TREELIST_RECORD{*NewSnags) = new struct TREELIST_RECORD[lOO];
if(NewSnags == NULL)

printf ("Problems allocating memory for NewSnags [] with 100 records\n");

//Go through the current file again and fill up the array of Records
for(b=Oib<NoRecords;b++)
(

fscanf(IN, "%hu %hu 'tf %hu %hu %f %f %f",&Records[b] .Plot, &Records[b] .Status, &Records[b] .Tpa,
&Records[b].Model,

&Records[b) .Report, &Records[b] .Dbh,
&Records[b] .Height, &Records[b] .Ratio);

if(Records[b] .Status !;; 1)
fscanf(IN, "%hu",&Records[b] .Condition);

)//end for(b=O ...)

//Close the treelist file
fclose (IN);

//Send the current Records off to get individual basal area calculated - needed here to track specific
mortality for analysis

record

CalculateindividualBasalCanopy',',Jidth(Records, NoRecords);

//Regardless if needing DougFir, TrueFir, and/or Pine effects, get the current PAG associated with this

Pag = UL[a].Pag;

//Reset the NewSnagCount
NewSnagCount = 0;

//One at a time - check to see if this file will be hit by DougFir, TrueFir, or Pine beetles - or any
combination

ptr_sd};

//+++
II Doug fir mortality
I I+++
if(UL[a].DougFir == TRUE)
(

//An error checker to make sure initial breakdown of Unique combinations was correct
if I Pag == PAG_REDFIR 11 Pag == PAG_;;p;;ET 11 Pag PAG_JEFFPINE)

Bailout (92);

NewSnagCount = DcugFirMortality (Records, NoRecords, NewSnags, NewSnagCcunt, Fag, 1,-Jeather,

//+++
// True fir mortality
//+++
if(UL[a] .TrueFir =: TRUE)
(

/ /An error :::::hecker to make sure initial breakdown of Unique combinations was correct
if{Pag == PAG_JEFFPINE)

ptr_sd);

Bailout (92);

NewSnagCount - TrueFirMortality(Records, NoRecords, NewSnags, NewSnagCount, Fag, Weather,

//+++

II Pine mortality
I I+++
if(UL[a].Pine == TRUE)
{

/ /An error checker to make sure initial breakdown of Unique combinations was correct
if (Pag > PAG_BARREN.)

Bailout (93);

239

NewSnagCount = PineMortality{Records, NoRecords, NewSnags, NewSnagCount, Fag, Weather, ptr_sd};

//Print out the records in Records[] and NewSnags[]
PrintNewTreelist(Records,NnRecnrds,NewSnags,NewSnagCnunt, Treelist);

//Store the treelist value in StandData
Stand.Data fa] .Treelist = Treelist,-

//Calculate new landscape metrics (fuel, closure, height, blc, cbd)
StandDataController(StandData, a, Records, NoRecords);

//delete stuff on free store
delete [] Records;
delete [] NewSnags;

)//end for{a=O ...)

}//end ApplyinsectSeverity

I I***
int PineMortality(struct TREELIST_RECORD Records[], int Count, struct TREELIST_RECORD NewSnags[],

int SnagCount, ushort Fag, int Weather,
struct NEW_STAND_DATA *ptr_sd)
I I***

/*
This function will apply the specific mortality effects to those treelist that are being hit
by pine insects (western pine beetle, mtn pine beetle, pine engraver). It is assumed that the Basal Area threshold
was exceeded for this treelist, based on its Fag back in the FillHitList() function.

The NewSnags[] structures will hold data for those new snags created as a result of the mortality applied.

Weather values are:
1 = Wet, 2 = Moderate,

FAG values are:

Douglas fir
2 Douglas fir
3 Jeffrey pine
4 Red fir

Pine I Oak
6 White fir I
7 White fir
8 Water
9 Barren

*/

int a;
float Mort:

I

Wet

Mild Drought, Severe Drought

Dry
Wet

Dry

float MortTpa, RemainTpa, StandMortBasal=O, StandMortBigTrees=O;
struct TREELIST_RECORD *ptr_record, *ptr_snag;

//--- End of variable definitinn -----------------------------------­
if (SnagCount > 99)
{

printf (u \a\a\a\a\aNeed to allocate more space for NewSnags\n");
SnagCount = 90;

the last 10 records for now
)

//Set the mortality weight based on the incoming Weather
if (Weather == 3) / /MildDrought

Mort I float) .1; // 10%
else //Assuming only a 4 (SevereDrought) can come in

Mort lfloat).3;

//just reset and reuse

//Go through all the records in Records[] and find those that should have mortality applied
for {a=O; a<Count; a++)
{

/ /Must be a live tree that is modeled as
if(Records[a].Status == LIVE && (Records[a] .Model

Records[a].Model SPINE))
{

KPINE 11 Records [a] .Model == PPINE 11

//Set a pointer here to make it easier to copy over data into NewSnags[]

ptr_record &Records[a];
ptr_snag &NewSnags [SnagCount] ;

//Calculate the MortTpa and the RernainTpa;
Mort'Tpa =Mort* Records[a] .Tpa;
Rem.ain'I'pa = Records[a] .Tpa - MortTpa;

//Calculate the BasalArea mortality
StandMortBasal += (MortTpa * Records [al .Basal);

//Track those trees>= 30'' DBH and the total number killed
if (Records [a] . Dbh >= BIG_TREE_SIZE)

StandMortBigTrees += MortTpa * (float)ACREEQ;
//convert to an actual number

//Put the RemainTpa back into the current record
Records[a] .'['pa= RemainTpa;

//copy over the current record from Records to the appropriate NewSnag record
merncpy(ptr_snag, ptr_record, sizeof(struct TREELIST_RECORD) };

//However, some values in NewSnags [] *are wrong - fill with correct values
NewSnags[SnagCount] .Status SNAG;
NewSnags[SnagCount] .Tpa MortTpa;
NewSnags[SnagCount] .Condition l; //Condition code for a new snag

//Increment SnagCount to track the total number of snags create
SnagCount++;
if(SnagCount > 99)
(

printf("\a\a\a\a,aNeed to allocate more space for NewSnags\n");
SnagCount = 90;

//just reset and reuse the last 10 records for now

} //end if (Records [a]. Status
}//end for(a=O ... }

//Cumulative track the Stand Basal Area Mortality & the Big Trees Killed
ptr_sd->BasalAreaKilled += StandM.ortBasal;
ptr_sd->BigTreesKilled += StandMortBigTrees;

return SnagCount;
}/ /end PineMortality

I I***
int TrueFirMortality(struct TREELIST_RECORD Records[], int Count, struct TREELIST_RECORD NewSnags[],

int SnagCount, ushort Pag, int Weather,
struct NEW_STAND_DATA *ptr_sd)
I I***

/*
This function will apply the specific mortality effects to those treelist that are being hit
by True fir insects (fir engraver). It is assumed that the Basal Area threshold
was exceeded for this treelist, based on its Pag back in the FillHitList (J function.

The NewSnags[] structures will hold data for those new snags created as a result of the mortality applied.

Weather values are:
1 = Wet, 2 = Moderate,

2
3
4

PAG values are:

Douglas fir
Douglas fir /
Jeffrey pine
Red fir
Pine / Oak

Wet

White fir / Dry

* I

White fir / Wet
Water
Barren

int a;
float Mort;

Mild Drought, Severe Drought

Dry

float MortTpa, RernainTpa, StandMortBasal=O, StandMortBigTrees=O;
struct TREELIST_RECORD *ptr_record, *ptr_snag;

//--------------------------------- End of variable defining--

//Set the Mort weight based on incoming Pag and the weather
if (Pag PAG_REDFIR 11 Pag PAG_WFDRY I I Pag PAG_WFWET I
{

240

if(Weather -== 3)
Mort= (float) .l;

else

/ /MildDrought
// 10%

//Severe Drought
Mort {float) .2;

else if(Pag PAG_DFDRY 11 Pag == PAG_DFWETI

if(Weather -- 31
Mort =

else
//Severe Drought

Mort =

(float) .2,

(float) .4;

241

/ /Mild.Drought
//20%

else if(Pag -- PAG_PINEOAK)

if(Weather -- 3)
Mort =

else
//Severe Drought

Mort =

else
Bailout (93);

(float) .4;

(float) .6,

/ /MildDrought
/ / 40%

//So go through all the records in Records[] and find those that will have mortality applied
for (a==O; a<Count; a++ l
(

new snag

new snag

if(Pag
(

PAG_REDFIR)

/ /Must be a live tree that is modeled as \"1hite fir or Red fir
if(Records[a] .Status== LIVE && (Records[a] .Model := \"1FIR 11 Records[a] .Model== RFIR)
(

//Set a pointer here to make it easier to copy over data into NewSnags[]
ptr_record = &Records[a];
ptr_snag = &NewSnags[SnagCount];

//Calculate the MortTpa and the RemainTpa;
MortTpa =Mort* Records[a] .Tpa;
RemainTpa = Records[a] .Tpa - MortTpa;

//Calculate the BasalArea mortality
StandMortBasal +~ (MortTpa * Records[a] .Basal);

/ /Track those trees >=- 30" DBH and the total number killed
if{Recordsfa] Dbh >= BIG_TREE_SIZE)

StandMortBigTrees += MortTpa * { float)ACREEQ;
//convert to an actual number

//Put the Re~~inTpa back into the current record
Records[a] .Tpa = RemainTpa;

//copy over the current record from Records to the appropriate Newsnag record
merncpy(ptr_snag, ptr_record, sizeot(struct TREELIST_RECORD));

//However, some values in NewSnags[] .*are wrong - fill with correct values
NewSnags[SnagCountJ .Status SNAG;
NewSnags[SnagCount] Tpa MortTpa;
NewSnags[SnagCountJ .Condition l; //Condition code for a

//Increment SnagCount to track the total number of snags create
SnagCount++;
if(SnagCount > 99)
(

printf("\a\a\a\a\aNeed to allocate more space for NewSnags\n");
SnagCount = 90;

//just reset and reuse the last 10 records for now

)//end if(Records[a] Status ...)
)//end if(Pag == REDFIR
else

/ /Must be a live tree that is modeled as l"Ihite tir
if(Records[aJ .Status== LIVE && Records[a] .Model WFIR
(

//Set a pointer here to make it easier to copy over data into NewSnags[]
ptr_record &Records[a];
ptr_snag = &NewSnags[SnagCount];

//calculate the MortTpa and the RemainTpa;
MortTpa = Mort * Records[a] .Tpa;
RemainTpa = Records[a] .Tpa - Mort'I'pa;

//Calculate the BasalArea mortality
StandMortBasal += (MortTpa * Records[a] .Basal);

//Track those trees >• 30" DBH and the total number killed
if(Records[a] .Dbh >= BIG_TREE_SIZE)

StandMortBigTrees += MortTpa * (float)ACREEQ;
/ /convert to an actual number

//Put the RernainTpa back into the current record
Records[a] .Tpa = RernainTpa;

//copy over the current record from Records to the appropriate NewSnag record
memcpy(ptr_snag, ptr_record, sizeof(struct TREELIST_RECORD}) ;

//However, some values in NewSnagsl"] .*are wrong - fill with correct values
NewSnags[SnagCountJ .Status SNAG;
Newsnags[SnagCount] .Tpa MortTpa;
NewSnags[SnagCount] .Condition l; //Condition code for a

//Increment SnagCount to track the total number of snags create
SnagCount++;
if(SnagCount > 99)
(

printf("\a\a\a\a\aNeed to allocate more space for NewSnags\n");
SnagCount ::- 90;

//just reset and reuse the last 10 records for now

)//end if(Records[a] .Status ...)
)//end if else (Pag == REDFIR

)//end for(a=O ...

/ /Cumulative track the Stand Basal Area Mortality & the Big Trees Killed
ptr_sd->BasalAreaKilled +;:; StandMortBasal;
ptr_sd->BigTreesKilled += StandMortBigTrees;

return SnagCount;
)//end TrueFirMortality

242

I I***""***"*******"**

int DougFirMortality (struct TREELIST_RECORD Records [), int Count, struct TREELIST_RECORD Ne•.-,·Snags [],
int 5nagCount, ushort Pag, int Weather, struct

NEW_STAND_DATA *ptr_sd)
I I************************************~**
(
/*
This function will apply the specific mortality effects to those treelist that are being hit
by Douglas-fir insects (DF beetle, flatheaded borer). It is assumed that the Basal Area threshold
was exceeded for this treelist, based on its Pag back in the FilllnsectHitList\) function.

The NewSnags[] structures will hold data for those new snags created as a result of the mortality applied.

Weather values are:
1 = Wet, 2 ~ Moderate, Mild Drought, Severe Drought

PAG values are:

1 Douglas fir Dry
2 Douglas fir I Wet
3 Jeffrey pine
4 Red fir
5 Pine I Oak
6 White fir I Dry
7 White fir I Wet

Water
9 Barren

NEW: Keep track of the J of BigTrees
stand

JO" that are killed and also track the amount of Basal Area killed in this

* I

int a, b=O;
float Mort;
float MortTpa, ReroainTpa, StandMortBasal=O, StandMortBigTrees=O;
struct TREELIST_RECORD *ptr_record, *ptr_snag;
//-------------------------------- End of variable defining-----------------------------

//Set the mortality weight based on the incoming ~eather
if (Weather :::::: 3) / /MildDrought

Mort (float). l; // 10%
else //Assuming only a 4 (5evereDrought) can come in

Mort (float) .2;

//Go through all the records in Records[] and find those that should have mortality applied
for(a=O;a<Count;a++)
(

/ /Must be a live tree that is modeled as Douglas-fir & have a diam > 10"
if(Records[a].Status == LIVE && Records[a] .Model DOUGFIR && Records[a] .Dbh > 10)
(

//Set a pointer here to make it easier to copy over data into NewSnags[]
ptr_record &Records [a];
ptr_snag = &NewSnags[SnagCount];

//Calculate the MortTpa and the RemainTpa;
MortTpa =Mort* Records[a] .Tpa;
RemainTpa = Records[a] .Tpa - MortTpa;

//Calculate the BasalArea mortality
StandMortBasal += \MortTpa * Records [al . Basal);

//Track those trees >= JO" DBH and the total number killed
if(Records[a] .Dbh >= BIG_TREE_SIZE :,

StandMortBigTrees += MortTpa * (float)ACREEQ;
//convert to an actual number

//Put the RemainTpa back into the current record
Records[a] .Tpa = RemainTpa;

//copy over the current record from Records to the appropriate NewSnag record
memcpy(ptr_snag, ptr_record, sizeof (struct TREELIST_RECORD)) ;

//However, some values in NewSnaqs [] . *are wrong - fill with correct values

NewSnags[SnagCount] .Status SNAG;
NewSnags[SnagCount] .Tpa MortTpa;
NewSnags[SnagCount] .Condition l; //Condition code for a new snag

//Increment SnagCount to track the total number of snags create
SnagCount++;
if(SnagCount > 99)
{

print£ ("\a\a\a\a\aNeed to allocate more space for NewSnags\n");
SnagCount = 90;

/ /just reset and reuse the last 10 records for no•.~·

}//end if(Records[a] .Status ...)
} //end for (a=O . . I

//Cumulative track the Stand Basal Area Mortality & the Big Trees Killed
ptr_sd->BasalAreaKilled += StandMortBasal;
ptr_sd->BigTreesKilled += StandMortBigTrees;

re turn SnagCoun t;

} //end DougFirMortality

I/**
int CountinsectHit(int Per)
I/**

//Given the current period, this function will count up how many cells will be hit according
//to guidelines provided by Jim Agee for Insect disturbances

int a, Count;

//-------------------------- End of variable defining--------------------------------------

I /Go through and count how many stands are going to be hit •-~·ith insects this period
Count=O;
for (a=O; a<UN!QUE; a++)
{

if(Data.Cellid[a]
break;

FALSE I //no more cells to check

243

if(Data.Treelist[a]
they have no treelist anyways!

continue;

NONFOREST) //Not going to do anything with these because

//make Count by FAG and the lowest basal thresho::..a for any of the 1 insect groups
if(Data.Pag[a] == PAG_DFDRY I I Data.Pag[a] PAS DFWET I I Data.Pag[a] == PAG_P!NEOAKI

Count++;
else if(Data.Pag[a] == PAG_JEFFPINE)

if(Data.Basal(a] [Per] /BASAL_EXP > 80)
// lowest threshold exceeded

Count++;

else if(Data.Pag[a] == PAG_P.EDFIR)

if(Data.Basal(a] [Per]/BASAL_EXP > 180)
Count++;

else if(Data.Pag(a] == PAG_WFDRY}

if(Data.Basal[a] [Per]/BASAL_EXP > 120)
Count++;

else if(Data.Pag[a] == PAG_WFWET)

if(Data.Basal[a] [Per]/BASAL_EXP > 180)
Count++;

}//end for(a==O;a<UNIQUE;a++)

return Count;

}//end CountinsectHit

I I**
int FillinsectHitList (struct HIT_BY_DISTURB Hi tList [], int Perl
I I************** ** k *********-Ir*******

//Once HitList has been created in ApplyinsectDisturbance, this function will fill it up

int a, IncrementRecord, Record;
//----------------------------- end of variable defining

//Now go through the entire landscape again, and this time for any cell that is being attacked by insects,
//make a "flag• of 1 in the HitList[] .DougFir, HitList[] .TrueFir, and/or HitList[] .Pine member also
//keep track of Treelist, Goal, Hold, Pag, and Cellid
Record=O;
for (a=O; a<UNIQUE; a++/
{

if(Data.Cellid[a]
break;

FALSE I //no more cells to check

244

if(Data.Treelist[a] == NONFOREST)
they have no treelist anyways!

//Not going to do anything with these because

continue;

if(Data.Pag(a] == PAG_DFDRY)
(

//DFDRY gets hit no matter what (no threshold here for fir engravers - nasty!), so count it
HitList [Record] , Tree list Data. Treelist {a];
HitList [Record] .Goal Data.Goal [a];
HitList[RecordJ.Hold Data.Hold[a];
Hi tList [Record) . Pag Data. Pag [a] ;

HitList[Record] .C:ellid Data.Cellid[a];

//now flag for which of the 3 insect groups will get it
HitList[Record] .TrueFir = TRUE;
//fir engravers

if(Data.Basal[a] [Per]/BASAL_EXP > 120)
(

HitList[Record] .DougFir
//DougFir beetles

HitList [Record]. Pine
//pine beetles and engravers
}

Record++;
) I I end DFDRY

else if(Data.Pag[a] == PAG_DFWET)

TRUE;

TRUE;

//DFWET gets hit no matter what (no threshold here for fir engravers - nasty!), so count it
HitList[Record] .Treelist Data.Treelist[a];
HitList[Record] .Goal Data.Goal[a];
HitList[Record] .Hold Data.Hold[a];
HitList[Record] .Fag Data.Pag[aJ;
HitList[Record] .Cellid Data.Cellid[a);

//now flag for which of the 3 insect groups will get it
HitList[Record] .TrueFir = TRUE;
//fir engravers

if(Data.Basal[a] [Per]/BASAL_EXP > 250)
HitList[Record] .DougFir

//DougFir beetles

if(Data.Basal[a] [Per] /BASAL_EXP > 180)
HitList[Record] .Pine

I /pine beetles and engravers

Record++;
) I I end DFWET

else if(Data.Pag[a] == PAG_PINEOAK)

TRUE;

TRUE;

//PINEOAK gets hit no matter what (no threshold here for fir engravers - nasty!), so count it
HitList [Record]. Treelist = Data. Treelist [a];
HitList [Record] .Goal
Hi tLis t [Record] . Hold
HitList [Record). Fag
HitList [Record]. Cell id

Data.Goal[a];
Data.Hold[a];
Data. Pag[a];
Data.Cellidfa];

//now flag for which of the 3 insect groups will get it
HitList[Record] .TrueFir = TRUE;
//fir engravers

if.(Data.Basal [a] [Per] /BASAL_EXP > 80)
(

Hi tList [Record] . DougF ir
//DougFir beetles

HitList [Record]. Pine
/ /pine beetles and engravers
}

Record++;
) I I end DFDRY

else if(Data,Pag[a] == PAG_JEFFPINE)

IncrementRecord = FALSE:

TRUE;

TRUE;

//only get mortality due to pine beetles and engraves
if (Data.Basal [a] [Per] IBASAL_EXP > RO }
(

HitList[Record] .Treelist
HitList [Record] .Goal
HitList[Record] .Hold
HitList[Record] .Fag
HitList[Record] .Cellid
HitList[Record] .Pine

/ /pine beetles and engravers
IncrernentRecord

Data.Treelist(a];
Data.Goal [a];
Data.Hold[a];
Data.Pag[a];
Data.Cellid[a];
TRUE;

TRUE;

if(IncrementRecord == TRUE}
Record++;

) //end JEFFPINE

else if (Data. Pag [a] "'"" PAG_REDFIR)
{

IncrementRecord == FALSE;

if { Data.Basal [a] [Per] /BASAL_EXP > l80
(

HitList[Record] .Treelist
HitList [Record] .Goal
Hi tLis t [Record] . Hold
HitList [Record]. Fag
HitLis t [Record] . Cellid
HitList[Record] .Pine

//pine beetles and engravers
IncrementRecord

if (Data.Basal [a] [Per] /BASAL_EXP > 250)

HitList[Record] .TrueFir
//fir engravers

if {IncrementRecord
Record++;

TRUE)

}//end REDFIR

else if(Data.Pag[a] == PAG_i;,JFDRY)
{

IncrementRecord = FALSE;

if(Data.Basal[a] [Per] /BASAL_EXP > 120
{

HitList(Record] .Treelist
HitList[Record] .Goal
HitList[Record] .Hold
Hi tLis t {Record] . Pag
HitList[Record] .Cellid
HitList[Record] .TrueFir

//fir engravers
HitList {Record] . Pine

//pine beetles and engravers
IncrementRecord

if(Data.Basal{a][Per]/BASAL_EXP > 250)
Hi tList [Record] . Doug Fir

//DougFir beetles

if(IncrementRecord
Record++;

TRUE)

}//end WFDRY

else if (Data.Pag[a] == PAG_WF:"1ET)

IncrementRecord = FALSE;

if (Data Basal {a] [Per] /BASAL_EXP > l80
{

HitList[Record] .Treelist
HitList[Record] .Goal
HitList [Record] . Hold
HitList[Record] .Pag
Hi tList [Record] . Cellid
Hi tList [Record] . Pine

/ /pine beetles and engravers
IncrementRecord

if(Data.Basal[a][Per]/BASA.L_EXP > 250)
HitList [Record]. TrueFir

//fir engravers

if (IncrementRecord
Record++;

TRUE)

} //end WFDRY

} / /end for {a= □; a<UNIQUE; a++)

return Record;

}//end FillHitList

Data.Treelist[a];
Data.Goal[a];
Data.Hold[a];
Data. Pag [a];
Data.Cellid[a];
TRUE;

TRUE;

TRUE;

Data.Treelist[a];
Data.Goal[a];
Data Hold [a];
Data.Pag[a];
Data.Cellid[a];
TRUE;

TRUE;

TRUE;

TRU:::':;

Data Treelist [a];
Data. Goal [a];
Data.Hold[a];
Data.Pag(a];
Data.Cellid[a];
TRU:::;

TRUE;

TRUE;

I I************************ ******** * ****** ... *********..,..,* **

int CountUniqueinsectHits{struct HIT_BY_DISTURB HitList[], int Count)

245

246

I I**

//Go through HitList[] and find how many actual Unique combinations of Treelist-Goal-Hold-Pag-DougFir-TrueFir-Pine
there are

int a,b,Unique;
ulong EvalTreelist;
ushort EvalGoal, EvalHold, EvalPag, EvalDougFir, EvalTrueFir, EvalPine;
//------------------------- end of variable defining---------------------------------------

Unique = O;
b = O;
for(a=O;a<Count;)
loop
(

if(b == Count)
incremental method, b will reach end first but a doesn't know that

break;

Unique++;
as do others because a gets reset in other loop

//Set the initial Eval* variables
EvalTreelist HitList[al .Treelist;
EvalGoal Hi tList [al . Goal;
EvalHold HitList[al .Hold;
EvalPag
EvalDougFir
EvalTrueFir
EvalPine

HitList[a]. Pag;
= HitList[a] .DougFir;
= HitList[a] .TrueFir;

HitList [al Pine;

//a will get increment by other

//because of weird

//first one always counts

//since HitList is already sorted, start at next record and look downward until no longer a match
for(b=a+l;b<Count;)
(

if(HitList[b] .Treelist
HitList [bl
HitList [bl
HitList [bl
HitList [bl
Hi tList [bJ
HitList [bl
I

b++;
//look at next record

else
(

,Goal
.Hold
.Fag
, DougFir
.TrueFir
.Pine

EvalTreelist &&

EvalGoal &&

-- EvalHold &&
-- EvalPag &&

EvalDougFir &&
EvalTrueFir &&

EvalPine

/ /Set the "a" variable to where "b" is because this is the next unique match
a = b;
break;

}//end for(b'=a+l;b<Count;b++)
)//end for(a=O;a<Count;a++)

return Unique;

}//end CountUniqueinsectHits

I I***

int FillUniqueinsectStructures(struct UNIQUE_INSECT UniqueList[J, struct TREELIST_FOR_PREMO ToPremo[],

struct HIT_BY_DISTUP.B Hi tList [], int Ccunt)
I/***
* * * ** * * * * * * * * ** * * * * * * ** * * * ** *

//Go through HitList[] again and find those actual Unique combinations of Treelist-Goal-Hold-Pag-DougFir-TrueFir­
Pine counted earlier
//and this time fill up the UniqueList and ToPremo structures. as well as put the Nevtrreelist value in HitList[]
int a, b, Unique;
ulong EvalTreelist;
ushort EvalGoal, EvalHold, EvalPag, EvalDougFir, EvalTrueFir, EvalPine;

//---------------------------- End of variable defining--

Unique = O;
b = O;
reset because above it left loop with value of Count
for(a=O;a<Count;)
loop
(

if (b ""-"" Count)
incremental method, b will reach end first but a doesn't know that

break;

Unique++;
as do others because a gets reset in other loop

//Set the initial
EvalTreelist
EvalGoal
EvalHold
EvalPag
EvalDougFir
EvalTrueFir

Eval* variables
HitList [al. Treelist;
HitList[al .Goal;
HitList [a]. Hold;

HitList[a] .Pag;
HitList[a] .DougFir;
HitList[a] .TrueFir;

/ /This must be

//a will get increment by other

//because of weird

I/ first one always counts

EvalPine HitList[a] .Pine;

//Insert those values in the array of UnigueList structures
UniqueList[Unique-1] .Treelist EvalTreelist;
UniqueList [Unique-1] . Goal EvalGoal;
UniqueList[Unigue-1] .Hold = EvalHold;
UniqueList[Unique-1] .Fag = EvalPag;
UniqueList[Unique-1] .DougFir EvalDougFir;
UniqueList[Unique-1] .TrueFir EvalTrueFir;
UniqueList[Unique-1]. Pine :;:; EvalPine;

//And put the needed values in the array of ToPrerno stru2tures
ToPremo[Unique-1] .OldTreelist = EvalTreelist;
ToPremo[Unique-1] .Goal EvalGoal;
ToPremo[Unique-1] .Hold EvalHold;

247

/ /Put the NATLN in for this first unique combination - this global variable is set in Main. cpp and also
used by FireEffects.cpp

Hi tList [a] . NewI'reelist
UniqueList[Unique-1] .NewTreelist
ToPremo{Unique-1] .Ne'W'I'reelist

NATLN;
NATLN;

= NATLN;

//since HitList is already sorted, start at next record and look downward until no longer a match
for(b=a+l;b<Count;/
(

if (HitList[b] .Treelist
HitList[b] .Goal
HitList [bJ .Hold
HitList[bJ .Pag
HitList[b) .DougFir
HitList[bJ .TrueFir
HitList[b] .Pine
I

EvalTreelist &&

EvalGoal &&

== EvalHold &&
== EvalPag &&

EvalDougFir &&

Eval TrueF ir &&

==:c EvalPine

HitList [b] .Ne'W'I'reelist
//Also put the current NATLN in this structure

b++;

else
(

//Then look at next record

NATLN1

I /Set the "a" variable to where "b" is because this is the next unique match
a= b;
NATLN++;
break;

} //end for (b:a+ 1; b<Count; b++)
}//end for(a=O;a<Count;a++)

//Always increment NATLN one more
NATLN++;

return Unique;

}//end FillUniqueinsectStructures

I/************************** k* **** ***** ****** ******* ************ ****** ** *********** * * * * * k* k* k k
int CompareHitListForBugs (canst void *ptrl, canst void *ptr2)

/ /Just to typecast them since we aren't actually passing in pointers
struct HIT_BY_DISTURB *elernl;
struct HIT_BY_DISTURB *elem2;

eleml
elem2

(struct HIT_BY_DISTURB *)ptrl;
(struct HIT_BY_DISTURB *)ptr2;

if (eleml->Treelist < elem2->Treelist
//First sort by Treelist

return -1;
if(eleml->Treelist > elem2->Treelist

return l •
else

/ /Then by Goal

if (eleml->Goal < elem2->Goal

return -1;
if(eleml->Goal > elem2->Goal

return l;
else

I /Then by Hold

if(eleml->Hold < elem2->Hold J

return -1;
if(eleml->Hold > elem2->Hold

return 1;
else

//Then by Pag

)//end Pag
)//end Hold

)//end Goal

} //end CompareHitListForBugs

if (elernl->Pag < elem2->Pag

return -1;
if(eleml->Pag > elem2->Pag

return 1;
else

//Then by DougFir

if(eleml->DougFir < elem2->DougFir)

return -1;
if(eleml->DougFir > elem2->DougFir)

return l;
else
//Then by TrueFir
(

if (eleml->TrueFir < elem2->TrueFir)

return l;
if(elernl->TrueFir > elem2->TrueFir)

return l;
else

/ /Then by Pine

if\ eleml->Pine < elem2->Pine

return -1;
if (eleml->Pine > elem2->Pine

return l;
else

return O •
//FINISHED! !

)//end Pine
)//end TrueFir

)//end DougFir

I/**
void MapPotentialBugs(int Per)
/I**

//Given the current period, this function will count up how many cells will be hit according
//to guidelines provided by Jim Agee for Insect disturbances.
/*
Using the same rules at in CountinsectHit, make a temp array (size of the landscape} that has the
value l for those cells that ·,.;ill be hit by an insect during a drought weather period. This is
not saying anything about the severity of the effects, just whether or not it will be "hit" that period
*/

FILE *BinOut, *HeaderOut;
char Temp[256];

int ArrayPer;
int a, Count;
int Hit = l;

int *ptr_srp;
ushort *ptr_column;
int r, c, HowMany;
int ColumnsLeft, ctr;
ushort StartColumn, OutColumn;
ushort *ptr_bugs;
float *ptr_bugsout;

//Starting Row Position

//-------------------------- End of variable defining--------------------------------------

1/Set the ArrayPer variable
ArrayPer = Per-1;

248

//Use this to store all the NODATA and actual values - so I can spit out a binary file at end of function - ready
for Arcinfo input
float {"'BugsOut) [COLUMNS] = new float [ROV'iS] [COLUMNS];
if (BugsOut == NULL)

printf ("There was NOT enough memory for BugsOut with %lu elements \n", ROWS*COLUMNS);

//Use this store just the actual values to match with the Data.*[) arrays
ushort(*BugsHit) = new ushort[UNIQUE];
if (BugsHit ==-NULL)

printf ("There was NOT enough memory for BugsHit with %lu elements\n", UNIQUE);

// Initialize the arrays above
memset(BugsOut, 0, sizeof(BugsOUt[O)[O]) *ROWS* COLUMNS);
mernset(BugsHit, 0, sizeof(BugsHit[O]) *UNIQUE);

//Go through and count how many stands are going to be hit with insects this period -- track in the BugsHit() array
Count=O;
for (a= 0; a<UNIQUE; a++)
(

if(Data.Cellid[a]
break;

FALSE I //no more cells to check

249

if(Data.Treelist[a] == NONFOREST)
they have no treelist anyways!

/ /Not going to do anything with these because

continue;

/ /make Count by PAG and the lowest basal threshold for any of the 3 insect groups
if(Data.Pag[a] == PAG_DFDRY 11 Data.Pag[a] PAG_DF'I/ET 11 Data.Pag[a] == PAG_PINEOAK)

BugsHit[a] = Hit;
else if(Data.Pag[a] == PAG_JEFFPINE)

if(Data.Basal[a] [ArrayPer]/BASAL_EXP > 80)
I I lowest threshold exceeded

BugsHitla] = Hit;

else if(Data.Pag[a] == PAG_REDFIR)

if(Data.Basal[a] [ArrayPerJ/BASAL_EXP > 180)
BugsHit [aJ = Hit;

else if(Data.Pag[a] == PAG_\·ffDRY)

if(Data.Basal[a] [ArrayPer]/BASAL_EXP > 120)
BugsHit[a] = Hit;

else if (Data. Pag [a] == PAG_WF'.'JET)

if(Data.Basal[a] [ArrayPer]/BASAL_EXP > 180}

BugsHit[a] = Hit;

} //end for (a=O; a<UNIQUE; a++}

II=======================================••=-•======================================--========
// Store the BugsHit data in the BugsOut[] [] array and place a NODATA value in the correct
// spots. This is all to ease the transition into Arcinfo. This way, I can spit cut a
// small binary file with the values and NODATA which AI can just read in.
II====••=•==-==•======-=========---------

//Use the same procedure that is done with the other Output*(i functions

for (r=l; r<=ROWS; r++)
(

ptr_srp =
HowMany =
StartColumn
ptr_column
ptr_bugs

&link[r-1] [1];
/,; (ptr_srp+l) ;
Data, Gr idColurnn [{ 1<ptr _srp) -1] ;
&Data GridColumn [(*ptr_srp) -1];

&BugsHit [(l<ptr_srp) -1];

//If the whole row is blank, store NODATA and goto next rov .. •

//not a pointer!

if (*ptr_srp =-= FALSE) //means a zero was left in this spot during MakeLink
(

for (c=l; c<:::COLUMNS i c++)
BugsOut[r-1} [c-1] = {float)NODATA;

continue; //goto next row

//store NODATA for those cells before data starts
for (c=l; c<StartColumn; c++)

BugsOut[r-1] [c-1] = (float}NODATA;

I I set some counters
OutColumn = StartColumn;
ctr = 0;

//store values for area on landscape by checking
I /value in Data.GridColumn to match it with OutColumn value
do(

if (*ptr_colurnn :::::: OutColumn)
(

BugsOut [r-1] [OutColumn-1]

ptr_bugs++;

ptr_column++;
OutColurnn++;
ctr++;

(float}*ptr_bugs;

else //print out NODATA for the "gaps"

BugsOut[r-1) [OutColurnn-1] ::: (float)NODATA;

OutColumn++;

}while (ctr HowMany) ;

//Check to see how many columns are left to do
ColumnsLeft ._ COLUMNS - (OutColurnn-1);

if (ColumnsLeft == 0)
continue; //go to next row

//print out NODATA for these cells after the data that are left
for (c=O; c<ColumnsLef t; c++)

BugsOut[r-1] [(OutColurnn-l)+c] (float}NODATA;

}//end of for(r=l;r<=ROWS;r++}

I I ===== ====== = = = = = = = = = = = = = = = -== ---- -==== = == === = = = = = = = = = = = = = = == = = = == ===-- - - -
// Put a pointer at start of BugsOut and purge that data as a binary file
ptr_bugsout = &BugsOut[0] [0];

//Create the output Binary file and header file
sprintf (Temp, "%s%s%d\ \per%d\ \PotBug bin", PREFIX, OUTPUTS, GOAL_TO_USE, Per);
BinOut = fopen(Temp, "wb"};

sprintf (Temp, "%s%s%d\ \per%d\ \PotBug. hdr", PREFIX, OUTPUTS, GOAL_TO_USE, Per);
HeaderOut = fopen(Temp, "w"};

/ /Write out the header data -- exact format for Arcinfo
fprintf(HeaderOut, "ncols\t\t%d\n" ,COLUMNS);
fprintf(HeaderOut, "nrows\t\t%d\n" ,ROWS);
fprintf (HeaderOut, "xllcorner\ t%. 6lf \n" , F _XLL) ;
fprintf (HeaderOut, "yllcorner\ t% _ 6lf\n", F _YLL) ;
fprintf (HeaderOut, "cellsize \ t%d\n 11

, CELLSIZE) ;
fprintf (HeaderOut, "NODATA_value\t%d\n 11

, NODATA) ;
fprintf (HeaderOu t, "byteorder\ tLSBFIRST\n 11

) ;

//.And now write out all the records in BugsOut
fwrite (ptr_bugsout, sizeof (float}, ROWS*COLUMNS, BinOut);

fclose (Binout);
fclose(HeaderOut);

//delete stuff on free store
delete [] BugsHit;
delete (] BugsOut;

} //end MapPotentialBugs

ARCINPOCmrT'R0[,LEF. C'PF

ii•••
// This code will hold functions to do things associated with Arcinfo
ii•••

//NOTE, 22 feb 00
II These functions are being superceded by handling the AMLs individually in Arcinfo for now
// The aml' s have been rewritten and could still be called up by similar functions to these
// if wanted in the future.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include ~globals. h"
#include "data.h"

//Functions defined here in ArcResults.cpp
void VegCodeMapping(int status);
void ConvertVegcodes{void);
void VectorResults(int p);

II ••
void VegCodeMapping (int status) // Controlling fuction / /
II **
II ••
{ // if status =c:e TRUE then do this

iftstatus != 0}
ConvertVegcodes();

}//end of VegCodeMapping

II ••
void ConvertVegcodes(void)
II **
{

//This is to start a process to pipe a file through Arc, which in turn will run the
//Convert_vegcodes.aml.

//Will create two files. lJ a file called convertVegcodes.bat and the other called vegcodes.txt

FILE *OpenWrite;

char CodeFile[lOO];
char BatchFile [100];
char ToWrite[lOO];
char ArcCommand [1 O O] ;
char T'=II\P[3];

250

int r;

//Make the correct filenames and strings
sprint f (CodeF ile, "%s%s \ \ Vegcodes. txt" , PREFIX, MapDir j ;

sprintf (BatchF ile, '' %s%s \ \ConvertVegcodes. bat" , PREFIX, MapDir) ;
sprintf (ToWrite, w type %s%s\ \ Vegcodes. txt I arc", PREFIX, MapDir) ;
sprintf (Arc Command, '' &r %s%s\ \convert_vegcodes. aml %s %s", PREFIX,.A.mlDir, MA.IN_USER, ENVT);

//Find the four mapping/evaluation periods and tag them on to end of &r command
for(r=O;r<NP;r++)
(

if(EvaluateThisPeriod[r] == TRUE)
(

sprintf(Temp, " %d",r+l);
strcat(ArcCommand,Temp);

I /Make and write the batch file

251

OpenWrite = fopen(BatchFile, "w"); //open in write
mode

mode

fprintf(OpenWrite, "%s\n", ToWrite);
fclose (OpenWrite);

I /Prepare and write the Vegcodes. txt file
OpenWrite = fopen(CodeFile, "W");

fprintf (OpenWrite, "%s\n", ArcCornrnand);
fclose (OpenWrite);

//Now run the ConvertVegcodes.bat file
system(BatchFile);

}//end of ConvertVegcodes

/I**
void VectorResults(int p)
I I**************************************"""***

I/ open in write

I /This is to create the Batch file needed to change the directory and start process to pipe
//a file through Arc, which in turn will run the VectorResults.aml.

mode

mode

//Will create two files. 1) a file called VectorResults.bat and the other called VectorResults.txt
/ /which have a specific format as seen below.

/ /Will then execute VectorResults. bat

FILE *OpenWrite;
char WriteOut[lOO];
char RunBatch[lOO];
char DirOut[lOO];
char StartArc [150];
char ArcCommand[lOOJ;

//Make the filenames and command lines
sprintf (WriteOut, "'ts%s%d\ \per%d\ \ VectorResults. bat", PREFIX, INPUTS, GOAL_TO_USE,p);
sprint f (DirOut, n cd %s%s \\·•,PREFIX, Ve::torOu tDir J ;
sprintf (StartArc, "type %s%s%d\ \per%d 1 VectorResults. txt I arc", PREFIX, INPUTS, GOAL_TO_USE, p);
sprintf (Arc Command, "&r %s%s\ \VectorResults. aml", PREFIX, AmlDir};

OpenWrite = fopen{WriteOut, "w");

fprintf{OpenWrite, "%s%s\n" PREFIX,DirOut);
fprintf(OpenWrite, ''%s%s\n", PREFIX,StartArc);
fclose(OpenWrite);

//Prepare and write the VectorResults.txt file
sprintf (WriteOut, ''%s%s%d\ \per%d\ \ VectorResults. txt ', PREFIX, INPUTS, GOAL_TO_USE, p);

OpenWrite = fopen(',1rite0ut, "w");

fprintf(OpenWrite, "%s\n", ArcComrnand);
fclose {OpenWrite) i

I /Now create and RunVectorResults to actually start the Arcinfo aml
sprintf (RW1Batch, "%s%s%d\ \per%d\ \ VectorResul ts .bat", PREFIX, INPUTS, GOAL_TO_USE, p);
sys tern (RunBa tch) ;

//open in write

/ /open in write

}//end VectorResults

CO~ONDI STtJRBA."\'CE. CPP

/*
This sourcefile will hold some functions common to any type of episodic disturbance. Mostly to handle the
treelist and prescription data.

* I

252

#include <stdio. h>
#include <stdlib. h>
#include <String.h>
:!tinclude <time.h>
#include <math.h>
#include Hglobals.h"
#include "data. hM

void UpdateDataTreelist (Struct HIT_BY_DISTURB A.llHit [1, int All2ount. l;
void ExtractTreelist(struct TREELIST_FOR_PREMO TP[], int Count, int Per, ulong FTL);
void PrintNewTreelist(struct TREELIST_RE20RD Records[], int Count, struct TREELIST_RECORD NewSnags[J,int SnagCount,
ulong Treelist);
void UpdateDataWithNewStandData(struct HIT_BY_DISTURB HitList[], int HitCount, struct NEW_STAND_DATA SD[J, int
Unique, int Per};
int CompareHitListCellid(const void *ptrl, const void *ptr2);
int CompareStandDataTreelist (canst void *ptrl, canst void *ptr2 l;

I/---------------------------------- End of function definitions -----------------------------------

void UpdateDataWithNewStandData(struct HIT_BY_DISTURB HitList[], int HitCount, struct NEW_STAND_DATA SD[J, int
Unique, int Per)

/*
This function assumes that HitList was sorted by CELLID prior to coming here and that it is also filled up with the
New Treelist value. Going one-by-one through HitList, the cellid will be checked, in ascending order, with
Data.Cellid[] values and when a match is found the New· Treelist value in HitList will serve as a Key to search
in the SD[] structure for the record that has the new stand data for this treelist(which must be sorted by
"Treelist").

The incoming "PerN variable should already be in array notation

Will also update the ERA's for the cell if this is called after a fire disturbance - which can be "flagged" by
a value> 0 in HitList[] .Interval

NOTE: This is doing NOTHING to the ERA's for those NONFOREST cells - that would have to be handled back when the
raw flame length grid is read into and stored in HitList, because nonforest stuff is discarded there!
•;
FILE *OUT;
char Temp[300];

int a, b;
ulong *ptr_cellid, *ptr_treelist;
ushort *ptr_elev, *ptr_vegcode, *ptr_basal, *ptr_closure, *ptr_cbd, *ptr_hlc, *ptr_height, *ptr_era;
double TotalBigTreesKilled=O, UnAdjustedBasalAreaKilled==O, AdjustedBasalAreaKilled;
ulong Currentid, CurrentTreelist;

//structures
struct NEW_STAND_DA.TA Key;
struct NEW_STAND_DATA *ptr_record;

//---------------------------------- End of variable defining--------------------------------------

printf("*** Updating the Data.*[] arrays ,,,;ith new StandData after the last episodic disturbance event ***\n");
printf("*~ If this is for post-FIRE, then ERA's are also being adjusted to account for the associated Flame
Interval **\n");

//Initialize the key
memset(&Key, 0, sizeof(struct NEW_STA.ND_DATA));

//SD[] will most likely already be sorted with lowest Treelist value first, but net a guarantee. Sort just in
case.
gsort (

;•

(void* l SD,
Unique,

//count of records
sizeof (struct NEV'LSTAND_DAT.'\),
CompareStandData'!'reelist) ;

/ /"Lase

//size of each record
//compare function

Now that HitList and SD are both sorted by the proper member, it is possible to grab the first record in HitList[]
and look
in ASCENDrnG order through the Data.* arrays - because they should be in Cellid ascending order as well,
When a match is found the value in Data [] . Treelist should contain the NEI/J tree list number (that was updated in
the earlier function UpdateDataTreelist(}) . Use this new treelist number as a Key and search through the SD[]
structures
to find a ma.tch. When a match is found the Key can be used to copy over new stand data from SD to the Data[].*
arrays.

Because both the Data*.[] arrays and HitList[] are sorted with Cellids in ascending order, cnce a match has been
found
for a HitList record, there is no need to start searching from the start of Data* [] - just increment pointer up
one.
*/

ptr_cellid = &Data.Cellid(O]; //Set pointers at first
elements in Data arrays
ptr_treelist &Data.Treelist[O];
ptr_elev = &Data.Elev[O];

253

ptr_vegcode
notation
ptr_basal
ptr_closure
ptr_cbd
ptr_hlc
ptr_height
ptr_era

;:; &Data.Vegcode[O] [Per]; //Remember, "Per'' already in a.rra.y

&.Data.Basal[OJ [Per];

&Data.Closure[O] [Per];

&Data.CBDensity[O] [Per];
&Data. HLC [0] [Per] ;

//Start the searching
for (a=O; a<Hi tCount; a++)
(

&Data. S tandHe igh t [0] [Per J ;
&Data.Era.[0] [Per];

//Grab the Cellid in HitList and also the treelist
Currentid HitList [a]. Cellid;
CurrentTreelist

the old number
= HitLii::t [a] .NewTreelist; //Don't use the "treelist" member - that is

/ /Now look for the Currentid to match an ID in the Data.*[] arrays
if(Currentid != *ptr_cellid)
{

do
(

ptr_cellid++;
the pointers

ptr_treelis t++;

ptr_elev++;

I I Increment ~,U,L

ptr_vegcode+=NP; //Don't forget these
pointers are for 2-dimensional arrays!

ptr_basal+=NP;
ptr_closure+=NP;
ptr_cbd+=NP;
ptr_hlc+=NP;
ptr_height+=NP;
ptr_era+,,,NP;

}while (Currentid ! = *ptr_cellid);

//Everything should match now - set an error checker
if (*ptr_cellid ! = Current Id 11 *ptr_treelist ! = CurrentTreelist)

Bailout(91);

//Make a key using the CurrentTreelist value to search for
Key.Treelist = CurrentTreelist;

//Now use bsearch to find the matching record in the array of SD structures
ptr_record = (struct N~N_STAND_DATA*)bsearch{

&Key,
(void *)SD,
(size_t)Unique,
sizeof (struct NEW_STAND_DATA),
CompareStandDataTreelist } ;

if(ptr_record == NULL)
Bailout{95);

I I**
//******* Since we have found a match, update all the necessary values in the Data.*[1 arrays**********
I/**

//Fill in the Data.*[] arrays and paying careful attention to typecasting - some was already done in
Stand.Data.cpp

//Want these to match the CONVERSION that was done in CreateSortedPremoBinaryFile(}
*ptr_basa-1 = (ushort) (floor (ptr_record->Basal * BASAL_EXP) } ;
*ptr_closure ptr_record->Closure;
//"floored" and converted to ushort in StandData.cpp
*ptr_cbd ::: ptr_record->Density;
//"floored", multiplied by 100, and converted to ushort already
*ptr_hlc ::: ptr_record->HeightCrown;
//"floored• and converted to ushort in StandData.cpp
*ptr_height = ptr_record->Stand.Height;
//"floored• and converted to ushort in StandData.cpp

//Put in the new Vegcode - be sure to check elev and modify the VegCode to be 5 or 10 if it is a MC type
//VEGCODES are printed at end of period so always update with new codes after disturbances
if(ptr_record->VegClass == VC_MC && ((*ptr_elev) >= (3000*FT2M)))

*ptr_vegcode (ushort) (({ptr_record->VegClass + 5/ * 100) + {ptr_record->Qmd * 10 } +
(ptr_record->CoverClass));

else
*ptr_vegcode (ushort) ((ptr_record->VegClass * 100) + (ptr_record->Qmd * 10 + (ptr_record-

>CoverClass)) ;

//Keep track of the Total Big Trees killed and the Total Stand Basal Area
TotalBigTreesKilled += (double}ptr_record->BigTreesKilled;
UnAdjustedBasalAreaKilled += (double)ptr_record->BasalAreaKilled;

//NOTE: If Jim & Bernie develop new Fuel Model class. rules for post insect or fire and they
differentiate with

I !mc>3000 and mc<3000 then this will be the place to put that in.

254

I I**
//******* Check and see if ERA's need updating for after FIRE disturbances
I I**
if (HitList [a]. Interval > 0)
{

I*

//YES, hit by fire

Not sure what exactly to do here, but will try and mimic what John S. originally put in Premo.
That is

the ERA for this & the next two periods will have some additional ERA added to them which will
be a function of the Flame Length {or really the Interval since I don't keep the actual flame

length).

NOTE: Currently, the Data.Era[][] values are "real" values and were calculated back just
after the Prescription selection. They were decayed based on previous periods era first and

then new
contributions added. This function will not recalculate decay for periods after this

disturbance, but
that should probably be considered. Again, this will simpl:il add some additional ERA

coefficient to the
existing period values and maybe the next two periods.

* I

if(HitList(a] .Interval> 12
{

ushort AddEra[3] {25, 15, 5};

for (b=-0; b<3: b++ l
{

if(Per+b == NP)
break;

* (ptr_era+b)
- start of HitList loops expects it at particular spot!

}

else if(HitList[a} ,Interval> 8 }

ushort AddEra[3]

for(b=O;b<3;b++}
{

{ 15, 5, 3);

if(Per+b == NP)
break;

* (ptr_era+b)
- start of HitList loops expects it at particular spot!

)

else if (HitList [a] . Interval > 4)
*ptr_era += (ushort)S;

+= AddEra[b];

+= AddEra (b] ;

//otherwise leave alone - no additional contribution

)/ /end if (HitList
)//end for(a=O ... }

//Adjust the basal area mortality to get an overall average
AdjustedBasalAreaKilled = UnA.djustedBasalAreaKilled/ Hi tCount;

//Put the mortality data in the TreeDarnage.txt file opened at start of program
sprintf (Temp, "%s%s\ \goal%d\ \TreeDamage. txt", PREFIX, GeneralDataDir I GOAL_TO_USE);

OUT = fopen(Temp, "a+"};

//DON'T increment pointer

//DON'T increment pointer

fprintf (OUT, ~Period %d, Big Trees killed by current disturbance:
fprintf(OUT, "Period %d, Adjusted Avg. Basal Area killed (sq ft):

% . 2lf \n", Per+l, TotalBigTreesKilled) ;
%.2lf\n" ,Per+l, AdjustedBasalAreaKilled);

fclose (OUT) ;

}//end UpdateDataWithNewStandData

I I**
void UpdateDataTreelist (struct HIT_BY_DISTURB AllHit [], int AllCount)
I I**

/*
This function is designed to ONLY change the treelist values in Data.Treelist. It will NOT actually
do anything to the treelist or prescriptions themselves - that is handled b:it' other functions.

* I
int a;
ulong Currentid, CurrentTreelist, Ne'ilfireelistValue;
ulong *ptr_cellid, *ptr_treelist;
//ushort *ptr_flame;
//ushort FlameLength;

/ /For Time information
clock_t Start, Finish;
double Duration;

//-------------------------- end of variable definitions-------------------------------

//Send the AllHit structures to get sorted by their Cellid 1,;alue only
Start = clock();

qsort(

function

(void*)AllHit,
AllCount,

//count of records
sizeof (struct HIT_BY_DISTURB)

1

CompareHitListCellid I;

Finish = clock();
Duration ((double) (Finish-Startl / CLOCKS_PER_SEC Ii

//ba.se

//size of each record
//compare

//Now that the AllHit is sorted by Cellid, it is pussible to grab the first record in AllHit and look
//in Ascending order through the Data.* a.rra.ys - because they should be in Cellid ascending order as well.
//When a match is found, insert the new treelist value intu Data.Treelist[] and then gra.b the next record
I I in AllHit and continue looking further down in the Data." arrays.
ptr_cellid = &Data.Cellid[O] i

ptr_treelist
/ /ptr_f lame

//Set pointers a.t first elements of Cellid & Treelist in Data arrays
= &Data.Treelist[O];

for {a=O ;a<AllCount; a++)
{

Current Id
CurrentTreelist
NewTreelistValue
//FlameLength

= &Data.Flame[O];

= AllHit[a) .Cellid;
= AllHit [a] .Treelist;

AllHit [a.] .NewTreelist;
= AllHit [a]. Interval;

//Now look for the Currentid to match an ID in the Data arrays
if (Current Id 1 = *ptr_cellid)
(

do
(

ptr_cellid++ ,­
ptr_treel ist++;
/ /ptr_flame++;

}while(Currentld != *ptr_cellid);

I /Everything should match now - set an error checker
if(*ptr_cellid J= Currentid f / *ptr_treelist != Ct...rrentTreelist)

Bailout(91);

//Since we have found a match, update the value in Data.Treelist with the NewTreelistValue
*ptr_treelist NeITTreelistValue,-

255

I I *ptr_flame
type disturbance

= FlameLength; //will be zero except after a fire

}//end for(a=O ...)

}//end UpdateDataTreelist

11·· void ExtractTreelist (struct TREELIST_FOR __ PREMO TP [] , int Count, int Per, ulong FTL)
//**

1·
The object here is to extract the current periud treelist uut of a prescription and send that treelist to
another directory so it can receive the particular episodic disturbance effect and later be sent through Premo.

- OR -

If the treelist is one that has already be hit by another disturbance this period then that treelist
was already extracted and modified and now sits in the *\model\outputs\prescriptions\modified* directory.
All that needs to be done is to copy that treelist over to the ... *\ToModify* directory and get yet
another new treelist number that it will be tracked by (if so, the old treelist may still be needed by another
stand so it won't be deleted - that ,,,Jay it can be ran through Premo and used ,,,;here a.ppropriate).
·1

int a;
ulong OldTreelist,NewTreelist;
ushort Goal, Hold;

FILE *READ_PRESCRIPTION, *WRITE_TREELIST;
char InPrescription [256], OutTreelist [256];
char CopyFrom[256], CopyTo[256], CopyFiles[256], JunkFile[256];

double TestValue;
double Plot,Live,Tpa,Model,Report,Dbh,Height,Ratio,Dead;
int Period;
int Finished, AllRecords,GotNext;
int Status;

//---------------------------- End of variable defining -----------------------------------

//Print up a little screen information
puts (~ \n \n \ t \ t *") ;
puts ("\t\t***
puts("\t\t***
puts("\t\t***
puts("\t\t***

Going to copy over treelist data so disturbance
effects can be made.

... "I;
,..,, I;
... "I;

puts (" \ t \ t** * * * * * * * * * * * * * * ** * * * * * ** * * * * * * * * * * * * * ** *** * * * * * * * * * * * *" "* "* \n");

//Do this for each of the records found in the array of TP structures

for(a=O;a<Count;a++)
(

OldTreelist
Goal

Hold

NewTreelist

TP [a]. OldTreelist;
TP[a] .Goal;
TP[a] .Hold;

TP [a) .NewTreelist;

I !Test to see if the OldTreelist is greater than the incoming FTL variable -
//If not, then it has not been disturbed yet this period
if(OldTreelist < FTL)
(

//If the OldTreelist is a value< NONFOREST, then the prescription data is in a different
I /directory and so test for this and set appropriate string to use in InPrescription
if(OldTreelist < NONFOREST)

sprintf (InFrescription,
"%s%s\ \ P _ %lu_%hu_ %bu. txt", PREFIX, Ini tialPresDir, OldTreelist, Goal, Hold) ;

else

sprintf(InPrescription,
11 %s%s \ \ P_%lu_ %hu_%hu. txt ~, PREFIX, ModeledPresDir, OldTreelist, Goal, Hold) ;

associated

//always send the output treelist files to the \\ToModify* directory!
sprintf (OutTreelist, "%s%s\ \T_%1u. txt", PREFIX, P_ToModDir, NewTreelist);

//Open up the InPrescription {which has prescription data) and find the treelist data

256

//with the current period. Then copy all those records to a new file which also needs to be
opend

strerror(errno});

strerror(errno));

first thing.

READ_PRESCRIPTION ""' f open (InPrescr iption, "r") ;
WRITE_TREELIST ::: fopen (OutTreelist, "w·•);
if (READ_PRESCRIPTION ="" NULL)

fprintf {stderr, "opening of %s failed (ExtractTreelist) : %s\n", InPrescription,

if (WRITE_TREELIST == NULL)
fprintf(stderr, "opening of %s failed(ExtractTreelist): %s\n" ,outTreelist,

//Start scanning data in and look for -9999 to indicate that a new period treelist is
//starting, and then verify that it is the correct per:.od, and then scan and copy over
//all the treelist records from InPrescription to OutTreelist.
Finished= FALSE;
AllRecords = FALSE;

fscanf (READ_PRESCRIPTION 1 "%lf" 1 &TestValue); //All files must have -9999 as

do(/ /This do loop will
actually be broken out of by a BREAK statement

if (TestValue == -9999) / /Because all files will start with this on
line 1 !

fscanf (READ_PRESCRIPTION, "%d", &.Period);

if(Period Per) //Have the correct period - start scanning
and copying

while(AllRecords FALSE)
[

if(Status fscanf{READ_PRESCRIPTION,"%lt %lf %lf %lf %lf %lf %lf
%lf",&Plot,&Live,&Tpa,&Model,

&Report,&Dbh,&Height,&Ratic) == EOF)
break;

/ ;Needed to stop scanning at last Period

//finished, break out this While loop
if(Plot == -9999)

//To stop scanning in all other periods
break;

//finished, break out this TrJhile loop

//otherwise print to OutFile

fprintf (WRITE_TREELIST, "%. Olf \ t%. Olf\ t%. 2lf \ t%. Olf \ t%. Olf \ t%. 2lf \ t%. 2lf\ t%. 2lf\ t",

//For Snags and rn,,m

and break out of do{ loop

Plct,Live,Tpa,Mcdel,Report,Dbh,Height,Ratio);
if(Live !• LIVE)
(

fscanf(READ_PRESCRIPTION, "%lf" , &Dead);

fprintf (WRITE_TREELIST, "%. Olf\n", Dead);

else
fprintf(WRITE_TREELIST, "\n");

} //end of while (AllRecords == FALSE)

break; //got all the records I want - quit looking

}//end of if{Period per)

else
//Scan in til the next -9999 is found

GctNext = FALSE;
while(GotNext == FALSE)
C

}//end of else

continue;

)//end of if(TestValue

}while (Finished == FALSE};

fclose (READ_PRE.SCRIPTION};
fclose(WRITE_TREELIST);

}//end if(OldTreelist < FTL)

fscanf (READ_PRESCRIPTION, "%lf", &TestValue);
if (TestValue == -9999 11 Testvalue == EOF)

break;

-9999)

else //The treelist has
already been hit and is in the *\modified\ directory - just copy over

{
//Make two strings to hold the old and new treelist path names
sprint£ (CopyFrom, "%s%s \ \ T_%lu. txt", PREFIX, P _Mod.Dir, OldTreelis t) ;

sprint£ (CopyTo, "%s%s\ \ T_'tlu. txt", PREFIX, P _ToModDir ,NewTreelist /;
sprint£ (JunkFile, "%s%s\ \Junk. txt", PREFIX, P_ToModDir);

//Make the system copy call string and execute it
sprintf(CopyFiles, "copy 'ts 'ts-,, 'ts",CopyFrom,CopyTo,JunkFile);

screen output to file that gets deleted later
system(CopyFiles);

}//end else ...

) //end for la=O ... I

}//end ExtractTreelist

//redirect

257

I/ **••'******************'*•••'*•*'*********'**•**'*******************'

void PrintNewTreelist(struct TREELIST_RECORD Records[], int Count, struct TREELIST_RECORD New.Snags[], int
SnagCount, ulong Treelist}
I/**""************************** I< I< I< I<*** I<**

{

/*
This function will simply print out the records in the array of Recordsl] and NewSnags[) structures. They will
always be printed out to the ... \presecriptions\Modified* directory. From there, Premo can grab those
new treelist and do its thing - or any other disturbances during the same period can use these new treelist!
*/
/*
NOTE: PROBLEM WITH SOME TREELIST NO HAVING LIVE TREES ! ! !

Having problem with episodic events (fire) wiping out all the live trees and sometimes leaving a
•Live" record with a TPA of 0.0 - and that's the only live record. That tends to screw up things in
PREMO. Presently I have fixed this back in ApplyFofemEffects{) so go there and read notes. However, if bugs
cause problem (they currently can't because they completly kill stands but there may be problems with rounding
of very small TPA values during Apply*BugDamage() stuff) then something else will need to happen.
* I
FILE *OUT;
char Temp[256];
int a;
//----------------------------------- End of variable defining---

//Create and open the output file
sprintf (Temp, "%s%s\ \T_%lu. txt", PREFIX, P _ModDir, Tree list J;
OUT = fopen(Temp, "w");
if I OUT == NULL I

fprintf(stderr, "Opening of %s failed (PrintNewTreelist): %s\n",Temp, strerror(errno});

//Print out all the records in the array of Records
for (a=O; a<Count; a++)
{

Newsnags
if(Records[a] .Tpa != 0) /!Fire will often completely kill a tree and all the data will be in

fprintf (OUT, "%hu\ t%hu\ t%. 2 f\ t%hu\ t%hu\t%. 2 f\ t%. 2f \ t%. 2 f\ t",
Records[a] .Plot,
Records [a]. Status,
Records[a] .Tpa,
Records[aJ .Model,
Records[a].Report,
Records [a] . Dbh,
Records [a] . Height,
Records [a]. Ratio

);

if(Records[a] .Status !:: LIVE)
fprintf(OUT, "%hu\n" ,Records[a] .Condition);

else
fprintf(OUT, "\n");

)//end if(Records[a] .Tpa !~ 0)
)//end for(a=O ... I

//Now print out those records in the array of NewSnags
for(a=O;a<SnagCount;a++)
{

fprintf (OUT, ~ihu\ t%hu\ t%, 2 f \ t%hu\t%hu\ t%. 2 f\t%. 2f \ t%. 2f\ t",
NewSnags[a] .Plot,
NewSnags [a] . Status,
NewSnags [a] . Tpa,
NewSnags [a) . Model,
NewSnags[a] .Report,
NewSnags[aJ .Dbh,
NewSnags[a] .Height,
NewSnags[a].Ratio

);

if(NewSnags(a] .Status != LIVE)
fprintf (OUT, "%hu\n" ,NewSnags [a] .Condition/;

else
fprintf(OUT, "\n");

}//end for(a=O;a<SnagCount;a++)

fclose (OUT};

} //end PrintNewTreelist

I I**

int CompareHitListCellid(const void .,._ptrl, ccnst void *ptr2)
I I**

//Just to typecast them since we aren't actually passing in pointers
struct HIT_BY_DISTURB *elem!;
struct HIT_BY_DISTURB *elem2;

elem!
elem2

(struct HIT_BY_DISTURB *}ptrl;
(struct HIT_BY_DISTURB *)ptr2;

if (eleml->Cellid < elem2->Cellid _}
Cellid in ascending order

return -1;
if(eleml->Cellid > elem2->Cellid}

return l;
else

return O;
//Finished 1 1 1

}//end CompareHitListCellid

I I***********************************'•***
int CompareStandDataTreelist(const vcid *ptrl, const void *ptr2)

I I**"••••••*'****'************'***********''*******
{

//Just to typecast them since we aren't actually passing in pointers
struct NEW_STAND_DATA *elem!;
struct NEW_STAND_DATA *elem2;

elem!
elem2

(struct NEW_STAND_DATA *)ptrl;
{struct NEW_STAN'D_DATA *)ptr2;

if(eleml->Treelist < elem2->Treelist
//Sort by Treelist in ascending order

return -1;
if (eleml->Treelist > elem2->Treelist

return l;
else

return O;
//Finished!!!

}//end CompareStandDataTreelist

CON:STFAINTS. CPP

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math. h>
#include "globals .h"
#include "data.hA

//Defined in this Constraints.cpp file
int CheckConstraintsGoall(struct ERA Era[], ulong NoSheds, int SubEra[]);
int CheckConstraintsGoal4(struct ERA Era[], ulong NoSheds, int SubEra[)};

258

//Sort by

259

I I***•***

int CheckConstraintsGoall(struct ERA Era[], ulong NoSheds, int SubEra[])
I I*** k k ** * * * * * * * * * *

/*
This function will check the Equivalent Roaded Acre value for all the sub-watersheds. If any of the watersheds
violate the threshold during any period then a FALSE return value will be given.

NOTE: remember that the Era values were inputted after being ;*) by ERA_EXP, so the SubEra[] values reflects
that ...
if it has a value of something like 25, it really means .25
*/

int b,x;
//------------------------------------ End of variable defining----------------------------------

for(b=O;b<(signed)NoSheds;b++)
{

for(x=O;x<NP;x++}
{

if(Era[b] .SumPeriodEra[x] / Era[b] .::::ount > ,'.unsigned)SubEra[x])
return FALSE;

//If above loops complete then everything is OK
return TRUE;

}//end CheckConstraintsGoall

I I***

int CheckConstraintsGoal4(struct EP~ Era[], ulong NoSheds, int SubEra[])
I I***

{

/*
NOTE: This is the same as CheckConstraintsGoall () but duplicating in case there are additional constraints for
Goal4 at a later date or if it is decided to use a different strategy.

This function will check the Equivalent Roaded Acre value for all the sub-watersheds. If any of the watersheds
violate the threshold during any period then a FALSE return value will be given.

NOTE: remember that the Era values were inputted after being (*) by ERA._EXP1 so the SubEra[] values reflects
that,,.
if it has a value of something like 25, it really means .25
* I

int b, x;
//------------------------------------ End of variable defining----------------------------------

for(b=O;b<(signed}NoSheds;b++)
(

for(x=O;x<NP;x++)
{

if(Era[b] .SurnPeriodEra[x] / Era[b] .Count> (unsigned)SubEra[xJ)
return FALSE;

I I If above loops complete then everything is OK
return TRUE;

}/;end CheckConstraintsGoal4

FLAMM.!?.~PS7UFF. C!??

I I***
//This PrepareFlanunap.cpp file contains the functions that are used to prepare and run
II FLAMMAP.exe within this SafeD.exe program.
I I***
I/***

#include <stdio. h>
#include <stdlib. h>
#include <string.h>
#include <time.h>
#include <math.h>
lfinclude "globals.h''
lfinclude "data.h"

//Functions defined here in PrepareFlarnmap.cpp
int PrepareFlammap(int period, int weather);
void DeleteFar(int p};
int MakeRunflammap(int p};
int PrepareLayerFile(int p};
int PrepareFlammapEnvt(int p, int wl;
int WhichFlammapOutputs\int p};
void InOutFlammapResults (int p, int Status); / /Uzed after any Period run of Flarnrnap

//defined in Misc.cpp
extern void CleanAndSave(int Per, int Program, int Status);

//defined in ReadData.cpp
extern long CheckHeader(int File);

I I** *******************"'**************************
int PrepareFlammap (int period, int weather}
I I***"'**

//REMEMBER~ PrepareFlammap doesn't get called if #defined RERUN"_SIM so is ok to delete any . far files found

DeleteFar(period);
simulation

//Delete any . far file created by Flammap during previous

if(M~keRunflammap(period))
(

))})

return FALSE;

if(PrepareLayerFile(period)
{

if(PrepareFlamrnapEnvt(period,weather) 1

{

if(WhichFlamrndpOutputs(period)

return TRUE;

I/**
void DeleteFar(int p)
I I**
{

/*
Called up at three different times.
First: Before atld After any run of Flammap during RunPredictedFlammap()
Second: During a simulation period, if the simulation is not #;defined RERUN_SIM then this 1s

called before a run of FL..:.J·!M .. ~P for that period.
Third: During a simulation period, after a run cf FARSITE, if not #defined RERUN_SIM and

also not #defined SAVE_FOR_REUN

FARSITE and FLAMMAP will use this Layers. far file if it is there.
*/
char ToDelete(256];
FILE *t;

//------------------------------------ End of variable defining-------------------------------------­

//File to check if exist
sprintf (ToDelete, "%s%s%d\ \per%d\ \layers. fdr'', PREFIX, INPUTS, GOAL_TO_USE, p);

if((t = fopen(ToDelete, "r")) != NULL)
file in READ mode to see if it exist
{

fclose(t);

I I open the layers. far

260

sprintf (ToDelete, "del %s%s%d\ \per%d\ \layers. far" 1 PREFIX, INPUTS, GOAL_TO_USE, p); / /reusing the ToDelete
array!

system(ToDelete);

}//end DeleteFar

int MakeRunflammap(int p}
I I*** ... **************************************

I !Make the RUNFLAMMAP.BAT file needed by Flammap - on the fly

FILE *Openwrite;
char WriteOut (150];

char LayerFile[l50];
char EnvtFile[lSO];
char Flamrnap_Outputs [150] ;

//------------------------------------ End of variable defining--------------------------------------

//String together the current period directory path and the appropriate file names
sprintf (LayerFile, "%s%s%d\ \per%d\ \layers. txt", PREFIX, INPUTS, GOAL_TO_USE, p};
sprintf (EnvtFile, "%s%s%d\ \per%d\ \ flamma.p_envt. txt", PREFIX, INPUTS, GOAL_TO_USE, pJ;
sprintf (Flamrnap_Outputs, "%s%s%d\ \per%d\ \ flamma.p_out. txt '', PREFIX, OUTPUTS, GOAL_TO_USE, p);
sprintf (WriteOut, "%s%s%d\ \per%d\ \runflammap .bat", PREFIX, INPUTS, GOAL_TO_USE,p);

OpenWrite = fop en \WriteOut, "w");
mode

//open in write

fprintf(OpenWrite, "%s%s -L %s -E %s -0
%s\n '1 , PREFIX, FlammapName, LayerFile, EnvtFile, Flammap_Outputs) ;

fclose (OpenWrite);

return TRUE;

I I**********************************"""********""~*****"*********~********************************
int PrepareLayerFile(int p}
I I*********** ,i, * * * * * * * * * * * * * * ** * * ** * * "* * * * ** *"' * **

//The layers.txt file called by Flamrnap specifies the files that Flarnmap AND Farsite will
//use for the landscape parameters. we are going to have to specify that the
// HEIGHT, FUEL, BLC, DBD, and CLOSURE files are located in the current period directory
//and the ELEV, SLOPE, and ASPECT files are in the constant directory.

//This file DOES NOT need to exist. It will be created from scratch using the data frcim below.

//This layers.txt file will .tl..LSO be used by Farsite during its run in this period.

char Write0ut[50] i

FILE *OpenWrite;

char Fue1File[50);
char ClosureFile [SOJ;
char HeightFile[SO];
char BLCFile[SO];
char CBDFile[50];

char EUnits[lOJ = "meters";
char SUnits [10] = "degrees";
char LatFile[lS] ,., "LATITUDE''
char Gr id [15} = "GRID_UNITS",

Gridunits [10] "meters";

//------------------------------------ End of variable defining--------------------------------------

//Make the names of files dependent upon the current period
sprintf (FuelFile, "%s%s%d\ \per%d\ \fuel. asc", PREFIX, INPUTS, GWU,_TO_USE,p) ;
sprintf (ClosureFile, "%s%s%d\ \per%d\ \closure. asc", PREFIX, INPUTS, GOAL_TO_USE, p);
ClosureUnits[lOJ = "cat";
sprintf (HeightFile, "%s%s%d\ \per%d\ \height. asc", PREFIX, INPUTS ,GOAL_TO_USE, p);
HeightUni ts [10] .=. "feet'';
sprintf (BLCFile, "%s%s%d\ \per%d\ \blc. asc", PREFIX, INPUTS, GJAL_TO_USE, p);
char BLCUnits[lO] = "feet";
sprintf (CBDFile, 11 %s%s%d\ \per%d\ \ cbd. asc", PREFIX, INPUTS, GOAL_TO_USE, p) ;
char CBDUnits[lO] = "kg_per_rn3";

I /Now create the new LAYERS.TXT file for the current period
sprintf (Wri teOu t, "%s%s%d\ \per%d\ \layers. txt", PREFIX, INPUTS, GOAL_TO_USE, p);

char

char

261

OpenWrite = fopen(WriteOut, "w"): //open in write
mode

fprintf(Ope.nWrite, "%s%s\\elev %s asc \t\t%s\n', PREFIX,Constantinput,ENVT,EUnits);
fprintf (Openwri te, "%s%s\ \ slope_%s. asc \ t \ t'ts \n" , PREFIX, Constantinpu t, ENVT, SUni ts} ;
fprintf (OpenWri te, •· %s%s\ \aspect_ %s. asc \ t \ t \n '' , PREFIX, Cons tantinput, EN"VT) ;

fprintf{OpenWrite, "%s \t\t\n", FuelFile);
fprintf(OpenWrite, "%s \t\t\t\t\t%s\n'·, ClosureFile,ClosureUnits);
fprintf(OpenWrite, "%s \t\t0\t\t\t%s\n", HeightFile,HeightUnits);
fprintf(Open~lrite, w%s \t\t0\t\t\t%s\n", BLCFile,BLCUnits);
fprintf (Open~lrite, "%s \ t\ tO\ t \ t \ t%s \n ·•, CEDFile, CBDUnits);

#ifdef APPLEGATE_PROJECT
fprintf (OpenWrite,

#elif defined(FRAMEWORK_PROJECT}
fprintf (OpenWri te,

"%s

"%s

\t\t\t\t\t42\n" / LatFile);

\ t \ t \ t \ t \ tJ 7 \n '1 / LatFile);
#endif

fprintf (OpenWrite, II %s \ t \ t \ t \ t \ t%s \n", Grid, GridUni ts);

fclose(OpenWrite) i

return TRUE;

I I**
int PrepareFlammapEnvt (int p, int w)
I I* ,i, •• * * * * * ** * * * * * * * * ** * * * * * * ** ** * * * * * * * * * "* * * * * * * * * * * * * * * * * ** * * * * * * * * * **

//The flammap_envt.txt file called by Flamrnap specifies some files that Flammap will
//use to set up the general parameters. We are going to need to change which FuelMoistureFile
//uses (based on whether it is a drought year or not).
/ /There may be additional reasons to change certain files at a later time.

//This file DOES NOT need to exist. It will be created from scratch using the data from below.
char fms[20]=NFUELMOISTURE_FILE''
char CustornFuel [256];
char WetFMFile [256};
char ModFMFile[256];
char DroFMFile[256];

//Use these to copy whichever of the above we want to a consistent output string name
char Write0ut[256];
char OutMoisture [256];

FILE *OpenWri te;
//------------------------------------ End of variable defining--------------------------------------

period

//Put together all the filenames
sprintf (CustomFuel, "%s%s \ \ %s_f lammap. fmd" , PREFIX, Constantlnput, SHORT_NAME) ;
sprintf (WetFMFile, "%s'ts\ \'ts_wet. fms", PREFIX, Constantinput, SHORT_NAME) ;

sprintf (ModFMFile, "%s%s\ \ %s_mod. fms", PREFIX, Constantinput, SHORT_NAME) ;
spr intf (DroFMFile, "%s%s\ \%s_dro. fms", PREFIX, Constantinput, SHORT_NAME) ;

//Now determine which of the files are going to be used
if(w == 11 // is a WET

262

strcpy(OutMoisture, WetFMFile);
else if(w == 2) // is a MODERATE period

strcpy(OutMoisture, ModFMFile);
else

strcpy(OutMoisture, DroFMFile);

//21 FEB 00 - Bernie indicated "1/.'e should ALWAYS run FLA.MMAP with drought weather - let's reset here
sprintf(OutMoisture, "'ts" ,DroFMFile);

/ /Create a string with the actual envt. txt file name with the full directory path
sprintf (Wri teOut, "%s%s%d\ \per'td\ \f lammap_envt. txt", PREFIX, INPUTS, GOAL_TO_USE, p);

OpenWrite = fopen (WriteOut, "w"); //open in write mode
fprintf (OpenWrite, "FUEL_MOISTURE\t\t\t%s\n", OutMoisture);
fprintf(OpenWrite, "CUSTOM_FUEL_MODELS\t\t%s\n",CustomFuel);
fprintf (OpenWrite, "WIND_SPEED\t\t\tlO\n");

default for now
//10 is a

fprintf (OpenWrite, "WIND_DIRECTION\t\t\tUPHILL\nN);
could use Azimuth degrees

/ /UPHILL is a default -

fclose(OpenWrite);

return TRUE;

I I**
int WhichFlammapOutputs (int p)
I I**

I* This function will create the file "Drive": \model \outputs ,per* \flammap_out. txt which simply
has a list of files that are wanted from the Flammap program. The possible list is that
described in the Flammap help. The suffix (_out.txt) will be stripped off the name by Flammap and the
remaining will be used as the "basename" for what grids it generates - thus we
will always created files such as: ... \perl\flammap. fml (for a flame length grid), etc ..

* I

FILE *OpenWrite;
char WriteOut{SO];
char Gridl{lO] = "FML'';

are wanted.
//Make a Grid2, Grid3, etc., if more outputs

//------------------------------------ End of variable defining--------------------------------------

//Make WriteOut dependent on the current period
sprintf (Wri teOut, "%s%s%d\ \per%d\ \ flarnmap_out. txt", PREFIX, OUTPUTS, GOAL_TO_USE, p};

OpenWrite = fopen{WriteOut, "w");
fprintf(OpenWrite, "%s\n" ,Gridl);

fclose (OpenWrite);

return TRUE;
}//end WhichFlarnmapOutputs(int p)

//open in write mode

I I**
void InOutFlammapResults(int p, int Status)
I I**
{
/*
This function will open the current period run of Flammap, which produces an output flame height
file called FLAMMAP.FML in the ... \outputs\per*\ directory. That file has values that are in meters
and this function will convert those values to the closest feet integer value. They will then be
exported back onto the hard drive and saved, for mapping, as either p_flammap.asc or flammap.asc
(Predicted or Actual} - the original Flarnmap. fml file will be deleted to save space

REMEMBER - Flamm.ap says it has a NODATA value of -1 but that is NOT true and Mark Finney is aware of the problem.
What really happens is that a O {zero) gets placed in those cells with NODATA, so by using Cellid as the
template I can tell which cells are really suppose to be NODATA and which are suppose to have a value of 0.

I /NEW 5 Nov 99: Delete the Flamrnap generated *. FML file after inputting data
* I

FILE *READ_FLAMMAP, *WriteFlammap;
char FlammapFile{250];

char garbage[lOO]="":
int Row,Column;
double xll, yll, junk;
int r,c,HowMany,ctr:
int *ptr_link;
char Temp [150] ="";

long CellTestValue;
double FlammapTestValue;
long int FlammapNodata;
ushort FlammapConvertTes t;
ushort *ptr_flammap, *ptr_gridcolurnn;

FlLE *BIN;

263

char InFile[256];
long CellidND; //hold the returned NoData value
from CheckHeader() for Cellid - it is reused

//Variable for writing the output files
int *ptr_srp: //Starting Row Position
ushort *ptr_column;
int ColumnsLeft;
ushort StartColumn, OutColumn;

//--- End of variable defining---­

printf (" Preparing to import and export the FLAMMAP flame heights (import in meters, export in FEET units) \n");
puts("---");

//Instead of storing all Predicted and Actual flammap values in Data.* - fill this up and spit out
ushort (*FlammapValue) = new ushort [UNIQUE];
if (FlammapValue == Nt.Il..,L)

printf ("There was NOT enough memory for FlammapValue with %lu elements\n", UNIQUE);

//Initialize the FlammapValue array, which will get filled with Flammap values using Cellid.bin as a guide
//to indicate those cells which were originally NODATA (because of nodata problem with Flammap).
memset(FlammapValue, 0, sizeof(FlammapValue[O]) * UNIQUE};

/ /Create a string to hold the name of the current input Flammap. fml file
sprintf (FlammapFile, "%s%s%d\ \per%d\ \flarnmap. fml", PREFIX, OUTPUTS, GOAL_TO_USE, p) ;

// ---------------------- OPEN AND RE.Z\D THE CELLIO DATA (again/ --

/ /Create a temporary array to store the input Cell id binary data, which has data for every cell
float (*TempCellid) [COLUMNS] = new float [ROWS] [COLUMNS]; //ROWS*COLUMNS is how many elements are in the initial
grid/binary file
if (TempCellid == Nt.n..,L)

printf ("There was NOT enough memory for TempCellid with %lu elements\n"', ROV'.'S*COLUMNS);

/ /Initialize the TempCellid array
memset(TempCellid, 0, sizeof(TernpCellid[O] [0]) * ROWS * COLUMNS);

//Check the header data associated with this binary file and get the returned NODATA value
CellidND = CheckHeader(O);

//******read in every element of the Cellid data and store in the TempCellid array
sprintf (InF ile, "%s%s \ \cell id_ %s. bin", PREF IX, Constantinput, ENVT) ;
BIN= fopen(InFile, "rb");
if(fread(TempCellid,sizeof(TempCellid) ,ROWS*COLUMN"S,BIN) != RO',,JS*COLUMNS) //TempCellid is only a pointer!!

Bailout(66);
else

printf("**Binary file %s OK**\n'',InFile);
fclose (BIN) ;

I I ==========:====== OPEN AND READ THE FLAMMAP. FML HEADER DATA =========================---­
READ_FLAMMAP = fopen(FlammapFile, "r");
if (READ_FLAMMAP == NULL)

fprintf (stderr, "opening of %s failed: %s\n", FlammapFile, strerror (errno));

//use the xll and yll later on as Error Checkers
fscanf(READ_FLAMMAP, •%s %d %s %d %s %lf %s %lf %s %lf %s %ld", garbage, &Column,

garbage, &Row, garbage, &xll,garbage,&yll,garbage,&junk,garbage,&FlammapNodata);

//Do some error checking and bail if input data is not correct
if (Column COLUMNS && Row ==-ROWS)

printf ("Rows and columns for FLAMMAP. fml are OK\n") ;
else

Bailout (42) ;
//Do some error checking and bail if input data is not correct
if(int(xlll XLL && int(yll) == YLL)

printf ("X and Y origin for FLAMMAP. fml are OK\n") ;
else

Bailout (43) ;
/ I ======================= End of reading header data for files

for(r=l;r<=ROWS;r++)
{

264

ptr_link = &link[r-1] [l];
HowMany = *(ptr_link+l);

//This was originally filled during Read.BinaryFiles(l

for {c=l; c<=COLUMNS; c++) //c is the current column # to search for in Data.GridColumn
(

//Use the TempCellid[] [] as the utemplate" - if it has a value, then input
//the data found in Flarnrnap.frnl (after converting to the closest feet value)

//First scan everyone in - one at a time so they all are on the same cell
CellTestValue = {long) TernpCellid[r-1] [c-1];
fscanf (READ_FLAMM..i'.I...P, "%lf", &FlammapTestValue);

if(CellTestValue
(

CellidND) //This is a VALID cell

//convert the flarnmap value
FlarnrnapConvertTes t = (ushort) (floor ((FlammapTestValue*M2FT} + . 5)) ;

//Set pointer where this grid row starts in the Data.* array and in the FlammapValue
array

ptr_gridcolumn
ptr_flarnmap =

&Data.GridColumn[(*ptr_link)-1];
&Flammapilalue [(*ptr_link) -1];

//look for this specific GridColu.mn in the Data.GridColumn array
for (ctr=O; ctr<HowMany; ctr++ l
{

if (*ptr _gridcolumn == (ushort Jc) //found it
{

*ptr_flamrnap =
break;

FlamrnapConvertTest;

//otherwise increment everything
ptr_gridcolumn++;
ptr_flammap++;

) / /end for (ctr=O; ctr<HowMany; ctr++ l

)//end if(CellTe.stValue != CellNodatal
)//end for(c=l;C<=COLIJMNS;c++)

)//end for(r=l;r<=ROWS;r++)

//close the file
fclose (READ_FLAMMAP};

/ /Delete the TempCellid array from free store
delete [J TempCellid;

I I==
// Delete the flammap. fml file
sprintf (FlammapFile, "del %s%.s%d\ \per%d\ \flammap. fml", PREFIX, OUTPUTS, GOAL_TO_USE.p);
DELETE system command!
systern(FlammapFile);

I I=== =e= ========================== = = = = = = = = = = = = = = == =====
I* Ok, the data is now stored in Flammapilalue [], so just spit those values back out into an
appropriately named file (either p_*.asc for predicted values, or *.asc for actual values)

* I

//Make the correct output file name
if(Status == ACTUAL)

sprintf (FlammapFile, "%s%s%d\ \per%d\ \ flammap. asc", PREFIX, OUTPUTS, GOAL_TO_USE, p);
else

sprintf (FlammapFile, "%s%s%d\ \per%d\ \p_flarnrnap. asc", PREFIX, OUTPUTS, GOAL_TO_USE, pl;

//open up the files to write to
WriteFlammap = fopen(FlammapFile, "w" l;
if (WriteFlammap == NULL)

fprintf(stderr, "opening of %.s failed: %s\n", FlarnmapFile, strerror(errno));

//write out the header data
fprintf(WriteFlammap, "ncols\t\t%d\n", COLUMNS);
fprintf(WriteFlammap, "nrows\t\t%d\n" ,ROWS);
fprintf (Wri teFlamrnap, "xllcorner\ t%. 6 lf \n", F _XLL) ;
fprintf (Wri teFlanunap, "yllcorner\ t%. 6lf \n", F _YLL) ;
fprintf (Wri teFlammap, ~ cellsize \ t%d\n" , CELLSIZE) ;
fprintf (WriteFlammap, "NODATA_value\t%d\n" ,NODATA);

for(r=l;r<=ROWS;r++l
{

&link[r-1] [l];
* (ptr_srp+l);

/ /Tag on the

ptr_srp =
HowMany =
StartColumn
ptr_column =
ptr_flammap =

Data, GridColumn [(*ptr_srp) -1] ;
&Data. GridColumn [(*ptr_srp} -1] ;
&FlammapValue[(*ptr_srp)-1];

//not a pointer!

//If the whole row is blank, print out NODATA and goto next row
if(*ptr_srp ==FALSE} //means a zero was left in this spot during MakeLink
(

for (c=l; c<::=COLilll:NS; c++)
fprintf(WriteFlaromap, "%d ",NODATA};

//put in new lines
fprintf {WriteFlammap, "\n" l;

continue; //goto next row

//print out NODATA for those cells before data starts
for (c;:;:l; c<StartColumn; c++)

fprintf (WriteFlammap, "%d ",NODATA);

I I set some counters

OutColumn = StartColumn;
ctr ,., O;

/ /print out values for area on landscape by checking
/ /value in Data.GridColumn to match it with OutColumn value
do(

}while(ctr

if (*ptr_column == OutColumn)
(

fprintf {WriteFlammap, "%bu ", "'ptr_flarnmap);

ptr_flammap++;
ptr_column++;
OutColunm++;
ctr++;

else //print out NODATA for the "gaps"

fprintf ('.toJriteFlamrnap, "%d ",NODATA);
OutC:olumn++;

HowMany) ;

I /Check to see how many columns are left to do
ColumnsLeft = COLUMNS - (OutColumn-1);

if (ColumnsLeft == O)
(

fprintf (WriteFlammu.p, "\n");
continue; //go to next row

//print out NODATA for those cells after the data that are left
for (c=D; c<ColumnsLeft; c++ l

fprintf (WriteFlammap, "%d 11 ,NODATA);

/ /put in a new line
fprintf (WriteFlaromap, 11 \n"};

}//end of for(r=l;r<=ROWS;r++)

fclose(WriteFlammap);

/ /Delete the FlammapValue array on free stcre
delete [] FlammapValue;

} //end InOutFlammapResults

FIREEFFEC':'S. CPP

/* This code will apply the effects from a fire to our landscape by finding those stands that were "hit" and
modifying

265

their treelist thus creating new treelist for every stand that was hit. Afterwards PREMO will need to be recalled
to
re-optimize those stand prescriptions before the landscape re-,)ptimization takes place.
*!

#include <stdio. h>
#include <stdlib.h>
#include <String.h>
#include <math.h>
#include <time.h>
#include "globals .h"
#include "data.h"
I I--------------------------------- - - - -- - - EXTERl'JALS ------------------ - - - - - - - ---- -------- --- - - -
//defined in main.cpp
extern ulong NATLN;

/ /define in Misc. cpp
extern void DeleteToModify(void);

//defined in CommonDisturbance
extern void ExtractTreelist(struct TREELIST_FOR_PREMO TP[], int Count, int Per, ulong FTL);
extern void PrintNewTreelist(struct TREELIST_RECORD Records[], int Count, struct TREELIST_RECORD NewSnags[],

int SnagCount, ulong
Treelist};
extern void UpdateDataTreelist(struct HIT_BY_DISTURB AllHit[], int AllCount);
extern void UpdateDataWithNewStandData(struct HIT_BY_DISTURB HitList[], int HitCount, struct NEW_STAND_DATA SD[],
int Unique, int Per);

/ /defined in StandData cpp

extern void StandDataController(struct NEW_ST..:u-JD_DATA SD[], int Count, struct TREELIST_RECORD Records[], int
No Records) ;

extern void CalculateindividualBasalCanopy~idth(struct TREELIST_RECORD Records[], int NoRecords);

//defined in ReadData.cpp
extern long CheckHeader(int File};

I I --- ---------------------- ------ - -------- INTERNALS -- ----- ---- - - -- -- -- - - - - - - - - -- - - - - - - - - - -----

//Declare functions used in this code
int ApplyFireDisturbance(int period, ulong FTTP);
int CountFireHit(int per);
int FillFireHitList (struct HIT_BY_DISTUF.B HitList [], int Per);
int CountUniqueFireHits(struct HIT_BY_DISTURB HitList[], int Count);
int FillUniqueFireStructures(struct UNIQUE_FIRE UniqueList[], struct TREELIST_FOR_PREMO ToPremo[],

struct HIT_BY_DISTURB HitList [], int Count) ;

266

void ApplyFireSeverityCalculateStandData(struct trnIQUE_FIRE UL[J, int Count, struct NEW_STAND_DATA Stand.Data[]);
int Flameinterval(int f_feet};
void FillFofem(struct FOFEM_MATRIX *Fofem);
int ApplyFofemEffects(struct TREELIST_RECORD Records[], int Count, struct TREELIST_RECORD NewSnags[],

int SnagCount, struct FOFEM:_MATRIX *Fofem, int
Interval, struct NEW_STAND_DATA *ptr_sd) ~

int CompareHitListForFlame(const void *ptrl, canst void *ptr2};
void DoubleCheckVegcodes (void);

I I ** * * ** * * * * ** * * * * * * * * ** * * ** **
/ I * * * * * ***************** * * * *** * * * ** * * * * * * * ** ** * * * * * * * * * * * * * * * * *

// Controlling fuction
I I ** * * * ** * * * * * ** * * * * * * ** * * * ** * * * * * * * ** ** * * * * *
int ApplyFireDisturbance(int period, ulong FTTP)

I I * * * * * ** * * * * * * * * * * * * * * ** * * ** * * * * * ** * * * * * * **
(

int a=O;
int ActualPer, ArrayPer;
int Count, Records, Unique, Unique2;

//For Time information
clock_t Start, Finish;
double Duration;
//--------------------------------- End of variable defining---------------------------------------

ActualPer period;
ArrayPer period - l;

I /Count up how many cells were hit by fire this period
Count= CountFireHit(ActualPer);
printf("\n\nFor Period %d, just counted %d cells that were hit by fire, for %.Olf
acres\n", ActualPer, Count, Count *ACREEQ) ;

//Print out the number of acres hit
PrintToStat(5, Count);

//If there are no cells getting hit by fire, then just return back to main
if (Count == FALSE)
(

printf('' ! ! ! There were NO cells hit by fire - skipping FIRE DISTURBANCE routines ! ! ! \n'');
return TRUE;

//create an array of structures on the free store to hold info on all the cells being hit
struct HIT_BY_DISTURB (*HitList) = new struct HIT_BY_DISTURB[Count] ,'
if (HitList == NULL)

printf("Problems allocating memory for HitList[] ·with %d records\n",Cou.nt);

//Initialize
rnernset(HitList, 0, sizeof{struct HIT_BY_DISTURB * Count);

//Fill up the array of HitList structures
Records = FillFireHitList(HitList, ActualPer);
if(Records != Count}

Bailout(77);

//sort those records by: Treelist-Goal-Hold-Interval
printf("\nGetting ready to sort the stands by Treelist-Goal-Hold-Interval., ... this will take awhile for %lu
cells\n\n", Count};
Start = clock () ;

rngsort ((void*)HitList,
/ /base

Count,
//count of records
sizeof (struct HIT_BY_DISTURB),

record
0, Count-1,

//current division (always: 0, Count-!
CompareHitListForFlame) ;

function

Finish= clock();
Duration = ((double) (Finish-Start) / CLOCKS_PER_SEC) ;

//size of each

//compare

//Count up how many of those records in HitList are actually unique combinations of Treelist-Goal-Hold-Interval
Unique = CountUniqueFireHits (HitList, Count) ;
printf (~ ! ! ! There were actually %d unique records that were hit by FIRE this period run\n", Unique);

/*
Create 3 different structures to hold various information (may share some common data, but are "packaged"
different)
Each of these 3 will hold information ONLY for those unique combinations of Treelist-Goal-Hold-Interval

1 - an array of structures to hold data pertaining to which fire interval and T-G-H combination, and treelist
values
2 - an array of structures to hold old and new treelist values to use when period is over and need to make new
Premo calls
3 - an array of structures to hold new Stand Data that will need to be updated in the Data.* arrays BEFORE next
disturbance
*/
struct UNIQUE_FIRE (*UniqueList) = new struct UNIQUE_FIRE[Unique];
struct TREELIST_FOR_PREMO(*ToPremo) new struct TREELIST_FOR_PREMO [Unique];
struct NEW_STAND_DATA(*StandData) = new struct NEW_STAND_DATA[Unique];
if (UniqueList == NULL)

printf { "Problems allocating memory for UniqueList [] with 'td records\n", Unique);
if (To Premo == NULL)

printf(0 Problems allocating memory for ToPremo[] with 'td records\n",Unique/;
if (StandData == NULL)

printf("Problems allocating memory for StandData[] with %d records\n",Unique};
//Initialize
mernset(UniqueList, 0, sizeof(struct UNIQUE_FIRE) * Unique);
memset(ToPremo, 0, sizeof(struct TREELIST_FOR_PREMO} * unique);
memset(StandData, 0, sizeof(struct NEW_STAND_DATA) * Unique};

//Fill up the UniqueList and ToPremo structures and make sure same# of records processed
Unique2 = FillUniqueFireStructures (UniqueList, ToPremo, HitList, Count);
if (Unique2 ! = Unique)

Bailout (90);

I /Update the tree! ist values in Data. Tree! ist []

267

UpdateDataTreelist(HitList, Count); //REMEMBER - HitList will
be sorted by CELLIO after this

//Extract the current period treelist from the appropriate prescriptions or copy from the \modified\ directory
ExtractTreelist(ToPremo,Unique,ActualPer,FTTP);

//Now apply the severity to those treelist just extracted
ApplyFireSeverityCalculateStandData(UniqueList, Unique, StandData};

I /Now that StandData is filled up, send off with HitList (which must be sorted by CELLIO) to modify the data in the
Data* [] arrays
UpdateDataWithNewStandData{HitList, Count, StandData, Unique, ArrayPer);

//Delete all the treelist files in the ToModify directory since they have been modified and now sit in \Modified\
directory
DeleteToModify();

//DoubleCheckVegcodes{);

//Delete stuff on free store
delete [] HitList;
delete [] U'niqueList;
delete [] ToPremo;
delete [] StandData;

return TRUE;
}//end ApplyFireDisturbance

; /****************************** **"' *** ****************** **** ************,..,..,..* ,..*************** * * * * * * * * * * *,.. * * * ** * * ***,.
void ApplyFireSeverityCalculateStandData(struct UNIQUE_FIRE UL(], int Count, struct NEN_STAND_DATA StandData[])
I I**********,..,..***

/*
This function will take each of the records in the array of UL[] structures, find the extracted
treelist which is sitting in the .. \prescriptions\ToModify\ * directory {with the label
T_"NewTreelist". txt) , Each tree list will be read in, stored in some fashion,
and then specific FOFEM mortality functions '.1,ill come into play as a function of the Flame Length Interval
which caused the treelist to get created as a unique combination in the first place.
* I

FILE *IN;
char Temp[256];

int a, b, ReadStatus, NoRecords, NewSnagCount;
ulong Treelist;
ushort Interval;

ushort Plot, Status, Model, Report, Condition;
float Tpa, Dbh, Height, Ratio;
struct NEW_STAND_DATA *ptr_sd;

/!----------------------·----------End of variable defining--­

printf(~\n*** Starting to apply specific FOFEM effects to the 'td unique stands hit by fire **"\n",Count);

//First thing, allocate memory for the FOFEM coefficients - sorta redundant to do every period but is quick
struct FOFEM_MATRIX (*Fofem) = new struct FOFEM_MATRIX;
if (Fofem == NULL)

printf("Problems allocating memory for a FOFEM_MATIX structure!\n"J;

//Initialize the Fofem structure
memset(Fofem, 0, sizeof(struct FOFEM_MATRIX) };

//Fill the Fofem structure up with the correct coefficients
FillFofem(Fofem);

//Start a loop to do this for every record in the array of UL structures
for(a=O;a<Count;a++)
(

//Set a pointer to the current Stand.Data[] space
ptr_sd = &StandData[a];

//Grab the data that will identify the file needed in the .. \ToModify* directory
Treelist = UL[a] .NewTreelist;

/ /Create a string to hold the filename - Ahrays in the ToModDir
sprintf (Temp, "%s%s\ \T_%lu. txt", PREFIX, P_ToModDir, Treelist);

//Open the file for reading
IN = fopen(Temp, "r");
ifl IN NULL)

fprintf(stderr, "Opening of %s failed (ApplyFireSeverity): %s\n",Temp, strerror(errno));

//Go through the file and count how many lines(records) there actually are
NoRecords=O;
while(ReadStatus = fscanf(IN,"%hu ihu %f %hu %hu it it if",&Plot,&Status,

&Tpa,&Model,&Report,&Dbh,&Height,&Ratio) != EOF}
(

NoRecords++;

268

if(Status != LIVE} //Not a live tree so it will also have a code for the Condition
fscanf(IN, "%hu", &Condition);

}//end while(ReadStatus ... }

//Rewind back to the beginning of the file
rewind (IN) ;

//printf(''There were %d lines in T_%lu.txt\n",NoRecords,Treelist);

//Allocate free store memory for NoRecords amount of TREELIST_RECORD structures
struct TREELIST_RECORD (*Records) = new· struct TREELIST_RECORD[NoRecords];
if (Records .:.:=- NULL)

printf ("Problems allocating memory for Records [l with %d records\n", NoRecords);

//Initialize
memset(Records, 0, sizeof(struct TREELIST_RECORD) * NoRecords);

//Also allocate memory to hold data for NewSnags created {a fire may create snags for every record except
those that are already Snags and DWD)

struct TREELIST_RECORD(*NewSnags} = new struct TREELIST_RECORD(NoRecords];
if (NewSnags == NULL)

printf ("Problems allocating memory for NewSnags [1 with %d records \n", NoRecords};

//Go through the current file again and fill up the array of Records
for(b=O;b<NORecordS;b++)
(

f scanf (IN, "%hu %hu %f %hu %hu it % f %f ', &Records [b] . Plot, &Records [b] Status, &Records [b J . Tpa,
&Records[bJ.Model,

&Records[b] .Report, &Records [b] .Dbh,
&Records[b] .Height, &Records[b] .Ratio);

if(Records[b] .Status '."" l}
fscanf (IN, "%hu", &Records [b] .Condition);

) II end for lb=O ...)

//Close the treelist file
fclose (IN);

//Send the current Records off to get individual basal area calculated - needed here to track specific
mortality for analysis

CalculateindividualBasalCanopyWidth(Records, NoRecords);

//Get the current Interval associated with this record
Interval tn..[a]. Interval;

//Reset the NewSnagCount
NewSnagCount =- 0;

//Send the data off to have FOFEM effects applied
NewSnagCount = ApplyFofemEffects(P.ecords, NoRecords, NewSnags, NewSnagCount, Fofem, Interval, ptr_sd};

//Print out the records in Records(] and NewSnags[J
PrintNewI'reelist(Records,NoRecords,NewSnags,NewSnagCount, Treelist);

//Store the treelist value in StandData
StandData[a] .Treelist = Treelist;

//Calculate new landscape metrics (fuel, closure, height, blc, cbd)
StandDataController(StandData, a, Records, NoRecords);

/ /delete stuff on free store
delete [] Records;
delete [) NewSnags;

)//end for(a=O ...)

//Lastly, delete the Fofem structure
delete [] Fofem;

) //End ApplyFireSeverity

int ApplyFofemEffects(struct TREELIST_RECORD Records[], int Count, struct TREELIST_RECORD NewSnags{],
int SnagCount, struct FOFEM_M..Z:..TRIX *Fofem, int Interval, struct

NEW_STAND_DATA *ptr_sd)

I/*** ic*** * ** ******* * ****** *** * * * * * *

/*
Look at all the individual records currently in the array of Records structures. Depending on the
flame length interval that was passed in, apply a particular FOFEM: coefficient to that record.

For those newly created snags, put that information in the array of NewSnags structures
*/
int a, DbhRow, FlameColumn, SaveSpot;
float Mort'I'pa, RemainTpa,StandMortBasal=O, StandMortBigTrees=O;
double *ptr_fofem;
struct TREELIST_RECORD SaveRecord;
struct TREELIST_RECORD *ptr_record, *ptr_snag, *ptr_saverecord;
int AlreadySavedOne:a:FALSE, HadSevereMortality=FALSE;
int Fix;
//--------------------------------- End of variable defining-------------------------------------

//Start a loop to look at each record in the array of Records structures
for (a=O; a<Count; a++)
{

function

/ /Must be a live tree
if(Records[a] .Status LIVE)
{

//Figure out which DBH row in the Fofern structure arrays to use
//The arrays have rows for DBH's: 1,2,4,6,8,10 40 (array subscript 0-20)
if(Records[a] .Dbh < 2)

DbhRow O;
else

DbhRow (int}floor{Records[aJ.Dbh / 2};

if(DbhRow > 20) //Just use values for those with DBH of 40
DbhRow 20;

//Figure out which Interval column in the Fofern structure arrays to use
//The Interval variable should already be a multiple of 2 - generated in Flarneinterval()

269

//The arrays in the Fofem structure have columns for Intervals: 2, 4, 6, 8 ... 16 (array subscript
0-7)

array

array

array

array

array

array

array

array

array

array

FlameColumn "" (Interval 1 2) - l;
if (FlameColumn > 7)

FlameColumn = 7;
//this is a flame of over 16' - just use the 16" effects

//Put a pointer at the appropriate FOFEM array to get the Mortality Coefficient
//associated for the Species, given its DBH, and the current Flame Interval.
//Check to make sure the Model code is valid
if(Records[a] .Model> 9}

Bailout(JJ);

switch{Records[a] .Model) 1 /This is the "model cede" reported by Premo
(

case o, ptr_fofern &Fofern->BO [DbhRow] [FlameColumnJ; break;

case 1' ptr_fofern &Fofem->DF[DbhRow] [FlameColumn]; break;

case 2, ptr_fofem &Fofem->DF [DbhRow] lFlameColumn]; break;

case 3' ptr_fofem &Fofem->PP [DbhRow] [FlameColumn]; break;

case 4. ptr_fofem &Fofem->HW(DbhRow] [FlameColumn]; break;

case 5' ptr_ fofem &Fofem->PP[DbhRowJ [FlameColumn]; break;

case 6' ptr_ fofem &Fofem->L'l'F[DbhRow] [FlameColumn]; break;

case 7, ptr_fofem &Fofem->SP [DbhRow] [FlameColumn]; break;

case 8' ptr_ fofem &Fofem->I-rl'J[DbhRowJ [FlameColumnJ; break;

case 9, ptr_fofem &Fofem->'.VF [DbhRow] [FlameColumn]; break;

//Use

//Use

//Use

//Use

//Use

//Use

//Use

//Use

//Use

//Use

the BO

the DF

the DF

the pp

the HW

the pp

the WF

the SP

the lfrl

the WF

if (*ptr_fofem
{

!*

0)

270

11When 0, there is no FOFEM effect so skip this

Determine the FOFEM mortality for a record - that is, if ptr_fofem is .9, then 90% of
the TPA

inherit

indicate

by the

with

associated with the current record will die and turn into snags. These trees will

the same attributes as before death(dbh,height,cro'Wll) and will get a new code to

what the "condition" is and a new "Status" value. The remaining trees not affected

mortality percentage (i.e. 10% of the TPA from the above example) will be outputted

a new TPA and the same attributes (dbh,height,cro"Wn) as before.
• I
//Set a pointer here to make it easier to c;:,py over data into NewSnags[]
ptr_record &Records[a];
ptr_snag ~ &NewSnags[SnagCount];

;/Calculate the MortTpa and the RemainTpa;
MortTpa = (float) ({*ptr_fofem) * Records [a] .Tpa);
RemainTpa = Records[a] .Tpa - MortTpa;

;/Calculate the BasalArea mortality
Standl:1ortBasal += (MortTpa * Records [a] . Basal);

//Track those trees >= 30" DBH and the total number killed
if(Records[a].Dbh >= BIG_TREE_SIZE)

StandMortBigTrees +~ MortTpa * (float)ACREEQ;
I /convert to an actual number

//Put the RemainTpa back into the current record
Records[a] .Tpa = RemainTpa;

//copy over the current record from Re::ords to the appropriate NewSnag record
memcpy (ptr_snag, ptr_record, sizeof (struct TREELIST_RECORD)) ;

I /If the mortality was 100% just zero out the whole record - PrintNewTreelist{) won't
print those with TPA 0.0

if(*ptr_fofem == l}
(

HadSevereMortality = TRUE;

1/ ********************** PART I of no live trees fix

//Save the first record that gets completely wiped out - may need to
reinsert if no LIVE trees at end

);

if(AlreadySavedOne •= FALSE}
(

;;Place pointer at the SaveRecord structure
ptr_saverecord = &SaveRecord;
;;Copy current data from Records to SaveRecord
memcpy(ptr_saverecord, ptr_record, sizeof(struct TREELIST_RECORD)

1 /Remember where this record is in the array of structures
SaveSpot = a;
;;Put the original TPA back in - remember, only doing this for

one record so although BOGUS, it's livable as a fix
ptr_saverecord->Tpa = MortTpa+l;

usually very small stands and I think rounding problems
AlreadySavedOne = TRUE;

************************* end Part I fix
.. * * * * * * * * * ** ** * * * * * ** * * * ** * * * * * * ** * * ** * *

I I just because these are

;;Always reset the current record to zero if complete mortality from FOFEM
memset (ptr_record, 0, ,sizeof (struct TREELIST_RECORD)) ;

I /However, some values in NewSnags [] . * are wrong - fill with correct values
NewSnags[SnagCount].Status SNAG;
NewSnags[SnagCountJ.Tpa MortTpa;
NewSnags[SnagCount] .Condition l; //Condition code for a

new snag - may want to change since it was a fire?

I I Increment SnagCount to track the total number of snags create
SnagCount++;

}//end if(Records(a) .Status LIVE)

}//end for(a=O ... I

I /Cumulative track the Stand Basal Area Mortality & the Big Trees Killed
ptr_sd->BasalAreaKilled += StandMortBasal;
ptr_sd->BigTreesKilled += StandMortBigTrees;

//********************************** PART II of NO LIVE TREES FIX*********~*************************************
/*
A problem has occurred when there is complete mortality to some records in a treelist and sometimes no
"live" trees are left in the treelist - they all got sent to snags. Check two things:
1 - was there SevereMortality. If so, look at all the records in Records and see
2 - is there at least ONE valid live tree with a valid TPA value that won't screw PREMO up.

If not, then simply reinsert the SaveRecord values back into the Records[] and hope that takes care of it.

* I

if(HadSevereMortality

{
TRUE)

Fix = TRUE;

for (a=O:a<Count;a++)
{

I I If there is at least one of these then no need to do any fixing
if (Records [a]. Status ='= LIVE) / /Must be a live tree
{

if(Records[a] .Tpa > 0
(

//and have a valid tpa

)//end for(a=O;a<Count;a++)

if(Fix== TRUE)
(

Fix = FALSE;
break;

ptr_record = &Records [SaveSpot];
memcpy(ptr_record, ptr_saverecord, sizeof(struct TREELIST_RECORD));

)// end if(HadSevereMortality == TRUE)
// ** End Part II of fix for no Live Trees
* ** ** * * * * ** * * * ** *

return SnagCount;

)//end ApplyFofemEffects

I I**
void FillFofern(struct FOFEM_MATRIX *Fofem}
I I***""****************
(

/*
This function is called once every period to fill up the Fofem structure. That structure will
contain the FOFEM coefficients developed by Jim Agee and Bernie Bahro. Currently there are
6 different •categories• of coefficient matricies: Black Oak, Douglas fir, Hardwoods,
Ponderosa Pine, Sugar Pine, and White fir. These categories will have to be used for all our
stands that are hit.
*/

FILE *READ_FOFEM;
char Teitq:)(256];

int a,b;
double *ptr_fofem;

//--------------------------- End of variable defining--

//First open up the fofem.txt file
sprintf (Temp, "'ts%s\ \FOFEM. txt", PREFIX, Constant Input) ;
READ_FOFEM = fopen(Ternp, "rM);
if (READ_FOFEM == NULL)

fprintf (stderr, "opening of %s failed: %s\n", Temp, strerror (errno));
else
{

printf (" \n
printf("
printf("

for(a=O; a<6; a++)
{

*.,,.******""*****""***********************\n'');
tr Reading in the FOFEH. txt file *\n");
* .,,.. * * * * * * * ** * * * * * * * * *"' * ** * * * * * * *"" * * * * ** \n \ n"} ;

switch(a)
(
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:

ptr_ fofem
ptr_ f:=ifem
ptr_fofem
ptr_ fofem
ptr_fofem
ptr_ fD-fem

&Fofem->BO[OJ [0]; break;
&Fofem->DF[O] [OJ; break;
&Fofem->HW[O] [0]; break;
&Fofem->PP[O] [OJ; break;
&Fofem->SP[O] [0]; break;
&Fofem->WF[O) [0]; break;

for(b=O;b<{21*8) ;b++}
(

fscanf (READ_FOFEM, "%lf", ptr_fofem);
ptr_fofem++;

)//end of for(a=O; a<6; a++)

/ /Test Print out
/*

//Fill up BO array
//Fill up DF array
//Fill up HW array
/ /Fill up pp array
/ ;Fill up SP array
I I Fill up WF array

271

int z;

for{a=O; a<6; a++)
(

/ /Read BO

/ /Read DF

switch(a)
(

case 0; ptr_
array
case 1, ptr_
array
case 2: ptr_

foferr.

fofem

fofem
/ /Read HW array

case 3; ptr_ fofem
/ /Read pp array

case 4, ptr_fofem
/ /Read SP array

case 5; ptr_ fofem
/ /Read WP array

)

for(b=O;b<2l;b++)
(

&Fofem->BO [0 I [0 I ; print£ ("\n

&Fofem->DF [0] [0] ; print£ { "\n

&Fofem->HW[0J [OJ; print£ ("\n

&Fofem->PP[0J [OJ; print£ { "\n

&Fofem->SP[0J [OJ; print£('' In

&Fofem->WF[0J [OJ; print£(" In

for(z=O;z<B;z++)

)//end of for(a=O; a<6; a++)
*/

fclose(READ_FOFEM);

) / /end FillFofem

(
print£ ("% .21£ ", *ptr_fofem);
ptr_fofem++;

print£ (" \n" l;

272

The BO array\n"); break;

The OF array\n"); break;

The HW array\n"); break;

The pp array\n"); break;

The SP array\n"); break;

The WF array\n" l; break;

I I**,,.,,.*,,.**,,.,,.*********

int FillUniqueFireStructures(struct illJIQUE_FIRE UniqueList[], struct TREELIST_FOR_PREMO ToPremo[], struct
HIT_BY_DISTURB HitList [],

int Count)
I/***,,.****,,.,,.,,.,,. •• ,,.*****************,,.,,.,,.**************************

//Go through HitList[] again and find those actual Unique combinations of Treelist-Goal-Hold-Interval counted
earlier
//and this time fill up the UniqueList and ToPrerno structures, as well as put the NewTreelist value in HitList[]
int a, b, Unique;
ulong Eval Tree list;
ushort EvalGoal, EvalHold, Evalinterval;

//---------------------------- End of variable defining---­
Unique = O;
b = O; //This must be
reset because above it left loop with value of Count
for(a=O;a<Count;)
loop
(

if (b == Count)
incremental method, b will reach end first but a doesn't know that

break;

Unique++;
as do others because a gets reset in other loop

//Set the initial Eval* variables
EvalTreelist HitList[aJ.Treelist;
EvalGoal HitList (aJ .Goal;
EvalHold HitList[a] .Hold;
Evalinterval HitList [a]. Interval;

//Insert those values in the array of UniqueList structures
UniqueList[Unique-1] .Treelist EvalTreelist;
UniqueList[Unique-1] .Goal = EvalGoal;
UniqueList[Unique-1].Hold = EvalHold;
UniqueList[Unique-1].Interval Evalinterval;

//And put the needed values in the array of ToPremo structures
ToPremo[Unique-lJ.OldTreelist = EvalTreelist;
ToPremo[Unique-1].Goal
ToPremo[Unique-1].Hold

EvalGoal;
E•.1alHold;

//a will get increment by other

//because of weird

I I first one always counts

//Put the NATLN in for this first unique combination - this global variable is set in Main.cpp and also
used by Insects.cpp

HitList [a] .NewTreelist
UniqueList [Unique-1] .NewTreelist
ToPremo[Unique-1].NewTreelist

NATLN;
NATLN;

= NATLN;

I !sine HitList is already sorted, st.art at next record and look do'tmward until nc longer a match
for(b=a+l;b<Count;)
{

if I HitList[b] .Treelist
HitList[b] .Goal
HitList[b] .H:::ild
HitList [b]. Interval

EvalTreelist &&

;;:; EvalGoal &&
"'"" EvalHold &&

Evalinterval)

HitList[b] .N'ewTreelist
//Also put the current NATLN in this structure

b++;
//Then look at next record

else

NATLN;

I /Set the 'a'' variable t:::i where Mb" is because this is the next unique match
a = b:
NATLN++;

break;

} //end for {b:,:.a+ 1; b<Count; b++)
}//end for(a;:;Q;a<Count;a++l

//Always increment NATLN one more
NATLN++;

return Unique;
}//end FillUniqueFireStructures

I I**
int CountUniqueFireHits(struct HIT_BY_DISTURB HitList[], int Count)
I I*** ... **********************

I /Go through HitList[] and find how many actual Unique combinations of Treelist-Goal-Hold-Interval

int a,b,Unique;
ulong EvalTreelist;
ushort EvalGoal, EvalHold, Evalinterval;
//------------------------- end of variable defining---------------------------------------

Unique= O;
b ~ O;
for(a=O;a<Count;}
loop
{

if (b == Count)
incremental method, b will reach end first but a doesn't know that

break;

//a will get in~reme~t by other

I /because of ·,,.ieird

273

Unique++; //first one always counts
as do others because a gets reset in other loop

I /Set the initial Eval* variables
Eval Tree list Hi tList [al . Tree list;
EvalGoal HitList [al .Goal;
EvalHold Hi tList [al . Hold;
Evalinterval HitList[al .Interval;

//sine HitList is already sorted, start at next record and look do"Nl1.ward until no longer a match
for(b=a+l;b<Count;)
{

if I HitLis~ [bl
HitList [bl
HitList [b]
HitList[b]

b++;
//look at next record

else
{

. Treelist

.Goal

.Hold

.Interval

EvalTreelist &&
-- EvalGoal &&

-- EvalHold &&

Evalinterval)

I /Set the II a II variable to where "b" is because this is the next unique match
a = b;
break;

}//end for(b:::a+l;b<Count;b++)
}//end for(a=O;a<Count;a++)

return Unique;
}//end CountUniqueFireHits

I/**
int CompareHitListForFlame(const void *ptrl, Const void *ptr2)
I I*** w * * * * * ** * * * * ** * * ** * * * * * * * * *

//Just to typecast them since we aren't actually passing in pointers
struct HIT_BY_DISTURB *elem!;
struct HIT_BY_DISTURB *elern2;

eleml
e1em2

(struct HIT_BY_DISTURB *)ptrl;
(struct HIT_BY_DISTURB *)ptr2;

if (eleml->Treelist < elem2->Treelist
//First sort by Treelist

return -1;
if{ elernl->Treelist > elem2->Treelist

return 1;
else

274

/ /Then by Goal

if(eleml->Goal < elem2->Goal

return -1;
if(eleml->Goal > elem2->Goal

return l;
else

//Then by Hold

if(eleml->Hold < elem2->Hold

return -l;
if(eleml->Hold > elem2->Hold

return 1;
else

//Then by flame Interval

1fi eleml->Interval < elem2->Interval

return -1;
if { eleml->Interval > elem2->Interval)

return 1;

else

return O;
I I FINISHED! !

} //end Interval
J //end Hold

} //end Goal

} //end CompareHitListForFire

I I**
int FillFireHitList (struct HIT_BY_DISTURB HitList [J, int Per)
I I***** .. ''******'**********************************'••*•••'******"''*''''*******************

{
/*
Once HitList has been created in ApplyFireDisturbance, this function will fill it up. This
is pretty much a copy of CountPireHit, except this time variables will be stored in the HitList
structures for those cells that are hit.

Because CountFireHit() creates the new flame.asc file with flame length values in FEET, this function will now
call up a function to put that value into 2' interval values [which is what the FOFEM matrix has effects for).
* I
//Some string arrays
char garbage{l3];
char FlameFile {250];

//File pointers
FILE *READ_FLAME;

//pointers
int *ptr_link;
ulong *ptr_treelist, *ptr_cellid;
ushort *ptr_gr idcolurnn, *ptr_goal, *ptr_hold;

//Misc. variables
int Row, Column;
int r,c,HowMany,ctr;
long int Nodata;
double xll, yll;
double TestValue, junk;
int Record, Interval;
//----------------------------- end of variable defining---

/ /Make the flame file name and open it
sprint£ (FlameFile, "%s%s%d\ \per%d\ \ flame asc", PREFIX, OUTPUTS, GOAL_TO_USE, Per);
READ_FLAME fopen(FlameFile, "r");

/ /Read in the header info from the flame. asc file to get to the Real Data!
//This assumes the data was check for errors in CountFireHit (}
fscanf (READ_FLAME, "ts td %s %d %s %lf %s %1f %s %1f %s 'tld",

garbage, &Column, garbage, &Row, garbage, &xll, garbage, &yll,
garbage, &junk, garbage, &N0data);

//Scan in the values from flame.asc. If they are valid (not Nodata nor NONFOREST) then include them. REMEMBER, if
//Nodata exists in the Data.GridColumn[] array, then there was originally nodata for this cell.
Record = O,·
for(r=l;r<=ROWS;r++)
(

ptr_link ~ &link[r-1] [l];
HowMany = * {ptr_link+l);

for { c=l; c<=COLUMNS; c++)

number

fscanf (READ_FLAME, "%lf", &TestValuej;

if{TestValue != Nodata}

ptr_gridcolumn
ptr_treelist
ptr_goal
ptr_hold
ptr_cellid

//YES, it is a valid

&Data.GridColumn[(kptr_linkJ-1]; //set pointers
&Data.Treelist[(*ptr_link)-1];
&Data Goal[i*ptr_link)-1];
&Data Hold[(*ptr_link) -lJ;

= &Data.Cellidl(*ptr_link)-1];

for (ctr=O, ctr<HowMany; ctr++)
{

if (*ptr_gridcolwnn == (ushort) c) / /FOUND the correct column
I/ If a common GridColumn is not found - then Noda ta

existed in orig Data.*[] arrays
if (*ptr_treelist ! = NONFOREST && TestValue ! = FALSE)

//Must be a valid NONFOREST cell

Interval :a: Flameinterval((int)TestValue) ;

275

/ /No•.~· store all the needed data in the array of RitList
structures

HitList[RecordJ.Treelist
HitList[Record].Goal
HitList[Record] .Hold
HitList[Record]. Interval
HitList[Record] .Cellid

*ptr_treelist;
*ptr_goal;
*ptr_hold;

Interval;

Record++;
I /To send back as a c:::iunter

this for (ctr=O; ctr<HowMany ... loop

}//end of for(r=l;r<=ROWS;r++)
fclose (READ_FLAME};

return Record;

}//end of

break;

ptr_gridcolumn++;
ptr_treelist++;
ptr_goal++;
ptr_hold++;
ptr_cellid++;

for (ctr=O; ctr<HowMany; ctr++)

I I * ** **** * * * ** ** * * * * * * * * * ** * * * * * * * * * * * * *
int CountFireHit{int per)
I I * ** * * * * * * ** * * * * * * * * * * * * * * * ** * * * * * * * ** ** ** * * * * * * * * * * ** * * * * * * * * *
(
/*
After a run of Farsite, it will create a file called "per*_flame.grd", which I will
copy over to the correct "\\per*\\" directory first.

If the above file does not exist then either there were no fires that period
or the fire size was so small that FARSITE did not create an output flame.grd. In any case,
this function will be skipped if there is n:::i per*_flame.grd file available.

Otherwise, this function will go through the output flame grid file and count up how
many cells were actually hit by fire. If, by chance, the fire occurs in a cell where there is
no data in the Data.* arrays, then it will be skipped with no repercussions (i.e. not counted).

Also, NONFOREST will be skipped

25 FEB 00: Now will temporarily read the original Farsite generated grid and make
a new copy of it using the same strategy that was done in InOutFlamrnapResults(). The Farsite
generated file has -1 as the NoData value and Arcinfo seems to not like that.
*/
//--

//Some string arrays
char garbage[50];
char FlameFile[250];
char GrdFlameFile[250];
char SystemCalll [300];
char SystemCall2 [250];
char SystemCall3 [250];
char SystemCall4 [250];

//File pointers
FILE *READ_FLAME;
FILE *WriteFlame;

/ /pointers
int *ptr_link;
ulong *ptr_treelist;
ushort *ptr_gridcolurnn;

//Misc. variables

*ptr_cellid;

/ /get out of

int Row, Column;
int r,c,HowMany,ctr;
double Nodata;
double xll, yll;
double TestValue, junk;
int CellsHi t=O;

long CellTestValue;
ushort ConvertTest;
ushort "'ptr_farsite;

FILE "'BIN;
char InFile[256J;
long Cellid.ND;

/ /Variable for writing the output files

276

int "'ptr_srp; //Starting Row Position
ushort "'ptr_column;
int ColumnsLeft;
ushort StartColumn, OutColumn;

//--- End of variable defining---­

/ /Make the correct file names
sprintf (FlameFile, "%s%s%d\ \per%d\ \flame. asc", PREFIX, OTJTPUTS, GOAL_TO_USE,perl;
sprintf (GrdFlameFile, "%s%s%d\ \per%d\ \flame. grd", PP.EFIX, OUTPUTS, GOAL_TO_USE,per);
sprintf (SystemCalll, "del %s", FlameFile) ;
sprintf (SystemCall2, "move %s%s \ \per%d_flame. grd %s%s%d\ \per%d\ \tlame. grd", PREFIX, RasterOutDir, per,
PREFIX, OUTPUTS,GOAL_TO_USE,per);
sprintf (SystemCall3, "del %s%s \ \per%d_arrive. grd", PP.EFIX, RasterOutDir ,per);
sprintf(SystemCall4, "del %s", GrdFlameFile);

//Execute some system calls
system(SystemCalll};
sys tern (Sys temCa 114} ;
sys tern (Sys temCa 112} ;
system(SystemCall3} ,·

I I==-===----=================-=================-=============-===-======-

//Check existence of valid output FLAME grid from FARSITE
//Open up the flame.grd file (to read)
READ_FLAME = fopen(GrdFlameFile, "r");
if (REl\D_FLAME == NULL)

printf { • ! ! ! ! l There were no fires this period - skipping FireEffects ! ! ! ! ! ! \n"};
f close (READ_FLAME) ;
return FALSE;

printf(N Preparing to import and export the PAP.SITE flame heights (import in meters, export in FEET units)\n");
puts ("-------------------------------- ----- ------- - - -----------------") ,

//Create and initialize the FarsiteValue array, which will get filled with Farsite values using Cellid.bin as a
guide
//to indicate those cells which were originally NODATA (because of nodata problem with Farsite}.
ushort (*FarsiteValue) = new ushort [UNIQUE;;
if (FarsiteValue == NULL)

printf("There was NOT enough memory for FarsiteValue with 'Uu elements\n", UNIQUE);
memset(FarsiteValue, 0, sizeof(FarsiteValue[O)} * UNIQUE};

// ---------------------- OPEN AND READ THE CELL'!D DA'I'A (again} ------==-----------------==---------------==

//Create a temporary array to store the input Cellid binary data, which has data for every cell
float (*TempCellid) [COLUMNS] = new float [ROWS] [COLUMNS]; //P.OWS*COLUMNS is how many elements are in the initial
grid/binary file
if (TernpCellid == NULL)

printf (NThere was NOT enough memory for TernpCellid with %lu elements\n", RO½'S*COLUMNS);

/ /Initialize the TempCellid array
memset(TempCellid, 0, sizeof(TempCellid[O] [0]) * RO'/li'S * COLUMNS).-

I /Check the header data associated ·.~·ith this binary file and get the returned NODATA value
CellidND = CheckHeader(O);

//******read in every element of the Cellid data and store in the TernpCellid array
sprint f (InFile, "%s%s\ \cellid_%s. bin", PREFIX, Cons tantinput, ENVT) ;
BIN= fopen(InFile, ~rb");
if (fread(TempCellid, sizeof (TempCellid}, ROWS*COLUMN"S, BIN) ! = ROWS*COLUMNS) / /TernpCellid is only a pointer! !

Bailout(66);
else

printf{"**Binary file %s OK**\n",'!nFile);
£close (BIN);

II----------------- READ TIIE FARSITE.GRD HEADER DATA - opened & checked existence earlier

I /Read in the header info from the flame. grd file to get to the Real Data!
fscanf(READ_FLAME, "%s %d %s %d %s Uf %s %lf %s %lf %s %lf",

garbage, &Column, garbage, &Rav,·, garbage, &xll, garbage, &yll,
garbage, &junk, garbage, &Nodata);

//Do some error checking and bail if input data is not correct

if(Column != COLUMNS && Row!= ROWS)
Bailout (42);

if(floor(xll) != XLL && floor(yll) != YLL)
Bailout(43};

I I =----------------------- End of reading header datci for files

277

//Scan in the values from flame.grd. If they are valid inot Nodata nor NONFOREST) then count them. REMEMBER, if
//Nodata exists in the Data.GridColurnn[] array, then there :~'as originally r.odata for this cell, so DO NOT count.
for(r=l;r<~ROWS;r++)
(

ptr_link == &link[r-1] [1];
HowMany -= * (ptr_link+l);

for (c=l; c<=COLUMNS; c++)
(

//Use the TempCellid(l ll as the "template" - if it has a value, then input
//the data found in flame.grd - if ther~ is one/after converting to the closest feet value)

//First scan everyone in - one at a tim~ so they all are on the same cell
CellTestValue = (long)TempCellid[r-lJ [c-1];
fscanf(READ_FLAME, "%lf", &TestValue);

if (CellTestValue ! = CellidND}
(

//This is a VALID cell

if{ TestValue == Nodata) / /not hit by fire
ConvertTest 0; 1/give it a zero flame length

else
Convert Test (ushort) (floor ((TestValue11"M2FT) + . 5 l l; //convert to

closest ushort value

I /Set pointer where this grid rm,; starts in the Data. 11" array and in the FarsiteValue
array

ptr_gridcolumn
ptr_treelist
ptr_farsite =

&Data.GridColumn[(*ptr_link)-1]; 1/set pointers
&Data.Treelist[(*ptr_link)-1];

&Farsi teValue [(*ptr_link) -1] ;

//look for this specific GridColumn in the Data.GridColumn array
for{ctr::::O;ctr<HowMany;ctr++}
(

if (*ptr_gridcolumn == iushort) c) / /FOUND the correct column
(I /If a common GridColurnn is not found - then Noda ta

existed in orig Data.11"[] arrays

*ptr_farsite = ConvertTest;

if (*ptr_treelist ! = NONFOREST)
//Only "count~ if is not a NONFOREST cell

(

if{ConvertTest > O)
//don't count those that get rounded to O flame length

CellsHi t++;
11To send back as a counter

)

break;
this for (ctr::0; ctr<HowMany ... loop

ptr_gridcolumn++;
ptr_treelist++;
ptr_farsite++;

}//end of for(ctr=O;ctr<:Ho:d•!any;ctr++)

)//end if(CellTestValue
) / /end for (c=l i C<=COLUMNS; c++)

)//end of for(r=l;r<=ROWS;r++)

fclose {READ_FLAME);

//Delete the TempCellid array from free store
delete [] TempCellid;

CellidND)

//---------=-===-----====-=====------------------------============-------------
// Delete the flame.grd file
system(SystemCall4);
//==---=============--==========

//Ok, the data is now stored in FarsiteValue[], so just spit those values back out

//open up the files to write to
WriteFlame = fopen(FlameFile, "w");

if (WriteFlame == NULL)
fprintf (.stderr, wopening of %s failed: %s\n", FlameFile, strerror(errno));

//write out the header data
fprintf(WriteFlame, "ncols\t\t%d\n" ,COLillINS);
fprintf(WriteFlame, ~nrows\t\t%d\n" ,ROWS);
fprint f (Wri teFlame, "xllcorner\ t%. 6lf \n", F _XLL) ;
fprint f (Wri teFlame, "yllcorner \ t%. 6lf \n", F _YLL) ;
fprint f (Wri teFlame, "cellsize\ t%d\n", CELL SIZE) ;
fprintf (WriteFlame, "NODATA_value\t%d\n", NODATAJ;

/ /get out of

for(r=l;r<=ROWS;r++}
{

ptr_srp =
HowMany =

StartColumn
ptr_colurnn =
ptr_farsite =

&link[r-1] [l];
* {ptr_srp+l);
Data. Gridcolurnn [(*ptr_srpj -1];
&Data.Gridcolurnn[("'ptr_srp)-1];
&FarsiteValue[{*ptr_srp)-1];

//If the whole row is blank, print out NODATA and goto next row

//not a pointer!

if(*ptr_srp ==FALSE) //means a zero was left in this spot during MakeLink
{

for (c=l; C<=COLUMNS; c++}

fprintf{l1riteFlame, "%d 11 ,NODATA);

//put in new lines
fprintf (WriteFlarne, "\n");

continue; //goto next row

//print out NODATA for those cells before data starts
for (c=l; C<StartColumn; c++)

fprintf (WriteFlame, "'td ",NODATA);

//set some counters
OutColwnn = StartColurnn;
ctr = 0;

//print out values for area on landscape by checking
/ ;value in Data.GridColurnn to match it with OutColumn value
do{

if (*ptr_column =°" OutColumn)
{

if { *ptr_farsite == 0 l

fprintf (WriteFlaroe, "%d ",NODATA);
else

fprintf (WriteFlaroe, "%hu ", *ptr_farsite);

ptr_farsite++:
ptr_column++;
OutColurnn++;
ctr++;

else //print out NODATA for the "gaps~

fprintf (WriteFlarne, "%d ",NODATA);
OutColurnn++;

}while (ctr J = HowMany) ;

I /Check to see how many columns are left to do
ColumnsLeft = COLUMNS - (OutColurnn-1);

if(ColurnnsLeft == OJ
{

fprintf (WriteFlarne, "\n");
continue; 11go to next row

//print out NODATA for those cells after the data that are left
for (c=O; C<ColurnnsLeft; c++ l

fprintf{WriteFlame, "%d 11 ,NODAT."'-);

//put in a new line
fprintf (WriteFlame, "\n"):

}//end of for(r=l;r<=ROWS;r++)

fclose(WriteFlarne);

//Delete the FarsiteValue array on free store
delete [J FarsiteValue;

return CellsHit;
)//end of CountFireHit

I I ** * * * * * * * * * * * ** * * * ** * * * * * * * * * * * * * * *

int Flameinterval (int f_feet)
I I ** ** *** * * * * * * * * * * * * * * *

{

/ /Will return an integer value that indicates what the 2' flame height group is.
//The return value is the upper group height, s~ a FlameFeet of >=0 to 2 = 2, J~4 =4, etc.

int group;
double INTERVAL= 2;
double Divide = 0;

if (f_feet <=2)
return 2;

278

Divide = (f_feet / INTERVAL),-

group= ((int) {ceil(Di•Jide))) * (int)INTERVAL;

return group;
)//end of Flarneinterval

279

I I***
void DoubleCheckVegcodes(void)
I I***
(

;•
Go through the entire Data.* {] arrays and make sure e·Jery cell has valid vegcode values
• I
int a,b;
ushort TempCode;
int TeropCover,TempDiam,TempVeg;
//-------------------------------- End of variable defining---

printf ("Getting ready to double check Vegcodes\n") ;

for(a=O;a<UNIQUE;a++)
(

if(Data.Cellid[a]
break;

FALSE)

if(Data.Treelist[a] == NONFOREST)
(

else

for(b=O;b<NP;b++)
(

if (Data. Vegcode [a] [b] ! = NONFORESTI

for(b=O;b<NP;b++}
(

printf I "NONFOREST has a bad veg code! \n"};

TempCode
or digit code from PREMO

Data.Vegcode[a] [b];

if(TempCode > 1061)
printf ("Problem with total TempCode\n");

//extract the digits out
TempCo·Jer = TempCode%10;

I/ The actual 3

//last digit for determining stage (is closure, <=60% or> 60%)
TempDiam = ((TempCode-TempCover}%100) / lO;

determining stage (is the QMD group)
//next to last digit also for

TempVeg = (TempCode-TempCode%100) / 100;
determining VegCode

if(TempCover > 1)
printf("Problem with COVER ?alue\n"/i

if(TempDiam > 6)
printf ("Problem with DIAM value\n'');

if (TempVeg > 10)
printf (''Problem with VEG value\n");

}//end for(a=O ...)

}//end DoubleCheckVegcodes

GOJ..L_CONTTWLLF.R "CP!:'

;•

This GOAL_CONTROLLER.CPP file will hold the functions that are used for the landscape

//1st digit for

optimization.

This file will hold the "PARENT" function that calls up the particular functions needed for particular landscape
goals we want to run.

Also, some functions that are fairly common to any goal and any heuristic are in here.

All heuristics used should employ the strategy of creating an array SOLUTION structures that has "X" records
where
•x• is a dynamic number reflecting the numbers of cells being e·Jaluated and the 4 columns are:

-cellid-treelist-goal-holdfor- This format can be used for any t:/Pe of spatial unit such as
subwatershed or for the entire basin.

*/

include <stdio. h>
#include <stdlib.h>
#include <string. h>
#include <time.h>
#include <Inath. h>
#include "globals.h"
#include "data.h"

//Functions declared here in goal_controller.cpp

280

void SwaplAdjust{ struct SOLUTION *ptr_cs, ushort NG, ushort NH, double Per'Jalues[], struct OPTIMIZE_SINGLE_VALUE
OV[],

void AsciiSaveGoalHold{void};
void BinarySaveGoalHold(void);

ulong Records, struct ERA *ptr __ era);

ulong CountSolutionWatersheds(ulong count, struct SOLUTION Solution[]);
int DecreaseShort{ulong count, ushort Short{] [GOALS] [HOLDNO]);
int DetermineEligibleCells (ulong Values []);
int Fill_PValues(ulong Count, struct SOLUTION CS[], ulong Records, struct OPTIMIZE_SINGLE_VALUE OV[], double
Value(]) ;
int Fill_SEra{ulong NoSub, struct ERA S_Era[], ulong Count, struct SOLUTION Cs[J) ;
int FillEndingEra{ulong NoSub, struct ERA S_Era[], ulong Count, struct SOLUTION CS[]) ;

int FillSolution(ulong Values[], struct SOLUTION Solution[], int Status);
int FillValueToOptimize (void);
double GetBaselineVTO(ulong count, struct SOLUTION Solution[], double PerValues[], struct OPTIMIZE_SINGLE_VALUE
OV[], ulong Records};
double GetSumBigTrees(ulong count, struct SOLUTION CS[], struct OPTIMIZE_SINGLE_VALUE OV[], ulong Records);

int InputSolution (ulong Count, struct SOLUTION CS []) ,:
void InputAndCalculateSolutionEras(ulong Count, struct SOLUTION CS[]) ;
int LookAtOSV(const void *ptrl, const void *ptr2);
int CornpareEraMinor(const void *ptrl, canst void *ptr2);
int LookAtSolutionMinor(const void *ptrl, const void *ptr2);
int LookAtSolutionCellid(const void *ptrl, const void *ptr2);
void PickPrescriptions (int goal);
void ReuseBestPrescription(int goal);
void PrintSolutionValues (ulong Count, struct SOLUTION CS [J, struct OPTD1IZE_SINGLE_VALUE OV[],

ulong Records, int SubEra[], int Status);
void PrintSolutionBigTrees!ulong Count, struct SOLUTION CS[], struct OPTIMIZE_SINGLE_VALUE OV[],

ulcng Reccrds, int SubEra[], int Status);
void PrintSolutionEraValues(struct ERA Era[], ulong NcSheds, int Status);

I I functions to manage for goals {in gcal *. cpp)
extern void Goall {void);
extern void Goal3 (void);
extern void Goal4 (void);
extern void ReuseGoal (int Goal);

//Function is used here first but was originally coded during FillPremoJutu(), so it is found in PremoStuff.cpp
extern int LookAtPrernoRecords { canst void *ptrl, canst void *ptr2);

//declared in EraStuff.cpp
extern void CalculateNetEras{ struct CURRENT_ERAS *CellEra 1 •

extern void CalculateDecayOnlyNetEras(struct CURRENT_ERAS *CellEra);

/ /Set in PremoStuff. cpp
extern ulong ITL;

I I**,.***********************
void PickPrescriptions(int goal)
I I**

I* "goal" meanings: =====:::=
1 = Max. Big Trees over entire watershed with subwatershed ERA constraint and w/thinning only of those stands <15"
in reserves
2 = Grow Only

* I

if(goal == 1)
{

puts (" \n \ t \ t *
******");

printf("\t\t*** GOAL ~l
*****\n");

printf(~\t\t*** Getting ready to pick prescriptions based on Maximizing' the# of Big- Trees over the
*****\n");

printf{"\t\t*** entire watershed while constrained to a 6th-field subwatershed ERA threshold.
*****\n");

printf{"\t\t*** And with CONSERVATIVE management in the reserves (thinning only in stands<= 15\")
*****\n");

printf(•\t\t*** Both Federal and Private lands are eligible and included in this simulation.
*****\n");

puts ("\ t \ t * * * ** * ** * * * * * * * * * * * * * * ** * ** * * * * *** ** ** * * * * * * * * * * * *
****\n\n");

Go all();

else if (goal == GROW_ONLY)

281

puts ("\n* * * * ** * * * * * * ** * * ** **
**"I;

printf(w*** GOAL #2
*****\n");

printf(U** This is a GROW-ONLY scenario. All stands s·:ill be assigned a StandGoal of. grow-only with
*****\nu);

printf("***

*****\n" l;
a HOLDFOR value of 0. Periodic disturbance will still be accounted f.or during growth.

puts ("* * * ** * * * ** * * * * * * * * * ** ** ********** **
\n\n" I;

ReuseGoal (goal); //Just use the ReuseGoal() function

else if (goal == FINNEY_EFFECT)

puts ("\n* * * ** * * * ** * * * * * * ** **
**"I;

printf (11 *** GOAL #3
*****\n");

printf (11 *** This is the FINNEY EFFECT scenario. All the \"Bricks\" on Federal lands were assigned the
*****\n");

printf(K*** the Reduce Fire Hazard stand prescription. All private lands were assigned the provide
*****\n");

printt ("*** a positive PN\! stand prescription - all other cells ,,.;ere assigned Grow Only.
*****\n•);

puts { • *,.. *
\n\n" I;

Goal3 11;

else if(goal == RX6)

puts ("\n* * * * * * * * * * ** * * ** * * * * * * * * * * ** *,,. ** * * * * *
**"I;

printf ("*** GOAL >4
*****\n");

printf(11 *** This goal is designed to mimic alternative 6 of. the Framework draft alternatives.
*****\n"l;

printf("*** All private lands were assigned the Provide Positve PNV goal. Federal lands were
*****\n");

printf("*** assigned stand prescriptions based on maximizing the the :If; of. Big Trees over
*****\n");

printf(11 *** the entire watershed while constrained to a 6th-field subwatershed ERA threshold and
*****\n");

printf(''*** some limitations on which prescriptions are allowed in particular areas.
*****\n" l;

puts (" * * * **** * * ** * * * * * * ** **
\n\n" I;

Goal4();

else
printf(•\nNo optimization routine developed for that goal yet\n" 1;

//Save the Goal-HoldFor values for entire landscape so I can reuse when running multiple simulatirJns and want same
data
if(FILE_TYPE == 1)
AsciiSaveGoalHold{);
else
BinarySaveGoalHold();

}//end PickPrescription

I I**
void ReuseBestPrescription(int goal)
I I**

/* "goal" meanings: ======::c=
1 = Max. Big Trees over entire watershed with subwatershed ER.Ls. constraint and w/thinning only of those stands <15"
in reserves
2 = Grow Only

* I

if(goal == 11
{

puts ("\n \ t \ t * * * ** ** * * * * * * ** ** * * * * *
******"I;

printf (w \t\t*** GOAL #1
*****\n");

printf(•\t\t*** Prescriptions were selected based on Maximizing the# of. Big Trees over the
*****\n");

printf(•\t\t*** entire watershed while constrained to a 6th-field subwatershed ERA threshold.
*****\n");

printf (w \t\ t*** And with CONSERVATIVE management in the reserves (thinning only in stands <= 15\ '')
*****\n");

printf{"\t\t*** Both Federal and Private lands are eligible and included in this simulation.
*""***\n");

puts { • \ t \ t * * * ** * * * * * * **
****\n\n•);

ReuseGoal (goal);

else if (goal == GROW_ONLY)
(

282

puts (• \n * ** ** * * * * * * ** * * * * * *
**");

printf(H**" GOAL #2
*****\n");

printf { ~*** This is a GROW-ONLY scenario. All stands will be assigned a StandGoal of grow-only with
*****\n");

printf (•***
*****\n");

a HOLDFOR value of 0. Periodic disturbance will still be accounted for during growth.

puts (a***

ReuseGoal (goal l ;

else if(goal == FINNEY_EFFECT)

puts { H \n * ** * * * * * * * * ** ** * * * * * * * * * * * * * * * ** * * * * * * ** * * * * * * ** * * * * * * * * *
**.);

printf("*** GO.e.L >3
*****\n");

printf(0 ** This is the FINNEY EFFECT scenario. All the \"Bricks\" on Federal lands were assigned the
*****\n");

printf("***
*****\n" l;

the Reduce Fire Hazard stand prescription - all other cells were assigned Grow Only.

puts ("* * * * * * * * * * * * * ** **
\n\n");

ReuseGoal (goal) ;

else if(goal :::;:; RX6)

puts ("\n * * * * * ** ** * ~ * * * * * * * * * * * * * * **
**");

printf("*** GOAL #4
*****\n");

printf("*** This goal is designed to mimic alternative 6 of the Framework draft alternatives.
*****\n"};

printf("*** All private lands were assigned the Provide Positve PNV goal. Federal lands were

printf{"*** assigned stand prescriptions based on maximizing the the# of Big Trees over
*****\n~};

printf("*** the entire watershed while constrained to a 6th-field subwatershed ERA threshold and
*****\n"};

printf("*** some limitations on which prescriptions are allowed in particular areas.
*****\n"};

puts ("* * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * ** ** * * * * * * * * * * * * * ** * * * * * * * * *
\n\n"};

ReuseGoal (goal) ;

else
printf ("\nNo optimization routine developed for that goal yet\n");

) //end ReuseBestPrescription

I I***

int Fill_SEra(ulong NoSub, struct ERA S_Era[], ulong count, struct SOLUTION CS[])
I I***+*******

/*
This function is designed to fill the S_Era[] structures with the initial subwatershed cumulative ERA va].-.ie for all
of those
subwatershed that are actually in the solution. Since the Equivalent Roaded Acre (ERA) value is suppose to be a
cumulative measurement, this function will ignore whether or not particular cells are included in the solution -
just whether or
not a cell is in a subwatershed that is in the solution.

In the draft document, "Eldorado National Forest: Cumulative Off-Site Watershed Effects (CWE) Analysis Process"
version 1.1
dated June, 1993, there was reference that they DID NOT include the acreages of wilderness in their ERA
calculations, but
after discussion with John Sessions we felt that we ti-:ILL include those acreages because the ERA is a cumulative
measurement.
However, this code could be modified to not count those acres if that is determined so later.

NOTE: Both CS{] and S_Era[] MUST be corning in sorted by Minor in ascending order
*/

int a, Number;
ushort CurrentValue;
struct ERA Key;
struct ERA *ptr_record;

//----------------------------End of variable defining--------------------------------
/ /printf ("Here in Fill_SEra\n'');
//**************** First thing is to grab all the unique subwatershed ID'S from CS[] ****************************

//Set CurrentValue to the first sub-watershed ID in CS

CurrentValue = CS[O] .Minor;
S_Era[O] .Minor= CurrentValue;
Number = l;
//printf ("Counting sub-watershed %hu\n", CS[O] .Minor);

for(a=O;a<(signed)Count;a++)
(

if(CS[a].Minor == CurrentValue)
continue;

else

//printf(NCounting sub-watershed %hu\n",CS[a] .Minor);
S_Era[Number] .Minor = CS[a] .Minor;
CurrentValue = CS[a] .Hinor;
Number++;

//don't count

printf ("In FillS_Era, there were %d subwatersheds counted - out of %d, Everything is ",Number, NoSub);

if(Number t= (signed)NoSub)
(

else

printf (" Not OK, ,bailing\n" ,Number);
Bailout(85);
return FALSE;

printf(N OK ... continuing\n\n");

//Since CS[] was sorted by Minor prior to coming to this function, I will assume that the Minor
//values that are now in S_Era[].Minor are in ascending order and can be BSEARCH with no problems.

283

//****************A***AAAAA* Now sum up the initial ERA's for each subwatershed in solution********************

for (a""O;a<UNIQUE;a++)
(

if(Data.Cellid[aJ
break;

FALSE I //No more cells to check

//Since there are no restrictions such as not counting wilderness, every cell has a contribution to
cumulative ERA

//as long as its su.lY.iJatershed is in the solution. Make a key with the subwatershed ID and search for it
Key.Minor= Data Minor{a];

//Use bsearch to find the matching subwatershed in the array of Era structures
ptr_record = (struct ERA*)bsearch/

&Key,
(void *) S_Era,
(size_ t) No Sub,
sizeof (struct ERA),
CompareEraMinor) ;

//A subwatershed may not be in the solution so this is difficult to say something is wrong - will assume
that a NULL

//pointer only happens for sub-watersheds not in solution and thus will skip to next cell (e.g. v,rater
bodies are never in solution)

if(ptr_record == NULL
continue;

//at this point we have a pointer at the proper S_Era structure and we have access to the
Data.InitialEra[] value.

ptr_record->SuminitialEra += Data.InitialEra[a]; //Sum up the InitialEra[J for this
subwatershed

ptr_record->Count ++;

//and track how many total cells are being summed per subwatershed

}//end for(a=O ... }

return TRUE;
}//end Fill_SEra

I I** A A A**

int FillEndingEra(ulong NoSub, struct ERA S_Era[], ulong Count, struct SOLUTION CS[])
I I***

(

/*
NOTE: Both CS[] and S_Era[] MUST be coming in sorted by Minor in ascending order

This function is basically a copy of Fill_SEra{) except this only gets called at the end of a simulation.
The difference is that this functions wants to sum up the Data.Era[J [J values for thosP.
cells in the solution,
* I

int a, b, Number;
ushort CurrentValue;
struct ERA Key;
struct ERA *ptr_record;

//----------------------------End of variable defining --------------------------------
//**************** First thing is to grab all the unique subwatershed ID's from CS[J ****************************

//Set CurrentValue to the first sub-watershed ID in CS
CurrentValue = CS(0] .Minor;
S_Era [0] .Minor = CurrentValue;
Number = l;
/ /printf (MCounting sub-watershed %hu\n", CS {0] . Minor);

for (a=O; a< (signed) Count; a++)
{

if(CS[a] .Minor== CurrentValue)
continue;

else

/ /printf ('1Counting sub-watershed %hu \n", CS [a] .Minor) ;
S_Era[Number] .Minor CS[a] .Minor;
CurrentValue
Number++;

= CS(a] .Minor;

//don't count

printf ("In FillS_Era, there were %d subwatersheds counted - out of %d, Everything is ",Number, NoSub};

if (Number ! = (signed}NoSub l
{

else

printf(" Not OK .. bailing\n" ,Number};
Bailout(85};
return FALSE;

printf(" OK ... continuing\n\n");

I I Since CS [] was sorted by Minor prior to coming to this function, I '.~•ill assume that the Minor
//values that are now in S_Era[] .Minor are in ascending order and can be BSEARCH •,,,.ith no problems.

284

//************************** Now sum up the initial ERA's for each sub,.vatershed in solution********************

for (a=O; a-<UNIQUE; a++)
(

if(Data Cellid(a]
break;

FALSE) / /No more cells to check

//Since there are no restrictions such as not counting wilderness, every cell has a contribution to
cumulative ERA

//as long as its subwatershed is in the solution. Make a key with the sub,satershed ID and search for it
Key .Minor = Data .Minor [a];

//Use bsearch to find the matching subwatershed in the array of Era structures
ptr_record = {struct ERA*)bsearch(

&Key,
(void *) S_Era,
(size_t)NoSub,
sizeof { struct ERA).
Com:pareEraMinor);

//A subwatershed may not be in the solution so this is difficult to say something is wrong - will assume
that a NULL

/ /pointer only happens for subwatersheds not in solution and thus will skip to next cell (e.g. water
bodies are never in solution)

if(ptr_record == NULL
continue;

/ /at this point •,,.,,e have a pointer at the proper S_Era structure and we have access to the
Data InitialEra[] value.

for(b=O;b-<NP;b++)
ptr_record->SumPeriodEra[b] += Data.Era[a] [bl; //Sum up the periodic Data.Era[][]

valuesfor this subwatershed

ptr_record->Count ++;
//and track how many total cells are being summed per subwatershed

)//end for(a=O ... I

return TRUE;
) //end FillEndingEra

I I********************'**

int Fill_PValues(ulong Count, struct SOLUTION CS[], ulong Records, struct 0PTIMIZE_SINGLE_1/ALUE OV[J, double
Value[])
/ / * * * * * * * * * ** * * * ** * ** * * * * * * * * * * *******I<**

(

/*
This function is designed to go through the current solutio~ stored in CS[] and tally up the sum total value, for
all the
different prescriptions found. This is done by making a key from CS and looking for that key in the OV[] structure
and
looking at the Value(] member in there

NOTE: CS(] is sorted by Cellid in ascending order & OV[] sorted by TREELIST-GOAL-HOLD
* I

int a,c;

I I structure stuff
struct OPTIMIZE_SINGLE_VALUE Key;
struct OPTIMIZE_SINGLE_VALUE *ptr_key;

//----------------------------End of variable defining--------------------------------

285

//----------- Now go through the CS [] structures and tally up the Optimizing Value for those cells in the solution

for(a=O;a<(signed}Count;a++l
(

//Now make a key to look up the Optimizing value for this particular stand prescription in the array of
OV structures.

Key.Treelist
Key.Goal
Key.Hold

CS[a] .Treelist;
CS[a] .Goal;
CS [a I . Hold;

//Now use bsearch to find the matching record in the array of OV structures
ptr_key = {struct OPTIMIZE_SIN8LE_VALUE*)bsearch(

&Key,
(void *)OV,
(size_t)Records,
sizeof(struct OPTIMIZE SINGLE_VALUE),
Look.A tOSV) ;

if (ptr_key == NULL)
Bailout(86);

else

//There had better be one!

//Track the Value being optimized which returns back to heuristic as Pervalues[]
for(c-O;c<NP;c++)

Value[c] +- ptr_key->Value[c];

}//end for(a ... I

return TRUE;

}//end Fill_PValues

I I**

ulong CountSolutionWatersheds(ulong count, struct SOLUTION Solution[])
I I**

(

/*
This will count up return the. number of sub-watersheds that are actually in the current
solution. The difference with the CountSubWatersheds() (in Misc.cpp) is that here those
GIS slivers and water bodies that were considered sub-watersheds are not counted.

This function will assume that the array of Solution structures has been sorted by the
.Minor member .
*/

int a, Number;
ushort CurrentValue;

//----------------------------End of variable defining -------------------------------­

//Set CurrentValue to the first sub-watershed ID in Solution
CurrentValue - Solution[O] .Minor;
Number = l;
//printf (MCounting sub-watershed %hu\n" ,CurrentValue);

for (a=O; a< (signed) count; a++)
(

if(Solution[a].Minor
continue;

else

CurrentValue)

//printf ("Counting sub-watershed %hu\n", Solution [a] .Minor) ;
Number++;
CurrentValue ~ Solution[a].Minor;

//Print stuff to the stats. txt file
PrintToStat (4, (ulong)Number);

return (ulong) Number;
}//end CountSolutionWatersheds

I I**

int DetermineEligibleCells (ulong Values [])
I/***"'***** r• r**

/*
Depending on the GOAL_TO_USB, this function will go through the landscape and determine
some values that will be placed in the Values[) array and can then be used to
dynamically allocate space in the SOLUTION structure that will be created later.

NOTE: This function can be used for all goals and anytime in during simulation when
outputs are needed to mimic the starting conditions (e.g. to get the potential BigTrees
given the initial landscape and using different goal scenarios - in OutputPreSirnData)

//don·t count

int a;

ushort "'ptr_minor, *ptr_alloc, *ptr_stage, *ptr_buffer, *ptr_owner;
ulong *ptr_treelist, *ptr_cellid;
ulong AllocOK=O, AllocNOK=O, CellsinShed=O;

//---------------------------------- End of variable defining-------------------------------

if(GOAL_TO_USE cc 1)
(

for (a=0; a<UNIQUE; a++)
(

ptr_alloc =
ptr_minor :
ptr_treelist
ptr_stage =
ptr_buffer
ptr_cellid =

if (*ptr_cellid
break;

CellsinShed++;

&Data.Alloc [a];
&Data.Minor [a.];

&Data Tree list [a];
&Data.InitialStage[a];

&Data.Buffer[a];
&Data.Cellid[a];

FALSE:,

if (*ptr_minor =e:: V'JATER_BODY 11 *ptr_:minor == NODATAFLAG I I
one of those sliver subwatersheds

*ptr_alloc == ALLOC_\tHLD 11 *ptr_treelist •= NONFOREST
Wilderness or Treelist 209 or

(*ptr_alloc == ALLOC_RESERVE && *ptr_stage > 9)

//if in LSR and >15" QMD or
(*ptr_buffer == IN_BUFFER && *ptr_stage > 9) J

//if in BUFFER and >15" QMD ...
AllocNOK++;

//':'hese ARE NOT eligible
else

AllocOK++;

else if (GOAL_TO_USE == GROW_ONLY)
(

for (a=O; a<trnIQUE; a++}
{

ptr_alloc =
ptr_minor =
ptr_treelist
ptr_cellid =

if { *ptr_cellid
break;

CellsinShed++;

&Data.Alloc[a];
&Data .Minor[a.];

&Data. Treelist [a];
&Data.Cellid[a];

FALSE)

if (*ptr_minor == WATER_BODY I I *ptr_minor == NODATAFLAG
one of those sliver subwatersheds,

II

Wilderness or NONFOREST
*ptr_alloc == .Z!..LLOC_':ilILD I I *ptr_treelist =;; NONFOREST

AlLicNOK++;

else
AllocOK++;

else if (GOAL_TO_USE == FINNEY_EFFECT)

for (a=O; a<UNIQUE; a++)
(

/ /These ARE NOT eligible

ptr_owner = &Dcttct.Owner[ct];
ptr_treelist &Data.Treelist[a];
ptr_cellid = &Data.Cellid[ct];

it (*ptr_cellid FALSE)
break;

CellsinShed++;

11

286

//if a lake or

//if

1 I

//if a lake or

//if

if (*ptr_owner == 0%N_PI I I *ptr_treelist == NONFOREST)

AllocNOK++;

// if privctte lands \both PI and
PNI) or nontorest

//These ARE NOT eligible
else

AllocOK++;

else if (GOAL_TO_USE == RX6)
(

for (a=O; a<UNIQUE; a++)
(

ptr_owner =
ptr_treelist
ptr_cellid =

if ("'ptr_cellid

&Data.Owner[a];
&Data Treelist[aJ;
&Data Cellid[a];

FALSE)

PNI) or nonforest

break;

CellsinShed++;

if (*ptr_owner .= .. 01/ill_PI 11 *ptr_treelist ="' NONFOREST

AllocNOK++;

//if private lands (both PI and

//These ARE NOT eligible
else

AllocOK++;

else
return FALSE;

//Fill the Values array in this order:
Values[O] = AllocOK;
Values[!] = AllocNOK;
Values[2] = CellsinShed;

return TRUE;
)//end DetermineEligibleCells

I I**
int FillSolution(ulong Values[], struct SOLUTION Solution[], int Status)
I I**

(

/*
This function fills up the array of SOLUTION structures for a goal. What always gets
filled is the Minor, Cellid, and Treelist Villues When this function is Cillled up with
Status== FAKE, then it is being called after the landscape optimization (i.e. during
OutputPre- or PostSimAnalysisData) and the Goal & Hold were already found so they will be
filled as well.

Also, for the Grow Only goal (Goal2), the Goal & Hold values can be used from what was
put in during initialization of the Data*.[] arrays - because Goal 9 and Hold O was used.
*/

int b;

ushort *ptr_minor, *ptr_alloc, *ptr_stage, *ptr_buffer, *ptr_goal, *ptr_hold, *ptr_ov,ner, *ptr_rule;
ulong *ptr_treelist, *ptr_cellid;
ulong AllocOK=O, AllocNOK=O, EligibleCell, CellsinShed=O;

287

//-------------------------------- End of variable defining---

//Set some variables from the incoming Values array
AllocOK = Values [O];
AllocNOK = Values[l];
CellsinShed = Values [2];

EligibleCell=O;
if IGOAL_TO_USE 1)
(

for(b=O;b<UNIQUE;b++)
(

this cell
ptr_cellid =

ptr_treelist

ptr_minor =
ptr_alloc =
ptr_stage =
ptr_buffer
ptr_goal =
ptr_hold =

&Data.Cellid(b]:

&Data.Treelist [b];

/ /ptr_cellid has the cellid for

/ /ptr_treelist has the treelist
value for this cell

&Data. Minor {b] ;
&Data.Alloc[b];
&Data.InitialStage[b];

&.Datil. Buffer [b];

if (*ptr_cellid == FALSE)
(

&Data. Goal [b];
&Data.Hold[b];

if (EligibleCell ! = AllocOK}
Bailout (51};

else
break;

out, no more valid cells in Data.* array

if (*ptr_minor == Wl>.TER_BODY I r *ptr_minor == NODATAFLAG 11
a lake or one of those sliver subwatersheds

*ptr_alloc == ALLOC_V-iILD I I *ptr_treelist == NONFOREST
//if Wilderness or NonForest er

{*ptr_alloc == ALLOC_RESERVE && *ptr_stage > 9)
//if in LSR and >15" QMD or

{*ptr_buffer == IN_BUFFER && *ptr_stage > 9)
//if in BUFFER and >15" QMD ...

/ /just break

11

11

continue;
//look at next cell
else

Solution(EligibleCell] .Minor
Solution(EligibleCell] .Cellid
Solution [EligibleCell] . Treelis t

*ptr_minor;
*ptr_cellid;

= *ptr_treelist;

288

//Put in the Goal and Hold values found during landscape optimization when reusing a
solution already found

if (Status
{

FAKE}

Solution[EligibleCellJ .Goal
Solution[EligibleCell] .Hold

Elig ibleCell++;

if(EligibleCell

) //end for (b=O;b<t.JNIQUE;b++)

else if (GOAL_TO_USE =::; GROW_ONLY)

for (b=O ;b<UNIQUE;b++)
{

AllocOK}
break;

ptr_cellid = &Data.Cellid[bJ;
this cell

value for this cell
ptr_treelist

ptr_minor =
ptr_alloc =
ptr_goal =

&Data.Treelist [bl;

if { *ptr_cellid == FALSE)
{

&Data .Minor [b];
&Data. Alloc [b];
&Data.Goal[b];

if(EligibleCell != AllocOK}
Bailout(Sll;

else
break;

out, no more valid cells in Data.* array

"ptr_goal;
*ptr_hold;

//done

//ptr_cellid has the cellid for

//ptr_treelist has the treelist

//just break

if (*ptr_minor ""= W."'.TER_BODY 11 "ptr_minor == NODATAFLAG
a lake or one of those sliver subwatersheds

11 / /if

*ptr_alloc == ALLOC_ 1/JILD 11 ~ptr_treelist :::= NONFOREST
I I if Wilderness or NonForest er

continue;
//look at next cell
else

Solution[EligibleCell] .Minor
Solution[EligibleCell) .Cellid
Solution[EligibleCell} .Treelist

Solution[EligibleCell).Goal
Only, the Goal & Hold were initialized with correct values

Solution[EligibleCell] .Hold

//NOTE: No need to have if(Status
matter what

EligibleCell++;

if{EligibleCell AllocOK)
break;

) //end for{b=O;b<TJNIQUE;b++l

else if {GOAL._TO_USE == FINNEY_EFFECT)

this cell

for(b=O;b<UNIQUE;b++)
(

ptr_cellid =

ptr_treelist

&Data.Cellid[b];

value for this cell
&Data.Treelist[b];

&Data.Minor[b];
&Data. Owner [b] ;
&Data. PF.ule [b];
&Data. Goal [b J ;

ptr_minor -
ptr_owner =
ptr_rule
ptr_goal =

if (*ptr_cellid == FALSE}
{

if (EligibleCell ! = AllocOK)
Bailout (51) ;

else

*ptr_minor;
"'ptr_cellid;

*ptr_treelist;

*ptr_goal;

D;

/ /For Grow

FAKE) - the goal & hold get filled above no

//done

//ptr_cellid has the cellid for

//ptr_treelist has the treelist

289

break;
out, no more valid cells in Data.* array

//just break

for the

something

PNI) or nonforest

be used directly

to maintain

matter what

}

//6 Mar 00: Klaus suggested giving all private lands the PNV stand goal prescription because

//Framework those lands are PI and they are doing cutting, so this will at least simulate

if { *ptr_owner == OWN_PI 11 *ptr_treelist == NONFOREST) /; if private lands \both PI and

else

if (*ptr_owner == OWN_PI)
"'ptr_goal = SG_PN'il;

continue;
I/look at next cell

Solution[EligibleCell] .Minor
Solution [EligibleCell J . Cell id
Solution[EligibleCell] .Treelist

/*

*ptr_minor;
*ptr_cellid;

= "'ptr_treelist;

OK, this may seem weird - but oata.PRule[), had either a 1 or 10 value and that can

as the stand goal for eligible cells, However, they must have l subtracted from them

the numbering system used for the stand goals.
* I
Solution [EligibleCell] . Goal
Solution [EligibleCell j . Hold

//NOTE: No need to have if (Status

EligibleCell++;

if (EligibleCell AllocoK;,
break;

(*ptr_rul-e) - l;
O;

FAKE) - the goal & hold get filled above no

//done

}//end for(b=O

else if(GOAL_TO_USE ~= RX6)
(

for(b=O;b<UNIQUE;b++)
(

this cell

value for this cell

ptr_cellid =

ptr_treelist

ptr_minor =
ptr_o'WI'ler =
ptr_rule
ptr_goal =
ptr_hold =

&Data.Cellid[b];

&Data Treelist [b];

&oata.Minor(b];
&Data. Owner [b];
&Data. PRule [b];
&Data.Goal[b];
&Data.Hold[b];

if (*ptr_cellid == FALSE)
(

if(EligibleCell != AllccOK)
Bailout(Sl);

else

//ptr_cellid has the cellid for

//ptr_treelist has the treelist

break;
out, no more valid cells in Data.* array

//just break

for the

something

PNI} or nonforest

}

//6 Mar 00: Klaus suggested giving all private lands the PNV stand goal prescription because

//Framework those lands are PI and they are dcing cutting, so this will at least simulate

if (*ptr_owner == ONN_PI I I *ptr_treelist == NONFOREST) //if private lands (both PI and

else

if (*ptr_m,Jner == OWN __ PI)
*ptr_goal = SG_PNV;

continue;
//look at next cell

Solution[EligibleCell] .Minor
Solution[EligibleCell] .Cellid
Solution[EligibleCell] .Treelist

/*

::a *ptr_minor;
*ptr __ cellid;

= *ptr_treelist;

OK, this may seem weird - but oata.PRule[], has values 1 thru 10 in it, •..,•hich
represent the Maximum stand

goal l or 2).

for the stand goals.

goal prescription# that a cell can have (e.g. a value of 2 means it can have stand

However, they must have 1 subtracted from them to maintain the numbering system used

290

* I
Solution[EligibleCell] .MaxGoal = (*ptr_rule J - l;

//Put in the Soal and Hold values found during landscape optimization when reusing a
solution already found

if (Status
{

FAKE)

Solution [EligibleCell] Goa.l
Solution[EligibleCelil.Hold

*ptr_goal;
*ptr_hold;

EligibleCell++;

if (EligibleCell AllocOK)
break;

//done

}//end for(b=O ... I

else
return FALSE;

return TRUE;
}//end FillSolution

int FillValueToOptimize (}
//**

/*
NOTE: Can be used for either a Subwatershed or Watershed search

This function will create a shortened version of the Premo data that was created
in the CreateSortedPremoBinaryFile () function. That structure has a different
record for every Treelist-Goal-Hold-Period. combination whereas this function will
create an array of structures that has Treelist-Goal-Hold-Value[NP)-BigTrees[NP]-Rev[NP], and CFHarvest[NP].
Only the Treelist-Goal-Hold differentiate r.ew records. The value that is placed
in the*[] .Value[] spot is that value being OPTIMIZED. So for example, in goal 1 it will be the #of
BigTrees. The value in*(] .BigTrees[] will always be the #-of BigTrees (so for goal l, it will have the
same data as in * [] . Value [])

NOTE: The value stored will always be USHORT to help ir. reducing processing time.
Once a solution has been found, FillPrernoData { / wi 11 enter the real data as float or ushort.

Once this array of structures is completed and sorted, it will be written out to
a binary file to be used later on during the landscape optimization. Could recode later to
pass a pointer to a structure but this is OK for now.
•;

I I IO variables
FILE *Binin, *Headerin, *Index, *BinOut, *HeaderOut;
char Temp[256];
ulong RecordNo;

//structures
struct PREMO_RECORD Key;
struct PREMO_RECORD *ptr_key;

int count, goal, Hold;
int ScanStatus,IndexNo, ctr;
ushort Per;
ulong Record;
ulong POT;

I /For Time information
clock_t Start, Finish;
double Duration;

//for misc counting
int x=O, y=O;

//------------------------- end variable defining------------------------------------

//calculate the global POT - this is how many actual structures (or records) are in the InitOpt array of structures
POT= ITL *GOALS* HOLDNO;
//printf("So I just set POT to value of 'tlu\n",POT);

//++++++++++++++++++++ The "smaller" structure to hold value being optimized and BigTrees
+++++++++++++++++++++++++++
//declare and Initialize the arra.::i,, ofinitOpt[] structures - this is a compact version of the Pinv structure further
below
struct OPTIMIZE_SINGLE_VALUE (*InitOpt) = new struct OPTIMIZE_SINGLE_VALUE[POT];
if{InitOpt == NULL)

print£ ("Problems allocating memory for InitOpt with %lu records\n", POT);

memset (InitOpt, 0, sizeof (struct OPTIMIZE_SINGLE_ 1IALUE) * POT);

//+++++++++++++++++++ The original structure that holds all the Premo data+++++++++++++++++++++++++++++++++++

//Read in the binary file created by CreateSortedPremoBinaryFile(J - it has all the data for the initial stands in
it

291

//See PremoStuff.cpp - I originally created this process to read in the Premo data so more info is located there

//Create and Open the Header and actual Binary file with PREMO data in it
Sprintf (Temp, "%s%s\ \Binary\ \%s_Premo. bin", PREFIX, InitialStandDataDir, ENVT};
Binin-= fopen(Temp, "rb"):

sprintf (Temp, N %s%s\ \Binary\ \'ts_Premo. hdr", PREFIX, InitialStandDataDir, ENVT);
Headerln = fopen(Temp, "r"l;

I /Get the Number of records that are listed in the header file
fscanf (Header In," %lu 1

·, &RecordNo);

//Create an array of structures on the free store to hold these records
struct PREMO_RECORD [*Pinv) : new struct PREl'-fO_RECORD[RecordNo];
Potential Inventory
if (Pinv == NULL)

//Pinv stands for

printf("Problems allocating memory for Pinv[] with %lu elements\n",RecordNo*sizeof(PREMO_RECORD));

//Initialize a couple of things
rnemset(Pinv, 0, sizeof(struct PREMO_RECORD) * RecordNo) ; //array of structures to hold all the input data
memset(&Key, 0, sizeof(struct PREMO_RECORD)) ; //Key to use for searching for a particular
record in Pinv

//Now just read in the binary data the same way it was written out in CreateSortedPrernoBinaryFile()
fread(Pinv, sizeof(PREMO_RECORD) ,RecordNo,Binin);

I I close up the files
fclose (Binin):
fclose(Headerin);

//Set an error checker to check the value of RecordNo
if(RecordNo !=POT* NP

Bailout(78);

//NOTE: Pinv is sorted by: Treelist - Goal - Hold - Period

I /Create a shortened version of Pinv by placing equivalent data in the array ofinitOpt structures. That way
InitOpt can be sorted
/ /and there will be few records to BSEARCH through because the values to optimize on will ALL be stored in the
//InitOpt->Value[} array (which is accessible by finding only one record, not NP records!)

//I am assuming that a " ... \treeindex.txt'' file exists (made during InitialStandOpt()
sprintf (Temp, "%s%s%d\ \perO\ \%s", PREFIX, INPUTS, GOAL_TO_USE, TREE_INDEX);
Index = fopen(Temp, "r");

if (Index == NULL)
fprintf(stderr, "opening of %s failed(FillValueToOptimize{)) : %s\n 1

·, Ternp,strerror(errnol J;

// First go through the file and COUNT the number of treeindexes
count = O;
while ((ScanStatus=fscanf (Index,•· %d", &IndexNo !) ! =EOF)

count = ++count;

// Rewind the file pointer so it is back at the beginning of the file
rewind (Index) ;

/ /An error checker - these two should match
if(ITL != (unsigned)count)

Bailout(79);

// Start looking at each initial treelist, and for each Goal and Hold corobo, fill in the array of InitOpt
structures with
//the corresponding data in the array of Pinv structures.
Record=O;
for(ctr O; ctr< count; ctr++) //for each treelist
{

fscanf(Index,~tdM 1 &IndexNo);
watch out for treelist > 65,530

//scan in the value - if this function used later,

for (goal=O; goal<GOALS; goal++ J
{

for (Hold=O; Hold<4; Hold+=J)
(

;/for each goal

//for the ''HoldFor" periods

//Start to fill in the array of InitOpt structures with the above data - this is an
OPTIMIZE_SINGLE_VALUE type

InitOpt [Record] . Treelist
InitOpt [Record] .Goal
InitOpt[Record] .Hold

(ulong) IndexNo;
(ushort) goal;

= (ushort) Hold;

I I Start to make a key for this combination of IndexNo - goal - Hold - Elev
//The key is a PREHO_RECORD type so it can look through the Pinv structure
Key.Treelist \ulong)IndexNo;
Key.Goal {ushort)goal;
Key.Hold (ushortiHold;

for(Per=O;Per<NP;Per++)
(

//Finish off the Key with the period
Key.Period = (ushort)Per;

structures

from the record ptr_key points to

//Now use bsearch to find the matching record in the array of Pinv

ptr_key = (struct PREMO_RECORD*)bsearch(
&Key,
/void *)Pinv,
(size_t) RecordNo,
sizeof(struct PREMO_RECORD),
Look.AtPremoRecords) ;

if(ptr_key == NULL)
Bailout(75);

//********************************** actual Value to OPTIMIZE

//Fill in the current InitOpt[Record] .Value[Per] with the correct value

if(GOAL_TO_USE == l I

292

InitOpt[RecordJ .Value[Per]
//divide by BIGTREES_EXP when done

(ushort} (floor (ptr_key->BigTrees
* ACREEQ));

else if \GOAL_TO_USE == GROW_ONLY)
InitOpt[Record] .Value[Per] O;

//Grow Only, no need to put anything here
else if (GOAL_TO_USE ==- FINNEY_EFFECT)

InitOpt[Record] .Value[Per] O;
//using the "bricks", no need to put anything here
else if(GOAL_TO_USE == RX6)

InitOpt[Record] .Value[Per]
//divide by BIGTREES_EXP T.-,.1hen done

= (ushort) (floor(ptr_key->BigTrees
* ACREEQ) I;

else
Bailout (62);

//*********************************The# of Big Trees

that record ... NO matter what goal!
//And then fill InitOpt[Record] .BigTrees[Per] with the #of BigTrees for

InitOpt[Recorct] .BigTrees[Per] = (float) (ptr_key->BigTrees * ACREEQ};
//need to divide by BIGTREES EXP when done

//********************************* The associated REVENUE

//If the revenue is (-), then just make it O ... also make sure no values
over ushort get in

if (ptr_key->Rev < O)
InitOpt[Record] .Rev[Per]

else if(ptr_key->Rev > 65530)
InitOpt[Record] .Rev[Per]

else

(ushort) O;

(ushort) 65530;

InitOpt[Record] .Rev[Per] (ushort)ptr_key->Rev;

//********************************* The associated CFHarvest

//If the harvest is (-) , then just make it O (should never happen!) ... also
make sure no values over ushort get in

(ushort}65530;

(ushort)ptr_key->Harvest;

if(ptr_key->Harvest < 0
InitOpt[Record] .CFHarvest[Per]

else if/ ptr_key->Harvest > 65530)
InitOpt[Record] .CFHarvest[Per]

else
InitOpt[Record] .CFHarvest[Per]

}//end for{Per=O;Per<NP;Per++)

Record+-+;
period values for one Treelist-Goal-Hold combo are entered

} //end of for (HoldPeriods.
}//end of for(goal. ...
//end of for(ctr ...

Start clock ();

//***** Sort the array of InitOpt structures by Treelist-Goal-Hold

qsort ((void*) Ini tOpt,
//base

(size_t) POT,
/ /count of records

Finish= clock(li

sizeof (struct OPTIMIZE_SINGLE_VALUE) ,
LookAtOSV) ;
//compare function

Duration= ((double} (Finish-Start) / CLOCKS_PER_SEC) ;
//printf("***Finished sorting in %.2lf seconds\n",Duration);

//close the treeindex.txt file
fclose (Index);

//Create the output Binary file and header file

(ushort) 0 i

//increment onl::_; ,.-,·hen all

//size of each record

sprintf (Temp, "%s%s\ \Binary\ \%s_InitOpt .bin", PREFIX, InitialStandDataDir, ENVT);
BinOut = fopen (Temp, "wb");

sprintf (Temp, "%s%s\ \Binary\ \%s_Init0pt. hdr", PREFIX, InitialStandDataDir, EN\l"T);
HeaderOut = fopen(Ternp, "w");

//Write out the header data -- need to know hew many records there are
fprintf (HeaderOut, "'tlu\nN, POT};

//And now write out all the records in the array of Inv structure
fwrite(InitOpt, sizeof(OPTIMIZE_SINGLE_VALUE:1 ,POT,BinOut);

fclose(BinOut);
fclose(HeaderOut);

//delete any arrays on free store
delete [] InitOpt;
delete [) Pinv;

return TRUE;

} //end of FillValueToOptimize(}

//********************************~ ~ ~ ~ ~ ~ ~ **~ ********************************"*****************
int LookAtOSV(const void *ptrl, canst void *ptr2)

I/************************** ''''''''''''''***************************'********************
{

/ /Will qsort or bsearch an O:?TIMIZE_SINGLE_VJI.LUE (OSV) type by Treelist-Goal-Hold

//Just to typecast them since we aren't actually passing in pointers
struct OPTIMIZE_SINGLE_VALUE *eleml;
struct OPTIMIZE_SINGLE_VALUE *elem2;

eleml
elem2

{struct OPTIMIZE_SINGLE VALUE *lptrl;
(struct OPTIMIZE_SINGLE_VALUE *) ptr2;

if(eleml->Treelist < elem2->Treelist
I /First sort by Tree list

return -1;
if(eleml->Treelist > elem2->Treelist

return 1;
else

//Then by Gcal

if (elernl->Goal < elem2->Goal .1

return -1;
if(elernl->Goal > elem2->Goal)

return 1;
else

/ /Then by Hold

if(eleml->Hold < elem2->Hcld

return -1;
if(eleml->Hold > elerr~->Hcld

return 1;
else

return O;

//FINISHED!
)//end Hold

)//end Goal

)//end LookAtOSV

I I**
int LookAtSolutionMinor(const void *ptrl, const void *ptr2)

I I***'''*****'**'****************''*******************
(

//Will qsort or bsearch an SOLUTION type by Miner in ascending order

I /Just to typecast them since •.'le aren't actually passing in pointers
struct SOLUTION *eleml;
struct SOLUTION *elem2;

eleml
elern2

(struct SOLUTION *)ptrl;
(struct SOLUTION *)ptr2;

if (eleml->Minor < elem2->Minor
/ /First by Minor

return -1;
if (eleml->Minor > elem2->Minor

return 1;
else

return a;
//FINISHED!!

}/ /end LookAtSolutionMinor

293

I I*********************************~~***
int LookAtSolutionCellid(const void *ptrl, const void *ptr2)
I I**

//Will qsort or bsearch an SOLUTION type by cellid in ascending order

/ /Just to typecast them since we aren't actually passing in pointers
struct SOLUTION *eleml;
struct SOLUTION *elem2;

eleml
elern2

(struct SOLUTION *)ptrl;
(struct SOLUTION *)ptr2;

294

if (eleml->Cellid < elem2->Cellid
return -1;

//First by Cellid

if (eleml->Cellid > elem2->Cellid
return 1;

else

return O;
I I FINISHED l l

}//end LookAtSolutionCellid
I I*********************************~~***
int CompareEraMinor(const void *ptrl, const void *ptr2J
I I**

//Will qsort or bsearch an ERA type by minor in ascending order

//Just to typecast them since we aren't actually passing in pointers
struct ERA *eleml;
struct ERA *elem2;

elem!
elern2

(struct ERA *)ptrl;
(struct ERA *)ptr2;

if(eleml->Minor < elern2->Minor)
Minor

return -1;
if(eleml->Minor > elern2->Minor i

return l;
else

} //end LookAtEra

return D;

//FINISHED!!

//First sort by

I I**~**~**~***~~********~**************~*******************************
* * * * * * * * * * * * * ** * *
double GetBaselineVTO(ulong count, struct SOLUTION Sclution[], double Per 1Ialues [], struct OPTIMIZE_SINGLE_VALUE
av [] , ulong Records)
I I***

/*
This function can be used for any goal that has a single value to cptimize and actually
used FillValueToOptimize() (which create the array of structures currently being passed in as OV[]i.
*/

ulong a;
double SwnValue = O;
double Baseline, ReturnBaseline;

II------------------------------- End of variable defining------------------------------­

/*
int x,y;
printf("\n\n**** AND NOW the OV structures in GetBaselineVTO! ! \n");
for (x=O; x<3 O; x++)
(

printf("OV[%d] :\t%lu\t%hu\t%hu", x, OV[x] .Treelist, OV[x] .Goal, OV[x] .Hold);
for(y=O;y<NP;y++)

printf ("\ t%hu", OV [x] . Value [y]);
printf(''\n");

printf("There are %lu records in the OV array\n",Records);

printf("\n\n**** AND NOW the Solution structures in GetBaselineVTO! ! ! ! \n");
for(x=O;x<30;x++)

printf("Solution['td] :\t%hu\t%lu\t%lu\t%hu\t%hu\n", x, S:::iluti::m[x] .Minor, Solution[x] .Cellid,
Solution[x] .Treelist,

Solution[x] .Goal, Solution[x] .Hold);
*/

if I GOAL_TO_USE == 1)
(

/ /Call up GetSurnBigTrees () to help determine a baseline to use for Big Tree goals
Baseline = GetSurnBigTrees (count, Soluti::m, OV, Records);

else

I !Sum up the PerValues values and get the SumValue tc use in caluculating a single Avgvalue that
represents

//the total deviation of all periodic "values" from a constant level.
for(a=O;a<NP;a++l

SumValue += PerValues [aJ;

Baseline = (SwnValue / NP};

)/ /end else(GOAL_TO_USE ==l)

//Make adjustments to the baseline as needed
ReturnBaseline - Baseline* BASE_ADJ;

return ReturnBaseline;
} //end GetBaselineVTO

295

//***

double GetSumBigTrees (ulong count, struct SOLUTION CS [], struct OPTIMIZE_SINGLE_Vll..LUE OV [] , ulong Records)

//***

(

/*
The ideal of this function is to find the SUM number of BigTrees (for all cells} per period.
The SUM will include using: 1) a grow only scenario (goal 9;, 2) a Reduce
Wildfire only scenario (goal 0), and 3) enhance Fish Habitat only scenario(gcal 2) - adding
the# of trees, at cell acre equivalent/ per period and dividing by 3. This will give me
something of an naverage SUM" which can then be used during the optimizaticn.
* I
int a, b, c, y, goal, hold;

float TempPeriodTotals[NPJ, SumBigTrees[NP];
double LargestSum=O;

struct OPTIMIZE_SINGLE_VALUE Key;
struct OPTIMIZE_SINGLE_VALTJE *ptr_key;

//--- End of variable defining-----------------------------------

//Initialize the TempPeriodTotals[J and the SurnBigTrees[] arrays
for(a=O;a<NP;a++}
(

TempPeriodTotals[aJ = O;
Sum.BigTrees[aJ O;

//Create a temp array to keep track of those cells "already counted" - save processing time
ushort (*Counted} = new ushort[count];
if (Counted == NULL)

printf (wThere was NOT enough memory for Counted with 'tlu elements\n", count);

for(a=O;a<(signed)count;a++)
Counted[a] = O;

//Go through CS[] and find treelist currently in this initial solution
for(a=O;a<(signed)count;a++)
(

//First check and see if this Treelist has already been opened and accounted for
if(Counted[a] =• TRUE //YES, is has been, continue on to next cell

continue;

//Otherwise,
Key.Treelist

start to make a key to look fer this treelist in the OV structures
CS[a] .Treelisc;

//Make an inner loop to go through each of 3 differnt goal scenarios that will be used in getting the
"average SUM" value

for(b=O;b<3;b++l
{

either O or 3

//Get the
if lb -- 0)

else if lb

else

//Get the
do{

"goal"

goal =
-- 11
goal

goal

"hold"

value

O;

2;

9;

value

/ /Reduce \oiildfire stand goal

//Enhance Fish Habitat stand goal

//Grow Cnly stand goal

hold (rand () % 4) ;

)while (hold == 1 11 hold =~ 2 /;

//this gives 0,1,2,and 3 but it has to be

/ /Finish off the key
Key.Goal (ushort)goal;
Key. Hold = (ushort) hold;

//Now use bsearch to find the matching record in the array of OV structures
ptr_key = (struc t OPTIMIZE_SINGLE_ VALUE*) bsearch (

&Key,
(void *)OV,
(size_t)Records,
sizeof (struct OPTIMIZE_SINGLE_V."'.LUE),
Look.A tOSV) ;

if {ptr_key .;:;;;: NULL}
Bailout(8D);

//There had better be one!

296

else //Add the values for Big
Trees to the TempPeriodTotals [] (which has sum for the 3 goal scenarios)

{

for (c=O i c<NP; c++)
TempPeriodTotals[c] += ptr_key->BigTrees[c] ;

}//end for(b=O;b<3;b++l

/*
The TempPeriodTotals [] values can be reused for all solution cells that have the same treelist. Scroll
through CS [] and find those that do have same tree list and make a flag in the Counted array if so.
*/

//First make contribution for this cell since it was first to have this treelist
for(y=O;y<NP;y++)

SumBigTrees[y] += TempPeriodTotals[y];

//Set a flag in the Counted array
Counted[a] TRUE;

accounted for

//Now start looking through remaining cells in CS[]
for(b=a+l;b<(signed)count;b++)

at next cell
{

if(CS[b] .Treelist == CS[a] .Treelist)
treelist

//YES, this cell has now been

//start looking

/ /YES: 1 this cell does have the same

//Set an error checker - each treelist should be done once and this indicates a
second time

if(Counted[b] == TRUE j

Bailout (74);

//otherwise, add this treelist 1 s contribution again tc account for this cell
for(y=O;y<NP;y++)

SumBigTrees[y] += TempPeriodTotals[y];

//and set the flag in the Counted array
Counted[b] = TRUE;

}//end for(b=a+l;b<(signedJcount;b++)

//Clear up the TempPeriodTotals[] so it can be used for the next treelist without additive problem
for (y::.O;y<NP;y++)

TempPeriodTotals[yJ = O;

} //end for (a=D; a< (signed) count; a++)

//The SUM values currently in SumBigTrees[] need each to be divided by 3 since there were 3 goal scenarios used in
calculating it
for (a=O; a<NP; a++)

SumBigTrees [a] SumBigTrees [a] / 3;

//Look through SumBigTrees[] and find the period with the largest value and use that as the return base
for (a=O; a<NP; a++)
{

if (SumBigTrees [a] > LargestSurn)
LargestSum = SurnBigTrees [a];

/ /Delete stuff on free store
delete [] Counted;

return LargestSum;
} //end GetSumBigTrees

I I***

void SwaplAdjust(struct SOLUTION *ptr_cs, ushort NG, ushort NH1 double PerValues[], struct OPTIMIZE_SINGLE_VALUE
OV[],

ulong Records, struct ERA *ptr_era)
I I***

{

/*
A move is being tested and needed is to subtract off the treelist-goal-hold "optimizing" values being moved
OUT of the solution and to add the treelist-goal-hold "optimizing" values for that being moved INTO the solution.

ALSO, subtract off the ERA values being moved off and add those values being moved intc the Era structure

NOTE; See long-winded note in CalculateSumPeriodEra(} function about theory for this.

*I

int a, b;

struct OPTIMIZE_SINGLE_VALUE OVKey;
struct OPTIMIZE_SINGLE_VALUE *ptr_ovkey;

struct CURRENT_ERAS CellEraValues, *ptr_cev;

II--------------------------------- End of variable defining--------------------­

//Initialize the OVKeY
memset(&OVKey, 0, sizeof(struct OPTH1IZE_SINGLE_VALUE));

297

//++
//+++++++++++++++++++++++++ SUBTRACT OFF VALUES FOR PRESCRIPTION BEING MOVED OUT +++++++++++++++++++++++++
//++

I I ------------======-------------=-=====--------------===
II Make a key for the OV structure
II================--============--------=-===============

//First, make a key and look for stand being moved OUT of solution and reduce the PerValues array
OVKey.Treelist
OVKey.Goal
OVKey.Hold

ptr_cs->Treelist;
ptr_cs->Goal;

= ptr_cs-:.,.Hold;

//Now use bsearch to find the matching record in the array of OV structures
ptr_ovkey = (struct OPTIMIZE_SINGLE_VALUE*)bsearch(

&OVKey,
(void *)OV,
(size_t)Records,
sizeof (struct OPTIMIZE_SINGLE_VALUE),
LookAtOSV) ;

if (ptr_ovkey == NULL)
Bailout(BO);

//There had better be one!

II--======================•======••=••••===--------==================
// Assume that if to here then everything has been found correctly
I I=================== - -=== ====== ••= = •= = == = = = = = == = = == == = = = = === ====== ==

/ /First, subtract off values from the PerValues [] array
for(a=O;a<NP;a++)

PerValues [a] -= ptr _ovkey->Value [a];

//Then subtract off the contribution this cell made to the subwatershed ERA value
for(a=O;a<NP;a++)

ptr_era->SumPeriodErafa] -= ptr_cs->PeriodEra[a];

//++
//+++++++++++++++++++++ CALCULATE NEW VALUES FOR PRESCRIPTION BEING MOVED INTO SOLUTION +++++++++++++++++++
//++
memset(&OVKey, 0, sizeof(struct OPTIMIZE_SINGLE_VALUE));

//Make a key and find the new prescription values in the OV[] structures
OVKey.Treelist

OVKey.Goal
OVKey .Hold

= ptr_cs->Treelist;
//The treelist doesn't change!

NG;
= NH;

//Now use bsearch to find the matching record in the array of OV structures
ptr_ovkey = (struct OPTIMIZE_SINGLE_VALUE*)bsearchi

&OVKey,
{void *)OV,
{size_t)Records,
sizeof (struct OPTIMIZE_SINGLE_VALUE),
LookAtOSV) ;

if (ptr_ovkey == NULL)
Bailout (80);

//There had better be one!

I I=-==•••==•= - - - = = = = = - - == = = = = = = ===== === - - - = = = = = • = =
I I Assume that if to here then everything has been found correctly
I I=====•===•==•==

//First, ADD the values from the PerValues [] array
for(a=O;a<NP;a++)

PerValues fa] += ptr_ovkey->Value ~a];

I*
Figuring out the new ERA values to add is a bit more complicated. Because I have not precalculated EVERY possible
PeriodEra[] value for every cell and every prescription (which I may want to do}, I need to quickly calculate that
value for this new move. Call the same function as done in CalculateSumPeriodEra() except here I will assume that
the cell is in the solution so I don't need to do all the pre-checking it does.
• I

//clear the CellEraValues stuff before filling and sending off
memset(&CellEraValues, 0, sizeof(struct CURRENT_ERA.S} };

//Make a package of stuff to send off to get NetEra 's calculated
CellEraValues.ptr_osv = ptr_ovkey;

298

CellEraValues.CurrentEra
ushort

([float)ptr_cs->InitialEra / ERA_EXP) //lctst stored as modified

//Need to send a pointer to get values back
ptr_cev = &CellEraValues;

//Ship pointer off to function which will calculate NetEra's for each period
CalculateNetEras{ptr_cev);

//Store the return values in the NetEra[] member in two places for each period
for(b=O;b<NP;b++)
(

ptr_cs->PeriodEra[bJ
ptr_era->SumPeriodEra[b1

= (ushort) (ptr_cev->NetEra. [bl);

(ulong) (ptr_cev->NetEra[b]);

}//end SwaplAdjust

; I**
int DecreaseShort(ulong count, ushort Short[] [GOALS] [HOLDNO])
I I**

(
ulong a;
ushort *ptr_short;

//printf ("Iterations to do is %lu\n", (signed) count*GOALS*HOLDNO);

i fde f DEBUG_DECREASESHORTl
int b,c;
//Test, go through Short and see which one has a value, to see if
for(a=O;a<count;a++)
{

for(b=O;b<GOALS;b++)
{

for(c=O;c<HOLDNO;c++)
{

if (Short [a] [bl [c] > 0 I
printf("Move cell %lu, to goal %d ;,:ith Hold %d\n",a,b,c);

.ft:endif

//Put a pointer at start of Short and go through the entire array and decrease all values
//that are greater than Oby -1.
ptr_short = &Short[O] [O][O];

for(a=O;a<count*GOALS*HOLDNO;a++)
{

if (*ptr_short > O)
*ptr_short

return TRUE;
}//end DecreseShort

*ptr _short - 1;

; I**
void InputAndCalculateSolutionEras(ulong Count, struct SOLUTION CS[] i
I I**

(

/*
CS[] needs to have been sorted by Cellid before entering here.

The goal here is to look at the array of CS structures, which has the Current Solution for the
entire watershed, with 5 member: Minor - Cellid - Treelist - Goal - HoldFor & PeriodEra[NP].
There are "CoW1t'' records of this structure.

This function will go cell-by-cell through the Data.* array and check every cell to see if it
was in the solution. If so, it will use the values in CS[] .Perio::!Era[] to fill Data.Era[][].

IF there is no match, then the cell was NOT in the solution, so its initial Data.InitialEra[]
value needs to be packaged and sent to function to get it's proper ERA decay values - then
input those values into Data.Era[][].
*/

int a,b;
int InSolution;

//Key stuff for structures
struct SOLUTION SKey;
struct SOLUTION *ptr_skey;
struct CURRENT_ER.A.S CellEraValues, *ptr_cev;

//--------------------------------- End of variable defining--------------------------------

for (a=O; a<UNIQUE; a++)
{

if(Data.Cellid[a]
break;

FALSE I //no more cells to check

I I**

// Determine if cell was actually in the solution
I I**
//Make a key for the current cell using its cellid
SKey.Cellid Datd.Cellid[a];

I /Use bsearch on CS [] to see if this cell is in the solution
ptr_skey = (struct SOLUTION*}bsearch(

&SKey,
(void *)CS,
(size_t)Count,
sizeof (struct SOLUTION},
LookAtSol u tionCellid

I /Make a flag to use below
if (ptr_skey == NULL)

InSolution FALSE; //cell not in solution
else

InSolution TRUE;

I I**
I I THE CELL WAS IN THE SOLUTION

I I***'**'**'**********
if(InSolution ==TRUE)
(

else
{

//Just copy over the data stored in the PeriodEra[] member of CS
for(b=O;b<NP;b++)

Data. Era [a] [b) = ptr_skey->PeriodEra [bJ;

I I**
// Cell was NOT in the original solution
I I*************•*********************'****************************

299

//NOTE: these calculations could probably be done back in CaluculateSurnPeriodEra() and stored for these
//cells not in the solution.

anything.

how those

1•
Just slowly decay or "recover" cells current Data. InitialEra {] proportionally down to O.
There is no documentation to do this but it should not matter because they don't contribute to

I am thinking that later we may ,..,·ant to "recover" certain areas at different rates and track

subwatershed that are ''lllllilanaged'' fair compare to those that are managed.
* I

//clear the CellEraValues stuff before filling and sending off
rnernset (&CellEraValues, 0, si zeo f (struct CURRENT_ERAS)) ;

//Make a package of stuff to send off to get NetEra's calculated
CellEraValues. CurrentEra = ((float) Data. InitialEra [a] / ER._i_EXP) ;

//last stored as modified ushort
CellEraValues.Cell = a;

//Need to send a pointer to get values back
ptr_cev = &CellEraValues;

//Ship pointer off to function which will calculate DP.cayOnly NetEra's for each period
CalculateDecayOnlyNetEras(ptr_cev);

//If new decayed NetEras were calculated, store their values in Data.Era[][] - otherwise
already initialized to zero

if(ptr_cev->NeedsDecay == TRUE
(

for (b=O; b<NP ;b++)
Data.Era[a] [bl

} / /end else if (InSolution ...

}//end for(a=O ...)

}//end InputAndCalculateSolutionEras

(ushort} (ptr_cev->NetEra [b]);

I I***************~**
int InputSolution(ulong Count, struct SOLUTION CS[])
I I**
(

I*
CS[] needs to have been sorted by Cellid before entering here.

The goal here is to look at the array of CS structures, which has the Current Solution for the
entire watershed, with 5 member: Minor - Cellid - Treelist - Goal - HoldFor.
There are "Count• records of this structure.

I am going to make the assumption that the Cellid's in CS[].Cellid are in ascending (row/column) order, because
they
were sorted by Cell id back in Goal* (} . So I will start by looking at the first CS [] . Cellid value and
find that Cellid number in Data.Cellid (checking to see if CS[] .Treelist matches Data.Treelist) ...
if all checks out then put the values of CS[] .Goal & CS[] .Hold into Data.Goal and Data.Hold
*I

ulong *ptr_cellid, *ptr_treelist, Cellid, Treelist;
ushort *ptr_goal, *ptr_hold, Goal, Hold;

int FoundMatch;
ulong a;

I I------------------------------- End of variable defining - ·-- - - ---- - - -- -- - --- -

printf { ft Inputting the solution just found into Data [] . Goal * Data [] . Hold\n"};

//Put pointers at start of Data.* arrays
ptr_cellid = &Data.Cellid[O];
ptr_treelist &Data.Treelist[O];
ptr_goal &Data.Goal[O];
ptr_hold ~ &Data.H8ld[O];

for(a=O;a<Count;a++)
(

//Get Values
Cellid
Treelist
Goal
Hold

for current cell in CS
= CS[a] Cellid;

CS[a] .Treelist;
CS[a] Goal;

- CS[a].Hold;

//Start looking through the Data.* arrays and find a match
FoundMatch = O;
do(

300

if (*ptr_cellid Cellid } //Ok, the cellid's match, so should
everything else!

if (*ptr_treelist ! = Tree list)
Bailout (31);

else
in the Goal and HoldFor values

"'ptr_goal Goal;
*ptr_hold Hold;

FoundMatch = 1;

//increment pointers, whether or not a match was found
//REMEMBER- this works because both CS and Data.Cellid have cellid's in "row/column" order
ptr_cellid++;
ptr_treelist++;
ptr_goal++;
ptr_hold++;

)while (Found.Match O};

)//end for la ...)

return TRUE;
}//end InputSolution

I I************************************* k * * * k *
void BinarySaveGoalHold(void)
I I**

/*
This function will spit out the current configuration of Data.Goal and Data.Hold that
was found during the initial landscape :::iptimization. It will do this by -just sending
out all the values, in order, from th:::ise arrays.

When reading back in the data there will be no need to check positioning because (I hope)
the data is already in its correct spot. See the bottom of functj_on ReadBinaryFiles () for
how this is done.
*/

FILE *BIN;
char GoalOutFile[l50];::w";
char HoldOutFile[l50]="";

ushort *ptr_goal;
ushort *ptr_hold;

/ /Make the correct output file names
sprintf (GoalOutFile, "%s%s%d\ \%s_%s_goal. bin", PREFIX, RerunDir, GOAL_TO_USE, OPTPREFIX, ENVT) ;
sprintf (HoldOutFile, "%s%s%d\ \%s_%s_hold. bin", PREFIX, RerunDir, GOAL_TO_USE. OPTPREFIX, ENVT) ;

ptr_goal &Data.Goal(O];
ptr_hold = &Data.Rold[O];

BIN = fopen {GoalOutFile, ftwbw);
fwrite (ptr_goal, sizeof (Data.Goal [0]), tmIQUE, BIN) ;
fclose (BIN};

BIN = fopen{HoldOutFile, "wbM);
fwrite (ptr_hold, sizeof (Data Hold[Ol), tmIQUE, BIN):
fclose(BIN);

)//end BinarySaveGoalHold

//put

I I**
void AsciiSaveGoalHold(void}
I I*** k * * * * * * * * * * * * * * * * * * k * ** ** * * * * ** * * * * * *

printf(•\n******* Saving the current configuration of GOALS and HOLD from this simulation *******\n\n");

FILE *WRITE_GO.'\L, *WRITE_HOLD;
char Templ[250], Temp2[250];

/ /pointers
int *ptr_srp; //Starting Rov1 Position
ushort *ptr_goal, *ptr_hold, *ptr_colurnn;

//Misc. variables
int r, c, HowMany;
int ColurnnsLeft, ctr;
ushort StartColumn, OutColurnn;

/ /Make the correct output file names
sprintf {Templ, "%s%s%d\ \ %s_goal. bin", PREFIX, RerunDir, GOAL_TO_USE, ENVTJ;
sprintf(Temp2, "%s%s%d\\%s_hold.bin",PREFIX,RerunDir,GOAL_TO_USE,ENVT);

//open up the files (to write)
WRITE_GOAL= fopen {Templ, "w");
WRITE_HOLD = f open (Temp2 , "w") ;

if I WRITE_ GOAL == NULL I
fprintf{stderr, "opening of %s failed: %s\n", Templ, strerror(errno/);

else
#ifdef DEBUG_OPENl

printf{"File %s opened with no problems in mode WRITE!\n",Templ);
#endif

if (WRITE_HOLD == NULL)
fprintf(stderr, "opening of %s failed: %s\n", Temp2, strerror (errno));

else
#ifdef DEBUG_OPENl

#endif
printf("File %s opened with no problems in mode WRITE!\n",Temp2);

//write out the header data to the files
fprintf (WRITE_GOAL, "ncols\ t\ t%d\n", COLUMNS);
fprintf (WRITE_GOAL, "nrows\t\t%d\n", ROWS};
fprintf (WRITE_GOAL, "xllcorner\ t%. 6lf \n", F _XLL);
fprintf (WRITE_GOAL, "yllcorner\ t%. 6lf \n", F _YLLl ;
fprintf (WRITE_GOAL, "cellsize\ tid\n", CELLSIZE) ;
fprintf (WRITE_GOAL, "NODATA_value\ t%d\n", NODATA);

fprintf(WRITE_HOLD, "ncols\t\t%d\n" ,COLUMNS);
fprintf(WRITE_HOLD, "nrows\t\t%d\n" ,ROWS);
fprintf (WRITE_HOLD, "xllcorner\ t%. 6lf\n", F _XLL) ;
fprintf (WRITE_HOLD, "yllcorner\ t%. 6lf\n", F_YLL) ;
fprintf(WRITE_HOLD, ~cellsize\t%d\n" ,CELLSIZE);
fprintf(WRITE_HOLD, "NODATA_value\t%d\n" ,NODATA);

for(r=l;r<=ROWS;r++}
{

ptr_srp = &link[r-1] [ll;
HowMany = * (ptr_srp+lJ,
StartColumn = Data.GridColumn[(*ptr_srp)-1];
ptr_column = &Data.GridColumn[(*ptr_srp)-1];
ptr_goal &Data.Goal[(*ptr_srp)-1];
ptr_hold &Data.Hold[{*ptr_srp)-1];

//If the whole row is blank, print out NODATA and goto next row

301

if(*ptr_srp == FALSE J //means a zero was left in this spot during
MakeLink

for (c=l; c<=COLUMNS; c++}
{

fprintf (WRITE_GOA.L, "%d
fprintf(WRITE_HOLD, "%d

//put in new lines
fprintf(l"JRITE_GOAL, "\n");
fprintf (V'IBITE_HOLD, "\n");

", NODATA);
", NOD.~T.~);

continue; I /goto next row

//print out NODATA for those cells before data starts
for(c=l;c<StartColumn;c++)
{

fprintf (WRITE_GOAL, "%d ", NODATA);

fclose(WRITE_GOAL);
fclose(WRITE_HOLDl;

) / /end SaveGoalHold

fprintf (\''.'RITE_HOLD, "%d ",NODATA);

//set some counters
OutColurnn = StartColumn;
ctr "" 0;

//print out the Goal and Hold values for area on landscape by checking
/ /value in Data GridColumn to :natch it with OutColumn value
do(

}while(ctr

if (*ptr_column =-= OutColumn)
(

fprintf (WRITE_GOAL, "%hu ", *ptr_goal);

fprintf {WRITE_HOLD, "%hu ", *ptr_hold);

ptr_goal++;
ptr_hold++;
ptr_column++;
OutColumn++;

ctr++;

else //print out NODATA for the "gaps"

fprintf (WRITE_GOAL, "%d ",NODATA);

fprintf {WRITE_HOLD, "%d ", NODATA);

Outcolurnn++;

HowMany) ;

//Check to see how many columns are left to do
ColumnsLeft : COLUMNS - (OutColumn-1);

if(ColumnsLeft :::;= OJ
(

fprintf (\r'iRITE_GOAL, "\n");
fprintf (ViRITE_HOLD, "\n");

continue; //go to next r0'."1

//print out NODATA for those cells after the data that are left
for { c=O; C<ColurrnsLeft; c++}
(

fprintf (WRITE_GOAL, "%d ",NODAT.i'.I.);
fpr int f (WRITE_HOLD, "%d ", NOD.i\T.i'.I.) ;

/ /put in d new line
fprintf(WRITE_GOAL, "\n" l;
fprintf (WRITE_HOLD, "\n");

}//end of for(r=l;r<=ROWS;r++)

302

I I***

void PrintSolutionValues(ulong Count, struct SOLUTION CS[J, struct OPTIMIZE_SINGLE_VALUE OV[],
ulong Records, int SubEra [], int Status)

I I**********************"'*"'** k * "* * * * * * * **
*
(

;•
This functions is to be called up after a heuristic search solution has been completed.
This will use the best solution found to add up the particuldr value being optimized dnd print those out.
• I
FILE *WriteOut;
char filename[256];

ulong a;
int b;

double PerValue [NP];
double SumSqDev O;
double SumValue = 0;

struct OPTIMIZE_SINGLE_VALUE Key;
struct OPTIMIZE_SINGLE_VALUE *ptr_key;

//--------------------------------------- END Variable defining--­
if{Status == ACTUAL}

sprint£ (filename, "%:s%s%d\ \Actual_TotalValue. txt", PREFIX, PreSimOutputDir, GOAL_TO_USE);
else

sprint£ (filename, "%:s%s%d\ \Reuse_TotalValue. txt", PREFIX, PreSimOutputDir, GOAL_TO_USE);

//Open up the file for printing

WriteOut fopen{filename, "w");

/*
Using the TREELIST, GOAL, and HOLD in the array of CS[] structures, find the matching set
in the array of OV structures. Once found, sum up the periodic values and store those
in PerValue [NP] ,

This functions assumes that the values found in Solution are the current one to evaluate.
*/

//Initialize the Pervalue[] array
memset{ PerValue, 0, sizeof {PerValue}) ;

for (a=O; a<Count; a++) //count is how many rows of data there are (i.e. eligible cells found earlier)
{

//Make a Key using the Treelist-Goal-Hold values found for each record in the array of CS structures
Key. Treelist
Key.Goal
Key. Hold

CS [a]. Treelist;
CS[a] .Goal;

CS[a] .Hold;

//Now use bsearch to find the matching record in the array of OV structures
ptr_key = (struct OPTIMIZE_SINGLE_VALUE~)bsearch(

&Key,
(void *)OV,
(size_t) Records,
sizeof { struct OPTIMIZE_SINGLE_VALUE),
Look.A tOSV) ;

if (ptr_key == NULL)
{

//There had better be one!

printf("Bad Key.Treelist = %lu ... CS[] .Treelist is %lu\n",Key.Treelist,CS[a] .Treelist);
printf("Bad Key.Goal %bu ... CS[] .Goal is %lu\n",Key.Goal,CS[a] .Goal);
printf("Bad Key,Hold =%bu ... CS[] .Hold is %lu\n",Key.Hold,CS[a] .Hold);
Bailout(80);

else I I Sum up the periodic Values

for(b=O;b<NP;b++)
PerValue[b] += ptr_key->Value[b];

I I ----------------------- PRINT OUT STUFF BELOl/r =======,,,,==:=========================

fprintf (WriteOut, "\nThe Periodic Big Trees Totals are: \n") ;

303

fprintf(WriteOut,"NOTE: These values are rounded INTEGER BigTrees values and will usually be less than
real value\n\n");

for (a=O; a<NP; a++)
fprintf (WriteOut, "Per%d is %- .Jlf\n", a+l, PerValue [a] /BIGTREES_EXP);

fprintf (Wri teOut, • \n\nLoopsToDo: 'tlu\n", Count*LOOP _FACTOR};
fprintf(WriteOut, "The constraining Sub-Watershed ERA threshold were:\n~;;
for(a=O;a<NP;a++}

fprintf (WriteOut, "Per%d had a ER.i\ threshold of %d\n", a+l, SubEra [a]};

fclose(WriteOut);

)//end PrintSolutionValues

I/*************************""******************.,..,.**************************"".,.**""*******.,.***
void PrintSolutionEraValues(struct ERA Era[], ulong NoSheds, int Statu~;
I I***********************""*""*************""*""""*****************************""***""******""***

/* This will output a table with 6th field subwatershed id's in Rows, and columns for the
four EvaluateThisPeriod[] periods, with values representing the Equivalent Roaded Acre [ERA)
value for that sub-watershed. This file will be comma delimited and can be imported into Arc!nfo and
joined with the SubWatershed layer to make maps ~bowing the ERA'S - or the tables can be used stand-alone.

This will only handle the initial EPA values and only ouput 4 periods worth of data. Another function
will ouput the actual ERA values stored in the Data.*[] arrays after a full simulation.

NOTE: This function is using ERA values only for those cells in a "solution" - which is different than
what gets outputted in OutputEraValues() at end of simulation.
*/

FILE: *WRITE_ERA;
char EraFile[256];
int a,b;
int Hit,PerA,PerB,PerC,PerD;
//------------------------------------ End of variable defining----------------------------------

//Look at EvaluateThisPeriod and find the 4 evaluation periods there
Hit=O;
for (a=O; a<NP; a++)
{

if (EvaluateThisPeriod(a] > OJ
(

304

if(Hit 4)
printf { "There are too many EvaluateThisPeriod[] periods! - ignoring those past the

first four\n");

if(Hit == 0)
PerA = a;

else if(Hit == 1)
PerB = a;

else if{Hit == 2)
Pere a;

else
PerD a;

Hit++;

}//end for(r=O;r<NP;r++)

// Create, Open, and Write data out to a file
if(Status == ACTUAL}

sprintf (EraFile, "%s%s%d\ \Actual_era. csv~, PREFIX, PreSimOutputDir ,GOAL_TO_USE) ;
else if (Status == LAST)

sprintf (EraFile, "%s%s%d\ \era. csv", PREFIX, PostSimOutputDir, GOAL_TO_USE) ;
else

sprintf (EraFile, "%s%s%d\ \Reuse_era. csv", PREFIX, PreSimOutputDir, GOAL_TO_USE) ;
WRITE_ERA fopen(EraFile, "w");

if (WRITE_ERA == NULL)
fprintf(stderr, "opening of %s failed: %s\n", EraFile, strerror(errno));

//No header line because Arcinfo won't import them
//Will output the actual ERA associated with the solution -- ** no TABS either {A/I doesn't like them)
for(a=O;a<(signed)NoSheds;a++)
(

fprintf(WRITE_ERA, N%hu, ",Era[a] .Minor};
for(b=O;b<NP;b++)
(

if (b
(

PerA I I b == PerB I I b Pere I I b == PerDI

fprintf(l-'JRITE_EP.A,"'%.2f ",((float)Era[a].SumPeriodEra[b] / EP.A_EXP) / Era[aJ.Count
);

if(b PerD}
fprintf (VJRITE_EP.A, 11

,
11

);

fprintf (WRITE_ERA, "\nH);

fclose(WRITE_ERA);

)//end PrintSolutionEraValues

I I***

void PrintSolutionBigTrees(ulong Count, struct SOLUTION CS[J, struct OPTIMIZE_SINGLE_VALUE OV[],
ulong Records, int SubEra[], int Status)

I I***
** * ** * * * * * * * * ** * * * * *

!*
This functions is to be called up after a heuristic search solution has been completed.
This will use the best solution found to add up the Big Trees and print those out.

NOTE: This is sorta redundant because for now, goal 1 is optimizing BigTrees and so when the
PrintSolutionValues(} gets printed, it should be the same as this - a double check.
*/
FILE *WriteOut;
char filename [256];

ulong a;
int b;

double PerBigTrees[NP], SumBigTrees;

struct OPTIMIZE_SINGLE_VALUE Key;
struct OPTIMIZE_SINGLE_VALUE *ptr_key;

//--------------------------------------- END Variable defining--­
if (Status == ACTUAL)

sprintf (filename, "%s%s%d\ \Actual_BigTrees. txt", PREFIX, Pre.SimOutputDir, GOAL_TO_USE);
else

sprintf (filename, N %s%s%d\ \Reuse_BigTrees. txt", PREFIX, PreSimOutputDir, GOAL_TO_USE);

//Open up the file for printing
WriteOut; fopen(filename, "w");

/*
Using the TREELIST, GOAL, and HOLD in the array of CS[] structures, find the matching set
in the array of OV structures. Once found, sum up the BigTrees and store those

in PerBigTrees[NP],

This functions assumes that the values found in Solution are the current one to evaluate.
* I

//Initialize the PerBigTrees[J array
memset(PerBigTrees, 0, sizeof(PerBigTrees)) ,-

for{a=O;a<Count;a++) //count i.s how many rQ'.-..·s of data there are (i.e. eligible cells found earlier)
(

I /Make a Key using the Treeli.st-Goal-Hold values found for each record in the array of CS structures
Key.Treelist
Key.Goal
Key.Hold

CS[a] .Treelist;
CS[a] .Goal;

CS[a] .Hold;

//Now use bsearch to find the matching record in the array of OV structures
ptr_key = (struct OPTIMIZE_SINGLE_VALUE*) bsearch (

&.Key,

(void *)OV,
(s ize_t) Records,
sizeof(struct OPTIMIZE_SING~E_VALUE),
LookAtOSV) ;

if (ptr_key == NULL}
(

//There had better be one!

printf("Bad Key.Treelist - %lu ... CS[] .Treelist is 'tlu\n'',Key.Treelist,CS[a] .Treelist);
printf("Bad Key.Goal 'thu .. CS[] .Goal is %lu\n",Key.Goal,CS[a] .Goal);
printf("Bad Key,Hold = %hu ... CS[] .Hold is %lu\n",Key.Hold,CS[a] .Hold);
Bailout(BO);

else

for (b=O; b<NP ;b++)

/ /Add up the total sum of big trees
for(b=O;b<NP;b++)

PerBigTrees[b] += ptr_key->BigTrees[b];

SumBigTrees += PerBigTrees[b]/B~GTREES_EXP;

I /Sum up the periodic Values

//-----------------------PRINT OUT S':'UFF BELOW------=============================

fprintf (WriteOut, "\nThe Periodic Big Trees Tota.ls are: \n");
for(a=O;a<NP;a++)

fprintf (WriteOut, "Per%d is %- _ 31£\n", a+l, PerBigTrees [a] /BIGTREES_EXP);

fprintf(WriteOut, "\n\nThe total sum of Big Trees is: %.Jlf\n" ,SurnBigTrees);
fprintf (WriteOut, ~which amounts to about % . Jlf per acre\n", SurnBigTrees/ (Count*ACREEQ));

fclose (WriteOut);

} //end PrintSolutionBigTrees

GO.~L_REU.SE. C PP

/*

This file will contain functions to control how to reuse data for prescriptions that
were already selected.

*/

iinclude <stdio.h>
iinclude <stdlib. h>
iinclude <string.h>
iinclude <time.h>
iinclude <rnath.h>
iinclude "globals.hn
iinclude "data.h"
#include "goals.h" //for functions declared in goal_controller.cpp

I /Functions used in this file
void ReuseGoal(int Goal);

//Declared in misc.cpp
extern int FillSubEraThresholds(int SubEra[]);

//Declared in ReadData.cpp
extern void ReadGoalHoldFound(int Goal);

I/*** .. **************************************
void ReuseGoal(int Goal)
I!**
(

/*
This function will assume that a GOAL-HOLD combination was already found for the particular
landscape being used and that binary files with the goal & hold are in the
... \RerunData\ directory. Because many of the output analysis data functions need to know

what the "solution spacen (i.e. those cells that were actually in the solution) waz, I found
it easier to pretend that an optimization process is happening except skip the heuristic part

305

since there is already an answer.
* I

FILE *Binin, *Headerin;
char Temp[256];
ulong Records;

int a;
ulong AllocOK, AllocNOK, CellsinShed;
ulong SolutionCounters [3];
ulong SolutionSheds;
int SubEra [NP];

//---------------------------------- End of variable defining-----------------------------­
printf("\n\n***********************~~ Reusing and Recreating a solution for this goal %d
***********************\n" ,Goal};

//First thing is to read in the GOAL&. HOLD values already found
ReadGoalHoldFound(Goal);

/ /Fill the FillValueToOptimize array before starting
if (FillValueToOptimize () == FALSE)

Bailout (24);

306

//-====-=------------===-==--------- READ in the InitOpt.bin file ---------- ---------------------------------------­
//Open the Header and actual Binary file containing the data found during FillValueToOptimize()
sprintf (Temp, "!tis\ s \\Binary\\ %s_Ini tOpt. bin" , PREFIX, Ini tialStandDataDir, ENVT) ;
Binin = fopen (Temp, "rb");

sprintf (Temp, 0 \s%s\ \Binary\ \%s_InitOpt. hdr", PREFIX, InitialStandDataDir, ENVT);
Header In = fopen (Temp, "r");

I /Get the Number of records that are listed in the header file
fscanf (Headerin, "%lu '',&Records};

//Create an array of structures on the free store to hold these records
struct OPTIMIZE_SINGLE_VALUE (*OptValues) = new struct OPTIMIZE_SINGLE_VALUE[Records];
if { Opt Values == NULL)

printf("Problems allocating memory for OptValues[l with %lu
elements\n•,Records*sizeof(OPTIMIZE_SINGLE_VALUE));

//Now just read in the binary data the same way it was written out in FillValueToOptimize\)
fread(OptValues, sizeof(OPTIMIZE_SINGLE_VALUE) ,Records,Binin};

//close up the files
fclose (Binin) ;
fclose(Headerin);
//===================================== Finished reading

/ /Initialize the SolutionCounters array and call up the DetermineEligibleCells () function to fill it up
for(a=O;a<3;a++)

SolutionCounters [a] = 0;

printf (" *** Going to determine the eligible cells for this solution and fill up the array of SOLUTION structures
***\n"};

if (DetermineEligibleCells (SolutionCounters) FALSE)
Bailout\82};

//The values now in SolutionCounters should be properly set
AllocOK = SolutionCounters[O];
AllocNOK SolutionCounters[l];
CellsinShed = SolutionCounters[2];

printf (11 ! ! ! There were %lu valid cells with cellid;, ", CellsinShed};
Printf (" and %lu cells that are eligible for the solution and %lu that are not. \n\n" ,AllocOK, AllocNOK);

//Print stuff to the stats.txt file
PrintToStat(3, (ulong)AllocOK);

//Set a checker to look for when there are O eligible cells
if {AllocOK == FALSE)

Bailout (89);

//Create an array of structures on the free store to hold the solution
struct SOLUTION *CurrentSolution) = new struct SOLUTION{AllocOK];
if (CurrentSolution == NULL)

printf ("Problems allocating memory for CurrentSolution L] with %lu elements\n", AllocOK*sizeof (SOLUTION}};

//Initialize
memset(CurrentSolution, 0, sizeof\struct SOLUTION) * AllocOK);

//Now fill that array of SOLUTION structures with the Treelist - Minor - and Cellid of those eligible cells
if(FillSolution(SolutionCounters, CurrentSolution, FAKE} ==FALSE)

Bailout (83) ;

printf (0 Sorting the solution by subwatersheds will take a few seconds \n'');
//Now sort the array of SOLUTION structures by MINOR This will guarantee all the subwatersheds are in order
//Use mgsort because qsort takes way too long since there are not many unique Minor ID'S
mg sort ((void*) CurrentSolution, / /base

\size_t)AllocOK, //count of# of arrays

sizeof (struct SOLUTION) ,
0, AllocOK-1,

always: 0, •count"-1 J

I I size of each array
//current division (

LookAtSolutionMinor) ; //compare function

//Call up the CountSolutionWatersheds() function to see how many subwatersheds are actually in the solution
SolutionSheds = CountSolutionWatersheds (AllocOK, CurrentSolution};
printf("*** There were actually %lu Sub-Watersheds found in the solution for this goal ***\n",SolutionSheds);

if (SolutionSheds == FALSE
Bailout(84);

//Create the appropriate number of Solution_ERA structures and store them in an array
struct ERA (*S_Era) = new struct EF.A[SolutionSheds);
if (S_Era == NULL)

printf (''Problems allocating memory for S_Era with %lu elements\n", SolutionSheds*sizeof (struct ERA));

I I Initialize this array of ERA structures - this is important because Fill_SEra will do some +:;:: summing
memset(S_Era, Q, sizeof(struct EF.A) * SolutionSheds };

//Fill the array of S_Era structures with appropriate values
if(Fill_SEra(SolutionSheds, S_Era, AllocOK, CurrentSolution)

Bailout(85);
FALSE)

//First, fill up the SubEra array with EF.A thresholds to use when checking constraints
if(FillSubEraThresholds(SubEra) FALSE)

Bailout (94);

//First sort the array of CS structures by CELLID only. This is needed later
gsort ((void*) CurrentSolution, //base

307

(size_t) AllocOK,
arrays

//count of ;/: of

sizeof (struct SOLUTION),
Look.AtSo lu tionCel 1 id);

//size of each array
//compare

function

if (CalculateSumPeriodEra (SolutionSheds, S_Era, AllocOK, CurrentSolution, Opt Values, Records)
Bailout(86);

FALSE)

I I***

//***************** Stuff below would normally be found in a goal*_"heuristic".cpp file {e.g. goall_deluge.cpp)

I I***

//*********************** These will print out ONLY those things for cells IN THE SOLUTION

if(Goal != GROW_ONLY I I Goal !:;:: FINNEY_EFFECT
(

/ /Grow-only & Finney-Ef feet didn't have any "~.ralue"

/ /Print out the Periodic values for the Value being optimized
PrintSolutionValues(AllocOK, CurrentSolution, OptValues, Records, SubEra,REUSE);

//Print out the Big Trees
PrintSolutionBigTrees (AllocOK, CurrentSolution, OptValues, Records, SubEra, REUSE);

/ /Print out the ERA values in S_Era
PrintSolutionEraValues (S_Era, SolutionSheds, REUSE);

I I***

//***************** Stuff below would normally be found at end of goal*.cpp - after the heuristic code file is done

I I***

//NOTE; no need to call the InputSolution() function because it only fills up the Data.Goal and Hold arrays
// and they already are {back in ReadGoalHoldFound()

//Input the associated PeriodEra [] values found for those cells in the solution, and calculate
//new Data.Era(](] values for those cells that were not in the solution.
InputAndCalculateSolutionEras (AllocOK, CurrentSolution) ;

//Delete stuff on Free store
delete [] OptValues;
delete [] CurrentSolution;
delete [] S_Era;

) //end ReuseGoal

GOAL1.CP?

/*

This file will acts as a subordinate controller (to goal_controller.cpp) - specifically for Goall.
It can call up either a TabuSearch or Deluge search for this particular goal, It does rely on some
functions in goal_controller.cpp.
* ** * ** * * * ** * * **

*/

#include ..::stdio.h>
#include <:Stdlib.h>
#include <string. h>
#include ..::time. h>
#include ..::math.h>
#include wglobals.hN
#include ~aata.hM

#include ~goals. h" //for functions declared in goal_controller.cpp

/ /Functions used in this file
void Goall(void};
int InitialSolutionGoall (ulong count, struct SOLUTION CS []) ;

//declared in goall_deluge.cpp
extern int DelugeGoall(ulong count, struct SOLUTION CS[], struct OPTIMIZE_SINGLE_VALUE OV[], ulong Records,

struct ERA S_Era[], ulong SolutionSheds);

//declared in Constraints.cpp
extern int CheckConstraintsGoall(struct ERA Era[], ulong NoSheds, int SubEra[]);

//Declared in misc.cpp
extern int FillSubEraThresholds(int SubEra[]);

I I**
void Goal! (void}
I I**

FILE *Binin, *Headerin,·
char Temp[256J;
ulong Records;

int a, b;
ulong AllocOK, AllocNOK,CellsinShed;
ulong SolutionCounters [3]; //will get filled with AllocOK, AllocNOK,
CellsinShed, by DetermineEligibleCells()
ulong SolutionSheds;
int SubEra [NP] ;

308

I I---------------------------- - - ------ End variable de fining --·-----

/ /Fill the FillValueToOptimize array before starting
if { FillValueToOptimize (} == FALSE)

Bailout(24};

//==========================-====== READ in the InitOpt.bin file ---­
//Open the Header and actual Binary file containing the data found during FillValueToOptimize(j
sprintf (Temp, "%s%s\ \Binary\ \%s_InitOpt. bin", PREFIX, InitialStandDataDir, ENVT);
Binin = fopen {Temp, ~ rb"} ;

sprintf (Temp, ~ %s!:ts\ \Binary\ \%s_Init0pt. hdr", PREFIX, InitialStandDataDir, ENVT};
Header In = fopen (Temp, "r • i;

I /Get the Number of records that are listed in the header file
fscanf (Header In, M %lu M, &Records) ;

//Create an array of structures on the free store to hold these records
struct OPTIMIZE_SINGLE_VALUE (*OptValues} = new struct OPTDfIZE_SINGLE_VALUE [Records] ;
if I OptValues == NULL }

printf("Problems allocating memory for OptValues[] with 'tlu
elements \n", Records*sizeof (OPTIMIZE_SINGLE_VALUE));

//Now just read in the binary data the same way it was written out in FillValueToOptimize()
fread(OptValues, sizeof(OPTIMIZE_SINGLE_VALUE),Records,Binin);

//close up the files
fclose (Binin);
fclose(Headerin);
I!===================================== Finished reading

//Initialize the SolutionCounters array and call up the DetermineEligibleCells() function to fill it up
for (a=O; a<3; a++)

SolutionCounters {a] = 0;

printf{N*** Going to determine the eligible :::ells for this solution and fill up the array of SOLUTION structures
***\n"};

if (DetermineEl igibleCells (SolutionCounters)
Bailout (82);

FALSE)

//The values now in SolutionCounters should be properly set
AllocOK = SolutionCounters[O];
AllocNOK SolutionCounters [l];
CellsinShed SolutionCounters [2];

printf (• ! ! ! There are % lu valid cells with cell ids_ , , . , ", CellsinShed} ;
printf (M and %lu cells that are eligible for the solution and tlu that are not. \n\n", AllocOK, AllocNOK);

//Print stuff to the stats.txt file

PrintToStat(3, (ulong)AllocOK);

//Set a checker to look for when there are O eligible cells
if(AllocOK == FALSE)

Bailout (89);

//Create an array of structures on the free store to hold the solution
struct SOLUTION {*CurrentSolution) = new struct SOLUTION[AllocOK];
if (CurrentSolution == NULL)

309

printf ("Problems allocating memory for CurrentSolution [J with %lu elements\n", AllocOK*sizeof {SOLUTION));

//Initialize
memset (CurrentSolution, 0, sizeof {struct SOLUTION) * .L.llocOK) ;

//Now fill that array of SOLlITION structures with the Treelist - Minor - and Cellid of those eligible cells
if(FillSolution(SolutionCounters, CurrentSclution, REAL) ==FALSE)

Bailout (83);

printf ("Sorting the solution by subwatersheds will take a few seconds\n'');
//Now sort the array of SOLUTION structures by MINOR. This will guarantee all the subwatersheds are in order
//Use mgsort because qsort takes way too long since there are not many unique Minor ID's
mgsort ((void*) CurrentSolution, / /base

(size_tlAllocOK, //count of # of arrays
sizeof(struct SOLUTION), //size of each array
O, AllocOK-1, //current division

always: 0, "Count"-1)
LookAtSolutionMinor) ; //compare function

//Call up the CountSolutionWatersheds () function to see hm,; many subwatersheds are actually in the solution
SolutionSheds = CountSolutionWatersheds(AllocOK, CurrentSolution);
printf("*** There were actually %lu Sub-Watersheds found in the solution for this goal ***\n",SolutionSheds);

if(SolutionSheds == FALSE
Bailout(84);

//Create the appropriate number of Solution_ERA structures and store them in an array
struct ERA {*S_Era) = new struct ERA.[SolutionShedsJ;
if (S_Era == NULL)

printf ("Problems allocating memory for S_Era with %lu elements\n", SolutionSheds*sizeof (struct ERA));

//Initialize this array of EP.A structures - this is important because Fill_SEra will do some += summing
memset(S_Era, 0, sizeof(struct ERA) * SolutionSheds) ;

//Fill the array of S_Era structures with appropriate values
if(Fill_SEra(SolutionSheds, S_Era, AllocOK, CurrentSolution)

Bailout (85);
FALSE I

//First, fill up the SubEra array with ERA thresholds to use when checking constraints
if(FillSubEraThresholds(SubEra} ==FALSE)

Bailout(94);

//First sort the array of CS structures by CELLID only. This is needed later
qsort< (void*)CurrentSolution, I /base

(si ze_t) AllocOK,
arrays

//count of# of

sizeof (struct SOLUTION),
LookAtSol u t ionce 11 id);

//size of each array
/ /compare

function

I I--------==
I I GET AN INITIAL SOLtrrION
1/=======-===========z==

printf("*** Starting to look for an initial solution for this goal that meets all the constraints ***\n");

//Set an error checker for this initial solution - if it fails X times then bailout
for(b=O;b<INITIAL_TRYS;b++I
(

//Send the Solution to a function to get a random initial solution
if { Ini tialSolutionGoall /AllocOK, CurrentSolution) ! = TRUE)

Bailout (25);

if(CalculateSumPeriodEra(SolutionSheds, S_Era, AllocOK, CurrentSolution, OptValues, Records)
Bailout (86);

if(CheckConstraintsGoall(S_Era,SolutionSheds, SubEra} == F.;LSE)
printf (" ! ! ! ! ! ! l ! ! This initial solution failed - trying another ! ! ! ! ! ! ! ! ! \n");

else

if lb

break;

INITIAL_TRYS-1)
Bailout (87);

//if it gets to here then X solutions failed so bailout

FALSE I

I I===-=----------==
// Print out the initial solution for later evaluation
I I--------====================================---==-======================= - = = = == == = = == == = = = = = === = = = = = = ======
printf("Inputting and printing out the initial goal assignment to the ... \\presimdata\\goal%d
directory\n",GOAL_TO_USE);

//Start by inputting the random solution into the Data.* arrays and pretending it was the final solution
if(InputSolution(AllocOK, CurrentSoluticn) ==FALSE)

Bailout(27);

//Now print that file out
OutputinitialGoal ();

310

!!===--------===
I I G,LLING UP THE HEURISTIC
I I = = === = = = = = = = = = == = ============= = = = = = = = = = = = = = = = = - - - - = - - = = = = = = = = = = = = = = = = = == == == == = = ====== ====
//OK, lets send everything to the appropriate HEURISTIC search function
if (DelugeGoall (AllocOK, CurrentSolu tion, OptValues, Records, S_Era, SolutionSheds} ! = TRUE)

Bailout(44);
;;----------===================================-===========================--=-======================-============
// finished with heuristic
//===--------===

//Input the current solution into the Data.Goal and Data.Hold arrays - regardless if Tabu or Deluge did it!
if(InputSolution(AllocOK, CurrentSolution) ==FALSE}

Bailout(2'7);

//Also input the associated PeriodEra[J values found for those cells in the solution, and calculate
//new Data.Era[][] values for those cells that were not in the solution.
InputAndCalculateSolutionEras (AllocOK, CurrentSolution};

//Delete stuff on the free store
delete [] S_Era;
delete [] OptValues;
delete [] CurrentSolution;

//end of Goall I)

11••·· int InitialSolutionGoall(ulong count, struct SOLUTION CS[J) 11·· (

/* The object here to to just assign a random solution to the array of CS[] structures.

The GOAL number must be O - 9 inclusive. See StandOptStuff.cpp for what the goal numbers mean.
The HOLDFOR must be O or J.
•;

int a;
int RGoal, RHold;

//---------------------------- End of variable defining ---------------------------------­
printf ("Generating random. Goal and Hold values\n");

for(a=O;a<(signed/count;a++)
{

//Get the random. Goal and Hold values
RGoal = I rand() % 10);

do{
RHold (rand{) % 4J i

or 3
)while IRHold == 1 11 RHold == 2 I;

I /Store in CS(]
CS[a].Goal
CS[a].Hold

)//end (a=O;a<count;a++l

return TRUE;
)//end of InitialSolutionGoall

80ALl_DELUGE. CPP

;•

(ushort) RGoal;
(ushort) RHold;

//this give 0-9

//this gives 0,1,2,and J .. but it has to be either 0

This file will hold the specific functions used for a Great Deluge Search on Goall.

• I
Jinclude <stdio.h>
Jinclude <stdlib. h>
Jinclude <String. h>
Jinclude <time. h>
Jinclude <math.h>
:fl:include "globals.h~
:fl:include ~data.h"
#include "goals.h" //for functions declared in goal_controller.cpp

//Declared in this file
int DelugeGoall(ulong count, struct SOLUTION CS[], struct OPTIMIZE_SINGLE_VALUE OV[], ulong Records,

struct ERA S_Era[], ulong SolutionSheds);
//Declared in constraints.cpp
extern int CheckConstraintsGoall(struct ERA Era[], ulong NoSheds, int SubEra[]};

//Declared in misc.cpp

extern int FillSubEraThresholds(int SubEra[]);

//-------------------------------- End of function declarations--­
/ I*********************"**
int DelugeGoall(ulong count, struct SOLUTION CS(], struct OPTIMIZE_SINGLE_VALUE OV(], ulong Records,

struct ERA S_Era [], ulong SolutionSheds)

I I**

FILE *WRITE_BEST, *WRITE_RANDOM;
char filename_best(256], Temp[256];

//For Time information
double Start, Finish;
double Duration;

double PerValues[NP], PreMoveValues(NP];
double Ini tialObj =0;
double LEVEL, PreMoveObj, MoveObj, BestObj,TestObj[GOALS], BestTestObj;
ulong LoopsToDo=O, FirstThird, SecondThird;
ushort PreMovePeriodEra[NP];
ushort *ptr_cellera;

int a,b,x,loop, CopyToPre, ViolateConstraints, BetterThanZero;
float RandCore;

//stuff for the single swap move
ushort PreMoveGoal, PreMoveHold, MoveGcal, MoveHold, BestTestGoal;
ulong RC ell;

I /Key and pointers for structure stuff
struct SOLUTION *ptr_cs;
struct ERA EKey;
struct ERA *ptr_ekey;

//Array to hold the varying Subwatershed ERA values
int SubEra [NP] ;

311

//-- End of variable defining---

puts (11
\ t \ t* * * * * * * * * * * * * * * * ** * * * * * * * * * ** * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * *"} ;

*****'"); puts(11 \t\t******
print£ (11

\ t\ t** ****
puts(11 \t\t******

Starting GREAT DELUGE for GOAL #%d\t\t******\n",G0AL_TO_USE);
****'*");

puts (" \ t \ t * ") ;

Start : clock{);

//Seed the random number generator
srand (time (NULL));

printf{"NOTE: There are %lu cells in the solution for this goal\n'',count);

//First, again fill up the SubEra array with ERA thresholds to use when checking constraints -
if(FillSubEraThresholds(SubEra) ==FALSE)

Bailout(94);

//Also create an array of structures to hold a PreMove copy of the current S_Era[] & Copy of the best S_Era found
struct ERA (*PreMoveEra} = new struct ERA[Sr.lutionSheds];
struct ERA (*BestEra) = new struct ERA[SolutionSheds];
if (PreMoveEra == NULL)

print£ ("Problems allocating memory for PreMoveEra with %lu elements\n", SolutionSheds*sizeof (struct ERA.)) ;
if (BestEra == NULL)

print£ (~Problems allocating memcry for BestEra with %lu elements\n", SolutionSheds*sizeof (struct ERA.));
//Initialize PreMoveEra & BestEra
memset(PreMoveEra, 0, sizeof(struct ERA) * SolutionSheds);
memset(BestEra, 0 , sizeof(struct ER..~) * SolutionSheds);

//Also initialize the PerValues and PreMoveValues and PreMovePeriodEra[] array
memset(PerValues, 0, sizeof(PerValues));
memset(PreMoveValues, 0, sizeof(PreMoveValues));
memset(PreMovePeriodEra, 0, sizeof(PreMovePeriodEra)

/*
Fill PerValues [] with the appropriate values.
PerValues[] is KEY! It has the total "optimizing ?alue 11 for the Pre-Move solution, for each of the periods.
This array can then be modified - the "value'' for the unit-period being moved OUT of will be reduced
and the unit-period being moved IN'TO will be increased. After evaluation, PreMoveValues[] will be reinserted

NOTE: S_Era(] works the same way except it was initially filled up back in Fill_SEra() & CalculateSumPeriodEra()
---which were called while trying to establish the initial solution.
* I
if(Fill_PValues(count, CS, Records, OV, PerValues) == FALSE)

Bailout(86);

//Create an array of structures on the free store to hold a copy of the BEST solution
struct SOLUTION (*Best) = new struct SOLUTION(count];
if (Best =::. NULL l

pr intf {•Problems allocating memory for Best [] with 'tlu elements \n", count* s izeof (struct SOLUTION)) ;

/ /Initialize and copy the initial solution found into this array of Best [] & PreMoveCS [] structures
memset(Best, 0, sizeof{struct SOLUTION) * count } ;
memcpy{ Best, CS, sizeof(struct SOLUTION) * count};

//Also copy the current S_Era into the BestEra
memcpy(BestEra, S_Era, sizeof(struct ERA) * SolutionSheds};

//NOTE; llFebOO - skipping this baseline stuff unless needed at later time
//First, send off the InitialSolution to get a Baseline; Do we really need to get a baseline?
/ /Baseline = GetBaselineVTO •'.count, CS, PerValues, OV, Records);
//Multiply the Baseline by NP because the objective will be to Maximize the Total of Big Trees -

regardless of when
//Baseline== Baseline* NP;

I !Get the Initial Objective Value
for(b=O;b<NP;b++)

- just sum up all the trees in PerValues

InitialObj += PerValues [b]

I I Set some other objective value holders that will change
LEVEL = InitialObj;
PreMoveObj = InitialObj;
move!!
BestObj = Ini tialObj;

printf(•InitialObj is %.3lf\n~,rnitia10bj);
printf("LEVEL is %.3lf\n~,LEVEL);

/ /Make sure to reset after making a new

/ /reset as new best are found

//Create, open,and write out the Initial Objective ·value to a file for tracking all the best moves
sprintf (f ilename_best, "%s%s%d\ \best txt", PREFIX, OutputDelugeDir, GOAL_TO_USE) ;
WRITE_BEST = fopen(filename_best, "w"); //I'm not doing any error-checking here!
fprintf (WRITE_BEST, "%. 4lf \ t%. 4lf\n '' , InitialObj, LEVEL) ;

//Also create and open the file to show which cells and goals are being changed - to evaluate if randomness is
working in heuristic
sprintf (Temp, "%s%s%d\ \random, txt", PREFIX, PreSimOutputDir, GOAL_TO_USE) ;
WRITE_RANDOM = fopen(Terrp, uw");
if(WRITE_RANDOM ;; NULL I

printf("Something wrong opening the ts file\n",Temp);

312

I I***..,..,...,..***********************

II Start the
Deluge Loop
/ / * * * * * * * * ** * * * * * * * * ** * ** ** * ** * ** * * * * ** * * * * * * * * * * ** * ** * * * * * * * * * * ** * * * * * * ** * * * * * * ** * * * ** * **

//Make the looping a function of hm,; many cells are actually in the current solution
LoopsToDo = (ulong) (count * LOOP_FACTORi; //count was passed in and represents #- of
cells in the solution
FirstThird = (ulong) (LoopsToDo * . 333333);
SecondThird = (ulong)PirstThird * 2;

printf ("Going to do %lu loops\n", LoopsToDo);

CopyToPre = TRUE;
for(loop=O;loop<(signed)LoopsToDo;loop++)
{

//Always zero out the MoveObj
MoveObj = O;

//Copy the PerValues &the S_Era structures - unless a previous move failed, then they are already set
if (CopyToPre == TRUE)
(

memcpy(PreMoveValues, PerValues, sizeof(PerValues));
memcpy(PreMoveEra, S_Era, sizeof(struct ERA)*SolutionSheds);

//Pick a random cell in the CS array to move
RandCore = (float}{rand() / (float)RAND_MAX);
RCell = (ulong) (RandCore * (count-1));

PreMoveGoal = CS(RCell] .Goal;
PreMoveHold CS[RCell] .Hold;

/ /will get O to "count" [to use in array notation]

//Set a pointer for this cell in the array of CS structures
ptr_cs = &CS (RCell];

//Also set a pointer to the current cells values in PeriodEra[]
ptr_cellera = &CS[RCell] .PeriodEra[Q];

//Make a copy of the cells PericdEra[] member tc ccpy back if final move is no good
memcpy(PreMovePeriodEra, ptr_cellera, sizeof(PreMovePeriodEra)) ;

//a quick bailout if HOLDNO is net ccrrect
if(HOLDNO > 2)

Bailout (28);

//Pick a new hold, but DO allcw it tc be same as PreMcveHcld - can change later if want to exclude
do(

MoveHold = (ushort} (rand(} % 4 } ,-

* I

)while (MoveHold == 1 11 MoveHcld == 2);

I /Make a pointer to the prcper S_Era record - to pass to the SwaplAdjust fun::::tion
memset{&EKey, 0 , sizeof(struct ERA));

EKey.Minor = ptr_cs->Mincr;

I /Now use bsearch to find the mat::::hing Subwatershed in the array of Era stru::tures
ptr_ekey = (struct ERA*)bsearch(

&EKey,

(void *)S_Era,
(size_t) SolutionSheds,
sizeof (struct ERA.) 1

CompareEraMinor);

if (ptr_ekey == NULL)
Bailout (88);

//There had better be one!

313

I**

Everything above gets done only once per new move (i.e. pi::::king a new cell to ::::hange). What happens next
is that I will check a small "neighborhocd" by evaluating all the stand goals - storing their obj. value
and then picking the stand goal that made the best move (also checking constraints).
/ ** * ** * * * * * * * * * * * * ** * * * * * * ** * * * * * * * ** * * * * * * * * * ** ** * * * *

/ /Always reinitialize TestObj before next testing loop
memset(TestObj, 0 , sizeof(TestObj));

for { a=O; a<GOALS; a++)
{

//reset some variables
ViolateConstraints = FALSE,-

I /Don't evaluate the current stand goal assignment for this cell - has O in TestObj [] already
if(a== PreMoveGoal

continue;

//Otherwise, call up SwaplAdjust with the current stand goal
//Note: CS.Goal & CS.Hold= not changed,
I /BUT, CS. PeriodEra [], PerValues [], & S_Era, SumPeriodEra [] HAVE been changed!
SwaplAdjust(ptr_cs, a, MoveHold, PerValues, OV, Records, ptr_ekey);

//Check to see if this test nove violates constraints
if{ CheckConstraintsGoall\S_Era,SolutionSheds, SubEra)

ViolateConstraints = TRUE;
FALSE)

/ /Calculate the TestObj value if constraints not violated - if constraints violated, TestObj []
has O already

during SwaplAdjust

if { ViolateConstraints == FALSE
{

for(x=O;x<NP;x++}
TestObj [a] += PerValues [x] ,-

//No matter whether or not this test move gets picked, reset some values that got adjusted

//These always reset to those values found when first picking which cell to move
memcpy(PerValues, PreMoveValues, sizeof(PreMoveValues/);
memcpy(S_Era, PreMoveEra, sizeof(struct ERA)*SolutionSheds J;
memcpy(ptr_cellera, PreMovePeriodEra, sizeof {PreMovePeriodEra} } ,-

)//end for(a=O ...
I/***************************~~**************************************~***************************~****~*~

II End of evaluating neighborhood for this particular cell
I I***********************~~**

//Now look through the TestObj[] array and find which stand goal made the largest value - if they are all
the same

//(and/or all equal to zero) then don't make any move with this cell and skip rest of loop and pick
another cell.

BestTestObj = O;
BetterThanZero = FALSE;
for (a=O; a<GOALS; a++)
{

if(Testobj[a] > BestTestObj)
{

BetterThanZero = TRUE;
BestTestGoal = (signed}a;
BestTestObj = TestObJ[a];

}//end for(a=O

//If nothing BetterThanZero was found, then all neighborhood moves violated the constraints - skip rest
and pick another cell

if(BetterThanZero == FALSE
{

else

CopyToPre
continue;

FALSE;

314

CopyToPre = TRUE;

I/+++++++++++++++++++++++ IF TO HERE THEN A MOVE lrLi\S M.l\.DE AND P.!!1.SSED CONSTRAINTS ++++++++++++++++++++++

/'
If to here, then at least one stand goal got d vdlid answer {although not necessarily a better one - that
will be checked below). Remember, that the current stand godl dssignrnent should not have been picked

becduse it had
a TenpObj[J value of 0, but double-check.
NOTE: constraints were already checked - if it failed then it received a zero in TestObj[] and should

not be picked anyways!
'/

//double checked that current stand goal was not picked
if(BestTestGoal == PreMoveGoal I

Bdilout(l05);

//Switch BestTestGoal value back to original variable called MoveGoal
MoveGoal = BestTestGoal;

/ /Call up SWdplAdjust again
//Remember everything was reset back to origindl Vdlues dfter looking dt dll the stand goals (the

neighborhood analysis)
SwaplAdjust(ptr_cs, MoveGoal, MoveHold, Pervalues, OV, Records, ptr_ekey);

//Print out random move information to the random.txt file
if (loop % PRINT_LOOPS == 0) //This will be printed every "X" loops

fprintf(WRITE_RANDOM, "%lu \t%hu\t%hu
\t%hu\t%hu\n",RCell,PreMoveGoal,PreMoveHold,MoveGoal,MoveHoldl;

//See what the MoveObj is
for(x=O;x<NP;x++)

MoveObj += PerValues[X];

//double-checked that this MoveObj is the same dS wds cdlculdted edrlier
if(MoveObj != BestTestObj }

Bailout(l06);

if(loop % PRINT_LOOPS == 0) //This will be printed first, every "X" loops
{

printf(~\nJust had a MoveObj of %.4lf and ... ", MoveObj);
fprintf(WRITE_BEST, "At loop %d, the current BEST is %.2lf\n",loop, BestObj);

//This is a MAXIMIZATION problem - if MoveObj is> BestObj then it is already better, so just accept and
go to next loop

if(MoveObj > BestObj)
{

if (loop % PRINT_LOOPS == O)
printf("Was a BEST move, LEVEL is %.4lf, Best WAS %.2lf, at loop

%d", LEVEL, BestObj, loop);

//if this is the Cdse, then current PerValues[] & S_Era are OK, but CS[] needs updated -
CS{J.PeriodEra[] also OK

else
to make

it

CS [RCellJ .Goal MoveGoal;
CS{RCellJ .Hold MoveHold;

/ /Reset BestObj
BestObj = MoveObj;

//printf("Raising LEVEL from %.6lf to %.6lf\n",LEVEL,LE'JEL+RAIN);
LEVEL += F.AIN;

/ /write out to file
//fprintf (WRITE_BEST, "% .4lf\t%. 4lf\n", MoveObj, LEVEL);

//Sdve CS{] & S_Erd[] separately so I can print out later
memcpy{ Best, CS, sizeof(struct SOLUTION) * count);
memcpy(BestErd, S_Erd, sizeof(struct ERA) * SolutionSheds);

//an INFERIOR move - use the GREAT DELUGE to decide if still want

//======== Use the Great Deluge logic------------======;;;
if (MoveObj > LEVEL)

if(loop % PRINT_LOOPS == 0)

//Yes, I do want to keep

printf ("Using GreatDeluge ... KEEPING, LEVEL dt %.2lf. BEST dt %.2lf, at loop
%dN, LEVEL, BestObj, loop};

CS{].Period.Era(} also OK
// if this is the case, then Per'lalues [] & S_Era are OK, but CS [] needs upddted -

CS[RCell] .Goal MoveGoal;
CS[RCell] .Hold MoveHold;

//Adjust Level (raise it - mdximizdtion problem!}
LEVEL += RAIN;

315

else //NO, reject the inferior
solution ... reset PerValues[] & S_Era, but CS[] is OK

{

if (loop PRINT_LOOPS == 0 I

printf("Using GreatDeluge ... REJECTING, LEVEL at %.2lf, BEST at %.2lf, at
loop %d-,LEVEL, BestObj,loop);

if(loop > (signed) (LoopsToDo - l000000;)

{

if (LEVEL >= BestObj)

LEVEL = LEVEL - 5 0;

//Move has been rejected - reset everything back to PreMove* values
memcpy(PerValues, PreMoveValues, sizeof(PreMoveValues));
memcpy(S_Era, PreMoveEra, sizeof(struct ERAi*SolutionSheds);

/ /Also put back the cells PeriodEra [] stuff
memcpy(ptr_cellera, PreMovePeriodEra, sizeof(PreMovePeriodEra));

CopyToPre = FALSE;
into the Pre ... [], they are already there!

//1,•Jill tell top of loop not to copy these values back

)

// =---=-==========""=-'="== End of Great Deluge acceptance routine -------====c--=-=--------=======

} //end for (loop ... }
print£ ("\n"}; I /because of the way I have the print statements for my viewing

I I***

//Copy the BestSolution back over to Solution & The BestEra back to $_Era so everything is kosher
memcpy(CS, Best, sizeof(struct SOLUTION) * count);
memcpy(S_Era 1 BestEra, sizeof(struct ERA) * SolutionSheds);

//close files
fclose(WRITE_BEST);
£close (WRITE_RANDOM);

Finish= clock();
Duration = { (double) (Finish-Start) / CLOCKS_PER_SEC) ;
printf{"\t\t****** GreatDeluge for goal %d took %.2lf seconds******\n", GOAL_TO_USE,Duration l;

/ /Testprint
print£ (•The best solution found has ERA values of: \n");
for{a=O;a<(signed)SolutionSheds;a++)
{

printf("Subwatershed %hu has Count %lu: ",S_Era[a] .Minor, S_Era[a] .Count);

for (b=O; b<NP;b++)
printf("\t%.2f", ((float)S_Era[a] .SumPeriodEra[b] / ERA_EXP) / S_Era[a] .Count);

print£ ("\n"};

I I***

I I Double check

print£ ("\n \n----------- Getting ready to DOUBLE CHECK solution --------=-----------------=====\n") ;
//Resort the array of SOLUTION structures by MINOR This will guarantee all the subwatersheds are in order
//Use mgsort because gsort takes way too long since there are not many unique Minor ID's
mgsort ((void*) CS, / ;base

(size_t) count,
sizeof (struct SOLUTION),
O, count-1,

//count of# of arrays
//size of each array

//current division (
always: 0, "CountN-1)

LookAtSolutio:nM:inor }; //compare function

/ /Initialize this array of ERA structures - this is important because Fill SEra will do some += summing
memset{ S_Era, 0, sizeof(struct ERA) * SolutionSheds);

//Fill the array of S_Era structures with appropriate values
if(Fill_SEra(SolutionSheds, S_Era 1 count, CS) ==FALSE)

Bailout(85);

//Resort the array of CS structures by CELLID only. This is needed by CalculateSumPeriodEra
gsort((void*)CS, //base

arrays

function

(size_t)count,

sizeof (struct SOLUTION),
LookAtSolutionCellid);

if (CalculateSumPeriodEra (SolutionSheds, S_Era, count, CS, OV, Records) == FALSE)
Bailout(86);

//count of !l' of

//size of each array
/ /compare

pr intf ("-------------------------- Finished double checking -------------------------------\n \n" J •

// End DoubleCheck
I I**

//*********************** These will print out ONLY tho::::e things for cells IN THE SOLUTION*****************

I /Print out the Periodic values for the value being optimized
PrintSolutionValues (count, CS, OV, Records, SubEra, ACTU}li.L);

//Print out the Big Trees
PrintSolutionBigTrees(count, CS, OV, Records, SubEra, ACTUili.L);

I /Print out the ERA values in S_Era
PrintSolutionEraValues (S_Era, SolutionSheds, ACTUAL);

/ /Delete stuff on the free store
delete (] PreMoveEra;
delete (] BestEra;
delete [] Best;

return TRUE;
}//end DelugeGoall

G0.A.LS.H

//Mostly some functions defined in GOAL_CONTROLLER.CPP and are used by almost all the GOAL*.cpp files.

extern int FillValueToOptimize(void);

extern double GetBaselineVTO(ulong count, struct SOLUTION Solution[], double PerValues[],

OPTIMIZE_SINGLE_VALUE OV[), ulong Records);

extern void SwaplAdjust(struct SOLUTION *ptr_cs, ushort NG, ushort NH, double PerValues[l, struct
OPTIMIZE_SINGLE_VALUE OV[],

ulong Records, struct ERA *ptr_era);

struct

extern void PrintSolutionValues(ulong Count, struct SOLUTION CS[], struct OPTIMIZE_SINGLE_VALUE OV[],
ulong Records, int SubEra[], int Status);

extern void PrintSolutionBigTrees(ulong Count, struct SOLUTION CS[], struct OPTIMIZE_SINGLE_VALUE OV[],
ulong Records, int SubEra[], int Status);

extern int DetermineEligibleCells (ulong Values []);

extern int FillSolution(ulong Values[], struct SOLUTION Solution[], int Status);

extern int LookAtOSV(const void *ptrl, const void *ptr2);

extern int CompareEraMinor(const void *ptrl, canst void *ptr2);

extern int LookAtSolutionMinor (canst void *ptrl, canst void *ptr2) ;

extern int LookAtSolutionCellid (canst void *ptrl, const void *ptr2);

extern ulong CountSolutionWatersheds{ulong count, struct SOLUTION Solution[]/;

316

extern int Fill_PValues(ulong Count, struct SOLUTION CS[], ulong Records, struct OPTIMIZE_SINGLE_VALUE OV[], double
Value[]);

extern int InputSolution(ulong Count, struct SOLUTION CS[]);

extern void InputAndCalculateSolutionEras(ulong Count, struct SOLUTION CS[]);

extern void PrintSolutionEraValues(struct ERA Era[], ulong NoSheds, int Status);

extern int Fill_SEra(ulong NoSub, struct ERA S_Era[], ulong Count, struct SOLUTION CSL]);

extern int FillEndingEra(ulong NoSub, struct ERA S_Era[], ulong Count, struct SOLUTION CS[] };

extern void OutputinitialGoal(void);

//this is really defined in EraStuff. cpp
extern int CalculateSurnPeriodEra(ulong NoSub, struct ERA S_Era[], ulong Count, struct SOLUTION CS[], struct
OPTIMIZE_SINGLE_VALUE OV [],

ulong Records);

/ * 1r 1r 1r 1r *** 1r 1r ** *** ******* ***** 1r ** 1r 1r 1r 1r 1r 1r 1r 1r ** 1r 1r 1r 1r 1r ** 1r 1r 1r 1r 1r 1r 1r 1r 1r 1r 1r * * * * * * * ** * * * * * * * * * *

------------------------------- mgsort.c ------------------------------- *

* * * * * * * ** ** * * * * ** * "'* * * * "'* * •* * "'"' *"' * * *"' * * * *"' "'"'"'"'"'"'"'I

#include <stdlib.h>
#include <String.h>

int mgsort(void *data, int size, int esize, int i, int k, int ("'compare)
(const void *keyl, const void *key2));

static int rnerge(void *data, int esize, inti, int j, int k, int i*compare)
(const void *keyl, const void *key2)} i

//----------------------------------- End of function definitions --- --·------------

I***~~~*************

-------------------------------- mgsort -------------------------------- *

* * * * * * * * * * * * * * * * * ** * * * * * * * * * ** * * * *** /
int rngsort(void *data, int size, int esize, int i, int k, int (*compare)

(canst void *keyl, canst void *key2))
I I***~**

int j;

I***

* Stop the recursion when no more divisions can be made.

* * * * * * *** * * * * * * * * * * * * **** * * * ** *** /

if (i < k) [

I**

* Determine where to divide the elements.

* * * * * * ** * * * * * * * * * * * ** * * * * * * * * ** * * * * * * * ** ******,,I

j = I int) I I Ii + k - 1) J / 21 ;

I******************************.,,*******.,,***********************************

* Recursively sort the two divisions.

* * * * * * * * * * * ** * * * * * * * * * * * ** * * * ** * * * * * * * ** * * * * * ~ *******I

if (mgsort(data, size, esize, i, j, compare) < 0)
return -1;

if (rngsort(data, size, esize, j + 1, k, compare) < 0)
return -1;

I**********************************•***************************************

* Merge the two sorted divisions into a single sorted set.

* * * * * ** * * * * * * * * * * * * * * * * * ** * * * * * * ** * * * * * * ** * * * * * * * * * * * * * * * ** * * ** * * * * *******I

if (rnerge(data, esize, i, j, k, compare) < 0)
return -1;

return O·

I***

--------------------------------merge---------------------------------

* * ** * * * * * * * * * * ** *** * * * ** * * * ** ** * * * * ********I
static int merge(void *data, int esize, inti, int j, int k, int (*compare)

(const void *keyl, const void *key2))
I I**~*

char

int

*a= (char *)data,
*m;

ipos,
jpos,
mpos;

I***•***************,***

* Initialize the counters used in merging.

* * * ** * * * * * * * * * ** * * * * * * * * * * * * * * * ** *******I

ipos i;
jpos j + 1;
rnpos O;

I***.,.,*.,.,*******************************
*

317

* Allocate storage for the merged elements.

if ((m = (char *)malloc (esize * ((k - i) + l}) J == NULL)

return -1;

I***~***~*~~***********~

* *
* Continue while either division has elements to merge.

* ** * * * * * * * * * * * * * * * * /

while I ipos <= j 11 jpos <= k) [

if (ipos > j)

I***"'***********************

* The left division has no more elements to merge.

* * * * * * * ** ~ * * * * * * * * ~ * * ********I

while (jpos <= k)

memcpy(&m[mpos * esize], &a[jpos * esize], esize);
jpos++;
mpos++;

continue,-

else if (jpos > k) {

I***
*
* The right division has no more elements to merge.

* * * *** ***** **** * * * * * * * * * * * * * * * * ~ ~ ~ * * * ** * * * * * * * ** ** * ** * * * * * * * * * * * * * * **** /

while (ipos <= j)

memcpy(&m[mpos * esize], &ct[ipos * esize], esize);
ipos++;
mpos++;

continue;

I*******************************""****************~*****~~*****************~

* Append the next ordered element to the merged elements.

* * * ** * * * * * * * * * * * * * *** *******I

if (compare(&a[ipos * esize], &a[jpos * esize]) < 0) {

rnemcpyi&m[mpos * esize], &a[ipos * esize], esize);
ipos++;
mpos++;

else

memcpy(&m[mpos * esize], &a[jpos * esize], esize);
jpos++;
mpos++;

/* * * * **** * * ** ** * * * * * * * * * * * * * *

* Prepare to pass back the merged data.

* * * * * * * ** * * * * * * ** * * * * * * * * * * * * ** * * * * * * * * * * * * * * * ** * * * * * * * * * ** * ** * * * * * * * * * * * * * * * /

memcpy(&a[i * esize], m, esize * ((k - i) + 1));

I***.,,.,,********

* Free the storage allocated for merging.

free(m);

318

return O;

P!'{EPAR.EF'ARS.i';,:'J:::. CPP

I I***
//This PrepareFarsite.cpp file contains the functions that are used to prepare and run farsite within this
//SAFED program.
I I***

I I***

#include <stdio. h>
#include <stdlib. h>
#include <string.h>
#include <time.h>
#include <math.h>
#include "globals.h"
#,include "data.h"

//Functions defined here in PrepareFarsite.cpp
int PrepareFarsite(int period, int weather};

FILE *open_input(char *filename, int rw);
int close_file(FILE *f, char *filename);

void InitialFiles(void);
void RunM.akeper0 (void);

void MakeRunfarsite{int p);
void WhichOutputs(int p);
void Makeignition(int p);
void MakeFiresl(int p);
void prepare_run(int p, int TotalHours);
int IgnitionPoints(int p, int weather);
void PrepareFarsiteEnvt(int p, int drought);
void Prefireinfo(int p, int Hours, int Drought, int NoFires};

I I**..,*********
int PrepareFarsite(int period, int weather)
I I**

319

// ***IMPORTANT ** Remember that the LayerFile is made in Prepa.reFla.mrnap() now, they both use
same file

//Some local variables
int Hours, NoFires=0;

// Use to run all the PrepareFarsite functions

//Set the hours to burn as follows:
if(weather == l}

Hours = 24;
else if (weather == 2}

Hours 48;
else

//Wet

/ /Moderate

Hours 96; //Drought .. weather is either 3 or 4 (mild or severe drought)

MakeRunfarsite(period);
runit.bat file needed for each period

WhichOutputs(periodl;
that specifies which output

//raster grids to make.

Makeignition(period);
file needed for each period

MakeFiresl(period};
file needed for each period

iifndef RERUN_SIM
prepare_run(period,Hours};

start dates and how

//long the fire burns

for this period
#endif

we can make the

NoFires = IgnitionPoints(period, weather);

PrepareFarsiteEnvt(period,weather/;

//necessary changes to it before it is used

//Make the

I /Make the ''Farout" file

//Make the ignition.txt

//Make the firesl.txt

//prepare run.txt to change the

//Create the ignition points needed

//Create the envt.txt file so that

Pref irelnfo (period, Hours, ·v.•eather, NoFires J;

return TRUE;
}//end of PrepareFarsite

I I***

FILE *open_input(char *filename, int rw)
I I***

(

FILE *f;
errno = O;
char mode[2];

if (n.'

if (rw
11 (mode[O]
2) (mode[O]

' r ' ; mode [l]
'w 1

; mode[l]

if(filename == NULL) filename
f = fopen(filename,mode);

"\0";

if (f == NULL)

'\0';}
'\0';}

fprintf(stderr, "open_input/\"%s\'') failed: %s\n", filename, strerror(errno));

return f;

I I***

int close_file(FILE *f, char *filename)
I I** k* ** * * *

int s =- 0;
if (f == NULL) return O;
errno = O;
s = fclose(fl;
if (s == EOF) perror{"Close failed");

returns;

I I***
void InitialFiles (void)
I I************************************* I,***

//This is to create the Batch file needed to change the directory and start process to pipe
//a file through Arc, which in turn will run the make_perO.:cUnl.

//Will create two files. 1) a file called make_perO.bat and the other called make_perO.txt
//which have a specific format as seen below.

//Don't need the period passed to this function because this will only be executed once
//and it will automatically put it in the perO directory

FILE *OpenWrite;
char WriteOut(lSO];
char StartArc [150];
char ArcCommand[350];

//--------------------------------------- End variable defining--

//stuff for .bat file
char DirChange[lOO];
sprintf (StartArc, "type %s%s%d\ \perO \ \make_perO. txt I arc", PREFIX, INPUTS, GOAL_TO_USE) ;

//stuff for the .txt file
sprintf(ArcCommand, "&r %s%s\\ma.ke_per0.aml %s %s %d'' 1 PREFIX,AmlDir, r-1.Z..IN_USER, ENVT, FILE_TYPE);

//Prepare and write the ma.ke_perO.bat file and a command line to change directories
sprintf (WriteOut, "%s%s%d\ \perO\ \make_perO. bat", PREFIX, INPUTS I GOAL_TO_USE);
sprintf (DirChange, "cd %s%s%d\ \perO\ \", PREFIX, INPUTS, GOAL_TO_USE);

320

OpenWrite = open_input(WriteOut, 2);

fprintf(OpenWrite, "%s\n", DirChange);
fprintf {OpenWrite, "%s\n", StartArc);
close_file(OpenWrite, WriteOut);

//open in write
mode

//Prepare and write the make_perO.txt file
sprintf (WriteOut, •%s%s%d0\ \make_perO. txt", PREFIX, INPUTS, GOAL_TO_USE);

OpenWr it e = open_inpu t (Wr i teOu t, 2) ; //open in write
mode

fprintf(OpenWrite, "%s\n'·, ArcCommand);
close_file(OpenWrite, WriteOut);

/ /Call up the RunMakeperO () to actually start the batch file

RunM.akeperO () ;

I I***************************************~**
void RunMakeperO(void)

I I**

// This function will run the MAKE_PERO.BAT file which in turns calls up Arcinfc and then
// runs the make_perO.aml located in the g:/Modellamls/ directory. In essence, the initial
//grid files needed before period 1 starts will be created and put into either the ./perO/
//or .. \inputs\Constant* directory, so that when perl starts it can leek in that directory.

//For Time information
clock_t Start, Finish;
double Duration;

Start clock();

char RunBatch[lOO];

/ /Make the command
sprintf (RunBatch, "%s%s%d0\ \make_perO. bat'', PREFIX, INPUTS, GOAL_TO_USE) i

sys tern (RunBa tch) ;

Finish= clock();
Duration= ((double) (Finish-Start} / CLOCKS_PER_SEC);
printf{"\n**It took %.2lf seconds to run the MakePerO.arnl**\n", Duration)

I I**
void MakeRunfarsite(int p)
/I**

//Make the RUNFARSITE.BAT file needed by Farsite - on the fly

FILE *OpenWrite;
char WriteOut {150);

char LayerFile[lSOJ;
char EnvtFile[lSO];
char IgnitionFile[l50];
char RunFile [150];
char BarrierFile[l50]:
char ChangesFile[l50];
char OutputFiles [150];

//--------------------------------------- End variable defining--

//String together the current
sprintf {WriteOut,
sprintf(LayerFile,
sprintf(EnvtFile,
spr intf (Igni tionF ile,
sprintf (RunFile,
spr intf (OutputFiles,
sprintf (BarrierFile,
sprintf (ChangesFile,

period directory path and the appropriate file names
"%s%s%d\ \per%d\ \runfarsite .bat", PREFIX, INPUTS, GOAL_TO_USE, p) ;
"%s%s%d\ \per%d\ \layers txt", PREFIX, INPUTS, GOAL_TO_USE, p) ;
"%s%s%d\ \per%d\ \ farsite_envt. txt", PREFIX, INPUTS, GOF...L_TO_USE, p);
"%s%s'td\ \per%d\ \ignition. txt", PREFIX, INPUTS, GOAL_TO_USE,p);
'' %s%s%d\ \per%d\ \run. txt", PREFIX, INPUTS, GOAL_TO_USE, p) ;
"%s%s%d\ \per%d \ \Farsite_out. txt", PREFIX, OUTPUTS, GOAL_TO_USE, p);
"'ts%s\ \barrier. txt" , PREF IX, Constantinput) ;
"%s%s\ \changes. txt", PREFIX, Constantinput);

OpenWrite = open_input(WriteOut, 2); //open in write mode
fprintf (OpenWrite, "%s%s %s %s 'ts %s 'ts %s %s\n", PREFIX, FarsiteNarne, LayerFile, EnvtFile,

IgnitionFile,RunFile,OutputFiles,BarrierFile,ChangesFile);

close_file (OpenWrite, WriteOut);

I I*** Jc* Jc Jc******** Jc******************
void WhichOutputs\int p)
I I*** Jc Jc Jc******* Jc Jc Jc Jc********* Jc** Jc Jc*************

// This function will make a file called" ... outputs\per*\Farsite_out.txt". Inside of this file
/ /will be a list of the raster grids we want Fa.rsite to output. This file is specified in the
//above runit.bat file as the 6th parameter that Farsite is looking for and which the Farsite code
//calls the "OutputFile". In farsite, I have modified the code in Farread,cpp

ReadinputFiles::ReadRunSpecs
//to strip off the last 16 chararcters \Farsite_out.txt) and then search for the first occurance
//of "per" and set a pointer at the beginning of "per" to pass along and create output filenames
//such as •perl", "per2", ''per20".

//All we want for now are the FLA.1'.!E lengths and unless we need more that is all that is going in.
//The arrival grid will ALWAYS be made because that is needed for Farsite to do its calculations.

FILE *OpenWrite;
char Write0ut[50];
char Gridl[lOJ = "flame";
char Temp[l50];

//--------------------------------------- End variable defining--

321

//Make the correct filename
sprintf (Temp, "%s%s%d\ \per%d\ \Farsite_out. txt", PREFIX, OUTPUTS, GOAL_TO_USE, p) ;
sprintf(WriteOut, "%s",Ternp);

OpenWrite = open_input(WriteOut, 2);
fprintf {OpenWrite, "%s\n" ,Gridl);

close_file (OpenWrite, WriteOut};

//open in write mode

I I**
void Makelgnition(int p}
I I**

//Make the ignition.txt file which specifies to use firesl.txt as the file that has the name of
//the ascii files which have the coordinates for fire ignition sources - this is all screwy but
//that is how Farsite is coded and I have just followed along

FILE *OpenWrite;
char WriteOut [100];
char TextLine[lOO];

//Cat together the full directory path name and the file names
sprintf (TextLine, ~ %s%s%d\ \per%d\ \ f iresl. txt", PREFIX, INPUTS, GOAL_TO_USE, p);
sprintf (WriteOut, "%s%s%d\ \per%d\ \ignition. txt", PREFIX, INPUTS, GOAL_TO_USE, p};

#ifdef DEBUG_MAKEIGNITION

#endif

//print out to see if they are correct
printf ("%s\n•, TextLine);

322

OpenWrite = open_input(WriteOut, 2}; //open in write
mode

fprintf {OpenWrite, ·•%s \n", TextLine/;
close_file(Open'ioJrite, WriteOut);

I I**
void MakeFiresl{int p)
I I**

//Make the firesl.txt file which specifies the potential three ascii files that can be populated
//with data concerning fire ignition sources. They must be in the specified order because that
//is how Farsite is looking for them

FILE *OpenWrite;
char Write0ut[50];
char Points[lOO], Lines[lOO], Poly{lOO];

//--------------------------------------- End variable defining---------------------------------------­

//Make the full directory path name and the file names

mode

sprintf (Points, "%s%s%d\ \per%d\ \igpoints. asc", PREFIX, INPUTS, GOAL_TO_USE, p;,;
sprintf (Lines, "%s%s%d\ \per'td\ \ igli~~es, asc", PREFIX, INPUTS, GOAL_TO_USE, p);
sprintf (Poly, "%s%s%d\ \per%d\ \igpoly. asc", PREFIX, INPUTS, GOAL_TO_USE, p);
sprintf (WriteOut, "%s%s%d\ \per%d\ \fires!. txt '', PREFIX, INPUTS, GOAL_TO_USE, p;,;

OpenWrite = open_input(WriteOut, 2);

fprint f (OpenWri te, "%s \n" , Points) ;
fprintf(OpenWrite, "%s\n" ,Lines);
fprintf (OpenWrite, "%s\n", Poly);

close_file(OpenWrite, WriteOut);

//open in write

I I**
void prepare_run(int p, int TotalHours)
I I**

FILE *OpenWrite;
char RunFile[lOO];

char TimeStep[S] ="0400";

come up with some sort of ratio of Time

TotalHours because this really slows us

// Change this value if needed to speed up processing
I /May want to

//step to the

323

//down with
long fires.

int PerimeterRes = 200; / / Change these two to speed up if coarser
res. is OK

int DistanceRes -= 200;
char RasterUnits [lO]="metric";
int MonthStart, DayStart, HourStart;
int MonthEnd, DayEnd, HourEnd;
int rnd;
int DaysOfBurning, HoursLeft, MaxDay
int Xday, VisStep;

//-------------------------------------- End variable defining--

//Create a string with the actual run.txt file name with the full directory path
sprintf (RunFile, "%s%s%d\ \per%d\ \run. txt", PREFIX, INPUTS, GOAL_TO_USE, p);

I I**""'*******************

/* We are going to generate new
dates and times according to the follo-'ing process: The main program will send a
value to this function that is the 'If of hours to burn. The burn start month will be
randomly decided as either June or July. A random day and hour will then be picked and the
hours to burn will be added and the end hour, day, and month will be calculated.*/

I I******************************* I< I< I< I< I<** I< I<* I<**** I< I< I<***

in June

//Randomly generate nwnber to determine if start month is june or july
rnd = {rand{) % 2);

//NEW- Bernie changed wind&.weather files to have only one month of data Augl5-Sept 14
//SO make it always start in August (31 day month) 130 April 99)
MonthStart = 8;

//if (rnd == 0) MonthStart
//else MonthStart =

//for June

//Randomly generate number to get which day of the month it is

// for July

//NEW(30April99) - must start on or after the 15th because of new .wnd and .wtr files

/*if (MonthStart == 6) rnd = (rand() % 30 + l); / ;,.~·ill get 0-29 and add 1 to get 1-30 days

else rnd = (rand() % 31 + 1); //will get 0-30 and add
to get 1-31 days in July or August

*/
if (MonthStart 6)
(

do(
rnd = (rand() % 30 + 1);

}while(rnd < 16); //Farsite sometimes bail if start
date is the 15th - maybe because that is first line?

}

added!

month

else //only for July and ..::...ugust since they both have 31 days. Modify if other months

do(
rnd = {rand() 't Jl + 1);

}while (rnd < 16);

DayStart rnd;

//Randomly generate number to get the start hour
/ /NEW - Bernie wants fire to ah,ays start from 0800 to 2000 hours
//and they should start on Even hours to match weather and wind files(30 April 99)
do
(
rnd = (rand(} % 20 + l);
Jwhilelrnd < 8 11 lrnd % 21 OJ;

HourStart = rnd;

//Determine how many days and left over hours there are from TotalHours
DaysOfBurning = (int) (TotalHours / 24);
HoursLeft = (int) (TotalHours % 241 i

//Set MaxDay and MaxHours to make sure days and hours added to start date don't exceed a valid

switch(MonthStart)
(

case 6' MaxDay=30; break; //days
case 7, MaxDay=Jl; break; //days
case 8, MaxDay=31; break; //days

//Calculate the ending Hours, days, and Month
Xday = O;
HourEnd = HourStart + HoursLeft;
if(HourEnd > 24)
(

Xday = HourEnd / 24;

in June
in July
in August

// if more than 24 hours make another day

324

HourEnd HourEnd % 24; //otherwise this is the final hour

//set ending day DayEnd = DayStart + DaysOfBurning + Xday;
if(DayEnd > MaxDay) //if days burning exceed allowable #days in a

month

MonthEnd = MonthStart + l;
DayEnd = DayEnd % Ma.xDay;

//increment to next month
//reset ending day

else
MonthEnd = MonthStart; ; /otherwise fire ends in same month

//Set the Visible Time Step equal to that of the TOT..Z:I.LHOURS time
VisStep = TotalHours;

I I***
//Prepare all the data to write back into a run.txt file so that it can be used by FARSITE
//It has to be written in this exact format otherwise Farsite will bomb out.

I I**

OpenWrite = open_input(RunFile, 2);

fprint f (OpenWr ite, "1998 % . 2d%. 2d%. 4d \n ', MonthStart, DayStart, (HourStart* 100)) ;
fprintf (OpenWrite, '' l99R%. 2d%. 2d%. 4d\n", MonthEnd, DayEnd, /HourEnd*lOO));
fprintf (OpenWrite, "%s\n", Time Step);
fprintf {OpenWr ite, "%. 4d\n" , (VisStep* 100) } ;
fprintf (OpenWrite, "%d\n", PerimeterRes};
fprintf (OpenWr ite, "%d\n", DistanceRes) ;
£print£ (OpenWri te, "%s \n", RasterUnits) ;

close_file(OpenWrite, RunFile);

//end of prepare_run

I I**
int IgnitionPoints(int p, int weather}
I I**

/*
This function will generate fire ignition points for each period. The output will be a file called
... \ inputs\ \per*\ igpoints. asc which FARSITE will use. The format of the file is standard ARC/ Info "ungenerate"
form:

PointID X-coord{in meters} y-coord(meters)

End

NOTE: The data stored in Data.*[] [p] is that BEFORE any fire so that data is GOOD. After the fire
that information will be updated with new condition and can then be sent out for mapping, etc ..
* I

int NoFires, NewPoint = Di

int a, b, Row, Column, ContinueStatus, AnotherContinueStatus, EvalColumn;
FILE *OpenWrite;
char WriteOut [150];
ushort Points[15] [2], RowsAway, ColumnsAway;
ulong *ptr_treelist;
int rnd;
float XValue, YValue;

int *ptr_srp;
ushort *ptr_gridcolumn,
int r,c,HowMany;

//Starting Row Position
*ptr_veg, *ptr_fuel, *ptr_e lev, *ptr_fire;

//-------------------------------------- End variable defining--

//Initialize Points[][] which will hold the ROW and COLUMN value for selected ignition points
for(a=O;a<l5;a++)
{

for (b::::Q ;h<2 ;b++)
Points I a] [bl O;

//CHANGE: 7 June 99: Bernie now wants to have 5 - 15 ignition points regardless of
//whether it is a Wet, Moderate, or Drought period. The weather and wind files will adjust for conditions
//14 March 00 - changing to max of 14 - FARSITE sometimes "hangs" with 15 fires????
do
{

NoFires = (rand () t 14 + 1 / ;
}while (NoFires < 5) ;

do

= (rand() t ROWS+ 1); //get l - ROWS Row
Column = (rand() % COLUMNS + l) ; //get l - COLUMNS

rnd = rand() % 100 + 11; J J assign random number to use for
probabilistic comparisons later

//printf ("Row is td and Column is 'td\n", Row, Column);

I I*************************************** CHECKER # 1

//======================== Check for WATER condition and any other immediate disqualifiers

ptr_srp =
HowMany =
ptr_gridcolumn
ptr_treelist
ptr_veg =
ptr_elev
ptr_fire
ptr_fuel

&link[Row-1] [l];
* \ptr_srp+l);

&Data .GridColumn [(*ptr_srp) -1];
&Data.Treelist[(*ptr_srp)-1];
&Data.Initial Veg [(*ptr_srp) -1] ;

&Data.Elev[(*ptr_srp)-1];
&Data.FireHistory[(*ptr_srp)-1];
&Data.FuelModel[(*ptr_srp)-1] [p-1];

//If the whole row is blank, pick another point

325

if { *ptr_srp ="' F.P-.LSE '1 / /means a zero was left in this spot during MakeLink
continue;

ContinueStatus = D;
for (c=O; c<HowMany; c++}
(

if (*ptr_gridcolurnn == Column)
{

//This is the correct cell

// ******* Do any CELL SPECIFIC checking below, using the same format

//Check to see if the cell location was classified as water in the Initial
Vegeation classification

loop

if(*ptr_veg == GIS_WATER)
//Yes it was

ContinueStatus = l;
I/FAIL, try another point

if(*ptr_fuel != 93 ! ! *ptr_treelist != NONFORESTl
//should match with Fuel model 98 that was inputted in ReadData.cpp

Bailout (54);
break; //finished looking in this for ..

history. If it

polygons in the

I !Check to see if this cell is in or out of the polygons that delineate pre•Jious fire

//is out, give it a 40% chance of continuing because there are no fire history

//m,.; portion of the Applegate and that would be crazy to exclude fire from starting
there.

//And only do this when not running with TINY or COMPARE watersheds (they are too
small and no points get picked)
iif !defined(TINY_RUN) && !defined{COMPARE_RUN)

if (*ptr_fire NODATAFLAG) // is outside any fire history
polygons

if (rnd > 60)
I /give it a 60% chance of occuring anyways

ContinueStatus 1; //Fail, try
another point

break;
//finished looking in this for .. loop

#endif

liklihood

in high elevation)

because new

enough that

cycling.

//Get a new random number
rnd = rand() % 100 + l);

//put a probability factor in here to account for weather and elevation

/ / (i.e. in Wet years, there is a smaller probablity that fires will occur

//get those values from Bernie - this method may not be the most accurate

//random numbers are compared against new random points and it could cycle

//ignition points get located in undesirable elevations just because of

if(weather == 1)
//wet period

//Fail

if(*ptr_elev >= (3000*FT2M)
{

if(rnd > 10)
/ /only 10% chance that this is allowable

(

//finished looking in this for ... loop
)

ContinueStatus l;

break;

else if(*ptr_elev >= (1500*FT2M))

if(rnd <= 10 // rnd > 25}
//only 15% chance that this is allowable

//Fail

//Fail

//Fail

//finished looking in this for. loop

else
//less than 1500 feet in elevation

(

ContinueStatus l;

break;

if(rnd <..= 25)
//a 75% chance that this is allowable

ContinueStatus l;

break;
//finished looking in this for. loop

//moderate period
else if (weather 2)

if(*ptr_elev >= (3000*FT2M)
(

if(rnd > 15)
//only 15% chance that this is allowable

ContinueStatus l;

break;
//finished looK.ing in this for ... loop

else if(*ptr_elev >= (1500*FT2M))

if{ rnd <= 15 11 rnd > 50)
/ /only 35% chance that this is allm-_rable

//Fail

//Fail

//Fail

ContinueStatus l;

break;
//finished l~oking in this for ... loop

else
//less than 1500 feet in elevation

if (rnd 50)
//a 50% chance that this is allowable

//finished looking in this for ... loop

else
//drought period - either Mild or Severe

{

ContinueStatus l;

break;

if(*ptr_elev >= (3000"FT2M) I
(

if(rnd > 10)
//only 10% chance that this is allowable

ContinueStatus l;

break;
//finished looking in this for. loop

else if (*ptr_elev >= (1500*FT2M})

if(rnd <= 10 11 rnd > 55)
//only 45% chance that this is a.llowable

ContinueStatus l;
//Fail

break;
/ /finished looking in this for.. loop

else
// less than 1500 feet in elevation

if{ rnd <= 55)
//a 45% chance that this is allowable

ContinueStatus 1;
//Fail

break;
//finished looking in this for ... loop

326

}//end ot checking the weather and elevation

}//end if (*ptr_gridcolurnn == Column)

ptr_gridcolwnn++;
ptr_treelist++;
ptr_veg++;
ptr_elev++;
ptr_fire++;
ptr_fuel+;:;NP;

327

} //end for (c=O;c<HowMany; c++)

if(ContinueStatus =="' 1)
continue; //get another

point

ensuring

cell.

NOT

when

themes.

with, pick another

area, pick another

of data

of data

that row

//********************""****************** CHECKER #2

//Now check and make sure this cell is not within a 1 mile "buffer" of the edge. Do this by

//there is a miles worth of contiguous cells (MOC) BEFORE, AFTER, ABOVE, and BELOW the selected

//NOTE; All I'm checking here is to see if there is a valid cell in Grid Gridcolumn - that DOES

//ensure there is data for all themes (i.e. fuel, etc.), only that there was NOT nodata there

//the Cellid.asc file was brought in. Check later to see if there is data for necessary

if (Row MOC) //the starting row is too close to begin
point

continue;
if (Ro•,-.• (COLUMNS - MOC) I

continue; //starting row is too close to bottom of
point

if (Column <= MOC)
continue; //starting column is too close to left edge

if (Colunm >= (ROWS - MOC) I
continue; I /starting column is too close to right edge

/ /we know the current evaluation row, look in link [] [] and see if there is even any data in

ifllink[Row-1] [2] == 0)
the geo. extent of current envt, !

//there is no data for this row - occurs above or below

continue; //so pick another point

//*********""******** Look ABOVE the cell for MOC valid cells **********""******
//printf(" **********" Looking ABOVE the cell for firepoint 'fl:%d

******************\n~,NewPoint+l);
ContinueStatus = O;
for(r=Row-l;r>:;:;;Row-MOC;r--)
(

/ /printf ["Selected ROW is %d and COLilllN is 'td and now evaluating row
%d", Row, Colunm, r);

//we know the current evaluation row, get its SRP in link[][] and check that rows
Data.Gridcolumn values

ptr_srp &.link[r-1] [1];
HowMany *(ptr_srp+l);

if {HowMany == 0) //there are no columns of data for this row - bad!
{

//printf (" ... which is FALSE because of lack of LINES\n"};
CuntinueStatus = l;
break; //quit looking above

because there are a shortage of lines above
}

//Set pointer where this grid row starts in the Data.* arrays
ptr_gridcolumn = &Data. Gr idColumn [(*ptr_srp) -1 J ;
AnotherContinueStatus = 0;
for(c=O;c<HowMany;c++)
{

if (*ptr_gridcolumn Column)
//YES, this row does have a cell in the same column

(
//printf('' ... which is TRUE\n");
AnotherContinueStatus = l;
break;

/ /quit looking at this row in Data .Gridcolumn

ptr_gr idcolumn++;

if (AnotherContinueStatus
continue;

iteration of For(r=-Row-1 ...) - check next cell above
else

1 I
//next

/ /printf (" ... which is FALSE because there was NODATA above\n");
ContinueStatus = l;

328

break; ,, /no
co 1 umn above was found

);;end for(r==Row-l;r>-=Row-64,r--)

if (ContinueStatus ~:. 1) //failed to have MOC above that
column, try another point

continue;
I! *************** 1< 1< 1< 1< I<*** End of looking ABOVE the current cell

//NOTE: only gets here if everythinq above passes

I I****************** Look BEL01;-,1 the cell for MOC valid cells ******************
//printf(" *********** Looking BELON the cell for firepoint #'td

******************\nw ,NewPoint+l);
ContinueStatus = 0;
for(r=Row+l;r<=Row+MOC;r++)
{

/ /printt ("Selected ROW is %d and COLUMN is %d and now evaluating row
%:d",Row,Column,r);

//we know the current evaluation row, get its SRP in link[][] and check that rows
Data .Gridcolumn values

ptr_srp = &link[r-lJ [1];
HowMany = * (ptr_srp+l) ;

if \HowMany == 0 i / /there are no columns of data for this row - bad!
(

/ /printf (" ... which is FALSE because of lack of LINES\n");
ContinueStatus = l;
break; //quit lookinq above

because there are a shortage of lines below

//Set pointer ~here this grid row starts in the Data.* arrays
ptr_gridcolumn. = &Data. GriJColumn[(*ptr_srp) -1];
AnotherContinueStatus = O;
for{c=O;c<HowMany;c++)
{

if (*ptr_gridcolumn Column)
//YES, this row does have a cell in the same column

(
//printf(" ... which is TRUE\n"};
AnotherContinueStatus = 1;
break;

/ /quit looking at this row in Data Gridcolurnn

ptr_gridcolurnn++;

if (An.otherContinueStatus
continue;

iteration of For(r=Ro•.-J+l. ..) - check next cell below
else

1 I
//next

/ ;printf (" ... which is FALSE because there was NODATA below\n");
ContinueStatus = 1;
break; //no

column below was found

} / /end for (r:..Row+l; r<=Row+MOC; r++)

if (ContinueStatus == 1} //failed to have MOC below that
column, try another point

continue;
II *********************** End of looking BELO¼ the current cell

* ********I<*************

//****************** Look BEFORE the cell for MOC valid cells******************
//printf(" *********** Looking BEFORE the cell for firepoint #%d

******************\n" ,NewPoint+l);

column

!/Set pointer where this grid row starts in the Data.* arrays
ptr_srp = &link [Row-1 J [1] ;
HowMany = * (ptr_srp+l);
ptr_gridcolumn = &Data .GridColurnn((*ptr_srp} -1];

//printf("Selected ROW is %d and COLUMN is %d ",Row,:olumn);

//Increment the pointer up to where the actual Data.Gridcolumn matches the current evaluation

ContinueStatus = O;
for (r=O; r<HowMany; r--1--+)
(

if (*ptr_griJcolumn == Column)
//found the match - leave ptr_gridcolumn here

(
ContinueStatus 1;
break;

ptr_gridcolumn++;

if(ContinueStatus != ll 1/This column, in this row, has
NODATA to begin with. __ pick another point

(

/ /printf (" ... which is FALSE because this column has NODATA to begin with \n");
continue;

//get another point

329

BEFORE
//otherwise, ptr_gridcolurnn sh;1uld be sitting on the right spot ... check the continuity for MOC

Continues tat us = Di

for (c:l; c<=MOC; c++)
(

//bump ptr_gridcolurnn dovm the appropriate amount
ptr_gridcolurnn--;

I /get the e•Jaluation column
EvalColumn = Column - c;

/ /printf ("\n ... now evaluating column %hu", EvalColumn};

if (*ptr_gridcolumn ! = EvalColurnn)
(

//Discontinuity

//printf(" ... which is FALSE because there is NODATA here - DISCONTINUITY
BEFORE In•);

ContinueStatus: l;
break;

if {ContinueStatus == 1 /
(

//There was discontinuity

/ /printf (.. which is FALSE because column 'td had nodata \n", EvalColurrm);
continue;

//get another point

//printf(" ... which is TRUE, there is continuity of data BEFORE\n"l;

II*********************** End of looking BEFORE the current cell
** ** * * ** * ** * * * * * * * * *** *

//NOTE: only gets here if everything above passes

/ /****************** Look AFTER the cell for MOC valid cells******************
//printf{~ *********** Looking AFTER the cell for firepoint #%d

******************\n~ ,NewPoint+l);

column

//Set pointer where this grid row starts in the Data.* arrays
ptr_srp = &link[Row-1] [1];
HowMany = *(ptr_srp+l);
ptr_gridcolumn = &Data GridColumn [(*ptr_srp) -1];

/ /print£{ NSelected ROW is %d and COLUMN is %d. ",Row, Column),-

//Increment the pointer up to where the actual Data.Gridcolumn matches the current evaluation

ContinueStatus = O;
for(r=O;r<H□wMany;r++)
(

if (*ptr_gridcolumn == Column)
//found the match - leave ptr_gridcolumn here

ContinueStatus l;
break;

ptr_gridcolu.mn++;

if(ContinueStatus != lJ
NODATA to begin with ... pick another point

/ /This column, in this row, has

AFTER

(

/ /printf ('' ... which is ~ALSE because this column has NODATA to begin with\n");
continue;

//get another point

//otherwise, ptr_gridcolumn should be sitting on the right spot ... check the continuity for MOC

continueStatus = O;
for (c=l; c<=MOC; c++)
{

//bump ptr_gridcolumn up the appropriate amount
ptr_gridcolwnn++;

//get the evaluation column
E•JalColumn = Column + c;

//printf("\n ... now evaluating colu."1U1 %hu",Eva1Column};

if(*ptr_gridcolumn ! = EvalColumn)
(

/ /Discontinuity

330

/ /printf (" ... which is FALSE because there is NODl1.T_i\ here - DISCONTINUITY
AFTER\n");

ContinueStatus = l;
break;

if (Continuestatus == l) / I There was discontinuity
(

/ /printf (" ... which is F_i\LSE because column %d had nodata \n", EvalColurnn) ;
continue;

//get another point

//print£(" ... which is TRUE, there is continuity of data AFTER\n");

II *********************** End of looking AFTER the current cell
* * * * ** * * * * * * * * * * ** * * * * * * * * * * ** * ** * * * * * * * * * * * *

//================================ END OF ALL ERROR .i\ND VALIDITY CHECKERS FOR THIS SELECTED CELL ------------------

//NOTE: only gets here if all CHECKERS have passed

}while(NewPoint

I/ for (c=-0; c<NoFires; c++)

Points [NewPoint] [OJ ?.ow;
Points [NewPoint] [l] = Column;
NewPoint++;

NoFires);

//printf("%hu\t%hu\nN 1 Points[c] [0),Points[c] [l]);

I I**
//Now calculate actual coordinates for the points and send them out to a file for Farsite to read in.
I I***~*********~******************************

//first, create the file to send the point data to
sprint£ (WriteOut, "%s%s%d\ \per%d\ \igpoints. asc", PREFIX, INPUTS, GOAL_TO_USE, p) ;
OpenWrite = fopen (WriteOut, "w");

//loop through the Points [] [] array and convert each point
for(c=O;c<NoFires;c++) / /There are only "NoFires" points stored in this array
(out of a possible 15)
(

RowsAway ROWS - Points [c] [□] i //really the Y-offset from the
lower left corner of original grid

ColurnnsAway = COLUMNS - Points[c] [l]; / /really the X-offset from the lower left
corner of original grid

XValue
YValue

{float}F_XLL + (CELLSIZE * ColumnsAway);
(float}F_YLL + (CELLSIZE * RowsAwayi;

//print out the value
fprintf (OpenWri te, "%d\ t%. 4 f \ t%. 4 f \n" , c+l, XValue, YValue) ;

}//end for(c=O;c<NoFires;c++)

//put in the final line in the igpoint.asc file
fprintf(OpenWrite, ''END\n");

Arcinfo aungeneratew format

fclose(OpenWrite);

//needed by Farsite because this is

return NoFires; //so this can be passed on to PreFireinfo ()

}//end IgnitionPoints(}

I/**********************************,*****,,**

//**' '* '****'''' '** '** '******* '* '** '* '* '**
void PrepareFarsiteEnvt(int p, int drought)
I I*************************************~***************************** *"Ir**************************~~**~****~***

//The farsite_envt. txt file called by Farsite specifies some files that Farsite ¼'ill
//use to set up the general parameters. We are going to need to change things like
//which weather and wind files it uses (based on whether it is a drought year or not).
//There may be additional reasons to change certain files at a later time

//This file DOES NOT need to exist. It will be created from scratch using the data from below.

char custom[20]="CUSTOM_FUEL_FILE", CustomFuelFile[60];

char conversion[20]="CONVERSION_FILE",

char weather (20J =NWEATHER_FILE",
char
ModweatherFile(60];

ConversionFile[60];

h'etWeatherFile[60];

period

char
DroWeatherFile [60];

char wind[20J=•WIND_FILE"
char
ModWindFile[60);
char
DroWindFile[60);

;1\/et;l\/indFile [60 l;

char fms[20)="FUELMOISTURE_FILE"

char

WetFMFile[60];

ModFMFile [60);

char
DroFMFile [60];

char adjustment [20] = "ADJUS™ENT_FILE",
char
ModAdjustFile [60];
char
DroAdjustFile [60];

char acceleration[20] ="ACCELER.A.TION_FILE",

char spot [20] ="SPOT_FILE",

//Put together all the filenames

WetAdjustFile[60];

AccelFile [60];

SpotFile[60);

sprintf (CustomFuelFile, "%s%s\ \ %s_farsite. fmd", PREFIX, Constant Input, SHORT_N~Z,,..ME);

sprint f (ConversionF ile, "%s%s \\null. txt" , PREFIX, Constantinput l ;

sprintf (WetWeatherFile, "%s%s\ \%s_wet. wtr", PREFIX, Constantinput, SHORT_NAME) ;
sprintf(ModWeatherFile, "%s%s\\%s_mod.wtr",PREFIX,Constantinput,SHORT_NAME};
sprintf (DroWeatherFile, "%s%s\ \%s_dro, wtr", PREFIX, Constant Input, SHORT_NAME);

sprintf (WetWindFile, "%s%s\ \%s_wet. \-,"Tl.d", PREFIX, Constantinput, SHORT_NAME);
sprintf (ModWindFile, "%s%s\ \%s_mod. \-,"Tl.d", PREFIX, Cons tantinput, SHORT_NAME);
sprintf (DroWindFile, "%s%s\ \ %s_dro. wnd', PREFIX, Constantinput, SHORT_NAME);

sprintf (WetFMFile, • %s%s\ \%s_wet. fms", PREFIX, Constantinput, SHORT_NAME);
sprintf (ModFMFile, w %s%s\ \%s_mod. fms", PREFIX, Constantinput, SHORT_NAME);
sprintf (DroFMFile, w %s%s\ \ %s_dro. fms", PREFIX, Constant Input, SHORT_NAME);

sprint f (WetAdj ustF ile, "%s%s\ \ %s_wet. adj " , PREFIX, Constantinput, SHORT_NAME) ;
sprint f (Mod.AdjustF ile, "%s%s\ \ 1;s_mod. adj " , PREFIX, Constantinput, SHORT_NAME) ;
sprintf (DroAdjustFile, "%s%s\ \ %s_dro. adj", PREFIX, Constantinput, SHORT_N.A.ME);

sprintf (AccelF ile, "%s%s \\null. txt", PREFIX, Constantinput) ;
sprintf (SpotF ile, '' %s%s\ \spotting. txt", PREFIX, Constantinpu t) ;

//Use these to copy whichever of the above we want to a consistent output string name
char WriteOut[250];
char OutWeather[250];
char OutWind[250];
char OutMoisture[250];
char OutAdjustment[25D];

FILE *OpenWrite;

/ /Now determine which of the files are going to be used
if (drought == 1)

strcpy (OutWeather, "v-JetWeatherFile};
strcpy(OutWind, WetWindFilel;
strcpy(OutMoisture, WetFMFileJ;
strcpy(OutAdjustrnent, ·;,vetAdjustFile);

else if(drought == 2)
MODERATE period

mode

(

else
(

strcpy (OutWeather, ModWeatherFile);
strcpy (OutWind, Mod~oJindFile);
strcpy(OutMoisture, ModFMFile);
strcpy(OutAdjustment,ModAdjustFile);

//is a DROUGHT period (Mild or Severe)
strcpy(OutWeather, DroWeatherFile);
strcpy {OutWind, DroWindFile);
strcpy(OutMoisture, DroFMFile);
strcpy{OutAdjustment,DroAdjustFilel;

//Create a string with the actual envt.txt file name with the full directory path
sprintf (WriteOut, "%s%s%d\ \per%d\ \ farsite_envt. txt", PREFIX, INPUTS, GOAL_TO_USE, p);

OpenWrite = open_input{WriteOut, 2);

fprintf (Open';oJrite, "%s \t%s\n", custom, CustomFuelFile) ;
fprintf (OpenWrite, "%s \t%s\n", conversion, ConversionFile);

331

// is a WET

/I is a

//open in write

fprintf(OpenWrite, "%s \t\t%s\n", weather, Outf,,,;eather};
fprintf(OpenWrite, "%s \t\t%s\n", wind, Outf,,,;ind);
fprintf (OpenWri te, "%s \ t'ts\n '', fms, OutMoisture);
fprintf(OpenWrite, "%s \t%s\n", adjustment, OutAd-justment);
fprintf(OpenWrite, "%s \t%s\n", acceleration, AccelFile);
fprintf(OpenWrite, "%s \t\t%s\n", spot, SpotFile);
close_file(OpenWrite, WriteOut);

I I**
void Prefireinfo(int p, int Hours, int Drought, int NoFires}
I I**••******
(

// A little script to display vital data such as #of fires, how many hours, drought year, etc
I I Before Farsite runs so •se can see this on the screen

pr intf (g \n \ t\ t * * * ** ** * * * * * * ** * * * * * * * * * * * * ** * * ** * * ** *\n") ;
printf(• \t\t ****
if (Drought == 1)
printf(g \t\t **** Period %d
else if(Drought •:;:; 2)

This is a·NETperiod. \t****\ng,p);

printf(H \t\t **** Period %d
else if(Drought =:;:; 3)

This is a MODER..ti..TE period. \t****\ng,p};

printf(" \t\t Period %d This is a MILD DROUGHT period. \t****\n'' ,p);
else
printf(" \t\ t Period %d This is a SEVERE DROUGHT period. \t****\n" ,p);
printf (• \t\t There will be %d fires this period \t****\n'',NoFires);
printf (" \t\t Burning for a total of %d hours. \t****\n" ,Hours);
printf (" \ t\ t
print£(" \t\t
printf (" \ t\ t
printf(g \t\t

FARSITE is about to start and may take awhile
Sit back and enjoy the ride.

\t****\n");
\t****\n");
\t****\n I) j

\t****\n I) j

printf (g \t\t********************* ~ ~ ~* ~ ***********************************\n\n" J;

I***

* -------------------------------- sort.h -------------------------------- *

*** ~~~~~~********************I

#ifndef SORT_H
#define SORT_H

I*** .
* --------------------------- Public Interface--------------------------- *

****** *** ********************** *** **************** ***,,,,, •,, • •, • ** • ** • ******I

int issort(void *data, int size, int esize, int (*compare) (canst void *keyl,
canst void *key2));

int gksort(void *data, int size, int esize, int i, int k, int (*compare)
(canst void *keyl, canst void *key2));

int mgsort(void *data, int size, int esize, inti, int k, int {*compare)
(const void *keyl, canst void *key2) l;

int ctsort(int *data, int size, int k);

int rxsort(int *data, int size, int p, int k);

#end if

STANDDATA. CPP

#include <stdio.h>
#include <stdlib.h>
IF include <string. h>
#include <time.h>
#include <math. h>
#include gglobals.h"
#include "data, h"

//to hold global DEFINES, etc ..

//--

332

void StandDataController(struct NEW_STAND_DAT~ SD[], int Count, struct TREELIST_RECORD Records[], int NoRecords);
void CalculateindividualBasalCanopyWidth(struct TREELIST_RECORD Records[}, int NoRecords);
void CalculateStandHeight (struct TREELIST_RECORD Records [], int NoRecords, struct NEiAJ_STAND_DATA StandData [], int
Count) ;
void CalculateStandHLC(struct TREELIST_RECORD Records[], int NoRecords, struct NE/ll_STAND_DATA Stand.Data[], int
Count);

333

void CalculateCBD (struct TREELIST_RECORD Records [J, int NoRecords, struct NE'iiJ_STAND_DATA StandData [], int Count);

void CalculateStandClassification{struct TREELIST_RECORD Records fl, int NoRecords, struct ST..il..ND_CLASS *Stand);

int SortTallestTreelistFirst(const void *ptrl, canst void *ptr2);
int SortSmallestHlcFirst {canst void *ptrl, canst void *ptr2);
void RedoHlcCbd{void);

void NewStandHLC (struct STAND_CLASS *Stand) ;

/ / * ** * * * * * * * * * ** * * * * * * * * * * * * * * * ** * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * ... * ... * ... * * * * * * * * ** * * * * * * * * * * * * ** * * * * * * * * * * * ** * * * * * * * * * *

void StandDataController(struct NEW_STAND_DATA SD[], int Count, struct TREELIST_RECORD Records[], int NoRecords)
I!***

/*
This function will farm out to other functions to calculate various NEt·,'_STAND_DATA for the incoming
TREELIST_RECORD.
~count" is which line to use in SD[] while Records will hold all the actual treelist records. Remember, that this
function is being called after an episodic disturbance ,;\•hich create a bunch of snags. Those snags are not
included in Records[} but that is OK, because these stand metrics being calculated are for live trees only.
*/

int a=O;
struct STAND_CLASS StandClass;
struct STAND_CLASS *ptr_stand;
//--------------------------------------- End of variable defining

//Initialize StandClass and its pointer
ptr_stand = &StandClass;
memset(ptr_stand, 0, sizeof(struct STAND_CLASS) }:

I/---------=-- REM:EMBER: All these functions are for live trees only --------------------------------------­

//First, get the BASAL AREA and CANOPY WIDTH for each record
CalculateindividualBasalCanopyWidth(Records, NoRecords);

/ /Get the three i terns we use in our Veg-Structural classification
CalculateStandClassification(Records, NoRecords, ptr_stand);

/ /Fill in SD with data
SD [Count] . Basal
SD[Count] .VegClass
SD [Count]. Qmd
SD[CountJ.CoverClass
SD [Count 1. Closure

returned from ptr_stand
= ptr_stand->Basal;

ptr_stand->VegClass;
= ptr_stand->Qmd;

ptr_stand->Coverclass;
ptr_stand->Closure;

//Get the the average Stand Height
CalculateStandHeight(Records, NoRecords, SD, Count);
and "Heightn after this

/.'NOTE: Records will be descending sorted by "Status"

//Get the HLC (or Base to Live CroM1) -- being superceded by NewStandHLC for now 17Feb 00
//CalculateStandHLC(Records, NoRecords, SD, Count}; //NOTE: Records will be ascending sorted by
"Status'' and »ttlc"

// NEW HLC stuff!!!! l
NewStandHLC(ptr_stand);
SD [Count] . HeightCrown (ushort) (floor (ptr_stand->HeightCrown + . 5));

I !Get the Crown Bulk Density for the stand
CalculateCBD(Records, NoRecords, SD, count);

)//end StandDataController

I I*** X ** * * * * * * * * * * * * ** *

void NewStandHLC(struct STAND_CLASS *Stand

I!***"'***

/*
Use the old matrix that Jim and Bernie developed to classify the HLC based on the stands VegClass and Structural
stage corm;:,onet - which were already calculated and are in the *Stand structure function.

* I
ushort VegClass, Qmd, Coverclass;
11--------------------------------- End of variable defining --- --- --- - - - -----------------------------

I /Grab values associated with current stand. It was calculated earlier in CalculateStandClassification()
VegClass Stand->VegClass;
Qmd = Stand->Qmd;
CoverClass = Stand->Coverclass;

//printf(" Got %hu %hu %hu here in CalculateNewHLC\n",Vegclass,Qmd,CoverClass);

if I VegClass == VC_DH 11 VegClass == VC_DPENI
(

if I Qmd == O I
Stand->HeightCrown :.:: {float) {l*M2FT);

else if (Qmd == 1 I
Stand->HeightCrown= (float) (3*M2FT);

else if IQmd == 2 I
Stand->HeightCrown = (float) (3*M2FT);

else iflQmd == 31

if(CoverClass == a)
St,:1nd->HeightCrown (float) (4*M2FT);

(float) (8*M2FT);

else
Stand->HeightCrown

else if IQmd •= 4 I
Stand->HeightCrown

else
/float) (8*M2FT);

Stand->HeightCrown (float) I 8*M2FT);

else if (VegClass == VC_PINE \ \ VegClasz VC_KP

if I Qmd == o I
Stand->HeightCrown = (float) (l*M2FT);

else if (Qmd == 1 I
Stand->HeightCrown = (float) (3*M2FT);

else if IQmd == 21
Stand->HeightCrown

else if(Qmd == 3)

Stand->HeightCrown
else if(Qmd == 4}

Stand->HeightCrown
else

Stand->HeightCrown

else if(VegClass == VC_CH I I VegClass

if (Qmd == 0 I
Stand->HeightCrown

else if (Qmd == 1 I
Stand->HeightCrown=

else if (Qmd -- 2 I
Stand->HeightCrown

else if (Qmd -- 3 I
Stand->HeightCrown

else if(Qmd == 4)

Stand->HeightCrown
else

Stand->HeightCrown

=

(float} I 6*M2FT);

(float) (l0*M2FT) ;

(float) (10*M2FT);

(float) (l0*M2FT);

VC_EH

(float) (l*M2FT);

(float) (l*M2FT);

(float) (l*M2FT};

{ float) (l*M2FT);

I float) I l'M2FTI;

(float) (l*M2FT);

334

else if(VegClass == VC_MC 11 VegClass =- VC_MC3)//I'm cheating here - Jim's IT\dtrix shows slight difference but I
•average• for the two
(

if I Qmd == o
Stand->HeightCro¼'Il

else if{Qmd == 1)
Stand->HeightCro;,m

else if (Qmd == 2)
Stand->HeightCrown

else if(Qmd == 31

(float) (1 *M2FT);

(float) (l*M2FT);

(float) (l*M2FT);

if(CoverClass == Ol
Stand->HeightCrown

else
(float} (l*M2FT);

Stand->HeightCrovm (float) (7*M2FT);

else if (Qmd == 4)
stand->HeightCrm .. -n

else
Stand->HeightCrow-n

{float) (l.5*M2FT);

(float) (2*M2FT);

else if (VegClass == VC_WF

if(Qmd == 0 I
Stand->HeightCrown

else if (Qmd == 1)
(float) (l*M2FT);

if(CoverClass == 0)
Stand->HeightCrm~-n

else
Stand->HeightCrow-n

else if(Qmd == 2)

if(CoverClass == 0)
Stand->HeightCrown

else
Stand->HeightCrown

else if (Qmd == 31

if(CoverClass == 0)
Stand->HeightCrown

else

(float) ;l*M2FT);

(float) (3*M2FT);

/float) (l*M2FT);

(float) (4..,M2FT);

(float) (l*M2FT);

else

Stand->HeightCro·..m

else if I Qmd == 41

else

if(CoverClass == 0)
Stand->HeightCro'.ffi

else
Stand->HeightCrown

(float) (7*M2FT} i

(float) (2*M2FT);

(float) (3*M2FT);

Stand->HeightCro¼"l'l (float) {lO*M2PT);

if(Qmd == 0 I
Stand->HeightCrown= (float} (l*M2FT);

else if (Qmd == l)

if(CoverClass == 0)
Stand->HeightCrown

else
Stand->HeightCrown

(float) (l*M2FT);

{float) (5*M2FT);

else if(Qmd == 21

if(CoverClass == 0)
Stand->HeightCrcwn

else
Stand->HeightCrown

(float) (1 *M2FT);

(float) (3"'M2PT);

else ifl Qmd == 3)

if(CoverClass == 0)
Stand->HeightCro'Wn :: (float) (l*M2FT);

else
Stand->HeightCrown= {float) {7*M2FT);

else if(Qmd == 4}

else

if (CoverClass == O)
Stand->HeightCruwn

else
Stand->HeightCrown

(float) (10*M2FT);

(float) (l"'M2PT);

Stand->HeightCrown (float) (10*M2FT);

}//end NewStandHLC

335

//should be for VC_RF only

//"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'*"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'"'**"'"'"'"'"'**"'"'"'"'"'"'"'"'"'"'"'"'"'*"'****"'"'*"'*"'"'"'"'"'*"'"'"'*"'

void CalculateCBD(struct TREELIST_RECORD Recordsl], int NoRecords, struct NEW_STAND_DATA StandData[], int Count)

//"'*"'*"'"'"'"'"'"'"'"'"'"'"'"'**"'*"'*"'

;•
CBD calculations were in PREMO from stuff John put in based on something Jim A. gave us.
Will try and copy what he did here.
•1

int a;
double StandCBD=O;
float Dbh, Tpa;
double CbdCF, CbdMJ;
double ModCbd;
//-------------------- End of variable defining---

//Calculate the entire stand CBD as a function of the individual species and equations for each
for(a=O;a<NoRecords;a++)
{

if(Records[a] .Status
{

LIVE I

//Set the Dbh & Tpa for ease of reading
Dbh Records[a] .Dbh;
Tpa = Records[a] .Tpa;

iflRecords[a} .Model BLACKOAK)

StandCBD += 0.8 "'Dbh "'Tpa;
else if(Records[a] .Model == DOUGFIR}

StandCBD += exp(-2.8462+1.7009"'log(2 54"'Dbh))*Tpa"'2.2046;
else if {Records [a] .Model == ICEDAR)

StandCBD += exp(-2.617+1~7824"'log(2.54"'Dbh)}*Tpa"'2.2046;

110

//2

} //end for la=0 ... I

else if(Records[a] .Model== KPINE I I Records[a] .Model== PPINE)
/ I 3 or 5

StandCBD += exp(-4.2612+2.0967*log(2.54*Dbh))*Tpa*2.204E;
else if (Records [a] .Model == MA.DRONE)

StandCBD += l. 4 *Dbh *Tpa;
else if (Records [a] .Model == RFIR 11 Records [a] .Model == '.'VFIR)

J /6 or 9
StandCBD += exp(-J.4662+1.9278*log[2 54*Dbh))*Tpa*2.204E;

else if(Records[a] .Model== SPINE)

StandCBD += exp(-J.97J9+2.0039*log(2.54*Dbh))*Tpa*2.2046;
else if(Records[a] .Model== TANOAK)

StandCBD += 5. O*Dbh*Tpa;
else

//all others
StandCBD += (400./40.J~Dbh~Tpa;

//Calculate the CBD per CF first;
CbdCF StandCBD / ((StandData[Count] .Stand.Height - Stand.Data[Count] .HeightCrown) * 43560) ;

// in lbs/ft3

if ICbdCF < 0
CbdCF = 0;

//Then calculate the CED in kg per rnJ
CbdM3 = CbdCF * 16. 02;

// kg per mJ

I I Store the kg per m3 data in Stand
//StandData[Count] .Density = (ushort) (floor(CbdM"J*DENSITY_EXP) /;

I I**),******** k *
// Below is the Bernie •tweak~ l 7FebDD

I I***
ModCbd == CbdMJ * StandData[Count} .Closure * ACREEQ) ;

if (ModCbd > . 3 0
ModCbd .30;

I I Store the kg per m3 data in Stand
Stand.Data[Count) .Density = ((ushort) (ModCbd*DENSITY_EXP));

)//end CalculateCBD

336

//4

//7

//8

I I***

void CalculateStandHLC(struct TREELIST_RECORD Records[], int NoRecords, struct N~~_STAND_DATA StandData[], int
Count)

I I**•**********••**

int a;
double StandTpa=O, StandHlc;
double Threshold50, MidStoryThreshold, MidstoryTpa;
double Group;
double SumTpa=O;
int Tpa50, Tpa50Tree, Flag;
//--------------------- End of variable defining --------------------------·-------------------------

//Create an array to hold the HtlcGroup for the records - and initialize
int (*HlcGroup) ~ new int[NoRecords];
if (HlcGroup == NULL)

printf ("Problems allocating memory for HlcGroup with %lu elements \n" 1 NoRecords};
meroset(HlcGroup, 0, sizeof(*HlcGroup) * NoRecords);

//Fill the Records[] .Hlc me:mher and calculate the StandTpa
for(a=0;a<NoRecords;a++l
{

if(Records[a).Status
{

Records [a] .Hlc
StandTpa

LIVE)

Records [a] .Height - ((Records [a] .Height * Records [a] .Ratio) I 100) ;
Records [a] .Tpa;

//The Hlc member needs to be sorted with smallest values first
qsort ((void*) Records,

//base
(size_t)NoRecords,

I I cowi.t of records
sizeof(struct TREELIST_RECORD)

//size of each record
SortSmallestHlcFirst } ;

//compare function

//test print
/*
if (Count == 0)
(
printf (~The Hlc member AFTER sorting\n");
for (a=O; a<NoRecords; a++}

printf("Records[%d] .Hlc is %.2lf and .Tpa is %.2lf\n",a,Records[a] .Hlc, Records[a] .Tpa);

*/

//Set some threshold values
Threshold50 StandTpa * 0.1;
if (Threshold50 > SO)

Threshold50 50;

//printf("\nThreshold50 just set to %.3lf\n\ng 1 Threshold50);

MidStor:yThreshold = StandTpa * 0. 05;
if (MidStoryThreshold > 5)

MidStoryThreshold = 5;

/ /Fill the HtlcGroup array
for(a=O;a<NoRecords;a++J
(

//I don't know why

I II don I t know why

Group= Records[a] .Hlc * 7.62 / 25 ;
HlcGroup[a] = (int) (floor{Group + 0.5));

11no ideal where equation came from

/ /Now sum of
a=O;
while{SurnTpa
(

Tpa for while threshold is not exceeded

< Threshold50

Surn'I'pa += Records[aJ.Tpa;
if (SumTpa < Threshold50

a++;

i I Start looking from the top

- no ideal why

//Get the next HtlcGroup after above threshold violated - and set a marker for that tree
TpaSO = HlcGroup [a] ;
TpaSOTree = a;
/ /printf ("Tpa50 set to %ct with TpaSOTree at %d\n", Tpa50, TpaSOTree);

Flag=O;
while(Flag== 0 l
(

//Doing something here
Mids toryTpa = 0;
for (a==O; a<NoRecords; a++}
(

337

if(HlcGroup[aJ > TpaSO && HlcGroup[a] < Tpa50+4)
above Tpa50

//Look for a 3' increment

MidStoryTpa += Records[a].Tpa;

I /Doing something here
if(MidStoryTpa > MidStoryThreshold)
(

Flag = l;
StandHlc = Records[Tpa50Tree] .Hlc;

else

a==O;
TpaSO++; I I increment up 1'

while(Records(a] .Hlc < {Tpa50 * 25 / 7.62}
a++:

Tpa50Tree = a;

/ /Doing something here
if (Tpa50 > HlcGroup [NoRecords-1]
(

}//end while

Flag =l;
standHlc Records[Tpa50Tree] .Hlc;

//printf("Just got a stand HLC of %.3lf\n",Stand.Hlc);

//Store in the Stand structure
Stand.Data [Count] . HeightCrown (ushort) \ floor (Stand.Hlc+ 0. 5)) ;

//Delete stuff on free store
delete [] HlcGroup;

} //end CalculateStandHLC

&& a < (NoRecords-1))

I I**
int SortSmallestHlcFirst (const void *ptrl, const void *ptr2)

I I**

//Just to typecast them since we aren't actually passing in pointers
struct TREELIST_RECORD *eleml;
struct TREELIST_RECORD *elem2;

eleml
elem2

(struct TREELIST_RECORD */ptrl;
{ struct TREELIST_RECORD *)ptr2;

if (eleml->Status < elern2->Status }
Status first

return -1;
if(eleml->Status > elern2->Status }

return l;
else

338

//Sort by

if{ elernl->Hlc < elem2->Hlc i
Height to Live Crown

//Then sort by

return -1;
if { eleml->Hlc > elem2<>-Hlc

return l·
else

return O;
/ /Finished

)//end SortSmallestHlcFirst

I I***

void CalculateStandHeight(struct TREELIST_RECORD Records[],int NoF.ecords,struct NEW_STAND_DATA StandData[], int
Count)
I/*****************************"'"'*"'*"'**"'***

(
/*
Calculate the average stand height by:

Has something to do with finding the records for those largest records whose TPA average out to something
like NO_TALL_TREES (using 5 at first}. I think Jim A. came up with this strategy
*/

int a;
float TallTpa=O, HeightTallTrees=O, Tallest=O;
//--------------------------------------- End of variable defining-------------------------------------

//First, sort Records by height, with the Tallest trees first (and broken into LIVE, DWD, and SNAG)
qsort({void*lRecords,

a•O;

//base
{size_t)NoRecords,

//count of records
sizeof (struct TREELIST_RECORD) ,
//size of each record
SortTallestTreelistFirst l;

//compare function

while(TallTpa < NO_TALL_TREES && a< NORecords /
[

if(Records[a] .Status
[

LIVE)

TallTpa
Height Tall Trees

+= Records[a] .Tpa;
Records[a] .Height* Records[a] .Tpa;

a++;
)//end while{

if (Tall Tpa > NO_TALL_TREES
HeightTallTrees

//Now average those trees out
if (TallTpa > 0 }

HeightTallTrees /= NO_TALL_TREE.S;
else

HeightTallTrees = 0;

I I Store in the Stand structure

Records[a] .Height * (TallTpa-NO_TALL_TREES);

StandData[CountJ .Stand.Height (ushort) (floor(HeightTallTrees+0.5)) ;

}//end CalculateStandHeight

I/**
int SortTallestTreelistFirst(const void *ptrl, canst void *ptr2)
I I*****************'"'****'"'**'"'**************************************"'*******

//.Just to typecast them since •,,,.'e aren't actually passing in pointers
struct TREELIST_RECORD *eleml;
struct TREELIST_RECORD * elem2;

elem!
elem2

{struct TREELIST_RECORD *)ptrl;
(struct TREELIST_RECORD *)ptr2;

if (eleml->Status > elem2->Status)
Status first

return -1;
if{ eleml->Status < elem2->Status)

return l;
else

if(eleml->Height > elem.2->Height)
/ /Then by height

return -1;
if(eleml->Height < elem2->Height

return l;
else

return O;
/ /FINISHED

}//end SortTallestTreelistFirst

339

//Sort by

I I***

void CalculateindividualBasalCanopyWidth(struct TREELIST_RECORD Records[], int NoRecords}
I I***

(
/*
This function will do two things:

1 - Calculate a Basal Area for each live tree record
2 - Calculate the canopy width for each live tree record

Not sure where PREMO got these canopy width coefficients but I am copying the~ straight from PREMO.

It appears that canopy width is a function of height (>or< 4.5 feet), so~e
coefficient based on the Model species code, and either Dbh or Height again.
* I
int a;
ushort SpeciesCode;
float Height, Dbh;

//Now idea where these came from!
double C01[TOTALSP]=(2.4922,4.4215,4.0920,2.8541,7.5183,2.8541,3.ll46,3.2367,7.5183,3.8166);
double C02[TOTALSP]=(0.8544,0.5329,0.4912,0.6400,0.446l,0.6400,0.5780,0.6247,0 4461,0.5229);
double CO] [TOTALSP] ={0 .1400, 0. 5170, 0. 4120, 0 .4070, 0. 8150, 0. 4070, 0. 3450, 0 .4060, 0. 8150, 0. 4520);

//------------------------------End of variable defining-------------------

//Look at each record and calculate BA by formula in Forestry Handbook
for(a:O;a<NoRecords;a++)
(

if(Records[a}.Status == LIVE
(

//Set some variable for ease
Dbh
Height
SpeciesCode

= Records[a] .Dbh;
Records[a].Height;
Records[a].Model;

(value 0-9 to use in array subscript)

//Calculate Basal area and put in the current record
Records[a} .Basal = (float) (pow(Dbh,2) * BASAL_CONSTA.NT);

//Calculate Canopy Width and put in the current record
if (Height > 4.5)

//Use the modeling code

Records[a] .CanopyWidth = {float) (COl[SpeciesCode] * pow(Dbh,C02[SpeciesCodeJ)
);

else

)//end if(Status

} //end for (a=O ...)

Records [a] .CanopyWidth

LIVE)

}//end CalculateBasalCanopyWidth

(float) (C03 [SpeciesCode] * Height J;

I I**••*********************************

void CalculateStandClassification(struct TREELIST_RECORD Records[], int NoRecords, struct STAND_CLASS *Stand)

I I***

/*

The *Stand (pointer) gets filled with data and is sent back without regards to what structure it will be going
into.

The equations were taken from PREMO and I believe they come from the work Lou Beers outlined in his paper
nMethods used to calculate QMD, VegType, and percent canopy closure on the Applegate watershed'' 8-24-98

NOTE:
'#define BLACKOAK 0 //used as array subscripts
idefine DOUGFIR
idef ine ICEDAR 2
idefine KPINE
idefine MADRONE 4
idefine PPINE 5
idefine RFIR
idefine SPINE
idefine TANOAK

idefine WFIR

NOTE; sometimes this functions gets called and only LiveRecords are passed in - sometimes not. So to be safe,
always check
that calculations are done for LIVE trees only.
*/

int a;
double TempCover, TotalCover=-0, StandBa=O, AdjStandBa=O, StandTpa=O, Adj StandTpa=O, Qmd, AdjQmd;
double SpCover [TOTALSP];
double RealStandBasal=O;
//----------------------------- End of '.rariable definition ----------------------------------

/ /Initialize SpCover (SpeciesCover)
for (a=O; a<TOTALSP; a++)

SpCover[a] = O;

//======================================= Get the average Qmd and stand BASAL--------------------------------­
//Get an average stand Qmd
for (a=O; a<NoRecords; a++)
(

//Calculate the RealStandBasal for live trees only
if(Records[a] .Status== LIVE)
{

RealStandBasal += Records[a] .Basal Records [a] .Tpa;

340

if (Records[a] .Dbh >=l)
calculate Vegclass only!

//Only those larger than l" contribute when

{

StandBa
StandTpa

+= Records [a] . Basal * Records [a] . Tpa;
Records [a] .Tpa;

Qmd = pow({StandBa / (BASAL__CONSTANT*StandTpa}), 0. 5):

//Put the RealStand.Basal in the Stand structure
Stand->Basal = (float)RealStandBasal;

//======================================= Get the AdjQmd ---------------------------------

//Go through records again and only count those that are larger than the above determined Qmd
for(a=O;a<NoRecords;a++)
{

if(Records{a) .Status== LIVE)
{

if (Records[a] .Dbh >= Qmd)
{

Records [a] . Tpa;
Records[a] .Basal

Records[a] .Tpa;

AdjStandBa

AdjStandTpa
TempCover pow((Records[a] .CanopyWidth/2)

,2) *PI* Records[a].Tpa; I I only calculate once
TotalCover
SpCover[Records[a] .Model] TempCover;

+= TempCover;

AdjQmd = pow((AdjStandBa / {BASAL_CONSTANT*AdjStandTpa)), 0.5);

//-------------------------------------- Get the Canopy Closure ------------------------=---------­
//Not sure what PREMO is doing to the SpCover here - some compensation for sq ft. per acre or something
for{a=O;a<TOTALSP;a++)

SpCover{a] = (SpCover[a]

/ /Adjust TotalCover for acres -
TotalCover = TotalCover / 435.6;

TotalCover)~lOO;

//printf("Just got a TotalCover of %.3lf\n",Tota1Cover);

//Put the TotalCover in Stand->Closure (this is the canopy closure percentage)
Stand->Closure = (ushort)TotalCover;

//43, 560 / 100%

!!==========================~======= Get the vegclassification code====================================
/ /Get the category which is used as our vegetation category for mapping and GIS stuff

//The following will try and copy what PREMO had, but may be slightly different to ease reading and coding
if(SpCover[BLACKOAK] +

SpCover[DOUGFIR]
SpCover [!CEDAR]
SpCover [KPTIJEJ
SpCover [MADRONE]
SpCover [PPINE]
SpCover (RFIR]
SpCover(SPINE]
SpCover [TANOAI(I
SpCover [WFIR]

Stand->i.iegClass == vc_OPEN;
20 I

//Open (?)

else if (SpCover [BLACKOAK] + SpCover [MADRONE] + SpCover[TANOAK]
(

if(
SpCover [DOUGFIR]

SpCover [ICEDARJ
SpCover [KPINE]
SpCover [PPINE]
SpCover [RFIR]
SpCover [SPINE]
SpCover [WFIR]

Stand->VegClass == >IC_CH;

//CH
else if (SpCover fBLACKOAK] + SpCover [T-i'.1.NOAK]

Stand->VegClass = i.iC_EH;

//EH
else

Stand-> 1JegCla.ss VC_DH;

//DH

else if(SpCover[RFIR] + SpCover[WFIR] > 50
(

if (SpCover [RFIRJ > SpCover [1,-JFIR]
Stand->VegClass = ·vc_RF;

else
Stand->VegClass VC_WF;

//RF

//WF

else if(SpCover[KPINE] + SpCover[PPINE] + SpCover(SPINE]
Stand->VegClass = VC_MC;

//MC
else if(SpCover[PPINE] + SpCover[SPINE] > SpCover[KPINE]

Stand->VegClass = VC_PINE;
i /Pine

else
Stand->VegClass VC_KP;

//KP

> 50 I

< 50 l

> 30)

> 30)

//-------------------------=--- Get the CoverClass category used as part of our structural stage

if (TotalCover < 60 }
Stand->CoverClass O;

else
Stand->CoverClass l;

//===========•=======-========= Get the QMD category that is also used as part of our structural stage

if (AdjQmd < 5 I
Stand->Qmd O;

else if (AdjQmd < 9 I
Stand->Qmd 1;

else if (AdjQmd < 15 I
Stand->Qmd 2;

else if(AdjQmd < 21)
Stand->Qmd 3;

else if (AdjQmd < 25)
Stand->Qmd 4;

else if (AdjQmd < 32)
Stand->Qmd 5;

else
Stand->Qmd 6;

341

//Readjust the CoverClass for those stands that don't have a cover component because of the QMD (the real young and
old stands)
if(Stand->Qmd == 0 I lstand->Qmd == 6 I I Stand->Qmd == 5 I

Stand->CoverClass ""' 0;

) / /end CalculateStandclassification

I I***

void RedoHlcCbd(void)
I I************************"*~**

!*
17Feb00 - Decided by Bernie and I that the HLC and CBD values coming from Premo were just not working. We
decided to try and use the old way of calculating HLC. The old way /for HLC) is by using the Matrix that Jim Agee
and Bernie originally developed to classify based on the stands VegClass and Structural Stage, The

CBD measurements are more complicated and for nm .. , we are going to just "t,.-,·eak" the values that are
being generated in Premo.

342

Values in Data.Vegcode are those 3 or 4 digits values that were either generated directly in PREMO or were slightly
modified by this progrom in FillPremoData(). Heidi gave me the following regarding what the PREMO codes meant:

1st digit (veg. class)
1 CH

DH
EH
CCP
MC
open
Pine
RF

9 WF
(lO)Not used in Premo

2nd digit = (QMD)
0 0-4.9

5-8.9
2 9-14. 9

15-20.9
21-24.9

5 25-31- 9
6 32•

3rd digit= (Canopy closure)
0 <= 60%

> 60%

#define vc CH -

it-define vc DH -
#define vc EH -
#define VC_KP
#define VC_MC

#define 'JC_OPEN
#define 'JC_PINE

#define VC_RF
#define VC_WF

l!=def ine VC_MCJ

Alterations: FillinitialPremoData() changed those with an original 1st digit of 5 to be either 5 (MC< 3000') or 10
(MC > 10000'),
so I can directly check for 5 or 10.
• I

int a, b;
ushort TempCode;
int TernpVeg, TempDiarn, TernpCover,­
float ModCbd;
//----------------------------- End of variable defining------------------------------------

printf(11Recalculating the HLC and CED with different algorithms than used in PREMO\n");

; /Go through all of Data.* []
for (a=O; a<UNIQUE; a++)
{

if(Data.Cellid[a]
break;

if(Data.Treelist[a]
continue;

for(b=O;b<NP;b++)
{

II

FALSE) / /no more cells to check

NONFOREST)

Do the new HLC
I I**
TempCode = Data.Vegcode[al [bl; //The actual 3 or 4 digit code from

PREMO

/ /extract the digits out
TempCover :::: TempCode'tlO ,-

for determining stage (is closure, <=60% or > 60%)
//last digit

TempDiam = ((TernpCode-TempCover) %100) / 10;
stage (is the QMD group)

//next to last digit also for determining

TempVeg = (TernpCode-TempCode%100) ; 100;
determining VegCode

if (TempVeg == VC_DH 11 TernpVeg == vc_OPEN)
{

//1st or 1st two digits for

if(TempDiam == 0 J

Data.HLC[a) [bl
else if(TempDiam == 1)

Data.HLC[al [bl
else if(TempDiam == 2)

Data.HLC[al [bl
else if(TempDiam == 3)

= \ushortj {floor(l*M2FT + .5}};

(ushort}(floor(3*M2FT + .5));

(ushort) (floor(3*M2FT + .5));

if{TempCover -= 0)
Data HLC [al [bl

else
Data HLC[a] [bl

(ushort} (floor(4*M2FT + .5));

(ushort) (floor (8*M2FT + . 5));

else if(TempDiam == 4)
Data.HLC[al [bl

else
Data.HLC[al [bl

(ushortl (floor(8*M2FT + .5) l;

(ushort) (floor(8*M2FT + .5));

else if (Temp Veg VC_PINE I I Temp'Jeg == 'JC KP

if(TempDiam == 0)
Data.HLC[a] [b]

else if(TeropDiarn == 1)
= (ushort) if loor (l *M2FT + . 5)) ;

Data.HLC[aJ [bl= (ushort) (floor(3*M2FT + .Sl l;
else if (TempDiam == 2)

Data.HLC[a] [b] (ushort) (floor(6*M2FT + .5));
else if\ TernpDiam =-:::;; J)

Oata.HLC[a] [b]

else if\TempDiam == 4)
Data HLC [al [bl

else

(ushort) (floor(l0*M2FT + .5));

(ushortJ (floor(l0*M2FT + .5));

Data.HLC[a] [b) (ushort) {floor(l0*M2FT + .5));

else if (TempVeg == VC_CH I I Ternp'Jeg VC_EH

if { TempDJ..a.m =::; O)

Data.HLC[a] [b] = (ushort) (floor(l*M2FT + .5));

else if(TempDiam == l)
Data.HLC[a] [bJ

else if ,:TempDJ..am ""= 2)
Data.HLC[a] [b]

else if{TempDiam == 3)
Data.HLC[a] [b]

else if(TempDiarn ""= 4)
Data.HLC[a] [bJ

else
Data.HLC[a] [b]

(ushort) {floor(l*M2FT + .5));

(ushort) (floor (l*M2FT + . 5));

(ushort) (floor(l*M2FT + .5));

(ushortl (floor(l*M2FT + .5));

(ushort/ (floor(l*M2FT + .5));

else if (TempVeg == VC_MC I I TempVeg VC_MC3

if{ ~empDiam == a)
Data.HLC[a] [b]

else if(TempDia.m ;;:= 1)
Data. HLC [a] [b]

else if (TempDiarn :.== 2)
Data.HLC[a] [b]

else if ; Te.mpDiarn == 3}

(ushort) {floor{l*M2FT + .5));

(ushort) (floor(l*M2FT + .5));

(ushort) (floor(l*M2FT + .5));

if(TempCover == 0)
Data.HLC[a] [bl

else
(ushort) (floor (1 *M2FT + . 5});

(ushort) (floor(7*M2FT + .5)); Data.HLC[a] [bl

else if (TernpDiam == 4 l
Data.HLC[a] {b]

else
Data.HLC[a] [b]

(ushort) (floor(l 5*M2FT + .5));

(ushort) (floor{2*M2FT + .5));

else if (TempVeg == VC_','IF)

else

if (TempDJ..am == 0)
Data. HLC [a] (bl

else if (TernpDia.m "'= 1)

(ushort J (floor (l *M2FT + . 5)) ;

if(TernpCover == 0)
Data.HLC[a] [b]

else
Data HLC [a] [bl

else if (TempDiam == 2)

if(TempCover == 0)
Data.HLC[a] [b]

else
Data HLC[a] [bl

else if(TempDiam == 3)
{

if/TempCover == 0)
Data.HLC[al [b]

else
Data.HLC[a) [b]

else if (TempDiam == 4)

if(TempCover == 0)
Data.HLC{a] [b]

else
Data.HLC[a] {b]

else

(ushort) (floor (1 *M2FT +

(ushortJ (floor{3*M2FT +

(ushort) (floor/ 1 *M2FT +

(ushort) ifloor(4*M2FT +

(ushort) (floorll*M2FT +

(ushort) (floor(7*M2FT +

I ushort) (floor { 2 *M2FT +

(ushortJ I floor (3 *M2FT +

Data.HLC[a] [b] (ushort) (floor(.10*M2FT + .5));

//should be for VC_RF only

if(TempDiam == 0 }
Data. HLC [a I [bl

else if (TempDiarn == 1)
(ushort} (floor(l*M2FT + .5));

. 5));

. 5 J I;

. 5 I J;

. 5 I I;

. 5 I J;

. 5 I I;

. 5));

. 5) I;

if(TempCover == 0)
Data.HLC[a] [b]

else
(ushort) (floor(l*M2FT + .5));

Data.HLC[a] {b] (ushort) (floor(5*M2FT + .5));

343

);

}//end for(a=O ...

)//end RedoHlcCbd

else if(TempDiam == 2)

if(TempCover == 0)
Data HLC[al [bl

else
Data.HLC[al [bl

else if (TempDiam == J)

if (TempCover == 0)
Data. HLC { a) [b)

else
Data HLC [al [bl

else if(TempDiam == 4)

if(TempCover == O}

else

Data HLC [a] [b]

else
Data HLC [al [bl

(ushort) (floor{l*M2FT + .5));

(ushort)(floor(3*M2FT + .5));

\ushort) (floor(l*M2FT + .5));

(ushort) (floor(7*M2FT + .5)};

(ushortJ (floor(l0*M2FT + .5));

(ushort) (floor{l*M2FT + .5));

Data.HLC[al [bl (ushort) (floor(10*M2FT + .5));

344

//**
II Do the new CED
//**

ModCbd = (float) (((float)Data.CBDensity[a] [b] / DENSITY_EXP I * (Data.Closure[a] rb] * ACREEQ}

if(ModCbd > .30 I
Data CBDensity raJ [b]

else
Data CBDensityraJ [bJ

(ushort) (.30 * DENSITY,_EXP) i

(ushort) {ModCbd * DENSITY_EXP);

