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Analysis ofBayesian Anytime Inference Algorithms

1. Introduction

1.1. Motivation

This dissertation empirically explores and evaluates performance of Bayesian

anytime inference algorithms. Bayesian networks have been shown to be a robust model

of uncertainty and causal influence for many machine-reasoning tasks. Once generated

and instantiated, many inference algorithms typically can produce desired results.

However, little is known about which algorithm to use in a particular context.

The question is important because of the general intractability of Bayesian

inference [Cooper 90]. While Bayesians may effectively model domains, generating

answers in large domains may be more difficult. Anytime algorithms partially answer

this question by incrementally building an answer. But while a partial answer is available

at any time, the user must question whether a partial answer is useful.

I initially began looking at the problem with the idea that perhaps additional

speedup could be gained through parallelizing some of these algorithms, but abandoned

this approach since linear speedup promises little return when computation grows

exponentially with the size of the problem, and since generating such speedup would not

address issues of the quality of decisions.

I gradually realized there was also no obvious way to rigorously compare existing

algorithms in order to analyze their behavior. There were simply too many variables:

what the agent was reasoning about, how time and objects were modeled, which
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inference algorithms were used, how the processing was divided between the agent and

the simulation, tuning algorithms to perform their best, tuning different algorithms to the

"same" degree, and so forth. The quantity of data required to adequately cover so many

variables was completely unmanageable.

I reasoned that perhaps I could test whether certain properties were important to

the performance of these algorithms. By eliminating some possibilities and confirming

others, I could narrow the quest for better algorithms to more profitable areas. This could

ultimately result in guidelines that would loosely govern the design of approximation

algorithms for inference.

1.2. Significance

Critics of the history of artificial intelligence reasonably point out that most

problems solved so far have been in overly simplified environments, or "blocks worlds."

It is more widely understood today that a critical issue for artificial intelligence is scaling

up solutions to tackle problems with real-world scale [Schank 91]. Attempts to move

reasoning Out of the lab and into the world must face the enormous complexities the

world contains. Deliberative agents that worked in a "blocks-world" suffer from two

unscalabilities: the world they operated in inadequately represented the complexities of

the real world, and the real world demands action rather than unbounded deliberation. A

robot ordered to fetch a cup in an adjacent room may go there only to find that the cup

does not rest on the expected table and looks like a stein. A web engine searching for

patriarchs of the Eastern Orthodox Church will have to contend with human differences

of opinion about which lineage represents the true patriarchs, yet still answer quickly.
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Note that the problem is not restricted to creating a set of static policies. An

enormous amount of real world reasoning requires first formulating an appropriate model

of the problem, usually in a short space of time.

I therefore believe it is beneficial to view reasoning as a dynamic activity

involving model formulation and decision-making under uncertainty. To that end, my

research attempts to make reasoning more tractable, even when faced with tight time

constraints, decisions, utilities, uncertainties, and dynamically generated models.

Thus this dissertation addresses issues of scale in dynamic reasoning that must be

faced in order for artificial intelligence to advance as a field.

1.3. Contributions of the Dissertation

I have generated several contributions comprising two primary experiments and

two models of performance. The first experiments of the dissertation compared several

incremental inference algorithms. The results are sufficient to confirm that most

incremental algorithms are effective at trading time for quality of inference. Several

algorithms worked well and one remarkably well, despite an extremely small allowance

of time to perform inference. A follow up experiment revealed that the best performer in

the primary experiments was not so in all domains. Some of the algorithms required a

significant amount of tuning to achieve optimal performance for a particular CPU speed.

Consistency of performance was more problematic than expected for some algorithms,

but the best algorithm also proved to be a remarkably consistent performer.

The second set of experiments analyzed one hypothesized critical component of

performance. Since the first set of experiments suggested that focusing on probability
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mass was critical for making good decisions, I designed an algorithm that had a tunable

focusing mechanism. The hope was that this would demonstrate the importance of this

property in incremental inference, but the improvement with tuning is insufficiently

dramatic to support any broad conclusions. Focusing does appear to improve

performance, but less than twenty percent. And stochastic simulation appears to be

ineffective as an approximation algorithm for real-time inference. This does have

implications for the design of effective anytime inference algorithms, as this algorithm

scales well to very large networks. It is not known how well the other algorithms can

scale to large networks for use in common domains.

More important than the results of either set of experiments is the evolution of

experimental methodology. I pressed the early experiments to acquire accurate data, but

found later that the methodology had not accounted for how I planned to use the data

later. I also saw an important flaw in the testbed: updating the network for each time

cycle is done using SPI exact inference, regardless of the algorithm used for decision

making. While this is justifiable using the current circuit simulation in the testbed, this

approach may not scale well as the networks become larger and more highly connected.

While I could not afford to rework the testbed to address the updating flaw, data

quality was addressable through better experimental design. I chose to collect sufficient

quality and quantity of data to permit a basic statistical comparison of the performance of

different algorithms. This required researching the statistical literature for nonparametnc

methods for comparing the means of two data sets when the number of samples of each

data set was smallhence my choice of the Wilcoxen rank-sum test. From earlier

experiments I surmised correctly that averaging four runs for each setting of parameters
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would be sufficient for good statistical analysis of the results. Since I still could not

compare different algorithms for the reasons already described, designing an individual

algorithm to test a particular property eliminated many possible variables.

Despite the mediocre performance of the algorithm I designed, I believe the

results substantiate the effectiveness of the methodology. The results also demonstrate

the flexibility of a testbed that was not originally intended for the purposes I put it to.

To answer certain questions concerning optimal performance, I decided to attempt

modeling the testbed when a random decision algorithm was used. While this initially

appeared straightforward, I found that a behavioral equation model was inadequate for

predicting performance, and clumsy for many calculations. My investigations in the

literature uncovered the stochastic automata network model, which generated better

prediction of performance and better scalability for calculations. Together the two

models provide an adequate summary of the testbed's behavior under the random

algorithm and under ideal conditions.

I found that the testbed itself could be improved for supporting research in

inference algorithm comparison. In particular, the current model of time in the testbed

could be improved. And my research suggests that a testbed should be designed in

conjunction with a theoretical model so that its performance may be more easily

evaluated.

1.4. Organization of the Dissertation

The rest of this dissertation is organized as follows. The early chapters present relevant

background materials. Chapter 2 introduces some basic elements of Bayesian networks,



influence diagrams, and related work on the inference algorithms and advanced structures

used to conduct the experiments. It also briefly discusses partially observable Markov

decision problems and stochastic automata networks (SANs). Chapter 3 introduces the

On Line Maintenance Agent testbed I used to conduct my research.

Chapters 4 through 6 present the main research results. Chapter 4 presents the

early experiments on the tradeoffs between time to solution and quality of solution with

incremental algorithms. The discussion states the general problem, then the experimental

design, and finally the results and conclusions drawn from the experiment. Following the

same structure as the previous chapter, Chapter 5 presents the experiment that tests the

value of a focusing mechanism in the approximation algorithms. Chapter 6 discusses a

theoretical model of performance utilizing equations derived from the structure of the

On-Line Maintenance Agent, and another utilizing the stochastic automata network

model.

Chapter 7 presents the final conclusions and a discussion of future work in this

area.
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2. Previous Work

2.1. Introduction

2.1.1. Fundamental Definitions

While my central aims are representing beliefs in various propositions over time

and using these beliefs to make intelligent decisions, there are numerous methods of

representing uncertainty. There is simply not room enough here to outline the other

methods and compare their relative merits. Nor do I intend here to introduce all details of

the Bayesian framework. This chapter does provide the notation that I intend to use for

the remainder of this dissertation, and it provides details of some algorithms and past

work less commonly discussed.

For introductory articles, see [Charniak 91] or [Heckerman 95]. More thorough

presentations are made in [Pearl 88], [Neapolitan 90], [Russell et al. 95] and [Jensen 96].

[D'Ambrosio 99] provides a more recent view of Bayesian reasoning with greater

emphasis on some of the algorithms discussed in this dissertation.

Let us consider an air traffic control equipment scenario I became familiar with

while working for the Federal Aviation Administration. Radar, communication and other

field equipment not only reports information to a central control center for use in

directing aircraft, but it also is maintained and repaired from a (possibly separate) central

repair facility. The central repair facility receives constant updates concerning the state

of equipment. When fault information arrives, the person receiving it has several

choices: ignore the broken equipment for now if it is nonessential, attempt to do partial



diagnosis of the problem (providing the equipment has this capability), switch to a

parallel piece of equipment which can perform the same function (providing that parallel

equipment is available in the field), or send out a repair crew.

The choices may be difficult. There are many different types of equipment in the

field, and even an experienced central controller may not know the diagnostic routines for

a particular piece of equipment in the field. But sending a repair crew can be quite

costly, since equipment may be hundreds of miles from the facility. The costs may be

compounded if the crew does not have the proper tools to effect repairs on their first visit

to the equipment. And all of this must be weighed against the current state of

neighboring equipment and the safety of air traffic in the region.

From this we can see the dynamic nature of diagnostic reasoning. The central

repair controller may probe and evaluate the equipment a little before selecting a course

of action. His decision will be made in the context of information obtained and may

change if further information changes his beliefs about the equipment or its priority.

In a probabilistic representation, we might create a belief state variable F with

values YES and NO depending on whether the repair controller believes there is a failure,

and an observation variable 0 with states RED LIGHT and OKAY which represents the

repair controller's console observations. The controller would like to know how likely a

fault is given his observations. We can represent the updated belief in the probability of

failure P(F) according to the context 0 by writing P(FI 0) and interpreting this to mean

the probability of observing failure F given the particular failure context 0.

Bayes:

In order to define the value of F(F 0), we may use the equation of Reverend

P(F I 0) = P(F, 0)/P(0) Equation 2.1
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We can think ofF as an event prior to 0, which influences the likelihood we will observe

the states of 0. The revised probability is the result of dividing the joint probability

P(F, 0) by the probability of different observations.

2.1.2. Bayesian Networks

While the example above is sufficient when dealing with a very small number of

variables, one would like a representation more open to examination and revision when

the number of variables grows. We can represent probabilistic information graphically

by using a Bayesian network. A Bayesian network is defined as an acyclic graph with:

A set of chance nodes, each node representing a random variable

comprising a finite number of mutually exclusive states

A set of arcs, each arc between a single pair of nodes, with the intuitive

meaning that the random variable at the arc's source directly influences

the variable at its tip, and

A set of conditional probability distributions, one for each node, where the

probability distribution for a node quantifies the effect of the graphical

predecessors on the states of that node

An example for the scenario discussed in Section 2.1.1 appears in Figure 2.1. Notice that

the evidence observed by the controller is directly influenced by whether a fault has

occurred. Often Bayesians will show the graphical structure of a problem without

showing the individual probabilities, since the graphical structure encodes the causal

independences between variables and since there are often a lot of numbers!
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P(F)= P(OIF)=
YES NO RED OK
.01 .99 F=YES .32 .68

F=NO .20 .80

Figure 2.1: A Simple Bayesian Network.

2.1.3. Influence Diagrams

While the example above allows the controller to model his beliefs about the

states of variables, it is insufficient for allowing a machine to make decisions based upon

the model. To do this, we need to add decisions and utilities to our graphical model.

Decisions are modeled graphically by adding a square for each decision that can

be made. Observations that precede a decision (and are therefore available to the

decision-maker) are cormected to the decision node by arcs leading to it. Decisions

affecting the outcome of some states are connected by arcs leading from the decision

node to those states.

Utilities are an encoding of our expert's believed costs for fault states and various

actions. Taking a repair action may have a high cost. If a part is not likely failing, the

controller would probably not replace it. But system outages in an air traffic control

scenario may have rare but extremely high costs. How does our controller decide what to

do? What he needs to know to make a good decision is:
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How likely each resulting situation is, given the observations he has made

and the actions he can take

The cost or utility of each of these possible resulting situations

Given the likelihood of a particular outcome and its utility, the expected utility is simply

the product of both.

Let = {S1} be the set of possible resulting states from the set O = {Om) Of

possible observations and the set = {Dk} of decisions. Let U = {U(S)} be the set of

utility values associated with each resulting state. Then the best decision from a rational

point of view is the one that maximizes expected utility. This is called the Maximum

Subjective Expected Utility. We may write this as:

MSEU = M4x[ (s
I

Ô, D.(s1)). u(si)J
Equation 2.2

The graphical counterpart to Equation 2.2 is illustrated in Figure 2.2. Here the

rectangular decision node represents the maximization necessary to pick the best

decision. The diamond-shaped value node represents the utility associated with a

particular state of some variables and/or decisions. The state of variable S1 provides

information to the decision node D. Both variable S1 and D influence the state of variable

S2. The decision made and the final state ofS2 influence the utility. IfS1 and S2 are

components in the air traffic control system, then the first component may adversely

affect the state of the second, and the controller must make a decision about replacing the

second component in order to minimize the quantified costs and threats.

Multiple decision nodes and multiple value nodes may be incorporated to handle

more complex decisions.
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Figure 2.2: An Influence Diagram With a Single Decision D and a Value Node V.

2.1.4. Cooper's Transformation

While many algorithms exist for calculating specific probability queries in

Bayesian networks, algorithms for answering decision queries in influence diagrams are

more complicated and often utilize Bayesian inference algorithms as components. To

simplif' this situation, [Cooper 89] presents a transformation from influence diagrams to

Bayesian networks that permits use of Bayesian network algorithms for decision

problems.

To effect this transformation, we alter the influence diagram so that both value

nodes and decision nodes are transformed into chance nodes. To transform a value node

into a chance node we linearly map the utility values into a probability function and

change the representation into a chance node in the graph. The chance node representing

the value node will be a binary node with states T and F, and the probability of T is

defined to be P('V=Iiv(P('v))) = [v(P(v)) + k2] / k1 where v('P(v)) is the value function
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indexed by the parents of V. k is the difference between the maximum and minimum

values v(P(v)) returns, and k2 is the minimum value v(P(v)) returns.

To transform a decision node into a chance node, we need to assign a prior

probability to each decision (the exact value generally doesn't matter as long as the sum

of values is 1), and change its graphical representation.

Now we may solve the decision problem by instantiating each decision node to

each possible value and solving for the maximum expected value. The decision

instantiation that produces the maximum expected value for the evaluation of the belief

network is the same as the decision we would make in the influence diagram

representation using an influence diagram algorithm.

This transformation does have its limitations, however. While it is used

extensively in this dissertation, I have found a modification that simplifies evaluation of

decisions for the backward simulation algorithm: instead of assigning arbitrary priors to

decision nodes, assign a uniform distribution to the possible decisions. Now a simulation

algorithm need not evaluate one Bayesian network for each possible decision since

randomly selecting a decision as a true chance node will converge to the same outcome.

2.1.5. Dynamic Influence DiagramsInference Over Time

In some cases, a single decision may be insufficient for solving a problem.

Consider the case where our air traffic repair controller must make multiple repairs on the

same piece of equipment before it can be fully restored. Normally such compound repair

actions are not modeled in influence diagrams, as the growth in the number of possible

actions adversely affects computing a solution and such multiple repair actions may be
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unrealistic in many domains. Thus a common solution is to model only single repair

actions over multiple decision cycles. To do this, we must again modify our original

representation.

Figure 3 presents a general dynamic influence diagram for decision making. The

states of multiple components are represented by the collective state nodes S, that may

produce observations 0, available to the decision-making agent. Generally the agent

would like to make an optimal or approximately optimal first decision, since evidence

available at future states cannot necessarily be predicted in a domain where components

can actually break.

Figure 2.3: A Dynamic Influence Diagram Showing Two Decision Cycles.
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To do inference over time, a best possible decision is made during the current

time slice available. Next, the network is extended one time slice and updated to reflect

the effects of the decision made. In this dissertation we also perform a folding in of the

last time step into a small number of predecessor nodes that reflect the past states. Where

time and storage space are not issues, the entire time slice may be stored away for future

examination.

The mechanics of these operations can be quite inelegant and can vary in

implementation, so we skip the details here. There is no reason to suppose that my

results should be affected by implementation differences.

2.2. Algorithms for Resource-Bounded Inference

Numerous algorithms that attempt to trade accuracy for time have been developed

in the last dozen years. While this section is not an exhaustive list of those, it does

introduce the algorithms discussed in the dissertation, plus a few others that represent

common or significant approaches to the problem.

2.2.1. Backward Simulation

Stochastic simulation algorithms are used in a variety of domains to estimate

probabilities. They may likewise be used to estimate the MSEU in an influence diagram

or a Bayesian network. To create a single instantiation of a Bayesian network, the root

nodes are first sampled, then the children of those nodes, and so on until a complete

instantiation of the network is created.
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This can be remarkably inefficient when dealing with evidence. Recall from our

simple network in Figure 1.1 and the ensuing discussion that evidence nodes are usually

children of the state nodes. When a network is structured this way, samples inconsistent

with the evidence are thrown away. The percentage of samples discarded is often large

when evidence suggests a diagnosis that has low prior probability.

To avoid this we may use backward simulation [Fung 94]. Backward simulation

performs a stochastic simulation by working backwards from evidence nodes to root

nodes, then forward to the leaves. An evidence node is sampled using its conditional

distribution in order to instantiate its parents. The value saved is then weighted by

unsampled parent node prior distributions (normally a subset of the root nodes). This

guarantees convergence to the true sample value without wasting samples.

2.2.2. The Kappa-Reduced Algorithm

Bruce D'Ambrosio implemented this algorithm upon suggestions from Moises

Goldszmidt that are based upon the Kappa calculus {Goldszmidt 95]. Utilizing the partial

ordering of the belief network that is already maintained, computation proceeds as

follows:

1. For each node in order, compute its priors:

P(n)=F(n parents(n)) fJP(n)
peparenL(n1)

2. Find the highest probability value in each node, and then find the smallest

value in this set (the least-greatest-prior).
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3. Build an ordered list of all of the probabilities that were computed in the

first step, eliminating duplicates.

4. Set the current-minimum-prior to be the least-greatest-prior for the first

iteration, or the next smaller entry in the sorted list for each subsequent

iteration.

5. Beginning with the complete conditional probability table at each node,

reduce the domain at each node to include only values greater than or

equal to the current-minimum-prior.

6. Apply exact inference to the resulting reduced network to obtain a

decision. Our version uses SPI exact inference [Li and D'Arnbrosio 94].

7. If you desire another iteration, GO TO STEP 4.

The anytime capability of the algorithm stems from the ability to vary the number

of loops on items four through seven. Such a loop is referred to later as a step. This

algorithm exhibited weak performance in practice, so a posterior-estimating version was

created as follows in the next section.

2.2.3. Posterior Kappa-Reduced

This variant makes only a few changes to the algorithm above. Computation

proceeds as follows:

1. Reduce evidence nodes and their parents by eliminating all values

inconsistent with current evidence.
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2. For each node in order, compute its priors:

P(n1 ) = P(n1 parents(n1)) jJJP(n)
peparents(n,)

3. For each node prior to the evidence nodes, in reverse order from the

evidence nodes, compute: P(parent(n1 ))fJ P(n1 parent(n1 )).

4. Find the highest of these values at each node, and then find the smallest

value in this set (the least-greatest-posterior).

5. Sort all posteriors from all nodes into descending order in a list,

eliminating duplicates.

6. Set the current-minimum-posterior to be the least-greatest-posterior for the

first iteration, or the next smaller entry in the sorted list for each

subsequent iteration.

7. Beginning with the complete conditional probability table at each node,

reduce the domain at each node to include only values greater than or

equal to the current-minimum-posterior.

8. Apply exact inference to the resulting reduced network to obtain a

decision. Our version uses SPI exact inference [Li and D'Ambrosio 94].

9. If you desire another iteration, GO TO STEP 6.

The passing of evidential influence is analogous to lambda message propagation

in Pearl's polytree algorithm [Pearl 88], and D'Ambrosio and I did consider

implementing that as an alternative, but we concluded that it should make no significant

difference in either decisions or performance of the algorithm, and used the version
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described above. As with the Kappa algorithm, a step refers to an iteration of the loop

from items six through nine above.

2.2.4. D-IPI

This algorithm extends the IPI algorithm presented in [D'Ambrosio 93] to cover

search over more general expressions that include sum, difference, and maximization

operators. IPI is an incremental search variant of the SPI exact algorithm mentioned

above. Computation proceeds as follows:

1. Construct a symbolic expression for the query (marginalization over the

joint probability density function).

2. Construct an evaluation tree for the query.

3. Search the tree top-down for large-valued joint instantiations of the

variables.

4. Maximize and marginalize working backward from the last decision in the

network.

The step size for this algorithm is the number of large-valued instantiations that are

computed.

2.2.5. Random

This algorithm is as simple as it sounds: the agent delays taking any action for a

fixed period of time (the step size for this algorithm). It then selects an action at random

and implements it. One might reason that this algorithm could be as good as anything
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when the agent is permitted only extremely small increments of time, as the costs of

deliberating might at some point outweigh the costs of taking random actions. Certainly

this algorithm provides a lower bound on performance, since algorithms performing

worse than this one are not worth considering.

2.3. Partially Observable Markov Decision Processes

Researchers have modeled action under uncertainty with partially observable

Markov decision processes (POMDPs) for more than three decades, demonstrating the

model's flexibility by the wide range of diagnostic and reactive tasks modeled. Strictly

speaking, the system discussed in this dissertation may be more accurately modeled as a

cost-observable Markov decision process [Bayer 99], but given that the models are

polynomially transformable into each other I will restrict this discussion to the more

generally discussed POMDP model.

A Markov decision process (MDP) consists of a tuple <5, where is a

set of possible states of the world or system being modeled, is a set of agent actions, T

is a mapping from x into probability distributions over i (i.e. a transition function

which may be nondeterministic), and -* is a reward function stipulating

the immediate real-valued reward given a transition from the first state to the second with

action . Generally researchers are less concerned with immediate rewards than with the

long term rewards generated from a plan of action that depends solely on the current state

of the system. Such a plan is called apolicy, and the problem posed by an MDP or

POMDP is usually stated as one of finding the optimal policy.
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An interesting property of MDPs is that under minimal assumptions there exists a

stationary policy which is optimal in the sense that the total cost of performance under

the policy is less than or equal to (or greater than, in terms of positive rewards) any other

policy.

Straightforward methods exist for solving completely observable discrete-time

MDPs. Linear programming can be applied to easily maximize expected reward.

Difficulties arise when we introduce partial observability. Here one still assumes

the same MDP structure given above, but instead of allowing the decision maker to

observe the system state before making an action choice, one adds a set of observations

0 such that one observation is made available to the decision maker after each state

transition. The observation produced is correlated with the state transition, but does not

generally allow us to completely determine the current state. The reward function

typically is modified to include the set of observations in its domain.

While a discrete POMDP may be transformed into a continuous MIDP [Astrom

65], this requires expansion from a finite to an infinite state space and results in an

exponentially larger problem with prohibitively high costs for policy generation. Other

techniques have been developed for continuous (belief) MIDPs that improve performance

in some instances. Value iteration generates an optimal policy by maximizing expected

reward within t steps of the initial state. As t tends to infinity, it may be shown that the

difference between the computed policy and the optimal policy goes to zero [Howard 60].

The problem of a continuous solution may be eliminated by an arbitrarily accurate

approximation with a piecewise linear convex function [Smallwood 73]. Unfortunately,

such solutions not only fail to guarantee polynomial time or space performance for
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POMDPs, they also fail to guarantee that the optimal policy will be sufficiently small that

the decision maker can store and use it. While some POMDP-specific algorithms

guarantee a solution will be computed, models with even 100 states strain the limits of

what is computable [Cassandra 97].

Some recent work attempts to generate approximate solutions quickly. The

Witness algorithm constructs approximations to the optimal policy in conjunction with

value iteration by seeking individual points where the current policy is inadequate and

replacing each by a vector which improves performance in that region [Cassandra 94].

Preliminary tests of the Witness algorithm demonstrated convergence in approximately

one day for the 256 state On-Line Maintenance Agent of this dissertation [D'Ambrosio

96bJ. The authors of the Witness algorithm admit there are many limitations and have

studied some improvements which may permit better scaling up [Littman 95b}. Other

approaches have explored relaxing assumptions about discounted reward [Jaakola 94] or

the form of the value function [Parr 95] with limited success.

Theoretical results suggest that previous approaches to working with partially

observable stochastic domains have missed the mark. Many common policy

improvement algorithms for MDPs exhibit exponential worse case complexity

{Melekopoglou 94]. Computing an optimal policy for MDPs is NP-complete under all

current formulations, and partially observable variants of these are PSPACE-complete

[Papadimitriou 87]. A variety of policy existence problems for POMDPs are shown to be

NP-Complete [Mundhenk 00]. Approximation may be of mimmal help in many POMDP

domains: optimal stationary policies can be E-approximated for any E < 1 if and only if

NP = P [Lusena 98].
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Some approaches to addressing these issues for certain classes of MDPs have

been outlined [Littman 95], but it is not clear that such approximations will help in

POMDP domains without further domain restrictions.

If we eschew policy approximation, there appear to be two viable alternatives.

The first is problem reformulation. In many domains an alternate representation of the

problem may result in significant simplification. Such alternate representations may be

difficult to discover and integrate, however. The second alternative is to not compute

policies at all. One form of this alternative is to reason dynamically in the environment.

Dynamic reasoning also more readily permits change to one's model of the world, better

supporting domains like robot navigation where the environment is expected to change

over time. Dynamic reasoning is the approach I have taken here, and the one I believe

promises the best and most immediate returns.

Why should we care? Because the POMDP model embraces many of the

essential elements of domains currently studied in the Al literature. Facing the

difficulties imposed by this model is necessary for the continued advance of the field.

2.4. Stochastic Automata Networks

Stochastic automata networks (SANs) are becoming an important modeling tool

for the performance of parallel and distributed systems because they permit quantitative

analysis of collections of components that infrequently interact [Fernandes 961. While

they also suffer from computational limitations, we will see later that they may be applied

to yet another exciting domain: the modeling of agent actions.



24

SANs are an extension of Markov chain analysis, a widely used technique for

modeling physical and economic systems with discrete state spaces. They are

particularly appropriate when one desires to know the probability of being in a particular

state after the system has run for a while, or the long term average time spent in different

states in the space, though other important quantitative results are possible. I won't

thoroughly introduce the mathematics of discrete-time Markov chains here: William

Stewart has done a much better job than I could hope to [Stewart 94], and a reader

unfamiliar with what follows should turn there for clarification.

A discrete-time finite state system may often be represented by a inatrix of

transition probabilities P where each Py represents the probability of transitioning to

statej in the next time step given that the system is in state i. Such a transition

probability matrix is said to have a stationary distribution if there exists some vector v

such that vP = v. This stationary distribution may be interpreted as the percentage of

time that the system will spend in each state ignoring an initial "start up" period.

Often one may generate many Markov chain descriptions from several sources,

including stochastic Petri nets, queueing networks, or an explicit Markov state space

model. If global behavior involving such components needs to be studied, SANs can

sometimes provide the necessary machinery to combine and analyze these Markov

chains. Usually the explicit transition probability matrix is not generated, since the

number of states of the global system can quickly explode [Stewart 96]. However, the

system modeled later in the text has only simple components, making explicit generation

of the systemic transition probability matrix and its associated stationary distribution the

preferable approach.
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Given square transition probability matrices Anim and representing two

noninteracting discrete-time Markov chains, the transition probability matrix for the two-

dimensional system incorporating both is simply the Kronecker tensor product C of the

two matrices:

r1B c2B aB 1
Ia21B cB a3B I..I

C=A®B=I I

aB .J
I

L. .

. S S

This matrix globally describes transitions that remain local to the component automata.

Note that the dimensions of the new matrix are mn rows and mn columns.

When dealing with continuous time or interacting automata, one may also need to

calculate the tensor sum D of two square matrices:

D= AEBB= A®J 'm®B
Similar to the discrete-time case, the tensor sum of two noninteracting continuous-time

Markov chains is the transition probability matrix for the global system.

When two stochastic automata interact, C and D are inadequate to describe the

global system. Two kinds of interactions may be modeled: functional transitions, where

the state of one automaton is a function of the states of another, and synchronizing
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transitions, where the change of state of one automaton simultaneously forces a change

of state in another. I will first address synchronizing transitions.

If one separates the local transitions from the synchronizing transitions, the global

transition matrix may be described as a sum of tensor products. Further, it has been

shown that in the continuous case the transition matrix may always be computed by first

generating the global state transition matrix with a tensor sum without synchronizing

events, and then adding two additional tensor products per synchronizing event. In

general, then, the global transition matrix T* may be written as:

2S+N N
T*

i=1 j=1

where N stochastic automata with S synchronizing events are being combined into one

global system [Stewart 941. These results fundamentally carry over, with modifications,

to the discrete time case [Stewart 001.

Functional transitions add an additional wrinkle to continuous Markov chains.

While by themselves they do not change the structure of the global transition matrix, they

may alter the transition rates. Generalized methods for dealing with this are more

complex, and involve an extended tensor algebra that may be difficult to apply. They can

become quite unmanageable when the number of transitions is large. When a transition

is both functional and synchronizing, as some in this dissertation are, the general methods

require significant mathematical machinery. However, small systems of discrete-time

automata may be approached ad hoc, and that approach was preferable for the work I will

discuss later. While computational difficulties exist, the reader should be aware that
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there are more generally applicable methods which significantly broaden the utility of

SANs applied to analysis of agent behavior.
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3. The On-Line Maintenance Agent

3.1. Imposing Structure on Real-Time Inference

The previous chapter addressed alternate approaches to this dissertation, as well

as algorithms represented in it. This chapter presents the On-Line Maintenance Agent

(OLMA), which was developed over a period of several years by Bruce D'Ambrosio and

students Tony Fountain, Caryl Westerberg, and Lothar Kaul at Oregon State University. I

gathered all of my empirical data on the OLMA. While my additions and modifications

were small in comparison to the complete OLMA, the OLMA is central to the

dissertation and therefore deserves discussion apart from less intimately related work.

The OLMA was originally developed to explore compilation of reactive solutions

and automatic construction of reactive controllers [Kaul 91, Westerberg 93]. Both of

these theses describe learning components no longer used, as the OLMA has evolved into

a testbed for studying inference algorithms and issues such as Incremental Probabilistic

Inference [D'Ambrosio 93], value-drive diagnosis [D'Ambrosio 92], and comparisons of

anytime decision algorithms [D'Ambrosio 96]. The remaining sections of this chapter

present a more detailed hierarchical description of the On-Line Maintenance Agent.

3.2. The Task Level

Relative to earlier formulations of diagnosis, the OLMA is a unique tool for

empirical explorations of scaling reactive controllers because it embodies several traits

that more accurately mimic the real world:



29

The OLMA is an embedded diagnostic domain comprising an agent and a

simulator that share information but otherwise are treated as separate

processes. This allows the agent to solve different problems, and different

kinds of agents to solve the same problem.

The simulator, for purposes of this dissertation, mimics a half-adder with

several gate components, each of which may independently fail during a

time step with some small probability.

The agent may perform both repair and sensing actions on the simulator,

and actions have costs.

The agent also incurs costs for each time cycle the simulator fails to

function properly, and it therefore has incentive to reason quickly and act

in order to minimize costs.

The performance metric is the agent's long-term costs for maintaining the

simulator, the gold standard is minimum long-term cost.

The challenge for the agent is to accurately diagnose and repair the circuit in the

simulator while fighting time constraints on deliberation. This is in contrast to frequent

formulations of diagnosis as a static activity where an optimal or near-optimal action is

chosen without regard to the costs imposed by the passage of time.

3.3. The Agent-Simulator Level

At this level the OLMA may be viewed as two processes: an agent and a

simulator. The simulator proceeds in discrete time steps. At each time step of the

simulator, information is sent from the simulator to the agent. The simulator presents the
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agent with the inputs and outputs of the half-adder circuit during the last time step, and if

the agent requested a probe point value from the last time step the value at that probe

point is also passed to the agent.

The agent is also stepped, and while the steps of agent and simulator are

synchronized the ratio of agent steps to simulator steps may be varied. At each time step

of the agent, the agent sends an action to the simulator.

In the current implementation of the OLMA, the processes are not forked but are

maintained through a control loop. Each process is allocated a small amount of

computation time called a CPU Quantum that is a multiple of the process execution time

recorded within the LISP interpreter used to run the OLMA. Since the simulator usually

requires significantly less time to execute than the agent does to deliberate, the simulator

is allocated a fixed CPU quantum, while the agent's CPU quantum may be varied by the

user to simulate different processor speeds. Measurements of the agent's CPU quantum

are referred to hereafter as QuantLed CPUSpeed. In most experiments with the OLMA,

the agent's CPU quantum is varied as a power of two, since that results in regular

significant jumps in perceived processor speed. The intent of this temporal structure is to

allow the simulator to continue operating while the agent deliberates on its action

choices.

An error in the structure of the current OLMA implementation makes the agent

reset the simulator each time it posts an action. This means that whenever the agent's

CPU quantum is larger than that of the simulator, the agent and simulator will be

completely synchronized. Originally this simulator reset had been programmed into the

OLMA as a computation-saving feature, but it had not been changed as both hardware
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and the OLMA's purpose advanced. Discovering the effect of this error was one small

part of explaining the data in the next two chapters.

As noted in [D'Ambrosio 92], the CPU quanta play an important role in

determining interesting decision-theoretic behavior. If the agent has too much time to

deliberate, it can find an optimum action over a short (several steps) horizon look-ahead

problem. If the agent lacks sufficient deliberation time, its actions will be largely

random. Since computational constraints require us to restrict computation to one-step

look-ahead, we must account for the long-term effect of the agent's actions on the

simulator. This is particularly important when one considers the effect of multiple faults,

which may require several time steps for the agent to repair.

Fortunately, probe actions are largely resolved by one-step look-ahead, since the

information content obtained is probabilistically summarized in a single advance. For

replacement actions, D'Ambrosio chose to model replacement costs using an assumption

of policy stability: if the agent chooses to not replace a component now, then it will make

the same choice in future states, all other things being equal. The temporal extension of

replacement decisions can then be modeled by using a multiplier for failure costs, which

accounts for a failure to replace. This leads to two constraint equations:

mcf))r

mpc f(Kr

where:

r is the cost of replacing one component in a time cycle

p is the probability of component failure per time cycle

Equation 3.1

Equation 3.2
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Cf 1S the cost of a component failure per time cycle

m is the multiplier for failure costs

We realize Equation 3.1 is necessary when we note that if the cost of replacement appears

to be too large, the agent will never replace a component. Equation 3.2 accounts for the

possibility of component failure, since if the expected cost of failure is too large then the

agent will always replace components. Behavior at the margins of these equations has

not been studied. Further details of this decision-theoretic formulation may be found in

{D'Ambrosio 92].

3.4. The Component Level

This level describes the internal details of the simulator.

The simulator emulates a half-adder circuit with four gates, as shown below in

Figure 3.1, where Ii and 12 are the inputs to the circuit, and P1 and P2 are probe points.

Each gate is treated as a separate component that can be in one of four states during a

cycle of the simulator: OKAY, STUCK_i, STUCK_O, and UNKNOWN. An OKAY

gate functions as one would expect it to. When a gate is in state STUCK_i, it will output

a 1 regardless of its input, and similarly STUCK_Q gates output a 0. When a gate is in

the UNKNOWN state, it stochastically outputs either a I or a 0 independent of its input.

Since each gate is independent of the others, the circuit may have multiple faults.

Also, with probability equal to the probability of a fault occurring in an OKAY gate, a

gate in one of the fault states may return to normal operation. The failure probability was

set to 0.003 per gate per cycle of the simulator for these experiments.
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Figure 3.1: The Simulator's Hall-Adder Circuit.
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If a gate is in one of the fault states during a simulator time cycle, cost is incurred

for that gate's failure and added to the total cost recorded for the agent. For the

experiments in this dissertation, the failure cost was 1 per gate per time cycle of the

simulator. The agent is not informed of the costs thus incurred, as the simulator only

shares inputioutput pairs and probe values with the agent. The simulator is viewed as

having only one probe that may be moved between the two possible probe points,

limiting the agent to requesting only one probe value.

3.5. The Action Level

This level describes the internal behavior of the agent.

The agent is a reasoning entity charged with maintaining the proper function of

the simulator. The agent maintains a belief model of the simulator, updates the model in

accordance with observations obtained from the simulator, and deliberates using that

model in order to choose an action to send to the simulator.
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The belief model at a time slice may be viewed as collections of states S3.

collections of observations O, decisions Dj, and a value node. Each time slice requires

information from a previous time slice to act as priors on the belief states of the gates (in

the first time slice, gate states of OKAY are assumed in the pnors, and the "observations"

from that slice are normal). The current time slice has a single decision node. The

temporal projection is accomplished through a single look-ahead time slice representing

the extent of the current decision. It contains both a collection of state nodes and a

decision node for the decision immediately following the current one to be made, as well

as a collection of nodes representing the states to come after the next decision. Current

and future decision and nodes and future state nodes affect the value node for the

network. An abstracted arbitrary time slice is depicted in Figure 3.2; a more detailed

representation of a time slice showing the individual gate representations is given in

Figure 3.2: Abstraction Basis For an Agent Decision.
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Appendix A. The arcs from the observation nodes to decision nodes are dashed because

they are informational rather than causal links.

The agent must regularly update this model to account for completion of a

decision cycle and consequent action taken. To do this, the agent effectively rolls the

time slice one time unit forward. The current time slice state nodes will become the

previous time slice by replacing the previous stage with the factored joint probability

distribution across component states after the current decision is made. The approach for

this can vary slightly for each algorithm, but generally exact inference is used to estimate

these updated prior probabilities. The future time slice is simply replaced by a new future

time slice with static prior distributions and a new value node. By utilizing a summarized

past state and limited projection for future states, the size and inference time for the

network remain essentially constant during a run of the simulation.

Once inference has been performed, the agent must select an action. There are

seven possible actions when the agent is configured for the half-adder: NOTHING, which

has no effect on the simulator; four REPLACE actions, one for each gate in the half-

adder, which cause the simulator to return the state of a gate to OKAY if it is in one of its

three broken states; and two PROBE actions, one for each probe point in the circuit. The

agent chooses one of these possible actions each time it completes a decision cycle.

REPLACE and PROBE actions incur costs of 10 per gate replaced and I per probe,

respectively. Doing NOTHTNG has zero cost. The agent's model of costs incurred by

the simulator includes the temporal extension of the cost of a failure, which is three times

the failure costs per gate per time cycle, or 30.
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4. Explorations with Several Inference Algorithms

4.1. Experimentat Goals

The broad goal of these experiments, as stated earlier, was to better understand

and perhaps improve upon existing anytime inference algorithms. The goal of the

experiments in this chapter was to explore the performance of several algorithms and

attempt to confirm several hypotheses from the literature and also from the creation of the

testbed itself:

Druzdzel hypothesLzed that one could make good decisions looking at

only the few largest terms of the full joint probability distribution

{Druzdzel 94]. He reasoned that since failures, diseases, and similar

events were usually rare, diagnosis upon such failures normally would

result in few explanations for observations. D'Ambrosio and I wished to

confirm that the testbed exhibited such behavior.

A related question is what happens when the agent is given more time, and

can compute perhaps a few more terms. Does computation improve with

more terms? Does this improve overall utility? It is not obvious whether

the extra time spent computing will improve decision quality sufficiently

to overcome the costs of not taking action now. It is also not clear that the

optimum amount of time that the agent should use for making a decision is

always the amount available between steps of the simulator; it may be that

the agent's costs for deliberation are less than the cost of inaction.
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Given that the agent can be set to spend more or less time on decision

making, is there a smooth tradeoff between time devoted to reasoning and

the quality of decisions, or is there a brittle edge where costs suddenly

spiral out of control?

Does the optimum amount of computation vary with the CPU speed of the

agent?

4.2. Method

To investigate these hypotheses, a few incremental algorithms were chosen. An

algorithm we call Kappa-Reduced was suggested by Moises Goldszmidt's work on the

Kappa Calculus [Goldszmidt 95]; and D-IPI was already available, having been

developed some years earlier at Oregon State University [D'Arnbrosio 93]. A stochastic

simulation algorithm was not included in these early experiments due to its reputation for

slow convergence. D'Ambrosio and I included two algorithms to help benchmark

performance: SPI exact inference (hereafter called Exact) and random choice of action

(hereafter referred to as Random) provided lower bounds on performance, since ifan

anytime algorithm cannot outperform both of these it is not worth serious consideration.

After collecting our initial data, we felt the Kappa-reduced algorithm had

performed poorly so the Kappa-reduced algorithm was revised to create the Posterior

Kappa-reduced algorithm. These algorithms are discussed in Chapter 2.

Choice of a performance metric was crucial to algorithm evaluation. Typical

methods that had been used to evaluate reasoning algorithms included running the

algorithms on a common set of decision problems, and collecting data on randomly
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generated graphs. Prior to my involvement, D'Ambrosio had already realized the

difficulty translating standard performance metrics into something which a program

designer could use to make decisions about which algorithm was most appropriate. What

does a typical influence diagram we would like to do reasoning on look like? How do I

compare results on one set of influence diagrams to expected perfonnance on another set

of influence diagrams that I am interested in? The difficulties are even more pronounced

with incremental algorithms specifically designed to provide best performance only under

tight time constraints.

We elected to measure performance by using the cost per unit failure for a long

run of the system. While the cost per unit failure metric does not address differences in

influence diagrams, when used in conjunction with a realistic testbed like the On-Line

Maintenance Agent it does provide a reasonable performance measure for our

incremental algorithms. Since our efforts here were exploratory rather than a full

performance comparison of the algorithms, we felt there was less need for coverage of a

wide range of influence diagrams. What we did need was a means of evaluating the

effects of different reasoning algorithms on decision-making processes.

Designing the data collection runs was nontrivial. Several parameters need to be

considered when collecting performance data using the OLMA. Random requires a

trivial amount of deliberation time, of course, so there is no tuning required. Exact is

nonincremental, so it must run to completion. Allowing more time than necessary for

making decisions will increase the cost per unit failure, since the only effect on cost is to

delay repairs for one or more decision cycles. Again it is not clear that giving the agent
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more time will result in a completely smooth increase in costs, but we hoped the

experimental data would answer that question.

Our most advanced algorithms must be tuned for best performance. The

incremental algorithms all may vary the number of incrementally refined results

computed. Observation suggests that with any incremental algorithm, additional useful

computation tends to improve the cost per unit failure metric. But since the agent and

simulator can be set to effectively run at different speeds, we might expect that the

optimal amount of computation might vary with the quantized CPU speed. In these early

experiments the exact relationship expected was unclear. Thus it was neôessary to collect

data varying both quantized CPU speed and the number of steps of the incremental

algorithms.

But fixing the steps under the On-Line Maintenance Agent required additional

labor: since the agent was forecasting future results by projecting the long-term effect of

repair and non-repair actions, the agent needed to know how many simulation cycles

would transpire per decision cycle. This required setting an additional parameter, the

decision-time, so that the agent could make an accurate estimate. Some preliminary runs

were enough to convince Bruce D'Ambrosio and me that none of the algorithms were

particularly sensitive to the exact value of this parameter. Nevertheless, I took pains to

check the average decision time for different quantum/step combinations by using

preliminary runs, and select the next greatest integer value over the average for the data

runs. Preliminary runs used to determine decision-time settings were typically only 100

decision cycles in length.
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would have to be to collect the data. Since a number of parameters were being varied, we

had hoped that 100 decision cycles would be sufficient to collect reasonable performance

data, but it quickly became apparent that at some quantumlstep combinations the

simulator would not generate an adequate number of faults in the system in 100 decision

cycles. Consequently our metric, the cost per unit failure, would be based on a very

small number of failures. To address this deficiency, we elected to increase the number

of decision cycles to 500 for each data run.

Additional constraints resulted from a lack of uniform computational resources.

Several workstations were available in the department that ran the Sun Solaris operating

system and the necessary LISP interpreter, but processor speeds and memory

configurations differed. Different processor speeds directly affect performance since

time allotted to the agent and simulator is measured in milliseconds of CPU time. There

may also have been communication speed variations with the main file server. To

address speed issues, I used two strategies: some algorithms were run exclusively on a

single machine, and other were run on multiple machines where differences could be

accounted for by simple math. The latter case applied only to the Kappa-reduced

algorithm, which was run on Oregon State University's Sparc machines known as flume

(Sparc 1), Godel (Sparc 1), and Alha.zen (Sparc 2). Since Aihazen ran at half of the speed

of Godel and Hume, the decision-time settings of the Aihazen runs were different, but I

observed no discernable differences in the cost-per-unit-failure measurements (which is

what we expected). D-IPI and SPI Exact runs were collected on a Sparc Classic known

locally as Ptolemy.
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The LISP interpreter allows one to fix the starting value of the seed for the

pseudorandom number generator. Since both the agent and the simulator are using the

pseudorandom number generator while performing their tasks, and actual timing between

the two subprocesses can vary, it is probable that the sequence will diverge in time. To

ensure that common subsequences were less likely, I manually force the pseudorandom

number generator to produce an arbitrary number (between 1 and 9999 inclusive) of

pseudorandom numbers, thus reducing the likelihood of a commonality between runs.

Ideally separate seed values would be kept for the agent and simulator, both to aid in

debugging and to allow more careful study of the components, but I saw iittle need for it

in my own experiments and consequently decided not to implement this change.

When reviewing the data for this dissertation, I noted some discrepancies between

data sets I had collected and those published by Bruce D'Ambrosio and me [D'Ambrosio

and Burgess 1996]. Since I had kept careful records of what I had done, I reviewed my

own data and methods carefully. I noted that for data sets with D-IPI and Posterior

Kappa-reduced, there were large differences between my data and those published. For

these same algorithms, I had done data collection sets over 500 decision cycles, but had

used 100 decision cycle runs to gather data necessary for determining the decision-time

values to use for the actual data runs. These shorter runs had much lower cost-per-unit-

failure values with these two algorithms. Since D'Ambrosio did not keep track of details

of his methodology, and we were collecting data rapidly in order to meet the paper

deadline, I suspect that D'Ambrosio's data is based primarily on shofter 100 decision

cycle runs.
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If the data are accurate, there may be a flaw in either the testbed or in the

implementation of these algorithms that accounts for this "start-up" effect. Careful

checking of the code did not reveal a possible source for such an error. Further tests with

shorter runs of the Random algorithm (which is thoroughly studied in later chapters)

failed to turn up further examples of this effect. Longer runs of 500 to 1000 decision

cycles appear to be more stable. Consequently I have chosen to present my own data in

the discussions that follow.

The data originally presented for the Random algorithm in the UAI-96 paper are

clearly in error. We had collected a single data point and projected its behavior for

different quantized CPU speeds on the belief that the quantized CPU speed did not affect

the cost per unit failure. Research I present in later chapters shows that this is incorrect

because it does not correctly account for effects attributable to the structure of the

OLMA. An important result of these investigations is the reminder that effects

attributable to the simulator's structure must be understood and clearly separated from the

behavior of the algorithms being investigated.

Actual data values for these algorithms are presented in the tables of Appendix A.

While I do not report the raw data values in most cases, I report both D'Ambrosio's data

and my own, the latter forming the basis for the results which follow.

4.3. Results

Figure 4.1 summarizes the observed cost-per-unit-failure results with the Kappa-

reduced Algorithm.
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Figure 4.1: Cost Per Unit Failure of the Kappa-reduced Algorithm Across Step Size

In our UAI-96 paper [D'Ambrosio and Burgess 1996], we dismissed the Kappa-

reduced algorithm as noncompetitive, but that conclusion may not be completely

justifiable. From my data sets it appears that the Kappa-reduced algorithm is reasonably

competitive at step values 16 and 32, but somewhat brittle with respect to step size. I

now wish I had collected data at the neighboring step value 8.

The results for the D-IPI algorithm are presented in Figure 4.2. There was

insufficient time before the publication of the UAI-96 paper to collect sufficient runs for

averaging, so all but a few data points are plotted from a single run. Performance at step

value 4 looks modestly promising, but as with the Kappa-reduced algorithm a degree of

brittleness with respect to step size is notable.
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Figure 4.2: Cost Per Unit Failure of the D-LPI Algorithm Across Step Size

Such brittleness can cut both ways: while tuning the algorithm is easier in the

sense that it is easy to find a step size with superior performance, one must be careful to

do so in order to guarantee that the agent will perform satisfactorily.

The results for the Posterior Kappa-reduced algorithm are presented in Figure 4.3.

Here we have a remarkable change: the brittleness of the previous algorithms is gone, and

performance is consistently good across step sizes. Not only that, but performance

appears to be better on average than in either of the previous algorithms precisely where
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it is most needed: when the quantized CPU speed is at its smallest. Note that several step

values are "best" at different quantized CPU speeds.
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Figure 4.3: Cost Per Unit Failure of the Posterior Kappa-reduced Algorithm Across
Step Size

One question we may ask now is how these algorithms compare when they are at

their best. That is, if we choose step sizes for combinations of algorithm and quantized

CPU speed, what is the best performance of each algorithm, and how do they compare

with the Exact (SPI) algorithm? (Though the UAI-96 paper also compares these with the

Random algorithm, I will reserve discussion of this until a later chapter.)



The best average performances for the anytime algorithms and for SPI Exact are

presented in Table 4.1 and Figure 4.4. Empty positions in Table 4.1 simply reflect data

that I was unable to collect due to time constraints. Note an important difference with the

UAI-96 paper: I present average performance data for SPI Exact, not the best single

Quantized CPU Speed
Algorithm 1 2 4 8 16 32 64

Exact 145 46 24 20
D-IPI 53 77 34 23 26 102

Kappa-reduced 51 25 19 18
Posterior Kappa-reduced 59 ____2830 28 23T 19

t3)

1)

C

Table 4.1: Comparison of Best Average Performance of Several Anytime
Algorithms and Exact Inference

its"

10

SPI Exact Inference
D-IPI- Kappa-reduced
Posterior Kappa-reduced

1 2 4 8 16 32 64

Quantized CPU Speed

Figure 4.4: Comparison of the Best Average Performance of Several Anytime
Algorithms and Exact Inference
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performance overall. I also present the best average performance for all of the anytime

algorithms. I feel this gives a better comparison of the strengths and weaknesses of the

algorithms since variance becomes less of a factor (though it may be a factor for some

values of the D-IPI algorithm presented here) and since averages are compared with

averages. To generate the graph, missing data had to be replaced with the averages of

values before and after in Table 4.1, though this may not be obvious at first glance.

While one would expect smoother curves in Figure 4.4, it is best to keep in mind

that the averages are of only one to three data points for all data presented, and further

that the individual data points could be more stable if each individual run was carried to a

greater number of decision cycles.

4.4. Discussion

All of our anytime algorithms followed two expected trends:

1. Best average agent costs generally decrease when the agent has more CPU time.

2. The number of steps required to obtain best average performance generally

increases as more CPU time is available.

These results appear to confirm our hypothesis that the anytime algorithms are effective

at trading CPU resources for average quality of decision over a long run of the simulator.

Further, the results justify our interest in such algorithms as part of resource-bounded

inference.

A number of interesting questions arise from examining the results. First I note

that the Kappa algorithms generally perform well in this domain. One might wonder
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in the following chapter. One also has to wonder how the change from a priori to a

posteriori estimation reduces variance as it does in the Posterior Kappa-reduced

algorithm. I hypothesize that the Posterior Kappa-reduced algorithm more accurately

focuses on states most likely associated with the evidence, and consequently exhibits less

brittle behavior. Since some algorithms appear to require careful tuning for optimum

performance, is the need for such tuning predictable and manageable?

Secondly, some anytime algorithms appear to perform quite well with very small

amounts of computation. Are there characteristics of the problem choseri which make it

amenable to anytime inference? Do parameters of the problem like failure probabilities,

replacement costs, or inspection costs have much bearing on the amount of computation

required? Part of the answer may lie in the benign nature of the problem: there are no

dramatic costs for missteps, though it is notable that failure to repair a broken gate

quickly results in mounting costs. Further study is necessary to answer these questions.

I performed a few manual examinations of the maximum subjective expected

utility using the SN Exact algorithm. What I discovered was startling: differences

between the optimal action and the next best choice often differ by less than .01 and

sometimes by less than .001 (keeping in mind that MSEU is expressed like probability

mass in the OLMA, and total MSEU across the seven possible actions sums to 1.0). This

is particularly true for states where no gate is broken, so an algorithm that is slightly

biased towards inaction may generally perform better than one that isn't. It may also

explain the "start-up" effect that differentiates short and long runs of the simulation under

some algorithms, assuming that those algorithms have this bias and the simulator
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generates fewer faults during its early stages; I have been unable to locate such a flaw in

the simulator, but have not had the opportunity to test it thoroughly.

Lastly, the anytime algorithms generally outperform exact inference across the

entire range of our experiments. So when does Random outperform Exact? Do the

anytime algorithms outperform Random as we expected? What part of the performances

of these algorithms should be attributed to the algorithms and what should be attributed to

the testbed?

4.5. Related Results

In addition to the issues of scale related to parameters of the OLMA, there are

three other scale issues worthy of discussion here:

1. How do our results scale with increasing problem size?

2. How do our results scale with increasing look-ahead (number of decision stages)?

3. How do our results scale with increasing numbers of internal states (requiring

extended memory of the past)?

D'Ambrosio has begun to address the first two issues through other experiments

reported in the UAJ-96 paper. Experiments conducted on the OLMA the D-JPI algorithm

was tested with circuits having one to sixteen gates. The time required to evaluate

decisions or estimate posterior distributions grew only slightly greater than linearly with

the number of gates.

To address the second issue, D'Ambrosio studied a different decision problem

where both the number of computation steps and the number of decision stages were

varied. Surprisingly, the D-IPI algorithm outperformed the Posterior Kappa-reduced, and
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was able to search quite deeply while doing so, while the Posterior Kappa-reduced

became intractable at depth 3. It is hypothesized that the result is due to the static nature

of the domain restrictions of Posterior Kappa-reduced, but further experiments are

necessary to demonstrate this.

I have designed an implementation of the master-slave flip-flop circuit to address

the third issue. Since inputs from the last cycle of the simulator will produce the outputs

of the current cycle, the agent must maintain a representation of the previous state and

use current evidence to deduce what state the circuit was previously in. Assuming the

agent's model of the simulator uses the obvious technique of representing a past state by

using a past time stage, the agent may be required to extend any particular number of

stages into the past by a simulator comprising that many flip-flops chained together. I

have not had the chance to implement this circuit in the OLMA, as it requires changes to

the OLMA's structure that do not appear to be justified by the impact of the results: while

problems with internal state are of interest in the POMDP community, there is no obvious

reason to suppose that the incremental inference problem posed by extending several

stages into the past is significantly different from extending several stages into the future.

4.6. Conclusions

While it can be difficult to conclude much from a single testbed configuration,

these early explorations confirm a number of important hypotheses:

Kurtosis, or focus, may play an important role in the performance of these

anytime inference algorithms. The experiments here are insufficient to

reveal the enabling conditions for this, but they are sufficient to
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demonstrate that the basis for trading computation time for quality of

decisions is sound for some domains.

Further, the experiments demonstrate that when the agent is given more

time to make decisions, the quality of those decisions can be improved in

an apparently fairly regular and smooth way.

The optimum amount of computation for the agent varied not only with

the CPU speed of the agent, but with the particular algorithm chosen.

Some algorithms require significant tuning to obtain optimal performance,

while others may perform well across a wide range of step sizes;

estimating MSEU after propagating the effects of evidence for faults

through the influence diagram appears to enable this non-brittle behavior.

In addition, a number of important questions are raised by these experiments:

A number of experimental design issues are exposed: how can one fairly

compare two algorithms, or even decide which algorithm is most

appropriate for a new domain when so many variables (influence diagram

structure and size, distribution kurtosis, and simulation parameters, to

name a few) must be dealt with?

How can one separate the behavior of the algorithms from that of the

simulation's structure?

Exact inference provides something of a lower bound on performance, but

clearly an upper bound must also exist. Are the algorithms pushing close

to this upper bound? How can we know?

The remaining chapters attempt to address some of these issues.
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5. Some Experiments on Kurtosis

5.1. Experimental Goals

In our early explorations [D'Ambrosio and Burgess 1996], D'Ambrosio and I

hypothesized that the distributions hidden in the influence diagrams contributed

substantially to the performance of the anytime algorithms, and we pointed to earlier

work [Druzdzel 1994] to support this claim. In those experiments Posterior Kappa-

reduced significantly outperformed both D-IPI and Kappa-reduced, and we attributed the

difference in performance on the ability of Posterior Kappa-reduced to better focus on

portions of the search space where probability mass was likely to lie.

This experiment asks whether the kurtosis of the distributions implied by low-

probability faults can be exploited by high kurtosis in sampling those distributions. In

other words, does peaked sampling account for a significant portion of the performance

of these algorithms? If this is the case, we know that "good" algorithms should possess

this property in domains similar to the OLMA.

Please note that the "kurtosis" values discussed here are not equivalent to the

more formal statistical use of that term, but represent my own informal attempts to

quantify the peakedness of the sampling distributions.

5.2. Method

It is obviously insufficient to compare the algorithms already examined to answer

this question: they differ on two many particulars for proper isolation of the kurtosis
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property. Thus I had to design a new algorithm where the peaked sampling could be

regulated as a property of that algorithm without altering its other behaviors.

Backward simulation provided a relatively simple algorithm, but how might one

modifi it to sample high probability mass zones of the distributions more heavily?

Consider Table 5.1, which illustrates the effects of squaring and renormalizing a

probability distribution. The variable A may be in states 1, 2, and 3 with the probabilities

0.6, 0.25 and 0.15 respectively. If we square each of these values, we obtain the values in

the following row, which cannot constitute a probability distribution since they do not

sum to one. But the values may easily be renormalized to generate the third row, which

is a new probability distribution associating different values with each state of variable A.

P(A=1) (P(A=2)
)

P(A=3) P(A=i)
Original probability distribution: 0,6 0.25 0.15 1.0

Elements above squared: 0.36 0.0625 0.0225 . 0.445
Previous row renormalized: 0.8+ 0.14+ 0.05+ 1.0

Table 5.1: An Example of Peaking a Distribution with Logic Sampling

We notice immediately that if we sample according to the renormalized squaring

instead of the original probability distribution, more samples will be allocated to state 1 at

the expense of states 2 and 3. Such a sample does not give a true picture of the

probability distribution, but this can be fixed: if after sampling 100 times we note that 81

samples were allocated to state 1, then we can recover an estimate of the true distribution

for state 1 by multiplying by 0.6/0.8, the ratio of the original distribution to the peaked
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distribution for that state. This yields an estimate of 60.75 samples for state 1, or an

estimated probability of 0.6075 for that state.

By applying this peaking technique to backward simulation, we still obtain an

accurate estimate of the probability distributions but with more samples than usual

allocated to the high probability mass zones. My hope was that this would give a more

accurate picture of these critical zones and thus improve the performance of stochastic

simulation when only a small number of samples can be allocated. Of course, one is not

limited to taking the square of the probability values, and I have termed the power to

which the values are raised the kurtosis value for that sampling.

I decided to try a number of different kurtosis values to see if "more is better." I

felt that in the limit all samples would be allocated to just the highest probability mass(es)

in the distribution, which gives a poor estimate of the complete distribution. Thus if

peaking improves stochastic simulation with a small number of samples, it was also

likely that it did so only within a range of kurtosis values that depended somehow on the

total number of samples. I decided also to test fractional kurtosis values, since those

should exhibit the opposite effect of peaking with values greater than one.

The care I took when collecting data in Chapter 4 also applies here, so I won't

reiterate details. But for careful comparative data, I decided further steps were needed to

ensure that I could compare the performance of peaked and unpeaked sampling.

I realized that stability of the data runs was crucial. The number of failures

exhibited for some combinations of quantum and step size had been too small for a few

data points collected in Chapter 4. I decided to double the number of decision cycles for

each run, meaning that each run would now be 1000 decision cycles long.
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Secondly I noted that some statistical analysis of the results would be necessary.

From the data collecting I performed for Chapter 4, I had learned that a simple string of

experiments would require several months of CPU time and much babysitting of the

processes in the event that they crashed. An upgrade of the LISP compiler appeared to

improve performance with regard to jobs crashing, but how to collect sufficient data?

Oregon State University possessed several parallel computers, including a 16-node

Meiko CS-2 locally known as Shark. Unfortunately, Shark's message routing hardware

failed as I was about to begin my data collection! I opted to conduct my experiments on

an 8-way SunTM Enterprise1M 4000 Server known locally as Trek.

I could not use Trek to the exclusion of others, but could run four or five

processes fairly continuously. Since the operating system and hardware would be the

same for all jobs run, I could eliminate those as variables of concern. But this still left me

far short of the capacity necessary to generate sufficient data points for common tests that

compare sample means.

Consulting with a statistics graduate student yielded naught. I queried a number

of pharmacy and statistics faculty until the name Wilcoxen was mentioned by one. In a

statistics text for scientists and engineers I then found the Wilcoxen rank-sum test, a test

applicable for comparing the means of sets of samples when the number of samples per

set is quite small. I now needed potentially as few as four samples per kurtosis value per

quantum.

But how many would I actually need? This was uncertain. I chose to attempt to

collect four samples per kurtosis value per quantum, and hoped that would be enough

since I lacked both the knowledge needed to better estimate the number of samples



required and the time to collect more samples than this. I chose kurtosis values of 0.125,

0.5, 1, 2, 8, and 32. I chose to do the run at 32 expecting that performance might drop off

with such a large kurtosis value, as explained above. Total time to collect this data

exceeded six man months and four CPU years.

I collected data at quantized CPU speeds of 1, 2, 4, 8, 16, 32, 64, and 128 initially,

but for kurtosis values 1 and 2 also collected data at 1028. I had observed some unusual

shapes in the graphs, and hoped the additional data might reveal what the limiting process

looked like.

5.3. Results
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Figure 5.1: Average Performances of Backward Simulation with 1000 Samples at
Different Kurtosis Values



57

The results for quantized CPU speed 1000 are summarized in Figures 5.1 and 5.2.

The raw data from which this is derived may be found in Appendix B.
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Figure 5.2: Critical Region of the Averaged Performance Data for the Backward
Simulation Algorithm with 1000 Samples at Different Kurtosis Values

Studying these graphs carefully, I concluded there were three regions of interest.

The first is the downward slope on the left where cost per unit failure is improving. The

second is a rise in the cost per unit failure in the middle of the graph. But then

performance seems to level off on the right third of the graph. For kurtosis I and 2 I

carried the graph out further to quantum 1028 to make sure that this was not a local

phenomenon, and the graph suggests it is not. Thus for some reason the OLMA's



58

performance became almost fixed after a particular quantum value; the performance

within that rightmost region is determined primarily by the kurtosis value.

This rightmost region appeared to violate some of our assumptions about the

performance of the OLMA. If the agent is running faster and faster, then eventually the

agent should reach a point of diminishing returns where the extra effort to reason further

incurs costs that exceed the benefits of reducing the time to repair. This becomes most

apparent when we consider the SPI Exact algorithm. One interpretation of Exact is that

once an exact solution has been computed, further time spent reasoning is wasted.

The most important point for each kurtosis value is where the cost per unit failure

is minimum. I note two interesting phenomena in the graph. First, some data minima

show performance differences with respect to the baseline, Kurtosis 1. The minimum

value for Kurtosis 8 is lower than the minimum for Kurtosis 1. Applying the Wilcoxen

rank-sum test for the data establishing these averages I found that the difference

statistically significant at the level 0.025 (Table A. 17 in [Walpole et al. 1985] was used in

making this determination). The minimum value for Ku.rtosis 0.125 is higher than the

minimum for Kurtosis 1 at the same level of significance. The minima for Kurtosis 2 and

Kurtosis 0.5 could not be statistically separated from the Kurtosis 1 minimum with the

given data. The minimum for Kurtosis 32 also could not be separated statistically from

that of Kurtosis 1, but one data point in the sample set for the minimum of Kurtosis 32 is

an extreme outlier that I elected not to discard since the number of simulator faults

appeared to be sufficient to permit it. Ignoring that outlier, Kurtosis 32 would also give

performance superior to Kurtosis 1.
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The second phenomenon worth noting in the graph is that all peaked samples

appear to have their minima shifted toward lower quantized CPU values. This is useful

in one sense: minima that occur at lower quantized CPU speeds yield better performance

precisely where the agent is pressed hardest under the time/quality tradeoff Without a

better model of the OLMA, it is difficult to say more about what this means.
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Figure 5.3: Average Performances of Backward Simulation with 5000 Samples at
Different Kurtosis Values

The data for samples of size 5000 are presented in Figure 5.3. Since collecting a

complete dataset for 5000 samples could have taken considerable time, I chose to

concentrate on values that appeared important in the 1000 sample case. Parallels exist



between the results. Again I observed that all peaked runs appeared to have their minima

at lower quantized CPU speeds than Kurtosis 1. And again the Kurtosis 0.125 had a

minimum considerably higher than the minimum of Kurtosis 1. Unlike the 1000 sample

runs none of the different kurtosis values tried yielded statistically significant

performance improvements in an absolute sense, though again it is worth noting that the

leftward shift could constitute a performance improvement.

I also collected small quantities of data for sample sizes of 20000. Each run of

this set could take up to two weeks to complete, so the data are necessarily sparse. The

results are summarized in Figure 5.4.
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Since the number of data points presented in Figure 5.4 is necessarily small, I can

only state that the data suggests comparable performance between Kurtosis 8 and

Kurtosis I runs, and that Kurtosis 2 appears to induce inferior performance.

Appendix B also includes a small portion of data for sample sizes of 50 and 100,

but I concluded that these samples sizes produced insufficient performance to be

seriously considered, regardless of the quantized CPU speed. Consequently, I did not

complete a data set and will not report them here. However, they are collected in the

appendix for the curious reader.

Even with the care taken to collect the data seen here, one cannoV draw broad

conclusions. It appears that this form of kurtosis does not significantly improve

performance, though under tight time constraints a modest performance improvement of

no more than 10% may be expected. Some of the improvement results from the leftward

shift of the characteristic curve for the algorithm when kurtosis is applied. Also, it

appears that while kurtosis may contribute some improvements, it must be tuned for

maximal effect. Too much or too little kurtosis may degrade performance.

The kurtosis implemented in the Backward Simulation algorithm may not have

the desired focusing effect. Instead of yielding a more accurate sample when sample size

is limited, it may merely reduce the variance in such a sample. This may be desirable

when consistency among choices is needed, but is not generally the same as

concentrating computational effort on gathering high probability mass elements in a

conditional distribution. Hence a more careflully designed "peaking" algorithm may

demonstrate better performance with a focusing mechanism.
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The methodology developed here is a useful contribution. By analyzing the

properties of algorithms and associating them with domain characteristics, the possibility

of designing better algorithms is within reach.

Clearly a better model of the OLMA is necessary to obtain a better understanding

of what may be attributed to the algorithms and what are epiphenomena of processes

within the OLMA. I will now turn my attention to this.



6. Analysis of the Random Algorithm

6.1 Introduction

ri%]

Design and analysis of decision algorithms is a central aim of this dissertation. In

order to effect this, it is necessary to understand the conditions under which algorithms

will perform well. Complex testbeds are a necessary testing and comparison component

for anytime algorithms, but they introduce a number of problems for the empirical

scientist:

Testbeds introduce additional variables that must be accounted for in algorithmic

comparisons.

Questions of optimality and ceiling or floor effects cannot usually be answered by

empirical data alone, but must be accounted for by design and analysis of the

testbed.

Proper performance of different algorithms should be verified using all reasonably

available methods.

Attributing trends in observed data to the algorithm (as opposed to the testbed)

requires knowledge of the testbed' s characteristics

An accurate theoretical model can help answer these questions by providing the means to

perform a more abstract analysis than that afforded by the data.

This chapter introduces two models of the OLMA testbed with the agent using the

random action algorithm. The first was derived from a basic analysis of the testbed's

structure, and will be shown to be inadequate for prediction of the testbed's behavior

under different inputs. A stochastic automata network (SAN) model is then developed



which captures some of the behaviors missed by the simpler model. The SAN model

developed is necessarily a discrete-time Markov chain model, and will draw on the

development of the continuous-time SAN models of chapter 2. Lastly, I draw some

conclusions about the capabilities of the models and suggest some improvements to

testbed design that should aid future researchers.

6.2 Derivation of the Basic Cost Equations for the Random Algorithm

Recall that the random algorithm wastes a specific amount of time (namely, it

calculates a specific number of stochastic samples, then throws the information gathered

away). After wasting time, it selects one of the seven possible actions at random, and the

agent executes this. What is the behavior of this algorithm? What should the long-term

average cost per unit failure look like as a function of the quantized CPU time?

The On-Line Maintenance Agent has three primary parameters which control the

amount of computation performed by the agent: the sim-cycles, decision time, and

quantized CPU time. The sim-cycles parameter (SC) is the number of iterations of the

testbed from the simulation's point of view, specifically the number of opportunities each

gate has to break. Decision time (DI) is the estimated time for the agent to make a

decision. It is an input parameter whose value is determined by empirical estimation

before the execution of a run. When using the Random Algorithm, the decision time is a

fixed value based on the number of iterations of stochastic simulation done before the

agent takes its random action. A run's total length is the product of the decision time and

the sim-cycles. The quantized CPU time (Q) may be thought of as the CPU speed of the

processor used by the agent. The quantized CPU time divided by the decision time is the
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ratio of time spent by the agent to the time spent by the simulator. Since the number of

decision cycles is fixed, the simulator will execute fewer cycles relative to the agent with

higher values of the quantized CPU time.

The probability of failure P(Fsimuiator) is an input parameter, but it is fixed at 0.001

for all of the experiments in this dissertation. This is the probability of going into one of

the three failure modes possible for each gate; hence the probability ofa well gate

remaining OKAY from one cycle to the next is 0.997. However, the input probability of

failure is for use by the simulator, not the agent. One must make an adjustment for the

relative speed of the agent to the simulator to calculate the probability of failure for an

agent's decision cycle. The probability of failure for one failure mode of a component in

the agent may be written as:

DT

[ (1 (3 * P(Fimuiator )))Q]
Equation 6.1

P(FAgenf) =
3

Both the agent and the simulator incur costs. The agent adds to the total cost

whenever it performs a probe or a replacement action. It incurs no costs for doing

nothing. In the half-adder model, there are two possible probes, four gates that may be

replaced, and one "do nothing" action. The simulator adds to the total cost whenever it

completes a cycle and the circuit is still broken. Cost is incurred for each gate broken per

simulation cycle. The simulator incurs no costs if it is running correctly.

Consider the agent's costs alone as a function of the quantized CPU time during

an extremely long (infinite, if you like) run. As the quantized CPU time approaches zero,



the ratio of time that the agent is spending relative to the simulation is decreasing. Thus

if the agent is selecting an action at random, and incurring a consistent average cost over

a long run of the testbed, the average cost from the agent should approach zero as the

quantized CPU time approaches zero. That cost can be easily estimated since, on

average, I expect two probes and four replacements out of every seven actions.

Furthermore, if the decision time and sim-cycles are fixed, as they often are for a set of

runs of the testbed, the agent's costs become a constant function of the quantized CPU

speed. If I let C be the cost of a probe action, and CR be the cost of a replacement, the

agent's costs over the length of a run of the testbed may be approximated as:

r 2C + 4CR 1 * Equation 6.2CAgent[
7 j

When we plot the agent's component as cost per unit failure, we must divide by

the number of failures, which does vary with the quantized CPU speed. The agent's

contribution to the cost per unit failure is then seen to be a positively sloped function. So

the agent's cost per unit failure becomes:

CPUFAGT =
2Cp+4CR 1

7 * P(FAGENT)*3J

Equation 6.3

Now consider the simulator's costs alone as a function of the quantized CPU time.

The simulator will only incur costs when one of its gates is broken. This happens to any

individual gate with failure probability P(Fgimuiat0r). When a gate fails, I expect that on
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the average it will take seven decision cycles to repair the gate, since the repair of a gate

can be viewed as a Bernoulli variable. Failures are completely independent. As the

quantized CPU time approaches zero, the simulator is stepping much faster than the agent

is. Every gate will become broken in the simulator, and though the agent will sometimes

fix it for a very small period of time, it will break again quickly from the agent's point of

view. Thus the costs incurred from gates being broken will approach infinity as the

quantized CPU time approaches zero.

As the quantized CPU time grows very large, the number of gates broken is very

small. The broken gates are generally fixed after only one cycle of the simulator, so the

costs should approach zero as the broken gate frequency drops. Thus the costs from the

simulator approach zero as the quantized CPU time approaches infinity.

When a gate breaks, the agent on average will be halfway through a decision

cycle. Then the agent will require seven more decision cycles to affect a repair. I can

calculate how many total simulator cycles this is by using the decision time to quantum

ratio and the number of decision cycles (SC). The simulator is charged I for each

simulator time step that a gate is broken.

Now I may approximate the simulator's costs over a run of the testbed as:

DT4*75*SC*
QCSimulator

[ 1 i
Equation 6.4

[P(F5imuiator) *3+7.5]



Equation 6.4 has an imprecision built into it: when the quantized CPU speed is

very small, the time that transpires before a gate will spontaneously repair itself becomes

comparable to the time needed for the agent to repair it. Augmenting Equation 6.4 to

account for this is difficult. Note that here again the total cost must be divided by the

expected number of failures to approximate the cost per unit failure contribution of the

simulator.

Besides this obvious difficulty, one must ask whether the equations are sufficient

to predict the performance of the testbed.

6.3 Analysis of the Cost Equations for the Random Algorithm

I may make some useful observations about Equations 6.3 and 6.4. How can the

agent affect the quantities in these equations to obtain better performance? The agent

cannot change the costs or the length of run. The agent cannot affect the probability of

failure. In the first equation, the agent may affect the costs by choosing actions that are

more appropriate to the situation: replacing the right gate when a replacement is needed,

and doing nothing when the simulator appears to be okay. This is not necessarily as easy

as it sounds. Several simulation cycles may transpire before evidence of the fault

appears, and several decision cycles may be needed to accurately diagnose the problem.

Ideally the agent will make a good guess quickly for its first repair attempt, then recover

quickly and make a different second repair if that attempt fails.

In Equation 6.4, the agent can only affect the number of cycles used to make a

correct repair. By making decisions quickly, the costs from this equation are minimized.



I can see how both equations are affected by altering the number of stochastic

samples in the Random Action Algorithm. By taking more samples, the agent increases

the decision time. Viewing the cost again as a function of quantum, this decreases the

slope of the logarithmic equation 6.3. It also shifts the functional form 1/ to the right in

the simulator's equation.

So can the equations be used to predict performance? The graph of Figure 6.1

illustrates the total cost curve resulting from Equations 6.1 and 6.3. Also plotted are the

sampled performance points for the algorithm for comparison.
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Figure 6.1: Comparison of the Random Action Algorithm with Sample Size 5000
Data with Theoretical Predictions
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Though at first glance this appears a reasonable fit, I could not explain

discrepancies between the theoretical model and the observed data. The discrepancies

were slightly larger for the sample size 1000 data, and I was unable to reverse engineer

the parameters from the observed data. Despite some allowances for the imprecision of

the equations, something seemed amiss. This was particularly true for the rightmost

portion of the graphs I was viewing: as with the graph of Figure 5.1, performance leveled

off after a certain quantized CPU speed was exceeded. The particular quantized CPU

speed seemed to depend on the sample sizes. Since the only thing affected by sample

size was the decision time, it was logical to look more closely at this parameter.

What became apparent is that the testbed was programmed to reset the simulator

if the agent had made a decision, rather than have the agent wait for the simulator to

complete its cycle. The consequences become most apparent when the time taken by the

simulator exceeds the time taken by the agent: at this point, the agent and simulator step

together, and the ratio of decision time and quantized CPU speed in both equations

becomes unity. Thus the total cost is approximately fixed whenever the simulator

requires more time to complete a cycle than the agent does.

Approximately, but not quite. A decay process seemed to be lurking in the data,

as once the quantized CPU speed exceeded the decision time the graph did not merely

level off, but first peaked slightly higher, then showed a gradual decrease as if toward an

asymptote. And I still was puzzled why data fitting in the lower quantized CPU speeds

was so difficult.

Further analysis and data from a similar testbed [Krishnamurthy 1999] suggested

that perhaps the resetting of the simulator was causing a stepping phenomenon to occur
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for slower quantized CPU speeds. I had been collecting data at quantized CPU speeds

that were powers of two. Comparing these values to ratios of quantized CPU speed and

decision time revealed that if a stepping phenomenon existed, it could not show in the

data I bad collected. There were no two data points on the same step!

800

700

600

500

200

100

0

Average Cost Per Unit Failure of Random
I Standard Deviation

I

Iz

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Quantized CPU Speed

Figure 6.2: Cost Per Unit Failure of the Random Algorithm at 1000 Samples with
90% Confidence Intervals and Variances

Armed with this knowledge, I collected a complete set of data for quantized CPU

speeds less than or equal to 26 for the Random algorithm using 1000 samples. The

decision time for 1000 samples is 22.2 quantized units. I present the data in Figure 6.2.

The error bars indicate a small sample confidence interval with n=8 and a0. 1, with the
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appropriate t value 1.415 taken from Table A.4 of [Walpole et al. 19851. The raw data

and error values are available in Appendix C.

Note that the data appear to step at approximate fractions of 22.2, with a fairly

clean step at quantized CPU speeds of 12 through 22. A step appears plausible at speeds

6 through 11, though the behavior there is not smooth and some epiphenomena may be

creating irregularities. It is worth observing that there is absolutely no relationship

between the quantized CPU speeds originally sampled (which were powers of two) and

the quantized CPU speeds where these behavior shifts occur. Behavior above quantized

CPU speed 23 is unexpectedly bizarre, with both costs and variances appearing to jump

wildly from one speed to the next. And there may be a transition phenomenon occurring

near the boundaries that are fractions of the decision time, as some local bumps appear in

the graph at those points.

Of these, I can only suggest a plausible explanation for the lattermost: since the

manually set decision time is only an approximate value, garbage collection and other

internal LISP behaviors may occasionally cause the actual decision time required to

exceed the expected value. This should happen most often at values immediately below

fractions of the decision time (for example, 11 and 22) and should result in slightly higher

costs at those points. While the data is suggestive of such behavior, this is merely a

hypothesis at this time.

Still, the data suggests that this synchronizing effect within the testbed does exist,

and that the equation models are inadequate to capture this behavior. How might we

address this inadequacy? I found a candidate in Markov chain theory.
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6.4 A Stochastic Automata Network Model

As noted in Chapter 2, Markov chain models provide a compact and easily

analyzed representation of many stochastic systems. For our purposes, the most desirable

property is the ability to calculate a steady-state probability distribution vector, which

summarizes the long-term proportion of time the system will spend in various states.

Since standard Markov models do not permit recombinant calculations of a complex

automata network from its simpler constituent automata, stochastic automata networks

have been developed to enable such calculations. Unfortunately, the mathematical

machinery to perform the calculations is unnecessarily complicated for our simple

domain.

In the OLMA, the agent repairs a component only if that component is broken.

Otherwise the transition probabilities of th components remain unaffected. The agent's

act of repairing a component is clearly a synchronizing transition since it forces a change

of state in the Markov chain of the repaired component. Whether we also wish to

consider this a functional transition may be left up to the modeler: one may view a repair

action taken when the gate is okay as being a "do nothing," If we choose this view, then

the state of the agent becomes a function of the state of the component(s) it repairs. For

simplicity, I chose to model this as strictly a synchronizing transition and charge the

agent for failed repairs.

I was faced with three possible ways of generating a SAN model for the OLMA:

generate the entire 96 x 96 matrix by hand, use the general method for applying a sum of

products to handle synchronizing transitions, or create a simple tensor product model

augmented by local transformations for component repair. No generalized tensor product
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applicable to agent repair scenarios has appeared in the literature recently [Stewart 99]

and as of this writing, the models for handling synchronizing or functional transitions in

discrete-time Markov chain models are significantly more complex than their continuous-

time counterparts [Stewart 00]. However, I was able to calculate the global transition

matrix of the OLMA by generating a tensor product model with transformations during

the intermediate stages.

As we noted when discussing the equation models, the testbed inputs determine

the relative time allocations between the agent and the simulator. This cannot be

captured with a single SAN model, but I can describe it with a family of SAN models.

When the agent and simulator are synchronizing on agent actions, the time ratio is one-

to-one, and no adjustments are needed. But if the agent is running twice as fast, then I

introduce an extra dummy state node in the Markov chain model of the agent. This must

be accounted for in the final calculations of the costs of running the agent.

My model takes the view that component repair actions are a probability transfer

function over the tensor product of the agent and the repairable components. Repair

events transfer probability mass from one location to another within this matrix. Thus as

long as I am modeling a single agent and independent components I can construct the

tensor product with a record of the combination order and use nested loops to transfer

probability mass from one location to another.

As an example, consider the case where the agent replaces Gate 1. The only time

this repair action changes the state of Gate 1 is when the gate is broken. Thus I wish to

transfer all probability mass from locations representing the agent transitioning to a state

of Gate I Okay (regardless of the past state of the agent) when Gate 1 is broken and
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transitioning to a state of remaining broken to corresponding locations in the same agent

states but with Gate 1 broken and transitiomng to a state of normal operation, with the

values of all other gate states remaining unchanged. If I know the order in which the

components and agent were combined, I can create an indexing function into the tensor

product and transfer probability mass according to this strategy. Using a regular

combination order with the last, leftmost tensor product combining the agent eases the

calculation of the indices and subsequent error checking, as well as permitting the

modeling of interacting components using the usual generalized tensor product (provided

the interactions are independent of the agent).

Matlab code for representing and calculating the results for one submodel is given

in Appendix D. Code for the several other models is similar. The different submodels

capture discrete portions of the event space: the model constructed with Agent 1, for

example, will represent the portion of the event space where the quantized CPU speed

exceeds the decision time required by the agent, since then the agent and simulator will

change state at the same rate. Agent 2 has an intermediate dummy state between

decisions, and therefore the simulator is running up to twice as fast as the agent, and so

forth. Note that finding a tensor matrix to represent the global Markov chain is only the

first step, as I need to know how much time the system spends in each compound state

over the long term. The equilibrium probabilities are found by calculating the

appropriate 1 -eigenvectors for each tensor product matrix. Once I had these, I calculated

the costs for running the system: the agent costs resulting from the agent replacing or

probing, and simulator costs incurred when a component is broken. Much of this was

done with a hand calculator, since it enabled crosschecking of intermediate results.



The first several figures illustrate the graphical models of the agent used to

generate the stochastic automata networks (SANs) described in Chapter 6. Since the

simulator can run significantly faster than the agent, a SAN model of the complete

system necessarily will comprise several submodels. Since each gate component is

identical to every other gate component, we can model each of these gates as a simple

stochastic automaton. When the agent and simulator are synchronized at a speed ratio of

one to one, we can also represent the agent using a simple stochastic automaton. The

transition matrices for each may be combined directly as a tensor product with only

minor adjustments to account for agent actions that change the state of simulator

components. When the simulator runs twice as fast as the agent, the model of the agent

requires an extra node to stall its speed to match that of the simulator. When the

simulator is three times as fast, the agent will have two extra nodes. And so on.

Matlab code for calculating the global transition matrices follows the graphical

models. The code will be clear if the reader keeps in mind that changes are only made to

entries representing the agent replacing broken components.

6.5. Models for Agent and Simulator Speed Ratios

Choosing a convenient representation can be something of an art. For modeling

the behavior of the agent and simulator using the random algorithm, I chose not to

represent the possible states of the system because of the size of the resultant

representation. I could easily estimate the costs the system would incur from the

simulator's state changes: the simulator will induce costs for each time cycle thata gate is

broken,, and the simulator is responsible for changing a gate from the OKAY state to
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BROKEN according to fixed probabilities. What remained uncertain was how long the

agent would take to repair the circuit, and what costs might be incurred in the interim.

The difficulty is compounded when one realizes the agent's propensity to reset the

simulator after choosing an action means that the agent is restricted to speeds that are

multiples of the simulator's speed. Consequently, the models presented below focus on

the decision process of the agent and its relationship to the simulator.
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Figure 6.3: Graphical Representation of the Decision Process When Agent and
Simulator Run at the Same Speed Using the Random Algorithm

In Figure 6.3 we show the graphical model of the decision process when the agent

and simulator run at the same pace. Nodes Gi through G4 represent the agent choosing a
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repair action on the appropriate gate. Nodes labeled DN and Pr represent Do Nothing

and Probe, respectively. The agent will transfer from one state to another according to

the probabilities labeled on the incoming arcs. Since the agent will reset the simulator

upon choosing an action, this is also the model for any situation where the agent can

make decisions in less time than the simulator needs to automatically change state.
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Figure 6.4: Graphical Representation of the Decision Process When Simulator
Speed is Twice Agent Speed, With the Agent Using the Random Algorithm

In Figure 6.4 we illustrate the model for the case of the simulator making changes

to component states twice as often as the agent chooses an action. The dummy state Xl

represents the time during which the agent is not taking an actionhence it results in no
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state changes in the combined model. The transition from an action selection state to the

dummy state must occur at the next time step, hence there is no probability associated

with this arc. Note again that since the agent resets the simulator upon choosing an

action, this can occur for any speed setting where the simulator takes one action slightly

prior to the agent making a decision and up to the point where simulator and agent are

running at a ratio of 2:1.
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Figure 6.5: Generalizing of the Decision Process Model for Simulator/Agent Speed
Ratios Greater than 1:1

We can generalize from this that the other agent models required simply have

more than one dummy state. This is illustrated in Figure 6.5, where the states Xl, X2...

exist merely for marking time.



The gates are somewhat simpler to model, as they transition from OKAY to

STUCK-i, STUCK-0, or UNKNOWN stochastically. We leave it to the reader to

generate a graphical representation of the gates from the description in Chapter 3 if one is

required.

6.6. Transition Matrices for Submodeis of the Stochastic Automata Network

Having created stochastic automata to represent the agent when the agent's speed

doesn't match the speed of the simulator, we can now discuss the needed transition

matrices, and the semantic interpretation of combining them.

[0.997 0.003
GATE=}

L0.003 0.997
Equation 6.5

In Equation 6.5 we see the 2 x 2 transition matrix that represents the normal

behavior of a gate element in the simulator. The rows represent states prior to a time

step, while the columns represent the state of the system after that time step. The

numbers in the (row,column) positions represent the probability of arriving in the state

represented by the column given that the gate is in the state represented by the row in the

previous time slice.

As stated earlier, one can create a SAN for several gates by computing the tensor

product of the matrices representing the individual gates. In my testbed, all of the gates

exhibit the same behavior as the matrix of Equation 6.5 represents. Hence the tensor

product is symmetric. Note that each row represents one of the nX possible joint states of

the n gate system, where each gate has x possible states, and that the (row,column)
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positions now represent the probability of transitioning from the joint state represented by

the row to that represented by the column.

0.143 0.143 0.143 0.143 0.143 0.286
0.143 0.143 0.143 0.143 0.143 0.2861
0.143 0.143 0.143 0.143 0.143 0.286 I

AGENT 1 =
I Equation 6.6

0.143 0.143 0.143 0.143 0.143 0.2861
0.143 0.143 0.143 0.143 0.143 0.2861
0.143 0.143 0.143 0.143 0.143 0.286

The transition matrix for the agent has a slightly different interpretation. The

(row,column) positions of the agent when the agent and simulator are running at the same

speed are given in Equation 6.6. Each position represents the probability of the agent

transitioning to a state of having chosen the action represented by the column when

previously the agent had been in the state of choosing the action represented by the row.

In this instance, all of the rows are identical because the choice of a new action is not

conditioned on past actions (doing nothing is twice as probable as any other action). The

action chosen can alter gate states in the joint SAN model, so it will be important to track

action states. Note that I've modeled the state as persistent, while the effect of choosing

an action in the testbed is almost instantaneous.

0 0.143 0.143 0.143 0.143 0.143 0.2861
1 0 0 0 0 0 0 I

1 0 0 0 0 0 0
Equation 6.7AGENT2 = 1 0 0 0 0 0 0

I

1 0 0 0 0 0 0

Ii 0 0 0 0 0 0
I

Ii 0 0 0 0 0 0 I
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In Equation 6.7 we can see the effect of adding a dummy state to the agent to

resolve timing issues. The dummy node from Figure 6.4 now represents a state of having

chosen a non-action. This non-action will not incur costs in the testbed, nor will it

change gate states; thus it is similar to choosing to do nothing. However, the probability

of going into this non-action state given an action was chosen (which includes doing

nothing) is exactly 1. We can extend the timing correction for the necessary integer

multiples of the simulation time by adding additional dummy nodes and adjusting the

agent matrix. The matrix for the agent with two dummy nodes is given in Equation 6.8.

10 0.143 0.143 0.143 0.143 0.143 0.286 0!
lo 0 0 0 0 0 0 1

0 0 0 0 0 0 0
0 0 0 0 0 0 0 iiAGENT3 = Equation 6.80 0 0 0 0 0 0 ii
jo 0 0 0 0 0 0
0 0 0 0 0 0 0 1!
1 0 0 0 0 0 0

6.7 Evaluation of the SAN model

Figure 6.6 compares the results of the SAN model described above with the

detailed sample averages of the agent. Note that the SAN model more closely

approximates the step behavior of the testbed. Some behavior near the decision time

fractional transition points is unexplained by this model, but may be due to some

feedback within the testbed resulting from the use of streams to communicate data

between the agent and the simulator, or perhaps too from garbage collection or time-
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Figure 6.6: Comparison Between Stochastic Automata Network Predictions of
Random Performance and Actual Random Performance

sharing throwing processor times off. Error bars represent a 90% confidence interval for

the mean.

The equation and SAN models allow some additional comparisons, too. For one,

imagine a perfect rational agent, one that always makes a correct repair whenever a

component is broken. We will assume that the fault manifests itself during all future

simulation cycles and that the agent needs no deliberation time before taking the proper

corrective action. Note that some costs will still be incurred: though the agent will never

probe, it still must replace some components. And a component may remain broken for

several simulator cycles if the agent has to repair other components or if the simulator is



cycling much faster than the agent. Still, under most circumstances, when a component

breaks during one cycle, it is immediately repaired during the next agent cycle. The cost

of the component being broken one cycle is 1, and the cost of repair is 10. Thus the cost

per unit failure when the simulator and agent are rulming at the same speeds is a tiny

fraction over 11, since our perfect agent will detect the broken gate after one cycle and

make the repair immediately in most cases.

This jumps to a little over 11.5 when the simulator is twice as fast as the agent,

since we will still do one repair for the fault (at a cost of 10), but the gate will be broken

for 1.5 cycles on average (one cycle half of the time, two cycles the other half). The cost

jumps to 12 when the simulator is three times as fast as the agent, and so on. The optimal

values will continue to jump in steps due to partial synchronization of the agent and

simulator. As the quantized CPU speed approaches zero, this cost per unit failure will

continue growing without bound; as quantized CPU speed grows toward infinity, the

CPUF approaches the value 11 asymptotically.

This analysis depends largely on the equation model of performance and due to its

assumptions is too conservative. I can generate a more liberal model of a perfect rational

agent using the SAN model. The SAN model can tell me approximately how often gates

will break, say once every 28.7 cycles. If one cycle is needed for detection of the fault

(costing 1) and replacement cost is 10, then my average total cost will be approximately

383.2 over 1000 cycles. Dividing by the expected number of faults yields the expected

cost per unit failure.

Since this construction attempts to treat gates individually and does not adjust for

instances where multiple gates are broken, it should be slightly more costly than the



"true" minimum. Thus the two models together can provide us with a region where the

lower bound on performance should occur. This is illustrated with several anytime

algorithms in Figure 6.7.

80

ci 60

40

0

20

SPI Exact
D-IPI
Kappa
P-Kappa
Perfect Rational Agent
SAN Perfect AgentI

0 I

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Quantized CPU Speed

Figure 6.7: Comparison of Two Perfect Agent Models With Performance of Several
Anytime Inference Models

I may now make an exciting observation: the Kappa and Posterior Kappa

Reduced algorithms perform remarkably near optimal on the OLMA testbed! The

performance of these algorithms is even more remarkable when one considers that fault

detection contributes to the cost of the anytime algorithms.

One may also ask if I can approximate the behavior of our best algorithm, the

Posterior Kappa Reduced, by estimating the probability the agent will repair a broken



component. Such an estimate is complicated by the inclusion of probe actions, since they

are separate from the replacement actions and they also incur costs. Theoretically, one

could generate a solution surface illustrating possible tradeoffs in the respective

probabilities of doing nothing, replacing a component, or probing. This exercise does not

appear to yield useful results, since I already know that the Posterior Kappa Reduced

algorithm is close to optimal throughout its range. Then probability mass and resultant

costs are shared primarily between replacement actions and doing nothing.

6.8 Conclusions

My efforts to model the behavior of the testbed under different algorithms

presented some unusual challenges but yielded useful results. Chief among the

difficulties is capturing the behavior of more complex algorithms. No easy solutions are

forthcoming, though I would like to move the design and analysis of reasoning

algorithms in this direction!

While modeling the Random algorithm proved to be more complex than initially

anticipated, I uncovered information useful in the current line of research as well as a

practical model for single agent repair scenarios. The latter is, of course, the application

of SAN theory to the OLMA. My outline of the approach should be adequate for those

familiar with the basics of SANs.

The implications for my algorithmic research are more immediate:

Since the Posterior Kappa Reduced algorithm performs near optimal on the half-

adder problem, we have uncovered a potential ceiling effect [Cohen 95] for future

experiments. More difficult problems need to be coded into the testbed to test the
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limits of this algorithm and to compare it to other algorithms with comparable

performance.

The synchronizing effect in the testbed causes anomalous behavior and should be

eliminated.

Some odd behaviors in the testbed may result from the current method of

discretizing time. The use of a continuous time model borrowing ideas from work

in simulation should be considered. In particular, I am interested in allowing

continuous, variable transition rates managed by a central event queue.

Testbeds for comparing reasoning algorithms should be designedin combination

with a theoretical model to aid in experimental design and evaluation.



7. Conclusions

7.1. Summary of Findings

I have presented a number of empirical and analytic analyses in the three previous

chapters. Several broad conclusions present themselves:

. The OLMA testbed confirms that reasonable testbeds can be constructed and used

for analyzing reasoning algorithms.

. Several anytime algorithms demonstrate a time-to-quality tradeoff: that is, an

agent may effectively use more computation time to improve results, and this can

be done in a relatively continuous fashion.

. Some anytime algorithms appear to perform better than others, and this

performance difference is independent of properties attributable to the testbed or

its interaction with the agent.

While our attempts to quantify kurtosis are an apparent failure, they suggest that

variance plays a minor role in the effectiveness of the anytime algorithms.

Equation models of performance may be easy to generate but ineffective for

extrapolation. In particular, the testbed must be constructed carefully to avoid

complex epiphenomena.

Stochastic Automata Networks provide a strong analytic tool that can be used in

conjunction with testbeds to clearly attribute observed behaviors with the testbed

or the algorithms being analyzed. By taking the view that interactions between

components were a probability transfer function, I was able to construct a SAN

for the OLMA running the Random algorithm. In our testbed, we have not only



explained previously inexplicable structure in the observed algorithm data, but

also showi that an optimal agent does not perform significantly better than the

best of the anytime algorithms.

Theoretical models may not explain all observed phenomena in complex testbeds.

Operating system process scheduling policies, for example, may interact with the

testbed in unanticipated ways. The best defense against the potential criticism

that your observed data is not a consequence of what you measured but how you

measured it is fully utilizing the strong theoretical models wherever possible.

The hidden results are those of methodology. I have taken some êare in

presenting details of my data collection and analysis because it took me years to

realize the benefits of that rigor. You, dear reader, should not have to repeat my

follies. Further details concerning the data are presented in the appendices that

follow. If you are fortunate enough to read this: go thou and do likewiseor

better!

7.2. Future Research

here.

Several avenues of research remain open to inquiry. I mention a few possibilities

First, we must ask if the peakedness of sampling distributions contributes

significantly to the performance of our anytime algorithms in this domain? While our

attempts at quantif'ing kurtosis led us to other conclusions, this question remains open

and deserves further research. This research could potentially be accomplished within

the current testbed.



The current testbed does have some flaws, and one could address these flaws by

developing a modified testbed. Analysis of the current testbed is inhibited by the

deliberate discretization of its behavior. Creating a continuous-time testbed using an

event scheduler would allow the use of a continuous SAN model. Since calculations of

the continuous joint model are easier in the continuous case, larger circuits could be

analyzed with ease.

I have developed one such larger circuit that would truly test the capabilities of

the OLMA: a nine-gate master-slave flip-flop. This circuit was originally intended to be

part of this dissertation, but other issues overshadowed its construction and evaluation.

The circuit is not merely larger than the four-gate half adder used in this dissertation.

The flip-flop also has a time delay between when inputs arrive and when outputs are

produced. Hence to make observations an agent should be capable of reasoning from

past events to future consequences. I believe this can be done by a simple extension of

the current dynamic Bayesian network implemented by the OLMA, and I hope some

future student will consider carrying this work forward.
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Appendix A: Cost-Per-Unit-Failure Performance Data for Several Anytime
Inference Algorithms

A.1. Introduction

The data included here cover the experiments conducted in Chapter 4 and the

UAI-96 paper with Bruce D'Ambrosio [D'Ambrosio and Burgess 1996]. Each section

contains only the data averages rather than all of the raw data. All performance data

reported here is Cost Per Unit Failure. Details of the experimental method can be found

in Chapter 4. When D'Ambrosio generated a separate data set that was ihcluded in the

UAI-96 paper, it is included here and labeled as such. As discussed in the text, the

Random Algorithm data published then was grossly in error. In some data sets, not all of

the points on a grid were collected; those not collected are marked as not available (N/A).

A.2. Data for the Kappa-reduced Algorithm

The data for the Kappa-reduced algorithm are averages of three runs per point

reported for all of the data. The data sets here appeared to have similar values and

vanances.

Quantized CPU Speed

Steps 1

1
]

4 J

904 532

16 _
462

64

139

4 550 190 141 254

16 60 1 26 20 19

32 51 25 I9HL j_
64 126 -: 41 23 17

Table Al: Averages of Performance Data for the Kappa-reduced Algorithm.



Table £2: D'Ambrosio's Averages of Performance Data for the Kappa-reduced
Algorithm as Published in UAI-96.

A.3. Data for the D-IPI Algorithm

My data are from one run of each data point, except for Quantum 1, Steps 1-64,

which are averages of two runs each.

D'Ambrosio and I have been unable at this juncture to determine why there

appear to be some discrepancies between the data in Tables A.3 and A.4, but some might

be attributable to runs on different machines and compiler versions, and some may be due

to sample variance. As discussed in Chapter 4, extremely short runs appear to have a

"start up" effect which results in significantly lower Cost per unit failure. Also, our paper

in UAI-96 reports using a replacement cost of 3 per gate instead of 10, with an extent cost

of 10 instead of 30, which may explain some differences in the data. Since

Quantized CPU Speed

Steps

1
4

4
[

8 16 32 64
1

4
77 77 112 210 484
53 96 34 53 265

123
664 I

16 101 83 37 23 80
64 115 94 116 5_61 205

256 850 131 51 38 26 N/A

Table A.3: Performance Data for the 0-IPI Algorithm.



Quantized CPU Speed

1

2

1

40.7
37.3

2
]

27.8 1

34.4

4
]

25.9
28.0

8
I

20.6
27.3

16
260
28.7

32
29.5
21.0

64 128
21.0 20.6
26.0 22.0

Steps 4 40.3 27.7 23.0 22.9 21.0 19.8 21.5 19.0
8 N/A 41.2 35.9 25.4 23.3 30.0 19.2 35.0

16 65.6 72.8 60.5 23.4 23.0 38.3 28.0 22.0:
32 59.2 63.6 48.0 24.8 21.9 18.0 23.0 29.0
64 N/A 40.1 50.0 19.8 22.6 19.0 j 19.0 20.0

128 N/Al 107.0 63.0 32.0 23.5' 15.0 18.6 18.8
256 N/Al 122.7 86.5 58.0 45.5 24.0 24.8 21.4

Table A.4: D'Ambrosio's Performance Data for the D-IPI Algorithm as Published
in UAI-96.

D'Ambrosio's data collection method was not recorded and his data set is an amalgam of

my data collection methods and his, this may explain the differences in the data sets.

A.4. Data for the Posterior Kappa-reduced Algorithm

Data averages in Table A.5 for quantized CPU speeds of 2 and 8 are based on one

run, while the remainders are based on averages of two to four runs. Details of the

method used to collect D'Ambrosio's data are not available, but it is reasonable to

assume that these generally are averages of multiple runs and that the runs were probably

Quantized CPU Speed

Steps
1 2 4 8 16

{
64

1 59 29 35 30 39 45
4 70 28 30 2825 19
16 66 60 37 34 29 19
64 95 69 54 62 23 20

Table A.5: Average Performance Data for the Posterior Kappa-reduced Algorithm.
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mostly shorter 100 decision cycle runs, with some quantum values requiring larger

decision cycle runs for reasons discussed in Chapter 4. Again it remains unclear whether

some of D'Ambrosio's runs used a lower replacement cost, which would substantially

improve performance.

Table A.6 D'Ambrosio's Average Performance Data for the Posterior Kappa-
reduced Algorithm as Published in UAI-96.

A.5. Data for the Exact Algorithm (SP1)

Averages reported here comprise three runs each for quantized CPU speeds of 1

and 4, and two runs each for quantized CPU speeds of 16 and 64. The data reported in

UAI-96 for this algorithm are the minimum cost-per-unit-failure values, not the averages.

As discussed in Chapter 4, the step size is not variable for this algorithm. I collected all

of the data reported here, and this data was also the set used for our UAI-96 paper.
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Quantized CPU Speed
1

I

4
I

16
I

64
Stepi 145 46 24 1 20

Table A.7: Average Performance Data for the SPI Exact Algorithm.

Quantized CPU Speed
1 4 16 64

Stepi 74 37 23 18

Table A.8: Minimum Cost-Per-Unit-Failure Values for the SPI Exact Algorithm as
Published in UAI-96.
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Appendix B: Raw Data for Experiments with the Peaked Backward Simulation
Algorithm

B.1. Introduction

The data here represent runs with Backward Simulation with variable kurtosis, as

described in the text of Chapter 5. All data runs in this appendix are organized in groups

according to sample size, kurtosis value, and quantum. They were collected on a Sun

Sparc Enterprise 4000 Server (locally known at Oregon State University as "Trek")

running Sun Solaris. Each run required from four hours to two weeks of processor time

to complete.

In very rare cases, runs produced extremely low numbers of failures for the length

of run. It is not entirely unexpected that code constructedover a period of close to ten

years, ported across three Lisp compilers and executed for another five years might have

occasional difficulties. In these instances I chose to fault the code, toss out the resultant

data point, and redo the run. All of these data points are documented, with the redo value

immediately following the item it replaces.

Understanding the results: Each cluster of data is preceded by the input batch-

run pattern for that cluster. The numeric inputs are the only ones relevant, and from left

to right they are: quantized CPU value, steps (not relevant for the Random algorithm),

probability of failure (for each failure mode of a gate in the simulator), decision time,

sim-cycles (the approximate number of agent decisions made), kurtosis value, and

number of samples.
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The data lines are written as cost I # failure cost per unit failure. Each cluster

is averaged. This appendix includes a few extra data items not mentioned in the text due

to the incompleteness of the data.

B.2. The Raw Data

(batch-run 1100 .001 32 1(
62652/ 181
60835 / 204
59020/ 182
63800 / 198

)OOtl 1000)
= 346.14
= 298.21
= 324.28
= 322.22

average= 322.71

(batch-run 2 100 .001 32 1000 t 11000)
23749/121 = 196.27
25498/122 = 209.00
19773/101 = 195.77
23243/124 = 187.44

(batch-run 4 100 .001:
10828/
10781 /
11541 /
9841 /

2 1(
39
84
81
71

average= 197.12

)OOtl 1000)
= 277.64
= 128.35
= 142.48
= 138.61

average= 171.77

(batch-run 8 100 .001 32 1000 t 11000)
5299/ 47 = 112.74
4540/ 44 = 103.18
4542/ 39 = 116.46
5682/ 53 = 107.21

(batch-run 16 100 .00
3378 I
3506 I
3615/
3440/

32
Li

24
23
22

average= 109.90

1000 t 11000)
= 146.87
= 146.08
= 157.17
= 156.36

average= 151.62



(batch-run 32 100 .001 32 1000 t 11000)

2969/ 16 = 185.56

2717/ 10 = 271.70

2746/ 11 = 249.64

2824/ 11 = 256.72

(batch-run 64 100 .001 30 2000 t 11000)

5524/ 22 = 251.09

5550/ 25 = 222.00

5586/ 18 = 310.33

5109/ 18 = 283.83

(batch-run 128 100 .001 32 1000 t 11000)

2868/ 12 239.00

2658/ 12 221.50

2430/ 11 = 220.91

2697/ 10 = 269.70

(batch-run 256 100 .001 31 2000 t 11000)

5703 / 28 203.68

5640/ 27 = 208.89

5529/ 21 263.29

5545/ 26 = 213.27

(batch-run 1028 100 .001 31 8000 t 11000)

22147/ 92 = 240.73

22004/109 = 201.87

22057/ 88 = 250.65

22044/ 90 = 244.93

(batch-run 1100 .001 32 1000 t 2 1000)

49934/249 = 200.54

48868/250 = 195.47

45030/231 = 194.94

49884/250 = 199.54

average= 240.91

average= 266.81

average= 237.78

average= 222.28

average= 234.55

average= 197.62
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(batch-run 2 100 .001 32 1000 t 2 1000)

19523/131 = 149.03

21489/151 142.31

20542/148 = 138.80

10089 / 50 201.78

(batch-run 4 100 .001 32 1000 t 2 1000)

9908/ 80 = 123.85

10522/ 91 = 115.63

10178/ 86 = 118.35

10197/ 88 = 115.88

(batch-run 8 100 .001 32 1000 t 2 1000)

5747/ 40 = 143.68

5667/ 43 = 131.79

5621/ 43 = 130.72

5595/ 35 = 159.86

(batch-run 16 100 .001 32 1000 t 2 1000)

4743/ 24 = 197.63

4440/ 23 193.04

4788/ 24 = 199.50

4605/ 20 = 230.25

(batch-run 32 100 .001 32 1000 t 2 1000)

4352/ 15 = 290.13

4271 / 13 = 328.54

4103/ 12 = 341.92

4279/ 13 = 329.15

(batch-run 64 100.00131 2000t2 1000)

7797/ 14 = 556.93

7450/ 15 = 496.67

8252/ 26 = 317.38

8256/ 26 = 317.54

average 157.98

average= 118.43

average= 141.51

average= 205.11

average = 322.44

average= 422.13
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(batch-run 128100.00132 1000t2 1000)

4171 / 12 = 347.58

4088/ 12 = 340.67

4103/ 12 = 341.92

4513/ 8 = 564.13

(batch-run 256100.00131 2000t2 1000)

8175/ 22 = 371.59

8164/ 27 = 302.37

8587/ 26 = 330.27

7530/ 17 = 442.94

(batch-run 256 100 .001 32 1000 t 2 1000)

4166/ 12 = 347.17

4304/ 14 = 307.43

4293/ 12 = 357.75

4533/ 16 = 283.31

(batch-run 1028100.00131 2000t2 1000)

6771 / 14 = 483.64

7608/ 24 = 317.00

7980/ 22 = 362.73

8213/ 24 = 342.21

(batch-run 1100.00132 1000t8 1000)

44064/280 = 157.37

42346/253 = 167.38

43386/238 = 182.29

37902/238 = 159.25

(batch-run 2 100 .001 32 1000 t 8 1000)

16596/155 = 107.07

17643/160 = 110.27

16282/168 = 96.92

16124/152 = 106.08

average= 398.58

average= 361.79

average 323.92

average= 376.40

average= 166.57

average= 105.08
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(batch-run 4 100 .001 32 1000 t 8 1000)

8917/ 92 = 96.92

8630/102 = 84.61

8279/ 96 = 86.24

8471 / 91 = 93.09

107

average= 90.22

(batch-run 8 100 .001 32 1000 t 8 1000)

5719/ 42 = 136.17

5847/ 47 = 124.40

5765/ 46 = 125.33

5755/ 46 = 125.11

average= 127.75

(batch-run 16 100 .001 32 1000 t 8 1000)

4826/ 33 = 146.24

4896/ 17 = 288.00

(batch-run 16 100 .001 32 1000 t 8 1000)

4959/ 27 = 183.67

4837/ 23 = 210.30

4940/ 27 = 182.96

4971 / 23 = 216.13

average= 198.27

(batch-run 32 100 .001 32 1000 t 8 1000)

4840/ 10 = 484.00

4936/ 14 = 352.57

4787/ 12 = 398.92

4843/ 11 = 440.27

average 418.94

(batch-run 64 100 .001 32 1000 t 8 1000)

4855/ 15 = 323.67

4635/ 10 = 463.50

4759/ 13 = 366.08

4807/ 15 = 320.47

average= 368.43

(batch-run 128 100.001 32 1000 t 8 1000)

4807/ 11 = 437.00

4794/ 12 = 399.50

4904/ 15 = 326.93

4786/ 8 = 598.25

average= 440.42



(batch-run 256 100 .001 32 1000 t 8 1000)

4744/ 11 = 431.27

4594/ 12 = 382.83

4866/ 12 = 405.50

4680/ 3 = 1560.00

(batch-run 1100 .001 32 1000 1 .5 1000)

44364/247 = 179.61

44110/233 = 189.31

43456/241 = 180.32

45750/237 = 193.04

(batch-run 2 100 .001 32 1000 t .5 1000)

19138/161 = 118.87

19432/161 = 120.70

17743/144 = 123.22

17264/158 = 109.27

(batch-run 4 100 .001 32 1000 t .5 1000)

9718/ 93 = 104.49

10892/104 = 104.73

8999/ 70 = 128.56

9278/ 79 = 117.44

(batch-run 8 100 .001 32 1000 t .5 1000)

7333/ 63 = 116.40

7146/ 51 = 140.12

6906/ 46 = 150.13

6613/ 46 = 143.76

(batch-run 16 100 .001 32 1000 t .5 1000)

5260/ 33 = 159.39

5336/ 28 = 190.57

5242/ 24 = 218.42

5220/ 27 = 193.33

average= 694.90

average= 185.57

average= 118.02

average= 113.85

average= 137.60

average= 190.43
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(batch-run 32 100 .001 32 1000 t .5 1000)

4809/ 17 = 282.88

4598/ 20 = 229.90

4705/ 21 = 224.05

4746/ 14 = 339.00

(batch-run 64 100.00131 2000t.5 1000)

7649/ 25 = 305.96

7943/ 11 = 722.09

7940/ 25 = 317.60

7711/ 24 = 321.29

(batch-run 128 100 .001 32 1000 t .5 1000)

3617/ 13 = 278.23

3569/ 8 = 446.13

3800/ 12 = 316.67

3906/ 8 = 488.25

(batch-run 256 100 .001 32 1000 t .5 1000)

3311/ 13 254.69

3196/ 11 = 290.55

3105/ 12 = 258.75

3321/ 12 276.75

(batch-run 1100.00132 l000t.125 1000)

46043/223 = 206.47

54796/245 = 223.66

54629/213 = 256.47

56615/226 = 250.51

(batch-run 2100.00132 l000t.125 1000)

17061/102 = 167.26

23817/140 = 170.12

20415/141 = 144.79

22493/136 = 165.39

average = 268.96

average= 416.74

average= 382.32

average = 270.19

average= 234.28

average= 161.89
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(batch-run4 100.00132 l000t.125 1000)
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(toss) 6070 / 1 = 6070.00

(redo) 9885/ 82 = 120.55

10777/ 79 = 136.42

11699/ 85 = 137.64

9914/ 77 = 128.75

(batch-run 8 100 .001 32 1000 t .125 1000)

6877/ 43 = 159.93

7040/ 45 = 156.44

6890/ 43 = 160.23

6837/ 37 184.78

(batch-run 16100.00132 l000t.125 1000)

6081 / 22 = 276.41

5720/ 29 = 197.24

6148/ 31 = 198.32

5685/ 18 = 315.83

(batch-run32 100.00132 l000t.125 1000)

5848/ 17 = 344.00

6037/ 18 = 335.39

5645/ 18 = 313.61

5610/ 11 = 510.00

(batch-run 64100.00132 1000 t.125 1000)

5669/ 13 = 436.08

5577/ 9 = 619.67

5683/ ii = 516.64

5799/ 16 = 362.44

average= 130.84

average= 165.35

average= 246.95

average= 375.75

average 483.71

(batch-run 128 100 .001 32 1000 t .125 1000)

5934/ 14 = 423.86

6104/ 9 = 678.22

5864/ 7 837.71

5767/ 11 = 524.27

average= 616.02



(batch-run 256 100 .001 32 1000 t .125 1000)

5774/ ii = 524.91

5895/ 8 736.88

5994/ 13 = 461.08

5861/ 11 = 532.82

(batch-run 1100.001351000 t32 1000)

44048/260 = 169.42

48468/280 = 173.10

49257/282 174.67

44790/253 177.04

(batch-run 2 100 .001 35 1000 t 32 1000)

19043/161 = 118.28

18648/155 120.31

8818/ 63 = 139.97

17277/169 102.23

(batch-run 4 100 .001 35 1000 t 32 1000)

914! / 92 = 99.36

9892/104 = 95.12

3952/ 19 = 208.00

8103/ 91 = 89.04

(batch-run 8100.00135 1000t32 1000)

6472/ 59 109.69

6429/ 52 = 123.63

6093/ 46 = 132.46

6683/ 60 = 111.38

(batch-run 16 100 .001 35 1000 t 32 1000)

5319/ 26 = 204.58

5069/ 23 = 220.39

5471 / 27 = 202.63

5893 / 25 235.72

average 563.92

average= 173.56

average= 120.20

average= 122.88

average= 119.29

average = 215.75
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(batch-run 32 100 .001 32 1000 t 32 1000)
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4891/ 13 = 376.23

4874/ 13 = 374.92

4866/ 7 = 695.14

4878/ 16 = 304.88

average= 437.79

(batch-run 64 100 .001 32 1000 t 32 1000)

4725/ 11 = 429.55

4787/ 10 = 478.70

4699/ 7 = 671.29

4830/ 9 = 536.67

average= 529.05

(batch-run 128 100 .001 32 1000 t 32 1000)

4935/ 13 = 379.62

5099/ 10 = 509.90

4814/ 7 = 687.71

4710/ 13 = 362.31

average= 484.89

(batch-run 256 100 .001 35 1000 t 32 1000)

5394/ 13 = 414.92

5399/ 17 = 317.59

5043 / 8 = 630.38

5081 / 9 = 564.56

average= 481.86

(batch-run 1 100 .001 158500t 15000)

272143/ 70 = 3887.76

278566/ 66 = 4220.70

190987/ 47 = 4063.55

268351 / 81 = 3312.98

average= 3871.25

(batch-run 2 100 .001 158 500 t 1 5000)

116240/108 = 1076.30

110374/140 = 788.39

22072/ 25 = 882.88

117633/101 = 1164.68

average= 978.06



(batch-run 4 100 .001 158 500 t 1 5000)

38678/117 = 330.58

36215/120 = 301.79

39379/111 = 54.77

44540/119 = 374.29

(batch-run 8 100 .001 158 500 t 1 5000)

15731/ 74 = 212.58

15011/ 85 = 176.60

14437/ 70 = 206.24

133571 71 = 188.13

(batch-run 16 100 .001 158 500 t 1 5000)

5447/ 53 = 102.77

6770/ 42 = 161.19

6819/ 54 = 126.28

6223/ 50 = 124.46

(batch-run 32 100 .001 158 500 t 1 5000)

2602 / 29 = 89.72

2437/ 26 = 93.73

1927/ 17 = 113.35

2947/ 34 = 86.68

(batch-run 64 100 .001 158 500 t 1 5000)

1706/ 20 = 85.30

1641/ 15 = 109.40

1618/ 18 = 89.89

1557/ 21 = 74.14

(batch-run 128 100 .001 158 500 t 1 5000)

1287/ 11 = 117.00

1060/ 9 = 117.78

1097/ 5 = 219.40

1299/ 14 = 92.79

average= 340.36

average= 195.89

average 128.68

average= 95.87

average 89.68

average= 136.74
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(batch-run 256 100 .001 158 500 t 1 5000)

1069/ 11 = 97.18

1138/ 6 = 189.67

854/ 4 = 213.50

991/ 9 = 110.11

(batch-run 1100 .001 158 500 t 8 5000)

200753/274 = 732.68

203085/284 = 715.09

211287/285 = 741.36

204211/279 = 731.94

(batch-run 2 100 .001 158 500 t 8 5000)

77002/222 = 346.86

77410/217 = 356.73

78779/226 = 348.58

84805/248 = 341.96

(batch-run 4 100 .001 158 500 t85000)

28019/147 = 190.61

25576/150 = 170.51

27131 / 148 = 183.32

28856/167 = 172.79

(batch-run 8 100 .001 158 500 t 8 5000)

3828/ 22 = 174.00

9423/ 90 = 104.70

9781/101 = 96.84

10658/ 89 = 119.75

(batch-run 16 100 .001 158 500 t 8 5000)

4660/ 51 = 91.37

4733 / 53 = 89.30

4840/ 54 = 89.63

4994/ 64 = 78.03

average= 152.62

average= 730.27

average= 348.53

average 179.31

average= 123.82

average 87.08
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(batch-run 32 100 .001 158 500 t 8 5000)

3064/ 25 = 122.56

2982 / 35 = 85.20

3104/ 26 = 119.38

3095/ 32 = 96.72

(batch-run 64 100 .001 158 500 t 8 5000)

2726/ 21 = 129.81

2706/ 13 = 208.15

2794/ 18 = 155.22

2960/ 28 = 105.71

(batch-run 128 100 .001 158 500 t 8 5000)

2646/ 16 = 165.38

2559/ 17 = 150.53

2713/ 12 = 226.08

2687/ 14 = 191.93

(batch-run 256 100 .001 158 500 t 8 5000)

2492/ 7 = 356.00

2689/ 11 = 244.45

2675/ 6 = 445.83

2517/ 8 = 314.63

(batch-run 1100 .001 158 500 t .125 5000)

211811/251 = 843.87

217237/256 = 848.58

195056/233 = 837.15

209978/249 = 843.29

(batch-run2 100 .001 158 500 t.125 5000)

90538/184 = 492.05

22602/ 40 = 565.05

11504/ 19 = 605.47

91182/184 = 495.55

average 103.47

average = 149.72

average= 183.48

average = 340.23

average= 843.22

average 539.53
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(batch-run 4 100 .001 158 500 t .125 5000)
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32614/125 260.91

32146/124 = 259.24

35781/131 = 273.14

32436/127 = 255.40

average= 262.17

(batch-run 8 100 .001 158 SOOt .125 5000)

13667/ 87 = 157.09

15263/ 75 = 203.51

15424/ 95 = 162.36

13986/ 79 = 177.04

average = 175.00

(batch-run 16 100 .001 158 SOOt .125 5000)

5455/ 50 = 109.10

7265/ 52 = 139.71

6173/ 48 = 128.60

5989/ 48 124.77

(batch-run 32 100.001 158 Soot .125 5000)

3786/ 29 = 130.55

4067/ 33 = 123.24

3664/ 21 = 174.48

3095/ 32 = 96.72

(batch-run64 100 .001 158 500t.125 5000)

3404/ 18 = 189.11

3313/ 16 = 207.06

3019/ 14 = 215.64

2970/ 17 = 174.71

average= 125.55

average= 131.25

average= 196.63

(batch-nm 128 100 .001 158 500 t .125 5000)

2935 I 14 = 209.64

3041/ 8 = 380.13

3149/ 10 = 314.90

3109/ 12 = 259.08

average = 290.94



(batch-run 256 100 .001 158 500 t .125 5000)

3064/ 4 = 766.00

2937/ 8 = 367.13

2860/ 6 = 476.67

2833/ 5 = 566.60

(batch-run 1 100.001 158500t25000)

204781/273 = 750.11

208018/270 = 770.44

206474/268 = 770.43

203159/271 = 749.66

(batch-run2 100 .001 158 500t2 5000)

80825/191 = 423.17

87004/206 = 422.35

87415/198 = 441.49

90614/183 = 495.16

(batch-run 4 100 .001 158 500 t 2 5000)

23277/ 92 = 253.01

36062/138 = 261.31

32422/139 = 233.25

33032/143 = 230.99

(batch-run 8 100 .001 158 500t2 5000)

13584/ 87 = 156.14

11578/ 83 = 139.49

14635/ 99 = 147.83

12180/ 81 = 150.37

(batch-run 16 100 .001 158 500 t 2 5000)

5515/ 56 = 98.48

5381/ 51 = 105.51

6072/ 54 = 112.44

5112/ 45 = 113.60

average= 544.10

average= 760.16

average= 445.54

average= 244.64

average= 148.46

average= 107.51
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(batch-run 32 100 .001 158 500 t 2 5000)

3498 / 25 = 139.92

3286/ 18 = 182.56

3632 / 29 = 125.24

3404 I 20 = 170.20

(batch-run 64 100 .001 158 500 t 2 5000)

2466/ 12 = 205.50

2151/ 17 = 126.53

2058/ 16 = 128.63

2295/ 19 = 120.79

(batch-run 128 100 .001 158 500 t 2 5000)

1431/ 10 = 143.10

1464/ 9 = 162.67

1542/ 10 = 154.20

1729/ 10 = 172.90

(batch-run 256 100 .001 158 500 t 2 5000)

1282/ 6 = 213.67

1300/ 5 = 260.00

1272/ 4 = 318.00

1218/ 3 = 406.00

(batch-run 1100 .001 610 500 t 1 20000)

1038377/302 = 3438.33

(batch-run 16 100 .001 610 500 t 1 20000)

36084/150 = 240.56

34887/132 264.30

34661 / 147 = 235.79

21799/ 78 = 279.47

(batch-run 32 100 .001 610 500 t 1 20000)

10777/105 = 102.64

11188/ 97 = 115.34

9535/ 86 = 110.87

10997/104 = 105.74

average= 154.48

average= 145.36

average= 158.22

average = 299.42

average= 255.03

average= 108.65
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(batch-run 64 100 .001 610 500 t 1 20000)

4495/ 48 = 93.65

4711/ 43 = 109.56

5217/ 59 88.42

4951/ 54 = 91.69

(batch-run 256 100 .001 610 500 t 1 20000)

2305/ 20 = 115.25

2357/ 16 = 147.31

2468/ 23 = 107.30

2384/ 23 = 103.65

(batch-run 1028 100 .001 610 500 t 1 20000)

1863/ 8 = 232.88

1844/ 5 = 368.80

1826/ 6 = 304.33

1748/ 9 = 194.22

(batch-run 16 100 .001 610 500 t 2 20000)

30917/133 = 232.46

24650/ 38 = 648.68

32846/148 = 221.93

17795/ 76 = 234.14

(batch-run 32 100 .001 610 500 t 2 20000)

12175/ 98 = 124.23

13040/ 93 = 140.22

12808/ 84 = 152.48

12776/ 91 = 140.40

(batch-run 64 100 .001 630 500 t 2 20000)

5869/ 52 = 112.87

5799/ 48 = 120.81

4935/ 46 = 107.28

5978/ 54 = 110.70

average 95.83

average= 118.38

average 275.06

average 334.30

average 139.33

average= 112.92
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(batch-nm 256 100 .001 630 500 t 2 20000)

3108/ 23 = 135.13

2721/ 19 = 143.21

2727/ 17 = 160.41

2874 / 18 = 159.67

average= 149.60

(batch-nm 1028 100 .001 610 500 t 2 20000)

1496/ 4 = 374.00

1587/ 7 = 226.71

1467/ 5 = 293.40

1512/ 4 = 378.00

(batch-run 16 100 .001 630 500 t 8 20000)

26518/156 = 169.99

26709/162 = 164.87

28783/184 = 156.43

26777/165 = 162.28

(batch-run 32 100 .001 630 500 t 8 20000)

11564/109 = 106.09

9722/ 91 = 106.84

9925/ 99 = 100.25

11253/117 = 96.18

(batch-run 64 100 .001 630 500 t 8 20000)

5305/ 66 = 80.38

2855/ 23 = 124.13

5347/ 56 = 95.48

4984/ 52 = 95.85

average= 318.03

average 163.39

average 102.34

average= 99.00

(batch-nm 1028 100 .001 1525 500 t 1 50000)

3007 I 7 = 429.57

(batch-run 64 100 .001 2 8000 t 1 50)

50961 / 87 = 585.76

51892/100 = 518.92

51607/101 = 510.96

51345 I 99 = 518.64

average= 533.57
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(batch-run 256 100 .001 2 8000 t 1 50)

51071/104 = 491.07

50548/106 = 476.87

50776/109 = 465.83

51936/101 = 514.22

(batch-run 1028 100 .001 2 8000 t 1 50)

51154/ 87 587.98

51021/ 91 = 560.67

51718/ 98 = 527.73

51277/114 = 449.80

(batch-run 64 100 .001 2 8000 t 2 50)

50822/ 98 = 518.59

51305/105 = 488.62

50596/107 = 472.86

51284/ 95 539.83

(batch-run 256 100 .001 2 8000 t 2 50)

51090/ 91 = 561.43

50813/121 = 419.94

51212/118 = 434.00

50948/103 = 494.64

(batch-run 1028 100 .001 2 8000 t 2 50)

49900/106 = 470.75

51023/115 = 443.68

51052! 98 = 520.94

50295/ 98 = 513.21

(batch-run 64 100 .001 2 4000 t .5 50)

25384/ 46 = 551.82

25659/ 47 = 545.94

25825/ 53 = 487.26

25111/ 41 = 612.46

average= 487.00

average= 531.55

average 504.98

average= 477.50

average= 487.15

average= 549.37
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(batch-run 256 100 .00

25181 /

24828/

25571 /

25254/

12
44

39

52

59

1000 t .5 50)

= 572.30

= 636.62

= 491.75

= 428.03

average= 532.18

(batch-run 1028 100 .001 2 4000 t .5 50)

25337/ 69 = 367.20

25190/ 49 = 514.08

25004/ 54 = 463.04

25812! 45 = 573.60

average= 479.48

(batch-run 64 100 .001 2 4000 t 8 50) (just two)

24638/ 51 = 483.10

24229! 48 = 504.77

average = 493.94

(batch-run 1100 .001 4 4000 t 1100)

30830/207 = 148.94

29812/ 62 = 480.84

30309/184 = 164.72

30436/192 = 158.52

average= 238.26

(batch-run 2 100 .001 4 40(

27680/107
27937! 124

28204/ 115

28198/ 110

)Otl 100)

= 258.69

= 225.30

= 245.25

= 256.35

average = 246.40

(batch-run 2 100 .001 4 4000 t 4 100)

29022/122 = 237.89

28618/106 = 269.98

28349! 89 = 318.53

28782/111 = 259.30

average= 271.42

(batch-run 2 100 .001 2 4000 t 1 50)

26569/ 54 492.02

25980/ 50 = 519.60

26419/ 67 = 394.31

25946/ 51 = 508.75

average= 478.67



(batch-run 4 100 .001 2 4000 t 1 50)

26348/ 46 = 572.78

25712 I 50 = 514.24

25288/ 41 = 616.78

25629/ 64 = 400.45

average= 526.06
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Appendix C: Results of the Random Action Algorithm for
Samples of Sizes 1000 and 5000

C.1. Introduction

There are two groups of data presented here. The first group comprises clusters

of eight runs with sample sizes of 1000 at quantized CPU values that range from 1 to 26.

The data in this group are presented chronologically, so the first clusters of four tested

quantized CPU values that were powers of two (enabling me to get an overview of

performance), then intermediate values, then completions of the eight run groups. The

second group of data comprises four sample clusters for samples sizes of 5000. All data

runs in this appendix were executed on a Sun Sparc 10 workstation (locally known as

"Bayes") running Sun Solaris, with each run requiring approximately eight hours of

processor time on average.

In some rare cases, runs resulted in extremely low numbers of failures for the

length of run. It is not entirely unexpected that code constructed over a period of close to

ten years and ported across three Lisp compilers might have occasional difficulties. In

these instances I chose to fault the code, toss out the resultant data point, and redo the

run. All of these data points are documented, with the redo value immediately following

the item it replaces.

Understanding the results: Each cluster of data is preceded by the input batch-

run pattern for that cluster. The numeric inputs are the only ones relevant, and from left

to right they are: quantized CPU value, steps (not relevant for the Random algorithm),

probability of failure (for each failure mode of a gate in the simulator), decision time,
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sim-cycles (the approximate number of agent decisions made), kurtosis value, and

number of samples.

The data lines are written as cost / # failure = cost per unit failure. Each cluster

is averaged, and in the second set of 1000 sample runs the cumulative averages and

standard deviations are also calculated.

C.2. Runs With 1000 Samples

(batch-run 1100 .001 23 1000 t 11000)

33076 / 188 = 175.94
17359/ 78=222.55
20689/ 101 = 204.84
32375/182= 177.88

(batch-run 2 100 .001 23 1000 t 11000)
14009/114= 122.89
13040/119= 109.58
14149 / 103 = 137.37
15066 / 137 = 109.97

(batch-run 4 100 .001 23 1000 t 11000)
8410/ 69= 121.88
8733 / 64 = 136.45
8494/ 63= 134.83
8139/ 53= 153.57

(batch-run 8 100 .001 23 1000 t 11000)
6593/ 35= 188.37
6933/ 31=223.65
6691/ 25 =267.64
6727/ 33 =203.85

average= 195.30

average= 119.95

average= 136.68

average= 220.88



(batch-run 16 100 .001 23 1000 t 11000)
6449/ 23 =280.39
6502/ 25 =260.08
6586/ 23 =263.44
6203/ 16=387.81

(batch-run 32 100 .001 23 1000 t 11000)

5914/ 9=657.11
5939/ 10=593.90
6180/ 13 =475.38
6179/ 15 =411.93

(batch-nm 64 100 .001 23 1000 t 11000)

5931/ 12=494.25
6481/ 13=498.54
6030/ 11=548.18
6090/ 10 =609.00

(batch-run 128 100 .001 23 1000 t 11000)

6496/ 14 =464.00
5924/ 8 =740.50
61361 11=557.82
6111/ 12=509.25

(batch-run 7 100 .001 23 1000 t 11000)

7438/ 54= 137.74
7144/ 38= 188.00
7351/ 48= 153.15
7212/ 42= 171.71

(batch-nm 9 100 .001 23 1000 t 1 1000)

6350/ 22 =288.64
6914/ 36= 192.06
7031/ 44= 159.80
6668/ 28 =238.14

average= 297.93

average= 534.58

average = 537.49

average= 567.89

average= 162.65

average= 219.66
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(batch-run 10 100 .001 23 1000 t 11000)

6753/ 32 =211.03

7009/ 41= 170.95

7050/ 45= 156.67

7155/ 42= 170.36

(batch-run 11100 .001 23 1000 t 11000)

6598/ 29=227.52
6776/ 28=242.00
6580 I 24 =274.17

6546/ 26 =251.77

(batch-run 12 100 .001 23 1000 t 11000)

6428/ 22 =292.18
64641 20=323.20
6542/ 20 =327.10
6236/ 28 =222.71

(batch-run 13 100 .001 23 1000 t 11000)

6332/ 26 =243.54

6340/ 20 =317.00

6417/ 25 =256.68

6269/ 19 =329.95

(batch-run 14 100 .001 23 1000 t 11000)

6378/ 24 =265.75

6791/ 24=282.96
6644/ 19=349.68
6206 / 32 = 193.94

(batch-run 15 100 .001 23 1000 t 11000)

6146/ 24=256.08
6481/ 20=324.05
6320/ 26=243.08
6437/ 29 =221.97

average= 177.25

average= 248.87

average= 291.29

average = 286.79

average= 273.08

average= 261.30
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(batch-run 1100 .001 23 1000 t 11000)

31843 / 190 = 167.59

30881 / 171 = 180.59

32352/176= 183.18
33731/185 = 182.33

(batch-run 3 100 .001 23 1000 t 11000)

10487/ 85= 123.38

11283/ 90= 125.37

10035/ 80= 125.44

10500/ 88= 119.32

(batch-run 5 100 .001 23 1000 t 11000)

8269/ 62= 133.37

8151/ 57= 143.00

8291 / 62 = 133.73

8272/ 57= 145.12

(batch-run 6 100 .001 23 1000 t 11000)

7706/ 53=145.40
7750 / 47 = 164.89

7313/ 44=166.20
7355/ 46= 159.89

(batch-run 17 100 .001 23 1000 t 11000)

6420/ 24 =267.50

6537/ 20 =326.85

6803/ 23 =295.78

6192/ 18=344.00

(batch-run 18 100 .001 23 1000 t 11000)

6399/ 25 =255.96

6480/ 24 =270.00

6282/ 20=314.10
6728/ 25 =269.12

average = 178.42

average= 123.38

average 138.81

average= 159.10

average 308.53

average = 277.30
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(batch-run 19 100 .001 23 1000 t 11000)

6368/ 24 =265.33
6365 / 27=235.74
6410/ 24=267.08
6438/ 19=338.84

(batch-run 20 100 .001 23 1000 t 11000)

6129/ 19=322.58
6336/ 24 =264.00
6900/ 28 =246.43
6532/ 20 =326.60

(batch-run 21 100.00123 1000 t 11000)

6537/ 33= 198.09
6721/ 34= 197.68
6343/ 22 =288.32
6493/ 21=309.19

(batch-run 22 100 .001 23 1000 t 11000)

6492/ 15=432.80
6391/ 20=319.55
6517/ 20 =325.85
6541/ 22=297.32

(batch-run 23 100 .001 23 1000 t 11000)

5866/ 10=586.60
6442/ 12 =536.83
6155/ 7=879.29
6232/ 16=389.50

(batch-run 24 100 .001 23 1000 t 11000)

6186/ 12=515.50
6234/ 18=346.33
6547 / 15 = 436.47
6093/ 16 =380.81

average= 276.75

average 289.90

average= 248.32

average= 343.88

average= 598.06

average= 419.78
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(batch-run 25 100 .001 23 1000 t 11000)

5941/ 9=660.11
6223/ 10=622.30
6450/ 6= 1075.00
6171/ 12=514.25

(batch-run 26 100 .001 23 1000 t 11000)

6335/ 10=633.50
5935/ 8=741.88
6354/ 10=635.40
6285/ 14=448.93

(batch-run 26 100 .001 23 1000 t 11000)

5973/ 11=543.00
6107/ 13=469.77
6373/ 10=637.30
6344/ 10 =634.40

(batch-run 25 100.00123 bOOt 11000)
6172/ 13=474.77
6280/ 9=697.78
6290/ 16=393.13
6246/ 12 =520.50

(batch-run 24 100 .001 23 1000 t 11000)

5955/ 15=397.00
6289/ 14=449.21
6296/ 15 =419.73
6172/ 13=474.77

average= 717.92

average= 614.93

average= 571.12
CUMAVE= 593.02
SPLVAR= 98.36

average= 521.55
CLJMAVE= 619.73
SPLVAR= 209.87

average= 435.18
CUM AVE = 427.48
SPLVAR= 53.84
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(batch-run 23 100 .001 23 1000 t 11000)

6411/ 10=641.10
6296/ 19=331.37
6215 I 19 =327.11

6009/ 11=546.27

(batch-run 22 100 .001 23 1000 t 11000)

6439/ 17=378.76
6396/ 18=355.33
6188/ 19=325.68
6457/ 18=358.72

(batch-run 21100 .001 23 1000 t 11000)

6572/ 30 =219.07

6499/ 20 =324.95

6540/ 19=344.21
6688/ 24 =278.67

(batch-run 20 100 .001 23 1000 t 11000)

6379/ 24 =265.79

6869/ 31=221.58
6450/ 24 =268.75

6692/ 30=223.07

(batch-run 19 100 .001 23 1000 t 11000)

6415 I 20=320.75

6312/ 23 =274.43

6735/ 29= 232.24

6600/ 27=244.44

average= 461.46

CUMAVE= 529.76
SPLVAR= 184.48

average 354.62

CUMAVE= 349.25

SPLVAR= 42.53

average= 281.73

CUMAVE= 270.02

SPLVAR= 57.90

average 244.80

CUMAVE= 267.35

SPLVAR= 39.77

average= 267.97

CUMAVE= 272.36

SPLVAR= 38.86
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(batch-run 18 100 .001 23 1000 t 11000)

6626 / 23 =288.09
6311/ 16=394.44
6498/ 26 =249.92
6417/ 22 =291.68

(batch-run 17 100 .001 23 1000 t 11000)

6673/ 20 =333.65
6426/ 20 =321.30
6398/ 22 =290.81
6279/ 22 =285.41

(batch-run 16 100 .001 23 1000 t 11000)

6474/ 26 =249.00
6513/ 19=342.79
6608/ 21=314.67
6650/ 30 =221.67

(batch-run 15 100 .001 23 1000 t 11000)

6656/ 19=350.32
6241/ 23=271.34
6664/ 25 =266.56
6629/ 23 =288.22

(batch-run 14 100 .001 23 1000 t 11000)

6515/ 21=310.24
6470/ 22 =294.09
6463 / 21 = 307.76
6439/ 22 =292.68

average= 306.03
CUMAVE= 291.66
SPLVAR= 46.40

average= 307.79
CUMAVE= 308.16
SPLVAR= 26.94

average= 282.03
CUM AVE = 289.98
SPLVAR= 54.78

average= 294.11
CUMAVE= 277.70
SPLVAR= 42.21

average= 301.19
CUMAVE= 287.14
SPLVAR= 44.90
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(batch-nm 13 100 .001 23 1000 t 11000)
6444/ 31=207.87
6348/ 19=334.10
6419/ 25 =256.76
6131/ 24=255.46

(batch-run 12 100 .001 23 1000 t 11000)
6768/ 22 =307.64
6493/ 29 =223.90
6461/ 28=230.75
6384/ 21=304.00

(batch-run 11 100 .001 23 l000tl 1000)
6663/ 35= 190.37
6660/ 28 =237.86
6444/ 35= 184.11
6574 I 24 =273.92

(batch-nm 10 100 .001 23 1000 t 11000)
6658 / 40 = 166.45
6703/ 33 =203.12
6578/ 31=212.19
6717/ 36= 186.58

(batch-nm 9 100 .001 23 1000 t 11000)
6869/ 33 =208.15
6661/ 32=208.16
6695/ 30 =223.17
6834 / 37 = 184.70

average= 263.55
CUMAVE= 275.17
SPLVAR= 46.02

average 266.57
CUM AVE = 278.93
SPLVAR= 45.39

average= 221.57
CUMAVE= 235.22
SPLVAR= 33.86

average= 192.09
CUMAVE= 184.67
SPLVAR= 21.73

average= 206.05
CUMAVE= 212.85
SPLVAR= 38.86
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(batch-run 8 100 .001 23 1000 t 11000)
7059 / 40 = 176.48
6435 / 38 = 169.34
6531/ 27=241.89
6843/ 34 =201.26

average = 197.24
CUMAVE= 209.06
SPLVAR= 33.55

(batch-run 7 100 .001 23 1000 t 11000)
7731 / 51 = 151.59
7612/ 49= 155.35
7033/ 31=226.87
7065 / 44 = 160.57

average= 173.60
CUMAVE= 168.12
SPLVAR= 28.03

(batch-run 6 100 .001 23 1000 t 11000)
7228/ 46= 157.13
7376/ 47= 156.94
6772/ 27=250.81
7472 / 45 = 166.04

average= 182.73
CTJMAVE= 170.91
SPLVAR= 33.00

(batch-run 5 100 .001 23 1000 t 11000)
7800/ 57= 136.84
6614 / 4 = 1653.50 (toss out)
7643/ 50= 152.86 (redo)
8099/ 53= 152.81
7013/ 25 =280.52

average= 180.76
CLTMAVE= 159.78
SPLVAR= 49.39

(batch-run 4 100.00123 l000t 11000)
8799 / 68 = 129.40
9018 / 74 = 121.86
8696 / 59 = 147.39
9199/ 62= 148.37

average= 136.76
CUMAVE= 136.72
SPLVAR= 12.14
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(batch-run 3 100 .001 23 1000 t 11000)

9605/ 86= 111.69

10301/ 80= 128.76

10218/ 83= 123.11

10548 / 85 = 124.09

(batch-run 2 100 .001 23 1000 t 11000)

14556/116=125.48
12576/ 96= 131.00

13289/102=130.28
14437/123= 117.37

(batch-run 1100 .001 23 1000 t 11000)

30252 / 176 = 171.89

31338/180= 174.10

24583/105=234.12
34152 / 187 = 182.63

C.3. Runs With 5000 Samples

(batch-run 1100 .001 158 500 t 1 5000)

195911/301 = 650.87

209680 / 277 = 756.97

13425/ 14=958.93
206001 / 275 = 749.09

(batch-run 2 100 .001 158 500 t 1 5000)

83471/210=397.48
81210/238=341.22
80523/229=351.63
39177/ 108 =362.75

average= 121.91

CUMAVE= 122.65

SPLVAR= 5.16

average= 126.03

CUMAVE= 122.99

SPLVAR= 10.08

average= 190.69

CUMAVE= 192.99

SPLVAR= 24.30

average= 778.96

average= 363.27
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(batch-run 4 100 .001 158 500 t 1 5000)

30432/137=222.13
25503 / 120 = 212.53

28470 / 153 186.08

31176/155=201.14
average= 205.47

(batch-run 8 100 .001 158 500 t 1 5000)

12187/ 94=129.65
12510/104= 120.29

12845 / 95 = 135.21

14465 / 100 144.65

average= 132.45

(batch-run 16 100 .001 158 500 t 1 5000)

6920/ 52= 133.08

6435/ 47= 136.91

7625/ 57= 133.77

7266/ 64= 113.53

average= 129.32

(batch-run 32 100 .001 158 500 t 1 5000)

4611 / 2 = 2305.50 (toss out)

4879/ 30= 145.97 (redo)

5073/ 31= 163.65

5007/ 32= 156.47

5386/ 35= 153.89

average= 154.99

(batch-run 64 100 .001 158 500 t 1 5000)

4561/ 18=253.39
4732/ 13 =364.00

4804/ 12=400.33
4836/ 24 =201.50

average= 304.81

(batch-run 128 100 .001 158 500 t 1 5000)

4395/ 10=439.50
4448/ 6=741.33
4195/ 7=599.29
4338/ 11=394.36

average= 543.62

(batch-run 64 100 .001 105 500 t 1 5000)

2925/ 8 =365.62
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C.4. Calculation of Means and Confidence Intervals for Samples of Size 1000

Quantized
CPU Value

Cost Per
Failure

Standard
Deviation

Lower Bd.
Confidence

Upper Bd.
Confidence

26.0000 593.0200 98.0600 543.9627 642.0773
25.0000 619.7300 209.8700 514.7366 724.7234
24.0000 427.4800 53.8400 400.5450 454.4150
23.0000 529.7600 184.4800 437.4687 622.0513
22.0000 349.2500 42.5300 327.9732 370.5268
21.0000 270.0200 57.9000 241.0539 298.9861
20.0000 267.3500 39.7700 247.4539 287.2461
19.0000 272.3600 38.8600 252.9192 291.8008
18.0000 291.6600 46.4000 268.4471 314.8729
17.0000 308.1600 26.9400 294.6825 321.6375
16.0000 289.9800 54.7800 262.5748 317.3852
15.0000 277.7000 42.2100 256.5833 298.8167
14.0000 287.1400 44.9000 264.6775 309.6025
13.0000 275.1700 46.0200 252.1472 298.1928
12.0000 278.9300 45.3900 256.2224 301.6376
11.0000 235.2200 33.8600 218.2806 252.1594
10.0000 184.6700 21.7300 173.7990 195.5410
9.0000 212.8500 38.8600 193.4092 232.2908
8.0000 209.0600 33.5500 192.2757 225.8443
7.0000 168.1200 28.0300 154.0972 182.1428
6.0000 170.9100 33.0000 154.4008 187.4192
5.0000 159.7800 49.3900 135.0713 184.4887
4.0000 136.7200 12.1400 130.6466 142.7934
3.0000 122.6500 5.1600 120.0686 125.2314
2.0000 122.9900 10.0800 117.9472 128.0328
1.0000 192.9900 24.3000 180.8332 205.1468

Table C.1: Calculation of Means and Confidence Intervals for Samples ofSize 1000
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Appendix D: Code for Calculations Involving One Submodel of the Complete
Stochastic Automata Model for the OLMA Running the Random Algorithm

D.1. Matlab Code for Calculating the Stochastic Automata Network

The code presented in Figure D. 1 is strictly an example of the code needed to

calculate the tensor products and some critical values when the agent and simulator run at

the same speed. Each agent matrix may require several such calculations, depending on

the desired results. The loops implement the probability transference representing the

interaction between the agent and the gate components of the simulator. 'This procedure

is significantly simpler than the standard calculations of the discrete tensor product.

format long;

GATE1=[...
0.997 0.003
0.003 0.997 ];

GATE2 GATE 1;

GATE3 GATE2;

GATE4 = GATE3;

AGENTI [
0.142857 0.142857 0.142857 0.142857 0.142857 0.285714
0.142857 0.142857 0. 142857 0.142857 0. 142857 0.285714
0.142857 0.142857 0.142857 0.142857 0.142857 0.285714
0.142857 0.142857 0.142857 0.142857 0.142857 0.285714
0.142857 0.142857 0.142857 0.142857 0.142857 0.285714
0.1428570.1428570.1428570.1428570.1428570.285714];

FOTJRGATES kron(GATE I ,kron(GATE2,kron(GATE3 ,GATE4)))

TENS = kron(AGENT1,FOURGATES);

TENSI TENS;
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for Ag = 0:3
for Gone = 0:1
for Gtwo = 0:1
for Gtre = 0:1
forGfor=0:l
if(Ag 0) & (Gone = 1)

for JAg = 0:5
TEMP = TENS 1 (indexer(IAg,Gone,Gtwo,Gtre,Gfor),indexer(Ag,Gone,Cjtwo,Gtre,Gfor));
TENS I (indexer(IAg,Gone,Gtwo,Gtre,Gfor),indexer(Ag,0,Gtwo,Gtre,Gfor)) =

TENS 1 (indexer(IAg,Gone,Gtwo,Gtre,Gfor),indexer(Ag,0,Gtwo,Gtre,Gfor)) + TEMP;
TENS 1 (indexer(IAg, Gone, Gtwo,Gtre,Gfor),indexer(Ag,Gone,Gtwo,Gtre,Gfor)) = 0;

end
elseif(Ag = 1) & (Gtwo = 1)
for JAg = 0:5

TEMP = TENS 1 (indexer(JAg,Gone,Gtwo,Gtre,Gfor),indexer(Ag,Gone,Gtwo,Gtre, Gfor));
TENS 1 (indexer(IAg,Gone,Gtwo,Gtre,Gfor),indexer(Ag,Gone,0,Gtre,Gfor)) =

TENS I (indexer(IAg, Gone, Gtwo,Gtre, Gfor),indexer(Ag, Gone, 0, Gtre,Gfor)) + TEMP;
TENS 1 (indexer(IAg,Gone,Gtwo,Gtre,Gfor),indexer(Ag,Gone,Gtwo,Gtre,Gfor)) = 0;

end
elseif(Ag = 2) & (Gtre = 1)

for JAg = 0:5
TEMP = TENS 1 (indexer(IAg,Gone,Gtwo,Gtre,Gfor),indexer(Ag,Gone,Gtwo,Gtre,Gfor));
TENS 1 (indexer(IAg,Gone,Gtwo,Gtre,Gfor),indexer(Ag,Gone,Gtwo,O,Gfor)) =

TENS 1 (indexer(IAg,Gone,Gtwo,Gtre,Gfor),indexer(Ag,Gone,Gtwo,0,Gfor)) + TEMP;
TENS 1 (indexer(IAg,Gone,Gtwo,Gtre,Gfor),indexer(Ag,Gone,Gtwo,Gtre,Gfor)) = 0;

end
elseif(Ag 3) & (Gfor 1)
for lAg =r 0:5

TEMP = TENS 1 (indexer(IAg,Gone,Gtwo,Gtre,Gfor),indexer(Ag,Gone,Gtwo,Gtre,Gfor))
TENS I (indexer(IAg,Gone,Gtwo,Gtre,Gfor),indexer(Ag,Gone,Gtwo,Gtre,o)) =

TENS 1 (indexer(IAg,Gone,Gtwo,Gtre,Gfor),indexer(Ag,Gone,Gtwo,Gtre,o)) + TEMP;
TENS! (indexer(IAg,Gone,Gtwo,Gtre,Gfor),indexer(Ag,Gone,Gtwo,Gtre,Gfor)) 0;

end
end

end
end

end
end

end

[p,d] = eig(TENSI);
diag(d)

p(:, 1)/sum(p(:, 1))

probgood 0;
for Gate iFinder = 0:5

NewSum(GatelFinder + 1) = 0;
probgood = probgood + result((GatelFinder* 16) + 1);
for ResI = 9:16

NewSum(GatelFinder + 1) = NewS um(Gate !Finder + 1) + result(ResI + (16 * Gate 1 Finder));
end
NewSum(Gate!Finder + 1)

end
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err = sum(NewSum)

fourerr = 4 * sum(NewSum)

probgood




