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1. INTRODUCTION TO INDIVIDUAL TREE ESTABLISHMENT
GROWTH AND YIELD MODELS

1.1 ABSTRACT

The paper presents a brief summary of forest growth and yield models
for young stands in Southern Oregon and Northern California. The focus
is on single-tree density-dependent models. The variables, transformations,
model forms, fitting methods and regression diagnostics are presented as a
background for the development of a system of simultaneous equations to
estimate diameter increment and height increment in Southern Oregon and
Northern California for Douglas-fir ( Psuedotsuga menzesii (Mirb.) Franco).
A static crown ratio model was included in the system of equations for use

in model diagnostics and for projection purposes.

1.2 INTRODUCTION

Growth models help resource planners determine future forest conditions,
estimate potential harvest levels, and simulate new silvicultural techniques
without costly and long experimentation. Models are available for various
aspects of forest growth at different resolutions. Whole stand models project
stand level attributes and are commonly used in large scale planning projects
where individual tree attributes are unavailable for each modeling unit; typ-
ically a stand polygon (Curtis et al., 1982). Yield curves are available to
estimate volumes or simple stand attributes when simulating silvicultural
treatments is not required. Some yield curves contain the ability to address
variable stand densities so that thinning stands over time can be simulated

(Chambers, 1980). Succession or process models are often used to study




population or forest gap dynamics by modeling atmospheric, nutrient, and
photosynthate allocation (Botkin et al., 1972). Inventory projection models,
at the stand or tree level, are designed to update estimates of forest invento-
ries over short periods of time and are often extended to simulate silvicultural
treatments in older stands (Hann et al., 1993; Stage, 1973a; Wensel et al.,
1987).

In the Pacific Northwest, inVentory models are typically developed as
single tree models. These models include a set of equations to estimate the
increments of different tree attributes. These equations for individual trees
estimate diameter growth at breast height (DBH), total height growth, crown
recession and the probability of mortality (Hann et al., 1993; Wensel et al.,
1986; Wykoft et al., 1982). These models are intended for use on established
stands where an inventory sample provides a tree list that is projected forward
under various silvicultural regimes and are not considered to be in the domain
of stands in the initiation phase.

Growth models for young stands contain unique problems for forest growth
and yield modelers. Stand dynamics are somewhat simplified because crown
recession has not yet occurred, thus crown ratio dynamics are less influen-
tial. Many of the trees are still below breast height when first measured,
thus modeling diameter increment at breast height is often irrelevant. In
these models, the goal is to generate a tree list that is applicable to those
stands found in the lower range of inventory update models. In some cases,
young stand models have been developed so that they are robust enough to
overlap with the lower age range of inventory update models (Ritchie and
Powers, 1993).

Growth models are typically built as a set of equations applied to the same
modeling unit; a single tree. Often these component models are constructed
from different datasets drawn from the same population. For example, a

diameter increment model may use diameter increments from the same trees



as the height increment model, a subset or a superset. Regardless, any infor-
mation pertaining to the data that was used in the height increment model
is ignored. The fact that the errors in the predictions are likely to be cor-
related has been largely ignored until recently (Furnival and Wilson, 1971;
Tang et al., 2001).

The relationship between the two equations may change over time as well.
As diameter growth and height growth are seemingly independent for a single
tree, the ratio of height growth and diameter growth may change with respect
to species, site quality, competition, and time.

This chapter presents a literature review of single-tree diameter and height
growth models that have been developed for young plantations in Southern
Oregon and Northern California. There are two sections detailing the in-
dependent variables for diameter increment and height increment, a brief
presentation of model types and a final presentation of linear and non-linear

model forms.

1.3 EXPLANATORY VARIABLES

The explanatory variables used to develop increment models for trees have
been developed to relate simple field measurements to stand structures and
stand dynamics. They should convey information without obfuscation as well
as describe the relationships among other dependent variables and the other
components of a growth and yield system. Independent variables for diameter
and height increment equations may include age, variables describing plant

size, vigor, competiton.




1.3.1 Diameter Growth

Diameter growth is one of two primary variables predicted in estimating
tree growth in young stands. The diameter growth of a single stem can
be modeled as radial increment, diameter increment, basal area increment,
future diameter, or future basal area (Vanclay, 1994). Since all are related
mathematically it has been shown that there is no difference in fitting one
over the other (West, 1980; Larsen and Hann, 1987); hence this section will
focus on diameter increment.

Regressor variables in diameter growth equations typically include plant
size, vigor, competitive position, population density, and site productivity
(Wykoff, 1990; Vanclay, 1994; Martin and Ek, 1984). A summary of how
various plant attributes have been used in diameter growth equations is pre-

sented in Table 1.1.

1.3.1.1 Plant Size

Simple field measurements are often used as measures of tree size. Stem
diameters (basal diameter at 6 inches above the root collar (D6) for small
trees and at breast height (DBH) for larger or older trees) and total height
(THT) and their transformations are the most common when predicting di-
ameter increment (Ek and Monserud, 1974; Dolph, 1988b, 1992b; Ritchie
and Hann, 1986; Arney, 1985; Wensel et al., 1986; Hann and Ritchie, 1988;
Opalach et al., 1990; Ritchie and Powers, 1993; Hann and Larsen, 1991;
Wykoff et al., 1982; Wykoff, 1990).

Age, which has often been used to describe plant size in height growth
models, can also be used to describe plant size in diameter increment models.

While tree age in plantations may be a strong variable in model fit statistics,




models developed from plantations with multiple plantings or severe browse
damage may not predict individual trees well nor be as robust as a model
that does not use individual tree age as a surrogate for plant size. Using age
has additional disadvantages when compared to simple field measurements
such as diameter and height when modeling older trees. Obtaining whorl
counts on young trees is easy if crown closure has not occurred, otherwise,
stem cores are required and both are time consuming and may be prone to

error.

1.3.1.2  Vigor

Tree vigor attributes to describe a plant’s ability to utilize resources,
can be characterized by crown attributes, current growth rates, and previ-
ous growth rates. Crown ratio (CR) is often used to characterize tree vigor
because of the inherent association with dominance and influence on photo-
synthetic capacity (Hann and Ritchie, 1988; Ritchie and Hann, 1985, 1986;
Wensel et al., 1986; Wykoff, 1990). Hann and Larsen (1991) and Ritchie and
Hann (1985) used initial crown ratio as a measure of vigor in the development
of a potential-modifier function for predicting five-year diameter and basal
area increment growth for species in Oregon, respectively.

Other authors have successfully used height growth ATHT in diameter
increment models (Krumland and Wensel, 1981; Ritchie and Hann, 1985).
While height growth may be a better indicator of young tree vigor, the
authors failed to fit the height growth and diameter growth model simul-
taneously as a system of equations, thus ignoring the “errors-in-variables”
problem. Ritchie and Hann (1985) rejected using Seemingly Unrelated Re-
gressions (SUR) (Zellner, 1962) due to the difficulties of fitting nonlinear re-

gressions and because the data were very unbalanced with respect to height




growth and diameter growth measurements.

1.3.1.3 Competitive Position

The competitive position of a tree should relate information about how
a tree will respond to a sudden change in the competitive position, such as
a release due to thinning, as well as the tree’s ability to change competitive
position when grown in a stand (Vanclay, 1994). Simply, this measure rep-
resents the ability of the tree to advance past cohorts or remain in the same
position when unaffected by competition.

In diameter increment models, a tree’s ability to compete is related to it’s
ability to adjust to environmental changes within the stand or modify their
environment to their advantage and to the detriment of other trees within the
stand (Vanclay, 1994). An example would be in the method of competition
between two common forms of trees, hardwood or broadleaf and conifers.
Hardwood trees often compete “out” or try to limit the amount of sunlight
reaching the needle bearing trees until the hardwood species can establish
dominance whereas the conifers attempt to grow taller than the hardwood
stems to assert dominance during early stages of stand development. To
capture these attributes, some index or measure of the competitive position
is typically included in diameter increment models.

Some researchers have suggested that competition in plantations is pri-
marily for light resources which would suggest that competition from taller
trees is “one sided”. That is to say, shorter trees or more precisely, lower
leaves are affected by leaves higher in the canopy (Vanclay, 1994). Some au-
thors suggest that using basal area in larger stems (BAL) complements stand
basal area (SBA) in diameter increment functions (Cannell et al., 1984; Ford

and Diggle, 1981). A rationalization for this conclusion is that basal area is




Reference Size Vigor Competitive Density Site
Position (Two-Sided) | Productivity
(One-Sided)
Hann and Larsen (1991) DBH CR BAL SBA Site Index
Ritchie and Hann (1985) DBH | CR, ATHT | CCFLp SBA
Ritchie and Hann (1985) DBH CR CCF Lyt SBA Site Index
Uzoh et al. (1998) DBH N/A Ber
Dolph (1988b) DBH CR BAL SBA Elevation
Slope
Site Index
Dolph (1992b) DBH CR BAL SBA Slope
Aspect
Site Index
Huang and Titus (1995) DBH N/A o SBA SPI
THT TPA
Nystrom and Kexi (1997) DBH CI RDBH SBA Site Index
Age
BAL
Wykoff (1990) DBH CR BAL CCF Slope
Aspect,
Elevation
Smith and Bell (1983) DBH N/A CSI, ACSI N/A N/A
Donnelly (1997) THT CR N/A N/A N/A
Donnelly (1997) DBH CR BAL SBA Site Index
RTHT CCF Elevation
Slope
Aspect
Location
Krumland and Wensel (1981) | DBH CL CCss N/A Site Index
THT ATHT

Table. 1.1: Common explanatory variables used in diameter increment mod-

els




highly correlated to sapwood area which in turn is highly correlated to leaf
area (Waring et al., 1980). The leaf area above a tree may be the most direct
measure of the tree’s competitive position, but obtaining precise measure-
ments for model development are problematic.

Modeling the interaction between tree size and BAL can give better re-
sults than using BAL alone (Wykoff, 1990). Wykoff (1990) also concluded
that using BAL was more appropriate than using a measure of relative size
because relative tree size ignored the influence of density management prac-
tices (Vanclay, 1994).

The competitive influence of other species has been examined by some
authors when developing young tree models under the influence of shrub
competition (Opalach et al., 1990; Szwagrzyk, 1997). This robust approach
has advantages by estimating the species specific competitive influence on a
subject tree. The disadvantage to using a competitive index based on species
is found in the non-quantitative nature of competition and the difficulty of
measuring the competitive influence of various species especially shrub or
herbaceous competition (Szwagrzyk, 1997; Burton, 1993; Wagner and Ra-
dosevich, 1991b,a; Brand, 1986). Opalach et al. (1990) found fitting small
datasets and qualitative measures of species specific competition indicies dif-
ficult.

Spatial information has been examined by some authors (Ford and Diggle,
1981; Burton, 1993; Brand, 1986). Brand (1986) examined the relationship
between horizontal proximity of competing vegetation and the influence on
planted Dougals-fir in southwestern British Columbia. The author found the
best relationship was between shrub canopy height and the height of the sub-
ject plant. Burton (1993) suggested using neighborhood competition indices
that included temporal relationships, citing the example that the growth rate
of trees under demonstrable competition, is still greater than the surrounding

shrubs and will eventually escape from the competitive constraints of the sur-




rounding shrubs. Spatial indices may not be practical in forest management
due to the economics of obtaining the required data (Vanclay, 1994).

Other competitive position measures have been expressed as well. Uzoh
et al. (1998) used a ratio of BAL/DBH as a measure of competitive posi-
tion with promising results. The authors found that this measure reflected
those results produced by others (Wykoff, 1990), where the parameter esti-
mate had a negative coefficient suggesting that diameter increment should
decrease as the value of BAL/DBH increases, and the magnitude would sug-
gest the competitive status relative to other trees on a plot. Huang and Titus
(1995) included a ratio of the subject tree species total stand basal area to
the total stand basal area. The authors found that the term was negative,
suggesting that for two spruce-aspen stands; the stand with more spruce will
have lower diameter growth rates. They speculated that the ratio may not
be directly related to interspecific competition and stands dominated by as-
pen may contain healthy spruce trees with large diameters. Another relative
measure used by Nystrom and Kexi (1997), was the inverse of the index used
by Uzoh et al. (1998).

To include an index measure that was sensitive to treatments and time,
Smith and Bell (1983) examined both initial competitive stress index (CSI)
(Arney, 1973) and the change in CSI and found that including both CSI and
ACST gave superior results to diameter increment models than including
only a single measure. Smith and Bell (1983) defined CSI as,

ik 1.1

where C'SI; is the competitive stress index of the jth subject tree, AO;; is

CSI; = 100

the area of overlap of the ith competitor’s growing space with that of the
subject tree and A; is the growing-space area of the jth tree. A CSI value of
100 represents fully occupied growing-space by the subject tree and a value

of 200 means an additional 100 percent of the growing-space is occupied
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by the growing-space area of its neighbors. The ACSI term was included
to reflect changes in basal area due to treatments whereas the static CSI
measure reflected the current competitive conditions.

The quantification of the competitive position for a tree is critical in the
development of models. In short, the competitive position dictates how well
a tree is able to compete against other trees and is usually conveyed in a
single value or simple function such as CR or crown closure at the tip of
the subject tree (CCH). In young stands, the most influential explanatory

variables may be a function of height and diameter.

1.3.1.4 Density

Stand density, a measure of competition, influences diameter increment
by limiting the amount of photosynthate generated by and allocated to each
tree when stands approach the maximum size-density line (West et al., 1997;
Enquist et al., 1998).

The relationship between density and diameter growth is useful because it
is not related by age, site productivity, competition levels, or treatment his-
tories and should provide an upper limit on the available space, allow for sim-
ple interpretation and follow allometric relationships (Curtis, 1982). Many
measures of stand density have been developed from DBH such as relative
density (Curtis, 1982) and stand density index (Reineke, 1933; Curtis, 1982).
The maximum size-density line and the relationship to the self-thinning rate
should be reflected in the diameter growth rates and vice-versa.

In diameter growth models, stand or plot basal area is typically used to
describe density (Hann and Larsen, 1991; Dolph, 1988b, 1992b; Ritchie and
Hann, 1985; Huang and Titus, 1995; Nystrom and Kexi, 1997). Stand basal

area is used because the fundamental measurement, DBH, is easily obtainable
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and is directly related to the change in diameter. This makes it a simple and
natural choice for a density measure.

Other measures of stand density have been used as well. Crown Competi-
tion Factor (CCF) was applied by Wykoff (1990) and Donnelly (1997) in the
PROGNOSIS model for large trees. Crown Competition Factor (Krajicek
et al., 1961) is defined as,

CCF =) (0.001803 x MCW{ x EX PF;) (1.2)

i=1
where M CW is the maximum crown width, in feet, for the tree and FX PF
is the expansion factor, in stems-ac™!, for the tree record. Crown competition
factor was developed to express the sum of the potential crown area per unit
area as a measure of “available open space”. The authors speculated that the
differences among maximum CCF values could be attributed to open grown
tree crown development, basic crown shape, and species tolerance.

Huang and Titus (1995) included trees per hectare as well as SBA in
their model to estimate annual diameter increment. Schroder and von Gadow
(1999) used a relative spacing index (RSI) to describe the density of the stand
in the development of a basal area increment function. The RSI was defined

as,

10000
s -V "
where IV is the number of stems per hectare and Hp is the dominant stand
height using an anamorphic height model. While the authors found the ap-
proach gave much better results than BAL, the inclusion of dominant height
in a diameter growth model density measure is not appealing as it is prone to

measurement error for age and height observations if the relationships among

the other equations in a set of increment equations are not addressed.
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1.3.1.5 Site Productivity

Site quality is perhaps the most influential category regarding increment
functions because of the wide range of site productivity in the Pacific North-
west Region. To predict future conditions over a wide range of site qualities,
it is necessary to obtain site quality estimates from either existing site quality
attributes or from inherent site attributes. Both methods of describing site
quality have inherent qualities and disadvantages and both have been used
in diameter increment models.

The most common measure of site quality is site index. Site index, a
measure of height growth rate has been used successfully in diameter incre-
ment models for older stand models (Hann and Larsen, 1991; Ritchie and
Hann, 1985; Krumland and Wensel, 1981) and in younger stand models as
well (Ritchie and Powers, 1993). Since site index is not a direct measure of
productivity, it presents problems in young stands where previous site index
estimates may not be available and estimation may be biased due to the
influence of competing vegetation in the early stages of stand development
(Newton and Hanson, 1998) or tree density (Scott et al., 1998).

Another productivity variable used is site productivity index. Huang and
Titus (1994) defined site productivity index (SPI) as the height for a 20
centimeter reference point on a stem and used the variable in a diameter
increment model (Huang and Titus, 1995). The 20 centimeter diameter ref-
erence height corresponds to the 50-year reference age for site index curves
in Alberta (Huang and Titus, 1993).

In addition to site index and SPI, other authors have chosen to use physi-
cal site variables such as slope, aspect, elevation, and soil depth (Stage, 1976;
Dolph, 1992b, 1988b). Stage (1976) used a simple trigonometric transforma-
tions on aspect and slope as well as indicators for habitat type to estimate

the site index, showing that these endemic variables could replace site index
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as a measure of site productivity. The author failed to report fit statistics
which weakens the argument. Dolph (1992b) simply included the endemic
variables (slope and aspect) directly into the regression equations.

All other factors being equal, site productivity influences the rate of
growth in forest trees. On poor sites growth rates are low and the inverse
is true on height sites. Stands that occupy high sites will exhibit an earlier
culmination of mean annual increment, experience density induced mortality
sooner and will produce stands with taller dominant height curves at a given
age. Estimates of site quality, often measured in site index, or a height at
a given base age, are commonly used in diameter growth models (Hann and
Larsen, 1991; Ritchie and Hann, 1985; Nystrom and Kexi, 1997; Krumland
and Wensel, 1981).

1.3.2 Height Growth

It can be argued that height growth is the most influential variable for
the early development of a stand. Height growth has historically focused on
the development of site index or dominant-height-growth equations (Dolph,
1992a; Ritchie and Hann, 1990; Hann and Ritchie, 1988; Hann et al., 1987).
While height growth in older stand models has been widely studied, height
growth in young plantations has received little attention. Problems due to
the influence of competing vegetation, precision problems in site index that
have included young trees and the assumption that height growth is a simple
polynomial curve have all contributed to the lack of sophisticated model
development for height growth models in young trees.

Again, explanatory variables in height growth equations typically can be
categorized to represent plant size, vigor, competitive position, population

density, and site productivity (Wykoff, 1990; Vanclay, 1994). A summary of
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how various plant attributes have been used in height equations is presented

in Table 1.2.

1.3.2.1 Plant Size

Simple field measurements are often used as measures of tree size. Total
height (THT), stem diameters and their transformations are the most com-
mon (Ek and Monserud, 1974; Stage, 1975; Dolph, 1988a; Wensel et al., 1987;
Ritchie and Hann, 1990; Opalach et al., 1990).

Age can also be used as a surrogate for plant size but does have disad-
vantages when compared to simple field measurements such as diameter and
height. Determining age often requires extracting increment cores, particu-
larly when stands are in the stem exclusion phase and self-pruning prevents
obtaining whorl counts. In some cases, such as hardwoods, whorl counts are
not possible as a result of the morphology of the plants. Stem diameter and
heights are easier to measure, when compared to age, because the cost of ex-
tracting increment cores from older trees is more costly than accurate height

measurements.

1.3.2.2 Vigor

Tree vigor attributes that describe a plant’s ability to utilize resources,
can be characterized by crown attributes, current growth rates, and previous
growth rates. Crown ratio is often used to characterize tree vigor because
of the inherent association with dominance and the influence on a potential
function as a modifier (Ritchie and Hann, 1990, 1986; Wensel et al., 1987).
Ritchie and Hann (1986) and Wensel et al. (1987) successfully utilized crown
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ratio as a measure of plant vigor for a height increment model where crown
ratio was held constant for the growth period.

Other forms of vigor have been utilized with success such as past diam-
eter and height growth rates. Dolph (1988a, 1992a) incorporated diameter
growth and basal area increment (BAI) into height growth equations for
mixed conifers and red fir in the Sierra Nevada Mountains and Northern
California, respectively. Arney (1985) used diameter growth and total height
growth as measures of tree vigor in an older forest growth model. Opalach
et al. (1990) used relative height (RH) in a regeneration model for coastal
Oregon forest plantations. Stage (1975) included diameter growth with crown
ratio in height growth equations. Ritchie and Powers (1993) used height rela-
tive to other confiers (RH(ITC)) and height relative to competing vegetation
(RVH) as a measure of both tree vigor and competitive position.

Other authors have included indicator or class variables to describe plant
vigor in height growth models. In addition to common measures of tree
vigor, Dolph (1992a) included indicator variables for the dwarf mistletoe rat-
ing (DMR) system developed by Hawksworth (1977). Ferguson and Adams
(1980) found that a damage code was significant in a height growth model in
advanced grand fir regeneration. Ek and Monserud (1974) added a measure
of shade tolerance (STT) as an indicator of plant vigor under various levels

of competition.

1.3.2.3 Competitive Position

Variables that describe the competitive position and the severity of com-
petition are often called “one-sided” competition variables (Vanclay, 1994).
Vanclay (1994) describes one-sided competition as the influence of larger

plants on smaller plants, or plants within a certain zone of influence larger
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than the subject plant. Since this form of competition is primarily thought
of as competition for light, variables that are related to crown dimensions are
often used.

Crown ratio, in addition to being used as a measure of tree vigor, has also
been used extensively in height growth equations to describe the competitive
position in relation to other trees (Dolph, 1988a, 1992a; Hann and Ritchie,
1988; Ritchie and Hann, 1990; Wensel et al., 1987; Hann and Larsen, 1991).
Crown ratio has many advantages over other measurements by including a
measure of the competitive position and tree vigor in a single variable without
introducing multicollinearity. Crown competition in trees larger and basal
area (related to leaf area) in trees larger have been used as well to express
one-sided competition.

Wensel et al. (1987) used crown ratio and the crown closure at 66 percent
of subject tree’s height (CCgs) to describe the competitive position of the
tree. Hann and Ritchie (1988) found the equation developed by Wensel
et al. (1987) under-predicted height growth rates for trees in the lower crown
classes and used CCH, the crown closure at the tip of the subject tree, raised
to various powers in addition to crown ratio as a measure of the competitive
position with favorable results. Opalach et al. (1990) utilized the ratio of
DBH over top height.

Crown competition factor (Krajicek et al., 1961) in larger trees (CCFL)
has also been used to describe the competitive position of a tree in height
increment models (Ritchie and Hann, 1985). Crown competition factor was
originally developed to describe the level of above ground competition or
density. Ritchie and Hann (1985) partitioned CCF into size classes to an-
alyze the effects of crown competition from stems larger than the subject
stem. The authors found that the best combination of variables was CCFL
and stand basal area (related to CCF), which could mean that the best vari-

able for describing the competitive position of a tree, when describing height
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increment, is CCFL.

Basal area in trees larger (BAL) is another measure to describe the com-
petitive position of a tree in height growth models (Wykoff et al., 1982).
Wykoff et al. (1982) found BAL, a surrogate for leaf area in larger trees, was

significant in height growth equations for young trees.

1.3.2.4 Density

In addition to competition for light resources, measures of density, or “two-
sided” competition, competition for resources below ground or with plants in
the same size or competition class (Vanclay, 1994), also plays a role in describ-
ing height growth. That is to say, competition among cohorts as determined
by density variables such as basal area and stems per unit area (TPA), includ-
ing their transformations, have been successfully used in older tree models as
a measures of stand density (Dolph, 1988a, 1992a; Wensel et al., 1987; Arney,
1985; Ek and Monserud, 1974). Other common measurements of stand or
plot density include stand density index (SDI) (Reineke, 1933), relative den-
sity (RD) (Drew and Flewelling, 1979; Curtis, 1982), crown closure, crown
competition factor (Krajicek et al., 1961), foliar density, and percent shrub
cover.

As mentioned previously, crown competition factor (CCF) (Krajicek et al.,
1961) has been used to describe density in height growth equations for trees
(Hann and Ritchie, 1988; Arney, 1985; Ritchie and Powers, 1993; Wykoff
et al., 1982; Wykoff, 1990). Also, measures of foliar weight have been ana-
lyzed in previous attempts to describe density. Ritchie and Hann (1985) used
foliage weight to assess the competitive stress between trees but found that
crown ratio was a better measure of the competitive position in describing

diameter increment.
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Reference Size Vigor Competitive Density Site
Position (Two-Sided) | Productivity
(One-Sided)
Dolph (1988a) DBH CR BAL SBA Elevation
THT | ADBH 24l Slope
BAI Aspect
Site Index
Latitude
Dolph (1992a) THT DMR CR SBA Location Class
CR Aspect
ADBH Slope
Elevation
Site Index
Hann and Ritchie (1988) THT CR CR CCF Site Index
CCH
Ritchie and Hann (1986) THT CR <H N/A Site Index
Arney (1985) DBH ADBH SH SBA Site Index
Age ATHT CCF
TPA
Wensel et al. (1987) DBH CR CR PCTBA Site Index
THT CCes
Age
Opalach et al. (1990) THT RH RH PCTCOV Site Index
Age
Stage (1975) DBH CR CR N/A Site Index
THT ADBH Location
Habitat Type
Ritchie and Powers (1993) | THT | RH(ITC) ITC PCTSCOV Site Index
Age RVH CCF
Ek and Monserud (1974) THT CI CI TPA Site Index
CRAD STI STI
Ritchie and Hann (1985) DBH CR CR SBA Site Index
ATHT CCFL
Hann and Larsen (1991) DBH CR CR SBA Site Index
Wykoff et al. (1982) THT N/A BAL CCF Habitat Type
Location
Slope
Aspect
Brand (1986) RH RH HP PCTCOV N/A
FD
Wagner (1989) RH THT RH PCTCOV Site Index
CI

Table. 1.2: Common explanitory variables used in height increment models
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In addition to individual tree measurements such as relative height (e.g.
tree height to top height) and crown ratio, aggregate measures of density ob-
servations can be included in height growth equations. Percent cover has been
widely used in height growth equations to describe the density of compet-
ing shrubs in single-tree-aggregate-shrub models (Ritchie and Powers, 1993).
Percent cover has inherent attributes that make the measurement appealing.
The value is bound between zero and some upper limit depending on the
definition of percent cover, normally between 0 and 100, and can be used
in conjunction with tree crown dimensions to describe the available area for
crown expansion. Percent cover can then be further divided by plant form
(shrub, hardwood, conifer) and species specific values. If percent cover is bro-
ken down into species specific values, a modifier describing the influence can
be assigned for a relative height to describe the influence of different levels
of competition and density by species for various relative heights (Wagner,
1989; Opalach et al., 1990). Wagner (1989) found that the best measure
of the influence of competing vegetation on height growth was the percent
cover of woody shrub species taller than the subject tree for Douglas-fir in
plantations. In most cases, percent cover can be derived by computing sum
of the crown area from the individual plant observations and dividing the

value by the area the plot represents.

1.3.2.5 Site Productivity

Typically site productivity or quality is measured by site index. This has
appeal in height growth models because of the implied nature of predicting
height growth from age and site by differentiating the cumulative height
growth function. Site index equations can also be expressed as age functions

in determining the growth effective age (GEA) from height and site index for
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a stand (Ritchie and Hann, 1990). Often GEA is defined as the age at which
a tree would be at a certain height for a given site index. The measure is
analogous to the inverse of the site index-height function where age becomes
the dependent variable.

Site index curves have been developed for many species found within
the study area (Hann et al., 1987; Dolph, 1987, 1991; Powers and Oliver,
1978; Biging and Wensel, 1985). Site index functions have an advantage of
measuring the maximum height growth rate for site trees. Also, the functions
can be solved to estimate age from site and height observations, thus allowing
the equations to be used in multi-aged stands in an age-independent manor
using a GEA variable.

Other independent variables have been incorporated into measures of site
productivity in height growth models as well. Dolph (1988a, 1992a) used
measures of elevation, slope and aspect in addition to site index to predict
height increment in young-growth mixed conifers and Red fir. Stage (1975),
in addition to using site index, incorporated a parameter for the population
and habitat type into equations developed for predicting height increment.
Wykoff et al. (1982) used habitat, location, slope and aspect, without using
site index to predict height growth in young trees. Uzoh (2001) used wa-
ter holding capacity (WHC) as a measure of site productivity in a height

increment models.

1.4 MODELS

Model form is essential in developing an effective and robust model that
accurately describes the dependent variable across a wide range of values.
The model form can be linear or non-linear and may reflect forms that

mimic the biological phenomenon, such as a peaking function for growth
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functions. Functions for a limited range in such a system, such as diameter
increment functions for young stand models, may or may not fit these criteria,
but a robust model will be able to handle predictions well past the limits of

the model dataset. For example, a height growth model that has the form

ATHT = o+ S\ THT + B,THT? + ¢ (1.4)

should contain a negative 3, coefficient so that the function would “peak” at
some value when height growth is greatest. This function would not extrap-
olate well, however. If the [, coefficient was negative the predicted value
of ATHT would be negative for very tall trees and very short trees. If the
B2 coeflicient is positive, the curve would decrease for small trees and then
increase for larger and larger trees. Clearly this model is limited.

Whether the nature of the model is theoretical or empirical, it should be
formulated to provide meaningful predictions across a wide range of explana-
tory variables. The explanatory variables should be carefully chosen from
large datasets and the model forms should represent biologically meaningful

relationships (Vanclay, 1994).

1.4.1 Empirical Equations

Linear regression equations make up the bulk of models used to describe
both diameter and height increment. While empirical in nature, linear re-
gression models can provide biologically meaningful behavior (Vanclay, 1994).

An empirical model can be developed using the linear regression equation,
Y =by+byzy +bpzp+ ... + by, +e€ (1.5)

or in matrix notation,
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Y = XB+¢ (1.6)

where X is an array of explanatory variables and Y is a vector of the response
variable. The error term, € is assumed to be N(0,02). The equation can
be solved using linear algebra and the parameter estimates are the Best
Linear Unbiased Estimates (BLUE) when the assumptions of Ordinary Least
Squares (OLS) are met. The X and Y may contain transformed variables
that are not linear, such as DBH? and In(THT), but the model is said to
be linear because it is linear in the parameters. The OLS models contain
unique solutions and are robust even when the assumptions of OLS are not

met (Vanclay, 1994).

1.4.2 Theoretical Equations

Equation (1.4) is normally considered a curvilinear relationship because
the relationship of the response and explanatory variables is still a linear
function (Ratkowsky, 1990). While it does attempt to demonstrate the ex-
planation between height and height growth, equation (1.4) might have miss-
ing explanatory variables such as density, competitive position, and vigor.
This is referred to as model specification error, or simply specification error
(Kmenta, 1997; Greene, 2000). In contrast to empirical equations, theoret-
ically based models attempt to explain, using a mathematical function, the
relationship of a hypothesis to the explanatory variables (Vanclay, 1994).

Scaling laws (Enquist et al., 1998; West et al., 1997) and size-density
relationships (Puettmann et al., 1993; Weller, 1989; Gorham, 1979) have been
used to develop growth models based on the relationships among the available
growing space, plant energetics, and plant size attributes with success. These

theories have appeal when addressing mortality models but are outside the
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scope of young tree models where maximum size-density relationships and
self-thinning do not occur.

Theoretical equations are appealing because they allow modellers to de-
velop a framework instead of developing component models to explain a single
characteristics of a complex system without regard for functional relation-
ships. It is for these reasons that theoretical models are rarely used for the

development of regeneration models.

1.5 MODEL FORMS

Regardless of the decision to develop an empirical or theoretically based
model, the equation must fit into one of three forms: linear, intrinsically lin-
ear, or intrinsically nonlinear forms (Ratkowsky, 1990). Linear model forms,
those forms that are expressed as equation (1.5) are considered linear in that
no transformation is required on the response variable to obtain the best
linear unbiased estimates (Ratkowsky, 1990). These are rare in forestry in-
crement models due to the non-normal nature of the dependent variables,
limited range of data and in many cases the curved nature of the relation-
ships such as site index functions. The intrinsically linear model form, often
a logarithmic transformation on the response variable, is commonly used in
increment models (Wykoff, 1990; Dolph, 1992a, 1988b,a; Ritchie and Hann,
1985). Those models that cannot be expressed linearly and must be solved
using the general form of least squares are known as nonlinear models. These
models, often derived from theoretical relationships (see 1.4.2) are considered
to aid in a better understanding of the underlying phenomenon regarding in-
crement models (Pienaar and Turnbull, 1973). Few nonlinear models are
native to forestry and are typically developed in other fields of study and
applied to forestry. The datasets in these other fields of study are vast and
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usually contain many generations of growth data before a model is fit. In
forestry, this is rarely the case. It is more difficult to obtain nonlinear pa-
rameter estimates than linear parameter estimates since standard regression
packages are typically developed for linear models and it is more difficult to
develop regression diagnostics in those packages without having access to the

underlying algorithms.

1.5.1 Linear Models

Until the development of computer software that could perform nonlinear
regression, the majority of models developed to predict diameter and height
increment were linear models (Wensel et al., 1987; Dolph, 1988b,a, 1992a;
Ritchie and Hann, 1985; Stage, 1975, 1973b).

Stage (1973b) used a linear model for both basal area and height incre-
ment for lodgepole pine to facilitate projection intervals beyond the sample
interval. The basal area increment model, predicting the rate of increase
in DBH, was a re-expression of the logarithm of basal area growth. The
response variable was fit using a logarithmic transformation resulting in ho-
moscedastistic errors. The linear height increment model used DBH, THT
and diameter growth as the independent variables. The model uses a “loca-
tion” variable as a method to calibrate the effects of differing regions.

The regression diagnostics and study behind linear regression models is
vast to say the least. There are many tests for each of the assumptions, each
with their respective strengths and shortcomings. In the next few sections, I
present a brief description of the dangers of violating some of the assumptions

and list a few tests and remedies.




25

1.5.1.1 Normality

Least squares methods assume errors are normally distributed with a con-
stant variance ¢ = N(0,0%). Many of the statistical tests for the unbiased
parameter estimates rely on this assumption. Non-normal error distributions
can lead to incorrect confidence intervals and hypothesis test results (Neter
et al., 1996; Draper and Smith, 1998). The normality tests can be divided
into two classes: directions test and omnibus tests. Directions tests, which
includes the tests developed by D’Agostino and Tietjen (1973), D’Agostino
and Pearson (1973) and Geary’s Test (Geary, 1935), assume prior knowl-
edge about the departures from normality. The omnibus tests, which in-
cludes the Shapiro-Wilk Test (Shapiro and Wilk, 1965), the D’Agostino test
(D’Agostino, 1971), and the Kolmogorov-Smirnov Test (Shapiro et al., 1968),
do not assume the form of the departure from normality.

Departures from normality can be corrected for by transformations of the
dependent variable, the development of estimators based on the underlying
distribution, such as maximum likelihood, or by applying adjustments to the
standard tests, such as the F-test, to account for the departures (Prentice,
1974).

1.5.1.2 Homogeneous Variance

If the residuals for the linear regression are not homogeneous, that is
the dispersion of the residuals about the mean regression line is not constant
across the range of predictor and predicted variables, the parameter estimates
may be unbiased, but they are inefficient as will be the variance estimates of

the parameter estimates.

The tests for heteroskedasticity can be classified into two forms. Con-
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structive tests provide information about the form of the heteroskedasticity
in addition to the presence of heteroskedasticity and non-constructive test
only test for heteroskedasticity. The two more popular non-constructive
tests tests used in the development of forest growth models includes the
Levene Test (Levene, 1960) which is very robust to non-normality and the
Goldfeld-Quandt Test (Goldfeld and Quandt, 1965) in which the form of the
heterogeneity is precisely known. The methods to adjust for heterogeneity
are numerous. Transformations using logarithms or weighted regression are

common to reduce heteroskedastic errors about the mean regression line.

1.5.1.3 Independent Explanatory Variables

The consequences of developing linear regression models that contain er-
rors in the independent variables can include biased and inefficient parameter
estimates and predictions (Zellner, 1962). Methods for addressing stochastic
independent variables include single equation techniques, as found in mea-
surement error literature (Flewelling and Jong, 1994) and systems of equa-
tions literature (Tang et al., 2001; Hasenauer et al., 1998; Huang and Titus,
1999).

If at least two variables are perfectly correlated such that they are func-
tions of each other, then there is a linear relationship between the variables
and the resulting (X’X) matrix will be singular and the parameter esti-
mates cannot be determined (Vanclay, 1994). In single equation models, an
equation developed for a specific attribute such as tree volume may contain
information that is also used to describe another attributes as well such as
total height.

When “close to perfect multicollinearity” exists, even though the X'X

matrix has an inverse, many computer programs will fail to find the inverse
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due to the precision of the program. If the program does find an inverse, the
diagonal elements of the inverse may be large as will the standard errors and
confidence intervals and the t-ratios may be small, suggesting that few of the
parameter estimates are significant from zero (Intriligator, 1978).

Some evidence of multicollinearity may be invalid signs based on prior
knowledge, unusually large variance inflation factors (VIF), and obvious re-
lationships among the variables in the correlation matrix (Draper and Smith,
1998). The most common remedy is to drop one of the variables that are cor-
related. For a more detailed examination and solution to the multicollinearity
problem, Belsley’s method may be used (Draper and Smith, 1998).

Explanatory variables are often correlated within a set of regression equa-
tions such as those found in growth and yield models. In systems of equa-
tions, multicollinearity has a special significance because of the relationships
among the variables and error terms in the set of regression equations. If un-
accounted for, these relationships will produce biased and possibly inefficient

parameter estimates.

1.5.1.4 Serial Correlation

If serial correlation is present among the residuals, OLS will produce unbi-
ased and consistent parameter estimates but not efficient parameter estimates
nor variance estimates (Kmenta, 1997). Durbin and Watson (1950) devel-
oped a test for serial correlation that assumes first-order collation. Durbin
(1970) developed an exact test for serial correlation although it was deter-
mined to be less powerful than the test developed by Durbin and Watson
(1950).

To correct for serial correlation, Generalized Least Squares (GLS) can be

applied if the the variance-covariance matrix of the regression is available.
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This often not the case and other methods can be applied such as Maximum-

Likelihood Estimation (MLE) (Kmenta, 1997).

1.5.2 Nonlinear Models

Nonlinear model forms, those model forms that cannot be linearized by
transformations, are typically developed from theoretical relationships and
may produce better predictions when extrapolated beyond the original range
of data (Vanclay, 1994). Nonlinear models are potentially more difficult to
fit and, as is the case with linear models, when fit to data that cover a narrow
range, these models may not exprapolate well. Ratkowsky (1990) described
the difficulties of fitting nonlinear models. The least squares estimates cannot
be determined from explicit mathematical relationships. The surface of the
sums-of-squares values for the parameter estimates may be highly curved for
some model forms that are not close to linear.

These models do not necessarily produce a unique best unbiased solution
(Vanclay, 1994) but can be re-parameterized so that the model behaves in
a “close to linear fashion” (Ratkowsky, 1990). These close-to-linear forms
can be fit using the Guass-Newton method to obtain the smallest sums-of-
squares value resulting in parameter estimates that are unbiased, the errors
are normally distributed and the variance estimates are lowest for the data
(Ratkowsky, 1990).

The linearization method may never converge and parameter estimates
my oscillate about some value. The steepest decent method may be very slow
to converge after rapid initial progress, and the method is sensitive to the
scale of the parameter estimates (Draper and Smith, 1998). Good starting
values are required in a steepest-descent method (Draper and Smith, 1998)

which may be problematic in new areas of development in forest models.
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Often, these starting values are obtained from previously reported values in
similarly published models. Another method, known as Marquardt’s method,
is often used to obtain parameter estimates by using a combination of the
linearization and and steepest descent methods (Draper and Smith, 1998).

There are diagnostics for nonlinear models that can be used to assess the
ease with which the model can be fitted. Bates and Watts (1988) developed
curvature measures for nonlinearity which suggest how well linear approxima-
tion can estimate the nonlinear function. Box (1971) developed a formula for
estimating the bias for estimated nonlinear regression coefficients. Hougaard
(1985) developed an estimate of the skewness of the sampling distributions of
the estimated regression coefficients. Many of the linear tests are applicable
to non-linear fitting methods with large sample sizes.

Large sample sizes are required in order to obtain unbiased parameter
estimates and normally distributed residuals and to make the same inferences
about the parameter estimates as is the case in linear regression (Neter et al.,
1996).

As computer programs have become more powerful, more nonlinear forest
models have been developed in recent years (Hann et al., 1993; Wensel et al.,
1987). These models are based on theoretical relationships, they extrapolate
well and provide a framework for the further development of related forest
models. As more data become available, these types of models will become

more commonplace.

1.5.3 Systems of Equations

Tree attributes are rarely measured independently and because static and
increment models are built at the same time as a set of equations and from

the same data set, problems may be amplified. These problems may or
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may not be detected in single equation regression diagnostics. When multi-
ple models are developed from the same database or are developed to work
together, the error terms and variables may be related. If there is a relation-
ship among the equations of a system the regression equations are said to be
contemporaneously correlated (Kmenta, 1997; Greene, 2000).

In addition, when predicted variables from one equation are used as inde-
pendent variables in another equation, the set of equations may be subject to
simultaneity bias (Kmenta, 1997; Greene, 2000). Simultaneity bias is equiv-
alent to the “errors-in-variables” problem described in Section 1.5. When
the system of equations contains cross equation dependent variables, using
OLS will produce inconsistent and biased parameter estimates. For example,

consider the following two-equation system:

1 = a+bhytar+ea
Yo = a9+ boyy + oo+ €2

In the second equation, v, is a dependent, or endogenous variable. Also,
Yo is a function of ¢, and €; thus making both ¥, and ¥, jointly dependent.
This set of regression equations is known as simultaneous and is subject to
simultaneity bias due to the relationships among the dependent variables.

Sets or systems of equations can be divided into two types. Sets of equa-
tions that are related through the residuals are known as Seemingly Unrelated
Regressions (SUR) (Zellner, 1962) because the test to determine if a relation-
ship exists determines if there is in fact a relationship, or if they are “seem-
ingly” unrelated (Kmenta, 1997). When equations are related by the variables
used within the set of equations and thus, subject to the “errors-in-variables”
problem, then the set of equations is said to be a system of simultaneous
equations (Kmenta, 1997) and can be solved using an instrument-variables

technique known as Two-Stage Least Squares (2SLS).
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Estimation methods for systems of equations are similar to those for single
equations systems. Parameter estimates for single and simultaneous equa-
tions may be obtained using Generalized Least Squares (GLS). When the
regression equations are correlated through the error terms and there are no
dependent regressors, then SUR can be used to obtain unbiased and con-
sistent parameter estimates. If the regression equations are related through
the residuals and the system contains dependent regressors, then 2SLS can
be combined with SUR which is referred to as Three-Stage Least Squares
(3SLS) (Zellner and Theil, 1962).

Further discussion and details regarding the methods for SUR, 2SLS, and
3SLS will be presented in the next chapter.

1.6  SUMMARY

Developing a single tree diameter and height increment model is no trivial
task. In addition to the wide selection of explanatory variables available,
model forms and estimation methods there are plenty of diagnostic tools to
aid the development of increment models.

Many authors have developed adequate models based on a few simple
explanatory variables as described in Sections 1.3.1 and 1.3.2. The most
commonly used explanatory variables for developing these increment models
are related to the variables themselves. For example, in diameter increment
models, DBH, SBA, BAL, and relative diameter are used as explanatory vari-
ables. In height growth models, THT, CCFL, CR and CCH are commonly
used. In young tree models some of the more complicated or derived vari-
ables are seldom significant but are included regardless to ensure robustness
and well behaved extrapolation and may address model specification issues

as well.
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Both linear and nonlinear models have been developed and widely used
for both diameter and height increment. While linear models have an inher-
ent simplicity and the regression diagnostics are well understood, nonlinear
models are gaining popularity in diameter and height increment models. Non-
linear models have the added appeal of mimicking the underlying theoretical
behavior of the relationships and being more biologically realistic.

The estimation methods for obtaining unbiased, consistent, and efficient
parameter estimates are readily available as well for both linear and non-
linear models. Again, nonlinear model diagnostics are less developed and
many regression packages have yet to adopt them as part of standard fitting
routines. And until recently, both linear and nonlinear sets of forest growth
and yield models have addressed cross equation relationships or endogenous
dependent variables correctly.

The next chapter focuses on the regression methods for systems of equa-
tions and these methods are used to develop a model for DBH and total

height increment in Chapter 3.
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2. SIMULTANEOUS EQUATION ESTIMATION METHODS FOR
FOREST GROWTH MODELS

2.1 ABSTRACT

This paper gives a brief presentation of forest growth and yield systems
of equations estimation and methods to obtain the best linear unbiased es-
timates (BLUE). The methods of Ordinary Least Squares (OLS), Seemingly
Unrelated Regressions(SUR), Two-Stage Least Squares (2SLS) and Three-
Stage Least Squares (3SLS) are presented as options for fitting a set of equa-

tions to a data set in a forest growth model context.

2.2 INTRODUCTION

Sets of regression equations, in the form of height growth (Ritchie and
Hann, 1990; Hann and Ritchie, 1988), diameter growth (Stage, 1973b; Dolph,
1992b; Hann and Larsen, 1991), crown recession (Arney, 1985; Ritchie and
Powers, 1993), mortality (Krumland and Wensel, 1981) and perhaps in-
growth, are often used to predict the growth of forest trees and stands.
Typically, these equations are developed individually and applied as a sys-
tem of equations. Traditional fitting techniques used to produce parameter
and variance estimates for these models may produce inefficient or inconsis-
tent parameter estimates as a result of the relationships among the variables
and how relationships are used within the the system of equations. The re-
sulting parameter estimates, variance estimates and predictions may either
be biased, inconsistent, or both (Furnival and Wilson, 1971; Lemay, 1990;
Greene, 2000; Kmenta, 1997).

Methods to obtain unbiased and consistent parameter and variance esti-
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mates have been developed and used in forestry applications (Furnival and
Wilson, 1971; Lemay, 1990; Borders and Bailey, 1986). This chapter will
present and define the key concepts and terms, give a brief overview of the
fitting techniques used to obtain unbiased and consistent parameter and vari-

ance estimates, and offer an example specific to growth prediction in forestry.

2.2.1 Stand Growth Example

To initiate an introduction to systems of equations, a presentation to
illustrate the issues is required. Furnival and Wilson (1971) presented the

following yield model,

In(H) = pu+0Gi2ln(4)+e
(N)

( (2.1)
In(N) = a1+ farln(D) + € (2.2)
In(B) = s+ fsln(H) +e3 (2.3)
In(F) = B+ Paln(D) + e (2.4)
In(B) = In(K)+In(N)+2In(D) (2.5)
In(V) = In(F)+In(H) + In(B) (2.6)

where

V = volume, in cubic feet

H = average stand height, in feet

A = average stand age at breast height

B = basal area, in square feet per acre

D = diameter of the tree of average basal area
N = number of trees per acre

F' = cylindrical form factor

K_

576 0
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In(z) = natural logarithm of x
Equation 2.1 was chosen by the authors by trial and error (Furnival and
Wilson, 1971) and Equation 2.2 is the widely used equation for the relation-
ship between size and maximum density when applied to forestry (Reineke,
1933). The remainder of the equations are from various sources (Schumacher
and Coile, 1960). The last two identities provide a relationship for trees per
acre, average diameter, mean stand form class, and stand height.

A cursory examination reveals that many of the equations contain vari-
ables, predicted in one equation and used as a predictor in another. But what
determines which variable is used in which equation; observed or predicted?
For example, say we fit equation 2.1 and obtain predicted values for height.
Do we use the predicted height or the observed height when predicting the
basal area in equation 2.37 If we use the observed values of height in equa-
tion 2.3 and the parameter estimates for equation 2.1 are biased, then we
should expect that our parameter estimates for equation 2.3 to be biased as
well. If we used the predicted values for height in equation 2.3, assuming
that the model for equation 2.1 contains the best linear unbiased estimates
(BLUE) then we could expect that the estimates for the equation 2.3 to be
BLUE as well.

Using a biased estimator in one equation and then as a predictor in an-
other equation introduces bias across the equations and is known as simul-
taneity bias. The origins of simultaneity bias are found in the "errors-in-
variables” problem as described by Kmenta (1997). When the assumption
that the independent variables are measured without error is violated, the
parameter estimates are biased, inconsistent, or both. At the very least, us-
ing Ordinary Least Squares (OLS) on individual equations is inefficient when
describing a related system of equations.

To remove the potential simultaneity bias that may arise from using the

observed height in equation 2.3, the fitted values from equation 2.1 are used
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as the observations when fitting equation 2.3 (Furnival and Wilson, 1971).
Since the parameter estimates for equation 2.1 are BLUE, the predicted
values for height in equation 2.3 are assumed to be measured without error,
as there is no bias in the “observations”, thus eliminating simultaneity bias.
The predicted values are assumed to be measured without error because the

expected value for the predicted height values is the mean.

2.2.2 Individual Tree Example

Simultaneity bias is not unique to stand level models nor models that
are linear in the parameters and variables (Parks, 1967). Any system of
equations is subject to simultaneity bias depending on the relationships of
the variables. Arney (1985) developed an individual tree or diameter class

nonlinear set of equations,

H = 137+ BelPBA™ (2.7)
H \® COF\%

AH = — 1. —( ) 2.8
ATOP(TOP) [0 B, } (2:8)

ADBH CCF\" 5, 2B Ba
srop = B(o) (10—e»#) (29)
TPA = TPA(0.78 4+ 0.22(1.29 — 0.29CCF)**)  (2.10)

1002 GS;

CCF = ——» — 2.11
A10000 (211)
GS = %CWQ (2.12)
CW = (1.19+424.7(1.0 — ¢ 0-001PBHY) (2.13)

where
DBH = diameter at breast height
H = total height of the subject tree or DBH class
TOP = top height of the stand
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CW = crown width of the subject tree or DBH class

CCF = crown competition factor

TPA = trees/acre

A = plot area

GS = growing space required for the subject tree or DBH class
and ATOP is the height growth of the site trees derived from a site index
equation (King, 1966; Arney, 1985).

As was described in the previous example, errors are introduced into the
independent variables (the “errors-in-variables” problem) causing parameter
and variance estimates to become bias and potentially inconsistent. If the
disturbances (or residuals) in the equations are related (known as contem-
poraneous correlation), then the parameter estimates may be asymptotically
inefficient (Kmenta, 1997; Greene, 2000). The classical regression assumption
that disturbances are unrelated may not hold in the case where multiple re-
gression equations are developed to describe different but related components
of a forest system.

This set of relationships also contains many nonlinear models which can
increase the likelihood of producing inconsistent and inefficient parameter

estimates due to the relationship among the variables and the disturbances.

2.2.3 Other Examples

The technique of using predicted variables as predictors is common. This
is often done because the cost of measuring a full set of variables for each
tree are economically prohibitive.

Predicted diameter growth has been used as an independent variable in
height growth models for tree species in Idaho (Stage, 1975, 1973b). Com-

puted or predicted ages, instead of measured stem age, have been used in sets
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of growth models as well (Ritchie and Hann, 1986; Hann and Ritchie, 1988).
Crown width, which is typically used to compute stand level crown attributes
is commonly predicted from DBH observations (Bella, 1971; Martin and Ek,
1984)

Bella developed a set of competition models that included DBH as a
predictor and then used the amount of competitive influence as a predictor
in a diameter increment model (Bella, 1971). The competitive influence was
a function of DBH as well. The models could be used to estimate both
diameter increment and inter-tree competition at the same time, but where
fit independently.

Martin and Ek (1984) developed a height and diameter growth model to
describe the behavior of red pine stands for silvicultural analysis. Site and
age were used in both the diameter and height growth equations. The authors
did not examine the potential relationships between the two equations.

These cross-equation relationships are commonly found in sets of equa-
tions that are developed for single-tree or stand growth models such as inter-
tree competition and potential growth rates (Krumland and Wensel, 1981;
Opalach et al., 1990; Burkhart et al., 1987; Ek and Monserud, 1974). The
relationships occur mostly due to the inclusion of CCF or CCH in the height
growth functions where CCF and/or CCH is calculated from DBH. When
equations are developed for a single static attribute, such as crown dimen-
sions (Paine and Hann, 1982; Gill et al., 2000; Farr et al., 1989), stem taper
(Wensel and Olsen, 1993), or height-diameter (Larsen and Hann, 1987; Cur-
tis, 1967), these concerns are minimal.

The next section will present the basic definitions and concepts for fitting

groups of equations as a set or system of equations.
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2.3 DEFINITIONS

To develop an understanding of the issues related to fitting systems of
equations, some basic definitions and concepts must be presented to the
reader. This section presents basic definitions and issues related to systems

of regression equations.

2.3.1 Basic Equation Relationships

A system of equations is said to be simultaneous if there are variables
that appear on the left hand side of one equation and again on the right
hand side of another equation (Lemay, 1990). Fitting techniques to address
simultaneity bias for both linear (Zellner and Theil, 1962) and nonlinear
(Kelejian, 1971; Gallant, 1975) models have been developed. The first method
to address simultaneity bias Two-Stage Least Squares (2SLS) which is a
special case of an instrumental variables (IV) method (Zellner, 1962).

If the error terms in a set of regression equations are related, that is to
say, the variance-covariance matrix for a set of equations is not a diagonal
matrix, then the set of regression equations are said to be correlated through
the error terms, or contemporaneously correlated (Lemay, 1990). Methods to
obtain parameter estimates when a system is contemporaneously correlated
are available (Zellner, 1962; Parks, 1967). The most common method used to
address contemporaneous correlation, developed by Zellner (1962) is known
as Seemingly Unrelated Regression (SUR).

When a set of regression equations contains related error structures (con-
temporaneous correlation) and variables that occur on both the left and right
hand side (simultaneity bias), a combination of 2SLS and SUR, or Three-

Stage Least Squares (3SLS), can be used to obtain unbiased, consistent and
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efficient estimates.

As there are techniques for solving a single regression equation where
the disturbances contain serial correlation and heterogeneous variance using
Generalized Least Squares (GLS), there are similar methods for systems of
regression equations using Multi-Stage Least Squares (MSLS) (Lemay, 1990;
Amemiya, 1977), Full-Information Maximum Likelihood (Parke, 1982).

Applications of the methods described above have been adopted to specific
problems in forest growth models for stand level models (Furnival and Wilson,
1971; Borders, 1989; Borders and Bailey, 1986; Daniels and Burkhart, 1988)
and single tree models (Lemay, 1990; Hasenauer et al., 1998; Huang and
Titus, 1999; Rose and Lynch, 2001).

The method used to obtain parameter estimates is dictated by how the
variables are related within the system of equations and the relationship
of the equations. The next section will define how variables are classified
to determine the various relationships among the equations in a group of
equations. A group of equations that are related will be refered to as a set
of equations and and a set of equations that contains endogenous variables

as explanitory variables as a system of equations.

2.3.2 Variable Types

There are two main classes of variables in a system of equations. Vari-
ables that are determined outside a system are referred to as predetermined
variables. In this case "outside” means a value that was not computed from
another equation within a set of equations. In contrast, endogenous vari-
ables are those variables that are determined within the system (Kmenta,
1997; Greene, 2000). Predetermined variables can again be classified into

lagged endogenous and exogenous, or variables that were determined during
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a previous prediction and those variables that are truly determined outside
the system, respectively.

Since many forest models contain endogenous variables, examples abound.
Growth rates, crown dimensions, biomass, heights from height-diameter re-
lationships are a few examples. For this presentation, any variable that is
estimated, not measured, is considered endogenous.

Since predetermined variables can be broken into exogenous and lagged
endogenous, it helps to think of the forest stand in the context of ecological
systems. Incoming solar radiation would be an example of an exogenous
variable, as would precipitation in most cases. Regardless, there are few
truly exogenous variables in forest ecosystems.

Lagged endogenous variables, those variables that were predicted from
a previous estimation are more common when referring to sets of equations

used to predict future stand conditions over many periods. For example,

DBH,,, = f(DBH,) (2.14)

where f(DBH,;) is some function. After the first iteration, DBH has be-
come a lagged endogenous variable because the original value of DBH is no
longer used to predict the future value of DBH. In fact, with regard to forest
simulation, most variables that are considered exogenous are actually lagged
endogenous. Current DBH is often considered an exogenous variable since
modelers often make the assumption that growth is based on tree size (Hann
and Larsen, 1991) when in fact tree size is the sum of all previous tree growth
increments. So, in application, the current diameter is the sum of the all the
previous diameter growth estimates plus the initial measured diameter.

The concept of a lagged endogenous variable is analogous to a spreadsheet
program that uses the previous cell in a column to compute the value of the
next cell. For example, when filling in a column of values to chart, the user

places a zero in the Al cell. Next, the user enters the formula "=A1+1" and
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then copies the formula into the 20 cells below. When the user looks at the
formula in any cell, the result is similar to "=the value of this cell is the value

of the cell above plus one”.

2.3.3 Model Types and Model Forms

When describing a set or system of regression equations, the various fit-
ting methods require the equations to be presented in either the structural
or reduced form (Kmenta, 1997). An equation within a system that con-
tains variables that were predicted from another equation, thus exhibiting
the errors-in-variables, is called the structural form (Kmenta, 1997; Lemay,
1990). When the independent variables are not stochastic, that is to say,
there is no error in the independent variables, the model form is called the
reduced form (Kmenta, 1997).

These concepts are important for two reasons. First, the form conveys in-
formation about the system of equations. Investigators are interested in the
parameter estimates that are meaningful to the variable being investigated.
For example, when looking at stand size-density relationships, variables that
are commonly used are average stand diameter (D), diameter at breast height
(DBH) and stand density, N, measured in trees per unit area. These unadul-
terated values are meaningful to foresters as they are values in the literature

and are used everyday. In another form, say the reduced parameter esti-

N+ter
DBH

mates, may look like In ( ), which is more difficult to interpret. Second,
and more importantly, the form aids in determining if and how the system
can be solved. The reduced form equations are typically used to determine
the identification of a system of equations.

While reduced form equations are more prevalent in econometrics texts,

there are virtually no cases in which reduced equations are found in forestry
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(Borders and Bailey, 1986). Borders and Bailey (1986) suggest that forestry
relationships in the form of the structural equations contain certain a pri-
ort restrictions that demonstrate the structural relationships are an accurate
representation of the actual relationships. Thus, since the structural equa-
tions contain all the required information to mimic the theoretical relation-
ships, the requirement to obtain the structural parameter estimates from the
reduced form equations is no longer necessary. In addition, current statis-
tical software packages do not require reduced form equations and the user
can enter into a list which variables are endogenous and exogenous. Also,
forestry datasets usually contain far more than a handfull of observations
which negates the requirements for testing for rank and order conditions for
a system of equations, in most cases for forestry datasets. For an in depth
review of the minutiae of reduced form equations and rank and order condi-
tions, see Kmenta (1997) and Greene (2000). For this study, each equation
contains at least equal or more excluded exogenous variables as included en-
dogenous variables, thus meeting the order condition for each of the equations

which is a necessary condition for identification (Greene, 2000).

2.4 ESTIMATION TECHNIQUES

Estimation techniques for systems of equations can broken down into two
categories. Those sets of equations that can be estimated without regard
for the relationships between the disturbances are known as single equation
methods (Kmenta, 1997; Greene, 2000). Single equation methods produce pa-
rameter and variance estimates one equation at a time or independently. For
single equation estimation, common choices include Ordinary Least Squares
(OLS) and Two-Stage Least Squares (2SLS) (Greene, 2000; Kmenta, 1997).

Alternatively, those methods that address the relationships of the dis-
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turbances and thus estimate all of the equations in a system simultaneously
are known as simultaneous methods (Kmenta, 1997; Greene, 2000). Com-
mon methods are Seemingly Unrelated Regressions (SUR), Three-Stage Least
Squares (3SLS), and various adaptations of these two (Greene, 2000; Kmenta,
1997; Lemay, 1990).

Other methods such as Limited Information Maximum Likelihood (LIML)
for single equation estimation and Full Information Maximum Likelihood
(FIML) for simultaneous systems are more complex, and are typically used
to test other methods for their ability to meet the assumptions of GLS. These
methods will not be presented here. Refer to Kmenta (1997) and Greene
(2000) for detailed discussions on LIML and FIML.

2.4.1 Single Equation Estimation Techniques

Fitting techniques to address sets of equations that contain endogenous
variables, and thus simultaneity bias, include Ordinary Least Squares (OLS)
and Two-Stage Least Squares (2SLS) (Greene, 2000; Kmenta, 1997). These
techniques address the problems associated with measurement errors (“errors-
in-variables”) in independent variables and produce consistent estimates. The
methods may not produce asymptotically efficient estimates due to the cor-
relation between the equations that contain endogenous variables (Kmenta,
1997; Greene, 2000). These methods are typically defined as single equation
estimation methods because the solutions can be obtained for the system
by examining each equation independently and do not require information

about the other equations in the system.
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2.4.1.1 Ordinary Least Squares (OLS)

Ordinary Least Squares, while not directly addressing simultaneity bias,
is used in the first stage of 2SLS to estimate the predetermined variables for
each equation. Ordinary Least Squares will also produce consistent, efficient
and unbiased parameter and variance estimates if the system of equations is
recursive. An example of a recursve system could be one that contains two

equations,

CrownRatio = g + oy * Height
He/ight = By + [ * Age + P9 x Site

where the predicted height value is entered into the crown ratio equation
and there is no relationship between the error terms of the regression equa-
tions. Since the predicted height values are assumed to be unbaised then the
assumption is met that the heights (the predicted heights in this case) are
measured without error in the crown ratio equation.

As a single regression equation can be estimated using

Y =X3+¢ (2.15)

with a solution

Bors = (X'X)'X'Y (2.16)

where [Bors is a vector of regression estimates, X is a matrix of independent
variables, Y is a column vector of dependent variable observations and €
some disturbance about the mean. Using matrix notation, it is possible to

generate or "stack” M regressions together that can be written as




1 X, 0
Y2 . 0 XQ
Ym 0 0

or more compactly,

and the estimators are,

3 -1
Bors = RDX
and
Asympt. Var-Cov(Bors) =
where
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(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

where n is the number of observations for equation i, p is the number of inde-

pendent variables, M is the total number of equations in the set of equations

and @ is the Kronecker product and I is an M x M identity matrix .

While OLS does not produce consistent and asymptotically efficient pa-

rameter estimates for a system of equations where simultaneity bias or con-

temporaneous correlation are present, OLS produces consistent and asymp-

totically efficient estimates if the system contains neither (Kmenta, 1997) or
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is a recursive system. An example might include a recursive set of equations

such as crown ratio and height example previously described.

2.4.1.2 Two-Stage Least Squares (2SLS)

The Two-Stage Least Squares (2SLS) method uses, as the instruments for
Y}, the predicted values of Y; on all the the z’s (Kmenta, 1997; Greene, 2000).
In 2SLS, the first step is to estimate the endogenous values and substitute
the observations in the second stage to remove the simultaneity bias.

The application of 2SLS leads to unbiased parameter estimates, but does
not produce consistent or efficient estimates if the disturbances of the various
equations are correlated (Kmenta, 1997).

Using matrix notation, 2SLS estimators for equation j of a system may

be expressed as

Biasts = |(X{Z(Z'2) 1 X;)| X'Z(Z'2) ' 2y, (2.23)
where Z is a matrix of all the instrumental variables, X is a matrix of the
independent variables, y; is a column vector of the dependent variable ob-
servations for equation j. As is the case in OLS, the asymptotic variance-

covariance matrix for equation j, is

0 i #J
Gi= , 2.24
T4 { - otherwise ( )

2.4.2 Simultaneous Equations Estimation Techniques

Simultaneous estimation methods examine all of the structural equations

while taking into account the relationships of the disturbances among the
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equations (Kmenta, 1997; Greene, 2000). The single equations methods do
not use all the possible information about the system of equations. By ig-
noring the relationships among the various disturbances in the system, the
parameter estimates may be subject to contemporaneous correlation. These
types of errors can lead to inefficient and inconsistent variance and parameter
estimates (Kmenta, 1997; Greene, 2000).

The SUR method is used to address contemporaneous correlation. If the
equation system is simultaneous and there are endogenous variables, 25LS
and SUR can be combined to address both simultaneous equation bias (2SLS)
and cross-equation correlation of the errors (SUR). This is called Three-Stage

Least Squares (3SLS) (Zellner and Theil, 1962).

2.4.2.1 Seemingly Unrelated Regression (SUR)

The Seemingly Unrelated Regression (SUR) method links the distur-
bances of the equations by using GLS (Zellner, 1962) to include the cross
equation variance-covariance information. The equations are stacked or es-
timated simultaneously like equation (2.17), hence the estimators for the

parameters and the variance-covariance matrix are,

Bsur = TRDX)IX(QTRDY (2.25)

and

Asympt. Var- Cov(ﬂSUR -1 ® (2.26)

where
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on 012 ... 0O1M
~ &21 &22 ce &QM
Q= ) (2.27)
&Ml &MQ P &MM
and
ele;
Oij = 7 (2.28)

(V= K)(N = KPP
where m = 1,2,...,M. In this case, N is the number of total observations and
K is the number of independent variables in equation m.

The SUR estimators are equivalent to the generalized least squares esti-
mator (Kmenta, 1997) assuming the disturbances are normally distributed
and non-autoregressive (Lemay, 1990). If the equations are in fact related,
thus the name ”"Seemingly Unrelated Regressions”, then SUR can be used to
estimate parameters and the variance-covariance matrix more efficiently than
by using OLS for each equation. If the equations are not related by means of
the cross-equation variance-covariance matrix, in this case a singly banded
diagonal matrix, then the residuals of the equations in the system are in fact
not related, thus the equations are not related.

As with GLS, SUR can be applied to systems of equations that contain
autoregressive and heteroskedastic error distributions in any of the equations
(Parks, 1967).

Since using this approach involves more work than OLS and the payoft, in
terms of efficiency and consistency may prove to be minimal, it would be nice
to be able to estimate the amount of efficiency gained by utilizing SUR. A
few authors have addressed this question. Zellner (1962) examined the effects
of the related error terms to gauge the influence of using SUR when o;; = 0
for i ## j and found that there is no advantage to using GLS over OLS. In

fact, in this case, the OLS estimates are equivalent to the SUR esimates. If
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the error terms are actually related, the more correlated the disturbances,

the greater the efficiency (Greene, 2000; Zellner, 1962).

2.4.2.2 Three-Stage Least Squares (3SLS)

Three-stage least squares uses both SUR (to correct contemporaneous
correlation) and 2SLS (to correct simultaneity bias) techniques to estimate
the structural coefficients of a system of equations (Zellner and Theil, 1962).
The first two stages of the 3SLS procedure are the same as 2SLS. The
variance-covariance matrix is estimated from 2SLS residuals and the entire
system is fit using SUR. The method produces consistent and efficient esti-
mates of the variance-covariance matrix for the system of equations (Kmenta,
1997; Greene, 2000). It should be noted that when the disturbances among
the equations are not correlated, then 3SLS is equivalent to two-stage least
squares estimates (Kmenta, 1997; Greene, 2000).

Recalling from equation (2.23) ,

-1

Biasns = | (ZX)(XPX) ™ (XjZy) | (XXp)(XGX,) " Ky (2:29)

the 2SLS estimators can be "stacked”, similar to the SUR method, to yield,

[ X (X, X)X Zy 0 0 0
5 0 Xo(X5X5) ' X5Zs 0 0
: 0 :
(2, 0 0 0
. 0 Zs 0 O
7 = > _
0
| 0 0 Zm
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and using SUR to perform the final estimates to correct for contemporaneous

correlation yields,

bszs =2 (27 @1) 2] Z (T QI Y (2.30)

The asymptotic variance-covariance matrix for the estimator is

. . -1
Asympt. Var-Cov [535,;5] = [Z’ (2_1 ®I) Z] (2.31)
which would be estimated from the inverse matrix in equation 2.30.

For normally distributed disturbances, 3SLS produces asymptotically ef-
ficient estimators as does the FIML estimators (Greene, 2000).

2.5 A FORESTRY EXAMPLE

A simple example to demonstrate how to obtain the parameter estimates
for a system of regression equations is in order. Let us examine the relation-
ship of a height growth and diameter growth model for young plantations.
As we have seen from Chapter 1, there are plenty of variables that can be
used to describe height growth and diameter growth. Often height growth
is used in diameter growth equations. This is an example of such a model.
Lets assume a simple peaking function for both height growth and diame-
ter growth and that the only variables in the equations are site index (S),
age (A), total height (H), breast height diameter (DBH), and crown ratio
(CR). In this set of variables we have variables that can describe tree size,
vigor, competitive position and site productivity. We will not address the
specifics of the appropriateness of variable selection, regression diagnostics
or variable transformations except for the fact that this example uses a log

transformation on some variables.

Our set of regression equations for diameter and height growth are,




92

In(DINC) = ao+a;In(DBH) + asIn(HINC) + a3CR + epinc
ID(H[NC) = bo + bl ID(DBH) + bgf{2 + ng + b4A + €ginc

where In is the natural logarithm and ap and by are vectors of regression
coeflicients.

In this case, the model can be estimated using OLS, 2SLS, SUR or 3SLS.
The model can be solved for the parameter estimates using various statistical
software packages such as SAS (SAS Institute, Inc., 1987) and R (Ihaka and
Gentleman, 1996). The R code, using the systemfit package (Hamann,
2002) to solve the equations looks like:

dinc <- 1ldg ~ 1ldbh + lhg + cr

hinc <- 1hg ~ 1dbh + ht2 + site + age
inst <- 7 1ldbh + cr + ht2 + site + age
labels <- list( "dinc", "hinc" )

system <- list( dinc, hinc )

fitlsls <- ols.systemfit( system, inst, labels, data )
fit2sls <- twostage.systemfit( system, inst, labels, data )
fitsur <- sur.systemfit( system, inst, labels, data )

fit3sls <- threestage.systemfit( system, inst, labels, data )

For users of SAS PROC MODEL, to obtain parameter estimates, the code
would look like:

proc model data=example;

endogenous lhg;

instruments 1dbh cr ht2 site age;
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ldg
lhg

a0 + al * 1dbh + a2 * lhg + a3 * cr;

b0 + bl * 1dbh + b2 * ht2 + b3 * site + b4 * age;

fit ldg lhg /ols;
fit ldg lhg /sur;
fit 1dg lhg /2sls;
fit ldg lhg /3sls;

run;

quit;

In this case, one would not use SUR to obtain parameter estimates be-
cause the equations contain endogenous variables. It is included here to

demonstrate the syntax of the software package used to obtain estimates.

2.6 CONCLUSIONS

There are many choices for generating parameter estimates for systems
of regression equations where the variables may or may not be related by
the structural relationships or the error terms. Three-Stage Least Squares
is appropriate when there are both endogenous variables and the equations
are related through the error terms. Seemingly Unrelated Regressions can be
used when the equations do not contain endogenous variables, but the error
terms are related. The Two-Stage Least Squares method is used when the
system of equations contain endogenous variables and the equations are not
related through the error terms. If there are no endogenous variables and
the equations are not related through the error terms, then Ordinary Least

Squares is an appropriate method. For a detailed example of fitting a system
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of equations, including the determination of identification see Furnival and
Wilson (1971). In short, the estimation method can be broken into a table,
Table 2.1, that contains four cells, each cell represents a unique set of criteria
that determines which estimation method may be used to obtain parameter

estimates for a system of equations.

Type of No Endogenous | Endogenous
Relationship Variable Variables
Single Equation

Estimation Methods OLS 25LS
Simultaneous

Estimation Methods SUR 3SLS

Table. 2.1: Decision matrix for determining which parameter estimation
method is appropriate

The process of determining which method to otain parameter estimates
is not always simple. If, over the course of model development, endogenous
variables become insignificant and the system of equations changes classes the
parameter estimates are equivalent to a method that utilizes less information.
For example, if a system that is solved using 3SLS, has an endogenous variable
that becomes insignificant and the model developer drops the term, or fits the
models using SUR, the parameter estimates are equivalent. Likewise, if the
model contains significant endogenous variables, but the variance-covariance
matrix is a band-diagonal matrix (all of the off diagonal elements are zero)
when fit using 3SLS, the system is equivalent to 2SLS. If there are no en-

dogenous variables and there are no relationships in the error terms among

the equations, then all the estimation methods are equivalent to OLS.
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3. SIMULTANEOUS EQUATIONS FOR INDIVIDUAL TREE GROWTH
IN YOUNG SOUTHERN OREGON AND NORTHERN CALIFORNIA
DOUGLAS-FIR PLANTATIONS

3.1 ABSTRACT

This paper presents the results of a diameter and height increment model
developed for Douglas-fir ( Psuedotsuga menzesii (Mirb.) Franco) in young
Southern Oregon and Northern California conifer plantations. The equa-
tions were fit using Ordinary Least Squares (OLS), Two-Stage Least Squares
(2SLS) and Three-Stage Least Squares (3SLS) to examine the effects of fit-
ting the equations independently and as a system of equations. The basal
diameter growth model, which used height growth as an endogenous vari-
able, was strongly influenced by the fitting method and was less robust when
projected past the bounds of the data. The height growth model and the
static crown ratio model were not strongly influenced by the other equations
in the system. A few points at the extremes of the dataset appear to have
had influence on the basal diameter growth model. Ordinary Least Square
and Three-Stage Least Squares produced simlar projections when an example

tree was projected sixty years into the future.

3.2 INTRODUCTION

The incorporation of young stand models into the forest planning pro-
cess has benefits beyond simply projecting a tree list until conditions are
appropriate for an inventory projection system to take over simulation of
the older stand. Site preparation methods, stocking considerations, species

composition, herbicide treatments, and stand density management decisions
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influence the development of young stands in such ways that make modeling
the effects of those treatments within older stand models difficult. Typically,
older stand models such as FVS (Stage, 1975), ORGANON (Hann et al.,
1993), and CACTOS (Wensel et al., 1986) are designed to predict future
stand conditions by projecting a tree list forward in time at intervals longer
than those found in young stand models (Ritchie and Powers, 1993; Opalach
et al., 1990). While these former models have proven to be adequate at
projecting changes that occur over longer time intervals (5 to 10 years) in
established stands, these models have limited capabilities in predicting the
influence of management decisions that occur during stand establishment
such as stand density manipulation or the removal of competing vegetation
and are not designed to handle short term changes such as those found in the
stand establishment time horizon which occurs from planting through fifteen
years to twenty years.

Young plantation or regeneration models, used for those forest stands de-
scribed as being less than 20 years old, have received less attention than older
stand inventory models because young stands contain less value and are con-
sidered more structurally complicated than older stand models because of the
influence of competing vegetation, difficulties in addressing site productivity
and the influence of mortality (Ritchie and Powers, 1993; Hann et al., 1993;
Wensel et al., 1986). Furthermore, these models are usually developed as a
set, of independent regression equations and are applied as such. These mod-
els often contain endogenous variables (Stage, 1975; Krumland and Wensel,
1981; Ritchie and Hann, 1985) such as height growth in diameter increment
models and have been developed without addressing the “errors-in-variables”
problems associated with fitting systems of equations that contain endoge-
nous variables or variables that are predicted in one equation and used in

another equation during the same projection period.

The development of growth equations for individual tree models typically
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includes the development of single equations to estimate growth rates for
standard tree measurements. Historically, equations for diameter growth,
height growth, crown recession, changes in stem taper, ingrowth and mor-
tality have been developed independently and used together as a suite of
equations that defined a growth model system (Hann et al., 1993; Ritchie
and Powers, 1993; Stage, 1973b; Wensel et al., 1986). Typically, these equa-
tions contain a basic set of variables for the prediction of multiple attributes.
Diameter at breast height, stem height, and some measure of the competi-
tive position may be included as dependent variables in multiple equations
to predict different attributes for the same observation such as diameter
growth, height growth and crown recession. Unfortunately, developing cross-
correlated equations with a common error structure may not capture the
correct parameter estimates and may lead to prediction error because the er-
ror structure of biological data rarely contain an independent and normally
distributed error term for any one of the individual equations. Contempora-
neous correlation among equations and simultaneity bias among dependent
variables can be addressed utilizing single equation methods of estimation
such as Two-Stage Least Squares (2SLS) (Theil, 1953) and simultaneous es-
timation methods such as Three-Stage Least Squares (3SLS) (Zellner and
Theil, 1962; Borders, 1989; Kmenta, 1997; Lemay, 1990). In addition, exoge-
nous variables such as incoming photosynthetically active radiation (PAR),
precipitation and topographical features such as slope, aspect and elevation
can be treated accordingly within the system of equations without increasing
the covariance among the dependent variables over independently developed
equations.

Until recently, many of the models that address simultaneity bias and con-

temporaneous correlation have been whole stand models (Hasenauer et al.,
1998; Gregoire, 1987). Hasenauer et al. (1998) used 2SLS and 3SLS in addi-

tion to Ordinary Least Squares (OLS) to examine the consequences of fitting
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a diameter increment, height increment, and crown ratio equation for individ-
ual trees in an older stand model for Norway spruce (Picea Abies L. Karst)
in Austria. The authors stated the advantages of using 3SLS even when
there are no endogenous variables with in a system as producing parameter
estimates that were consistent and unbiased which would not be the case in
models that were fit independently and used together as a system. They sug-
gested, as do many econometrics texts (Kmenta, 1997; Greene, 2000), that
the gain in effeciency will increase the precision of the model projections and
the larger the cross equation correlations, the larger the increase in efficiency.

Hasenauer et al. (1998) and Rose and Lynch (2001) both addressed si-
multaneous equation methods in models that are applicable to older stands.
Rose and Lynch (2001) developed Seemingly Unrelated Regression (SUR)
models for basal area increment that utilized the correlation of the the stand
basal area increment with the tree level basal area increment by utilizing a
ranking method. The minimum age of the sample was 21 years. While age
is rarely used in recently developed increment models, these authors have
addressed the contemporaneous correlation problem by fitting models using
a simultanous estimation method.

In young plantations, there may not be significant effects among incre-
ment equations because diameter growth, height increment and crown dy-
namics may not be influenced by each other as strongly as in older stands
where inter-tree competition has a strong influence. The components of the
equations may not be influenced by density or trees in a young stand may
not have differentiated enough for a competitive position variable to be sig-
nificant.

To date, there has been no work performed on examining the effects of
simultaneous equation estimation for individual trees in young stand models.
The paper examines the consequences of fitting individual tree increment

models using least squares methods for individual equations and systems of
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equations for Douglas-fir in young plantations.

3.3 DATA

Data were collected from 109 plots established in stands in Northern
California and Southern Oregon during the 1994 through 1999 field seasons.
Sites were selected from plantations in National Forest, Bureau of Land Man-
agement and private land in Oregon and California. Candidate stands were
selected from across a range of ages and elevations by stratifying all potential
stands into age and elevation classes. All sites were sampled on a single two-
year interval. The remeasurement was conducted two years, as near to the
day as possible, subsequent to the initial measurement. In most instances,
remeasurement was within two or three days of the scheduled two-year re-
measurement date. The latitude of the selected stands ranged from 40/ 10°59”
N to 4324’30” N. Longitude ranged from 123 48°00” W to 121'51’59” W.

All sites were plantations less than 26 years of age at the time of the
initial measurement. Age was defined as the difference between the current
year and the planting year. Some sites had residual trees from the previous
stand. About 21 percent of the plots had greater than 20 square feet of basal
area per acre on one or more plots in trees larger than 12 inches DBH. About
11 percent had greater than 20 square feet of basal area per acre on two or
more plots.

A cluster of four to ten plots was established in each of the 109 candidate
stands. Each plot consisted of a single fixed plot with an 11.78-foot (3.59 m.)
radius for all trees with a DBH less than 6.1 inches (15.2 cm) and shrubs.
Trees with a DBH larger than 6.1 inches were sampled using a 20 BAF
variable-radius plot. For all woody vegetation with a basal diameter greater

than 0.3 inches, D6 (basal diameter of the five largest stems 6 inches from the
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ground, measured to the nearest 0.1 inch using calipers); DBH (breast height
diameter, measured to the nearest 0.1 inch, using calipers); HT (length of
the longest stem, measured to the nearest 0.1 foot, using the tangent pole
method); NSTEMS (total number of stems over 0.3 inches in diameter); HCB
(height to base of the live crown, measured to the nearest 0.1 foot, using the
tangent pole method); CWL (crown width measured on long axis, measured
to the nearest 0.1 foot); CWS (short crown axis, measured to the nearest 0.1
foot); LEADER (length of the leader for the current year on trees shorter
than 30 feet, measured to the nearest 0.1 foot); HT_INC (previous two-
year internode length, measured to the nearest 0.1 foot); and a damage and
severity code was measured and recorded. Two-year height growth (HINC)
was calculated by subtracting the ending height from the initial height. Basal
diameter increment (DINC) was computed as the change in D6 basal area
translated back into a diameter increment.

Soil data were collected from a single soil pit in each stand located in the
center of the plot cluster. Pit depth was determined by lithic contact. Field
textural analysis was performed for each soil horizon. Water holding capacity
(WHC) and percent rock content were calculated for each soil horizon and
summed over all horizons to obtain total water holding capacity for the stand.
Coeflicients to calculate water-holding capacity for each layer were obtained
from USDA (1984). Mean annual precipitation for stands in Southern Oregon
were assigned from published soil association maps (Stearns-Smith and Hann,
1986). In Northern California mean annual precipitation was assigned using
Isohyetal maps.

There were 1205 total observations in the original dataset. The final
database, 428 observations, contained only those tree records that contained
no damage, had positive height and basal diameter growth rates and were
not dead in the remeasurement. The ranges for the variables are presented

in Table 3.1.
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Variable Min Mean Max
Basal Diameter, (in) 0.10 2.040 17.90
Total Height, (ft) 2.01 9.139 53.40
Water Holding Capacity, (in) 2.78 6.594 11.25
Crown Ratio 0.18 0.810 0.98

Table. 3.1: Ranges for tree data.

3.4 METHODS

Since the objective of the study was to determine the advantages of using
simultaneous methods of estimation for young tree increment models, both
diameter and height models were developed as well as a static crown ratio
model. Douglas-fir was the most abundant species in the dataset and was

used to develop the models for investigation.

3.4.1 Dependent Variables

The change in basal diameter growth can be modelled in the same fashion
as the chang in diameter at breast height. Modelling a change in diameter
directly or computing a change in the diameter by transforming a change
in basal area is widely used (West, 1980; Huang and Titus, 1995; Hann and
Larsen, 1991; Dolph, 1992b; Stage, 1973b). West (1980) found no advan-
tage of using basal area increment over diameter increment. The diameter
increment model was developed from the basal diameter (D6) area increment
(BINC) and then converted into a diameter increment (DINC) for the projec-
tions. Height increment (HINC) was estimated as the change in total height
for undamaged trees. Both height and diameter increment were fit for the

two year interval and then divided by two to obtain an annual projection.
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3.4.2 Explanatory Variables

The explanatory variables, which typically fall into five categories Vanclay
(1994), were included when applicable. The five classes are plant size, vigor,
competitive position, density and site productivity. Since the data consisted
mostly of plots that had not yet reached crown closure, some of the classes
were not meaningful, primarily, density and competitive position.

The same classes of explanatory variables were used in the development
of the basal diameter increment, height increment and crown ratio models.
This was done to keep the model complexity to a minimum due to potential

variable interaction.

3.4.2.1 Size

Tree size, commonly defined as diameter, height, volume or some com-
bination thereof, was examined. In this case basal diameter (D6) and total
height were examined in the model for analysis. Since DBH was only found
on a subset of the plants, and only those trees with positive basal diameter
and height growths were modelled, DBH was not included in the model for

basal diameter growth.

3.4.2.2 Vigor

Crown ratio (Dolph, 1988a; Ritchie and Hann, 1990), diameter growth
(Arney, 1985) and height growth (Wykoff et al., 1982) were examined as
measures of tree vigor. Using predicted height growth as a vigor variable

in the basal diameter function allowed the examination of an endogenous
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variable in the system of equations and thus when height growth was included
in the diameter growth equation, the system was fit using 3SLS.

Height growth was also included in the basal diameter growth model
to examine the effects of fitting the system using simultaneous estimation
methods. Early model fits resulted in multicollinarity when basal diameter
growth was included in the height growth model and height growth was

included in the basal diameter growth model.

3.4.2.3 Competitive Position

The competitive position of a tree is often used to relate how well the plant
will respond to release when given the opportunity (Vanclay, 1994). Basal
area in larger trees is often used in inventory update models for older stands
(Wykoff, 1990). Other authors have used basal area, broken into plant form
classifications with some success (Ritchie and Powers, 1993). Basal area in
taller (BAIN), as defined by the total sum of basal area in plants taller than
the subject plant was examined as a potential competitive position variable.
Crown ratio is often used in young models and since the variable is easy
to compute when compared to basal area in larger trees it was chosen as a
measure of tree vigor and competitive position (Dolph, 1992a). Basal area
in larger is not a good measure in young stand as the majority of plants are

not influenced by other plants though crown competition.

3.4.2.4 Density

Plot basal area (Dolph, 1992b; Hann and Larsen, 1991), stems per acre
(Arney, 1985) and plot crown closure (Wykoff, 1990; Opalach et al., 1990)
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have successfully been used as measures of density. Most of the plots were
far from crown closure and the influence of these variables were rarely sig-
nificant. Plot percent crown closure was chosen to be the varible that would
be included in the model because many authors believe a model should be
robust enough to account for changes in density (Ritchie and Powers, 1993;
Hann et al., 1993). None of these variables gave satisfactory results during

the initial model development.

3.4.2.5 Site Productivity

Examined site productivty variables, those variables that allow a model to
respond to different site productivity attributes, were water holding capacity,
percent slope, aspect, and elevation. Water holding capacity was defined as
the amount of available water found in the soil when saturated. These values
are determined by measuring the texture of the soil horizons, determining the
potential water holding capacity, and summing the potential water holding
capacities for all the soil horizons. This variable is time intensive and more
precise when compared to other tree-specific site productivity measures such
as site index or site productivity index (Huang and Titus, 1995). Also, site
index measurements in young stands are suspect as the estimates are subject
to bias due to vegetation management patterns. Water holding capacity
is advantagous because potential water holding capacity is independent of
previous vegetation attributes as site index has been shown to be subject
to shrub competition in early stages of stand establishment. Water holding
capacity was also advantageous because there were no residual trees which
could be utilized to estimate site index and site index has also been shown

to be unreliable in young plantations (Newton and Hanson, 1998).
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3.4.3 Equation Forms

The basic model form for the equations was intrinsically linear (Ratkowsky,
1990) so that the models could be linearized using logarithmic transforma-
tions. Since both height growth and basal diameter growth for Douglas-fir
increase, peak, then decrease, a log-log model was used with a squared term
and log term in the explanitory variables to mimic the behavoir of the ex-

pected response curve.

3.4.4 Parameter Estimation

The initial models were fit using linear regression in the R software pack-
age (Thaka and Gentleman, 1996). An additional R package, presented in the
Appendix (Hamann, 2002), was developed by the author to perform simul-

taneous equation estimation.

3.4.4.1 Initial Equation Development

The initial equations where developed by performing a stepwise regression
on a basic set of variables. The same set of variables were included in the
basal diameter and height increment functions so that variables that were
significant to both equations would be included in both models when fit
simultaneously. Only basal diameter (D6), total height (THT), water holding
capacity (WHC), plot percent crown closure (PLOTPCC) and basal area
in taller plants (BAT) where found to be significant for both of the initial
models.

After the initial models were fit, the studentized residuals, standardized
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residuals were examined for both the basal diameter increment and height
increment models. Influential observations were detected by examining plots
of DFBETAS and DFFITS (Draper and Smith, 1998) for both models. There
were intitially seven residual points for the height growth model that were
outside the range of the rest of the residuals. The basal diameter growth
model contained no outliers during the initial inspection.

The system of equations that was used for the final model analysis was,

In(BINC) = ao+ ayIn(D6) 4+ ayIn(HINC) + a3 BAT (3.1)
In(HINC) = by+ b In(HT)+ byHT? + bsWHC +b,C  (3.2)
C = co+cIn(D6)+ c,HT? + c3BAT (3.3)

where,

C = (L - 1) (3.4)

The initial crown ratio model was developed as a logistic regression model
which gave poor results. The model was then developed using a peaking func-
tion. It should be recognized that in young stands crown ratio is typically
a monotonically decreasing function during stand establishment‘as trees are
growing in open conditions and are subject to crown recession as crown clo-
sure occurs. These stands have not developed to a stage where crown reces-
sion would show as a response to release as would be the case in older stands

where competition induced mortality or stand manipulation may occur.
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3.4.4.2 Simultaneous Equation Development

These models were then fit using 2SLS to account for the endogenous
variable, height growth, in the basal diameter growth and finally using 3SLS
to account for the contemporaneous correlation. The models where fit using
a custom computer program in R, systemfit, which is presented in the
appendix. Diagnostics were then performed on the simultaneous fits and
compared to the individual fits.

The residuals were plotted over the predicted values for basal area in-
crement and height increment to ascertain the presence of heterscedasticity.
Normal probability plots were also examined to determine normality. The
predicted 2SLS and 3SLS values where plotted on the same graph to exam-
ine relationships between the residuals and the predicted between the two
methods.

The cross-equation correlation, r;;;, was computed for each of the pre-
dicted values from the three equations (Hasenauer et al., 1998). The cross-

equation correlation was defined as,

o — 233 Cij Tk
ijk =
V @ Caa) (2 Crie)

(3.5)

where 7 is the correlation between the predicted values of equations i and j
for the k™ observation. Cj; is the cross-equation variance-covariance matrix
between equations i and j.
Improvement in prediction efficiency (Hasenauer et al., 1998),
se; k(2S5 LS
= se:::E3SLS; (3.6)

where
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S€ik = x;kéﬁ]}ik (37)

and z;, is the row vector of covariates for a single tree observation was com-
puted for each of the observations in the database to ascertain the improve-

ment of 3SLS over the 2SLS fitting method.

3.5 RESULTS

The root mean-squared-error (RMSE) and R? values for the final models
are presented in Table 3.2 and the parameter estimates and standard errors
are presented in Table 3.3. A table of the equation correlations is presented
in table 3.4.

Box plots for the residuals across the range of basal diameter and height
classes for the diameter increment and height increment models were gen-
erated to examine the influence of fitting method on the results. The box
plots for two year basal diameter increment and height increment residuals
are presented in Figure 3.1.

The covariance matrices between the three equations were nonzero for
all elements which shows correlation among the independent variables in the
equations. The correlations among the predictions for the three equations

are presented in Figure 3.2. No correlation among the predicted variables in

OLS 2SLS 3SLS
Model RMSE R? RMSE R? RMSE R?
BINC 0.72944 0.76293 0.72993 0.76261 0.72947 0.76291
HINC 0.56709 0.51537 0.56822 0.51343 0.56826 0.51336

LOGITCR2 0.61306 0.34843 0.61306 0.34843 0.61309 0.34838

Table. 3.2: Final model fit statistics for OLS, 2SLS and 3SLS methods




OLS 2SLS 3SLS
Model Variable Estimate SE Estimate SE Estimate SE
BINC (Intercept) -5.360434 0.055979 -5.383557 0.086759 -5.352173 0.084726
In D6 1.188661 0.053724 1.163077 0.090903 1.191516 0.088486
InHINC 0.504312 0.055828 0.546578 0.133363 0.497897 0.128885
BAT -0.002965 0.000819 -0.002916 0.000831 -0.003102 0.000827
HINC (Intercept) -1.391300 0.138480 -1.397185 0.139425 -1.419886 0.138978
InHT 0.815180 0.061414 0.774974 0.111570 0.776566 0.111267
HT? -0.000495 0.000113 -0.000460 0.000139 -0.000463 0.000139
WHC 0.048494 0.015575 0.046868 0.016053 0.049854 0.015954
LOGITCR2 -0.194357 0.042803 -0.250117 0.136006 -0.250394 0.135547
LOGITCR2 (Intercept) -1.518022 0.039921 -1.518022 0.039921 -1.519307 0.039864
In D6 -0.674752 0.048128 -0.674752 0.048128 -0.669337 0.047385
HT? 0.000651 0.000112 0.000651 0.000112 0.000635 0.000108
BAT 0.001924 0.000686 0.001924 0.000686 0.001987 0.000685

Table. 3.3: Final model estimates and standard errors for OLS, 2SLS and 3SLS methods

69




Residual

Residual

-2

-4

-2

-4

BINC Residuals (OLS) BINC Residuals (2SLS) BINC Residuals (3SLS)

- < - <+
-1 8 o o~ - Q ~ - @8 o
e e = 2 o 4B =l 2 o Oy =
1 — =T a === L-I' ‘—_.1_—' a ] — &
i _é_ -g— —l o o~ _é- _g- —l [an o~ _é_ -g— —t
8 o ' 8 o ! 8 o
o < © < °
— o o 1 [e] o 7 o (o]
T T T T T T T T T ] T T T T T
0 1 2 3 4"+ 0 1 2" 3" 4"+ 0 1 2 3 4"+
Diameter Class Diameter Class Diameter Class
HINC Residuals (OLS) HINC Residuals (2SLS) HINC Residuals (3SLS)
- < <
o o o
— < ° = 3 — e 2 - 3 — e 2 -
o [ I R ) e S i S— s < 7 ] = [ 1 == 1 ] s © 7L ] = | ] P== I ]
1 -g— - o) T T, i) 1 T —-
¢ o o o o
- T 4 T
T T T T T T T T T T T T T T T
o 10’ 200 30" 40+ 0 10’ 20’ 300 40+ o 10 20 300 40+
Height Class Height Class Height Class

0L

Figure. 3.1: Box plots for basal diameter growth and height growth over basal diameter and height
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a set of equations should display a random pattern centered vertically about

zero for the range of predicted values.

OLS
BINC HINC LOGITCR2
BINC 1.0000000 -0.06746815 -0.28518169
HINC -0.0674681  1.00000000  0.00626702

LOGITCR2 -0.2851817 0.00626702  1.00000000

2SLS
BINC HINC LOGITCR2
BINC 1.000000 -0.1170135  -0.2773077
HINC -0.117014 1.0000000 0.0651835

LOGITCR2 -0.277308 0.0651835 1.0000000

3SLS
BINC HINC LOGITCR2
BINC 1.0000000  -0.0809835  -0.2865397
HINC -0.0809835 1.0000000 0.0666092

LOGITCR2 -0.2865397  0.0666092 1.0000000

Table. 3.4: Correlation matricies for OLS, 2SLS and 3SLS methods

3.6 DISCUSSION

The objectives of this study were to determine if using a simultaneous
equation estimation method would produce superior parameter estimates and
fit statistics over single equation methods such as 2SLS and to assess the
behavior of a system of equations in long projections.

The answer to the first objective was simple. There was a slight increase
in estimation efficiency by using a simultaneous approach to parameter esti-

mation. The ratio in efficiency, as defined by equation (3.6), was computed
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Figure. 3.2: The cross-equation correlations (r;;) between each pair of predic-
tions versus its predictions as the resulted from the 3SLS output.
r12 indicates the correlation between BINC and HINC, r13 in-
dicates the correlation between BINC and LOGITCR2 and r23
represents the correlation between HINC and LOGITCR2.
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for all the observations in the database. Table 3.5 shows the range in in-

creases in estimation efficiency for the 3SLS parameter estimates over the
2SLS.

BINC HINC LOGITCR2
Min.  1.000 1.000 1.000
Mean 1.016 1.003 1.005
Max. 1.034 1.006 1.028

Table. 3.5: Prediction efficiency ratio (2SLS/3SLS) for final model (1.00 =

no increase).

To examine the influence of simultaneous fitting methods on projected
trees, a single tree was projected 60 years into the future without mortality.
The initial tree values for basal diameter and total height were 0.1 and 1.0,
respectively. These initial observations were considered typical of the young
trees that would be projected using the set of equations. The models were

1 and a water holding capacity of 7

projected using assuming 500 stems-ac™
which was slightly higher than the mean of the dataset. The tree record was
assumed to be a dominant tree where the basal area in taller plants value
was zero because a dominant tree would be less subject to mortality. Log

bias was corrected for using the method described by Baskerville (1972).

3.6.1 Basal Diameter Increment

The R? values for the basal area increment model remained roughly the
same, as did the R? values for the other models. The basal area incre-
ment function showed an improvement in RMSE when the fitting method
accounted for contemporaneous correlation (3SLS) and show an improve-
ment over the 2SLS when simultaneity bias was accounted for in the 3SLS

fits. The RMSE values for the basal area increment function were 0.7294,
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0.7300 and 0.7295 for the OLS, 2SLS and 3SLS methods, respectively. In this
case, the RMSE value for the OLS fits suggests that model would produce the
most precise estimates when compared to the 2SLS and 3SLS models. This
may not be the case if there is a specification error by including the crown
ratio variable in the height increment model. Hasenauer et al. (1998) found
the crown ratio variable was insignificant in the 3SLS model and was thus
removed from the system of equations, uncoupling the system of equations.

The significance of the parameter estimates in the basal diameter incre-
ment model was not strongly influenced by the fitting method as was the
case in the height increment model. No terms became insignificant as the
equations were fit simultaneously as other authors have found (Hasenauer
et al., 1998). The standard error estimates for all terms but the basal area
in taller term increased from about 0.05 to 0.08 and for the height growth
term, increased from 0.05 to 0.12 when fit using a simultaneous method. The
standard error estimates for the BAT term remained roughly the same value
of 0.08 suggesting little simultaneity bias for the 2SLS and little evidence of
cross-equation relationships for the 3SLS fits.

Basal diameter projections were carried out for 60 years, well past the time
at which most young stand models are supposed to be useful to compare the
effects of projecting young stands over long periods.

The OLS projected basal diameter at the end of the 60 year interval
was 25.2 inches. The 2SLS projected basal diameter at the end of the 60
year projection was 23.4 or 92.8 percent of the OLS model. The projected
basal diameter for the 3SLS equation was 25.60 or 102 percent of the OLS
projections. The behavior of all three equations remained the same for the 60
year projection. All increased, peaked, then decreased at a decreasing rate.
The OLS basal diameter growth model peaked at age 21 or 7.69 inches, the
2SLS model peaked at 20 years or 6.84 inches and the 3SLS model peaked at
21 years or 7.83 inches. All three models peaked near the same age, but the




75

0.6 1

Basal Diameter Growth, inches
o
>

0.2 1

Method
..... QSLS
- = - 38LS
—_— OLS

0 5 10 15 20 25
Basal Diameter, inches

Figure. 3.3: Basal diameter increment over basal diameter for
OLS/2SLS/3SLS models.




76

Basal Diameter

1 1 1 1 1 1 ]

25
20
/2]
(0]
L
[&)
£ 156+
8
(0]
£
©
o
%10—
m
5_
Method
..... QSLS
0 - — - 35LS
—_— OLS
0 10 20 30 40 50 60

Years

Figure. 3.4: Basal diameter increment projections for OLS/2SLS/3SLS mod-
els.




77

basal diameter values were very different in practical terms. The 3SLS and
OLS models were roughly equivalent up to the peak at 20 or 21 years and had
close to the same values in basal diameter and basal diameter growth. The
2SLS model peaked much sooner and the value was much less than either the
OLS or 3SLS models.

Practically, the age at which young trees from small tree models are passed
to older stand inventory projection models typically occurs before age 20
years. The projections showed no practical difference until the age of 30,
after the peak in basal diameter increment. After 30 years, OLS produced
higher basal diameters than did the 2SLS and 3SLS models and projections
past age 30 should be used with caution regardless. In this case using either
the OLS or 3SLS models should yield similar results until age 50, again well

past the usefulness of a young tree growth model.

3.6.2 Height Increment

The changes in the height increment model were negligible as the values
for the parameter estimates remained roughly the same for all three methods
of estimation. The OLS and 2SLS parameter and standard error estimates
for the height growth model remained the same and changed slightly when
fit using the 3SLS method. All parameter estimates for the height growth
model were significant.

The height increment model projection showed no preferable fitting method.
Unlike the basal diameter increment model, there was no practical difference
in the location of the peaks for all three fitting methods and very little differ-
ence in the projections resulting in similar projections for the entire 60 year
period. All three fitting methods peaked at age 19 or 28 feet in height as

can be seen in figure 3.5. The maximum height growth rates for the OLS,
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2SLS and 3SLS methods were 3.26, 3.24 and 3.27 ft-yr~!, respectively. The
OLS model predicted a slightly lower total height at the end of the 60 year
projection than the 2SLS and 3SLS models as can be seen in figure 3.6.

3.6.3 Crown Ratio

The crown ratio model had the same behavior as the height growth model
for all three fitting methods. The R? for all three fitting methods remained
close to 0.348 for the crown ratio model.

As figure 3.7 shows, the fitting method had very little influence on the
projections for the crown ratio model. The crown ratio for the OLS model
was roughly the same until just after the peak at age 17 for all three fitting
methods. The maximum crown ratio was about 0.91 for the OLS and 3SLS
methods and 0.90 for the 2SLS method.

All three models would probably over-predict crown ratio when the pro-
jected trees are transfered to an older inventory projection type model since
crown closure is not included in the models and mortality was not modelled

here.

3.7 CONCLUSIONS

As discussed by other authors (Hasenauer et al., 1998), developing si-
multaneous regression equations is advantageous to single equation methods
when growth models are based on multivariate attributes for a single tree
observation. Simultaneous methods will produce consistent and efficient pa-

rameter and variance estimates over single equation methods even when there

are no endogenous variables, if the equations are related in the disturbances.
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In this case, fitting the height growth and crown ratio models using a
simultaneous technique yielded few if any advantages. The projections re-
sulting from the OLS, 2SLS and 3SLS methods all yielded similar results
except for the basal diameter increment model. The OLS and 3SLS models
for basal diameter increment models behaved similarly. The values from pro-
jections for the 2SLS model were much less than anticipated and should not
be used to project young trees to crown closure or some other age at which an
older model would begin projecting the trees. The large difference between
the 2SLS and the OLS and 3SLS projections is due to the differences in the
D6 and HINC parameters in the three models. The D6 parameter is about
3 percent less in the 2SLS than the OLS or 3SLS models and the HINC pa-
rameter is about 5 percent higher in the 2SLS model than the OLS or 3SLS
models. This result is most likely because the relationship between the er-
ror terms of the BINC and HINC equations is stronger than the endogenous
relationship of the height growth parameter in the BINC model.

As most young stand models are not intended to be used past the range of
data used to fit the models, a caution often disregarded, the models were pro-
jected out well past the time at which another model would project the tree
records to examine the influence of inappropriately projecting tree records
with a poorly fit model. In this case, if the user of the model would adhere to
restricting the projections between ages one and fifteen or twenty, the OLS
and 3SLS models would produce the similar results. In fact, all three models
produce the same results until the basal diameter reaches about five inches
which is typically the limit for young stand models.

Since the majority of the data for the model are below five inches in
basal diameter, it is not surprising that all three fitting methods produce
similar projections below five inch trees. The influence of the larger trees

and the cross-equation correlation among the larger trees was significant by

the results of the projections for all three models past the peak. The OLS
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model peaked later and had peaked at a larger value than the 3SLS model
which would suggest that the OLS model may over-predict the maximum
basal diameter growth as the parameter estimates for the OLS model is not
asymptotically efficient or unbiased, unlike the 3SLS model.

While modellers often attempt to generate models that reflect the observa-
tions as accurately as possible, in many cases modelers will choose parameter
estimates that are less efficient and biased over those that are not in order to
obtain model projections that reflect their experience regardless of the model
performance in terms of fit statistics or statistical test results.

The correlation of the residuals among the equations maintained the same
signs for all three fitting methods. The correlation between the BINC and
HINC and BINC and LOGITCR2 equations was negative, suggesting that
there may be a change in allocation among the equations for the dataset as
a function of tree size. The value of the correlation between the BINC and
HINC changed from -0.07 for the OLS models to -0.11 for the 25LS and back
up to -0.08 for the 3SLS fits. The change was less noticable for the BINC
and LOGITCR2 correlation.

It should be reinforced that most young stand models are not intended
to be used past a certain size or age limit and since the models developed
here had very few points over a basal diameter of five inches, the projections
produced adequate results for the OLS and 3SLS models. If there were more
observations in the large tree size classes the OLS and 3SLS models would
probably be more similar at and past the peak in the projections.

The parameter estimates, RMSE values and standard error estimates for
the final 3SLS are unbiased and consistent barring a specification error from
one of the equations. Both the single equation and system methods showed
no bias over the range of basal diameter and heights in terms of the box plots

patterns.

The projections in the figures are based on a dominant tree (BAT = 0.0).
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While young stands might not be subject to crown competition, the BAT
term, does influence the height growth and thus the basal diameter increment
predictions as does the site productivity variable, water holding capacity.
Since the coefficients and magnitude for the BAT and WHC parameters are
similar for all three fitting methods, the values for the height growth and
subsequent basal diameter increment values scale accordingly.

As the population of young stand models grows, it is advisable to con-
sider developing systems of equations using a simultaneous fitting method to
account for contemporaneous correlation and if applicable, simultaneity bias
among equations. As was the case in this study, the differences in projec-
tions are small for the equations that are not subject to contemporaneous
correlation especially for ages below older stand models are considered bet-
ter suited for projecting stands. When equations are subject to simultaneity

bias, as was the case in the basal diameter increment model, using a simul-

taneous fitting method provides an increase in prediction efficiency that may

be justified.
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4. CONCLUSIONS

The fitting methods analyzed during this study provide advantageous tech-
niques for fitting of systems of equations. These methods incorporate addi-
tional information that other methods fail to include such as the relationships
among the variables in different equations and the correlation among the error
terms. The list examined in this document is by no means exhaustive. The
method that gave the best results did however include the most information

among the three fitting methods examined.

4.1 MODEL VARIABLES

The variables used to develop the models in these manuscripts were of
a simple nature and are commonly used in forest growth models. These
variables are by no means exhaustive and as statistical models further de-
velop and are combined with theoretical models, the variables may become
more complex or surprisingly simple as the ability to confidently collect these
variables increases.

In addition to the limited variables used in the model development, this
system of equations only included three equations. Many models that predict
individual tree attributes require many times more variables. Crown ratio,
mortality, DBH, stem taper, crown profile and foliage characteristics are
commonly found in established stand models. Models that address the issues
associated with established stands may provide a more fertile environment
for studying the influence of simultaneous equation estimation methods as
these stands exhibit more complex growth patterns both horizontally and

vertically throughout the stand because of differences in species, density and

management.
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Of course more data would have been nice. The majority of the data
in this study occurred below five inches basal diameter which is the lower
limit of crown closure which often occurs before the young stands have had
time to undergo crown closure. The dynamics found in established stand
models are more complex. It would be interesting to apply these methods to
current models that address established stands which were developed using
independent regression equations, and observe the differences between the

two models.

4.2 FITTING METHODS

There are many other fitting methods available which may or may not
produce better results. These three methods are the most common and were
chosen for that reason alone. As the 2SLS and 3SLS methods are becoming
more popular in statistical packages, more models will be fit using these meth-
ods. As the results may be more statistically sound in terms of efficiency and
consistency, they may not provide the best solution to the problem of model-
ing the development of a young forest. In addition to producing meaningful
results, models for young forests must meet an additional criteria older stand
models are not subject to which is the ability to closely match the results of
other models at the upper end of the projection.

In this case, OLS and 3SLS provided similar results for the equations that
did not contain endogenous variables. The parameter estimates for the basal
diameter increment function, which contained a simple relationship with the
height growth function, were influenced by the estimation method.

A potential drawback to using a simultaneous method should be men-

tioned here. Most common software packages do not allow unbalanced data.

That is to say that a dataset cannot contain missing values for endogenous
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variables. In forestry data sets for example, heights are rarely measured on
every tree and for a model that contains both height and diameter growth
equations, only a subset of the diameter growth obervations will be used
because the corresponding height growth is not present. The effect is to
lower the effective number of observations and thus, reducing the degrees of

freedom in the model.

4.3 PROJECTIONS

The projections in this study were relatively simplistic in that only one
tree record was used and mortality was not introduced over the sixty year
projection. In short, the tree used for the results and discussion was a dom-
inant tree without competition. The conclusions regarding the fitting meth-
ods were the same that other authors had found regardless (Hasenauer et al.,
1998).

Had mortality been included in this study, the results for basal diameter
projections may have been different. Again, this speculation is for naught
as the database contained one two-year remeasurement and the number of
observations in the final analysis was too low for a mortality model to be
developed.

As with other studies, the increase in prediction efficiency was below 10
percent and almost undetectable for the crown ratio model. While these
results may seem small, the influence over many projections would prove
to be highly advantageous. Since future values are the sum of the previous
predictions plus the predicted growth, using a system approach to estimation

with lagged endogenous variables may show impressive gains.
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44 R PACKAGE DEVELOPMENT

The R software package is a constantly evolving open source software
project for statistical computing and graphics. Unlike SAS (SAS Institute,
Inc., 1987), R is available without cost and the source code is freely available
for end users to examine and modify at will.

Based on the S system, R is both a language and an application which
allows users to develop additional modules to meet specific needs not built
directly into the original package. These modules, or packages as they are
referred to in R, can be downloaded from the Internet and installed locally.
These packages are developed by anyone interested in extending R and can
be submitted to the project for inclusion in further releases. The systemfit
package (Hamann, 2002) was developed to perform simultaneous equation
estimation within the R environment as well as specific data analysis used in
this manuscript.

The systemfit package was developed in the R language as a package
that is capable of fitting three types of systems of equations. The three meth-
ods of estimation are OLS, 2SLS, and 3SLS. The package is available from the
author or directly for download from the R project site (www.r-project.org).
The package was succuessfully verified against published examples (Kmenta,
1997) and against SAS. Further developments for systemfit should include

the ability to address SUR, non-linear models and unbalanced datasets.
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APPENDIX A
SYSTEMFIT DOCUMENTATION

Package ‘systemfit’

December 26, 2002
Version 0.5-4
Date 2002/06/04
Title Simultaneous Equation Estimation Package
Author Jeff D. Hamann <jeff hamann@hamanndonald.com>
Maintainer Jeff D. Hamann <jeff_hamann@hamanndonald.com>
Depends R (>= 1.3.0)

Description This package contains functions for fitting simultaneous
systems of equations using Ordinary Least Sqaures (OLS), Two-Stage
Least Squares (2SLS), and Three-Stage Least Squares (3SLS).

License GPL version 2 or newer

URL http://www.r-project.org, http://www.hamanndonald.com

R TOPICS DOCUMENTED:

correlation Correlation between Predic-
tions from Equation i and j

Description

correlation returns a vector of the correlations
between the preditions of two equations in a set of equations. The

correlation between the predictions is defined as,
equation i and j and Cj; is the cross-equation variance-covariance

matrix between equations i and j.
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Usage

correlation.systemfit( results, eqni, eqnj )

Arguments
results an object of type systemfit.system.
eqni index for equation i
eqnj index for equation j

Value

correlation returns a vector of the correlations between the
predicted values in equation i and equation j.

Author(s)

Jeff D. Hamann (jeff hamann@hamanndonald.com)

References

Greene, W. H. (1993)
Econometric Analysis, Second Edition, Macmillan.
Hasenauer, H; Monserud, R and T. Gregoire. (1998)

Using Simultansous Regression Techniques with Individual-Tree Growth
Models.

Forest Science. 44(1):87-95
Kmenta, J. (1997)

Elements of Econometrics, Second Edition, University of
Michigan Publishing

See Also

ols,twostage and threestage

Examples

library( systemfit )
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data( kmenta )

attach( kmenta )

demand <- q " p +d

supply <-q " p+ f +a

inst <- "d+ f + a

labels <- list( "demand", "supply" )

system <- list( demand, supply )

## perform 2SLS on each of the equations in the system
fit2sls <- twostage.systemfit( system, inst, labels, kmenta )
print( fit2sls )

print( varcov.systemfit( fit2sls ) )

## perform the 3SLS

fit3sls <- threestage.systemfit( system, inst, labels, kmenta )
print( fit3sls )

print( "covariance of residuals used for estimation (from 2sls)" )
print( varcov.systemfit( fit2sls ) )

print( "covariance of residuals" )

print ( varcov.systemfit( fit3sls ) )
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## examine the correlation between the predicted values
## of suppy and demand by plotting the correlation over
## the value of g

r12 <- correlation.systemfit( fit3sls, 1, 2 )

plot( q,

ri2,
main="correlation between predictions from supply and demand" )

## examine the improvement of 3SLS over OLS by computing
## the ratio of the standard errors of the estimates
improve.ratio <- se.ratio.systemfit( fit2sls, fit3sls, 2 )

print( "summary values for the ratio in the std. err." )
print( "for the predictions" )

print( summary( improve.ratio ) )

hausman Hausman’s Test

Description

hausman returns the Hausman’s statistic for specification.

¢ (Vi — Vo)g
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where V7 and Vj are the covb values from a twostage or
threestage object and q is the difference in the b vectors from
the twostage or threestage objects.

Usage

hausman.systemfit( resultsO, resultsl )

Arguments
resultsO the ith equation in the set of twostage or threestage
objects
resultsl the jth equation in the set of twostage or
threestage objects
Value

hausman.systemfit returns the value of the test statistic.

Author(s)

Jeff D. Hamann (jeff_ hamann@hamanndonald.com)

References

Greene, W. H. (1993)

Econometric Analysis, Second Edition, Macmillan.

Hausman, J. A. (1978)

Specification Tests in Econometrics. Fconomtrica. 46:1251-1271.
Kmenta, J. (1997)

Elements of Econometrics, Second Edition, University of
Michigan Publishing

See Also

ols,twostage and threestage
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Examples

library( systemfit )

data( kmenta )

attach( kmenta )

demand <- q " p + d

supply <-q " p + f + a

inst <- " d + f + a

labels <~ list( "demand", "supply" )

system <- list( demand, supply )

## perform the estimation and report the results for the whoel system
fit2sls <- twostage.systemfit( system, inst, labels, kmenta )

fit3sls <- threestage.systemfit( system, inst, labels, kmenta )

## perform the hausman test on the first equation

h <- hausman.systemfit( fit3sls[[1]], fit2sls[[1]1] )

pval <- pchisq( h, dim( fit3sls[[1]11$covb )[1] )
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kmenta Partly Artificial Data on the

U. S. Economy

Description

These are partly contrived data from Kmenta (1986), constructed
to illustrate estimation of a simultaneous-equation model.
The kmenta data frame has 20 rows and 5 columns.

Usage

data(kmenta)

Format

This data frame contains the following columns:

q food consumption per capita.
p ratio of food prices to general consumer prices.
d disposable income in constant dollars.

f ratio of preceding year’s prices received by farmers
to general consumer prices.

a time in years.
Details

The exogenous variables d, f, and a are based on
real data; the endogenous variables p and q were generated
by simulation.

Source

Kmenta, J. (1986)

Elements of Econometrics, Second Edition, Macmillan.
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Examples
data(kmenta)
ols Ordinary Least Squares FEsti-
mation
Description

Fits a set of structural equations using Ordinary Least

Squares. The resulting object is an array of fitting regression
equations that contain information about the fitting process as well
as the resulting parameter estimates, standard error estimates and
covaraince matrix.

Usage

ols.systemfit( eqns, instruments, eqnlabels, data )

Arguments

eqns a list of structural equations to be estimated; a regression
constant is implied if not explicitly omitted.

instruments one-sided model formula specifying instrumental variables.

eqnlabels list of character vectors of names for the equation labels.
data an optional data frame containing the variables in the
model.

By default the variables are taken from the environment
from which twostage is

called.
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Value

ols returns a list of objects of class ols, with the following components:

n number of observations.
P number of parameters.
coefficients
parameter estimates.
v estimated covariance matrix of coefficients.
s residual standard error.
residuals vector of residuals.
response vector of response values.
X model matrix.
Z instrumental-variables matrix.

response.name

name of response variable, or expression evaluating to re-

sponse.
formula model formula.

instruments one-sided formula for instrumental variables.

method estimation method for the object, in this case, "OLS”.
eqnlabel the equation label from the labels list for the equation.
formula model formula.

dfe error degrees of freedom.

dfm model degrees of freedom.

model .matrix

model . frame

model matrix for the ith equation
model frame for the ith equation

instruments list of instruments for the set of equations.
response y

predicted predicted values

residuals residuals

ztzinv two-stage instrument regression matrix - ztzinv.
v v

b parameter estimates

n number of observations for the ith equation

s estimation of sigma

sse sum of squares

mse mean squared error

rmse square root of mse or root mean squared error
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se estimates standard errors of the parameter estimates.
t t values for b
P p values for b
r2 2
adjr2 adjusted r-squared
covb covb
Author(s)

Jeff D. Hamann (jeffl_hamann@hamanndonald.com)

References

Greene, W. H. (1993)
Econometric Analysis, Second Edition, Macmillan.
Kmenta, J. (1997)

Elements of Econometrics, Second Edition, University of
Michigan Publishing

See Also

twostage, threestage

Examples

library( systemfit )

data( kmenta )
attach( kmenta )

demand <- q " p +d
supply <-q "p+ f + a

ingt <- " d+ f + a

labels <- list( "demand", "supply" )
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system <- list( demand, supply )

## perform OLS on each of the equations in the system
fitlsls <- ols.systemfit( system, inst, labels, kmenta )

print( fitlsls )

print.systemfit.ols print.systemfit.ols

Description

This function prints a summary of the system of equations.
Usage

print.systemfit.ols(x,digits=6,...)

Arguments
X an object of type ols.systemfit.
digits number of digits to print.
not used by user.
Value

print.systemfit.ols returns nothing.

Author(s)

Jeff D. Hamann (jeff hamann@hamanndonald.com)
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See Also

ols,twostage and threestage

Examples

library( systemfit )

data( kmenta )

attach( kmenta )

demand <- q " p +d

supply <-q " p+f +a

inst <- “"d + f + a

labels <- list( "demand", "supply" )

system <- list( demand, supply )

## perform OLS on each of the equations in the system

fitlsls <- ols.systemfit( system, inst, labels, kmenta )

## print the results

print( fitlsls )
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print.systemfit.system print.systemfit.system

Description

This function prints a summary of the system of equations.
Usage

print.systemfit.system(x,digits=6,...)

Arguments
X an object of type threestage.systemfit.
digits the number of digits to print.
not used by user.
Value

print.systemfit.system returns nothing.

Author(s)

Jeff D. Hamann (jeff_hamann@hamanndonald.com)

See Also

ols,twostage and threestage

Examples

library( systemfit )

data( kmenta )
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attach( kmenta )

demand <- g " p +d

supply <-q " p + f + a

inst <- " d + f + a

labels <- 1list( "demand", "supply" )

system <- list( demand, supply )

## perform 2SLS on each of the equations in the system

fit3sls <- ols.systemfit( system, inst, labels, kmenta )

## print the results

print( fit3sls )

print.systemfit.threestage print.systemfit.threestage

Description

This function prints a summary of the system of equations.

Usage

print.systemfit.threestage(x,digits=6,...)
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Arguments
X an object of type threestage.systemfit.
digits the number of digits to print.
not used by user.
Value

print.systemfit.threestage returns nothing.

Author(s)

Jeff D. Hamann (jeff_hamann@hamanndonald.com)

See Also

ols,twostage and threestage

Examples

library( systemfit )

data( kmenta )

attach( kmenta )

demand <- q " p +d

supply <-q "p+f + a

inst <- "d + f + a

labels <- list( "demand", "supply" )

system <- list( demand, supply )

## perform 2SLS on each of the equations in the system
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fit3sls <- ols.systemfit( system, inst, labels, kmenta )

## print the results

print( £it3sls )

print.systemfit.twostage print.systemfit.twostage

Description

This function prints a summary of the system of equations.
Usage

print.systemfit.twostage(x,digits=6,...)

Arguments
X an object of type twostage.systemfit.
digits the number of digits to print.
not used by user.
Value

print.systemfit.twostage returns nothing.

Author(s)

Jeff D. Hamann (jeff hamann@hamanndonald.com)
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See Also

ols,twostage and threestage

Examples

library( systemfit )

data( kmenta )

attach( kmenta )

demand <- g " p + d
supply <-q " p+ f +a
inst <- " d+ f + a

labels <- list( "demand", "supply" )

system <- list( demand, supply )

## perform 2SLS on each of the equations in the system

fit2sls <- twostage.systemfit( system, inst, labels, kmenta )

## print the results

print( fit2sls )
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se.ratio Ratio of the Standard Errors

Description

se.ratio.systemfit returns a vector of the ratios of the
standard errors of the predictions for two equations.

Usage

se.ratio.systemfit( resultsi, resultsj, eqni )

Arguments
resultsi an object of type systemfit.system (ols, twostage or threestage.
resultsj an object of type systemfit.system (ols, twostage or threestage.
eqni index for equation to obtain the ratio of standard errors

Value

se.ratio returns a vector of the standard errors of the ratios
for the predictions between the predicted values in equation i and
equation j.

Author(s)

Jeff D. Hamann (jeff_hamann@hamanndonald.com)

References

Hasenauer, H; Monserud, R and T. Gregoire. (1998)

Using Simultansous Regression Techniques with Individual-Tree Growth
Models.

Forest Science. 44(1):87-95

See Also

ols,twostage and threestage
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Examples

library( systemfit )

data( kmenta )
attach( kmenta )

demand <- q “ p + d
supply <-q " p +{f + a
ingt <- " d + f + a

labels <- list( "demand", "supply" )

system <- list( demand, supply )

## perform 2SLS on each of the equations in the system
fit2sls <- twostage.systemfit( system, inst, labels, kmenta )

fit3sls <- threestage.systemfit( system, inst, labels, kmenta )

## print the results from the fits

print( fit2sls )

print( fit3sls )

print( "covariance of residuals used for estimation (from 2sls)" )
print( varcov.systemfit( f£it2sls ) )

print( "covariance of residuals" )
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print( varcov.systemfit( fit3sls ) )

## examine the correlation between the predicted values
## of suppy and demand by plotting the correlation over
## the value of g

r12 <- correlation.systemfit( fit3sls, 1, 2 )

plot( g,

ri2,
main="correlation between predictions from supply and demand" )

## examine the improvement of 3SLS over OLS by computing
## the ratio of the standard errors of the estimates
improve.ratio <- se.ratio.systemfit( fit2sls, fit3sls, 2 )
print( "summary values for the ratio in the std. err." )
print( "for the predictions" )

print( summary( improve.ratio ) )

summary.systemfit.ols summary.systemfit.ols

Description

This function returns a summary of the system of equations.
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Usage
summary.systemfit.ols(object,...)
Arguments
object an object of type ols.systemfit.
not used by user.
Value

summary.systemfit.ols returns an object of type systemfit.ols.

Author(s)

Jeff D. Hamann (jeff hamann@hamanndonald.com)

See Also

ols,twostage and threestage

Examples

library( systemfit )

data( kmenta )
attach( kmenta )

demand <- g " p + d
supply <-q " p+ f + a
inst <- " d + f + a

labels <- 1list( "demand", "supply" )

system <- list( demand, supply )
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## perform OLS on each of the equations in the system

fitlsls <~ ols.systemfit( system, inst, labels, kmenta )

## print the results

print( fitilsls )

summary.systemfit.system summary.systemfit.system

Description

This function returns a summary of the system of equations.

Usage
summary.systemfit.system(object,...)
Arguments
object an object of type systemfit.system.
not used by user.
Value

summary.systemfit.system returns an object of type systemfit.system.

Author(s)

Jeff D. Hamann (jeff_hamann@hamanndonald.com)
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See Also

ols,twostage and threestage

Examples

library( systemfit )

data( kmenta )

attach( kmenta )

demand <- g " p +d
supply <-q " p + f + a

inst <- " d+ f + a

labels <- list( "demand", "supply" )

system <- list( demand, supply )

## perform 3SLS on each of the equations in the system

fit3sls <- threestage.systemfit( system, inst, labels, kmenta )

## print the results

print( fit3sls )




summary.systemfit.threestage

Description

This function returns a summary of the system of equations.

Usage
summary.systemfit.threestage(object,...)
Arguments
object an object of type threestage.systemfit.
not used by user.
Value

summary .systemfit.threestage returns an object of type systemfit.threestage.

Author(s)

Jeff D. Hamann (jeff_ hamann@hamanndonald.com)

See Also

123
summary.systemfit.threestage
|
f
ols,twostage and threestage

Examples

l
|
|
r library( systemfit )

data( kmenta )
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attach( kmenta )

demand <- q " p +d

supply <- q "p+ f + a

inst <- " d + f + a

labels <- list( "demand", "supply" )

system <- list( demand, supply )

## perform 3SLS on each of the equations in the system

fit3sls <- threestage.systemfit( system, inst, labels, kmenta )

## print the results

print( fit3sls )

summary.systemfit.twostage summary.systemfit.twostage

Description

This function returns a summary of the system of equations.
Usage

summary.systemfit.twostage(object,...)
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Arguments
object an object of type twostage.systemfit.
not used by user.
Value

summary.systemfit.twostage returns an object of type systemfit.ols.

Author(s)

Jeff D. Hamann (jeff hamann@hamanndonald.com)

See Also

ols,twostage and threestage

Examples

library( systemfit )

data( kmenta )

attach( kmenta )

demand <- g " p + d

supply <-q " p+f +a

inst <- " d+ f + a

labels <- list( "demand", "supply" )

system <- list( demand, supply )

## perform 2SLS on each of the equations in the system
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fit2sls <- twostage.systemfit( system, inst, labels, kmenta )

## print the results

print( fit2sls )

threestage Three-Stage Least Squares
Estimation

Description

Fits a set of structural equations using Three-Stage Least

Squares. The resulting object is an array of fitting regression
equations that contain information about the fitting process as well
as the resulting parameter estimates, standard error estimates and
covaraince matrix.

Usage

threestage.systemfit( eqns, instruments, eqnlabels, data )

Arguments

eqns a list of structural equations to be estimated; a regression
constant is implied if not explicitly omitted.

instruments one-sided model formula specifying instrumental variables.

data an optional data frame containing the variables in the
model.
By default the variables are taken from the environment
from which twostage is
called.

eqnlabels list of character vectors of names for the equation labels.
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Value

threestage returns a list of objects of class threestage, with the fol-
lowing components:

n number of observations.
p number of parameters.
coefficients

parameter estimates.

v estimated covariance matrix of coeflicients.
s residual standard error.

residuals vector of residuals.

response vector of response values.

X model matrix.

Z instrumental-variables matrix.

response.name
name of response variable, or expression evaluating to re-

sponse.

formula model formula.

instruments one-sided formula for instrumental variables.

method estimation method for the object, in this case, ”3SLS”.
eqnlabel the equation label from the labels list for the equation.
formula model formula.

dfe error degrees of freedom.

dfm model degrees of freedom.

model .matrix

model matrix for the ith equation
model.frame model frame for the ith equation
instruments list of instruments for the set of equations.

response y

predicted predicted values

residuals residuals

ztzinv two-stage instrument regression matrix - ztzinv.
v v

b parameter estimates

n number of observations for the ith equation

s estimation of sigma

sse sum of squares

mse mean squared error
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rmse square root of mse or root mean squared error
se estimates standard errors of the parameter estimates.
t t values for b
p values for b
r2 r2
adjr2 adjusted r-squared
covb covb
Author(s)

Jeff D. Hamann (jeff_hamann@hamanndonald.com)

References

Greene, W. H. (1993)
Econometric Analysis, Second Edition, Macmillan.
Kmenta, J. (1997)

Elements of Econometrics, Second Edition, University of
Michigan Publishing

See Also

ols,twostage and threestage

Examples

library( systemfit )

data( kmenta )

attach( kmenta )
demand <- q " p +d
supply <- q " p + f + a

ingt <~ " d + f + a
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labels <- 1list( "demand", "supply" )

system <- list( demand, supply )

## perform 2SLS on each of the equations in the system
fit2sls <- twostage.systemfit( system, inst, labels, kmenta )
print( fit2sls )

print( varcov.systemfit( fit2sls ) )

fit3sls <- threestage.systemfit( system, inst, labels, kmenta )
print( f£it3sls )

print( "covariance of residuals used for estimation (from 2sls)" )
print( varcov.systemfit( fit2sls ) )

print( "covariance of residuals" )

print( varcov.systemfit( fit3sls ) )

## examine the correlation between the predicted values
## of suppy and demand by plotting the correlation over
## the value of g

r12 <- correlation.systemfit( fit3sls, 1, 2 )

plot( q,

ri2,
main="correlation between predictions from supply and demand" )




## the ratio of the standard errors of the estimates
improve.ratio <- se.ratio.systemfit( fit2sls, fit3sls, 2 )

print( "summary values for the ratio in the std. err." )
print ( "for the predictions" )

print( summary( improve.ratio ) )

## perform the hausman test
h <- hausman.systemfit( fit3sls[[1]], fit2sls[[1]] )
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## examine the improvement of 3SLS over OLS by computing
pval <- pchisq( h, dim( fit3sls[[1]]$covb ) [1] )
|
\
|
|

threestage.cov Variance-Covariance Matriz

Description

This function returns a variance-covariance estimation matrix from a
resulting simultaneous estimation object such as type
threestage.

Usage

threestage.cov( results, eqni, eqnj )
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Arguments
results a set of 3SLS objects returned from threestage
eqni the ith equation in the set of threestage objects
eqnj the jth equation in the set of threestage objects
Value

threestage.cov returns a submatrix from the variance-covariance

matrix from the variance-covariance matrix used for estimation during

3SLS.

Author(s)

Jeff D. Hamann (jeff_ hamann@hamanndonald.com)

References

Hasenauer, H; Monserud, R and T. Gregoire. (1998)

Using Simultansous Regression Techniques with Individual-Tree Growth
Models.

Forest Science. 44(1):87-95

See Also

ols,twostage and threestage

Examples

library( systemfit )

data( kmenta )
attach( kmenta )

demand <- q " p +d

supply <-q " p+ f +a
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inst <- " d + f + a
labels <- list( "demand", "supply" )

system <- list( demand, supply )

fit3sls <- threestage.systemfit( system, inst, labels, kmenta )

print( fit3sls )

## get the variance-covariance matrix used for estimation
print( "covariance of residuals used for estimation (from 2sls)" )

print( threestage.cov( fit3sls, 1, 2 ) )

twostage Two-Stage Least Squares Es-
timation

Description

Fits a set of structural equations using Two-Stage Least

Squares. The resulting object is an array of fitting regression
equations that contain information about the fitting process as well
as the resulting parameter estimates, standard error estimates and
covaraince matrix.

Usage

twostage.systemfit( eqns, instruments, egqnlabels, data )

## perform the estimation and report the results for the whoel system




Arguments

eqns

instruments
data

eqnlabels

Value
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a list of structural equations to be estimated; a regression
constant is implied if not explicitly omitted.

one-sided model formula specifying instrumental variables.

an optional data frame containing the variables in the
model.

By default the variables are taken from the environment
from which twostage is

called.

list of character vectors of names for the equation labels.

twostage returns a list of objects of class twostage, with the following

components:

n

P
coefficients

v

s
residuals
response
X

Z

number of observations.
number of parameters.

parameter estimates.

estimated covariance matrix of coefficients.
residual standard error.

vector of residuals.

vector of response values.

model matrix.

instrumental-variables matrix.

response.name

formula
instruments
method
eqnlabel

formula
dfe

dfm
model .matrix

model . frame

name of response variable, or expression evaluating to re-
sponse.

model formula.
one-sided formula for instrumental variables.
estimation method for the object, in this case, "2SLS”.

the equation label from the labels list for the equation.

model formula.
error degrees of freedom.

model degrees of freedom.

model matrix for the ith equation
model frame for the ith equation
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instruments list of instruments for the set of equations.

response
predicted

residuals
ztzinv

v

b

n

S
sSse
mse
rmse
se

t

P

r2
adjr2
covb

Author(s)

y
predicted values

residuals

two-stage instrument regression matrix - ztzinv.
v

parameter estimates

number of observations for the ith equation
estimation of sigma

sum of squares

mean squared error

square root of mse or root mean squared error
estimates standard errors of the parameter estimates.
t values for b

p values for b

r2

adjusted r-squared

covb

Jeff D. Hamann (jeff hamann@hamanndonald.com)

References

Greene, W. H. (1993)
Econometric Analysis, Second Edition, Macmillan.
Kmenta, J. (1997)

Elements of Econometrics, Second Edition, University of
Michigan Publishing

See Also

ols,twostage and threestage
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Examples

library( systemfit )

data( kmenta )
attach( kmenta )

demand <- g " p +d
supply <-q " p+f +a
inst <- " d + f + a

labels <- list( "demand", "supply" )

system <- list( demand, supply )

## perform 28LS on each of the equations in the system

fit2sls <- twostage.systemfit( system, inst, labels, kmenta )

fit3sls <- threestage.systemfit( system, inst, labels, kmenta )

## print the results

print( fit2sls )

print( fit3sls )

print( "covariance of residuals used for estimation (from 2sls)" )

print( varcov.systemfit( fit2sls ) )

print ( “"covariance of residuals" )
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print( varcov.systemfit( fit3sls ) )

## examine the correlation between the predicted values
## of suppy and demand by plotting the correlation over
## the value of g

r12 <- correlation.systemfit( fit3sls, 1, 2 )

plot( g,

ri2,
main="correlation between predictions from supply and demand" )

## examine the improvement of 3SLS over OLS by computing
## the ratio of the standard errors of the estimates
improve.ratio <- se.ratio.systemfit( fit2sls, fit3sls, 2 )

print( "summary values for the ratio in the std. err." )
print ( "for the predictions" )

print ( summary( improve.ratio ) )

varcov Variance- Covariance

Description

The function returns the variance-covaraince of the residuals for a
set of equations from the residuals. The values of the elements are




defined as,

/

AL
where e; and e; are the residuals and n; and n; are the
error degrees of freedom for equations i and j.

Usage

varcov.systemfit( results )

Arguments

results an object of type twostage.systemfit.

Value

varcov returns a variance-covaraince matrix of the residuals
from a set of objects of class twostage.

Author(s)

Jeff D. Hamann (jeff_hamann@hamanndonald.com)

References

Greene, W. H. (1993)
Econometric Analysis, Second Edition, Macmillan.
Kmenta, J. (1997)

Elements of Econometrics, Second Edition, University of
Michigan Publishing

See Also

ols,twostage and threestage
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Examples

library( systemfit )

data( kmenta )
attach( kmenta )

demand <- q " p +d
supply <-q " p+f +a
inst <- " d+ f + a

labels <- list( "demand", "supply" )

system <- list( demand, supply )

## perform 2SLS on each of the equations in the system
fit2sls <- twostage.systemfit( system, inst, labels, kmenta )

fit3sls <- threestage.systemfit( system, inst, labels, kmenta )

## print the results

print( fit2sls )

print( fit3sls )

print( "covariance of residuals used for estimation (from 2sls)" )
print( varcov.systemfit( fit2sls ) )

print( "covariance of residuals" )




print( varcov.systemfit( fit3sls ) )
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APPENDIX B
SYSTEMFIT SOURCE CODE

## $Id: systemfit.R,v 1.3 2002/11/19 08:36:38 hamannj Exp $

## performs two-stage least squares on the system of equations
ols.systemfit <- function(

eqns,

instruments,

eqnlabels,

‘ data )
results <- list()
resulti <- list()

for(i in 1:length( eqns ) )
{

##t perform the two stage least squares regression
y <- eval( attr( terms( eqns[[i]] ), "variables" )[[2]] )
X <~ model.matrix( eqns[[i]] )

v <- diag( dim( model.matrix( eguns([[il] ) [2] ) )
#t two stage least squares results...

b <= solve( t(x) %*% x ) %% t(x) %% y
resids <-y -x %, b

n <- length( y )

p <- ncol( x )

s <- sum(resids~2)/(n - p)

dfe <- n -

se  <- sqrt( diag( solve( t(x) %*h x ) ) * s )
t <- b/se

prob <~ 2.0%(1.0 - pt(abs(t), dfe))

mse <- ( 8 * dfe / dfe )

rmse <- sqrt( mse )

r2  <- 1.0 - ((t(resids)¥*%resids)/(t(y)%*%y-n*mean(y)~2))
adjr2  <- 1.0 - ((n-1)/(n-p))*(1.0-r2)

covb <= solve( t(x) %*% x )

## build the "return" structure for the 2sls part

resulti$method <- "ols"
resulti$eqnlabel <- eqnlabels[[i]]
resulti$formula <- eqns[[i]]
resulti$dfe <- dfe

resulti$dfm <- n - dfe

resulti$model .matrix <- model.matrix(eqns[[i]] )
resulti$model.frame <- model.frame(equns([[i]] )

resulti$instruments <- inst
resulti$response <-y
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resulti$predicted <-x %% b

resulti$residuals <- resids
##tresulti$ztzinv <- ztzinv
resulti$v <- v

resulti$b <- b

names (resulti$b) <- colnames( model.matrix( eqns[[i]] ) )
resulti$n <- n

resulti$s <- 8

resulti$sse <- s *x dfe
resulti$mse <- mse

resultifrmse <- rmse

resulti$se <- se

resulti$t <- t

resulti$p <- prob

resulti$r2 <- r2

resulti$adjr2 <- adjr2
resulti$covb <~ covb
class(resulti) <- "systemfit.ols"
results[[i]] <- resulti

}

class(results) <- "systemfit.system"
ols <- results

## this function produces a table for a single equation
## in a system of equations

summary.systemfit.ols <- function(object,...)

summary.systemfit.ols <- object
summary.systemfit.ols

}
## now print the object that comes from the fits...
print.systemfit.ols <- function( x, digits=6, ... )

object <- x

save.digits <- unlist(options(digits=digits))
on.exit(options(digits=save.digits))

cat("\n")
cat( paste( attr( object, "class" ),

"estimates for", object$egnlabel, "\n" ) )

cat("Model Formula: ")
print(object$formula)

cat("Instruments: ")
print(object$instruments)
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cat(”\n")

Signif <- symnum(object$p, corr = FALSE, na = FALSE,
cutpoints = ¢(0, .001,.01,.05, .1, 1),
Symbols — c(n***n’n**n’n*n,n'n’n n))

table <- cbind(round( object$b, digits ),
round( object$se, digits ),
round( object$t, digits ),
round( object$p, digits ),
Signif)

rownames (table) <- names(object$b)

colnames (table) <- c("Estimate",
"Std. Error","t value","Pr(Glt])","")

print.matrix(table, quote = FALSE, right = TRUE )
cat("---\nSignif. codes: ",attr(Signif,"legend"),"\n")

cat (paste("\nResidual standard error:", round(object$s, digits),
"on", object$dfe, "degrees of freedom\n"))

cat( paste( "DF-Error:", round(object$dfe, digits),
"DF-Model:", round(object$dfm, digits),
n\nn ) )

cat( paste( "SSE:", round(object$sse, digits),
"MSE:", round(object$s, digits),
"Root MSE:", round( sqrt(object$s), digits), "\n" ) )

cat( paste( "Multiple R-Squared:", round(object$r2, digits),
"Adjusted R-Squared:", round(object$adjr2, digits),

n\nu ) )
cat(”\n")

## performs two-stage least squares on the system of equations

twostage.systemfit <- function(
eqns,
instruments,
eqnlabels,

data )

results <- list()
resulti <- list()

for(i in 1:length( eqns ) )
{

## perform the two stage least squares regression
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y <- eval( attr( terms( equns[[i]] ), "variables" )[[2]] )
x  <- model.matrix( eqns[[i]] )
z

<- model.matrix( inst )
ztzinv  <- solve( t(z) %x% z )
v  <- solve( t(x) %x% z %*x% ztzinv %x*% t(z) %*% x )

## two stage least squares results...

b <- v ) t(x) Yxl oz Uxh ztzinv %% t(2) Wy
resids <-y-x %% b

n <- length( y )

p <- ncol( x)

s <- sum(resids~2)/(n - p)

dfe <-n -

se  <- sqrt(diag(s*v))

t <- b/se

prob  <- 2.0%(1.0 - pt(abs(t), dfe))

mse <- ( s * dfe / dfe )

rmse <- sqrt( mse )

r2 <- 1.0 - ((t(resids)¥%x*%resids)/(t(y)%*%y-n*mean(y)~2))
adjr2 <= 1.0 - ((n-1)/(n-p))*(1.0-r2)

covb <- v * g

## get the residuals from the 2sls on the instruments

instres <- 1lsfit( model.frame( inst ),
model.matrix( eqns[[1]] ) )$coef

temp2 <- model.matrix( inst ) %%}, instres

resulti$instres <- instres
resulti$tslsres <- temp2

## build the "return" structure for the 2sls part

resulti$method <- "2sls"
resulti$eqnlabel <- eqnlabels[[i]]
resulti$formula <- eqns[[i]]
resulti$dfe <- dfe

resulti$dfm <- n - dfe

resulti$model .matrix <- model.matrix(eqns[[i]] )
resulti$model.frame <- model.frame(eqns[[il] )
resulti$instruments <- inst

resulti$response <-
resulti$predicted <-x W% b
resulti$residuals <- resids
resulti$ztzinv <- ztzinv
resulti$v <- v

resulti$b <- b

names (resulti$b) <- colnames( model.matrix( eqns([[i]] ) )
resulti$n <- n

resulti$s <- 8

resultifsse <- s * dfe
resultifmse <- mse
resultifrmse <- rmse
resultifse <- se

resulti$t <- t

resulti$p <~ prob




resulti$r2 <- r2
resulti$adjr2 <- adjr2
resulti$covb <- covb
class(resulti) <- "systemfit.twostage"
results[[i]] <- resulti
}

class(results) <- "systemfit.system"
twostage <- results

}

summary.systemfit.twostage <- function(object,...)

summary .systemfit.twostage <- object
summary.systemfit.twostage

3
## now print the object that comes from the fits...
print.systemfit.twostage <- function( x,digits=6,... )

object <- x

save.digits <- unlist(options(digits=digits))
on.exit (options(digits=save.digits))

cat("\n")
cat( paste( attr( object, "class" ),
"estimates for", object$eqnlabel, "\n" ) )

cat("Model Formula: ")
print(object$formula)

cat("Instruments: ")
print(object$instruments)

cat("\n")

Signif <- symnum(object$p, corr = FALSE, na = FALSE,
cutpoints = c(0, .001,.01,.05, .1, 1),
Symbols = c(ll***ll’"**II’II*II’II'II,II II))

table <- cbind(round( object$b, digits ),
round( object$se, digits ),
round( object$t, digits ),
round( object$p, digits ),
Signif)

rownames (table) <- names(object$b)

colnames(table) <- c("Estimate",
"Std. Error","t value","Pr(>|t])","")

print.matrix(table, quote = FALSE, right = TRUE )
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cat("---\nSignif. codes: ",attr(Signif,"legend"),"\n")

cat (paste("\nResidual standard error:", round(object$s, digits),
"on", object$dfe, "degrees of freedom\n"))

cat( paste( "DF-Error:", round(object$dfe, digits),
"DF-Model:", round(object$dfm, digits),
u\nn ) )

cat( paste( "SSE:", round(object$sse, digits),
"MSE:", round(object$s, digits),
"Root MSE:", round( sqrt(object$s), digits), "\n" ) )

cat( paste( "Multiple R-Squared:", round(object$r2, digits),
"Adjusted R-Squared:", round(object$adjr2, digits),

n\nu ) )
cat("\n")

}

## performs two-stage least squares on the system of equations
threestage.systemfit <- function(

eqns,

instruments,

eqnlabels,

data )

results <- list()
resulti <- list()
u2 <- matrix( 0, dim(data)[1], length( egns ) )

#t perform the two-stage fits

tsls <- twostage.systemfit(
eqns,
instruments,
eqnlabels,
data )

## these are the ones that wil be used to build the big matrix
t3 <- NULL

bigb <- NULL
bigy <- NULL
bigt <- NULL
bigse <- NULL
bigp <- NULL

for(i in 1:length( eqns ) )

{
## build the final large matrix...

tr <- NULL

## get the dimensions of the current matrix
for(j in 1:length( eqns ) )
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{
if(i== 3 )
{
tr <- cbind( tr, tsls[[i]]$tslsres )
else
## bind the zero matrix to the row
di <- dim( model.matrix( equs([[j1] ) )[1]
dj <- dim( model.matrix( eqns([[j1] ) ) [2]
tr <- cbind( tr, matrix( 0, di, dj ) )
}
}

t3 <- rbind( t3, tr )

## now add the rows to the bigX matrix
## or should this be the new fitted y values
## from the two stage least squares fits...

<- eval( attr( terms( eqns[[il] ), "variables" )[[2]] )
bigy <- rbind( bigy, matrix( y ) )
}

## get the variance-covariance matrix from the two stage results
varcov <- varcov.systemfit( tsls )

parta <- kronecker( solve( varcov ),

diag( dim( model.matrix( eqns[[11] ) )[1] ) )
partl <- solve( t(t3) %x*) parta %*) t3 ) # covariance matrix
part2 <- t(t3) %x% parta %x% bigy
bigb <- partl %x% part2

## compute the se, t, and p values...
bigse <- matrix( sqrt( diag( partl ) ) )
bigt <- bigb/bigse

## extract the results
idx <- matrix( 0, length( equns ), 2 )
for(i in 1:length( eqns ) )

{

## get the index for stripping out the estimates
ifE i==1)

idx[i,1] <- 1
idx[i,2] <- dim( model.matrix( eqns[[i]] ) ) [2]
}

else

idx[i,1] <- idx[i-1,2]+1
idx[i,2] <- idx[i,1] +
dim( model.matrix(eqns[[i]])) [2]-1
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}

startl <- idx[i,1]
start2 <- idx[i,2]

## tree stage least squares results...

x  <- model.matrix( eqmns[[i]] )

y <- eval( attr( terms( eqns[[il] ), "variables" )[[2]] )
b  <- matrix( bigb[starti:start2] )

resids <-y - x %% b

n <- length( y )

p <- ncol( x )

s <- sum(resids~2)/(n - p)

dfe <-n-p

se <- matrix( bigse[startl:start2] )

t  <- matrix( bigt[startil:start2] )

prob  <- 2.0%(1.0 - pt(abs(t), dfe))

mse <- (s * dfe / dfe )

rmse  <- sqrt( mse )

r2 <- 1.0 - ((t(resids)¥%*Yresids)/(t(y)%*%y-n*mean(y)"2))
adjr2 <= 1.0 - ((n-1)/(n-p))*(1.0-r2)

## get the parameter var-cov matrix fo the eq

icol <- ncol( model.matrix( eqns[[i]] ) )

jcol <~ ncol( model.matrix( eqns[[il] ) )

startrow <- idx[i,1]

endrow <- idxl[i,2]

startcol <- idx[i,1]

endcol  <- idxl[i,2]

covb <- matrix( ) )
partl[startrow:endrow,startcol:endcol], icol, jcol )

## build the "return" structure for the 3sls part

resulti$method <- "3sls"
resulti$eqnlabel <- eqnlabels[[i]]
resulti$formula <- eqns[[i]]
resultigdfe <- dfe

resulti$dfm <- n - dfe

resulti$model .matrix <- model.matrix(eqns[[i]] )
resulti$model.frame <- model.frame(eqns[[i]] )

resulti$instruments <- inst

resulti$response <- tsls[[i]l]$reponse
resulti$predicted <= x %*x%h Db

resulti$residuals <- resids

resulti$ztzinv <- tsls[[i]]1$ztzinv

resultifv <- tsls[[i]1]1$v

resulti$b <- b ‘ ‘
names (resulti$b) <- colnames( model.matrix( eqns[[i]] ) )
resulti$n <- n

resultids <- s

resulti$sse <- s * dfe

resulti$mse <- mse
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resulti$rmse <- rmse

resulti$se <- se

resultift <- t

resulti$p <- prob

resulti$r2 <- r2

resulti$adjr2 <- adjr2
resulti$systemcovb  <- partil

resulti$covb <- covb

class(resulti) <- "systemfit.threestage"
results[[i]] <- resulti

}

class(results) <- "systemfit.system"
threestage <- results

}

summary.systemfit.threestage <- function(object,...)

summary.systemfit.threestage <- object
summary.systemfit.threestage

3
## now print the object that comes from the fits...
print.systemfit.threestage <- function( x,digits=6,... )

object <- x

save.digits <- unlist(options(digits=digits))
on.exit(options(digits=save.digits))

cat(n\nll)
cat( paste( attr( object, "class" ),
"estimates for", object$eqnlabel, "\n" ) )

cat("Model Formula: ")
print (object$formula)

cat("Instruments: ")
print (object$instruments)

cat(n\nn)

Signif <- symnum(object$p, corr = FALSE, na = FALSE,
cutpoints = ¢(0, .001,.01,.05, .1, 1),
Symbols = c(ll***",ll**ll,"*"’ll'"," "))

table <- cbind(round( object$b, digits ),
round( object$se, digits ),
round( object$t, digits ),
round( object$p, digits ),
Signif)

rownames (table) <- names(object$b)
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colnames(table) <- c("Estimate",
"Std. Error","t value","Pr(>It])","")

print.matrix(table, quote = FALSE, right = TRUE )
cat("---\nSignif. codes: ",attr(Signif,"legend"),"\n")

cat(paste("\nResidual standard error:", round(object$s, digits),
"on", object$dfe, "degrees of freedom\n"))

cat( paste( "DF-Error:", round(object$dfe, digits),
"DF-Model:", round(object$dfm, digits),
n\nn ) )

cat( paste( "SSE:", round(object$sse, digits),
"MSE:", round(object$s, digits),
"Root MSE:", round( sqrt(object$s), digits), "\n" ) )

cat( paste( "Multiple R-Squared:", round(object$r2, digits),
"Adjusted R-Squared:", round(object$adjr2, digits),

n\nn ) )
cat("\n")

## this function returns the variance-covariance matrix
## from the results set for equation 1j

threestage.cov <~ function( results, eqni, eqnj )

{

## get the information about eqni and enqj
## get the size of the array for the matrix
## you are going to extract

icol  <- ncol( results[[eqnil]l$model.matrix )
jcol <= ncol( results[[eqnjl]$model .matrix )

#Ht now get the offsets
# 1 - start row
#Ht 2 - end row

rows <- matrix( 0, length( results ), 2 )
##cols <- matrix( 0, length( results ), 2 )
for(i in 1:length( results ) )

## get the index for stripping out the estimates
ifé i==1)

rows[i,1] <- 1 _
rows[i,2] <- dim( results[[i]]$model .matrix) [2]

else

rows[i,1] <- rows[i-1,2]+1 )
rows[i,2] <- rows[i,lj + dim( results[[i]]$model.matrix )[2]-1
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}

startrow <- rowsl[eqni,1]
endrow <- rows[eqni,?2]

startcol <- rowsl[eqnj,1]
endcol <- rowsl[eqnj,2]

test <- matrix(
results[[1]]$systemcovb[startrow: endrow,startcol:endcol],

icol, jcol )
3
## this function returns test statistic for .
## the hausman test which.... i forget, but people want to see 1it...

## from the sas docs )
#it given 2 estimators, bO abd bl, where under the null hypothesis,
## both are consistent, but only bO is asympt. efficient and

## under the alter. hypo only bl is consistent, so the statistic (m) is
hausman.systemfit <- function( results0O, resultsl )

{

v0 <- resultsO$covb
vl <- resultsi$covb
q <- resultsi$b - resultsO$b

hausman <- t( q ) %% ( v1 - vO ) %*% q

## this function returns the covariance of the residuals
## the method will return the same matrix values as are
## returned in SAS in proc model

varcov.systemfit <- function( results )

{
u2 <- matrix( O, length( results ), length( results ) )

## use bind to create a vector for the residuals
for(i in 1:length( results ) )

## use bind to create a vector for the residuals
for(j in 1:length( results )

{

ri <- results[[i]l]$residuals
dfei <- results[[i]]$dfe

rj <- results[[jl]$residuals
dfej <- results[[jl]l$dfe

## from SAS




#it
#it
#it

Cco

{

#it

#it
#it
#it

#it

#it
#it

se
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cvij <= (tCri ) %*% rj ) / ( sqrt( dfei * dfej ) )

u2(li,jl <- cvij
}

}

varcov <- u2
varcov

this function returns a vector of the )
cross-equation corrlations between eq i and eq j
from the results set for equation ij

rrelation.systemfit <- function( results, eqni, eqnj )

cij <~ threestage.cov( results, eqni, eqnj )
cii <- threestage.cov( results, eqni, eqni )
cjj <- threestage.cov( results, eqnj, eqnj )

rij <- NULL
foE(i in 1:results[[1]]$n )

xik <- model.matrix( results[[eqnil]l$formula )[i,]
xjk <- model.matrix( results[[eqnjl]$formula ) [i,]

top <- xik %% cij %*% xjk

bottom <- sqrt( ( xik %*} cii %% xik ) *
( xjk %*%h cjj w*h xjk ) )

rijk <- top / bottom

rij <- rbind( rij, rijk )
}

correlation <- rij
correlation

this function returns a vector of the

cross-equation corrlations between eq i and eq j
from the results set for equation ij

you need to put some check in here to make sure both
are the name type

determines the improvement of resultsj (3sls) over

resultsi (2sls) for equation i and returns a matrix
of the values, so you can examine the range, mean, etc

.ratio.systemfit <- function( resultsi, resultsj, eqni )
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ratio <- NULL
foE(i in 1:resultsil[[1]]1%$n )

xik <- model.matrix( resultsil(leqnil]$formula ) [i,]

top <- sqrt( xik %*% resultsilleqni]]l$covb %*% xik )
bottom <- sqrt( xik %#% resultsjlleqnill$covb %*} xik )
rk <- top / bottom

ratio <- rbind( ratio, rk )

}
se.ratio <- ratio
se.ratio
summary.systemfit.system <- function(object,...)

summary.systemfit.system <- object
summary.systemfit.system

}

## now print the object that comes from the fits...
print.systemfit.system <- function( x,digits=6,... )
{

object <- x
save.digits <- unlist(options(digits=digits))
on.exit (options(digits=save.digits))

table <- NULL
labels <- NULL

cat("\n")
cat("systemfit results: \n")
cat("\n")
for(i in 1:length( object ) )
{
row <- NULL

row <- cbind( ‘
round( object[[i]]$dfm, digits ),

round( object[[i]]$dfe, digits ),
round( object[[i]]$sse, digits ),
round( object[[i]]$mse, digits ),
round( object[[i]]$rmse, digits ),
round( object[[i]]$r2, digits ),
round( object[[i]]$adjr2, digits ) )
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table <- rbind( table, row )
labels <- rbind( labels, object[[il]$eqnlabel )

}

rownames(table) <- c( labels )
colnames (table) <- c(
"DF Model",
"DF Error",
"SSE" s
HMSE" s
IIRMSEII s
IIR2” s
"Adj R2" )

print.matrix(table, quote = FALSE, right = TRUE )
cat("\n")

cat ("The variance-covariance matrix\n")
vc <- varcov.systemfit( object )

rownames (vc) <- labels
colnames(vc) <- labels
print( vc )

## now print the individual equatiomns
for(i in 1:length( object ) )

print( object[[i]], digits )

save.digits <- unlist(options(digits=digits))
on.exit(options(digits=save.digits))

## this function returns the covariance of the residuals
## the method will return the same matrix values as are
## returned in SAS in proc model

cor.systemfit <- function( results )

{
##u2 <- matrix( 0, length( results ), length( results ) )

## use bind to create a vector for the residuals
for(i in 1:length( results ) )

cm <- cbind( cm, results[[i]]$residuals )

cor <- cor( cm )
cor




