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Chapter 1: Introduction

Disaster response and surveillance have increasingly incorporated commercial mul-

tirotor Unmanned Aerial Vehicles (UAVs) due to their size and maneuverability

[1], [2]. The decrease in the acquisition and recurring costs per flying hour has

also increased the usage of UAVs during the last decade in civilian settings [3], [4].

The cost-effectiveness and maneuverability of the UAVs have in turn promoted

small-sized quadcopter research for varying applications [5]. Multiple quadcopters

deployed in these scenarios may require the ability to operate around humans

in dynamic and cluttered environments. Safety in these critical environments is

achieved with a collision avoidance pipeline that generates motion control com-

mands at a rate faster than the quadcopter’s response time. Real-time precision

of collision avoidance is influenced by the substantial uncertainty present in the

quadcopter state estimates that are generated by positioning systems (e.g., Global

Positioning Systems (GPS)). Existing algorithms designed to handle uncertainty

have a higher computational complexity which can degrade the quadcopter’s real-

time performance to avoid collision due to a delay in command generation. This

project develops and tests a real-time collision avoidance algorithm to handle un-

certainty in state estimation.

GPS is readily used on outdoor UAVs. The GPS signals are unavailable in-

side the buildings due to non-line-of-sight transmissions limiting their usage in-
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doors. Collision avoidance for small-sized quadcopters in indoor environments has

motivated the development of alternative positioning systems (e.g., Vision-based

positioning or Ultra Wide Band-based (UWB)-based positioning). Vision-based

positioning is expensive and difficult to scale. UWB-based indoor Loco Position-

ing System (LPS) developed by Bitcraze uses a Time Difference of Arrival (TDoA)

mode similar to a global positioning system. This system can theoretically con-

nect to an unlimited number of quadcopters at any given instance and can be

scaled with the operational area’s volume. This indoor positioning system has a

degraded signal performance due to multi-path reflections from objects in the oper-

ational area. Improving accuracy in indoor positioning with the help of the existing

research can increase the computational complexity in navigation command gen-

eration. Small-sized quadcopters can have narrow computation power and battery

life; hence their ability to run uncertainty-lowering complex algorithms indoors is

limited.

Crazyflie UAVs, as illustrated in Fig [1.1], are employed by the Human Machine

Teaming Lab’s (HMTLab)’s Swarm testbed to perform multiple UAV experiments

indoors. Small-sized Crazyflie UAVs with computation constraints need real-time

navigation command generation that consumes less power and maintains flight

stability. Efficiency in power consumption also allows these UAVs to operate over a

wide range of speeds, improving the overall task completion time. Scaling the tasks

to multiple UAVs indoors adds dynamic objects in the operating space. Existing

UAV collision avoidance techniques fail to handle the positioning uncertainty in

the presence of dynamic objects, which hinders application scalability. Existing
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Figure 1.1: Bitcraze’s small-sized quadcopter, Crazyflie 2.1 with an LPS receiver
[6]. This project employs this UAV to test a use case of the proposed collision
avoidance algorithm.

demonstrations with a larger number of UAVs were possible only with expensive

vision-based positioning systems that are hard to scale in large spaces. This project

aims to develop a real-time collision avoidance algorithm that can scale for a larger

group of UAVs by introducing probabilistically collision-free zones around a UAV

to accommodate uncertainty with LPS.

Collision avoidance algorithms can be generally classified into two categories,

Classical methods (e.g., geometric, graph theory-based, or force-field-based meth-
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ods), and Heuristic methods (e..g., optimization-based, or learning-based meth-

ods). Existing research states that the geometric methods solved with fast convex

optimization have low computational complexity and are well suited for small-

sized UAV operations in static and unobstructed spaces. These methods can ex-

tract the geometric properties of their surrounding objects to avoid collisions and

have a strong theoretical background to analyze collision-free guarantees. Heuristic

methods rely on intuition and experience, unlike geometric methods, to generate

a solution. These intuition-based do not aim to perform an exhaustive search to

generate a global optimum, instead, it finds a trade-off between optimality and

real-time performance. This project implements a buffered Voronoi cell method’s

variant, which introduces linear position and velocity constraints to improve its ro-

bustness under substantial positioning uncertainty with LPS, indirectly improving

the scalability in domains with dynamic obstacles.

The buffered Voronoi algorithm retracts the Voronoi cell’s edge by a safety

radius for one UAV, to always keep the UAV’s body completely within the Voronoi

cell. Crazyflies with limited sensing capabilities benefit from the Voronoi cell design

that relies only on the positional information of its peers to generate pairwise

boundaries. The Voronoi cell algorithm is modified by introducing positioning

uncertainty into each Voronoi cell design, which expands the safety radius for each

UAV. Additionally, each peer UAV’s velocity is predicted and incorporated into

the Voronoi cell design. The motivation for this design modification is to add a

supplementary layer of safety for UAVs surrounded by dynamic obstacles.

Prior evaluations of collision avoidance of multiple UAVs focus on traditional
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metrics centered around one UAV. These metrics do not completely address the

inter-UAV interactions that are essential to measure algorithms’ collision avoid-

ance ability. The analysis performed with metrics utilizing these interactions can

provide a better understanding of cooperation between UAVs navigating in the

environment, thereby addressing both safety and efficiency in collision avoidance.

This project devises inter-UAV interaction-based metrics to measure the effective-

ness of the algorithms by quantifying the UAVs’ coordination.

The project develops a computationally efficient algorithm for small-sized Crazyflie

UAVs that also handles uncertainty in positioning measurements for multiple UAV

asks. Chapter Two reviews key developments in relevant collision avoidance litera-

ture, covering classical and heuristic algorithms. This chapter also covers existing

work on various positioning systems used in UAV localization. Chapter Three

describes the geometrical collision avoidance used in the project. This chapter

integrates uncertainty-aware buffered Voronoi cells with velocity collision cones to

achieve real-time response on UAVs. Chapter Four describes the experimental de-

sign with the integrated physics simulation platform, introduces the novel metrics

computed to quantify the algorithms’ collision avoidance ability in multiple UAV

scenarios, and presents the associated results. Finally, Chapter Five summarizes

the contributions to the field and discusses the future work direction.
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Chapter 2: Background

This chapter describes the architecture and functionality of small-sized UAVs used

in the HMTLab’s Swarm testbed. Furthermore, a brief overview of the existing in-

door positioning systems is presented, along with a comparative analysis providing

insights into the challenges and effectiveness of these systems. The chapter also

delivers a survey on collision avoidance techniques designed for small-sized UAVs.

Small-sized UAVs’ ability to navigate without encountering collisions is crucial for

indoor environments. A common trend in the design of multiple UAV systems is to

automate local UAV interactions to achieve user-defined global tasks [7]; however,

previous research on multiple UAV collision avoidance ignores the UAVs’ second-

ordered dynamics and assumes that the obstacles in the surroundings move with

a constant velocity. The research on collision avoidance coupled with positioning

uncertainty is also limited.

Algorithms factoring in the degree of accuracy in positioning promote flight

stability and scalability [8]. There is a pressing need for extensive research on

multiple UAV systems in congested environments that incorporate the obstacles’

motion and integrate the prominent features of small-sized UAV’s dynamics [9];

hence, this chapter addresses this gap and identifies potential solutions for achiev-

ing collision-free motion for small-sized UAVs in complex indoor environments.
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2.1 Small-sized UAVs

UAVs that weigh less than 250 grams are referred to as small-sized UAVs [10]. The

size of these UAVs presents unique challenges for their usage, including limitations

on the payload capacity and reconfiguration of the onboard sensors. The cost and

size reduction of new-generation sensors (e.g., Inertial measurement unit (IMU),

monocular camera) and actuation (e.g., Coreless motors) can make them suitable

for the small-sized UAV design. Contrastingly, the miniaturization of these elec-

tronic components limits their performance and control efficiency. The electronics

size reduction increases the noise and drift in the sensor signal transmission and in-

creases the motor saturation, limiting the small-sized UAV’s motor rotation speed

[11]. The UAV’s size also determines the onboard battery’s size, resulting in a lim-

ited battery life unsuitable for long-range applications. Size-induced limitations

must be considered when choosing a small-sized UAV for a specific application.

2.1.1 Crazyflie 2.X Software Architecture

This project aims to develop a collision avoidance algorithm for Crazyflie 2.X,

a small-sized UAV deployed in indoor research and development [12]. Previous

studies have explored aspects of Crazyflie’s design to understand its capabilities

and challenges for indoor applications [13], [14]. The Crazyflie weighs 27 grams

and has a recommended payload capacity weight of 15 grams. The Crazyflie is

an open-source flying development platform with low latency and long-range radio

communication with the host client. Expansion decks with varying capabilities
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Figure 2.1: Crazyflie2.X platform’s modular autonomy architecture keeps the UAV
stable throughout the motion. This UAV’s open-source design simplifies the colli-
sion avoidance algorithm’s integration with the onboard subsystems [6].

(e.g., LPS, Flowdeck sensor, Multiranging sensor, Charging pad) can be mounted

on this small-sized UAV to develop autonomous features for research, education,

and teaching [15]. Roboticists have also extended this open-source platform to

multiple UAV support; however, the radio bandwidth places an upper limit on

the number of simultaneous reliable UAV connections to the host client. Decen-

tralized communication networks (e.g., Flying Ad-Hoc Network [16]), interference

reduction algorithms (e.g., Adaptive Channel selection [17]) address the challenges

in communication for multiple UAV applications [18]. Radio communication can

have complications like packet collisions, non-line-of-sight reflection, and radio in-
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terference with other sources emitting data at similar frequencies [19].

Figure 2.1 depicts the Crazyflie 2.X UAV’s software architecture [6]. This

software architecture allows the user or a local navigation planner to send position

waypoints to the low-level motion commander. The low-level commander receives

additional real-time state estimates from the onboard Estimated Kalman Filter

(EKF) to generate motor control commands and fly with stability.

2.1.2 Inertial Measurement Unit

IMUs predict the UAV’s six degrees of freedom pose with the help of a magnetome-

ter, accelerometer, and gyroscope. This inertial sensor is susceptible to vibration,

which induces errors in the rotational velocity measured by the gyroscopes and the

acceleration measured by the accelerometer. These error-prone measurements are

later integrated to predict the pose. An extended period of operation with IMUs

alone can result in a significant drift from the ground truth; hence, researchers

utilize other sensor data to better estimate the UAV’s location in a given func-

tional space by compensating for the accumulated error [11]. UAVs use multiple

sensor-fused state estimates to maintain stability during their flight [11], [20]–[22].

2.1.3 UAV Localization

Kalman filters are deterministic mathematical state estimators that work efficiently

on Gaussian state variables. The UAV sensors are assumed to generate data with
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a Gaussian profile to integrate with the Kalman filter-based localization. This fil-

tering technique performs a multi-sensor fusion (e.g., IMU, flow deck sensor, LPS,

multi-ranger sensor) to minimize the covariance in the estimated state [22]. These

filters are recursive state estimators that use the last best state estimate to the

dynamic motion model and sensor models to generate a weighted average. The

aerospace industry has successfully implemented Kalman filter’s variants for the

guidance, navigation, and control protocols. Localization and mapping techniques

with these Kalman filters were later adapted to mobile robots [23]. The precise

state estimate from localization is essential for UAV navigation in cluttered en-

vironments. The EKF on the Crazyflie UAV generates state estimates with a

standard deviation of 15 centimeters [19]. UAVs can be kept safe in cluttered

uncertain environments by considering the positioning variance while devising a

motion plan.

2.1.4 Collision Detection

Detection of potential collisions protects the UAV hardware and its payload from

damage. Detection also enhances the UAV’s autonomous capabilities to minimize

human intervention while performing tasks. Limited computational power, battery

life, and payload capacity make visual sensors on the Crazyflie UAVs an ineffective

option for collision detection. Recent studies have investigated alternative sensing

technologies for small-sized UAVs that can replace the requirement for UAV-UAV

observations. An evaluation of small-sized UAVs proposes the use of lightweight,
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protective cages for collision-based navigation instead of onboard collision detec-

tion sensors [24], [25]. Researchers suggest that the small-sized UAV configuration

does not support accurate trajectory design due to the presence of noise induced

by miniaturized localization and sensing. Furthermore, collisions at the small-

sized UAV’s scale have a low penalty; hence UAVs with protective cages and near

accurate positioning from motion capture systems can move toward the goal po-

sitions via collision-based navigation at low velocities [24], [26]. Small-sized UAVs

deployed for surveillance in safety-critical areas (e.g., sensing a gas leak inside a

chemical plant [27]) cannot rely on collisions for navigation as described by Ack-

erman [24]. Collision-based navigation can result in contamination or spillage in

indoor facilities, disruption in ongoing activities, and even result in life-threatening

damage. This collision-based navigation relies heavily on accurate collision models

and robust controllers that can handle recovery smoothly [26]. Additionally, this

collision-based navigation design can result in string instability, a prevalent issue

of noise amplification within a group of closely moving multiple Vehicle systems,

which can degrade the overall mission performance [28].

Time division multiple access-based radio communication is another collision

detection approach designed for small-sized UAVs that promotes vision-less col-

lision detection. This communication-based method allows the exchange of each

UAV’s location and velocity [29], [30]. The Crazyflie’s radio transmitters and re-

ceivers can exchange information among its peers and the ground station [6], which

can be used for collision detection. This communication protocol is an alternative

detection approach that supports extended battery life for a longer mission and



12

enhances Crazyflie’s autonomy by addressing the challenges posed by its small size

[31].

2.2 Positioning Systems

Positioning systems are essential to enhancing the autonomous capabilities of

UAVs. These systems provide essential spatial information that can be used in

UAV collision avoidance, trajectory design, and control. The strengths and weak-

nesses of various positioning systems employed on UAVs are presented in this

section. The Crazyflies employed by the HMTLab’s Swarm testbed rely on the

LPS for positioning.

2.2.1 Global Positioning System

UAVs operating in outdoor environments have onboard sensors that include a

GPS, a camera, and an IMU for navigation. A GPS updates position up to 2

meters with precision 95% of the time as signals are received from the transmitting

satellites [32]. Distance triangulation between a receiver and at least three satellites

generates accurate state estimates with the provided data [33]. The attenuation of

signals inside the building and in non-line-of-sight locations degrades the accuracy

and availability of GPS signals; hence, UAVs with GPS cannot function stably for

indoor applications.
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2.2.2 Ultrasonic Sensors

Ultrasonic acoustic sensors are another class of sensors employed in certain do-

mains for UAV localization. These low-cost and lightweight sensors are attractive

for indoor UAV research [34] but can be impacted by room humidity and temper-

ature. Ultrasonic sensors suffer from multi-path and non-line-of-sight reflections,

degrading the state estimation quality when localizing multiple small-sized UAVs

indoors [35].

2.2.3 Vision-based Positioning Systems

A recent technological survey states that a sensor fusion of onboard IMU and

vision-based positioning systems (e.g., motion capture positioning, flow-deck-based

positioning, stereo camera-based positioning) dominates 50% of the ongoing indoor

UAV research [36]. Cameras reobserve features in a given space and improve the

state estimation quality [37]. Simultaneous Localization And Mapping (SLAM)

or visual odometry heavily relies on cameras (e.g., flow deck-based positioning,

stereo camera-based positioning) integrated with IMUs. Visual SLAM builds the

world’s maps world and estimates the UAV’s pose by matching the camera’s ob-

served features with the updated map [38]. Visual odometry estimates the pose by

scanning the image deviation captured by the onboard cameras [39]. These optical

and laser-based camera processes have a low sampling rate and a higher processing

time for feature extraction from the feed and are unsuitable for small-sized UAVs

[22].
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Additionally, visual positioning systems require good lighting conditions for

accurate functioning indoors. These systems are also affected by shadows, reflec-

tions, and glare present in the sensor’s field of view. An evaluation by Palivdis et

al. [40] suggests a combination of visible light and infrared cameras can extend the

usage of UAVs in low-light conditions; however, the higher payload and memory

consumption of these sensors make them unsuitable for the small-sized UAV.

2.2.4 Motion Capture-based Positioning System

Motion capture technology can track indoor UAVs and other objects with passive

markers or reflective indicators with the help of cameras placed around a functional

space [27], [41]–[45]. Small-sized UAV researchers in indoor facilities readily use

this motion capture technology. The cameras employed for these applications sup-

port frame capture at 2000 hertz and readings with sub-millimeter accuracy [46].

UAVs working with this positioning system are free from onboard computational

latency; however, the image’s post-processing on the central host is a limitation

to localization calculations [47], [48]. Despite the benefits, limited range commu-

nication with the primary host to receive localization estimates, expensive setup

charges, and difficulty scaling in large indoor spaces limit the usability of motion

capture technology in multiple UAV applications.
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2.2.5 Loco Positioning System

Another positioning technology employed on small-sized UAVs is the UWB-based

positioning system, which can provide decimeter accuracy when combined with an

IMU [19], [36]. Bitcraze’s LPS uses UWB radio signals to communicate between

miniature beacons or transmitters around the operating space area and receivers

attached to the UAVs [19]. The LPS can independently connect to multiple UAVs

in a given space, where each UAV has a UWB receiver on it. LPS technology

with this feature stands out as a promising positioning system for multiple UAV

operations.

UWB devices have a small, lightweight, low-power-consuming design that de-

pends on long-range radio communication and is suitable for indoor applications

[49]. The low-cost LPS is independent of the environment’s lighting [35]. LPS

technology has two sources of error: ranging and systematic errors. Placing UWB

transmitters or anchors around the operation space results in undesirable non-

line-of-sight signal reflections and attenuation, yielding systematic error [49], [50].

Motion capture technology has higher accuracy than UWB technology, but its ac-

quisition and scaling costs are fifteen times higher, limiting the usage of motion

capture technology in large indoor spaces [6], [51]. Indoor small-sized UAVs are

limited to lower velocities; hence, EKF can sufficiently reduce estimation covari-

ance and maintain decimeter-level accuracy indoors [19]. Cost-effectiveness and

ease of scalability are the main reasons for the recent surge in the usage of UWB.

The positioning system can communicate unidirectionally with the receivers in
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three modes: Two Way Ranging (TWR), TDoA2, and TDoA3. The TWR mode

calculates the UWB radio signal’s time of flight from transmitter to receiver and

then computes the distance between the two devices by multiplying the time by the

speed of light [52]. The two TDoA methods use the UWB radio signal’s time dif-

ference of arrival at two or more transmitting anchors to calculate the receiver’s lo-

cation. TDoA2 mode utilizes scheduled radio signal transmission, whereas TDoA3

has a randomized signal transmission [19]. Manipulating the arrival time can af-

fect the distance estimate, making the system vulnerable to cyber-attacks [53];

however, these security concerns are out of this project’s scope.

Researchers use a Cramer-Rao lower-bound analysis to identify flyable regions

surrounded by UWB transmitters for UAV localization which determines the con-

vex hull enclosed by the UWB transmitters as the flyable region with the highest

precision and bifurcation envelopes. The LPS is expected to perform with mini-

mal positioning uncertainty within the convex hull [54]. Researchers have derived

a six UWB transmitter configuration from the Cramer-Rao analysis, shown in Fig-

ure 2.2, that provides an ideal flying condition on the experimental testbed. This

project adopts the six transmitter design to investigate the navigation performance

in LPS-based operations.

A notable approach in Crazyflie research is to fuse sensory reading from LPS

and vision-based systems (e.g., visual odometry [55], optical flow-based system

[56]). This configuration of sensor fusion introduces a camera element on the UAV,

which acts as an extra payload. The drawbacks of this camera-based LPS configu-

ration outweigh its benefits, influencing indoor small-sized UAV researchers to de-
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Figure 2.2: UWB Anchor placement around a custom platform designed to keep
the LPS estimates stable throughout the UAV’s motion within the testbed [19].

velop new sensing and navigation solutions resilient to decimeter-level uncertainty

in state estimation. This project also develops a collision avoidance algorithm

for autonomous navigation that can handle localization uncertainty in cluttered

environments.

2.3 Collision Avoidance

Multiple indoor small-sized UAVs can boost productivity in warehouse surveillance

and monitor spaces hazardous to human beings. The entertainment industry, agri-

culture, and commercial surveillance have also seen increased interest in multiple

small-sized UAVs. These UAV applications necessitate the development of robust
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collision avoidance to provide safety. UAVs deployed in the current multiple agent

applications move along predefined paths. These UAVs are continuously monitored

by human operators using joysticks; however, controlling a group of UAVs simul-

taneously by identifying and assigning motion commands is difficult in real-time

[57].

UAV Navigation tasks encompass activities that include, (1) sensing the envi-

ronment, (2) mapping the environment, (3) localization in the environment, (4)

collision avoidance, and (5) actuator control. Achieving autonomy in navigation is

the ability to reach a goal location reliably with partial knowledge of the environ-

ment accumulated with uncertain sensor readings. Autonomy to navigate around

obstacles, including other moving UAVs, becomes an essential addition to the UAV

software architecture for success in diverse missions [58].

Prior studies have focused on a well-defined modularize software architecture

for navigation autonomy to localize each feature [59]–[62]. These software architec-

tures help integrate processes with varying real-time and non-real-time demands

and define the contribution of each control layer.

Without planning, the control effort will not guide the overall UAV behav-

ior to reach a distant goal location within a time frame [11]. Global navigation

algorithms work well on UAVs with complete information regarding their obsta-

cles throughout the motion; however, these navigation algorithms fail to work in

multiple UAV operations that require guaranteed collision avoidance. The need

for local navigation is highlighted when local environment information alone is

available through sensors in multiple UAV scenarios [58]. These local navigation
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algorithms feature iterative trajectory design over a short time horizon to react

quickly to local adversities [11].

Real-time navigation for multiple small-sized UAVs is limited by computation

power, and overall mission time and needs to operate in continuous space with

discrete control. Navigation laws are simplified by assumptions made on the UAV

motion model, obstacle boundary, uncertainty in state estimation, and actuation

[42]. Rather than redesigning an indoor space and making it structured and sim-

plistic for multiple UAV navigation, it is practical to devise a navigation stack

with collision avoidance capabilities that allow task accomplishment without con-

tinuous human intervention. This section aims to highlight challenges and possible

opportunities for improvement in the existing research on collision avoidance for

small-sized UAVs deployed in multiple agent applications indoors.

2.3.1 Bug Algorithms

Bug algorithms represent primitive, computationally efficient collision avoidance

algorithms that assume local knowledge of the environment, follow the walls of

sensed obstacles, and maintain a straight path to reach the goal location [11]. Early

collision avoidance for surveillance relied on these algorithms for robot safety and

navigation [63]–[65]. The maximum sensor ranges and the wall following behav-

ior (e.g., Turning right around an obstruction) dictate the performance of these

collision avoidance algorithms. UAVs following bug algorithms have advantages

over other algorithms because UAVs do not get stuck in local minima (e.g., UAVs
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following potential field collision avoidance) and have non-oscillating trajectories

towards the goal [66].

Traditional bug algorithms thrive in static worlds with one UAV moving in

the 2-dimensional environment ignoring the UAV’s propeller thrust-based control;

hence, direct implementation of bug algorithms 3-dimensional space in dynamic

multiple UAV applications is not reliable [67]. UAVs with traditional bug al-

gorithms can result in longer mission times when confronted with obstacles of

different shapes and sizes [68]. Researchers have also developed hybrid methods

integrating other advanced techniques with bug algorithms to optimize UAV col-

lision avoidance during 3-dimensional navigation [66], [68], [69]. These hybrid

algorithms heavily rely on visual and range sensors; hence, small-sized UAVs with

low computational capabilities for sensor processing cannot rely on these hybrid

bug algorithms.

2.3.2 Artificial Potential Field Algorithms

Artificial potential field methods represent another set of actively researched real-

time collision avoidance algorithms. These algorithms employ virtual potential

fields around obstacles to navigate the environment. This class of algorithms fun-

damentally designs an attractive virtual potential field around desired goal loca-

tions and a repulsive virtual potential field around obstacles when navigating [11].

The force obtained from the net potential field generates a control command to

move the UAV safely.
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Potential field methods were initially developed for robot manipulators for

collision-free trajectory design [70], [71] and were later extended to mobile robotics

domains [68], [72]–[75], including UAVs in static and dynamic environments [58],

[76], [77]. Despite their extensive use in robotics, potential fields have certain

limitations. The biggest drawback of this category of collision avoidance meth-

ods is that the generated trajectory has significant oscillations and a tendency

to get stuck in local minima [78], [79]. Researchers have explored modifying this

limitation by varying the geometric constraints in the potential field design; how-

ever, these methods still remain sensitive to increased clutter around the UAV and

sensitive towards disturbances in actuation and sensing [58], [77]. Other variants

reduce these methods’ shortcomings by improving upon repulsive potential field

design [73], [76], [80], [81] and the safety distance threshold [82]. Researchers still

assume UAVs’ perfect localization in their experiments which leads to less resilient

UAV collision avoidance with limited scalability.

2.3.3 Learning Based Algorithms

The lightweight and cost-effectiveness of small-sized UAVs have motivated re-

searchers to explore alternatives that are not downscaled versions of their larger

counterparts [41]. Prior studies have shown that obstacle avoidance on indoor

UAVs commonly relies on vision-based sensing integrated with artificial intelligence

to generate control commands [83]–[85]. The learning-based approaches benefit

from their decentralized design but suffer from the computational burden of using
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vision-based sensors [41], [86]. Additionally, retraining the onboard network to ac-

commodate the variations in the operational spaces also limits the learning-based

methods’ generalizability on UAVs [84], [87], [88]. Prior studies with learning-based

approaches are model-based implementations with single integrator dynamics, lim-

iting collision avoidance ability for congested airspaces for a large group of UAVs

[89]–[92]. Recent advances in the physics simulation engines for small-sized UAVs

have allowed researchers to explore learning-based methods for decentralized colli-

sion avoidance[93]; however, motion capture positioning technology for localization

with near accurate estimation still poses as a drawback.

2.3.4 Model Predictive Control

Researchers have also integrated Model Predictive Control (MPC) frameworks with

existing collision avoidance algorithms to aid safety for multiple UAV applications

[58]. Linear MPC algorithms are tightly coupled with the sensor measurements

and fail to show stability and robustness under positioning uncertainty [94], [95].

Researchers have also expanded the MPC model design to accommodate complex

UAV’s second-order dynamics to improve the collision-free trajectory design for

UAVs [27], [96]; however, additional constraints are to address deadlock conditions

that may arise in congested environments to ensure efficient navigation in multiple

UAV applications [97], [98].
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2.3.5 Velocity Obstacle-based Methods

Dynamic obstacles in an environment exhibit varying velocities over time, which

necessitates collision avoidance algorithms that can adapt to these velocity changes.

Velocity obstacle methods are a class of collision avoidance methods that assume

the velocity of each obstacle in the environment is always known during the trajec-

tory generation [99]–[103]. A range of velocities resulting in a collision is computed

to generate a desirable UAV collision-free waypoint. The preliminary velocity ob-

stacle method has been extended to omnidirectional UAVs for collision avoidance

but fails to scale in dense environments. This method cannot handle uncertainty

in obstacles’ trajectory within a desired computational time; hence, alternative ap-

proaches are proposed to extend this method in dense environments with multiple

UAVs [100]–[104]. Communication loss, excessive oscillations in the output trajec-

tory, uncertainty in positioning, and computational effort to detect the obstacles’

velocities are also common issues limiting the algorithm’s scalability.

Reciprocal velocity obstacles are an extended version of the velocity obsta-

cle methods that assume agents in the environment share an equal responsibility

during collision avoidance maneuvers [102]. This concept can promote smoother

trajectory design in congested environments, where each individual contributes

to collision-free motion and the overall distance between each UAV pair is rela-

tively shorter than the predecessor method. Extensive research has been focused

to devise an optimal reciprocal velocity method for UAVs in 3-dimensional space;

however, the positioning uncertainty in the trajectory computation is overlooked
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in its design. The resulting trajectory is also susceptible to oscillations [105], [106].

Previous research on small-sized UAVs utilizes simulation to demonstrate that

existing velocity obstacle methods generate large turning angles while avoiding

dynamic obstacles [107]. The flexible design of velocity obstacle approaches helps

enhance flight performance by constraining the UAV’s angular deviation [107]. Ad-

ditionally, collision-free trajectory design for a UAV to handle obstacle trajectory

uncertainty, as well as its positioning uncertainty, has necessitated the need for

improvements in the reciprocal velocity obstacle method [67].

The reciprocal velocity obstacle algorithm’s simplicity has also motivated the

researchers to extend it to a decentralized collision avoidance domain. This ex-

tension has been achieved by combining velocity obstacle methods with Buffered

Voronoi Cell (BVC), which provides deterministic collision avoidance guarantees

[108]. This velocity obstacle algorithm’s variant works in complex environments

with tens of agents and has a similar runtime performance as the optimal recip-

rocal velocity obstacle. This algorithm was tested only on experiments designed

for a two-dimensional plane and ignored the uncertainty in the state estimation.

This assumption of near-accurate state estimation limits the research’s extension

to real-world small-sized UAVs with uncertain positioning. Further modifications

are suggested in this project that utilizes a combination of BVC and reciprocal

velocity obstacle methods to test the algorithm’s scalability. The experiments em-

ulate uncertainty in positioning for each agent to better understand the capabilities

of small-sized UAVs in the real world.
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2.3.6 Voronoi-based Methods

BVC was initially proposed as a decentralized collision avoidance method on mul-

tiple UAVs by defining collision-free Voronoi cells around convex obstacles [45].

This Voronoi cell method modifies UAV’s global plan by allowing modifications

to the local path around known convex obstacles. The BVC method does not

require velocity information; hence, it is a superior choice for collision avoidance

over velocity obstacle methods [109]. The researchers have developed variants of

BVC that account for the sensor-induced uncertainties in positioning to compute

navigation commands for the UAVs in 3-dimensional space [45], [110], [111]. These

variants modify the buffer boundary around each UAV to improve collision avoid-

ance accuracy. Subsequently, an MPC is employed to generate control commands

that respect UAV omnidirectional and BVC constraints. The increase in the num-

ber of obstacles around a given UAV increases the number of BVC constraints used

to construct safe boundaries around the UAV. This growth in the number of con-

straints can impact the MPC controller’s runtime impacting the UAV’s response

time against collisions in a congested environment [112].

Flight stability can be ensured by simplifying the trajectory generation process

on the UAV and employing reactive collision avoidance methods to a simplified con-

troller (e.g., a decoupled attitude and position’s Proportional-Integral-Derivative

(PID) controller) for small-sized UAVs. This project relies on Crazyflie’s PID

controller and enhances its collision-free trajectory design by modifying the BVC

constraints developed in the prior research.
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2.4 Summary

UAVs are versatile, omnidirectional systems governed by second-order differential

dynamics. The UAV’s control is based on acceleration generated by its motor

thrust. UAVs have physical limitations on their acceleration and velocity, which

impose time constraints on reaching a particular orientation or position in a spec-

ified timeframe [11], [113]. These UAV motion constraints must be accounted for

via a local navigation method that generates collision-free paths.

Additionally, the collision avoidance algorithm for location navigation must

factor in the obstacles’ dynamic movements, while also accounting for the overall

uncertainty associated with the sensors. This project’s implemented technique is

motivated by an uncertainty-aware BVC [110] and a reciprocal velocity obstacle

[108] approach. This method accounts for the three constraints including, sensor

uncertainty, UAV’s second-ordered dynamics, and the obstacles motion in order to

improve the safety of multiple UAV applications employed in congested spaces.
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Chapter 3: Systems Design

This chapter delves into the implementation of the modified BVC approach for

small-sized UAVs (i.e., Crazyflie 2.X), specifically in congested indoor spaces that

incorporate the LPS. A brief presentation of the baseline BVC approach originally

developed for small groups of Crazyflie UAVs operating with a motion capture

positioning system is provided. The LPS induces substantial uncertainty in the

Crazyflies’ positioning and affects the accuracy of obstacle position detection. This

use of LPS with Crazyflies necessitates modifying the baseline to account for the

degraded positioning measurements. The baseline algorithm ensures Crazyflie’s

safety in sparse environments, but its scalability was not tested on Crazyflies;

hence, a combination of uncertainty-aware BVC with reciprocal velocity obstacle

is employed to account for the uncertainty in both the Crazyflie and its peers’ posi-

tion measurements. The trajectory design is enhanced for congested environments

where collision avoidance becomes a crucial autonomous capability for small-sized

UAVs.

The baseline BVC approach’s research was developed on the Crazyswarm plat-

form that does not account for the Crazyflies’ second-ordered dynamics. This

Crazyswarm platform bypasses the LPS, controller, and estimation submodules of

the Crazyflie and only integrates the planning modules in simulation; hence, this

project integrates the controller submodules developed by the gym-pybullet-drones
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simulator into the Crazyswarm platform. This integration of platforms enables a

comprehensive testing platform. The design decisions for Crazyflie’s localization,

controller, and motion model are also provided.

3.1 Buffered Voronoi Cell Approach

The baseline BVC approach is a deterministic collision avoidance algorithm with

low computational complexity. Crazyflies employing this algorithm autonomously

navigate by following waypoints directed toward their goals while adeptly avoid-

ing collisions with other Crazyflies and convex obstacles. This baseline approach

constrains the Crazyflies to move to a waypoint within their dynamically changing

Voronoi cells over time. This approach is superior to the potential field method

discussed in Chapter 2 because of its reduced sensitivity toward parameter tuning.

(a) Voronoi cell (b) Buffered Voronoi cell

Figure 3.1: The highlighted regions correspond to the (a) Voronoi cell and (b)
buffered Voronoi cell around the Crazyflie (blue) for trajectory generation to enable
safety against its peer obstacles (red).
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Voronoi cell boundaries are the planar tessellations around n point-sized objects

present in the space, subdividing the space into exactly n cells. Each Voronoi

cell encloses a region closest to its respective point-sized object. Crazyflies are

not point-sized objects; hence, it is necessary to consider their physical volume

while computing non-colliding Voronoi cells for trajectory design. Crazyflies are

assumed to be completely enclosed inside a sphere of radius rUAV in order to

simplify the cell boundary calculations. The BVC, unlike Voronoi cells, considers

the Crazyflie’s size to modify the simple Voronoi cells into a smaller buffered cell

proportional to their size. Figure 3.1 visually compares a simple Voronoi cell to

its buffered counterpart, illustrating the impact of considering the Crazyflie’s size

in the baseline BVC approach. The highlighted cell in Figure 3.1a represents a

simple Voronoi cell, while the shrunken green cell in Figure 3.1b is the buffered cell

generated by retracting the sum of the radii of both the Crazyflie and its associated

obstacle along each cell segment. This smaller green cell constrains the Crazyflie

to a region where no component of the Crazyflie can collide with its peer obstacles’

components.

Each Crazyflie is located at a position pi where i ∈ [1, n]. Crazyflies i and j are

in the collision-free configuration when ||pi − pj|| > 2rUAV where ||.|| is the Eu-

clidean distance between the position vectors pi and pj. The ith Crazyflie’s Voronoi

cell boundary segment νij with respect to its peer jth Crazyflie is represented by a

three-dimensional hyperplane:

νij =
{
aT
ijp − bij ≤ 0,∀j ̸= i

}
. (3.1)
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The hyperplane separating the ith and jth Crazyflies has aij ∈ R3 as its normal

vector, bij as its offset, where p is any position vector lying inside the Voronoi cell.

The baseline BVC’s boundary ν̄ij factoring in the ith and jth Crazyflies’ sizes is:

ν̄ij =
{
aT
ijp − bij + rUAV ||aij|| ≤ 0,∀j ̸= i

}
. (3.2)

3.1.1 Goal Directed Waypoint

Each Crazyflie in the system is assigned a specific task of reaching its goal location

gi from its current location pi. The Crazyflie’s flyable region is constrained to a

convex BVC enclosed within separating hyperplanes ν̄ij to ensure safe navigation.

An optimal waypoint pg∗,i within the BVC minimizing the angular deviation from

the goal gi is generated by solving the nonlinear objective function in Equation

3.3 satisfying the constraints presented in Equation 3.2.

pg∗,i = argmin
p∈ν̄i

arccos(
p(pi − gi)

||p||||pi − gi||
). (3.3)

3.1.2 Braking Awareness

Crazyflies are thrust-controlled small-sized UAVs with physical limitations on their

acceleration that impose time constraints on their ability to change position and

velocity. Equation 3.3 works under the assumption that the UAVs are velocity-

controlled with position constraints that are enough to keep the Crazyflie within

its BVC. This Equation 3.3 guides each Crazyflie toward their BVC boundary with
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a non-zero velocity at each time instant [45]. Physical limitations to accelerate,

denoted by accmax, within a given time frame are essential to keep the Crazyflies

safe. There arises a challenge to decelerate within a given time horizon to stop on

the boundary and avoid overshooting into its obstacle’s cell.

Braking awareness is instilled into the BVC boundary design to factor in the

physical limitations of the Crazyflie to avoid collisions. ith Crazyflie’s acceleration

buffer βacc,i is defined in Equation 3.4 representing this braking awareness that

heuristically decelerates the Crazyflie before the cell’s boundary is reached. aT
ij

is the transpose of the BVC’s hyperparameter aij corresponding to the ith and

the jth Crazyflies’ boundary segment’s normal vector. The cell’s size is modified

proportionally to the Crazyflie’s current velocity vi.

βacc,i =


||aT

ijvi||2

accmax
, ||aT

ijvi|| > 0

0, otherwise
(3.4)

3.1.3 Uncertainty Awareness

Uncertainty in positioning estimates also degrades Crazyflie’s ability to stay within

a well-defined boundary. Crazyflie’s planning and control subsystems rely on the

onboard EKF, which receives the state information from the sensors, LPS, and

IMU. These sensors induce substantial signal uncertainty into their output. The

EKF generates a weighted mean of the predicted state and the sensor outputs to

result in a noisy positioning estimate that converges to the ground truth over time.

This positioning estimate is represented as a Gaussian distribution with mean and
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standard deviation for each component of the 3-dimensional space.

The traditional BVC approach does not consider the positioning estimate’s

Gaussian nature; hence, an additional safety buffer βcovar,i is provided in Equation

3.5 to modify the BVC. This uncertainty-aware buffer utilizes the inverse of the

Gaussian error function erf(.) to modify the cell’s boundaries. Crazyflies incorpo-

rating this additional safety buffer into their BVC design are expected to maintain

a probability of collision below the threshold 1− δ, where δ is represented by the

probability that the Crazyflie is safe [45]. The cell’s size is modified proportionally

to the state covariance matrix σ.

βcovar,i =
√

2aT
ijσaijerf−1(2

√
1− δ − 1). (3.5)

3.1.3.1 Hyperplane Parameters

The ith Crazyflie’s position is denoted as pi, represented as a Gaussian G(p̂i, σi), i ∈

[1, n], where p̂i represents the mean position and σi represents the covariance

of the corresponding position. Apart from the uncertainty-aware safety buffer,

the hyperplane parameters representing the BVC boundaries must factor in the

Crazyflies’ uncertain positioning. These hyperplane parameters include the normal

vector aij, and the offset bij, which are estimated by minimizing the maximal
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probability of misclassification Pri(.) of the ith Crazyflie [45], presented as:

Pri(aT
ijp > bij) = Pri(

aT
ijp − aT

ijp̂i√
aT
ij

∑
i aij

>
bij − aT

ijp̂i√
aT
ij

∑
i aij

)

= 1− Φ(
bij − aT

ijp̂i√
aT
ij

∑
i aij

),

where Φ(.) is the cumulative distribution function implemented to find the BVC

boundaries’ hyperplane parameters and p is any position vector in the 3-dimensional

space. The maximal probability in Equation 3.6 for the ith and the jth Crazyflies

are later utilized to solve the min-max problem:

(aij, bij) = argmin
aij∈R3,bij∈R

(Pri, P rj). (3.6)

The resulting hyperplane boundaries’ parameters coincide with the parameters

in Equation 3.1 when the standard deviation σax of each position component along

each axis ax is identical. Incorporating this assumption results in aij =
2

σax
(p̂j−p̂i)

and bij =
1

σax
(p̂j−p̂i)

T (p̂j+p̂i), where σi = σj = σ2
axI and p̂i is the state estimate’s

mean of the ith Crazyflie and σi is the covariance matrix of the ith Crazyflie’s

EKF output. Furthermore
︷︸︸︷
ν
i

in Equation 3.7 represents the ith Crazyflie’s BVC

constraints that include both acceleration and uncertainty awareness safety buffers.

These constraints are used in Equation 3.3 to generate a position waypoint with a

probability of collision below 1− δ.
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︷︸︸︷
ν
i

=
{
aT
ijp − bij + rUAV ||aij|| − βcovar,i − βacc,i ≤ 0,∀j ̸= i

}
. (3.7)

3.2 Velocity Obstacle Approach

BVC’s guarantees of collision avoidance are limited to single-order systems; how-

ever, this method is still used to generate collision-free paths for second-ordered

UAVs. A limited collision-free guarantee can lead to unnecessary collisions around

other moving Crazyflies in congested scenarios. This necessitates the need for a

method that can design trajectories with improved guarantees of collision avoid-

ance. The velocity obstacle method determines the Crazyflie’s potential velocities

that may result in a collision within a given time horizon; hence, they are desir-

able to improve the system’s collision-free guarantees. Additionally, the recipro-

cal velocity obstacle method takes into account the relative velocity between the

Crazyflie and its obstacle enabling the generation of a smoother and safe trajectory

[114]. The design of reciprocal velocity shares the collision avoidance responsibility

between the Crazyflie and its peer obstacles to decrease the Crazyflie’s angular de-

viation. The Figure 3.2 depicts the red-colored reciprocal velocity obstacle cones

for each ith Crazyflie (blue) and its jth peer (red). These cones are not centered at

the obstacle’s current location because they are associated with the relative veloc-

ity space. The cone’s intersection with the triangular BVC, ABC, results in the

yellow space, where the ith Crazyflie can safely move without any collisions from

its jth peer.
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Figure 3.2: The superimposition of the reciprocal velocity obstacle and the tri-
angular BVC, ABC, results in a region for the ith Crazyflie to traverse without
collisions.

The reciprocal velocity cone constraints, denoted as RV Oij, define a set of

relative velocities between the Crazyflie i and its obstacles j ∈ [1, n] − i that can

result in a collision within a given horizon ∆. These constraints are computed as:

V Oij =
{
v∃∆ > 0 :: t(v − vj) ∈ D(pij, Rij)

}
RV Oij = {v| (2v − vi) ∈ V Oij} ,

(3.8)



36

where V Oij represents the baseline collision cone generated without considering the

relative velocities between the ith and jth Crazyflies. Equation 3.8 geometrically

modified V Oij resulting in RV Oij, where D(pij, Rij) =
{
q| ||q − pij|| ≤ Rij

}
rep-

resents a sphere of radius Rij, q represents any point inside this sphere D which

is centered at pij. The parameter pij denotes the relative position vector of the

ith and the jth Crazyflies and Rij denotes their combined radius. The reciprocal

velocity obstacle constraints in the velocity space are transformed into the posi-

tion space by time scaling Equation 3.8 using a time horizon ∆. The transformed

constraints are:

RV Oij,tf =
{
4r2 − ||2pi − (vi + vj)∆||2 ≤ 0

}
. (3.9)

Finally, the reciprocal velocity constraints RV Oij,tf in Equation 3.9 are superim-

posed on the BVC constraints in Equation 3.7 to generate an appropriate position

waypoint with higher guaranteed collision avoidance for Crazyflies with positioning

uncertainty in environments with moving obstacles.

3.3 Modified Collision Avoidance Approach

The baseline BVC algorithm is the Finding Closest Point algorithm introduced by

Zhou et al. [112]. This algorithm designs the cell boundaries defined in Equation

3.2 to provide a basic framework for multiple Crazyflie collision avoidance. The

algorithm takes the Crazyflie’s radius and their current locations as input. Each
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Crazyflie begins iterating over all of its peers that are acting as obstacles in order

to compute the Crazyflie’s cell boundaries. The cell boundaries are hyperplanes

whose parameters aij and bij that are computed analytically to generate a waypoint

pg∗,i. When the Finding Closest Point algorithm fails to generate a waypoint, the

Crazyflie hovers in a place to avoid potential collisions.

The modified collision avoidance approach presented in Algorithm 1 is devel-

oped by combining the BVC’s uncertainty and acceleration safety buffers with the

reciprocal velocity obstacle constraints. The variable FOVi represents the number

of obstacles present inside the ith Crazyflie’s range. The modified baseline BVC

algorithm is reflected in Lines 2-8 where the uncertainty-aware and acceleration

safety buffers are used to generate the hyperplane parameters aij and bij and the

reciprocal velocity constraints are transformed into the position coordinates. Fi-

nally, the nonlinear cost function is minimized by constraining the optimization

by the values generated in Line 8. Based on the minimization’s success, Crazyflie

either hovers or moves towards its goal along the line joining its current location

to the waypoint.
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Algorithm 1 Modified BVC with reciprocal velocity obstacle-based collision
avoidance algorithm.

INPUT: rUAV ,pi,vi i ∈ FOVi

OUTPUT: pwaypointpwaypoint

1: for j ∈ FOVi do ▷ Get hyperplane parameters.
2: aij =

2
σ
(p̂j − p̂i).

3: bij =
1
σ
(p̂j − p̂i)

T (p̂j + p̂i) + rUAV ||aij||. ▷ Get uncertainty awareness and
acceleration awareness parameters.

4: bij = bij + βacc,i + βcovar,i. ▷ Get buffered Voronoi boundary wrt jth

Crazyflie.
5: Calculate

︷︸︸︷
ν
ij

. ▷ Get time-scaled reciprocal velocity obstacle cones.

6: Calculate RV Oij,tf .
7: end for

▷ Calculate the inverse cosine cost function.
8: pg∗,i = argmin

p∋
︷︸︸︷
νi ,RV Oij,tf

arccos( p(pi−gi)
||p||||pi−gi||

).

9: if NLopt succeeds then
10: Move the Crazyflie towards the new waypoint pg∗,i.
11: else
12: Hover the Crazyflie at its location.
13: end if

3.3.1 Collision-free Guarantee

All Crazyflies in the system initialize in a collision-free state outside each other’s

reciprocal velocity obstacle cones. Each Crazyflie has the same onboard collision

avoidance algorithm employed on them to generate collision-free trajectories to-

ward their respective goal locations. A probabilistic collision-free condition under

these assumptions is referred to as a condition where the probability of the in-
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ter Crazyflie distance ||pij|| > 2rUAV is always less than the 1 − δ, where δ is a

parameter used to devise the uncertainty-aware buffer in Equation 3.5. Crazyflies

receive approximate state estimates from their sensors; hence, their safety can only

be specified in a probabilistic manner. The buffer βcovar,i factors in the state un-

certainty and allows the Crazyflies to achieve probabilistic collision-free conditions

under uncertainty. Additionally, the Crazyflie has time constraints to change its

velocity and position to a desired state; hence, the buffers βacc,i indirectly allow

the Crazyflies to safely reach its waypoint in a given time horizon. The acceler-

ation awareness buffer retracts the Voronoi cell size even more and heuristically

allows Crazyflies to attain the probabilistic collision-free condition. Voronoi cells’

convexity always restricts the Crazyflie’s path within the cell promoting safety.

The baseline BVC was originally designed to only provide passive safety among

single-ordered agents and was extended to UAVs with motion control based on

model predictive control [45]. The Crazyflies are small-sized UAVs with a simpler

controller design that prioritizes computational efficiency. The baseline BVC is

modified to seamlessly support Crazyflie’s controller design, to allow more flex-

ibility and computational room for future development on the system. Adding

reciprocal velocity obstacle constraints to the baseline BVC allows for improved

collision avoidance guarantee for Crazyflie-like systems that have a simpler on-

board controller. The reciprocal velocity obstacle constraints satisfy the collision-

free condition in deterministic settings without state uncertainty. A probabilistic

collision-free state is attained by introducing a longer time horizon ∆ greater than

the Crazyflie state machine update rate of 0.002 seconds. The longer time horizon
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indirectly compensates for the uncertainty in the Crazyflie states by increasing

the collision cone’s size. These reciprocal velocity obstacle constraints heuristi-

cally limit the Crazyflie’s speed by generating a waypoint closer to the Crazyflie’s

current location.

3.4 Simulation Environment

The simulation environment in Figure 3.3 for multiple Crazyflie navigation can

fly the Crazyflies in three different modes, (1) Takeoff, (2) Navigation, and (3)

Land. Each Crazyflie is assigned two positions, a start and a goal to demonstrate

the algorithm’s collision avoidance ability. Crazyflies must begin from the first

Takeoff mode and ascend to a certain altitude to reach their start locations. The

Crazyflies later switch to the Navigation mode to reach their assigned goal lo-

cations in tNavigationMode seconds while avoiding obstacles. This mode utilizes the

modified collision algorithm developed in Algorithm 1 with BVC and reciprocal ve-

locity obstacle constraints including the uncertainty-aware and acceleration safety

buffers. Once the Crazyflies reach their goal locations, they switch to the final

Land mode. Once all the Crazyflies land, the simulation is terminated.

3.4.1 Crazyswarm Simulator

Simulations are performed using the Crazyswarm platform that allows multiple

Crazyflie 2.X flight visualization. The platform supports integration with the LPS
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Figure 3.3: The integrated physics simulation environment incorporating the
Crazyswarm API with the gym_pybullet_drones package.

localization hardware and provides Python wrappers to integrate the Crazyflie

firmware modules. The platform also supports fewer radios per Crazyflies by de-

sign, unlike the official Bitcraze’s unicast communication. This project’s collision

avoidance method is introduced as an app layer on the Crazyflie firmware stack.

Corresponding Python wrappers to translate the collision avoidance method to

the simulator are generated using the Simplified Wrapper and Interface Generator

(SWIG) Python wrapper library. A firmware binding in Python is generated for

certain Crazyflie submodules to aid in debugging and visualization of mathemati-

cally complex onboard algorithms.
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The onboard collision avoidance design minimizes the communication band-

width between the base station and the Crazyflies. A single packet containing the

state position, goal position, and the maximum time frame to reach the goal is

provided to the Crazyflie at startup without changing the Crazyswarm simulator’s

software architecture.

Figure 3.4: Crazyswarm API integrated with the physics simulator operates at
500 hertz. This integration incorporates the collision avoidance (green) containing
the modified Buffered Voronoi Cell (BVC) algorithm, with the controller, and
Estimated Kalman Filter (EKF) (yellow) submodules.

The Crazyswarm simulation system diagram is provided in Figure 3.4. The

Crazyflie objects are initialized and launched in the base station using Crazyswarm

API. The base station sends Takeoff, Navigation, and Land commands to all

the Crazyflies in the simulation in a parallel manner. These Crazyflie objects
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move across the simulated testbed throughout the simulation trial [115]. The

Crazyswarm API interacts with the collision avoidance submodule with the modi-

fied BVC algorithm along with the controller, and EKF submodules in Figure 3.4,

which is provided by the gym-pybullet-drones library. The collision avoidance sub-

module developed for this project generates a high-level trajectory waypoint for the

controller and the estimated Kalman filter submodule generates noise positioning

data in the simulation. The simulated Peer-to-Peer communication system tracks

each flying Crazyflie in the simulation and sends their pose information to the col-

lision avoidance submodules of all other Crazyflies. Messages from each Crazyflie’s

individual submodules arrive asynchronously. The base station also logs the active

Crazyflies’ pose information. The Crazyswarm API runs the Crazyflie instances

at 500 hertz, a frequency similar to Crazyflie’s onboard state machine.

3.4.2 Motion Model

The Crazyswarm simulator does not consider physics-based simulations that in-

clude its second-order dynamics controlled by the motor rotation speeds. The

simulator also ignores aerodynamic forces. This project’s algorithm developed is

tested in simulation; hence, to improve the algorithm’s reliability on the real hard-

ware, a high-fidelity simulation package, gym-pybullet-drones library is integrated

with the Crazyswarm platform [116]. The gym-pybullet-drones library provides a

Crazyflie dynamics model that simulates its PID controller in Python [93]. This

package leverages the system identification data generated by Bitcraze to create
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Crazyflie’s motion model in the simulation that is tested against the Crazyswarm

commands and the collision avoidance waypoint generator.

Figure 3.5: The free body diagram representing the forces and torques experienced
by the Crazyflie along the body-fixed frame.

Crazyflie’s free body diagram is depicted in Figure 3.5 along with the corre-

sponding reference frames. The Crazyflie’s weight acts along the inertial Z axis

that is counteracted by its motor thrust and torques. The body-fixed frame is

centered at the Crazyflie’s center of mass. The motor forces and torques on the

Crazyflie are controlled instantaneously by the motor rotational speeds in the sim-

ulator, as provided in Equations 3.10, where kf and kt are predefined constants

and the Crazyflie’s motor rotational speeds are represented as ωi, i ∈ [1, 4]. The

motor rotational speeds are provided by the controllers to move the Crazyflies to
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appropriate reference locations.

Fi = kf ∗ ω2
i

Ti = kf ∗ ω2
i .

The net body forces and torques on the Crazyflie are represented as:

Fnet =


0

0

F1 + F2 + F3 + F4 − grav



Tnet =


F1+F2−F3−F4

L√
2

−F1+F2+F3−F4
L√
2

−T1 + T2 − T3 + T4

 ,

(3.10)

where grav represents the Crazyflie’s weight and L represents the distance

between the center of mass and one of the Crazyflie’s motors. The gym-pybullet-

drones library further provides the drag, ground effect, and downwash in the motion

model independently. These effects are also included in the present design provided

by the gym-pybullet-drones package. The net dynamic quantities are obtained by

summing the forces and torques listed in Equation 3.10 and are implemented in

the simulator to update the Crazyflie position and velocities at each time step t.

The velocity V el, position pos, angular rates RPY rate, and angles RPY in the
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body-fixed frame are updated as:

V elt+dt = V elt +
Fnet

M
dt

RPY ratet+dt = RPY ratet + TnetJ
−1dt

RPYt+dt = RPYt +RPY ratetdt

post+dt = post + V eltdt,

(3.11)

where M represents the Crazyflie’s mass and J represents the Crazyflie’s mo-

ment of inertia. The Euler 3 − 1 − 2 rotation scheme is leveraged to generate

transformations from the body-fixed to the inertial frame of references and update

the Crazyflie’s position instances in the simulator [93].

3.4.3 Controller

The onboard controller receives current state estimates from the localization mod-

ule with EKF and minimizes the error between its current and reference states.

The Crazyflie 2.X controller in the gym-pybullet-drones library has a PID design

that relies on the position error, its derivative, and its integral to generate de-

sired control inputs and keep the Crazyflie stable [116]. This Crazyflie’s cascaded

decoupled PID controller is shown in Figure 3.6 where position and attitude are

controlled separately. The attitude control block generates control inputs as the

motor rotation speed for each Crazyflie’s motor. These control inputs are sent into

motor dynamics blocks that generate a target thrust implemented to move the
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Crazyflie in the simulator.

Figure 3.6: The Crazyflie’s cascaded decoupled control loop implemented in the
gym-pybullet-drones’ controller submodule [116].

3.4.4 Nonlinear Optimization Setup

The open-source Non-Linear optimization (NLopt) library supports the optimiza-

tion presented in Equation 3.12, where f(k) is the cost function of the state vari-

ables represented by k ∈ Rn, where n is the space dimensionality [117]. This cost

function is subjected to both linear constraints represented by g(k) = 0, and non-

linear constraints represented by h(k) = 0. The collision avoidance algorithm uses

Equation 3.12 as a baseline.

min
{k | h(k)≤0| g(k)=0}

f(k) (3.12)

The NLopt library that solves this project’s cost function is provided in Equa-

tion 3.3 and is constrained by inequalities in Equations 3.7 and 3.8. The cost
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function in Equation 3.3 is a strictly increasing inverse cosine function that results

in the global minimum solution. The library supports four algorithms for this cost

function, among which the Constrained Optimization BY Linear Approximations

is implemented in this project [118]. The library has a well-defined API to rep-

resent a list of constraints and their corresponding derivatives in the form of a

single matrix c : Rn → Rm, where m represents the constraint’s dimensionality, to

improve the solver’s space complexity. The optimization results in a waypoint for

the Crazyflie in the three-dimensional space. The output vector ksol is a point in

the space represented by R3 that satisfies all its constraints over the entire feasible

region. The state’s dimensionality is limited to three, making the local optimiza-

tion search work within a reasonable computational time. The solver generates

an error code when the output state does not abide by the set constraints. The

Crazyflie with this solver error is commanded to hover at its previous location

instead of moving to the erroneous waypoint generates as an approximate solution

along with the error code, to maintain a collision-free guarantee. All the Crazyflies

in the air have an onboard collision avoidance system; hence, other Crazyflies with

optimization success avoid the hovering Crazyflies and prevent collisions.

The library has C language support; hence, the algorithm is written as an

app layer running in parallel with other subsystems on the Crazyflie firmware.

The SWIG package is implemented to generate Python firmware bindings that

allow firmware-in-the-loop testing with the Crazyswarm simulator [115]. The au-

tomatic differentiation method was implemented in MATLAB to generate the

derivatives of each constraint. The derivatives are presented in Equation 3.13,
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where hgrad(BV C, ax) denotes the BVC constraints’ gradients, hgrad(RV O, ax)

denotes the gradient of the reciprocal velocity constraints, aij,ax is the component

of the hyperplane parameter aij, pax,i is the current Crazyflie’s position vector,

vax,i its corresponding velocity component, vax,j corresponds to the jth obstacle

Crazyflie’s velocity along the ax axis for ax ∈ (x, y, z) and ∆ depicts the time

horizon considered to generate reciprocal velocity obstacle cones.

hgrad(BV C, ax) = aij,ax

hgrad(RV O, ax) = − 2pax,i − (vax,i + vax,j) ∗∆√∑
ax∈(x,y,z) 2pax,i − 2∆(vax,i + vax,j)pax,i − (vax,i + vax,j)∆

(3.13)

3.4.5 Estimator

The LPS system in theory has a standard deviation of 10 centimeters, but the

performance of this system relies heavily on the environment space [19]. Bitcraze

has further proposed that the onboard estimated Kalman filter has a standard

deviation of 15 centimeters along each of the position vector’s components when

there are no interfering WiFi signals around the LPS setup [6]. The preliminary

experiments were performed with the hardware placed individually across various

locations on the HMTLab’s Swarm testbed to estimate the LPS signals’ standard

deviation. The Crazyflies in empty spaces, away from static obstructions (e.g.,

wooden hub, metallic testbed frame) have a positioning uncertainty within the
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standard specification. A standard deviation of 20 centimeters along the body-

fixed X and Y axes and up to 30 centimeters of standard deviation along the Z

axis for the estimated Kalman filter outputs was measured in the locations near

static obstructions [119]. The Crazyflies are controlled using acceleration generated

by their motors along the body-fixed Z axis; hence, the estimated Kalman filter

design impacts the Z component’s accuracy more than the other two.

Static obstructions (e.g., metallic testbed frame, wooden hub) result in non-

line-of-sight reflections degrading the positioning accuracy. Multiple Crazyflies

flying in a densely populated environment will also increase the non-line-of-sight

reflections, degrading the positioning accuracy; hence, the standard deviation from

the preliminary experiments is incorporated to simulate the estimated Kalman

filter design in Crazyswarm simulations as:

posinax,new = posoutax,old + V elinax,newdt+ random(sdax),

where the random(sdax) with ax ∈ (x, y, z), represents the Gaussian noise with

a standard deviation of sdax centimeters added to the Crazyflie position vector

posinax,old in the simulator, resulting in the simulated Kalman filter position output

posinax,old along the axis ax.
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3.4.6 Obstacle Detection

The BVC on Crazyflies was first implemented for localization with a motion cap-

ture system [45], [112], [114]. Each Crazyflie with this localization receives a radio

packet containing the state information of all other Crazyflies on a common radio

channel. The information in these packets is used to locate and avoid other fly-

ing Crazyflies in the environment. Extending the system to Crazyflies with LPS

does not support state information sharing among the Crazyflies; hence, Bitcraze

has developed a Peer-to-Peer communication system to share Crazyflie locations

among their peers for collision avoidance. Peer-to-Peer radio packets of size up to

60 bytes can be implemented to encode information while maintaining communica-

tion compatibility with the base station radio [120]. These packets are transmitted

and received by the 2.4 giga hertz onboard Crazyflie radio. This communication

link is independent of the link between the base station radio dongle and the

Crazyflie.

The data received by Crazyflie’s Peer-to-Peer module is filtered with respect to

its range, the region highlighted in blue in Figure 3.7. Only the obstacles present in

the blue segment are considered an active threat. This segment lies within a sphere

of the radius of rlookup centered at the body fixed Crazyflie’s X-axis and has an arc

of 200°. Limiting the Crazyflie’s range will result in fewer constraints associated

with the BVC generation; hence, this change in obstacle determination improves

the algorithm’s space and time complexity, which increases with an increasing

number of obstacles. This algorithmic design to determine in-range obstacles also
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Figure 3.7: The Crazyflie’s range (blue), which limits the increase in computational
complexity as the number of obstacles increases.

supports collision-free guarantees satisfied by the uncertainty-aware BVC and the

probabilistic reciprocal velocity obstacle approach.

Inter Crazyflie encounters can be classified into three types, (1) In-range, where

both Crazyflies are in each other’s range, (2) Out-range, where both Crazyflies

outside their range, and (3) Leader-follower, where one Crazyflie follows the other

such that it sees the other Crazyflie, but not vice versa. Crazyflies in the In-range

encounter use the algorithm to modify their Voronoi cell’s volumes to maintain

safety. The Voronoi cells of Crazyflies in the Out-range encounter are not directly

impacted by each other; hence, the cells’ volumes are not modified with respect

to each other, and the Crazyflies remain collision-free with each other. Finally, in
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the Leader-follower encounter the Voronoi cell is unequally influenced by the two

Crazyflies, where only the follower Crazyflie takes the responsibility of avoiding

collisions with the leader. The leader Crazyflie does not directly contribute to

the collision-free guarantee. Based on each pair’s encounter type, collision avoid-

ance constraints are activated to enable the collision-free guarantee presented in

Chapters 3.1.3 and 3.3.
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Chapter 4: Experimental Analysis

The Chapter presents the experimental protocols and related analysis of the results

via trials performed in the integrated physics simulator. This integrated simulator

utilizes the Crazyswarm API, allowing multiple Crazyflie instances to traverse the

shared space concurrently. The algorithm’s analysis is performed by computing

novel metrics based on the simulation logs. The experiments performed on the

multiple Crazyflie system aim to answer the Research Questions R1 by utilizing

the Hypotheses H1, H2, and H3 as:

R1 Can small-sized UAVs with LPS-induced-positioning noise generate naviga-

tion commands within the system’s update rate while avoiding dynamic ob-

stacle peers?

H1. The optimization-based modified BVC algorithms will generate paths so that

each Crazyflie reaches its goal within a desired navigation time.

H2. The Crazyflies when using the modified BVC algorithms will have a mean

percentage of Safe or Partial overlap count for more than 80% of each trial.

H3. The optimization solver incorporated into the Modified BVC algorithms al-

ways generates a waypoint within the system’s update rate (0.002 seconds).

The baseline algorithm developed for the Crazyflies utilizes an optical motion cap-

ture positioning system that can report the peer obstacle positions with precision.
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LPS induces substantial noise in the Crazyflie’s state estimates. Both the modified

BVC algorithm enables navigation command generation from this noisy positioning

data. Additionally, the modified BVC algorithm with reciprocal velocity obstacle

constraints predicts collision with its peers by utilizing their noisy state estimation

data obtained from Peer to Peer communication. Answering the Research Ques-

tion R1 will provide insights into the collision avoidance ability of the algorithms

under positioning uncertainty that are discussed in Chapter 3.

The experiment’s independent and dependent variables, the metric design for

the analysis of the collision avoidance algorithms’ ability for multiple UAV scenar-

ios, the system’s constants, and the experiment’s methodology employed for the

system’s analysis are described in this Chapter.

4.1 Independent Variables

Varying the algorithm type and the number of Crazyflies can help compare their

collision avoidance capability and scalabilty in the presence of dynamically mov-

ing obstacles. This comparative analysis also provides insights into the system’s

performance against LPS-induced positioning uncertainty; hence, the core exper-

imental independent variables include the type of collision avoidance algorithm

employed by the Crazyflies and the number of Crazyflies simultaneously flying in

a trial.

Crazyflies act as dynamic obstacles to each other. The independent vari-

ables are summarised in Table 4.1. The algorithm type includes (1) the baseline
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Table 4.1: Core experimental independent variables utilized for the system’s anal-
ysis.

Independent Variables Values

Algorithm Type Baseline, MBVC, MBVC_Vel
Number of UAVs 4, 9, 15, 25

BVC algorithm (Baseline), (2) the modified BVC algorithm with only accelera-

tion and uncertainty-aware buffers (MBVC), and (3) the modified BVC algorithm

(MBVC_Vel). Only the MBVC_Vel considers the obstacles within a specific range

as presented in Figure 3.7. The experiments involve from 4 to 25 agents distributed

across a cuboid testbed with a square base of 5 meters on each side and a height

of 5 meters.

4.2 Dependent Variables

The dependent variables presented in the Chapter were utilized in the analysis to

verify the project’s hypotheses. These variables include the number of collisions,

the completion rate, the overlap category count, the navigation time category, the

optimal direct path, the actual path, the net distance deviation, the number of actual

path intersections, the number of collision avoidance procedures, and the waypoint

computation time.

A collision occurs when the distance between any two Crazyflies is less than 2∗

rUAV . After a collision, the Crazyflies lose their stability and fall on the simulation’s

ground at an altitude of 0 meters. The connection between the Crazyflie and the
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base station is still maintained after the fall and it remains on the ground until

the trial ceases. This information is utilized to compute the number of collisions.

The experimental constant tNavigationMode in Table 4.2 specifies a deadline for

the Crazyflies in their Navigation mode to reach their goal. Once the deadline

is reached, the Crazyswarm API disables the Navigation mode and the Crazyflies

hover in the air. The completion rate for a trial is defined as the percentage of

Crazyflies that are within 0.75 meters distance from their goal for more than 95% of

the last 0.25 seconds before the deadline expired. The Crazyflies have a maximum

allowable speed of 2 meters per second and they can travel up to 0.5 meters within

a duration of 0.25 seconds. This information is used as a reference to define and

generate the completion rate of each trial. The Crazyflie can approach its goal

and oscillate around it until the end of the Navigation Mode; hence, a tolerance

distance of 0.3 meters from its goal is chosen as the second reference to detect

whether the Crazyflies have oscillatory trajectories, where they remain within 0.75

meters but fail to reach within 0.3 meters from their goal. The percentage of time

the Crazyflie remains inside this distance tolerance is also decreased from 95% to

75% to improve the analysis.

The inter Crazyflie distances for all possible Crazyflie-Crazyflie combinations

at a simulation time step are used to generate the overlap count. These distances

are classified into four categories including, (1) Safe when the distance is > 0.75

meters, (2) Partial when the distance is within 0.75 and 0.5 meters, (3) Unsafe

when the distance is between 0.5 and 0.25 meters, and (4) Collision when the

distance is < 0.25 meters.
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The specified distance ranges used in the classification are inspired by the

preliminary results collected on the HMTLab Swarm Testbed [119]. The estimates’

standard deviation is increased to 0.3 meters due to non-of-line-sight reflections

from obstacles; hence, an assumption is made that each Crazyflie within 0.5 meters

can possibly collide. The upper bound of the Partial category is derived from the

fact that if both UAVs are at a distance 0f 0.75 meters from each other and the

positioning noise has a standard deviation of up to 0.2 meters along each axis,

then there is less than 2% chance that the Crazyflies will be classified as colliding.

Further, UAVs have a physical volume of radius 0.125 meters. Assuming one of

the UAV’s location perfectly coincides with its predicted state, and the other is

0.2 ∗ 3 meters away from its estimated pose, there is a slight possibility that the

UAVs within 0.6 + 0.125 meters are in collision; hence, 0.75 meters was chosen to

allow a larger reference defining Safe category.

After classifying the distances, a count for each Crazyflie was computed by

summing up the number of times a Crazyflie was in a category across each time

step of the trial. Later, overlap category count is computed by summing together

all the Crazyflies’ counts within a trial for each category separately.

The Navigation mode in each trial lasts for tNavigationMode = 20 seconds. Nav-

igation mode for each Crazyflie can be classified into (1) Navigation Time when

the Crazyflie has no peers in its range, and (2) Avoidance Time when the Crazyflie

has at least one peer obstacle in its range. The navigation time category utilizes

the rlookup range for obstacle filtering to calculate the total time each Crazyflie

spent in each of the navigation time categories. The Avoidance time can be fur-
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ther classified into (1) Collision Time when the Crazyflie is in Collision, (2) Hover

Time when the Crazyflie is avoiding obstacles by hovering in the space, and (3)

Non-Collision Time when the Crazyflie is not in the first two Avoidance Time’s

categories. The simulation logs contain the Crazyflies’ positions and timestamps

across each trial. Currently, this data set does not include whether the Crazyflies

defaulted to hovering due to a lack of waypoint generation within an update cycle;

hence, the Avoidance Time’s subcategories were not included in the analysis. Ad-

ditionally, the number of avoidance procedures is defined as the number of times

the Crazyflie is in the Avoidance Time category while avoiding at least one of its

peers present within a range of rlookup.

Further, the optimal direct path of a Crazyflie is the Euclidean distance between

its start and goal locations. This path is a straight line path traveled by the

Crazyflie in the absence of its peers. The actual path is the total distance traveled

by the Crazyflie. This path is calculated by summing the Euclidean distances

between each consecutive Crazyflie’s positions sampled across each trial. The

area of the polygon formed consecutive actual path points and their projection

on the optimal direct path generates the net deviation between each consecutive

projection, the area between actual path and the optimal direct path. The area of

the polygon is calculated using the Shapely library and the sum of all the resulting

polygonal areas results in the net deviation.

The number of potential path intersections represents the sum of all the optimal

direct paths intersections generated for all possible Crazyflie-Crazyflie combinations

in a trial. The distance between optimal direct paths also provides information
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Figure 4.1: 2-dimensional view of the area between curves, the optimal direct path
(Cyan) and the actual path (Purple) followed by the Crazyflie. This area is the
net deviation variable.

on the experimental setup design. This distance variable provides information

regarding the potential collisions that influence the Crazyflie’s deviation from its

optimal direct path. This variable is the final distance-based measure used in the

system’s analysis.

The number of peer obstacles in the Crazyflie’s range utilized to generate the

buffered Voronoi cell boundaries to generate a waypoint is referred to as collision

avoidance procedures. Increasing the number of Crazyflies is expected to increase
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the collision avoidance procedures for each algorithm utilized in the analysis. The

waypoint computation time variable is the time required by the algorithm to com-

pute a waypoint at each simulation time step for each Crazyflie. Each Crazyflie

in a trial has approximately 10, 000 samples of this variable that are aggregated

for an independent variable combination for comparative analysis. The system’s

update occurs at every 0.002 second and the waypoint computation time samples

below this value denote the algorithm’s computational efficiency.

4.3 Experimental Methodology

This chapter provides the experimental findings, which aim to showcase the per-

formance of the collision avoidance algorithms for multiple Crazyflie scenarios by

computing the statistical measures corresponding to the Variables in Chapter 4.2

Each trial begins with the Crazyflies taking off (Takeoff mode). After reaching

a certain altitude, each Crazyflie switches into the Navigation mode. All Crazyflies

in this mode traverse along their paths to their respective goal locations within

a predefined duration of time tNavigationMode. This time parameter is an essential

input to the Crazyswarm API developed by Bitcraze to support Crazyflie’s low-

level processes onboard. Upon receiving the goal location, the collision avoidance

submodule generates a waypoint, which is sent to the physics simulator containing

Crazyflie’s controller and the dynamic model. The feedback from the dynamic

model is used to simulate EKF data for the collision avoidance module in order

to generate the waypoint for the next simulation timestamp. After tNavigationMode
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seconds have elapsed, all the Crazyflies disable their Navigation modes and switch

to Land mode. The simulation halts once all the Crazyflies have landed.

Preliminary testing indicated that the minimum spacing between Crazyflies’

start and goal locations in the Navigation mode is sufficient to avoid collisions

during the Takeoff and Land modes; hence, the simulation data from the Takeoff

and Land modes are filtered out to solely focus on the Navigation mode’s perfor-

mance that lasts for tcollisionAvoid resulting in 10, 000 samples per Crazyflie in each

trial. The sample logs contain the simulation’s timestamp, waypoint computation

time, and the Crazyflie’s current, and goal locations.

The experimental setup relies on the constant parameters listed in Table 4.2.

The Crazyflies’ initial location at the start of the Simulation is distributed across

the vertices of a grid with a minimum spacing startspacing. During takeoff, each

Crazyflie attains an altitude hstart. The goal locations (x, y) are generated using

a Poisson disc sampler, which generates coordinate pairs with a minimum spacing

goalspacing [121]. The goal location’s z coordinate is set to an altitude hgoal random-

ized by adding a Gaussian noise of standard deviation goalσ. Minimum spacing

between the start and goal location ensures that any two Crazyflies’ start or goal

locations do not lead to a collision. The locations are chosen within a sphere of a

5 meters radius.

A Crazyflie’s bounding sphere’s radius rUAV enclosing it completely is provided

by the Crazyswarm platform [115]. Crazyflies have a stable operational range of

acceleration accmax and velocity velocitymax that determines the stability of the

onboard controller. Additionally, necessary algorithmic parameters described in
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Table 4.2: System parameters’ values utilized to set up the simulation environment
and implement the collision avoidance algorithms.

System Pa-
rameter

Value Description

accmax 0.5 meters
seconds2

Crazyflie’s maximum acceleration.
velocitymax 2 meters

seconds
Crazyflie’s maximum velocity.

δ 0.01 Crazyflie’s probability of collision.
σax 0.20 meters Covariance matrix’s variance component

corresponding to the axis ax.
rUAV 0.125 meters Crazyflie’s bounding sphere’s radius.
∆ 0.05 seconds Reciprocal velocity obstacle’ planning

horizon larger than the simulation time
step.

tNavigationMode 20 seconds Navigation mode’s time duration required
to integrate Crazyswarm API.

startspacing 4 ∗ rUAV Initial location’s minimum spacing.
goalspacing 4 ∗ rUAV Goal location’s minimum spacing.
hstart 1 meters Start location’s z coordinate.
hgoal 3 meters Goal location’s z coordinate.
goalσ 0.5 meters Standard deviation of the noise intro-

duced in hgoal for altitude randomization.
dt 0.002 seconds Simulation time step.
rlookup 1 meters Crazyflie’s range for obstacle detection.

Chapters 3.1, 3.2, and 3.3, which are employed in the experiments are also listed

in Table 4.2.

4.4 Experimental Results

The three algorithms, MBVC, MBVC_Vel, and Baseline’s collision avoidance abil-

ity were compared using the dependent variables presented in Chapter 4.2. These
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variables are computed using the Crazyflie’s locations, the inter-Crazyflie distances,

and the computation time across each trial. This analysis enables the comparison

of these algorithms across the number of UAVs in an integrated physics simulator

with LPS.

4.4.1 Mission Success-based Results

The completion rate represents the percentage of the Crazyflies reaching within

0.30 and 0.75 meters from their goal during the last 0.25 seconds for more than

95% or 75% of the duration. The modified BVC algorithms perform close to a

100% completion rate and outperform the Baseline as shown in Figure 4.2a, 4.2b

and 4.2c. The Baseline’s performance is relatively better for a relaxed distance

tolerance of 0.75 meters and 75% of the duration as shown in Figure 4.2a and

4.2c respectively. Generally, as the number of UAVs increased the completion rate

increased. The opposite trend of completion rate was expected, where a smaller

number of UAVs resulted in larger completion rate values.

The MBVC algorithm for 25 agents has an approximate completion rate of

95% which suggests that 2 out of 25 agents fail to reach their goal. Similarly

for all independent variable combinations up to 4 agents fail to reach their goals

while maintaining the completion rate rule. This depicts that the performance of

the algorithms is pretty consistent with an increasing number of agents and the

MBVC_Vel performs better than the Baseline as seen in Figure 4.4.
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(a) Tolerance: <0.75 meters, 95%

(b) Tolerance: <0.3 meters, 95%

(c) Tolerance: <0.3 meters, 75%

Figure 4.2: The completion rate for each algorithm and a number of Crazyflies
combination, where (a) <0.75 meters, (b) <0.3 meters for more than 95% and (c)
<0.3 meters for more than 75% of the last 0.25 seconds of the Navigation mode.
Pink markers outside the range represent the outliers.
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The design of the reciprocal velocity obstacle aims to share the collision avoid-

ance ability among agents. This assumption was tested by measuring all possible

inter-Crazyflie distances during each trial. An increasing number of Crazyflies

result in increasing Crazyflie-Crazyflie combinations in Table 4.3; hence, the over-

lap count percentages corresponding to the overlap count in Table 4.4 are used

in the analysis. A larger Partial overlap count percentage was expected for the

MBVC_Vel algorithm corresponding to a near 100% completion rate; however,

it was not observed. Conversely, the inter-Crazyflie distances remain in the Safe

category for the majority of cases. Additionally, The increase in the number of

Crazyflies increases the mean percentage of the Safe overlap count. The percent-

age values in other categories decrease with an increasing number of UAVs. The

results also indicate that the Baseline algorithm maintains a comparable perfor-

mance as the MBVC algorithms. Additional data were collected to understand the

improving Safe% with an increasing number of agents.
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Increasing the number of UAVs in the space results in a congested environment

with less volume per Crazyflie to navigate freely without a collision. An increase in

number of collisions is seen in Table 4.5 with an increasing number of agents. The

MBVC algorithm performs worse than the other two algorithms with a maximum of

7 number of collisions, followed by the Baseline and MBVC_Vel for 25 Crazyflies.

Even though number of collisions increase with an increasing number of Crazyflies,

a corresponding increase in Safe overlap count percentages as shown in Table 4.4

suggests that the Crazyflies have enough volume around them to navigate freely

improving their completion rate; however, this improvement was not seen.

Algorithm Number of
UAVs

Median Max

Baseline

4 0 2
9 0 1
15 1 3
25 1 5

MBVC

4 0 0
9 0 2
15 0 2
25 1 7

MBVC_Vel

4 0 1
9 0 0
15 0 4
25 1 4

Table 4.5: The number of collisions per trial for each algorithm by the number
of Crazyflies. The Min value was ignored in the table because it is 0 for all the
independent variables. The values in bold represent the maximum number of
collisions.

The distance between optimal direct paths was measured to understand the

experimental design and understand the increasing overlap count ’s Safe% with an
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increasing number of agents. This distance variable in Table 4.6 shows that the

random generator assigned the goals such that the distance between the optimal

direct paths increased with an increasing number of agents. This increase in the

distance resulted in a larger free space around the UAV’s optimal direct paths which

resulted in a lower distance deviation to avoid collisions and indirectly increased

the Safe%. The decrease in the lower distance deviation can be seen in Table 4.7,

where the net deviation decreases with the increasing agents in the space.

Algorithm Number of
UAVs

Distance

Median Min Max

Baseline

4 0.42 0.00 3.39
9 0.60 0.00 3.71
15 0.74 0.00 4.29
25 0.88 0.00 4.65

MBVC

4 0.49 0.01 3.70
9 0.65 0.00 3.71
15 0.71 0.00 4.12
25 0.92 0.00 4.71

MBVC_Vel

4 0.56 0.00 3.17
9 0.55 0.00 3.53
15 0.72 0.00 4.11
25 0.86 0.00 4.71

Table 4.6: The distance between the optimal direct paths per trial for each algo-
rithm by the number of Crazyflies. The Min value corresponds to the potential
collisions between the paths. The values in bold represent the maximum distance
between optimal direct paths.
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Collision avoidance between the Crazyflies is expected to increase the actual

path in comparison to the optimal direct path. While this trend shows the actual

path is longer in Table 4.7, there is no observable difference across the independent

variable combinations. The Poisson disc sampling used to generate goal locations

generates values such that the optimal path is independent of the number of UAVs.

The net deviation, the area between the two paths decreased with increasing num-

ber of UAVs. This smaller area between the curves can indicate that the Crazyflies

oscillate in the 3-dimensional space which results in a larger actual path lengths and

decrease in the area between the two curves. These oscillations in the actual path

can result in degraded completion rate for the Baseline algorithm; however, the net

deviation do not indicate observable differences across the algorithms. Therefore,

these path-based metrics do not provide insights into the degraded completion rate

for the Baseline compared to the modified BVC algorithms; however, the decreas-

ing net deviation depends on the experimental design and the path between the

optimal direct paths.
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An increasing number of Crazyflies is expected to increase the total avoidance

time and the total collision avoidance procedure due to the decrease in free space

per Crazyflie in a given volume. The navigation time for a Crazyflie represents

a time where it is not avoiding its peers within its range. This navigation time

decreases with an increasing number of agents, whereas the avoidance time has

an opposite trend as shown in 4.8. A similar increase in the total collision avoid-

ance procedure was observed with an increase in the avoidance time in Figure 4.3;

however, no differentiating results were seen between the algorithms. The number

of collision avoidance procedures in Figure 4.3a and 4.3b suggest that the Base-

line and MBVC algorithms with no range filters consider all the UAV in a given

space; hence, the MBVC_Vel has a lower collision avoidance procedures where the

Crazyflies are only actively avoiding collisions within rlookup range.

Table 4.8: The total navigation time and the avoidance time of the Crazyflies per
trial for each algorithm and the number of Crazyflies.

Algorithm Number of UAVs Avoidance Time Navigation Time
Median Min Max Median Min Max

Baseline

4 14.51 10.61 16.79 5.49 3.21 9.39
9 16.26 6.08 19.12 3.74 0.88 13.92
15 16.8 5.26 19.41 3.2 0.59 14.74
25 17.78 5.16 19.71 2.22 0.29 14.84

MBVC

4 14.23 10.29 17.66 5.77 2.34 9.71
9 16.52 10.22 19.17 3.48 0.83 9.78
15 17.4 11.68 19.44 2.6 0.56 8.32
25 17.67 8.38 19.7 2.33 0.3 11.62

MBVC_Vel

4 14.63 11.36 17.01 5.37 2.99 8.64
9 16.73 11.38 19.45 3.27 0.55 8.62
15 17.07 8.05 19.4 2.93 0.6 11.95
25 17.66 7.83 19.67 2.34 0.33 12.17
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(a) Number of UAVs = 25

(b) Number of UAVs = 4

Figure 4.3: The collision avoidance procedures for each algorithm for (a) 25 UAVs
and (b) 4 UAVs provided in the line plot with error bars. The Baseline and MBVC
consider all the agents for the collision avoidance procedures computation and have
overlapping mean and error bar lines.
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4.4.2 Time Complexity-based Results

The number of BVC constraints increases with an increase in the number of UAVs;

hence, the waypoint computation time metric was incorporated to determine the

time complexity of the algorithms with increasing agents. All three algorithms

generate a waypoint within 0.002 seconds for the vast majority of trials as shown

in Figure 4.4. A few outliers are present for the optimization-based algorithms,

MBVC and MBVC_Vel. An increasing number of UAVs is expected to increase

the overall waypoint computation time for both optimization-based modified BVC

algorithms; however, the range filter-based MBVC_Vel is expected to be efficient

when compared to the MBVC as seen for 25 Crazyflies. The Baseline design allows

for a steady performance with an increasing number of UAVs.
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(a) After removing outliers.

(b) Including all the outliers.

Figure 4.4: The waypoint computation time for each algorithm and a number of
Crazyflies is provided in the box and whisker plots. Pink markers outside the range
represent the outliers. The reference line (Black) represents Crazyflie’s update rate.
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4.5 Discussion

UAVs act as dynamic obstacles to each other in this project that seeks to explore

whether the multiple small-sized UAVs’ collision avoidance capabilities are affected

by the positioning noise introduced by LPS. The algorithms’ performance is an-

alyzed using distance-based metrics to assess the capability of timely navigation

command generation with increasing UAVs.

The completion rate indicated that trials with MBVC and MBVC_Vel per-

formed better in the presence of LPS-induced noise. This improvement demon-

strated that the UAVs reached their goal with a tighter tolerance within the dead-

line; however, the remaining metrics did not provide any insights as to why this

was the case. The hypothesis H1 expected that the optimization-based modified

BVC will generate effective paths for collision avoidance and this was supported;

however, a comparative improvement in the performance was not found. The per-

formance of all three algorithms remains consistent with increasing agents and up

to 4 agents failing to satisfy the completion rate rule while reaching their goals.

Computing collision avoidance procedures suggested that the MBVC_Vel algo-

rithm has a lower value than the other algorithms, which helps this algorithm

improves its priority to reach the goal resulting in a higher completion rate for

MBVC_Vel.

The mean percentage of Partial and Safe overlap count related to the inter-

UAV coordination contradicted H2 when employing the MBVC or MBVC_Vel

algorithms, where the combined Safe and Partial overlap count will always ex-
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hibit a higher value than the Baseline and be greater than 80%. While MBVC

and MBVC_Vel counts were higher than 80%, there was no observable difference

between the Baseline and these algorithms. The count categories results did not

reflect an association towards the slight successful completion rate. The distance

between the optimal direct paths provided insights into the limitations of the ex-

perimental design. The random generator for goal position assignment resulted in

scenarios such that with an increasing number of agents, the distance between the

optimal direct paths increased. This increase resulted in a larger inter-Crazyflie

distance and a lower deviation from their optimal direct path to reach their goal

locations.

The range-based obstacle filter aimed to improve the computational complexity

of the MBVC_Vel algorithm compared to MBVC by introducing the range rlookup.

Hypothesis H3 was developed based on the assumption that this range filtration

will consistently allow the MBVC_Vel to generate a waypoint within 0.002 sec-

onds. This small computation time facilitates the detection of real-time changes

and updates in the space while ensuring safety with minimal delay. Generally,

this hypothesis was supported; however, there were cases where the filtration de-

sign resulted in an outlier. An increasing number of UAVs is expected to increase

the overall waypoint computation time for both optimization-based modified BVC

algorithms; however, the range filter-based MBVC_Vel is seen to be efficient com-

pared to the MBVC for 25 Crazyflies.

The modified BVC algorithms generated navigation commands in a timely man-

ner; however, the expected substantial improvements over the Baseline were not
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observed. Despite the absence of a noticeable improvement in the distance-based

metrics, the Crazyflies with the modified BVC algorithms were more successful in

reaching their goals with a tight distance tolerance. Additionally, the integrated

physics simulator also enabled the Crazyflie’s controllers with the Crazyswarm API

to contribute to the development of small-sized UAVs.
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Chapter 5: Conclusion

This project developed and integrated a modified BVC for the Crazyflie quad-

copters and validated the algorithm in a simulated Crazyswarm platform, which

incorporates the gym-pybullet-drones physics simulator. The first contribution of

this project is the algorithm formulation as an optimization problem subjected to

uncertainty-aware and acceleration buffer constraints to improve the algorithm’s

resilience against positioning uncertainty. The Crazyflies’ baseline algorithm was

developed for a motion capture positioning system, whereas the modified algorithm

incorporates the standard deviation of the positioning noise from LPS to enhance

the Crazyflies’ collision avoidance ability. Furthermore, reciprocal velocity obsta-

cle constraints introduced in the algorithm estimate the peer obstacles’ velocity to

enhance collision avoidance with dynamic obstacles. These design modifications

improve the low-level autonomy of the Crazyflies and their extension to multiple

quadcopter applications in indoor environments with LPS enabling a probabilistic

collision-free guarantee promised by the BVC design. A range filter for obstacle

detection is also introduced in the algorithm to limit the number of constraints as

the number of Crazyflies increase. This design modification ensures efficiency in

time complexity and generates a waypoint before each system update rate. The

Crazyflie’s existing state machine’s update rate is 500 Hz and the waypoint is

generated within 0.002 seconds for more than 99% of the simulation instances.
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Distance-based metrics were introduced for analyzing the collision avoidance ca-

pabilities for multiple quadcopter scenarios. This contribution provides a compre-

hensive evaluation of the system’s performance by utilizing the inter-UAV distance

categorizations and the distance deviation from the optimal direct path introduced

in Chapter 4.2. The incorporation of reciprocal velocity constraints was to improve

the collision avoidance responsibility associated with the measure of distance-based

metrics; however, the findings for this measure did not demonstrate the observ-

able improvement in the modified BVC algorithms. Crazyflies equipped with the

baseline algorithm had slightly lower success in reaching the goal location with a

tight distance tolerance of 0.3 meters; however, this slightly successful measure for

the modified BVC algorithms did not reflect an association towards the inter-UAV

distance categorization throughout the trials.

The last contribution was the enhancement of the existing Crazyflie simulator

to enable comprehensive testing and validation for the multiple quadcopter sce-

nario. The baseline algorithm was initially developed and tested on a Crazyswarm

platform that bypasses the Crazyflie’s controller and second-order dynamic motion.

This lack of a comprehensive and lightweight physics simulator for Crazyflies neces-

sities a testing platform that addresses these gaps and can easily interact with the

existing Crazyswarm API to support the development of Crazyflies. The results

generated across the trials primarily showed that the modified BVC maintained

its performance irrespective of the number of Crazyflies in the shared space. Over-

all, this project contributed to the development of the modified BVC algorithm

and validated its performance in custom simulation worlds using distance-based
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metrics introduced for multiple quadcopter system evaluations.

5.1 Future Work

This project implemented a modified buffered Voronoi and reciprocal velocity-

based collision avoidance algorithm for Crazyflies on a physics simulator, but there

are several avenues for future work that can enhance the Crazyflie system’s capa-

bilities. The next step will involve evaluating this algorithm on real Crazyflies by

overcoming hardware limitations (e.g., delayed information exchange due to Peer

to Peer communication design, excessive LPS Z directional noise near static obsta-

cles due to non-line-of-sight reflections). Additional experiments improvising the

velocity assignment of the Crazyflies moving towards their waypoint, the addition

of static obstacles apart from the testbed bounding boundary, and the introduc-

tion communication gap in Peer to Peer information exchange can provide valuable

insight into the algorithm’s application to real-world scenarios.

The current state of collision avoidance on the Crazyflies does not allow dead-

lock resolution. The current algorithm assumes that the noise present in the lo-

calization module does not result in a deadlock configuration. Incorporating a

deadlock resolution will improve the algorithm’s reliability to traverse to its goal

location with an increasing number of Crazyflies in a given space. Furthermore,

the algorithm can be expanded to incorporate the yaw angle into the waypoint

generation process. Incorporating the attitude controller instead of always keeping

the yaw angle at 0 can allow Crazyflies to navigate in the 3-dimensional space and
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handle more complex maneuvering scenarios. Further calculations specific to the

Navigation mode’s Avoidance Time categories including the Hover Time and the

Collision Time combined with the help of an improved simulation log data struc-

ture can provide information to differentiate the oscillations in the quadcopter’s

trajectory from hovering.

Lastly, the implemented algorithm can act as a foundation for training re-

inforcement learning models for Crazyflie’s that are gaining popularity in the

field of small-sized quadcopter research. More complex control strategies can be

learned from their environment for multiple Crazyflie applications using the mod-

ified buffered Voronoi cell approach as a baseline. Addressing these aspects can

improve the autonomous capabilities of small-sized quadcopters and enable their

use in a wider range of real-world applications.
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