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Humanitarian logistics in the post-disaster phase of an earthquake requires detailed planning 

about the relief distribution network including assigning available distribution centers (DCs) 

to the affected areas, distribution of the relief commodities demanded by the affected 

population, and efficient allocation of the available vehicle fleet for the distribution in a short 

span of time. As the demand for relief commodities changes dynamically, the allocation of 

relief commodities requires a multi-period emergency plan to fully utilize the emergency 

resources efficiently. Furthermore, as a disaster occurs suddenly without any warning, relief 

supplies are insufficient in the initial phase of the disaster. At such times, the decision makers 

face difficulties distributing the available supplies equitably across all the affected areas 

without putting any particular community at risk.  

This study focuses on two different dimensions: efficiency and equity by minimizing 

the total unmet demand as well as minimizing the total travel time to satisfy demand at different 

nodes across different time periods while requiring that the percentage of satisfied demand at 



each node is within a specified deviation range from the average demand satisfaction rate for 

all nodes.  

To address this problem, a deterministic multi-objective mathematical programming 

formulation is developed to model the design of a disaster relief distribution network with the 

primary objective of minimizing the total unmet demand across all demand nodes and the 

secondary objective of minimizing the total transportation time. The model is solved using the 

lexicographic method for a problem instance of a Cascadia Subduction Zone (CSZ) earthquake 

in the state of Oregon. Four scenarios are evaluated for two different earthquake magnitudes 

with different levels of damage to candidate DCs. Pareto optimal frontiers are obtained to 

determine the trade-off between the unmet demand and the total travel time for these scenarios. 

The model results show that an equitable distribution of relief commodities is possible at a 

relatively high demand satisfaction rate when supplies are still limited but the number of 

vehicles for two different modes of transportation is large. Moreover, shortages in vehicles 

significantly increase the unmet demand across different demand nodes. Overall, this research 

provides useful insights about the characteristics of the relief distribution network and provides 

a method for trade-off analysis that decision-makers can use to improve the efficiency of 

humanitarian logistics in a post-disaster setting. 
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1. Introduction 
 

Natural disasters like earthquakes and tsunamis are largely unpredictable and cause severe 

damage to people, infrastructure and the economy. They leave behind lasting repercussions 

that take years to reverse. The Federal Emergency Management Agency (FEMA) has identified 

a National Risk Index for the United States that represents a community’s relative risk for 

earthquakes when compared to the rest of the country (Figure 1). As shown in Figure 1, Oregon 

has a very high earthquake risk as it lies in the Cascadia Subduction Zone (CSZ), which has 

been identified as an active fault posing a major geological threat. It is anticipated that a major 

earthquake will occur in the Pacific Northwest (PNW) in the next 50 years (Oregon Resilience 

Plan, 2013). 

  

 

Source: https://hazards.fema.gov/nri/earthquake 

Figure 1.1 National Earthquake Risk Index 

 

 

In the immediate aftermath of a disaster, planning a quick and efficient response is vital 

to mitigate the destruction caused by the event (e.g., an earthquake and subsequent tsunami for 

a CSZ event). If executed efficiently and deployed promptly, a disaster recovery plan can 
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significantly reduce the destruction and fatality rate resulting from the event (Shravarani, 

2019). The planning and execution of a disaster recovery plan is a daunting task as there are 

several challenges which must be addressed. Variability in demand, road conditions, and relief 

supplies have to be considered along with high level of coordination between rescue teams and 

government agencies in a short span of time and within an available budget. The immediate 

emergency response in the days following such disasters plays a key role in reducing the overall 

damage and destruction in the long run (Veysmoradia et al., 2017).  

A disaster recovery plan includes two phases, a pre-event phase and a post-event phase. 

The pre-event phase deals with planning and preparation of activities in anticipation of a 

disaster such as allocating candidate distribution centers and relief shelters. The post-event 

phase or the response phase deals with the immediate response and recovery activities after the 

event, such as transportation and logistics for people and relief commodities. These decisions 

like allocating relief shelters for the survivors, relief distribution in the affected areas, the 

selection of the mode of transportation to be used for a specific region etc., have to be taken 

quickly and correctly (Altay et al, 2006). In the event of a high-magnitude earthquake, ground 

transportation is unreliable due to the potential severe damage to infrastructure resulting in road 

blockages and impassable routes (Veysmoradia et al., 2017). With the unpredictability of road 

conditions and the limited amount of time available in the response phase, air transportation 

like helicopters and unmanned aerial vehicles (UAVs) or drones would be very helpful to aid 

in immediate relief distribution of commodities like medicines and first aid kits, and to survey 

road conditions, casualties and potential survivors. Air transportation could also help to 

compensate shortages in the relief carrying capacity in emergency response systems by 

working in combination with other modes of transportation (Nedjati et al., 2015). Overall, using 

both aerial and ground transportation modes would minimize the travel time and increase route 

reliability for the distribution of relief supplies and the provision of emergency services.  
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At the same time, equity is an important aspect in disaster recovery planning that cannot be 

ignored. A disaster hit region has different requirements for relief goods to be supplied based 

on the population affected by the disaster. The areas where these requirements arise are usually 

called demand nodes. Sometimes decision makers face difficulties to make an ethical choice 

when supplies are insufficient to satisfy all demand nodes. With shortages of relief supplies, 

the distribution of emergency relief should be such that no particular community is at a higher 

risk to receive insufficient supplies and at the same time, it must be distributed to remote 

demand nodes in need, even if this compromises efficiency. This makes relief distribution a 

harder problem than regular commercial logistics problems (Liu et al., 2019).  

This research will focus on multi-objective optimization of relief supplies distribution 

by using multiple modes of transportation (e.g., aerial and ground) while ensuring equitable 

relief distribution after an earthquake disaster. The proposed model will seek to make the relief 

distribution efficient by minimizing the total travel time for transporting different relief 

commodities while at the same time minimizing the total unmet demand for all demand nodes. 

The multi-objective optimization formulation is solved using the lexicographic approach. The 

lexicographic approach is a priority-based method to solve multi-objective optimization 

models, where the objective functions are solved in the order of their priority of importance 

(Volgenant, 2022). One advantage of using the lexicographic approach is that it helps the policy 

makers and decision makers to prioritize one objective over other, and in doing so, it avoids 

the conflicts that may arise by trying to balance multiple objectives. Since this study addresses 

strategic planning in the pre-disaster and post-disaster phases, a lexicographic approach was 

found to be the most suitable approach as decision makers will have the power to set priorities 

among multiple objectives and evaluate the resulting trade-offs between them. This study also 

aims to make the relief distribution fair, by ensuring that all affected people have equitable 

access to relief supplies. 



4 
 

The remainder of this thesis document is organized as follows. Section 2 reviews various 

research studies on humanitarian logistics and relief distribution in disasters. Section 3 

describes the problem definition. Section 4 shows the details of the model description and 

mathematical formulation for the multi-objective optimization with equitable multi-period 

relief distribution. Section 5 presents the scenario generation methodology for computational 

testing and describes the model parameter estimation. Section 6 presents the computational 

results for the optimization problem and presents the sensitivity analysis for the model 

parameters. Finally, in Section 7, a discussion of the conclusions derived from the case study 

findings and the contribution of this research is presented along with some limitations and 

potential future research directions. 
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2. Literature Review 
 

This study focuses on a multi-period integrated planning problem with strategic decisions about 

relief facility location in a pre-disaster stage, and tactical decisions on multi-commodity relief 

distribution using multiple modes of transportation in a post-disaster stage while ensuring an 

equitable distribution of relief supplies. In the rest of this section, related studies focusing on 

pre-disaster and post-disaster humanitarian logistics in this context are summarized and 

analyzed.  

Humanitarian logistics has been extensively studied in recent years. The lack of proper 

logistical planning in the response phase of disaster management can lead to problems like poor 

accessibility and operation of relief facilities, inefficient use of vehicle fleets, and unavailability 

of appropriate transportation modes at the required time (Maghfirog and Hanaoka, 2020). 

Studies involving strategic decisions focus on the design of relief supply networks by defining 

plans for the location-allocation of distribution centers and relief shelters. Studies focusing on 

tactical and operational decisions put emphasis on post-disaster planning including inventory 

management, efficient allocation of vehicle fleets for relief distribution, transportation of relief 

distribution across multiple echelons of a relief supply network, generation of transportation 

routes for relief supply distribution, and the movement of injured people. Large-scale disasters 

often demand larger number of relief commodities in multiple affected areas simultaneously. 

The allocation of relief commodities is a continuous multi-period supply process and it takes 

multiple periods to meet the demands of relief commodities like food, water, and medicines 

(Wang et al., 2023). When demand and supply change dynamically in the initial stage of a 

disaster recovery phase, a multi-period emergency plan is necessary to fully utilize the 

emergency resources efficiently.  
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A well-developed strategic plan for relief facility location has a direct impact on 

operational costs and response times. It also ensures smooth and efficient operation of the rest 

of the disaster relief system (Shavarani, 2018). Decisions made in the pre-disaster phase 

influence the performance of the post-disaster or response phase. The location of a distribution 

center (DC) for relief supplies should be determined such that all potential demand nodes 

would be covered with the least number of DCs, and every potential demand node must be 

within a targeted response time in the relief network. Some studies like Condeixa et al. (2017) 

show how humanitarian logistics can benefit from risk management through pre-positioning of 

DCs and relief shelters to better attend the affected people in a disaster.  

The severe damage to roads and infrastructure following a high magnitude disaster 

results in disruptions to the distribution network and uncertainty in road conditions. The limited 

amount of time for post-disaster relief operation makes it extremely difficult to identify and 

repair the damaged distribution network (Maghfirog and Hanaoka, 2020). In such cases, having 

multiple modes of transportation available for relief supply distribution helps to increase the 

performance of the system by increasing route reliability. Ghasemi et al. (2019) proposed a 

stochastic multi-objective, multicommodity flow with multi-modal transportation model using 

mixed integer mathematical programming with the objective of minimizing the location-

allocation cost of the facilities and minimizing relief supply chain shortages. This paper solves 

a multi-vehicle problem (heterogenous vehicle fleet), but it does not consider the tradeoff 

between the different modes of transportation. Lui et al. (2019) presented a multi-modal 

location-routing problem to address shortages in relief supplies, road damages, and disaster 

severity. Aerial transportation (e.g., helicopter) is only considered for disconnected nodes. 

Otherwise, relief supply distribution is carried out via ground transportation. This paper focuses 

on vehicle routing and fair relief distribution only for a single time period and a single relief 

commodity. More recently, Maghfirog and Hanaoka (2020) formulated a single commodity, 
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multi-modal relief distribution network problem with time varying features in three-echelons, 

namely the supply node, the intermodal transfer node, and the demand node. Their objective 

function minimizes the delivery time and transportation costs. More recently, Gao et al. (2021) 

considered a bi-objective stochastic optimization model to transport relief commodities within 

a multi-modal transportation network with uncertain supply, demand, and road availability. 

Commodities are transported to demand nodes via helicopter when road blockages exist in 

certain routes. Most of the studies with multi-modal transportation focus on operational 

decisions like vehicle routing rather than on strategic decisions and lack a comprehensive 

multi-period, multi-commodity approach along with multi-modal transportation. 

The use of drones in humanitarian logistics has spiked in recent years due to its various 

capabilities like autonomous maneuvering, identification of trapped survivors, and for urgent 

distribution of first aid and medicines. Nedjati et al. (2016) proposed the use of drones for rapid 

damage assessment of an affected region by capturing images from the site and creating a 

response map to extract useful information. Golabi (2017) considered the usage of drones for 

transporting relief commodities and proposed models to identify ideal drone launch locations 

and relief shelters. Drones were used for locations that cannot be reached by ground 

transportation or helicopters. Faiz et al. (2020) used two types of drones in their distribution 

network. A hotspot drone for identifying the demand of relief commodities and a delivery drone 

for delivering the commodities to people in need. Lu et al. (2022) proposed a truck-drone 

cooperative relief distribution model in which the drone is carried in the truck and both deliver 

relief commodities to demand nodes. The truck driver launches the drone from a launch point 

and the drone returns back to the same launch point after deliveries. Although recently drones 

are being considered in many research papers to deliver relief commodities in humanitarian 

logistics, in this study we consider only helicopters as the aerial mode of transportation. 
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Equity is also an important aspect in humanitarian logistics as it ensures equitable 

access to relief supplies and provides help to the people in need without discrimination. Equity 

can be temporal, where every demand is fulfilled within a certain time window. Equity can also 

be spatial where distribution in an area is considered. Or equity can be social, which is based 

on the extent to which demand is fulfilled in proportion to the need (Mahapatra and Mohanty, 

2022; Karasu and Mortan, 2015). Sheu et al. (2006) considered a three-level relief distribution 

network in a post-earthquake area and developed a model to maximize the satisfaction of the 

people in the affected region by penalizing relief shortages. Cao et al. (2018) formulated a 

multi-stage, multi-commodity sustainable relief distribution problem with the objective of 

maximizing the lowest victims’ perceived satisfaction (VPS) for all demand points using a 

genetic algorithm. Huang and Rafiei (2019) considered a multi-period relief distribution 

network and compared equity measures regarding delivery quantities, arrival times, and 

deprivation times in different locations. Lui et al. (2019) proposed a location–routing problem 

for relief distribution in the early post-earthquake stage with the aim to minimize the maximum 

and total loss of demand nodes and minimize the maximum time required for the demand node 

to receive relief supplies. Although, fairness and equity have been studied in the humanitarian 

logistics literature, there are few papers that include equity in a periodic location-allocation 

problem and analyze equity in a multi-period model (Arenas et al., 2019). According to Arenas 

at al. (2019), at the time of a supply shortage, partial delivery of relief supplies is always better 

than no delivery at all. Taking this into consideration, in our research, equity in resource 

allocation is achieved by a combination of minimizing the total unmet demand for all demand 

nodes and restricting the difference in the percentage of demand satisfaction between all 

demand nodes in a given time period. Although minor deviations are permissible, this model 

is formulated such that the deviation in the demand satisfaction rate falls within a predefined 

range. With this constraint, every demand node receives a similar fraction of their demand, 
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rather than fully satisfying the demand at some demand nodes while leaving other demand 

nodes unattended. This ensures that even at the time of relief shortages, no particular 

community is at a higher risk of disadvantage than others. 

In the existing literature, very few papers have included the equity aspect in their 

modeling. The studies that include equity, either lack a multi-modal approach or a multi-period 

approach. Ghasemi et al., (2019) explored a multi-objective, multi-commodity, multi-period, 

and multi-vehicle problem with the objective of minimizing the total cost of the location-

allocation of facilities and minimizing the amount of the shortage of relief supplies. This paper 

lacks an equity aspect and does not take multi-modal transportation into account.  Tzeng et al. 

(2007) considers a multi-objective optimization problem with efficiency and fairness pursuits, 

but this paper considers only a single mode of transportation. Gao et al. (2021) adopted a dual 

objective optimization for maximizing fairness and minimizing the maximum transportation 

time in a multi-modal network flow problem, but only considered the problem for a single 

period. Wang et al. (2023) considered a three-dimensional humanitarian problem with focus 

on effectiveness, efficiency and equity, but it does not consider a multi modal approach. 

Furthermore, most of the current studies have considered a single objective 

optimization problem. The most frequent objectives pursued by these studies are cost 

minimization and travel time minimization. The existing research in the areas mentioned above 

for disaster recovery planning are largely contained within isolated pockets. Most of the 

research focuses on using multi-modal transportation in multiple echelons, where each echelon 

has a pre-defined mode of transportation and very few papers focus on equitable resource 

allocation in multiple periods. The decision between aerial or ground transportation requires a 

tradeoff between transportation time and total transportation cost. The current literature lacks 

a comprehensive, integrated approach that includes a multi-commodity, multi-period 
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distribution network using multiple modes of transportation simultaneously at the time of a 

disaster.  

The contributions of this study based on the gaps identified in the current literature 

review are as follows: First, most of the multi-objective research in the field of humanitarian 

logistics of relief supplies location-allocation rarely consider an equity perspective. This study 

focuses on the humanitarian logistics objectives in two different dimensions: efficiency and 

equity by minimizing the total travel time as well as minimizing the total unmet demand in all 

demand nodes across all periods. Furthermore, based on the intensity of relief shortages at the 

time of the disaster, this research will aid the policy makers to optimize the relief distribution 

by restricting the deviation in the demand satisfaction rate within a predefined range. This will 

ensure that at the time of relief shortages, no particular community is at a higher risk of 

disadvantage than others. Second, most of the current literature focuses on single-period relief 

distribution in humanitarian logistics which does not consider the dynamic fluctuations in the 

relief supply and demand quantities as time passes by after the occurrence of the disaster event. 

This paper simultaneously minimizes the total travel time and the unmet demand of multiple 

commodities across multiple periods, which will help policy makers when planning the supply 

distribution strategy. And finally, to the best of our knowledge, no previous contribution has 

considered a bi-objective optimization problem in humanitarian logistics with multi-

commodity, multi-modal, and multi-period facility location-allocation with an equity 

perspective in a multiple DC to multiple demand node network. This research will deal with 

the planning and deployment of multi-modal transportation for the efficient flow of 

commodities from DCs to demand nodes to meet the urgent requirement of affected people 

using limited resources available at the time of a disaster. It will be applied taking into 

consideration the variation in travel times, supply, and demand parameters based on multiple 
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scenarios of a CSZ earthquake. Table 2.1 summarizes the relevant literature reviewed and 

discussed in this section and positions our current research. 

 

Table 2.1 Summary of Relevant Literature 

Article Year Objective Period Mode Commodity Equity 

Barbarosoglu and Arda 2004 Single Single  Multi Multi No 

Tzeng et al.  2007 Multi Multi Single Multi No 

Afshar and Haghani 2012 Single Multi Single Multi Yes 

Huang et al. 2015 Multi Single  Single Single Yes 

Ransikarbum and Mason 2016 Multi Single Single         N/A Yes 

Noyan  and Kahvecioglu 2017 Multi Single  Single Single Yes 

Cao et al. 2017 Multi Multi Single Multi Yes 

Condeixa et al. 2017 Single Single Single Multi No 

Huang and Rafiei 2019 Multi Multi Single Single Yes 

Liu et al. 2019 Multi Single  Multi Single Yes 

Ghasemi et al. 2019 Multi Multi Single Multi No 

Mohammadi et al. 2020 Multi Multi Single Multi Yes 

Maghfiroh et al. 2020 Single Multi Multi Single No 

Ershadi and Shemirani  2020 Multi Multi Single N/A Yes 

Hernandez-Leandro et al. 2022 Multi Single Single Multi Yes 

Mahapatra and Mahanty 2022 Single Single Single N/A Yes 

Wang and Sun 2023 Multi Multi Single Multi Yes 

This Research 2023 Multi Multi Multi Multi Yes 
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3. Problem Definition 
 

The initial phase after the onset of an earthquake is a critical phase where multiple decisions 

must be made within a short span of time regarding which candidate distribution centers (DCs) 

will be used for distributing relief supplies to affected areas, what modes of transportation to 

use, what routes to use, etc. As it is not possible to predict the exact magnitude and timing of 

an earthquake, it is difficult to forecast the actual damages to transportation networks like 

roads, airports, and seaports, the number of people affected, the damages to buildings and 

infrastructure, and the demand for relief commodities in the days following the disaster. In the 

aftermath of an earthquake, transportation capacity, availability of particular modes of 

transportation, availability of emergency resources and relief supplies are always scarce 

(Maghfirog and Hanaoka, 2020). These uncertainties make it challenging to plan and execute 

post-disaster humanitarian logistics activities like relief distribution, movement of people to 

shelters, etc. Timely and efficient decisions in the post-disaster phase are vital as it can help to 

bring life back to normalcy faster and can minimize the suffering of the affected people. A 

robust yet flexible relief distribution plan can help support decision making, the selection of 

suitable modes of transportation, and can facilitate making the relief distribution equitable 

across the affected population. 

After a disaster occurs, relief commodities are demanded in large quantities from 

multiple affected areas. A decision regarding the assignment of limited DCs to the various 

demand nodes can make the process efficient and smoother. Disasters like earthquakes also 

result in the inability to access various modes of transportation like ground and air 

transportation due to damage to the transportation infrastructure. A detailed plan for relief 

distribution with multiple modes of transportation is imperative for efficient distribution of 

relief supplies. This research addresses the problem of determining which mode of 

transportation to use when distributing relief commodities from an assigned DC to demand 
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nodes. The problem also requires determining the amount of relief commodities to be sent on 

a particular mode of transportation on a given period after the disaster occurs such that total 

unmet demand across all demand nodes is minimized. By considering the demand and supply 

of relief commodities over multiple time periods, this study is able to capture the variations 

and dynamic fluctuations in the demand and supply of relief commodities in the aftermath of 

an earthquake. 

A disaster displaces people from their homes and can cause immense physical and 

psychological distress to the affected population. Unfair relief distribution and putting certain 

communities at a higher risk of disadvantage can further aggravate the distress of the affected 

people. The problem under study also considers ensuring an equitable relief distribution across 

different demand nodes in case of supply shortages. In this context, equity in resource 

allocation is achieved by combining the minimization of the total unmet demand for all 

commodities, across all demand nodes on all periods, and restricting the difference between 

the actual demand satisfaction rate for individual demand nodes and the average demand 

satisfaction rate for all demand nodes in a given time period. 

In this research, we focus on the trade-offs between the total unmet demand and the 

total travel time to distribute relief supplies. The goal is to provide decision makers with 

solutions which are optimal in both quantity of demand met and timely response. In a post-

disaster response phase, cost-based decisions might not be the best approach to adopt. Rather 

than focusing on minimizing the cost of the entire relief operation, this research considers a 

fixed budget for the opening DCs and the transportation costs associated with the relief 

operations. 

To summarize, given a relief network with candidate DCs and multiple demand nodes, 

this research problem requires determining: (1) the location of DCs for pre-positioning 

supplies, (2) the assignment of DCs to various demand nodes, (3) the amount of each relief 



14 
 

commodity to be delivered from each DC to demand nodes considering equitable distribution 

on each period post-disaster, (4) the mode of transportation (ground or aerial) to be used to 

make these deliveries, (5) the actual demand satisfaction rate of each commodity for every 

demand node for every period, and (6) the average demand satisfaction rate for every 

commodity in a given time period. The goals are minimizing the overall unmet demand at the 

same time as minimizing the time to deliver the relief supplies across all periods after the 

disaster. Figure 3.1 shows the relief supply distribution network under study. The relief 

distribution network in Figure 3.1 comprises of candidate DCs denoted by squares, and 

multiple demand nodes denoted by cubes. The relief commodities are supplied from the DCs 

to each of the demand nodes either by trucks (i.e., ground transportation), helicopters (i.e., air 

transportation), or both in each period. 

 

Figure 3.1 Relief Supply Distribution Network 

 

The following assumptions are considered for developing a mathematical programming 

model of the problem under study: 
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1. The location of all candidate DCs and demand nodes are known. 

2. A DC can supply multiple demand nodes and a demand node can be supplied by 

multiple DCs. 

3. The demand and supply for all relief commodities in each period are known. 

4. Shortages in supply are allowed. Backorders for the relief commodities are not 

considered. 

5. The number of homogeneous vehicles for ground transportation and air transportation 

modes are known. 

6. A time period can be set for multiples of days or multiples of 24 hours. In this study, 

we consider a planning horizon with three time periods, where each time period is set 

to be a window of two days or 48 hours. 

7. Multiple modes of transportation can serve each demand node. 

8. The time required to travel between a DC and a demand node in a given time period is 

known. 

9. The cost associated with opening a DC and the unit cost of flow transportation via 

ground and air between all DC and demand nodes are known. 

10. The unmet demand for a commodity is calculated at every demand node for every 

period. 

To the best of our knowledge, a multi-objective optimization problem with a combination 

of all the above features and assumptions has not been presented before (see Table 2.1). In 

Chapter 4, we present a mathematical formulation to solve this problem. 
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4. Model Formulation and Solution Method 
 

This chapter includes the notation for sets, parameters, and decision variables used in a multi-

objective optimization mathematical programming formulation for the problem described in 

Chapter 3. It also includes a detailed description of the objective functions and the constraints 

used in the formulation. And finally, a description of the solution approach for solving this 

multi-objective optimization problem and its implementation are presented. 

4.1 Notation 

 

Sets 

K = Set of relief commodities k, 

I = Set of distribution centers (DCs) i, 

J = Set of demand nodes j, 

P = Set of time periods p. 

 

Parameters 

𝐶𝑖 = fixed cost associated with opening a DC i, 

𝐶𝑖𝑗
𝑘𝑔

  = unit cost of flow of commodity k from DC i to demand node j via ground, 

𝐶𝑖𝑗
𝑘𝑎  = unit cost of flow of commodity k from DC i to demand node j via air, 

𝑡𝑖𝑗
𝑔(𝑝)

 = expected time to transport commodity k from DC i to demand node j via ground in  

time period p, 

𝑡𝑖𝑗
𝑎(𝑝)

= expected time to transport commodity k from DC i to demand node j via air in time 

period p, 

𝑠𝑖
𝑘(𝑝)

= supply of commodity k at DC i in time period p (in pounds), 

𝑑𝑗
𝑘(𝑝)

= demand of commodity k at demand node j in time period p (in pounds), 

Vg = total number of available ground transportation vehicles, 

Va = total number of available air transportation vehicles, 
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Lg = loading capacity of a ground transportation vehicle (in pounds), 

La = loading capacity of an air transportation vehicle (in pounds), 

Δ = minimum percentage of demand satisfaction rate for a demand node, 

δ = deviation allowed in demand satisfaction rate for demand nodes, 

B = available budget. 

 

Decision Variables 

𝑥𝑖 =       1 if DC i is open 

              0 otherwise, 

𝑦𝑖𝑗
𝑘𝑔(𝑝)

= 1 if demand for commodity k at node j is served by DC i via ground in time period p  

              0   otherwise, 

𝑦𝑖𝑗
𝑘𝑎(𝑝)

= 1 if demand for commodity k at node j is served by DC i via ground in time period p   

             0   otherwise, 

𝑧𝑖𝑗
𝑘𝑔(𝑝)

= amount (in pounds) of commodity k delivered from DC i to demand node j via 

ground in time period p, 

𝑧𝑖𝑗
𝑘𝑎(𝑝)

= amount (in pounds) of commodity k delivered from DC i to demand node j via air in 

time period p, 

𝑟𝑗
𝑘(𝑝)

= demand satisfaction rate for commodity k at demand node j in time period p, 

�̂�𝑘(𝑝) = average demand satisfaction rate for commodity k in time period p, 

𝑢𝑗
𝑘(𝑝)

= unmet demand (in pounds) of commodity k at demand node j in time period p.  

 

4.2 Multi-objective Mathematical Formulation 

 

A multi-objective mixed-integer programming formulation for the problem defined in Chapter 

3 is introduced below. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1 = ∑ ∑ ∑ 𝑢𝑗
𝑘(𝑝)

𝑝∈𝑃𝑘∈𝐾𝑗∈𝐽

 

 

(1) 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 = ∑ ∑ ∑ ∑ (𝑡𝑖𝑗
𝑔(𝑝)

𝑦𝑖𝑗
𝑘𝑔(𝑝)

+ 𝑡𝑖𝑗
𝑎(𝑝)

𝑦𝑖𝑗
𝑘𝑎(𝑝)

)

𝑝∈𝑃𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼

 (2) 

 

Subject to:   

 

 

∑ (𝑦𝑖𝑗
𝑘𝑔(𝑝)

+ 𝑦𝑖𝑗
𝑘𝑎(𝑝)

)

𝑖∈𝐼

≥ 1,            ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 (3) 

∑ (𝑧𝑖𝑗
𝑘𝑔(𝑝)

+ 𝑧𝑖𝑗
𝑘𝑎(𝑝)

)

𝑗∈𝐽

≤ 𝑠𝑖
𝑘(𝑝)

, ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(4) 

∑ (𝑧𝑖𝑗
𝑘𝑔(𝑝)

+ 𝑧𝑖𝑗
𝑘𝑎(𝑝)

)

𝑖∈𝐼

≥ Δ𝑑𝑗
𝑘(𝑝)

, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 (5) 

𝑟𝑗
𝑘(𝑝)

= ∑ (𝑧𝑖𝑗
𝑘𝑔(𝑝)

+ 𝑧𝑖𝑗
𝑘𝑎(𝑝)

)

𝑖∈𝐼

/𝑑𝑗
𝑘(𝑝)

, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(6) 

�̂�𝑘(𝑝) = ∑ 𝑟𝑗
𝑘(𝑝)

𝑗∈𝐽

/|𝐽|,                 ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(7) 

𝑟𝑗
𝑘(𝑝)

− �̂�𝑘(𝑝) ≤ δ,                        ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(8) 

− 𝑟𝑗
𝑘(𝑝)

+ �̂�𝑘(𝑝) ≤ δ,              ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(9) 

𝑢𝑗
𝑘(𝑝)

= 𝑑𝑗
𝑘(𝑝)

− ∑ (𝑧𝑖𝑗
𝑘𝑔(𝑝)

+ 𝑧𝑖𝑗
𝑘𝑎(𝑝)

)

𝑖∈𝐼

, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(10) 

𝑦𝑖𝑗
𝑘𝑔(𝑝)

≤ |𝐽|𝑥𝑖, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(11) 

𝑦𝑖𝑗
𝑘𝑎(𝑝)

≤ |𝐽|𝑥𝑖, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(12) 

𝑧𝑖𝑗
𝑘𝑔(𝑝)

≤ 𝑑𝑗
𝑘(𝑝)

𝑦𝑖𝑗
𝑘𝑔(𝑝)

, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(13) 

𝑧𝑖𝑗
𝑘𝑎(𝑝)

≤ 𝑑𝑗
𝑘(𝑝)

𝑦𝑖𝑗
𝑘𝑎(𝑝)

, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(14) 

∑ 𝑧𝑖𝑗
𝑘𝑔(𝑝)

𝑘∈𝐾

≤ 𝐿𝑔, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(15) 
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4.2.1 Objective Functions 

Equation (1) and Equation (2) are the objective functions. Equation (1) minimizes the total 

unmet demand for all commodities for all demand nodes across all time periods. Equation (2) 

minimizes the total travel time for all commodities from DCs to demand nodes across all time 

periods. We assume that demand comes from people displaced from their homes and requiring 

temporary shelter. A delay in receiving relief commodities for displaced people is definitely 

not desirable, but it would not necessarily be as critical as having the ability to eventually 

distribute more relief to more people in need. For this reason, this model prioritizes minimizing 

∑ 𝑧𝑖𝑗
𝑘𝑎(𝑝)

𝑘∈𝐾

≤ 𝐿𝑎 , ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(16) 

∑ ∑ ∑ 𝑧𝑖𝑗
𝑘𝑔(𝑝)

𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼

≤ 𝑉𝑔𝐿𝑔, ∀𝑝 ∈ 𝑃 

 

(17) 

∑ ∑ ∑ 𝑧𝑖𝑗
𝑘𝑎(𝑝)

𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼

≤ 𝑉𝑎𝐿𝑎, ∀𝑝 ∈ 𝑃 

 

(18) 

∑ 𝐶𝑖𝑥𝑖

𝑖∈𝐼

+ ∑ ∑ ∑ ∑ 𝐶𝑖𝑗
𝑘𝑔

𝑝∈𝑃𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼

𝑧𝑖𝑗
𝑘𝑔(𝑝)

+ ∑ ∑ ∑ ∑ 𝐶𝑖𝑗
𝑘𝑎

𝑝∈𝑃𝑘∈𝐾𝑗∈𝐽𝑖∈𝐼

𝑧𝑖𝑗
𝑘𝑎(𝑝)

≤ 𝐵 

 

(19) 

𝑥𝑖 ∈ {0,1}    ∀𝑖 ∈ 𝐼 
 

(20) 

𝑦𝑖𝑗
𝑘𝑔(𝑝)

∈  {0,1}       ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(21) 

𝑦𝑖𝑗
𝑘𝑎(𝑝)

∈  {0,1}      ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(22) 

𝑧𝑖𝑗
𝑘𝑔(𝑝)

 ≥  0             ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(23) 

𝑧𝑖𝑗
𝑘𝑎(𝑝)

 ≥  0           ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(24) 

𝑟𝑗
𝑘(𝑝)

  ≥  0            ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(25) 

�̂�𝑘(𝑝)   ≥  0           ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 
 

(26) 

𝑢𝑗
𝑘(𝑝)

≥  0     ∀𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃 

 

(27) 
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the total unmet demand for all relief commodities in all demand nodes across all time periods 

over minimizing the total travel time. Furthermore, the unmet demand is an indicator used to 

measure the quality of service of humanitarian relief logistics systems (Wang and Sun, 2023). 

By minimizing the total unmet demand and the total travel time in all time periods, this model 

aims to maximize the efficiency and effectiveness (i.e., improve the overall quality) of the 

disaster response logistics system. In addition, with a bi-objective mathematical formulation, 

the model also allows the decision makers to consider trade-offs between unmet demand and 

travel time minimization. This makes the model more flexible and adaptable for multiple 

situations. 

4.2.2 Constraints 

Equation (3) ensures that each demand node is served by at least one DC for every commodity 

in every time period via air or ground. Equation (4) ensures that the allocated amount of 

commodity k for all demand nodes in every time period is less than or equal to the total supply 

of commodity k at every DC i in every time period. Equation (5) requires that the minimum 

demand satisfaction rate (Δ) be met at every demand node j for every commodity k in every 

time period p. Equation (6) calculates the actual demand satisfaction rate at each demand node 

j for every commodity k in every time period p. Equation (7) calculates the average demand 

satisfaction rate for all demand nodes for every commodity k in every time period p. Equation 

(8) and Equation (9) specify that the deviation of demand satisfaction rate for every commodity 

k at a demand node j should be within δ percent of the average demand satisfaction rate for all 

nodes in every time period p. Equation (10) calculates the unmet demand for each commodity 

k at each demand node j in each time period p. Equation (11) and Equation (12) ensure that the 

demand nodes are assigned to be served only from established DCs in every time period p via 

ground and air, respectively. Equation (13) and Equation (14) ensure that the commodities flow 

only via established connections in every time period p via ground and air, respectively. 
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Equation (15) and Equation (16) limit the amount (in pounds) of commodities to be carried by 

air and ground transportation in a single trip between an established DC and a demand node in 

a time period to their respective loading capacities for the two modes of transportation. 

Equation (17) and Equation (18) ensure that the total weight amount of relief carried by air and 

ground transportation in every time period does not exceed the total capacity provided by the 

vehicles available for the two modes of transportation. Equation (19) is a budget constraint for 

the entire operation considering the fixed cost associated with opening DCs and the cost of 

flowing commodities from DCs to demand nodes via ground and air. Finally, Equations (20)-

(27) are variable type constraints. 

4.3 Solution Approach 

The proposed multi-objective optimization model is solved using the lexicographic method 

(Rao, 2009). In the lexicographic method, the objective functions are ranked in order of their 

priority or importance and solved one at a time. Consider the multi-objective optimization 

problem shown below with i objectives (Rao, 2009): 

For the bi-objective optimization problem shown in Equations 28 to 30, the objective 

function with highest priority 𝑓1(𝑋) is minimized first to obtain the minimum value of the first 

objective function 𝑓1 = 𝑓1(𝑋∗) where 𝑋∗ is an optimal solution. After minimizing the first 

objective, the method tries to find the minimum value for the subsequent objective 𝑓2(𝑋) with 

a priority of rank of 2 subject to the additional constraint that the value of the first objective 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑖(𝑋) (28)     

Subject to:           𝑓𝑗(𝑋) = 𝑓𝑗
∗,           𝑗 = 1,2, … , 𝑖 − 1 (29) 

𝑔𝑘(𝑋) ≤ 0,           𝑘 = 1,2, … , n (30) 
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function must be equal to its optimal value. The constraint set for the multi-objective problem 

𝑔𝑘(𝑋) remains the same for both of the objective functions. 

In the proposed multi-objective optimization problem, the first objective, which is the 

total unmet demand, is minimized first to obtain the minimum 𝑓1
∗. The solution 𝑋∗ at this stage 

in the optimization problem corresponds to the optimal solution for a single objective 

optimization problem that minimizes the total unmet demand without considering the total 

travel time in the supply distribution network. The method then minimizes the second objective 

function 𝑓2(𝑋), which is the total travel time, while maintaining the total minimized unmet 

demand from the first objective. 

Finally, an optimal Pareto front is obtained with a set of non-dominated solutions, 

which are feasible solutions not dominated by any other solutions such that an improvement in 

any one objective is only possible at the expense of a worse solution in at least one other 

objective. An optimal Pareto front is generated by increasing the relative tolerance of the unmet 

demand (i.e., the first objective function), until no improvement in the total travel time (i.e., 

the second objective function) can be gained.  

4.4 Solution Method Implementation 

 

The mathematical formulation and its solution method were implemented using Python 3.9. 

Solutions were obtained using Gurobi 9.5.2 on a machine with Intel® CoreTM i5 CPU, 2.50 

GHz and 16 GB of RAM.  

To verify the functionality and validate the performance of the proposed model and 

solution method, we generated a test data set for a small network comprising of two distribution 

centers (DCs) and five demand nodes with a trivial solution for a simplified version of the 

problem without the equity constraints and an unlimited number of vehicles available. A 

solution for this small network instance was obtained through manual optimization minimizing 
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the transportation time by allocating the nearest demand nodes to the DCs and minimizing the 

unmet demand by distributing all of the available supply at the DCs. Subsequently, the same 

instance was solved using the model implemented in Python and solved with Gurobi. No errors 

were encountered during the process verifying the functionality of the implemented model. 

Furthermore, the results obtained with the implemented model were then validated by 

comparing them with the optimal solution found manually. By comparing the results, it was 

confirmed that the implemented model produced consistent and accurate outcomes, thereby 

validating the implemented model for this small network instance. 
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5. Scenario Generation for Computational Testing 
 

This section contains a description about the approach used to generate different earthquake 

scenarios for the application of the proposed model and solution model, and explains how the 

values of different model parameters were estimated for computational testing. 

The proposed disaster relief multi-objective optimization model is tested with a case 

study for a Cascadia Subduction Zone (CSZ) earthquake event in the state of Oregon (Buylova 

et al., 2020). The Oregon Department of Emergency Management (OEM) predicts that there is 

a 37% chance of a CSZ megathrust earthquake in the Pacific Northwest region, with a 

magnitude of 7.1 and above, in the next 50 years (Oregon.gov). 

To generate earthquake scenarios for a CSZ event and collect data for model 

parameters, we used Hazus-MH, a GIS-based natural hazard loss estimation software 

developed by the Federal Emergency Management Agency (FEMA) (fema.gov), along with 

ShakeMaps developed by the US Geological Survey (USGS) 

(earthquake.usgs.gov/data/shakemaps). ShakeMaps simulates scenarios based on the specified 

magnitude for an earthquake at a fault line from those provided by the National Earthquake 

Information Center (NEIC) database and estimates the social and economic damage that comes 

with it. With ShakeMaps, a spatial representation of an earthquake scenario along with shaking 

intensity and ground motion can be generated. In this study, the Cascadia megathrust fault line 

was selected to generate an earthquake scenario with a depth of 21m and an epicenter located 

at 45.061°N, 124.418°W denoted by the yellow mark in Figure 5.1. After generating a disaster 

scenario with a specific magnitude, the predicted damage and loss data were obtained for the 

study region of Oregon to generate an instance of the proposed mathematical model for 

solution. 
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Hazus-MH estimates the social impact of the hazard in terms of the number of people 

displaced from their homes due to an earthquake, number of people seeking temporary public 

shelters and the estimate of casualties, that is, the number of people who will be injured and 

killed by the earthquake. The casualties are broken down into four severity categories that 

describe the extent of the injuries, from Level 1 being the least severe to Level 4 being the most 

severe. Two different magnitudes for a CSZ earthquake were considered: M9.3 and M8.0. 

Hazus-MH estimates a total economic loss for the M9.3 earthquake to be 311,325.40 (millions 

of dollars) and 295,065.35 (millions of dollars) for an earthquake of magnitude M8.0. These 

cost estimates include the building, transportation and utility related losses based on the 

region’s general building type and transportation lines (usgs.gov/shakemap). 

The Hazus-MH software provides a contour map specifying the intensity of ground 

shaking and the magnitude of damage after an earthquake. Figure 5.1 shows a contour map for 

the state of Oregon for the M9.3 CSZ earthquake event. The contour map uses the scale 

presented in Figure 5.2 to estimate the intensity of the earthquake. According to Hazus-MH, 

the regions with an earthquake intensity of VI and above (i.e., orange and red regions) will 

experience strong to extreme shaking and moderate to very heavy damage. Regions with 

intensity V and below will experience moderate ground shaking and have damage ranging from 

none to light. 
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 Figure5.1 CSZ Earthquake Contour Map for Earthquake Damage 

 

 

     
     Source : https://www.usgs.gov/media/images/modified-mercalli-intensity-scale 

Figure 5.2 Hazus-MH Scale for Earthquake Damage 

 

5.1 Earthquake Scenarios 

 

Natural disasters like earthquakes pose a serious threat to humankind due to the fact that they 

occur without any warming and leave no time for people to react to it. The destruction caused 

in the aftermath of an earthquake depends on various factors like its magnitude, the intensity 

of its occurrence, the time of occurrence etc. While scientists have made significant progress 

in understanding the mechanism of earthquakes and detecting their occurrences, there is still 
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no reliable method to predict the magnitude and the potential damage that they can cause 

(Galkina and Grafeeva, 2019). The potential CSZ earthquake in Oregon is predicted to have a 

magnitude ranging between M7.1 and M9.3 according to the Oregon Department of 

Emergency Management (oregon.gov/oem). To account for this uncertainty in the disaster 

planning stage, it is important to consider a range of possible scenarios. The result from 

multiple scenarios can be used to develop appropriate response plans that consider the potential 

impact of earthquakes of varying magnitudes. We vary the magnitude of the CSZ earthquake 

and the availability of candidate DCs to create four different scenarios for a CSZ earthquake 

event, as shown in Figure 5.3. 

 

Figure 5.3 CSZ Earthquake Scenarios 

 

In this study, we use the magnitudes of M8.0 and M9.3 to create CSZ earthquake 

scenarios using ShakeMaps. Analyzing multiple scenarios improves our awareness and 

assessment of the potential damages from the disaster event and is essential to improve overall 

disaster preparedness. By using ShakeMaps, we generate scenarios based on realistic data as 

every simulation takes into consideration shaking intensity, soil maps, ground motion and other 

related factors that are specific for the Cascadia Subduction Zone fault. 

Additionally, since the exact amount of damage caused by any earthquake is impossible 

to predict, we consider two possibilities for each earthquake scenario: one with all candidate 
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DCs being available and functional, and one in which one of the candidate DCs is not available 

(i.e., DC is damaged). By doing this, we are modifying the availability of the supply of different 

relief commodities. Analyzing the results from the different scenarios allows us to seek a better 

understanding of the performance of the proposed formulation and develop insights to aid in 

the planning for uncertain future scenarios minimizing the potential impact of these events and 

ensuring a more effective disaster response. 

5.2 Case Study Model Parameter Estimation 

 

The Hazus-MH software provides an estimate of social losses including displaced households, 

people requiring temporary shelters, and casualties for each county. The CSZ earthquake 

damage contour map and the estimates of the affected population in each county obtained from 

Hazus-MH are used to assign the location of demand nodes and DCs for our case study. The 

DCs are assumed to be large temporary storage spaces from where the relief supplies will be 

distributed to different demand nodes. The demand nodes act as the first point of relief 

collection from the DCs for the affected counties and nearby local towns. Depending on the 

post-earthquake damages and the operations of the relief organization, the relief supplies 

delivered to demand nodes can be further distributed by vehicles to local beneficiaries within 

the county or alternatively people in the affected region can travel to these demand nodes to 

receive relief supplies. However, in this study, we do not consider the further distribution of 

relief from the demand nodes. 

As the majority of the destruction and heavy damage due to the CSZ earthquake would 

occur along the Oregon Coast according to the contour map in Figure 5.1 with an intensity of 

VIII or higher as estimated by Hazus-MH, all the candidate DCs are identified in regions with 

an intensity of VII or lower. The yellow and green regions in the contour map in Figure 5.1 

suggest that these places would experience moderate to light shaking, hence these regions do 
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not have any demand nodes and all demand nodes are concentrated on the red and orange 

damage bands. Six major cities with a population of at least 10,000 people or higher in these 

regions were selected and the centroids of these cities were chosen for the placement of the 

candidate DCs. Based on the damage estimated by Hazus-MH, the demand nodes are placed 

in counties with the maximum number of displaced people. Fourteen cities within each of those 

counties were selected and the centroids of these cities were chosen for the placement of the 

demand nodes. Figure 5.4 shows the placement of the candidate DCs (green crosses) and the 

demand nodes (red dots) that are established for this case study. 

 

Figure 5.4 Relief Distribution Network in the State of Oregon. 

 

Table 5.1 lists the candidate DCs represented by green crosses in Figure 5.4. Table 5.2 

lists the demand nodes used in the case study, represented by the red dots in Figure 5.4. 

Table 5.1 List of Candidate DCs 

ID Candidate DC 

1 Sandy 

2 Oregon City 

3 Roseburg 

4 Madras 

5 Bend 

6 Junction City 



30 
 

Table 5.2 List of Demand Nodes 

ID Demand Node 

1 Beaverton 

2 Portland 

3 Astoria 

4 St. Helens 

5 McMinnville 

6 Salem 

7 Dallas 

8 Newport 

9 Albany 

10 Corvallis 

11 Eugene 

12 Winston 

13 Medford 

14 Grants Pass 

 

After the CSZ earthquake event, it is anticipated that the affected regions would be 

without services and assistance for at least 2 weeks (Oregon.gov). The initial days after the 

earthquake are extremely critical since the affected population will require immediate basic 

assistance like first aid kits and food. Moreover, displaced people will still be finding their way 

to relief shelters in the initial few days after the earthquake strikes. For this reason, the relief 

distribution model in this study is planned for three time periods after the earthquake occurs, 

where each time period corresponds to a time window of 48 hours. That is, the planning horizon 

corresponds to a period of six days in the aftermath of an earthquake. With multi-period 

planning, this model considers changes in the relief supply and demand quantities at different 

demand nodes on the initial days of the disaster.  

In the immediate aftermath of an earthquake, communities are in dire need of basic 

commodities like shelter, food, water, first aid (including basic medicines), and medical care 

for injured people. In this study, we consider the distribution of the following commonly 

required commodities: food, water, and first aid. The Centers for Disease Control and 
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Prevention (CDC) recommends a daily water requirement of two liters per day for an average 

adult (cdc.gov). Hence, we estimate that eight pounds of water by weight for a 48-hour time 

period is the demand per person for this commodity. Similarly, an average person in the US 

consumes three pounds of food per day (precisionnutrition.com). Therefore, the daily food 

requirement, which can include instant noodles and bread for three meals per day, is assumed 

to be six pounds per person in each time period. Since medicine and first aid are lightweight 

commodities, the first aid commodity is assumed to be one pound per person in each time 

period for illustration purposes. 

5.2.1 Demand Estimation  

Demand for each demand node is based on the number of displaced people and number of 

people needing short-term shelter provided by the Hazus-MH software. We do not include the 

number of casualties provided by the software, since the casualties include injured people 

requiring medical attention at a different location and deadly victims of the earthquake event. 

Table 5.1 summarizes the demand estimates (in hundreds of pounds) for all the demand 

nodes for every relief commodity in each time period for Scenario 1 and Scenario 2 for a M9.3 

earthquake. The demand estimates for Scenario 3 and Scenario 4 for a M8.0 earthquake are 

included in Appendix A. The demand is estimated in terms of total weight of food, water or 

first aid required based on the number of affected people at each demand node. For example, 

Hazus-MH estimates that 32,540 people will be the population in need in Beaverton, OR. Based 

on this, demand for food is estimated to be 195,000 pounds, demand for water is 260,000 

pounds, and demand for first aid care is 32,500 pounds. The estimated demand for time period 

1 is considered to be the baseline demand. Demand estimates for periods 2 and 3 are generated 

applying a random variation between -15% and 15 % from the baseline demand values. 
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Table 5.3 Demand Estimates for M9.3 CSZ Earthquake (in hundreds of pounds) 

Demand Nodes Relief Commodity Period 1 Period 2 Period 3 
 

Beaverton 
Food  1950 2152 1747  
Water 2600 2883 2821  
Medicine 325 279 338  

Portland 
Food  3380 3332 3751  
Water 4510 3884 5003  
Medicine 564 529 580  

Astoria 

Food  25238 274 270  

Water 336 340 319  
Medicine 42 47 40  

St Helens 

Food  100 104 113  

Water 130 135 133  
Medicine 16 17 16  

 McMinnville 

Food  380 352 346  

Water 506 521 506  
Medicine 63 67 69  

Salem 

Food  980 962 999  
Water 1310 1242 1206  
Medicine 164 184 158  

Dallas 

Food  300 324 293  
Water 400 374 395  
Medicine 50 46 47  

Newport 

Food  250 235 255  
Water 330 362 319  
Medicine 42 38 36  

Albany 

Food  300 333 308  
Water 401 399 435  
Medicine 50 49 49  

Corvallis 

Food  720 403 535  
Water 960 634 579  
Medicine 120 75 88  

Eugene 

Food  1310 1124 1422  
Water 1756 1754 1823  
Medicine 220 194 229  

Winston 

Food  620 541 611  
Water 820 899 911  
Medicine 100 90 104  

Medford 

Food  450 416 505  
Water 602 633 614  
Medicine 75 81 86  

Grants Pass 

Food  238 266 243  
Water 317 308 302  
Medicine 40 45 41  
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5.2.2 Travel Time Estimation  

Earthquakes of high magnitude (i.e., M6.0 and above) can potentially cause severe damage to 

infrastructures, bridges and roads (Kiremidjian et al., 2007). Due to the destruction that comes 

with an earthquake, transportation systems are expected to be at a high risk of damage, which 

in turn can potentially disrupt the travel times and can cause delays. One of the CSZ earthquake 

scenarios in this study is assumed to be of magnitude M9.3 which would cause severe damage 

to the ground transportation infrastructure. The travel time delays in the aftermath of an 

earthquake may become larger due to damaged roads and bridges or closures and blockages 

from building debris or landslides. The travel delays and damaged state of the roads are 

accounted for every DC and demand node pair based on the earthquake intensity and its 

location. After an earthquake strikes, the a priori estimated travel time can be considered as a 

base value and after an initial assessment of the post-disaster conditions of the potential 

scenarios, the base values can be inflated based on the degree of anticipated damage (Noyan 

and Kahvecioglu, 2018). The pre-disaster travel times are assumed to be a priori ground travel 

times between every DC and demand node connections and are calculated using Google Maps. 

The locations of most of the demand nodes in our relief distribution network lie in the range of 

4 to 7 for the scaling factor based on the Hazus-MH scale provided in Figure 4.2, with 

anticipated heavy to violent ground shaking intensity. Based on this assessment, the travel 

times in the first time period are estimated to be as high as four times the actual travel time. In 

subsequent days after the disaster occurs, restoration teams start to repair and enable portions 

of the road transportation infrastructures which gradually reduces the difficulty in 

transportation between different locations (Wang and Sun, 2023). In this study, time period 3 

would be only 5 to 6 days after the earthquake strikes and all road connections would still be 

in a damaged state. Another important consideration during estimation of the travel time was 

that the time taken to traverse between any DC and demand node pair should be within the 
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duration of a single time period, which is 48 hours in our problem. To account for the above 

mentioned points, transportation time in time period 2 is estimated to be three times the regular 

travel times, and the transportation times for time period 3 is estimated to be twice the regular 

travel times. 

On the other hand, to estimate the air transportation time, we considered the Euclidean 

distance between each DC and demand node pair. For example, the distance between the DC 

in Bend, OR and a demand node in Portland, OR for air transportation is calculated as shown 

in Figure 5.5. This is done by using one of the many Euclidean distance calculator tools that 

are available online (www.freemaptools.com). The red line indicates the Euclidean distance 

used by helicopters providing relief between these two locations. The blue line is the ground 

transportation route which is used by trucks. To calculate the speed for air transportation, the 

average speed of a rescue helicopter is assumed to be 110 miles/hr. (Svenson et al., 2006). Air 

transportation is not affected as much as ground transportation during an earthquake event 

except for ground infrastructure required for takeoff and landing activities. Since helicopters 

do not require any elaborate ground infrastructure, travel time delays in air transportation (for 

helicopters) are not considered. Furthermore, since the road blockages and road closures do not 

affect the air transportation travel times, the travel times for this mode of transportation are 

considered to be same for all three time periods. 
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Figure 5.5 Example of Euclidean Distance for Air Travel Time Estimation 

  

5.2.3 Cost Estimation  

Transportation costs are calculated based on the time required for a one-way trip between each 

DC and demand node. To estimate ground transportation travel time and air transportation 

travel time, we adopted the method proposed by Barbarosoǧlu and Arda (2004). In this 

approach, all transportation costs are assumed to be a linear function of the time taken to travel 

the distance between each DC and demand node pair. As discussed in the previous section, 

actual distances are used for ground transportation and Euclidean distances are used for air 

transportation. Since the time estimate for all the connections already considers the delays due 

to road blockages and damage, the transportation cost incorporates the increased cost in each 

period as well. The cost associated with ground transportation per unit distance travelled, is 

assumed to be cheaper than the cost associated with air transportation with the cost for air 

transportation being twice the cost for ground transportation as proposed by Barbarosoǧlu and 

Arda (2004). The per unit transportation cost for ground transportation is assumed to be $1 per 

minute. 
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5.2.4 Supply Estimation 

At the time of a disaster, basic relief commodities for the affected people are collected from 

various sources including government agencies, non-governmental organizations (NGOs), 

international aid organizations, and donations from individuals and businesses (USDA Foods 

Disaster Manual, 2021). Government agencies in the United States, such as FEMA, have 

provisions for providing food and other essential supplies to the disaster hit regions though 

various disaster response programs. Because of the uncertainty associated with the supply, it is 

not possible to accurately estimate the availability of supply commodities for food, water and 

first aid. For this study, an estimate of the supply available at each DC is derived as a percentage 

of the total demand for each commodity in time period 1 divided by the number of available 

DCs. In the moments immediately after a large-scale earthquake disaster, the supply quantities 

are always insufficient (Huang and Refeii, 2019; Wang and Sun, 2023). For this reason, the 

available supply is assumed to be 80% of the demand in time period 1. To create variation in 

the available supply at each DC, individual values are randomly varied between ± 5% for the 

time period 1 quantity at each DC. As the disaster hit region receives aid from various 

organizations to satisfy the demand of the population in need, the available supply in time 

period 2 and time period 3 are varied randomly between 5% to 20% of the available supply for 

time period 1 for each commodity to account for supply fluctuations. 

5.2.5 Other Input Parameter Data  

 

• It is assumed that temporary buildings will be used which will act as DCs in this relief 

network. The average monthly rate for a storage unit in the Portland, OR region is 

around $100 for 10x10 square feet of storage space (storagearea.com). We assume the 

approximate size of the DC to be 25,000 square feet, which is the average area of a 

large retail store (vts.com). This area is assumed enough to store large quantities of 

relief commodities for a large number of people. Based on this area, the fixed cost 
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associated with the establishment of any of the DCs is randomly generated between 

[$20,000, $30,000] for the length of the planning horizon. 

• The total budget to establish the DCs and carry out the relief distribution in a post-

disaster scenario after an earthquake is set to be $12 million that is based on the average 

budget granted by FEMA for rescue operations of various disaster for different US 

states (fema.gov). 
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6. Computational Experimentation Results 
 

The performance of the proposed model presented in Chapter 4 was tested using scenarios for 

the case study described in Chapter 5. Since the problem has two objectives, the model was 

solved using the lexicographic method to evaluate the trade-off between the minimization of 

the total travel time and total unmet demand across the three time periods in the planning 

horizon. This section contains the description of the case study setup, the numerical results for 

the computational experimentation performed, and a discussion of the implications of these 

results. 

 

6.1 Case Study Setup 

 

The performance of the proposed model is tested using the case study for a CSZ earthquake 

event in the state of Oregon presented in Chapter 5. Four scenarios were developed as presented 

above in Figure 5.3. For all four scenarios, the value of the minimum percentage of demand to 

be fulfilled (Δ) was set to 65%. The allowed deviation from the average demand (δ) for each 

commodity in each period was set to 10%. A total of 50 large trucks each with a capacity of 20 

tons (40,000 pounds), and a set of 30 helicopters each with a load capacity of 4,000 pounds are 

available for each scenario. It is assumed that the same set of trucks and helicopters will be 

used across all three periods in every scenario. The number of people affected by the disaster 

was estimated from Hazus-MH and all other input parameters were generated as discussed in 

Chapter 5. Since the DC located in Junction City, OR is the closest to the epicenter of the CSZ 

earthquake modeled for the case study, this DC location is not available for Scenarios 2 and 4 

with one unavailable DC. A summary of the parameters used for the four earthquake scenarios 

in our study are summarized in Table 6.1 and the results are presented in the following section. 
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Table 6.1 Parameters for CSZ Earthquake Scenarios 

Scenario 
Earthquake 

Magnitude 

Candidate 

DCs 

Demand 

Threshold (Δ) 

Allowable 

Demand 

Deviation (δ) 

Trucks Helicopters 

1 M9.3 All available 65% ±10% 50 30 

2 M9.3 1 unavailable 65% ±10% 50 30 

3 M8.0 All available 65% ±10% 50 30 

4 M8.0 1 unavailable 65% ±10% 50 30 

 

 

6.2 Numerical Results for CSZ Earthquake Scenarios 

 

A multi-objective optimization problem involves finding a set of solutions that optimize 

multiple objectives simultaneously, which often conflict with each other. In contrast to a single-

objective optimization problem, which seeks to find a single optimal solution, a multi-objective 

optimization problem seeks to find a set of optimal solutions, also known as Pareto optimal 

solutions that simultaneously optimize all the objectives. A solution is said to be efficient, non-

dominated or Pareto optimal in an objective space, if none of the objectives can be improved 

without sacrificing or deteriorating other objective values (Wang and Rangaiah, 2017). A 

Pareto optimal solution is, therefore, a feasible solution that is not dominated by any other 

solution and an improvement in any one objective is only possible at the expense of a worse 

solution in at least one other objective (Ravindran, 2007). The set of all these non-dominated 

solutions, called the Pareto frontier, is commonly used to evaluate trade-offs between 

conflicting objectives and provides the set of solutions that gives the best compromise between 

the multiple objectives. Although the Pareto optimal solutions are non-dominated, all solutions 

are not equally desired. The Pareto frontier scatter plot is widely used for visually evaluating 

the trade-offs between the objectives in a multi-criteria solution space. Analyzing the Pareto 

fronts helps in making informed decisions about which solution to choose based on the specific 

needs and preferences of the decision makers for the problem at hand. 
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A Pareto frontier approximation is created for the proposed bi-objective optimization 

model in this research. To find the set of Pareto optimal solutions and to create a Pareto front, 

the value of Objective 1 (unmet demand) is allowed to degrade relative to Objective 2 (total 

travel time) by small successive increments until the value of Objective 2 approximates to zero. 

The relative tolerance is varied in discrete steps between 0% to 30% in increments of 1%. The 

lexicographic method was applied iteratively with the relative tolerances, and the 

corresponding optimal solutions were stored and plotted. The resulting graph provides a Pareto 

frontier for the multi-objective optimization problem.  

Figure 6.2 shows the Pareto frontiers for Scenarios 1 and 3 when all DCs are available 

to satisfy post-disaster relief demand. Similarly, Figure 6.3 shows the Pareto frontiers for 

Scenarios 2 and 4 when one candidate DC is unavailable to satisfy post-disaster relief demand. 

Since Scenario 2 and Scenario 4 have only 5 available candidate DCs, the Pareto frontiers for 

these scenarios were in a different range of values for the two objectives than the Pareto 

frontiers for Scenario 1 and Scenario 2. Therefore, two separate Pareto frontiers were created 

to accommodate the differences in the range of total unmet demand and total travel time. 
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Figure 6.1 Pareto Optimal Solutions for Earthquake Magnitudes M9.3 and M8.0 with Six 

Candidate DCs Available (Scenario 1 and Scenario 3) 

 

 

Figure 6.2 Pareto Optimal Solutions for Earthquake Magnitudes M9.3 and M8.0 with Only 

Five Candidate DCs Available (Scenario 2 and Scenario 4) 
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Since all solutions in a Pareto frontier are optimal, policy makers may choose any 

solution that represents a balance between the conflicting objectives according to the situation 

at hand. For our research, we use a multi-criteria decision-making technique called Technique 

for Order of Preference by Similarity to an Ideal Solution (TOPSIS) method developed by 

Hwang and Yoon (1981) to help us identify a compromise solution from our Pareto frontier. 

The TOPSIS method suggests a compromise ranking by identifying solutions with shortest 

distance from the positive-ideal solution and furthest distance from the negative-ideal solution 

in a given set of non-dominated solutions. The TOPSIS solution may not necessarily represent 

the best solution from the Pareto set and is determined for illustration purposes only. The 

TOPSIS solutions in the Pareto frontiers in Figure 6.2 and Figure 6.3 are identified by green 

points. 

Table 6.2 summarizes the TOPSIS results for all four CSZ earthquake scenarios. 

Decision variable values for the TOPSIS solution for Scenario 1 are provided in Appendix B. 

For Scenario 1 (M9.3) and Scenario 3 (M8.0) when all the candidate DCs are available, unmet 

demand is the lowest. However in Scenario 1 and Scenario 3, since more supply is distributed 

to the demand nodes in each period, the total air and ground transportation travel times are 

higher than those for Scenario 2 and Scenario 4, respectively. It is observed that for Scenario 

2 and Scenario 4, the unmet demand is significantly higher than for the other two scenarios. 

This is due to the unavailability of one of the candidate DCs which significantly reduces the 

total supply of relief commodities in all periods. As the total available supply in these scenarios 

is lower than the demand, all the six DCs remain open in all three periods to minimize the 

unmet demand. Moreover, due to the supply shortages, the model forces all the available supply 

to be distributed across all three time periods. From Table 6.2, it is also observed that Scenario 

1 required the highest number of trucks and helicopters. According to the results from the 

application of the model across the four scenarios, a maximum of 48 trucks and 26 helicopters 
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would be required for the post-disaster relief distribution for a three-period problem covering 

six days after the onset of a CSZ earthquake.  

Table 6.2 Numerical Results for TOPSIS Solutions for All Four Scenarios 

Scen. Mag. 
Avail. 

DCs 

(#) 

Demand 

Th. (Δ) 
Allowed 

Dev. (δ) 
Obj1

(lb) 
Obj2 

(min) 
Trucks 

(#) 
Heli. 

(#) 
Total 

Cost ($) 

 
CPU 
 (sec) 

Cost 

Var. 

(%) 

1 M9.3 6 65% 10% 14,191 31,340 48 26 10,917,847  482 - 

2 M9.3 5 65% 10% 22,406 27,145 43 22 10,706,514  355 -1.90 

3 M8.0 6 65% 10% 11,986 30,310 36 20 8,645,797  648 -20.80 

4 M8.0 5 65% 10% 21,312 25,458 32 19 8,474,815  701 -22.30 

 

Table 6.2 also summarizes the variation in total cost for each scenario with respect to 

Scenario 1 that is considered as the base scenario. The reduction in total cost for Scenarios 2, 

3, and 4 is due in part to the reduced number of trucks and helicopters used in these scenarios. 

Also, the reduction of supply available for transport due to the unavailability of one of the DCs 

in Scenario 2 and Scenario 4 contributes to the reduction in total cost with respect to Scenario 

1. The computational (CPU) time to run the model for the four scenarios is also specified in 

Table 6.2. 

In the next section, we investigate the effects of different values for some of the problem 

parameters for the baseline case in Scenario 1 to explore their influence on the total unmet 

demand, the total travel time and the relief distribution pattern for all demand nodes across 

each time period. 

6.3. Sensitivity Analysis of Baseline Case (Scenario 1) 

 

Analyzing the effect of varying different parameter values in the model helps us to understand 

the tradeoffs between different values for these parameters and the outcomes of the model. The 

insights from these outcomes and the observed tradeoffs can help decision makers as they 

consider the different objectives for post-disaster relief distribution planning. In this section, 
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we investigate the effects on the Scenario 1 TOPSIS solution of varying the values of allowable 

deviation percentage from demand average (δ), demand threshold (Δ), budget, and number of 

vehicles available for relief distribution. 

6.3.1 Effect of Varying δ 

We first investigate the effect of varying the allowable deviation percentage from the average 

met demand (δ) on the relief distribution pattern across different demand nodes and the total 

travel time for the Scenario 1 TOPSIS solution. To understand the efficacy of an equitable 

distribution obtained by applying the permissible deviation from average demand constraint, 

we compare the numerical results obtained by varying the values of δ from the baseline value 

of 10% to 5% (i.e., more equitable distribution) and to 100% (i.e., no equitable distribution 

considered). This would provide insight into how the relief distribution pattern would change 

as we tighten the value of δ in case of relief commodity shortages. The results are presented in 

Table 6.3. 

Table 6.3 Scenario 1 TOPSIS Results with Different Values of δ 

Earthquake Magnitude M9.3 M9.3 M9.3 

Min demand % at each node 65% 65% 65% 

Deviation allowed (δ) 10% 5% 100% 

Computational Time (sec) 852 2,444 258 

Unmet Demand (pounds) 14,191 14,191 14,191 

Travel Time (min) 31,340 31,675 30,905 

Trucks (#) 48 48 47 

Helicopters (#) 26 28 25 

Total Cost ($) 10,571,847 10,877,624 10,278,643 

Cost Variation - 2.90% -2.77% 

 

Table 6.3 shows that the total unmet demand for all three cases remains the same (since 

supply is limited), but the overall travel time across all three periods is higher with δ = 5%. 

Furthermore, since the model becomes more restricted as we reduce the value of δ, the 
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computational time for δ = 5% is the highest. Table 6.3 also summarizes the total cost for the 

entire relief distribution operation across all three time periods for different values of δ. When 

the total cost for δ = 10% is considered as the base value, the total cost increases by 2.9% for 

δ = 5%. This is because the model is forced to distribute the relief supplies more equitably 

across all the demand nodes for all three periods. The increase in cost is also due to the increase 

in the number of vehicles used for δ = 5% (with two more helicopters). On the other hand, the 

total cost is 2.77% lower than the base case value for δ = 100% since the model is relaxed with 

respect to equitable distribution and the number of vehicles used is also reduced. 

Figures 6.3, 6.4 and 6.5 show the comparison of relief distribution to all demand nodes 

for all commodities for the different values of δ across all three periods, respectively. The 

average demand for every commodity in a period is denoted by the red line, while the black 

dotted line represents the upper and lower limits for demand satisfaction. After comparing the 

results obtained from the model in Figures 6.3, 6.4 and 6.5 it is evident that the relief 

distribution for δ = 5% is the most equitable for all commodities across every period. It can be 

observed that the relief distribution for δ = 100% is not equitable, as some of the demand nodes 

receive 100% of the relief supplies, while other demand nodes receive only the minimum 

demand threshold.  

As the total unmet demand remains the same for all cases, the above findings suggest 

that in case of relief commodity shortages, enforcing the constraint limiting the deviation from 

the average demand allows for the relief distribution to be equitable and prevents an unfair 

allocation of relief supplies, such that no particular demand node is at a higher disadvantage. 

There is a clear tradeoff between equitable distribution and the total travel time. As the relief 

distribution becomes more equitable, the travel time increases. Based on the amount of relief 

supplies available, the model helps the decision makers to make better choices in order to make 

the relief distribution plan fair and equitable. 
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Figure 6.3 Comparison of Relief Distribution for All Commodities in Period 1 for Different Values of δ 
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Figure 6.4 Comparison of Relief Distribution for All Commodities in Period 2 for Different Values of δ 
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Figure 6.5 Comparison of Relief Distribution for All Commodities in Period 3 for Different Values of δ
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6.3.2 Effect of Varying Minimum Demand Threshold Δ 

We also investigate the effect of varying the value of the minimum demand threshold for the 

Scenario 1 TOPSIS solution when keeping the allowed deviation from the average demand 

value δ = 10%. Since the first objective is to minimize the unmet demand, the model will strive 

to reduce the unmet demand by always prioritizing to distribute the entire available supply for 

every commodity across all three periods. Varying the demand threshold will only set a lower 

bound on the minimum percentage of demand satisfaction for every commodity in all periods 

while the supply exists to meet the threshold. This does not prevent the model from maximizing 

the distribution of the relief commodities within the available vehicle capacity and the available 

budget. Table 6.4 summarizes the results from varying the minimum demand threshold Δ 

values between 55% and 85% for the Scenario 1 TOPSIS solution.  

 

Table 6.4 Results of Varying the Minimum Demand Threshold Value Δ  

Demand 

Threshold (Δ) 

Obj 1 

Value 

(pounds) 

Obj 2 

Value 

(min) 

Trucks 

(#) 

Helicopters 

(#) 

Total Cost 

($) 

Computational 

Time (sec) 

55% 14,191 31,000 47 25 10,783,936 415 

60% 14,191 31,110 47 26 10,867,341 691 

65% 14,191 31,340 48 26 10,917,847 852 

70% 14,191 31,705 47 27 10,940,204 908 

75% 14,191 32,635 48 26 10,924,946 1,068 

77% 14,191 33,130 48 27 10,939,775 2,207 

80% infeasible - - - - - 

85% infeasible - - - - - 

 

 

As observed in Table 6.4, varying the minimum demand threshold value does not affect 

the total unmet demand (Obj 1) as all of the supply is still distributed with the available vehicles 

and budget. As discussed earlier, the minimum demand threshold value only enforces the 
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minimum demand satisfaction percentage any demand node should receive, but does not 

prevent the model from maximizing the allocation of relief supplies either by trucks or 

helicopters. Increasing the minimum demand threshold percentage causes a modest increase in 

the number of trucks and helicopters used as well as the total cost. These variations are due to 

the changes in the allocation of relief supplies within the three time periods and the 

corresponding transportation costs for the distribution of relief commodities across the three 

time periods. Furthermore, in the baseline case with relief supply shortages, the model can 

enforce a minimum demand threshold as high as 77% and still feasibly distribute relief 

commodities equitably. For the instance with the highest possible minimum demand threshold 

value, the total travel time (Obj 2) represents a 6.4% increase with respect to total time for the 

instance with a minimum demand threshold of 55%. On the other hand, the increase in total 

cost between the two extreme instances is 1.5%. Finally, the computational time increases as 

the minimum demand threshold value increases. The computational time for the instance with 

the highest minimum demand threshold is five times higher than the instance with minimum 

demand threshold of 55%. 

6.3.3 Effect of Surplus Supply 

All previous instances correspond to situations in which supply shortages exist. In these 

scenarios, the model selects all the candidate DCs to remain open in order to distribute all of 

the available supply and minimize the total unmet demand. To evaluate situations in which the 

selection of which candidate DC should be open and which should remain closed, the supply 

is assumed to be in surplus. We investigate the effects of surplus supply for total available 

budget values of $8 million and $5 million. The parameter values used for these cases are 

summarized in Table 6.5. 
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Table 6.5 Parameter Values for Surplus Supply Cases 

Earthquake Magnitude M9.3 

Min demand % at each node 65% 

Deviation allowed 10% 

Available Trucks (#) 50 

Available Helicopters (#) 30 

 

Table 6.6 summarizes the status of all DCs across all three periods for both budget 

values. The check mark (✓) represents open DCs and the cross ( ) represents closed DCs for 

the specified time period. For a budget of $8 million, as the supply is able to fulfill the demand, 

total unmet demand is observed to be zero. Moreover, the total travel time is 22,160 minutes 

and the total cost is $7.61 million, which is 30.23% lower than the cost when all the DCs are 

open. When the budget is further reduced to $5 million, more DCs remain closed in certain 

periods and the unmet demand across all periods increases. Along with the closure of the DC 

located at Madras, OR for all three periods, the DC located at Bend, OR remains closed for 

period 2 and period 3. The total travel time is reduced to 18,740 minutes, but the unmet demand 

increases to 10,184 pounds. The results for both budget values are summarized in Table 6.7. 

The total cost consists of costs associated with opening DCs and the transportation costs 

associated with using a truck or helicopter between every DC and demand node pair. The 

reduction in the overall cost associated with only five DCs is because fewer relief commodities 

are supplied in the network.  
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Table 6.6 Status of Distribution Centers for Scenario 1 with Surplus Supply 

Period DC Status 

($8 Million)  

Status 

($5 Million) 

 

1 SANDY ✓ ✓  

1 OREGON CITY ✓ ✓  

1 ROSEBURG ✓ ✓  

1 MADRAS 
 

  

1 BEND ✓ ✓  

1 JUNCTION CITY ✓ ✓  

2 SANDY ✓ ✓  

2 OREGON CITY ✓ ✓  

2 ROSEBURG ✓ ✓  

2 MADRAS 
   

2 BEND ✓  
 

2 JUNCTION CITY ✓ ✓  

3 SANDY ✓ ✓  

3 OREGON CITY ✓ ✓  

3 ROSEBURG ✓ ✓  

3 MADRAS 
  

 

3 BEND ✓  
 

3 JUNCTION CITY ✓ ✓  

 

Table 6.7 Results Summary for Scenario1 with Surplus Supply 

Total Available Budget $8 Million $5 Million 

Computational Time (sec) 450 1,023 

Objective 1 (Unmet Demand - pounds) 0 10,184 

Objective 2 (Travel Time - min) 22,160 18,740 

Total Cost ($) 7,616,872 5,000,000 

Trucks (#) 49 48 

Helicopters (#) 30 28 

 

 

6.3.4 Effect of Available Trucks and Helicopters 

Up to this point, the model has been tested with a total of 50 available trucks and 30 helicopters. 

In this section, we investigate the effect of varying the number of trucks and helicopters on the 

total unmet demand and travel time for the Scenario 1 TOPSIS solution. We reduce the number 

of total available trucks to 45 and the total available helicopters to 15. By reducing the number 

of available vehicles, we investigate the effects of vehicle shortages in the relief distribution 
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pattern in the network. Table 6.8 shows the parameter values used to investigate the effects of 

vehicle shortages in the total unmet demand and total travel time. The results are summarized 

in Table 6.9 and are compared to the result for the baseline scenario with no vehicle shortages. 

Table 6.8 Parameter Values for Scenario 1 with Vehicle Shortages 

Earthquake Magnitude M9.3 

Min Demand % at Each Node 65% 

Deviation Allowed 10% 

Total Budget ($) 12 Million 

Available Trucks (#) 45 

Available Helicopters (#) 15 

 

Table 6.9 Results Summary for Scenario 1 with and without Vehicle Shortages 

 Vehicle Shortages 
No Vehicle 

Shortages 

Computational Time (sec) 1,178 482 

Objective 1 (Unmet Demand – pounds) 18,368 14,191 

Objective 2 (Travel Time – min) 26,160 31,340 

Total Cost ($) 9,245,387 10,917,847 

Trucks (#) 45 48 

Helicopters (#) 15 26 

 

With fewer available vehicles, the total unmet demand increases 30% when compared 

to the baseline scenario as fewer relief commodities are distributed from the DCs to demand 

nodes. Therefore, the total travel time also reduces as compared to the baseline scenario. 

To get more insight into how much impact adding a single truck or helicopter has on 

the objective functions and the total cost of the relief operation, we ran the model by 

incrementing the total number of available trucks in increments of one from 45 until 50, while 

keeping the total number of available helicopters at 15. We then incremented the total number 

of available helicopters in increments of one from 15 to 20 while keeping the total number of 

available trucks at 45. The results for these instances are depicted in Figure 6.6 and Figure 6.7, 

respectively. From Figure 6.6 and Figure 6.7 it can be seen that adding more trucks allows to 
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distribute more relief commodities across the different demand nodes than adding helicopters. 

Although a helicopter can reduce the total travel time, it has a marginal impact on the demand 

satisfaction rate as they have lower loading capacity. This representation of the relative 

variations can help policy makers to understand the trade-off between the total unmet demand 

and total travel time so that informed decisions can be made for the problem at hand. 

 

 

Figure 6.6 Effect of Varying Number of Trucks on the Objective Functions and Total Cost for 

Scenario 1 
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Figure 6.7 Effect of Varying Number of Helicopters on the Objective Functions and Total 

Cost for Scenario 1 

 

 

6.4 Discussion 

The results in the previous sub-sections present some insightful and interesting findings from 

the evaluation of the effects of varying the permissible deviation percentage from the average 

demand (δ), the minimum demand threshold (Δ), supply values, and the number of trucks and 

helicopters available. In this section we present a summary of the most significant observations 

and discuss their implications.   

First, we demonstrate the model’s effectiveness for equitable distribution of relief 

commodities, when supplies are insufficient to satisfy all of the demand. It can be inferred that, 
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in case of relief shortages, the model enforces the relief distribution in an equitable manner, 

such that no particular demand node is at a higher disadvantage while keeping the total unmet 

demand the same for all values of δ. As the model is made tighter by varying the permissible 

deviation from 10% to 5%, the total cost increases by almost 3% with a slight increase in the 

travel time. Although the increase in cost is relatively small, having a δ of 5% significantly 

improves the relief distribution pattern from an equity perspective as compared to results with 

δ of 100%. The model is able to achieve equitable distribution with relatively small increases 

in the total cost and total travel time; however, the computational time to run the model is three 

times as high.  

Increasing the minimum demand threshold (Δ) increases the total travel time and the 

total cost of the operation, given additional relief commodities that are distributed across all 

the demand nodes. Moreover, it only causes a modest increase in the number of trucks and 

helicopters used. However, it has no impact on the total unmet demand for all three periods. 

The demand threshold only enforces the minimum demand satisfaction percentage any demand 

node can receive either by truck or by helicopter but does not prevent the model from 

maximizing the allocation of relief supplies. The total computational time to run the model for 

the different values of Δ ranged from 415 seconds to 2,204 seconds. Setting the threshold value 

to the highest feasible value would help in achieving a high level of service for all demand 

nodes in all three time periods.  

Next, we evaluated instances with surplus supply for available budget quantities of $8 

million and $5 million. In these instances, the DCs at Madras, OR and Bend, OR are not 

selected to be operational since they will incur additional cost and time to distribute the relief 

commodities across all demand nodes.  This insight could help the decision-makers to choose 

the location of available DCs to maximize the overall efficiency in the relief distribution 

operation. 
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Finally, we vary the total number of trucks and helicopters available in the relief 

distribution network to investigate their effect on the total unmet demand and the total travel 

time. To achieve this, the total number of available trucks is reduced from 50 to 45 and the 

total number of available helicopters is reduced from 30 to 15. The shortage in vehicles results 

in a significant impact on the total unmet demand. The increase in the unmet demand is 30% 

higher than the unmet demand for the baseline scenario.   

The model was run for different number of available vehicles to understand the impact 

of addition of a single truck versus addition of a single helicopter on the unmet demand and 

the total travel time. Addition of a single truck has a significant impact on reducing the total 

unmet demand versus the addition of a single helicopter. However, the cost as well as the travel 

time also increase in order to satisfy the demand of a higher number of demand nodes. On the 

other hand, the addition of a single helicopter has an insignificant impact in reducing the unmet 

demand, although the travel time reduces slightly with very less impact on the total cost of the 

relief distribution operation. 

In conclusion, analysis of the various parameters suggests that the number of vehicles 

involved in the relief distribution operation has the most significant impact on the total unmet 

demand in the relief distribution operation. Given a choice between adding more trucks or 

helicopters, the results from the application of the model suggest that adding trucks would be 

more beneficial to minimize the total unmet demand than the addition of helicopters at the 

trade-off of a slight increase in the total travel time. While helicopters provide the advantage 

of being able to access remote and inaccessible areas, their limited carrying capacity makes 

them less efficient for large-scale relief distribution. If the affected areas have limited roads or 

are severely damaged, helicopters may still be necessary to reach those locations. Therefore, a 

balanced approach that combines both trucks and helicopters, based on the specific 

circumstances and requirements of the relief operation, would be the most effective strategy. 
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The results from the model also suggest that defining a range of permissible deviation 

in demand satisfaction with respect to the average demand for all nodes is effective at obtaining 

an equitable relief distribution pattern for serving all demand nodes in the region. Based on the 

available supply of relief commodities, decision makers can choose a suitable value for the 

permissible deviation δ that would allow them to distribute the available supply so that no 

particular demand node is at disadvantage. Finally, the model also helps in the identification 

of the most efficient candidate locations for the placement of DCs, which effectively minimizes 

both the total unmet demand and the total travel time. This can further enhance the effectiveness 

of the relief distribution operation. 

 

  



59 
 

7. Conclusions and Future Work 
 

At the time of a disaster when relief supplies are insufficient, efficient and equitable distribution 

of multiple relief commodities is required to meet the needs of the affected population within 

a fixed budget and in a short span of time. Planning a robust and flexible relief distribution 

network is crucial to reduce the impact of the disaster. 

In this research, we developed a multi-objective mixed integer programming model for 

relief distribution with the primary objective of minimizing the total unmet demand for relief 

commodities and the secondary objective to minimize the total travel time for an equitable 

relief distribution to demand nodes. The formulation considers multiple commodities, multiple 

modes of transportation and multiple periods in a planning horizon after the onset of an 

earthquake. The relief distribution network consists of multiple candidate distribution center 

(DC) locations that are selected based on the damage and intensity of the earthquake, and 

multiple demand nodes that are located in cities with the anticipated highest number of affected 

people. Equity in the relief distribution is achieved by a combination of minimizing the total 

unmet demand for all commodities across all time periods, and restricting the deviation in the 

demand satisfaction rate for each demand node to be within a specified range. Based on the 

intensity of relief shortages at the time of the disaster, this model will aid the decision makers 

to define a specific target for demand satisfaction that can be fulfilled in an equitable manner. 

This will ensure that at the time of relief shortages, no particular community is at a higher risk 

of disadvantage with respect to others. 

We tested the model by conducting a computational experiment using a case study for 

a CSZ earthquake in the state of Oregon. We generated The model was tested on four different 

earthquake scenarios with two different earthquake magnitudes and different levels of 

availability of candidate DCs. The model is solved using a lexicographic approach to provide 
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Pareto optimal solutions which consider the trade-offs between the total unmet demand and the 

total travel time under a deterministic disruption scenario. In addition, a sensitivity analysis 

was performed to understand the effects of uncertainty on the values of the fundamental 

parameters of the relief distribution model on the solutions obtained for one of the generated 

scenarios. The model insights and the optimal solutions obtained with the proposed model are 

applicable to the specific problem instance and the earthquake scenario for which it was 

evaluated (Scenario 1). 

The model proposed in the current research could help decision makers to make 

strategic decisions regarding the placement of candidate DCs and to make efficient and 

equitable tactical decisions about the quantities of relief commodities to be distributed between 

the DCs and the demand nodes using different modes of transportation. Furthermore, this 

research study provides insights that might be valuable to the decision makers in planning a 

robust and flexible relief distribution network in anticipation of a disaster. For example, the 

model suggests that if the demand nodes are accessible by road, addition of more trucks would 

be more advantageous in minimizing the total unmet demand, than the addition of helicopters 

with only a slight increase in the total travel time. The understanding of the effects of the 

different parameters would also help the decision makers to improve the design and operation 

of the relief distribution network when limited resources are available like choosing the most 

efficient DC locations and finding the highest achievable demand threshold that can be satisfied 

equitably for all demand nodes.  

We acknowledge that the conclusions from this research are based on the particular 

instances that have been evaluated in this study and not generalizable for other instances with 

different scale and disaster types. More work is required to improve the proposed model and 

to develop additional insights that could be generalizable. One of the limitations of this research 

is that in the case of surplus supply, the model does not calculate the quantity of unused relief 
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commodities at the end of each period so that they can be made available in future periods. One 

way to address this would be to add constraints to keep track of the inventory level for each 

commodity at each DC at the end of each time period, which can then be carried over to the 

next time period in addition to the incoming supply of relief commodities available in that 

period .  

Another limitation is that the model only considers equity in terms of quantity of relief 

commodities received by the different demand nodes. To further expand the capabilities of the 

model, equity can be extended to other relevant aspects of relief distribution. For example, 

temporal equity that is equity related to the time required to deliver the relief commodities at 

each demand node, or social equity that ensures equitable relief distribution across different 

populations in the study area. This would greatly benefit and improve the overall equitable 

relief distribution across the affected population of a region.  

In addition, natural disasters like earthquakes are unpredictable and the extent of 

damage to the infrastructure and the number affected people are highly uncertain. In this study, 

a deterministic mathematical formulation is considered that does not explicitly consider the 

uncertainty associated with demand/supply values, travel times, and available ground and aerial 

modes of transportation. To address this, the proposed deterministic model can be extended to 

a stochastic model by incorporating the uncertainty in some of the model parameters such as 

the demand and supply values and the travel times. A stochastic approach would allow 

understanding the impact of uncertainty for these parameters on the design and operation of 

the relief distribution network as the expected values of unmet demand and total travel time 

are minimized simultaneously.   

In addition to the previously mentioned limitations, there are several potential avenues 

for future research that could enhance the applicability and scalability of the proposed model. 
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One such direction could be evaluating problem instances with a larger number of DCs and 

demand nodes, thereby capturing a more comprehensive representation of real-world scenarios. 

By considering additional DCs and demand nodes, the model would provide a more nuanced 

understanding of the relief distribution design and operation, and allow for developing more 

insights for future decision-making.  

Furthermore, the inclusion of vehicle routing in the model would significantly enhance 

its practicality. By incorporating vehicle routing, the model would not only determine the 

optimal allocation of vehicles but also devise efficient routes for distributing the relief 

commodities to the various affected areas in every period of the planning horizon. This would 

ensure that the available vehicles are utilized optimally and that the relief supplies reach the 

affected populations in a timely and cost-effective manner. This would be particularly 

important for situations in which there is a limited number of vehicles available for the 

distribution.  

As the problem size and complexity increase, heuristic methods could be developed 

and implemented to solve the optimization problem efficiently. Heuristics such as 

metaheuristic algorithms (e.g., NSGA II) or local search algorithms could be applied to find 

near-optimal solutions within reasonable computational times. These methods could 

potentially overcome the computational challenges associated with larger instances of the 

problem and provide effective solutions that approximate the optimal outcomes.  

These advancements would enable a more comprehensive and practical approach to the 

relief distribution optimization scenario discussed in this thesis, providing decision-makers 

with valuable insights and tools to improve the efficiency and effectiveness of their disaster 

response planning. 
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Appendix A – DEMAND ESTIMATES FOR SCENARIO 3 AND SCENARIO 4 

 

 The demand for each demand node is estimated based on the number of displaced people and 

number of people needing short-term shelter provided by the Hazus-MH software. We do not 

include the number of casualties provided by the software, since the casualties include injured 

people requiring medical attention at a different location and deadly victims of the earthquake 

event. Based on the number of affected people at each demand node, the demand is estimated 

in terms of total weight of food, water or first aid required, as described in Section 5.2.1. Table 

A.1 presents the demand estimates for Scenario 3 and Scenario 4 for a M8.0 CSZ earthquake.  

 

Table A.1 Demand Estimates for M8.0 CSZ Earthquake (in hundreds of pounds) 

Demand Nodes Commodity Period 1 Period 2 Period 3 

Beaverton 

Food  1786 1969 1620 

Water 2381 2256 2717 

Medicine 297 317 264 

Portland 

Food  2514 2853 2741 

Water 3352 3385 3065 

Medicine 419 368 398 

Astoria 

Food  185 201 165 

Water 247 280 263 

Medicine 31 30 29 

St Helens 

Food  84 91 94 

Water 112 120 111 

Medicine 14 15 14 

 McMinnville 

Food  280 291 313 

Water 383 412 372 

Medicine 48 52 54 
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Salem 

Food  890 939 1009 

Water 1196 1302 1137 

Medicine 149 162 164 

Dallas 

Food  250 285 268 

Water 338 295 380 

Medicine 42 41 36 

Newport 

Food  170 157 165 

Water 227 227 222 

Medicine 28 27 31 

Albany 

Food  267 267 304 

Water 356 355 375 

Medicine 44 49 44 

Corvallis 

Food  395 442 350 

Water 527 557 596 

Medicine 66 66 69 

Eugene 

Food  1148 1051 1104 

Water 1531 1562 1564 

Medicine 191 207 202 

Winston 

Food  421 448 439 

Water 562 615 616 

Medicine 70 71 61 

Medford 

Food  410 447 462 

Water 547 493 546 

Medicine 68 69 75 

Grants Pass 

Food  172 176 160 

Water 229 224 250 

Medicine 28 26 29 
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Appendix B – TOPSIS RESULTS 

  

In this section, we present the complete results for the TOPSIS solution for Scenario1. Table 

B.1 includes the DC-demand node pairs along with the quantity of relief commodity distributed 

via ground/air. Table B.2 summarizes the total unmet demand for every demand node in each 

time period. Table B.3 illustrates the percentage of demand met for each commodity across all 

three periods, and finally Table B.4 displays the average demand met for every commodity in 

all three periods. 

  

Table B.1 Relief Commodities Distributed from DCs to Demand Node via Ground/Air (in 

hundreds of pounds) 

Period DC Demand Node Commodity Ground Air 

1 SANDY BEAVERTON MEDICINE 0 221 

1 SANDY PORTLAND FOOD 1428 0 

1 SANDY PORTLAND WATER 0 1902 

1 SANDY ST HELENS MEDICINE 0 13 

1 OREGON CITY PORTLAND MEDICINE 135 0 

1 OREGON CITY ASTORIA FOOD 190 0 

1 OREGON CITY ASTORIA WATER 0 219 

1 OREGON CITY ASTORIA MEDICINE 28 0 

1 OREGON CITY ST HELENS FOOD 65 0 

1 OREGON CITY ST HELENS WATER 103 0 

1 OREGON CITY MCMINNVILLE FOOD 0 323 

1 OREGON CITY MCMINNVILLE WATER 419 0 

1 OREGON CITY MCMINNVILLE MEDICINE 0 41 

1 OREGON CITY SALEM FOOD 0 833 

1 OREGON CITY SALEM WATER 0 852 

1 OREGON CITY DALLAS WATER 0 340 

1 OREGON CITY DALLAS MEDICINE 34 0 



74 
 

1 ROSEBURG EUGENE FOOD 421 0 

1 ROSEBURG EUGENE WATER 469 0 

1 ROSEBURG WINSTON FOOD 0 515 

1 ROSEBURG WINSTON WATER 697 0 

1 ROSEBURG WINSTON MEDICINE 85 0 

1 ROSEBURG MEDFORD FOOD 0 361 

1 ROSEBURG MEDFORD WATER 0 511 

1 ROSEBURG MEDFORD MEDICINE 63 0 

1 ROSEBURG GRANTS PASS FOOD 0 155 

1 ROSEBURG GRANTS PASS WATER 207 0 

1 ROSEBURG GRANTS PASS MEDICINE 0 33 

1 MADRAS PORTLAND FOOD 1442 0 

1 MADRAS PORTLAND WATER 1932 0 

1 MADRAS PORTLAND MEDICINE 232 0 

1 BEND BEAVERTON FOOD 0 1455 

1 BEND BEAVERTON WATER 1870 0 

1 BEND EUGENE MEDICINE 0 186 

1 JUNCTION CITY SALEM MEDICINE 115 0 

1 JUNCTION CITY DALLAS FOOD 196 0 

1 JUNCTION CITY NEWPORT FOOD 0 163 

1 JUNCTION CITY NEWPORT WATER 216 0 

1 JUNCTION CITY NEWPORT MEDICINE 0 35 

1 JUNCTION CITY ALBANY FOOD 198 0 

1 JUNCTION CITY ALBANY WATER 261 0 

1 JUNCTION CITY ALBANY MEDICINE 39 0 

1 JUNCTION CITY CORVALLIS FOOD 396 0 

1 JUNCTION CITY CORVALLIS WATER 0 406 

1 JUNCTION CITY CORVALLIS MEDICINE 2 51 

1 JUNCTION CITY EUGENE FOOD 0 498 

1 JUNCTION CITY EUGENE WATER 0 1023 
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2 OREGON CITY PORTLAND MEDICINE 0 74 

2 OREGON CITY ASTORIA FOOD 0 263 

2 OREGON CITY ASTORIA WATER 0 323 

2 OREGON CITY ASTORIA MEDICINE 0 34 

2 OREGON CITY ST HELENS FOOD 0 80 

2 OREGON CITY ST HELENS WATER 0 128 

2 OREGON CITY MCMINNVILLE FOOD 338 0 

2 OREGON CITY MCMINNVILLE WATER 398 0 

2 OREGON CITY MCMINNVILLE MEDICINE 0 44 

2 OREGON CITY SALEM FOOD 912 4 

2 OREGON CITY SALEM WATER 0 934 

2 OREGON CITY SALEM MEDICINE 0 120 

2 OREGON CITY DALLAS WATER 351 0 

2 ROSEBURG EUGENE FOOD 1 538 

2 ROSEBURG EUGENE WATER 519 0 

2 ROSEBURG WINSTON FOOD 520 0 

2 ROSEBURG WINSTON WATER 0 846 

2 ROSEBURG WINSTON MEDICINE 0 72 

2 ROSEBURG MEDFORD FOOD 399 0 

2 ROSEBURG MEDFORD WATER 0 476 

2 ROSEBURG MEDFORD MEDICINE 0 65 

2 ROSEBURG GRANTS PASS FOOD 203 0 

2 ROSEBURG GRANTS PASS WATER 0 232 

2 ROSBURG GRANTS PASS MEDICINE 36 0 

2 MADRAS PORTLAND FOOD 669 893 

2 MADRAS PORTLAND WATER 0 2107 

2 MADRAS PORTLAND MEDICINE 270 0 

2 BEND BEAVERTON WATER 2039 0 

2 BEND BEAVERTON MEDICINE 0 0 

2 BEND PORTLAND FOOD 1543 0 
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2 JUNCTION CITY DALLAS FOOD 247 0 

2 JUNCTION CITY DALLAS WATER 0 0 

2 JUNCTION CITY DALLAS MEDICINE 30 0 

2 JUNCTION CITY NEWPORT FOOD 0 179 

2 JUNCTION CITY NEWPORT WATER 0 299 

2 JUNCTION CITY NEWPORT MEDICINE 25 0 

2 JUNCTION CITY ALBANY FOOD 254 0 

2 JUNCTION CITY ALBANY WATER 300 0 

2 JUNCTION CITY ALBANY MEDICINE 0 32 

2 JUNCTION CITY CORVALLIS FOOD 0 321 

2 JUNCTION CITY CORVALLIS WATER 0 477 

2 JUNCTION CITY CORVALLIS MEDICINE 0 49 

2 JUNCTION CITY EUGENE FOOD 0 539 

2 JUNCTION CITY EUGENE WATER 1149 0 

2 JUNCTION CITY EUGENE MEDICINE 127 0 

3 SANDY PORTLAND FOOD 1582 0 

3 SANDY PORTLAND WATER 0 2042 

3 SANDY PORTLAND MEDICINE 275 0 

3 SANDY ASTORIA MEDICINE 0 0 

3 SANDY ST HELENS FOOD 0 111 

3 OREGON CITY PORTLAND MEDICINE 107 0 

3 OREGON CITY ASTORIA FOOD 238 0 

3 OREGON CITY ASTORIA WATER 0 288 

3 OREGON CITY ASTORIA MEDICINE 27 0 

3 OREGON CITY ST HELENS FOOD 0 0 

3 OREGON CITY ST HELENS WATER 95 0 

3 OREGON CITY ST HELENS MEDICINE 12 0 

3 OREGON CITY MCMINNVILLE FOOD 0 273 

3 OREGON CITY MCMINNVILLE WATER 0 460 

3 OREGON CITY MCMINNVILLE MEDICINE 47 0 
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3 OREGON CITY SALEM FOOD 0 805 

3 OREGON CITY SALEM WATER 0 1097 

3 OREGON CITY SALEM MEDICINE 0 0 

3 OREGON CITY DALLAS FOOD 0 289 

3 OREGON CITY DALLAS WATER 0 339 

3 OREGON CITY DALLAS MEDICINE 0 31 

3 OREGON CITY ALBANY MEDICINE 35 0 

3 ROSEBURG EUGENE FOOD 477 0 

3 ROSEBURG EUGENE WATER 488 3 

3 ROSEBURG EUGENE MEDICINE 0 0 

3 ROSEBURG WINSTON FOOD 481 0 

3 ROSEBURG WINSTON WATER 829 0 

3 ROSEBURG WINSTON MEDICINE 89 0 

3 ROSEBURG MEDFORD FOOD 417 0 

3 ROSEBURG MEDFORD WATER 0 483 

3 ROSEBURG MEDFORD MEDICINE 73 0 

3 ROSEBURG GRANTS PASS FOOD 239 0 

3 ROSEBURG GRANTS PASS WATER 0 216 

3 ROSEBURG GRANTS PASS MEDICINE 0 35 

3 MADRAS BEAVERTON MEDICINE 0 270 

3 MADRAS PORTLAND FOOD 876 720 

3 MADRAS PORTLAND WATER 0 2280 

3 BEND BEAVERTON FOOD 0 1724 

3 BEND BEAVERTON WATER 790 1276 

3 BEND SALEM MEDICINE 0 135 

3 JUNCTION CITY NEWPORT FOOD 251 0 

3 JUNCTION CITY NEWPORT WATER 0 227 

3 JUNCTION CITY NEWPORT MEDICINE 0 29 

3 JUNCTION CITY ALBANY FOOD 303 0 

3 JUNCTION CITY ALBANY WATER 309 0 
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3 JUNCTION CITY ALBANY MEDICINE 0 0 

3 JUNCTION CITY CORVALLIS FOOD 0 421 

3 JUNCTION CITY CORVALLIS WATER 414 0 

3 JUNCTION CITY CORVALLIS MEDICINE 71 0 

3 JUNCTION CITY EUGENE FOOD 642 0 

3 JUNCTION CITY EUGENE WATER 3 1159 

3 JUNCTION CITY EUGENE MEDICINE 158 0 
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Table B.2 Unmet Demand of Each Commodity during Three Periods (in hundreds of pounds) 

Period Demand Node Commodity Unmet Demand 

1 BEAVERTON FOOD 495 

1 BEAVERTON WATER 730 

1 BEAVERTON MEDICINE 104 

1 PORTLAND FOOD 510 

1 PORTLAND WATER 676 

1 PORTLAND MEDICINE 197 

1 ASTORIA FOOD 62 

1 ASTORIA WATER 117 

1 ASTORIA MEDICINE 14 

1 ST HELENS FOOD 35 

1 ST HELENS WATER 27 

1 ST HELENS MEDICINE 3 

1 MCMINNVILLE FOOD 57 

1 MCMINNVILLE WATER 87 

1 MCMINNVILLE MEDICINE 22 

1 SALEM FOOD 147 

1 SALEM WATER 458 

1 SALEM MEDICINE 49 

1 DALLAS FOOD 104 

1 DALLAS WATER 60 

1 DALLAS MEDICINE 16 

1 NEWPORT FOOD 87 

1 NEWPORT WATER 114 

1 NEWPORT MEDICINE 7 

1 ALBANY FOOD 102 

1 ALBANY WATER 140 

1 ALBANY MEDICINE 11 
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1 CORVALLIS FOOD 70 

1 CORVALLIS WATER 214 

1 CORVALLIS MEDICINE 24 

1 EUGENE FOOD 391 

1 EUGENE WATER 264 

1 EUGENE MEDICINE 34 

1 WINSTON FOOD 105 

1 WINSTON WATER 123 

1 WINSTON MEDICINE 15 

1 MEDFORD FOOD 89 

1 MEDFORD WATER 91 

1 MEDFORD MEDICINE 12 

1 GRANTS PASS FOOD 83 

1 GRANTS PASS WATER 110 

1 GRANTS PASS MEDICINE 7 

2 BEAVERTON FOOD 509 

2 BEAVERTON WATER 139 

2 BEAVERTON MEDICINE 54 

2 PORTLAND FOOD 227 

2 PORTLAND WATER 413 

2 PORTLAND MEDICINE 185 

2 ASTORIA FOOD 11 

2 ASTORIA WATER 17 

2 ASTORIA MEDICINE 13 

2 ST HELENS FOOD 24 

2 ST HELENS WATER 7 

2 ST HELENS MEDICINE 4 

2 MCMINNVILLE FOOD 14 

2 MCMINNVILLE WATER 123 

2 MCMINNVILLE MEDICINE 23 
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2 SALEM FOOD 46 

2 SALEM WATER 308 

2 SALEM MEDICINE 64 

2 DALLAS FOOD 77 

2 DALLAS WATER 23 

2 DALLAS MEDICINE 16 

2 NEWPORT FOOD 56 

2 NEWPORT WATER 63 

2 NEWPORT MEDICINE 13 

2 ALBANY FOOD 79 

2 ALBANY WATER 99 

2 ALBANY MEDICINE 17 

2 CORVALLIS FOOD 82 

2 CORVALLIS WATER 157 

2 CORVALLIS MEDICINE 26 

2 EUGENE FOOD 46 

2 EUGENE WATER 86 

2 EUGENE MEDICINE 67 

2 WINSTON FOOD 21 

2 WINSTON WATER 53 

2 WINSTON MEDICINE 18 

2 MEDFORD FOOD 17 

2 MEDFORD WATER 157 

2 MEDFORD MEDICINE 16 

2 GRANTS PASS FOOD 63 

2 GRANTS PASS WATER 76 

2 GRANTS PASS MEDICINE 9 

3 BEAVERTON FOOD 23 

3 BEAVERTON WATER 755 

3 BEAVERTON MEDICINE 68 
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3 PORTLAND FOOD 573 

3 PORTLAND WATER 681 

3 PORTLAND MEDICINE 198 

3 ASTORIA FOOD 32 

3 ASTORIA WATER 31 

3 ASTORIA MEDICINE 13 

3 ST HELENS FOOD 2 

3 ST HELENS WATER 38 

3 ST HELENS MEDICINE 4 

3 MCMINNVILLE FOOD 73 

3 MCMINNVILLE WATER 46 

3 MCMINNVILLE MEDICINE 22 

3 SALEM FOOD 195 

3 SALEM WATER 109 

3 SALEM MEDICINE 23 

3 DALLAS FOOD 4 

3 DALLAS WATER 56 

3 DALLAS MEDICINE 16 

3 NEWPORT FOOD 4 

3 NEWPORT WATER 92 

3 NEWPORT MEDICINE 7 

3 ALBANY FOOD 5 

3 ALBANY WATER 126 

3 ALBANY MEDICINE 17 

3 CORVALLIS FOOD 114 

3 CORVALLIS WATER 166 

3 CORVALLIS MEDICINE 17 

3 EUGENE FOOD 303 

3 EUGENE WATER 170 

3 EUGENE MEDICINE 72 
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3 WINSTON FOOD 130 

3 WINSTON WATER 82 

3 WINSTON MEDICINE 15 

3 MEDFORD FOOD 88 

3 MEDFORD WATER 131 

3 MEDFORD MEDICINE 13 

3 GRANTS PASS FOOD 4 

3 GRANTS PASS WATER 86 

3 GRANTS PASS MEDICINE 6 
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Table B.3. Percentage of Demand Met of Each Commodity during Three Periods 

Period Demand Node Commodity % of Demand Met 

1 BEAVERTON FOOD 75% 

1 PORTLAND FOOD 85% 

1 ASTORIA FOOD 75% 

1 ST HELENS FOOD 65% 

1 MCMINNVILLE FOOD 85% 

1 SALEM FOOD 85% 

1 DALLAS FOOD 65% 

1 NEWPORT FOOD 65% 

1 ALBANY FOOD 66% 

1 CORVALLIS FOOD 85% 

1 EUGENE FOOD 70% 

1 WINSTON FOOD 83% 

1 MEDFORD FOOD 80% 

1 GRANTS PASS FOOD 65% 

1 BEAVERTON WATER 72% 

1 PORTLAND WATER 85% 

1 ASTORIA WATER 65% 

1 ST HELENS WATER 79% 

1 MCMINNVILLE WATER 83% 

1 SALEM WATER 65% 

1 DALLAS WATER 85% 

1 NEWPORT WATER 65% 

1 ALBANY WATER 65% 

1 CORVALLIS WATER 65% 

1 EUGENE WATER 85% 

1 WINSTON WATER 85% 

1 MEDFORD WATER 85% 

1 GRANTS PASS WATER 65% 
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1 BEAVERTON MEDICINE 68% 

1 PORTLAND MEDICINE 65% 

1 ASTORIA MEDICINE 67% 

1 ST HELENS MEDICINE 81% 

1 MCMINNVILLE MEDICINE 65% 

1 SALEM MEDICINE 70% 

1 DALLAS MEDICINE 68% 

1 NEWPORT MEDICINE 83% 

1 ALBANY MEDICINE 78% 

1 CORVALLIS MEDICINE 69% 

1 EUGENE MEDICINE 85% 

1 WINSTON MEDICINE 85% 

1 MEDFORD MEDICINE 84% 

1 GRANTS PASS MEDICINE 83% 

2 BEAVERTON FOOD 76% 

2 PORTLAND FOOD 93% 

2 ASTORIA FOOD 96% 

2 ST HELENS FOOD 77% 

2 MCMINNVILLE FOOD 96% 

2 SALEM FOOD 95% 

2 DALLAS FOOD 76% 

2 NEWPORT FOOD 76% 

2 ALBANY FOOD 76% 

2 CORVALLIS FOOD 80% 

2 EUGENE FOOD 96% 

2 WINSTON FOOD 96% 

2 MEDFORD FOOD 96% 

2 GRANTS PASS FOOD 76% 

2 BEAVERTON WATER 95% 

2 PORTLAND WATER 89% 
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2 ASTORIA WATER 95% 

2 ST HELENS WATER 95% 

2 MCMINNVILLE WATER 76% 

2 SALEM WATER 75% 

2 DALLAS WATER 94% 

2 NEWPORT WATER 83% 

2 ALBANY WATER 75% 

2 CORVALLIS WATER 75% 

2 EUGENE WATER 95% 

2 WINSTON WATER 94% 

2 MEDFORD WATER 75% 

2 GRANTS PASS WATER 75% 

2 BEAVERTON MEDICINE 81% 

2 PORTLAND MEDICINE 65% 

2 ASTORIA MEDICINE 72% 

2 ST HELENS MEDICINE 76% 

2 MCMINNVILLE MEDICINE 66% 

2 SALEM MEDICINE 65% 

2 DALLAS MEDICINE 65% 

2 NEWPORT MEDICINE 66% 

2 ALBANY MEDICINE 65% 

2 CORVALLIS MEDICINE 65% 

2 EUGENE MEDICINE 65% 

2 WINSTON MEDICINE 80% 

2 MEDFORD MEDICINE 80% 

2 GRANTS PASS MEDICINE 80% 

3 BEAVERTON FOOD 99% 

3 PORTLAND FOOD 85% 

3 ASTORIA FOOD 88% 

3 ST HELENS FOOD 98% 
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3 MCMINNVILLE FOOD 79% 

3 SALEM FOOD 81% 

3 DALLAS FOOD 99% 

3 NEWPORT FOOD 98% 

3 ALBANY FOOD 98% 

3 CORVALLIS FOOD 79% 

3 EUGENE FOOD 79% 

3 WINSTON FOOD 79% 

3 MEDFORD FOOD 83% 

3 GRANTS PASS FOOD 98% 

3 BEAVERTON WATER 73% 

3 PORTLAND WATER 86% 

3 ASTORIA WATER 90% 

3 ST HELENS WATER 71% 

3 MCMINNVILLE WATER 91% 

3 SALEM WATER 91% 

3 DALLAS WATER 86% 

3 NEWPORT WATER 71% 

3 ALBANY WATER 71% 

3 CORVALLIS WATER 71% 

3 EUGENE WATER 91% 

3 WINSTON WATER 91% 

3 MEDFORD WATER 79% 

3 GRANTS PASS WATER 72% 

3 BEAVERTON MEDICINE 80% 

3 PORTLAND MEDICINE 66% 

3 ASTORIA MEDICINE 68% 

3 ST HELENS MEDICINE 75% 

3 MCMINNVILLE MEDICINE 68% 

3 SALEM MEDICINE 85% 
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3 DALLAS MEDICINE 66% 

3 NEWPORT MEDICINE 81% 

3 ALBANY MEDICINE 67% 

3 CORVALLIS MEDICINE 81% 

3 EUGENE MEDICINE 69% 

3 WINSTON MEDICINE 86% 

3 MEDFORD MEDICINE 85% 

3 GRANTS PASS MEDICINE 85% 
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Table B.4 Average Demand Met of Every Commodity during Three Periods 

Period Commodity 
Average % of 

Demand Met 

1 FOOD 75% 

1 WATER 75% 

1 MEDICINE 75% 

2 FOOD 86% 

2 WATER 85% 

2 MEDICINE 71% 

3 FOOD 89% 

3 WATER 81% 

3 MEDICINE 76% 

 

 


