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During applied signal-detection (e.g., airport-baggage screening) human operators can be 

assisted in their decision-making process by automated devices. Automation implementation is 

aimed at increasing performance relative to unaided levels. Generally, this intended effect is 

empirically observed. However, operators consistently fall short of optimal levels of aided 

performance, indicating suboptimal aid-use efficiency. Previous research suggests aid-use 

efficiency might vary depending on the sensitivity levels of each agent in the human + 

automation team. In the present research we manipulated Task Difficulty (easy vs. difficult) and 

Aid Reliability (low vs high) to examine how measures of sensitivity and aid-use efficiency vary 

across these factors. Participants completed a numerical signal-detection task with automated-

support manipulated within-subjects. Bayesian inference analyses suggested higher sensitivity 

gains were achieved at higher levels of difficulty and aid reliability. Interestingly, however, aid-

use efficiency was lower at these conditions. These findings replicate and expand previously 

observed ironic patterns of aided performance where operators fall shorter of optimal levels in 

conditions where empirical and potential levels of aid-benefit are higher. These findings provide 

valuable insight for system designers and highlight the need to better understand factors 

contributing to suboptimal human-automation interaction during aided signal-detection to 

procure safety and efficiency in naturalistic settings.  
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Not Good Enough: Ironic Efficiency in Automated-Aided Signal-Detection. 

Signal-detection tasks are ubiquitous in everyday and professional life. While driving, we 

monitor the environment for collision hazards such as vehicles present in our trajectory or blind 

spot during lane changing (e.g., Zhan et al, 2006). In a professional setting, air-traffic control 

operators monitor air vessel trajectories for dangerous collision patterns (Rovira & Parasuraman, 

2007). As new technological developments arise, human operators might be more frequently 

assisted in such signal detection processes by automated aids. For example, a side collision 

warning system might alert drivers of a vehicle present in their blind spot or an automated 

warning device might signal to an air traffic controller that a conflict between planes is 

developing. Automated devices may also assist airport security personnel during baggage 

screening (e.g., Bartlett & McCarley, 2018; Wiegmann et al., 2006), financial advisors while 

examining records for financial fraud (Bell & Carcello, 2000; Glancy & Yadav, 2011), military 

personnel distinguish between friend from foe (Dzindolet et al., 2001; Neyedli et al., 2011), 

nuclear power plant operators monitor dangerous environments (Lee et al., 2007), and medics 

evaluating ECG feedback for cardiac anomalies (e.g., Bond et al, 2018; Novotny et al., 2017). 

Furthermore, assistive automation can be implemented in various other aspects within the fields 

of defense (e.g., Rovira et al., 2007; Yeh & Wickens, 2001), medicine (Carol et al., 103; Kunar, 

2022), dentistry (e.g., Araki et al., 2010), transportation and aeronautics (e.g., Dixon & Wickens, 

2006; Maltz & Shinar, 2004), etc.  

The general purpose of automation support in these settings is to improve detection 

performance relative to that achieved by the unaided human operator. More specifically, 

automation implementation in these tasks aims to increase sensitivity (Hautus et al., 2021), the 

ability to distinguish between two mutually exclusive states of the world (noise and signal + 

noise). Empirically, as expected, automated aids generally improve the decision maker’s 

performance, allowing aided sensitivity to surpass unaided levels. However, operators also 

consistently fail to achieve maximum potential levels of aid-benefit, letting empirical 

performance fall short of optimal (see Boskemper et al., 2022; Duncan-Reid & McCarley, 2021, 

2022; Gyles & McCarley, 2019; Munoz Gomez Andrade et al., 2022; etc). This shortcoming 

translates to operators making unnecessary mistakes and a reduction in the benefit-cost ratio of 

developing and deploying automated aids. Psychologically, this shortcoming is indicative of 
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suboptimal human-automation interaction and highlights the need to identify factors that 

encourage efficient aid-use. In the present research, we explored how two factors, the individual 

sensitivities of the automation and the operator, affect various aspects of aided performance 

including aid-use efficiency. We seek to expand on previous research to best guide system 

designers and ultimately procure safety and efficiency in naturalistic settings. To measure 

performance in the present research, we relied on the framework of Signal-Detection Theory 

(SDT, Green & Swets, 1966).  

Signal-Detection Theory  

In a standard signal-detection task, human operators need to differentiate between two 

mutually exclusive states of the world based on probabilistic evidence. Specifically, they are 

required two differentiate between noise and signal + noise states, which we will hereafter refer 

to simply as signal (Hautus et al., 2023). For instance, during airport baggage screening, security 

operators evaluate pieces of baggage containing non-prohibited items (noise) for the presence of 

prohibited items (signal). Importantly, the evidence distinguishing noise and signal states is often 

ambiguous, making incorrect decisions inevitable. For example, some prohibited items might 

closely resemble the visual characteristics of non-prohibited items, or conversely, non-prohibited 

items may resemble weapons or other threats.  

SDT (Hautus et al., 2023; Wickens, 2001) provides a two-stage framework for modeling 

and characterizing detection performance. In the first stage, operators assess the strength of 

evidence for or against the presence of a signal, encoding it as a scalar decision variable. Then, 

this decision variable is gauged against a criterion () to decide if a signal state is present. Scalar 

values above  result in a yes-judgment (signal-present) while those below  result in a no-

judgment (signal-absent). For each trial, operators may arrive to one of four decisions depending 

on the true state of the world and their detection judgment (see Figure 1). Correct decisions refer 

to judgments which match the true state of the world. When operators correctly arrive at a yes-

judgment, their decision is termed a hit. Incorrect yes-judgments are termed false alarms. A 

signal-absent judgment is referred as either a correct rejection or a miss depending on the true 

state of the world. When the total number of signal and noise trials is known, hit rates (HR) and 

false alarm rates (FAR) can be calculated through the following formulas:  
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𝐻𝑅 =
∑ 𝐻𝑖𝑡𝑠

∑ 𝑆𝑖𝑔𝑛𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠 
;  𝐹𝐴𝑅 =

∑ 𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠

∑ 𝑁𝑜𝑖𝑠𝑒 𝑇𝑟𝑖𝑎𝑙𝑠 
, 

where the sum of hits or false alarms is divided by the sum of signal or noise trials, respectively. 

In SDT, these statistics allow for the estimation of relevant measures of performance.  

 

Figure 1. Possible decisions in yes or no signal-detection tasks. Correct decisions are depicted in a blue background, 
while erroneous decisions are depicted in a red background. 

The standard form of the SDT framework is the equal-variance Gaussian model 

(Wickens, 2001), which assumes the evidence distributions for signal and noise states are 

normally distributed with a common standard deviation. By convention the noise distribution is 

assigned a mean of 0, and the mean of the signal distribution is assumed to be equal to or greater 

than 0. Figure 2 portrays a graphical representation of this model, with the horizontal bottom line 

corresponding to potential values for scalar decision variables.   
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Figure 2. Equal-variances Gaussian model of signal detection. The horizontal line depicts potential values for scalar 
variables of encoded evidence. The evidence distribution for signal is depicted in blue, while that of noise is 
depicted in red.  depicts operator’s criterion to arrive to a yes judgment.  

Notice that in Figure 2, the evidence distributions for signal and noise overlap. The area 

of overlap represents confusability between states of the world. If the curves overlapped 

perfectly, noise and signal states would be indiscernible. As overlap between distributions 

decreases, the sensitivity of detection agents increases. Under this model, sensitivity can be 

characterized by d’, the distance between the means of the two curves as measured in units of the 

common standard deviation. The value of d’ is given by,  

𝑑′ = 𝑍(𝐻𝑅) − 𝑍(𝐹𝐴𝑅). 

Performance can be further characterized by the operator’s response bias, or their 

willingness to arrive at a yes judgment. Consider two hypothetical operators, one with relatively 

higher response rates, HR = 0.90 and FAR = 0.42, and another one with lower rates such that HR 

= 0.60 and FAR = 0.11. Applying the above formula gives the same value of sensitivity for both 

operators: d’ = .48. What differs between these operators is their placement of  the criterion 

required for a yes judgment. Participants might adopt different criteria depending on the nature 

of a task and the payoffs associated with different responses.   
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Figure 3. Equal-variances Gaussian model depicting different criterions. The blue dashed line at x represents a 
liberal criterion, while the red line at y represents a conservative criterion. The grey dashed line at 1/2 d' depicts an 
unbiased criterion. 

Placement of response criterions () can be described in three ways, depending on their 

position relative to ½ d’, the point equidistant from the means of the noise and signal 

distributions (see Figure 3).  is said to be unbiased when it equals ½ d’. Liberal criteria are set 

below this point and increase the probability of arriving to a yes-judgment, thus resulting in more 

Hits but also more False Alarms. Conservative criteria are set above unbiased levels and 

decrease the probability of yes-judgments, leading to fewer False Alarms but also fewer Hits. In 

Figure 3, x and y depict liberal and conservative criteria, respectively. When signals are more 

common than noise events, or when Hits have high payoffs relative to the costs of False Alarms, 

a liberal  is more appropriate. Conversely, when signals are rare or when rewards for Correct 

Rejections are high relative to the cost for Misses, a conservative  is more convenient for 

operators.  

The distance between ½ d’ and  is termed c and provides a measure of bias in the 

response strategies adopted in signal-detection tasks. Under the assumptions of the equal-

variances Gaussian model, 𝑐 = 𝜆 −
1

2
𝑑′. Liberal criteria result in negative values of c, while 

conservative criteria result in positive values. Bias may also be measured by  the likelihood 

ratio between the probability densities of signal and noise at . This measure is given by the 

formula 𝛽 =
𝑓𝑠(𝜆)

𝑓𝑛(𝜆)
, where 𝑓𝑠(𝜆) and 𝑓𝑛(𝜆) denote the probability density functions for signal (s) 
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or noise (n) events at . In the Gaussian model of SDT,  corresponds to the relative height of the 

signal and noise curves at . When  = ½ d’, the heights of the two curves are equal and  = 1. 

Liberal and conservative criterion shifts decrease or increase , respectively.  

Assuming equal response payoffs, optimal  () in unaided signal-detection is that 

which maximizes the probability of a correct response (Wickens, 2001). Under the equal-

variances Gaussian SDT model,  is determined by the prior probability of a signal occurring 

such that: 𝜆∗ =
1

2
𝑑′ −

𝑙𝑜𝑔𝑖𝑡(𝑠)

𝑑′
, where s denotes the probability of signal.  corresponds to  *, the 

point at which  is equal to 𝑝(𝑛)

𝑝(𝑠)
, with 𝑝(. ) denotes the probability of noise or signal events. 

When 𝑝(𝑛) = 𝑝(𝑠), their ratio = 1, thus 𝛽∗ =
1

2
 𝑑′ and *

 is unbiased. When 𝑝(𝑛) > 𝑝(𝑠), * is 

liberal and  * < 1, while a lower probability of signal relative to noise leads to a conservative *
 

and  * > 1. 

Automated aids 

Human operators engaged in signal-detection tasks can be assisted by automation in the 

form of decision aids. Automation here is defined as the replacement of a process that could have 

been carried out by a human operator (Parasuraman et al., 2000). Automated aids can greatly 

vary in form from one task to another. In aviation, for instance, automation can assist operators 

through auditory collision alerts, but may also altogether takeover flight duties at times. We here 

offer a brief discussion of aid taxonomy as introduced in Parasuraman et al. (2000) to best 

delimit the form of automation the present research focuses on.  

The taxonomic model introduced in Parasuraman et al. (2000), classifies automation 

based on two criteria: 1) its degree of autonomy relative to operators’; 2) the stage of information 

processing at which it offers assistance. According to this model, automation autonomy ranges 

from low to high across ten levels. At lowest levels, automation offers no assistance with all 

actions and decisions undertaken by the human operator. At highest levels, automation decides 

the course of action fully autonomously, ignoring human operators. Of particular interest here is 

level four, at which automation suggests a course of action amongst a set of alternatives but 

defers decision-making and action implementation to operators.  
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Figure 4. Stages of information processing from earliest to latest; adapted from Parasuraman et al., (2000).  

In terms of information processing stages, Parasuraman et al. (2000) classified aids across 

four levels (see Figure 4). During the information acquisition stage, automation assists operators 

in sensory processing. For instance, during baggage screening, automation might highlight areas 

of an x-ray image for operator review (e.g., Huegli et al., 2020). During information analysis, 

automation assists in perceptual and working memory operations (e.g., Morphew & Wickens, 

1998; Wickens & Colcombe, 2007). For example, drivers might be assisted by automaton that 

visualizes their trajectory while driving in reverse. At the decision and action selection stage, 

automation recommends a course of action based on the information assessed at previous levels. 

In aviation, for example, automation might suggest specific collision avoidant maneuvers to 

pilots. At the highest levels of information processing, automation might overtake several aspects 

of action implementation once a decision has been made. For instance, automation engrained in 

automotives might automatically break if an imminent collision is detected. In this research, we 

investigated variations in aided performance with automation that assists during the decision-

making stage of information processing. 

Across both dimensions of aid taxonomy, we focused on automation which assists during 

decision making but defers action selection and implementation to operators. Furthermore, we 

specifically focused on automation that assists during yes-or-no signal-detection processes, 

which are common in the literature and in applied settings (e.g., Elvers & Elrif, 1997; Yamani & 

McCarley, 2018). Such aids can provide feedback to operators through either binary or graded 

cues (see Figure 5). Graded automation communicates the strength of sampled evidence through, 

for example, confidence ratings or likelihood messages (e.g., Bartlett & McCarley, 2019; Sorkin 

et al., 1988; Wiczorek & Manzey, 2014). On the other hand, binary automation provides absolute 

judgments (e.g., “signal present”) without communicating the strength of sampled evidence (e.g., 

Meyer, 2001; Munoz Gomez Andrade et al., 2022). Graded automation allows for higher 
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potential aided sensitivity as greater information sharing in the human + automation system helps 

clarify evidence ambiguity (Robinson & Sorkin, 1985). However, empirical comparisons of 

performance between the two types of cues are mixed (see Bartlett & McCarley, 2019; Duncan-

Reid & McCarley, 2022; Wiczorek & Manzey, 2014). For simplicity, in this research, we focus 

on aids that provide binary feedback to operators.  

 

Figure 5. Sample cues for binary and graded automation. The binary aid on the left provides an absolute judgment, 
while the graded aid on the right communicates the strength of evidence assessed through a confidence rating.    

Human-Automation Interaction.  

Maximum sensitivity in aided tasks is a function of the individual sensitivity of each 

agent in the human + automation team (Robinson & Sorkin, 1985). However, it also varies with 

the patterns of human-automation interaction adopted by human operators. Optimal aided 

performance refers to human-automation interaction which allows for highest attainable team 

sensitivity given the individual sensitivities of each agent. However, although optimal human-

automation is theoretical attainable to operators, empirical assessments of performance reveal 

widespread aid-use suboptimality.  

Suboptimal human-automation interaction in terms of automation dependence is 

generally classified into one of two forms: disuse or misuse (Parasuraman & Riley, 1997). 

Ideally, dependence on automation will increase as the sensitivity of the automation (aid 

reliability) increases relative to that of the human operator (Sorkin & Dai, 1994). Operators 

engage in disuse when they fail to sufficiently rely on automated aids, placing too much weight 

on their own judgments. Automation disuse in aided signal-detection is commonly observed 

when aid reliability falls short of perfect (e.g., Rice & McCarley, 2011; Tikhomirov et al., in 

press). Automation misuse is a consequence of suboptimally high automation dependence. 

During misuse, operators uncritically rely on the diagnoses provided by automation, without 

checking them against the raw data. Misuse is most often observed when operators are assisted 
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by automated aids whose sensitivity is near-perfect (Parasuraman, 2000; Parasuraman et al., 

1993).  

During aided-signal detection, a variety of strategies for automation-interaction are 

available to human operators (see Bartlett & McCarley, 2017; Duncan-Reid & McCarley, 2022; 

Tikhomirov et al., in press). Such strategies vary in terms of the maximum levels of sensitivity 

they allow for the human + automation team. When aided by binary automation, the Contingent 

Cutoff (CC) model proposed by Robinson and Sorkin (1985; see Murrell, 1977) allows for best-

attainable aided sensitivity if dependence is optimally calibrated. It thus provides a benchmark of 

optimal aided performance against which to assess empirical estimations (e.g., Bartlett & 

McCarley, 2017).  

Optimal Human-Automation Interaction.  

 The CC model assumes the human + automation team engages in a typical process of 

signal-detection, gauging sampled evidence against a criterion () to derive a yes or no 

judgment. Under this model, the criterion adopted by operators during aided detection is 

contingent on the feedback provided by the automated aid. When automation renders a positive 

(signal-present) cue, operators are assumed to adopt a more liberal  thus decreasing required 

evidence for a yes-judgment. Following a negative (signal-absent) cue,  is assumed to become 

more conservative, increasing required evidence for yes-judgments. In a CC strategy, criterion 

shift (), the extent to which  is shifted following an aid’s cue, provides a measure of 

automation dependence. Best-attainable aided performance requires optimal calibration of . 

We will refer to empirical measures of d’ for unaided operators as d’Unaided, while empirical aided 

sensitivity for the human + automation team is referred to as d’Aided. Optimal levels of sensitivity 

are described as d’Optimal.  

Optimal *
 values on aided trials depend on the aid’s cue and predictive value. Assuming 

that signal and noise trials are equally common, when an aid renders a positive cue (+), the 

probability of signal is equal to 𝑝(𝑆|+) =
𝑝(+|𝑠)𝑝(𝑠)

𝑝(+|𝑠)𝑝(𝑠)+𝑝(+|𝑛)𝑝(𝑛)
. Conversely, when the aid renders 

a negative judgment, the probability of a signal is 𝑝(𝑆|−) =
𝑝(−|𝑠)𝑝(𝑠)

𝑝(+|𝑠)𝑝(𝑠)+𝑝(+|𝑛)𝑝(𝑛)
. Thus, two 

different values of * should be adopted by operators, one for positive-cue trials (*
yes) and one 
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for negative-cue trials (*
no). When p(s) = p(n) and the aid is unbiased, p(s|+) reduces to the aid’s 

overall reliability, and p(s|-) reduces to one minus the aid’s reliability such that: 

𝜆∗
𝑦𝑒𝑠 =

1

2
𝑑′ −

𝑙𝑜𝑔𝑖𝑡(𝑎𝑖𝑑 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

𝑑′
 ;  𝜆∗

𝑛𝑜 =
1

2
𝑑′ −

𝑙𝑜𝑔𝑖𝑡(1 – 𝑎𝑖𝑑 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

𝑑′
. 

In an ideal CC strategy, optimal criterion shift (
) is calibrated to optimal measures of * for 

positive and negative cue trials. Figure 6 depicts * and 
 values under an optimal CC strategy 

for an aid of .9 reliability and an initial unbiased . Notice that *
yes is liberal and captures .9 of 

the signal distribution, while *
no is conservative and captures .9 of the noise distribution.  

 

Figure 6. Optimal  for an aid of .9 reliability. The blue dash at *
yes encompasses .9 of the signal distribution, 

while the red line at *
no encompasses .9 of the noise distribution. Assuming an initial unbiased , 

*
 depicts 

optimal criterion shift for *
yes.  

When the frequency of signal trials and aid reliability are known, optimal * for positive 

and negative cue trials can be calculated given an estimate of d’Unaided. Measures of * for 

positive and negative cue trials allow for an estimation of d’Optimal. Furthermore, empirical and 

optimal estimates of sensitivity, in turn, allow for a quantification of the quality of operator’s use 

as efficiency (; Tanner & Birdsall, 1958):  

𝜂 = (
𝑑′𝐴𝑖𝑑𝑒𝑑

𝑑′𝑂𝑝𝑡𝑖𝑚𝑎𝑙
)2. 

Where  is a squared ratio of observed to optimal sensitivity in aided conditions. An efficiency 

value of 1 would indicate perfect efficiency.  
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Although a CC strategy allows for the human + automation team to attain optimal levels 

of aided d’, empirical estimations of  are more consistent of a sluggish CC strategy in which 

 is suboptimally low (e.g., Munoz Gomez Andrade et al., 2022; Robinson & Sorkin, 1985). 

These suboptimal low levels of dependence are symptomatic of suboptimal aid-use efficiency 

and, more concretely, of automation disuse. Importantly, however, extent of inefficiency 

displayed by operators has been shown to differ based on various task conditions, such as the 

sensitivity of individual agents in the human + automation team.   

Task Difficulty and Aid Reliability.  

Several task factors can affect performance and general aid-use efficiency during aided 

signal-detection. For instance, higher workloads might increase dependence on automation 

(McBride et al., 2011; Wickens & Dixon, 2007), whereas a bias toward false alarms might 

engender disuse (Dixon et al., 2007; Rice & McCarley, 2011). In the present research we focus 

on how two factors of interest, the individual sensitivity of the human operator and that of the 

automated device, affect performance during aided signal-detection. As discussed, these factors 

determine the upper bound on aided sensitivity and dictate the operator’s optimal level of aid 

dependence. As the aid’s sensitivity increases relative to operator’s, the operator’s optimal 

behavior is to increase automation dependence.  

In the CC model, higher dependence equates to higher measures of , that is, higher 

adjustments of operator’s criterion in response to the aid’s diagnoses. To optimize d’Aided, higher 

measures of  should be observed at increased levels of aid reliability or at decreased levels of 

unaided sensitivity. Recall that 
* is determined by * values for positive and negative cue 

trials. Consider levels of *
no when d’Unaided = 2, aid reliability = .6, and p(s) = p(n): 𝜆∗

𝑛𝑜 =  
1

2
2 −

𝑙𝑜𝑔𝑖𝑡(1− .6)

2
=  1.2. If other variables are held constant but aid reliability increases to .9, then   

𝜆∗
𝑛𝑜 = 2.1. Notice that as reliability goes up, 

* becomes more extreme (assuming an initial 

unbiased ). Even higher measures of  would be required to match levels of *
no if reliability is 

held constant at .9, but decreases such that d’Unaided = 1. In such case, 𝜆∗
𝑛𝑜 = 2.7. However, 

empirical estimations under a CC framework suggest operators consistently fail to appropriately 

calibrate dependence as each agents’ sensitivity varies.  
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Unsurprisingly, more reliable aids tend to produce bigger sensitivity gains (e.g., Rice & 

McCarley, 2011, Rovira et al., 2007). A review of the literature suggests aids around 70% 

reliability or better tend to produce an aid-benefit in performance, while aid-benefit generally 

nullifies at lower reliabilities (Wickens & Dixon, 2007). Interestingly, however, Bartlett & 

McCarley (2021) compared aid-use efficiency measures across reliability levels through a model 

of optimal human-automation interaction with this kind of automation (see Bahrami et al., 2010; 

Sorkin et al., 2001). Analyses suggested that, contrary to aid-benefit, aid-use efficiency 

decreased as automation reliability increased. In recent research by Tikhomirov et al., (in press) 

higher aid-benefit was observed at higher levels of task difficulty, suggesting appropriate higher 

dependence at lower levels operator sensitivity. However, analyses revealed lack of enough 

evidence for or against an effect of task-difficulty on aid-use efficiency.  

The Present Research  

Previous research suggests both aid-reliability and task difficulty may affect performance 

during aided signal-detection. The literature consistently shows higher levels of aid-benefit as 

operator sensitivity decreases relative to aid reliability. However, more research is warranted 

regarding the effects of either factor on aid-use efficiency (). Previous research by Bartlett & 

McCarley (2021) examining the effects of reliability on performance employed graded 

automation, thus highlighting the need for this effect to be replicated with binary automation. In 

addition, in Tikhomirov et al (in press) the data was unable to discern between a positive and a 

null effect of difficulty on efficiency. More research manipulating this factor may clarify the 

nature of the relationship between these two variables. Furthermore, no research till date has 

manipulated both factors within a single experimental design to explore potential interactions on 

measures of aided performance.  

In the present research, we seek to address the above-mentioned gaps in the literature to 

better inform system designers and future research. To this end, we employed a numeric signal-

detection task framed as a quality-control process (e.g., Botzer et al., 2013; 2015) during which 

the availability of an assistive Automation Aid was manipulated as within-subjects factor. 

Participants performed a block of trials unaided and a block of trials assisted in their decision-

making process by a binary automated aid (e.g., “Aid recommends: Reject”). Additionally, Task 
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Difficulty (easy vs. difficult), and Aid Reliability (low vs. high) were manipulated as between 

subject factors, resulting in four different between-subject experimental conditions: Easy/Low 

Reliability; Easy/High Reliability; Difficult/Low Reliability, Difficult/High Reliability. We 

assessed the effect of these factors on measures of d’, and aid-use efficiency (). Measures of d’ 

were derived through the framework of the equal-variances Gaussian model of SDT discussed 

above (see signal-detection theory section). Aid-use efficiency () was estimated by fitting an 

ideal CC strategy to unaided measures of performance (see optimal human-automation 

interaction section).  

We outlined three specific research objectives:  

a) To compare sensitivity measures across levels of Automation Aid, Aid 

Reliability, and Task Difficulty. This allowed us to gauge the sensitivity of the 

human + automation team to that of each individual agent. More importantly, 

these comparisons allowed us to examine if and how aid-effect varies across 

levels of difficulty and reliability.  

b) To contrast empirical vs. optimal measures of aided d’ across conditions. This 

allowed us to examine if aid-use inefficiency was widespread or if empirical 

sensitivity levels approached optimal levels under any conditions.   

c)  To compare aid-use efficiency across experimental levels for a converging 

assessment of conditions in which participants came closest to optimal aided 

performance. 

Based on previous literature we derived the following hypotheses for each research 

objective:  

1. For objective a, an interaction between automation-aid and reliability will be 

observed, such that higher aid benefit will be observed at higher reliability 

levels. Similarly, an interaction between automation-aid and difficulty will be 

observed, such that higher aid benefit will be observed at higher difficulty 

levels. 
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2. For objective b, we expected a main effect for aided d’ type such that 

empirical measures of aided sensitivity differed from optimal estimations 

across experimental levels.  

3. For objective c, we expected lower aid-use efficiency at higher levels of 

reliability and of difficulty.  

Due to a lack of previous research, we did not make specific predictions regarding interaction 

effects of Automation-Aid × Difficulty × Reliability on measures of d’ or of an interaction effect 

of Difficulty × Reliability on aid-use efficiency. 

Experimental design, objectives, and hypotheses were pre-registered and are publicly 

available (see https://osf.io/ztj9u/). An additional research objective included in the pre-

registration regarding modeling of automation-use strategies was omitted from the present work 

and will be addressed in a future composition. Research objective b was derived based on 

preliminary data from Tikhomirov et al. (in press). Inferential analyses in that study suggested 

absence of evidence to distinguish between a null and a credible effect of task difficulty on 

efficiency. However, the original hypothesis was included above for transparency.  

Method 

Preregistration and Open Data 

 All experimental procedures including experimental hypotheses, sampling plan, 

exclusionary criteria, and analysis plan were pre-registered prior to commencement of data 

collection. The pre-registration for this project, raw data for all practice and experimental blocks, 

and analytic code are publicly available for review and download at the Open Science 

Framework (see https://osf.io/ztj9u/).  

Participants  

Participants (N = 156) were recruited online through Prolific Academic (www.prolific.co; 

nProlific = 125) and the student participant pool at pacific-northwestern public university (nSONA = 

31). After recruitment, participants were redirected to the Gorilla platform (www.gorilla.sc; 

Anwyl-Irvine et al., 2020) for data collection, which took place exclusively online. Participants 

were compensated either with half an hour of course credit (SONA participants) or with 

https://osf.io/ztj9u/
http://www.prolific.co/
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monetary compensation ($5 USD; Prolific participants). We pre-specified an initial target sample 

of 100 participants from Prolific Academy (n = 25 per condition). Recruitment in Prolific was 

increased following initial data exclusions (see analysis) and attrition to achieve an n for this 

platform close to the initial target. The student participant pool was open for a period of 18 days 

to increase statistical sensitivity. No initial target n was preregistered for the student pool. Rather, 

as many participants were collected as signed up during the recruitment period. 

Numeric Signal-Detection Task  

Participants completed a numeric signal detection task (see Healy & Kubovy, 1981) 

framed as a quality control process (see Munoz et al., 2022; Tikhomirov et al., in press). 

Participants were instructed to imagine they were chemists charged with determining if batches 

of a chemical compound are contaminated. Each trial, they were presented with four readings 

sampled from one of two distributions (noise or noise + signal). They were informed an average 

reading higher than 500 is generally indicative of contamination and should lead to rejection, 

with about ½ of batches expected to be rejected. However, to communicate the ambiguity 

between noise and noise + signal in the sampled evidence, they were also told mean readings 

were highly variable with some mistakes being therefore unavoidable. Figure 7 provides an 

example of an aided trial. Unaided trials were similar to aided trials, except for the absence of 

feedback provided by automation. Trials were untimed, but participants were instructed to 

complete as many as possible during each block without sacrificing accuracy or rushing. The 

time for each block was fixed such that participants could not progress through the study by 

increasing the speed of their decision-making process. Participants made their responses via 

button presses. The experiment was set to run on desktop devices only, excluding mobile and 

tablet devices.  
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Figure 7. Sample aided trial for the Difficult/High Reliability condition. Unaided trials did not include automation 
binary feedback visible on the top-center portion. 

Task Difficulty & Aid Reliability 

In line with previous research (Tikhomirov et al., in press), Task Difficulty was 

manipulated by adjusting the degree of overlap between the noise and noise + signal distributions 

(see Figure 8). While all distributions had a standard deviation of  = 20,  values for the Easy 

conditions were closer to each other, resulting in a higher degree of overlap between the 

distributions. For the Easy conditions,  = 485 for the noise distribution, and  = 515 for the 

noise + signal distribution. For the Difficult conditions,  = 495 for the noise distribution and  = 

505 for the signal distribution. The ideal strategy for unaided detection was to base decisions on 

the average of all four readings. This strategy allowed for a maximum d’Unaided = 3.0 for the Easy 

condition and of d’Unaided = 1.0 for the Difficult condition. A strategy in which judgments were 

based on one randomly selected reading would have yielded maximum d’Unaided values of 1.5 and 

.5 for the Easy and Difficult conditions, respectively. Previous research employed a similar 

manipulation and observed a credible effect of Task Difficulty on measures of d’ (Tikhomirov et 

al., in press).  
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Figure 8. Noise and noise + signal distributions for stimuli used in the Easy (left) and Difficult (right) conditions. 
Notice that the shaded area depicting the degree of overlap between the two distributions is higher for the Difficult 
condition, resulting in higher evidence ambiguity for this condition. 

Based on previous research (Bartlett & McCarley, 2021; Wickens & Dixon, 2007), aid 

reliability was set to 77% (d’ = 1.5) for the low reliability conditions and to 93% (d’ = 3.0) for 

the high reliability conditions. Aid reliability levels were disclosed to participants prior to 

completion of aided blocks. Previous research suggests disclosure of automation reliability levels 

encourages more appropriate response bias (Avril, 2023; Wang et al., 2009). Aid Reliability and 

Task Difficulty were manipulated as between-subjects rather than as within-subject factors to 

avoid carryover effects on measures of performance.  
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Procedure 

 

Figure 9. Flow chart of sequence of events for experimental procedures following informed consent and prior to 
debrief. 

A flow chart of the course of events for this experiment is depicted on Figure 9. After 

providing informed consent, participants received general instructions and completed a block of 

unaided warmup trials (1 min) for which Task Difficulty was lower than all other conditions. 

Then, they were randomly assigned to one of two levels of each between-subjects factor: a) 

Easy/High Reliability; b) Easy/Low Reliability; c) Difficult/Low Reliability; d) Difficult/High 

Reliability. Participants in the Easy conditions completed all subsequent practice and 

experimental blocks at a lower difficulty than those in the Difficult conditions. For each 

condition, levels of Task Difficulty remained stable for all subsequent practice and experimental 

blocks.  

Following random assignment, participants completed two practice blocks of 2 minutes 

each. They completed the first block while unaided, which allowed them to familiarize 

themselves with their assigned level of Task Difficulty. They then received instructions on how 

to complete aided trials (see Figure 7). They were informed that for the next set of practice trials 

they would perform the same task but would be assisted by a computer aid which would make a 
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judgment about whether each batch should be accepted or rejected. They were further informed 

that the aid’s judgment might sometimes not match their own. Participants in the High-

Reliability conditions were informed that tests have shown the aid is correct about 93% of the 

time, while those in the Low-Reliability conditions were informed tests have shown that the aid 

is correct about 77% of the time. All participants were further informed that they should use the 

aid to help make their decisions, but that they were free to disagree with it if they wished. They 

then completed a second practice block while aided by automation. 

Following completion of the practice blocks, participants completed two experimental 

blocks of trials (8 min each) with automation aid manipulated within-subjects. The order of 

experimental blocks for each condition was counterbalanced across participants. For all warmup 

and practice blocks, participants received performance feedback for correct and incorrect 

response (e.g., “Oops, that batch should have been rejected”; “Good judgment”). The purpose of 

this was to allow participants to familiarize themselves with the ambiguous nature of sampled 

evidence from noise and noise + signal distributions. For experimental blocks, performance 

feedback was removed to better resemble task conditions in naturalistic settings.  

Analysis 

Data exclusions 

Exclusionary criteria for data analysis were preregistered and consisted of: a) failure to 

complete the experiment within the pre-established time of 30 mins; b) failure to complete a 

minimum of 32 trials during either experimental block; c) failure to achieve a d’ greater than or 

equal to 0.25 in any experimental block. The threshold for exclusionary criterion b was 

determined by the quantity corresponding to two SD below the mean number of trials completed 

per person in a similar experiment (see Munoz et al., 2022). Due to a failure to meet criterion a, 

25 participants were excluded from analysis. No participants were excluded due to the threshold 

imposed in criterion b. An additional four participants were excluded per criterion c for a final 

sample of N = 127 (nprolific = 98).  

Analysis of performance and efficiency 

All analyses on measures of performance were submitted to default Bayesian ANOVAS 

in JASP (JASP Team, 2019; see van den Bergh et al., 2020). Bayesian hypothesis tests are 
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comparative analyses in which various models, including prior parameter distributions, are 

assessed for their ability to account for empirical data (see Ly et al., 2018; Rouder et al., 2009; 

2017). In a default Bayesian ANOVA, the null model includes only one parameter representing 

the grand mean of scores. Competing models include additional parameters for main effects and 

interactions. In JASP models are excluded when they violate the principle of marginality, which 

prohibits interaction terms to be present without constituent main effects (van den Bergh et al., 

2020). Default analyses place Cauchy priors on the normalized effect sizes (Rouder et al., 2012). 

This approach specifies equal probability for all competing models prior to data assessment. 

MCMC effective sample size (ESS), the effective length of MCMC chains, was in line with the 

recommendations outlined in Kruschke (2021; ESS ≥ 10,000). Visual inspection Q-Q plots for all 

analyses conducted indicated no obvious deviations from normality.  

 We report several summary outputs for all primary analyses conducted. For model 

comparisons, we report the posterior model probability, P(Mi|data), of each model i under 

comparison. Posterior model probabilities were calculated under the assumption that prior 

probabilities of all models were uniform. We also report Bayes Factors (BF), which are 

likelihood ratios that quantify the predictive performance of the competing models:  𝑝(𝐷|𝑀0)

𝑝(𝐷|𝑀1)
. A 

BF01 of 10 indicates that the likelihood of the reference model (M0) was 10x the likelihood of the 

comparison model (M1). Unless otherwise specified, the reference model (M0) for each analysis 

was that which showed best predictive performance amongst all compared. Traditionally M0 

depict the null model, however we here seek to adhere with the symbology employed by JASP 

analyses. We interpreted the strength of evidence communicated by BFs based on the 

classification system suggested by Jefreys (1961) and Wetzels et al. (2011; see Table 1).   

Table 1 

Classification of Bayes factors, adapted from Wetzels et al., (2011). 

BF01 Evidence for H0 BF01 Evidence for H1 

≥ 100  Decisive  ≤ 1/100 Decisive  

30 – 100 Very Strong 1/30 – 1/100 Very Strong 

10 – 30 Strong  1/10 – 1/30 Strong  

3 – 10 Substantial  1/3 – 1/10 Substantial  

1 -3  Anecdotal  1 – 1/3 Anecdotal  
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1 No evidence 1 No evidence 

 

We also provide model-averaged analyses that assess the plausibility of each main effect 

and interaction individually, considered across the full set of models under comparison. This 

output is useful when the number of models under comparison is high. Model-averaged measures 

include the prior inclusion probability for each effect, the posterior probability of inclusion, and 

the Bayes Factor for inclusion of each effect (BFincl). This last statistic quantifies the change in 

prior to posterior inclusion probability, or how effect plausibility changed after data assessment. 

Following the guidelines outlined in van der Bergh et al. (2020), analyses of effects followed the 

matched models approach which results in smaller prior probability differences between 

interaction effects and main effects. 

Primary analyses examined empirical sensitivity scores for unaided and aided conditions, 

as measured by d’ (Hautus et al., 2022); ideal d’ scores for aided conditions as determined by 

participant’s unaided sensitivity and an optimal CC automation-use strategy; and efficiency (). 

To calculate empirical levels of d’, we first calculated hit rates (HR) and false alarm rates (FAR) 

using Hautus’s (1995) transformation to correct for extreme values:  

𝐻𝑅 =
.5+𝑛 ℎ𝑖𝑡𝑠

𝑛 𝑠𝑖𝑔𝑛𝑎𝑙 𝑡𝑟𝑖𝑎𝑙𝑠+1
 ;  𝐹𝐴𝑅 =

(.5+𝑛 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠)

(𝑛 𝑛𝑜𝑖𝑠𝑒 𝑡𝑟𝑖𝑎𝑙𝑠+1)
. 

For each participant, d’unaided and d’aided were derived from the corrected hit and false alarm rates. 

Empirical d’ scores for unaided conditions were transformed to optimal aided scores through the 

framework of the CC model. Specifically, we used participants estimation of d’Unaided to calculate 

what would have been optimal values of  for positive and negative trials using the following 

formulas:             

  𝜆∗
𝑦𝑒𝑠 =

1

2
𝑑′𝑈𝑛𝑎𝑖𝑑𝑒𝑑 −

𝑙𝑜𝑔𝑖𝑡(𝑎𝑖𝑑 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

𝑑′𝑈𝑛𝑎𝑖𝑑𝑒𝑑
;  𝜆∗

𝑛𝑜 =
1

2
𝑑′ −

𝑙𝑜𝑔𝑖𝑡(1 – 𝑎𝑖𝑑 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

𝑑′
.         

Estimated  measures were, in turn, employed to estimate optimal HR and FAR for each 

participant, which ultimately allowed for an estimation d’Optimal through the traditional formula 

for d’. Optimal scores represent best-attainable levels of sensitivity for automation-aided 

operators, conditional on operators’ unaided sensitivity levels and the aid’s reliability. Finally, 
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empirical, and ideal aided scores for each participant were used to calculate efficiency of 

automation-use (, Tanner & Birdsall, 1958).  

Estimated measures of performance were submitted to three default Bayesian ANOVAs 

in JASP: 

1. A mixed factors 2 (Task Difficulty: Easy vs. Difficult) × 2 (Aid Reliability: Low 

vs. High) × 2 (Automation-Aid: Unaided vs. Aided) factorial analysis of empirical 

d’ scores. This analysis aims to determine the conditions under which assistance 

from the automated aid produces the largest gains to sensitivity. 

2. A mixed factors 2 (Task Difficulty: Easy vs. Difficult) × 2 (Aid Reliability: Low 

vs. High) × 2 (Score Type: Empirical vs. Ideal) analysis of d’ scores for aided 

conditions. This analysis aims to identify the conditions under which empirical 

and optimal measures differ from one another.  

3. A between-subjects 2 (Task Difficulty: Easy vs. Difficult) × 2 (Aid Reliability: 

Low vs. High) factorial analysis of efficiency. This analysis aims to identify the 

conditions under which the quality of automation use falls farthest from ideal 

levels. 

Note that the second and third tests have similar purposes but will characterize the quality 

automation use in different ways, either in terms of raw d’ (#2) or in terms of the squared ratio of 

empirical to ideal d’ (#3). Analyses assumed uniform prior probabilities for all models, such that 

models compared are deemed equally probable prior to assessing the data.  

Results 

 Descriptive statistics summaries are provided for various measures of performance (see 

appendices section). Mean and standard deviations for parameter of interest describe the 

empirical distribution of raw data. 95% Bayesian Credible Intervals (BCI) comprise the values 

between the 2.5% and 97.5% quantiles of posterior distributions of parameter values. Model 

comparison and analyses of effects summaries for all default Bayesian ANOVAs conducted on 

measures of performance are likewise provided. Model comparison summaries include only the 

top 5 best-performing models. Null models were not included amongst these for any of the 

analyses here conducted.   
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Raw Measures of Sensitivity (d’). 

 

Figure 10. Measures of unaided and aided d’ across levels of Aid Reliability and Task Difficulty. Violin plots 
visualize the distribution of empirical scores for each condition. Empirical mean sensitivity scores are represented 
by colored circles. Error bars represent 95% Bayesian Credible Intervals (BCIs) for posterior distributions. Dashed 
grey lines depict aid reliability levels.  

Measures of d’ across unaided and aided blocks for each condition are visualized in 

Figure 4 (see Appendix A for a summary of descriptive statistics). Violin plots depict the 

distributions of empirical scores. The dashed grey line in each panel represents d’ scores for 

automated aids. Notice that mean levels of sensitivity in the difficult conditions were lower than 

aid sensitivity, even at low-reliability levels. Similarly, for easy conditions mean sensitivity 

levels failed to surpass the sensitivity of the highly reliable aid. These patterns suggest 

suboptimal automation-use. In this figure, the difference between mean d’ for unaided and aided 

blocks is visualized through connecting solid black lines. To best visualize this aspect of the data, 

we plotted measures of aid effect directly in Figure 11. Aid effect was derived through the 

following formula: 𝑑′𝐴𝑖𝑑𝑒𝑑 −  𝑑′𝑈𝑛𝑎𝑖𝑑𝑒𝑑.  
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Figure 11. Aid-effect measures across levels of Task Difficulty and Aid Reliability. Violin plots depict distributions 
for empirical data. Empirical mean measures are depicted by color circles. Errorbars indicate 95% BCIs for 
posteriors distributions. 

Table 2 
JASP summary output of Bayesian ANOVA on d’.  

 Summary output 

Model P(M) P(M|data)    BF01 Error % 

Aid + Diff + Rel + (Aid × Diff) + (Aid × Rel) 0.053 0.747 1.0  

Aid + Diff + Rel + (Aid × Diff) + (Aid × Rel) + (Diff × Rel) 0.053 0.182 4.1 5.365 

Aid + Diff + Rel + (Aid × Diff) + (Aid × Rel) + (Diff × Rel) 

+  (Aid × Diff × Rel) 
0.053 0.070 10.67 4.674 

Aid + Diff + Rel + (Aid × Diff) 0.053 0.001 747 4.521 

Aid + Diff + Rel + (Aid × Diff) + (Diff x Rel) 0.053 2.446×10-4 3053 4.283 

Note. Effects absent from best model are italicized. Only the four best models out of 19 total models compared are 
presented here (Automation-Aid = Aid; Reliability = Rel.; Difficulty = Diff.).  
P(M) = Model prior probability.   
P(M|data) = Model posterior probability.   
BF01 = Bayes Factor relative to the best-fitting model.  

Sensitivity scores were submitted to a mixed factorial Bayesian ANOVA with Task 

Difficulty (Easy vs. Difficult) and Aid Reliability (Low vs. High) as between-subjects factors, 

and Automation-Aid (Unaided vs. Aided) as a within-subjects factor. Table 2 shows model 
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comparison summary output for the top five best performing models. The best-performing model 

included all three main effects along with two-way interactions for Automation-Aid × Reliability 

and Automation-Aid × Difficulty. These results are consistent with Hypothesis 1, which 

predicted higher aid-benefit at higher levels of Task Difficult and Aid Reliability. In addition, 

these results are consistent with discernible empirical patterns. Notice how the difference 

between Unaided and Aided sensitivity in Figure 10 appears steeper for the Difficult conditions 

in red and at High Reliability levels on the right panel. Congruently, in Figure 11, the parallel 

mean-connecting lines for Task-Difficulty levels across levels of Aid Reliability are suggestive of 

additive effects of these factors on measures of Aid-Benefit.  

Model comparisons between the best-performing model and the second-best selected 

model, which included an additional interaction term between Difficulty and Reliability, 

indicated substantial evidence in favor of the best-performing model (BF01 = 4.1). The data also 

indicated strong evidence in favor of the best model compared to a model that includes all 

possible two-way and three-way interactions (BF01 = 10.67). All subsequent model comparisons, 

including that against a null model, indicated decisive evidence in favor of the best model. The 

uncertainty of the comparisons between the top-three best-performing models is clarified by 

model-averaged analyses of effects reported in Table 3. Data decisively favored the inclusion of 

all three main effects along with interaction terms between Automation-Aid and each between-

subjects factors (all BFIncl ≥ 677), consistent with the best-fitting model. On the other hand, data 

indicated substantial evidence against an interaction between reliability and difficulty (BFIncl = 
1

4.1
) and anecdotal evidence against a three-way interaction (BFIncl = 1

2.62
).  
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Table 3 

Model-averaged analyses of effects for Bayesian ANOVA on d’.  

 Model-Averaged Summaries 

Effect P(incl) P(incl|data) BFincl 

Automation Aid 0.263 3.902×10-8  49191.376 

Reliability 0.263 0.001 4082.696 

Difficulty 0.263 9.712×10-6  8.249×10+43  

Automation Aid × Reliability  0.263 0.929 677.748 

Automation Aid × Difficulty  0.263 0.930 78422.445 

Reliability × Difficulty  0.263 0.183 1 / 4.1 

Automation Aid × Reliability × Difficulty .053 0.070 1 / 2.62 

P(incl) = Prior probability of inclusion.   
P(incl|data) = Posterior probability of inclusion.  
BFincl = Bayes Factor for probability of inclusion.  

Optimal vs. Empirical Aided-Sensitivity.  

Measures of empirical and optimal aided d’ across levels of Difficulty and Reliability are 

visualized in Figure 12 (see Appendix B for a summary of descriptive statistics). Note that 

empirical values are replotted from Figure 10. Here we see that the distribution of scores for 

optimal measures in the Difficult conditions is narrow compared to other conditions, particularly 

in the Difficult/High reliability condition, where the gap between individual agent sensitivity was 

highest. This pattern results from the highly superior sensitivity of the automated aid relative to 

participants in these conditions. In effect, the aid dominated the human operator in the difficult 

conditions, meaning that optimal d’ in the aided conditions was very similar to the aid’s d’.  
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Figure 12. Measures of empirical and optimal aided d’ across levels of Reliability and Difficulty. Violin plots 
visualize the distribution of empirical scores for each condition. Empirical mean sensitivity scores are represented 
by colored circles. Errorbars represent 95% BCIs for posterior distributions. Dashed lines depict automation d’. 

Measures of empirical and optimal aided d’ were submitted to a mixed Bayesian ANOVA 

with Automation Type (Empirical vs. Optimal) as a within-subjects factor, and Difficulty (Easy 

vs. Difficult) and Reliability (Low vs. High) as between-subjects factors. Table 4 shows model 

comparison summary output for all models considered. The best performing model included all 

possible effects considered including a three-way interaction for Type × Reliability × Difficulty. 

However, the data was highly undecisive between this model and the subsequent two best 

performing ones. The best-performing model was only anecdotally favored over the second best 

performing one which did not include a three-way interaction (BF01 = 1.63). Similarly, only 

anecdotal support was observed for the best model compared to the third best performing one 

which only included interaction effects for Type × Reliability, and for Reliability × Difficulty 

(BF01 = 1.67). Uncertainty in model comparisons is clarified by model-averaged analyses of 

effects reported in Table 5. Here we see decisive evidence for all three main effects and an 
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interaction for Type × Reliability (all BFIncl ≥ 1000), followed by strong evidence for an 

interaction for Reliability × Difficulty (BFIncl = 15.49), but only anecdotal evidence for an 

interaction term for Type × Difficulty (BFIncl = 1.033) and a three-way interaction (BFIncl = 1.63).  

Table 4 

JASP summary output of Mixed Bayesian ANOVA on aided d’.  

 Summary output 

Model P(M) P(M|data) BF01 Error % 

Type + Rel + Diff + (Type × Rel) + (Type × Diff) + (Rel × Diff) + 

(Type × Rel × Diff) 
0.053 0.437 1  

Type + Rel + Diff + (Type × Rel) + (Type × Diff) + (Rel × Diff)   0.053 0.268 1.63 7.486 

Type + Rel + Diff + (Type × Rel) + (Rel × Diff)  0.053 0.261 1.67 10.498 

Type + Rel + Diff + (Type × Rel) + (Type × Diff) 0.053 0.018 24.28 6.093 

Type + Rel + Diff + (Type × Rel)  0.053 0.016 27.31 5.394 

Note. Best five out of 19 total models compared are summarized here (Aided d’ Type (optimal vs. empirical) = Type; 
Reliability = Rel.; Difficulty = Diff.).  
P(M) = Model prior probability.   
P(M|data) = Model probability given the data.   
BF01 = Bayes Factor relative to best betting model.  

Table 5 
Summary output of model averaged analyses of effects aided d’ measures.  

 Model-Averaged Summaries 

Effect P(incl) P(incl|data) BFincl 

Automation Aid 0.263 1.862×10-7  1.392×10+28  

Reliability 0.263 3.024×10-8  1.214×10+24  

Difficulty 0.263 0.016 9.601×10+32  

Automation Aid × Reliability  0.263 0.563 1.639×10+6  

Automation Aid × Difficulty  0.263 0.286 1.033 

Reliability × Difficulty  0.263 0.529 15.487 

Automation Aid × Reliability × Difficulty .053 0.437 1.627 

P(incl) = Prior probability of inclusion.   
P(incl|data) = Posterior probability of inclusion.  
BFincl = Bayes Factor relative to the best-fitting model.  

Results from analyses of effects are consistent with empirical data patterns visualized in 

Figure 12. Here we see optimal estimates of aided d’ generally outperformed empirical values. 
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This pattern is consistent with Hypothesis 2, which predicted widespread suboptimal aid-use 

interaction. In addition, an interaction between Type and Reliability is apparent in Figure 12. 

Notice how the connecting lines visualizing aided d’ difference are steeper at higher reliability 

levels in the right panel. This pattern suggests empirical aided d’ fell shorter from optimal at 

higher reliability levels. However, the difference between these measures does not seem to be 

affected by difficulty levels, indicating similar suboptimality in aid-use across easy and difficult 

conditions. An interaction between Reliability and Difficulty is harder to discern. However, 

d’Aided measures for difficult and easy conditions appear closer together at high reliability levels, 

perhaps due to aid dominance for d’Optimal estimations in the Difficult/High reliability condition.   

Aid-Use Efficiency. 

 

Figure 13. Measures of efficiency across levels of Reliability and Difficulty. Violin plots depict the distributions of 
empirical scores. Empirical mean scores are visualized by colored circles. Errorbars represent 95% BCIs for 
posterior distributions. 

Measures of efficiency across levels of difficulty and reliability are visualized in figure 

13 (see Appendix B for descriptive statistics summaries). As discussed, efficiency is calculated as 

the squared ratio of empirical optimal aided performance, such that measures of 1 are indicative 
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of best attainable performance. However, note that occasional efficiency scores higher than one 

are observed as a result of random variance within subjects.   

Table 6 

JASP summary output of Bayesian ANOVA on efficiency.  

 Summary output 

Model P(M) P(M|data) BF01 Error % 

Difficulty + Reliability   0.2 0.69 1  

Difficulty + Reliability + (Difficulty × Reliability) 0.2 0.19 3.63 2.08 

Difficulty  0.2 0.1 6.9 0.7 

Reliability 0.2 0.01 69 0.7 

Null Model 0.2 0.002 345 0.7 

Note. A summary for all models compared is included here.  
P(M) = Model prior probability.   
P(M|data) = Model probability given the data.   
BF01 = Bayes Factor relative to best-fitting model.  

Measures of efficiency were submitted to a Bayesian ANOVA (see Table 4) with 

Difficulty (Easy vs. Difficult) and Reliability (Low vs. High) as between-subjects factors. Model 

comparisons favored a model which included only main effects for both factors. This model is 

consistent with Hypothesis 3 which predicted lower aid-use efficiency at high levels of 

Reliability and Task Difficulty. Furthermore, this model is echoed in discernible patterns in 

empirical data visualized in Figure 13. The parallel lines mean-connecting lines for easy and 

difficult conditions across levels of reliability are suggestive of additive effects for these factors 

on aid-use efficiency. Efficiency was lower for the difficult conditions on red and at higher 

reliability levels on the right side of the x-axis. These patterns are reversed from measures of aid-

effect and suggest participants fall shorter of potential aided performance in conditions where 

they exhibit higher aid-benefit. Interestingly, it is also in these conditions that participants could 

benefit most from automation.  

Model comparisons indicated only substantial evidence in favor of the best-fitting model 

compared to the second best-fitting including an interaction effect between Difficulty and 

Reliability (BF01 = 3.63). In addition, the data only substantially favored the best-fitting model 

over the third best-fitting one which includes only a main effect for Difficulty (BF01 = 6.9).  

Analyses of effects in Table 7 offer some clarification to this uncertainty. Here, we see data 
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indicate very strong evidence for a main effect of Difficulty (BFincl = 60.39), followed by 

substantial evidence for an effect of reliability (BFincl = 6.9), but substantial evidence against an 

interaction term (BFincl = 1 / 3.7).  

Table 7 
Model averaged analyses of effects for Bayesian ANOVA on efficiency.  

 Model-Averaged Summaries 

Effect P(incl) P(incl|data) BFincl 

Reliability 0.400 0.709 6.955 

Difficulty 0.400 0.798 60.386 

Reliability × Difficulty 0.200 0.189 1 / 3.7 

P(incl) = Prior probability of inclusion.   
P(incl|data) = Posterior probability of inclusion.  
BFincl = Bayes Factor for inclusion.  

Discussion 

 The present research examined the effects of Automation Aid (unaided vs. aided), Aid 

Reliability (low vs. high), and Task Difficulty (easy vs. difficult) on performance in a numeric 

signal detection task. In line with previous research, measures of sensitivity generally improved 

as a result of automation implementation. However, the extent of aid benefit increased at higher 

levels of Task Difficulty and Aid Reliability. Thus, participants benefitted most from the aid in 

conditions where their sensitivity was lower compared to that of automation. Interestingly, 

however, the sensitivity of the human + automation team did not always surpass that of 

automation. Empirical mean levels of sensitivity for the High Reliability conditions fell below 

automation sensitivity levels (d’ = 3.0). Similarly, for the Low Reliability condition, mean 

sensitivity levels for participants completing a difficulty task failed outperformed automation 

sensitivity (d’ = 1.5). These team shortcomings in raw performance are indicative of insufficient 

aid-use.  

 Participants empirical aided performance generally differed from optimal estimations, 

indicating widespread suboptimal automaton use, although this difference increased at high 

reliability levels. Interestingly, the difference between empirical and optimal measures was 

invariant across levels of task difficulty, even though optimal aided sensitivity was closer to 

unaided levels at easier difficulties. This pattern suggests participants could have benefitted from 
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higher aid-use even when completing a relatively easier task. Congruent with comparisons of 

empirical and optimal aided sensitivity, measures of aid-use efficiency () fell below 1.0 across 

conditions. In direct contrast with measures of aid-benefit, however, efficiency was lower at high 

levels of task difficulty and aid reliability. This inverse pattern suggests an ironic effect of these 

factors on efficiency where the human + automation team fell shorter of potential sensitivity 

gains in conditions where they showed most improvement relative to unaided performance. 

Interestingly, these conditions are also those in which operators could have benefited most from 

automation assistance.  

The present research replicates and extends the ironic effects of aid reliability on aid-

benefit and aid-use efficiency previously observed with graded automation (Bartlett & McCarley, 

2021). In addition, the observed effects of difficulty on both these measures help clarify data 

uncertainty in previous research (Tikhomirov, in press). No decisive evidence was observed for 

interaction effects between task difficulty and reliability on measures of performance, rather, aid 

benefit and efficiency measures were best predicted by additive effects of these factors.    

Implications for Human-Automation Interaction.  

 The shortcomings in aid-use efficiency and aided performance observed in this research 

indicate suboptimal human-automation interaction. Under a CC strategy framework, these 

patterns can be explained by suboptimal calibration of dependence across conditions. Recall that 

an optimal CC strategy requires criterion shift to calibrate with cue-contingent ideal values of *. 

For instance, consider the formula for ideal criterions for positive cue trials:   

𝜆∗
𝑦𝑒𝑠 =

1

2
𝑑′ −

𝑙𝑜𝑔𝑖𝑡(𝑎𝑖𝑑 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

𝑑′
. Applying this simplified formula to sensitivity levels in the 

unaided Easy/Low reliability condition (M d’Unaided = 2.55; aid d’ = 1.5) yields a *
yes of .84, 

while at higher difficulty in the Difficult/Low reliability condition (M d’Unaided = .871; aid d’ = 

1.5)  *
yes = -.85. Finally, at higher reliability levels in the Difficult/High reliability condition (M 

d’Unaided = .917; aid d’ = 3) *
yes is smallest at -2.36. Here we see values of *

yes decrease as 

reliability and difficult increase, indicating higher measures of  would be necessary to achieve 

optimal performance. However, consistent with prior literature (e.g., Munoz Gomez Andrade et 

al., 2022; Robinson & Sorkin, 1985), empirical measures of aided sensitivity were more 
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compatible with a sluggish CC strategy in which operators fail to sufficiently increase 

dependence as automation sensitivity increases relative to their own.   

 Although insufficient dependence under a CC framework provides a potential 

explanation for the observed shortcomings in aided performance, suboptimal human-automation 

interaction may also be explained by recruitment of alternative suboptimal aid-use strategies. 

Previous research proposed a Discrete Deference (DD) model of human-automation interaction 

in which, rather shifting their  contingent on an aid’s cue, participants simply differ to the aid’s 

judgment in a subset of trials (Tikhomirov et al., in press). Although this strategy might alleviate 

cognitive load, it also results in lower highest potential values of d’Aided due to an overall loss of 

system information. Previous research comparing the fit of the DD and CC models, as well as a 

Mixture model of both strategies suggested least predictive performance for a CC strategy 

(Duncan-Reid & McCarley, 2022; Munoz & McCarley, 2023; Tikhomirov et al., in press). 

However, although suboptimality in aid-use efficiency is necessarily indicative of suboptimal 

human-automation interaction, analyses of mean sensitivity values are unable to discern between 

the plausibility of different strategies to account for the data. Future research may employ 

cognitive modeling (see Lee & Wagenmakers, 2014) to better understand how aid-use strategies 

and dependence might vary across levels of reliability and task difficulty.   

Applied Implications.   

Various aspects of the present findings speak to the design of automated decision aids. 

For instance, although aid-benefit was highest for the difficult condition, this effect was present 

even at low levels of task difficulty. This pattern suggests automation implementation might be 

valuable whenever operator sensitivity is limited by inherent ambiguity in sampled evidence (see 

Metz & Shen, 1992). Second, even in circumstances where a large aid-benefit is observed, as in 

the difficulty conditions, performance might still fall short of optimal levels. These findings are 

consistent with a growing body of literature documenting widespread suboptimality in aid-use 

(Chi & Drury, 1998; Duncan-Reid & McCarley, 2021, 2022; Neyedli et al., 2011; etc), and 

suggest the expected value and cost-efficiency of automation implementation might be undercut 

in these conditions.  
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Generality Constraints and Future Directions.  

The findings of the present research should be interpreted with caution when generalizing 

across populations and task settings. Here we recruited novice subjects who may behave 

different than field experts or subjects with more intensive training (see Arkes et al., 1986; 

Berner and Graber, 2008; Liang et al., 2022). Future research might recruit professional or 

trained populations to best inform system-design (e.g., Araki et al., 2010; Novotny et al., 2017; 

Rovira & Parasuraman, 2007). In addition, the present research employed a very specific form of 

signal-detection task, which might not be fully representative of the tasks performed in many 

applied settings. To examine the generalizability of the present findings, researchers might 

employ paradigms that more closely resemble applied tasks (e.g., Hutchinson et al., 2022; 

McCarley, 2009). Finally, participants completed the present task remotely from desktop devices, 

which, again, may not best-represent the nature of naturalistic tasks. Environments closer to 

naturalistic settings (e.g., Morphew & Wickens, 1998) might better resemble arousal and 

motivation levels in applied settings and provide valuable input for design.  

 As discussed, suboptimal aid-use efficiency is symptomatic of poor human-automation 

interaction. Future research might aim to uncover interventions that promote more efficient 

automation-use through the adoption of more appropriate aid-use strategies and dependence. For 

instance, providing precise information regarding aid reliability (see Avril, 2023; Wang et al., 

2009) and extended training with decision aids (see Liang et al., 2022) might increase 

automation reliance. However, to improve signal-detection performance, future research might 

also compare aid-benefits produced by other kinds of automation, including those which provide 

graded cues (e.g., Bartlett & McCarley, 2021); provide assistance at different stages of 

information processing (e.g., Liechty, 2019); and function at higher levels of automation 

autonomy. Previous research suggests automation and a reliance in actuarial information can 

match and, sometimes, outperform the ability of experts to gauge diagnostic information and 

efficiently weigh multiple information sources (see Ægisdóttir et al., 2006; Dawes et al., 1989; 

Metz & Shen, 1992; Yaniv, 2004).  
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Conclusion.  

Automation implementation aims to increase signal-detection performance to reduce 

human error. Although this intended effect was empirically observed in the present research, 

participants ironically fell shorter of optimal performance under conditions at which they showed 

highest aid-benefit and in which they could benefit most from aid assistance. This pattern 

highlights the need to better understand human-automation interaction across task settings to 

increase the value and cost-efficiency of automation implementation.  

  



36 
 

 

References 

Ægisdóttir, S., White, M. J., Spengler, P. M., Maugherman, A. S., Anderson, L. A., Cook, R. S., 
Nichols, C. N., Lampropoulos, G. K., Walker, B. S., Cohen, G., & Rush, J. D. (2006). 
The Meta-Analysis of Clinical Judgment Project: Fifty-Six Years of Accumulated 
Research on Clinical Versus Statistical Prediction. The Counseling Psychologist, 34(3), 
341–382. https://doi.org/10.1177/0011000005285875 

Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. K. (2020). Gorilla in our 
midst: An online behavioral experiment builder. Behavior Research Methods, 52(1), 388–
407. https://doi.org/10.3758/s13428-019-01237-x 

Araki, K., Matsuda, Y., Seki, K., & Okano, T. (2010). Effect of computer assistance on observer 
performance of approximal caries diagnosis using intraoral digital radiography. Clinical Oral 
Investigations, 14(3), 319–325. https://doi.org/10.1007/s00784-009-0307-z 

Arkes, H. R., Dawes, R. M., & Christensen, C. (1986). Factors influencing the use of a decision rule 
in a probabilistic task. Organizational Behavior and Human Decision Processes, 37(1), 93–
110. https://doi.org/10.1016/0749-5978(86)90046-4 

Avril, E. (2023). Providing different levels of accuracy about the reliability of automation to a human 
operator: Impact on human performance. Ergonomics, 66(2), 217–226. 
https://doi.org/10.1080/00140139.2022.2069870 

Bahrami, B., Olsen, K., Latham, P. E., Roepstorff, A., Rees, G., & Frith, C. D. (2010). Optimally 
Interacting Minds. Science, 329(5995), 1081–1085. https://doi.org/10.1126/science.1185718 

Bartlett, M. L., & McCarley, J. S. (2017). Benchmarking Aided Decision Making in a Signal 
Detection Task. Human Factors: The Journal of the Human Factors and Ergonomics Society, 
59(6), 881–900. https://doi.org/10.1177/0018720817700258 

Bartlett, M. L., & McCarley, J. S. (2018). No tendency for human operators to agree with automation 
whose response bias matches their own. International Journal of Human Factors and 
Ergonomics, 5(2), 111. https://doi.org/10.1504/IJHFE.2018.092227 

Bartlett, M. L., & McCarley, J. S. (2019). No Effect of Cue Format on Automation Dependence in an 
Aided Signal Detection Task. Human Factors: The Journal of the Human Factors and 
Ergonomics Society, 61(2), 169–190. https://doi.org/10.1177/0018720818802961 

Bartlett, M. L., & McCarley, J. S. (2021). Ironic efficiency in automation-aided signal detection. 
Ergonomics, 64(1), 103–112. https://doi.org/10.1080/00140139.2020.1809716 

Bell, T. B., & Carcello, J. V. (2000). A Decision Aid for Assessing the Likelihood of Fraudulent 
Financial Reporting. AUDITING: A Journal of Practice & Theory, 19(1), 169–184. 
https://doi.org/10.2308/aud.2000.19.1.169 

 

 

https://doi.org/10.1177/0011000005285875
https://doi.org/10.3758/s13428-019-01237-x
https://doi.org/10.1007/s00784-009-0307-z
https://doi.org/10.1016/0749-5978(86)90046-4
https://doi.org/10.1080/00140139.2022.2069870
https://doi.org/10.1126/science.1185718
https://doi.org/10.1177/0018720817700258
https://doi.org/10.1504/IJHFE.2018.092227
https://doi.org/10.1177/0018720818802961
https://doi.org/10.1080/00140139.2020.1809716
https://doi.org/10.2308/aud.2000.19.1.169


37 
 

 

Berner, E. S., & Graber, M. L. (2008). Overconfidence as a Cause of Diagnostic Error in Medicine. 
The American Journal of Medicine, 121(5), S2–S23. 
https://doi.org/10.1016/j.amjmed.2008.01.001 

Bond, R. R., Novotny, T., Andrsova, I., Koc, L., Sisakova, M., Finlay, D., Guldenring, D., 
McLaughlin, J., Peace, A., McGilligan, V., Leslie, S. J., Wang, H., & Malik, M. (2018). 
Automation bias in medicine: The influence of automated diagnoses on interpreter accuracy 
and uncertainty when reading electrocardiograms. Journal of Electrocardiology, 51(6), S6–
S11. https://doi.org/10.1016/j.jelectrocard.2018.08.007 

Boskemper, M. M., Bartlett, M. L., & McCarley, J. S. (2022). Measuring the Efficiency of 
Automation-Aided Performance in a Simulated Baggage Screening Task. Human Factors: 
The Journal of the Human Factors and Ergonomics Society, 64(6), 945–961. 
https://doi.org/10.1177/0018720820983632 

Botzer, A., Meyer, J., & Parmet, Y. (2013). Mental effort in binary categorization aided by binary 
cues. Journal of Experimental Psychology: Applied, 19(1), 39–54. 
https://doi.org/10.1037/a0031625 

Botzer, A., Meyer, J., Borowsky, A., Gdalyahu, I., & Shalom, Y. B. (2015). Effects of cues on target 
search behavior. Journal of Experimental Psychology: Applied, 21(1), 73–88. 
https://doi.org/10.1037/xap0000035 

Carroll, A. E., Bauer, N. S., Dugan, T. M., Anand, V., Saha, C., & Downs, S. M. (2013). Use of a 
Computerized Decision Aid for ADHD Diagnosis: A Randomized Controlled Trial. 
Pediatrics, 132(3), e623–e629. https://doi.org/10.1542/peds.2013-0933 

Chi, C.-F., & Drury, C. G. (1998). Do people choose an optimal response criterion in an inspection 
task? IIE Transactions, 30(3), 257–266. https://doi.org/10.1080/07408179808966456 

Dawes, R. M., Faust, D., & Meehl, P. E. (1989). Clinical Versus Actuarial Judgment. Science, 
243(4899), 1668–1674. https://doi.org/10.1126/science.2648573 

Dixon, S. R., & Wickens, C. D. (2006). Automation Reliability in Unmanned Aerial Vehicle Control: 
A Reliance-Compliance Model of Automation Dependence in High Workload. Human 
Factors: The Journal of the Human Factors and Ergonomics Society, 48(3), 474–486. 
https://doi.org/10.1518/001872006778606822 

Dixon, S. R., Wickens, C. D., & McCarley, J. S. (2007). On the Independence of Compliance and 
Reliance: Are Automation False Alarms Worse Than Misses? Human Factors: The Journal of 
the Human Factors and Ergonomics Society, 49(4), 564–572. 
https://doi.org/10.1518/001872007X215656 

Duncan-Reid, J. (2022). Automation-Aided Collaborative Strategies in Signal Detection Tasks 
[Unpublished doctoral dissertation]. Oregon State University. 

Duncan-Reid, J., & McCarley, J. S. (2021). Strategy Use in Automation-Aided Decision Making. 
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 65(1), 96–100. 
https://doi.org/10.1177/1071181321651259 

https://doi.org/10.1016/j.amjmed.2008.01.001
https://doi.org/10.1016/j.jelectrocard.2018.08.007
https://doi.org/10.1177/0018720820983632
https://doi.org/10.1037/a0031625
https://doi.org/10.1037/xap0000035
https://doi.org/10.1542/peds.2013-0933
https://doi.org/10.1080/07408179808966456
https://doi.org/10.1126/science.2648573
https://doi.org/10.1518/001872006778606822
https://doi.org/10.1518/001872007X215656
https://doi.org/10.1177/1071181321651259


38 
 

 

Duncan-Reid, J., & McCarley, J. S. (2022). Automation-Aided Collaborative Strategies in Signal 
Detection Tasks. 

Dzindolet, M. T., Pierce, L. G., Beck, H. P., Dawe, L. A., & Anderson, B. W. (2001). Predicting 
Misuse and Disuse of Combat Identification Systems. Military Psychology, 13(3), 147–164. 
https://doi.org/10.1207/S15327876MP1303_2 

Elvers, G. C., & Elrif, P. (1997). The Effects of Correlation and Response Bias in Alerted Monitor 
Displays. Human Factors: The Journal of the Human Factors and Ergonomics Society, 
39(4), 570–580. https://doi.org/10.1518/001872097778667960 

Glancy, F. H., & Yadav, S. B. (2011). A computational model for financial reporting fraud detection. 
Decision Support Systems, 50(3), 595–601. https://doi.org/10.1016/j.dss.2010.08.010 

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. John Wiley. 

Gyles, S. P., & McCarley, J. S. (2019). Metacognition, numeracy, and automation-aided decision-
making [Unpublished masters dissertation]. Oregon State University 

Hautus, M. J., Macmillan, N. A., & Creelman, C. D. (2021). Detection Theory: A User’s Guide (3rd 
ed.). Routledge. https://doi.org/10.4324/9781003203636 

Healy, A. F., & Kubovy, M. (1981). Probability matching and the formation of conservative decision 
rules in a numerical analog of signal detection. Journal of Experimental Psychology: Human 
Learning and Memory, 7(5), 344–354. https://doi.org/10.1037/0278-7393.7.5.344 

Huegli, D., Merks, S., & Schwaninger, A. (2020). Automation reliability, human–machine system 
performance, and operator compliance: A study with airport security screeners supported by 
automated explosives detection systems for cabin baggage screening. Applied Ergonomics, 
86, 103094. https://doi.org/10.1016/j.apergo.2020.103094 

Hutchinson, J., Strickland, L., Farrell, S., & Loft, S. (2022). The Perception of Automation 
Reliability and Acceptance of Automated Advice. Human Factors: The Journal of the Human 
Factors and Ergonomics Society, 001872082110629. 
https://doi.org/10.1177/00187208211062985 

JASP Team (2019). JASP (Version 0.9.2)[Computer software]. https://jasp-stats.org/.  

Kruschke, J. K. (2021). Bayesian Analysis Reporting Guidelines. Nature Human Behaviour, 5(10), 
1282–1291. https://doi.org/10.1038/s41562-021-01177-7 

Kunar, M. A. (2022). The optimal use of computer aided detection to find low prevalence cancers. 
Cognitive Research: Principles and Implications, 7(1), 13. https://doi.org/10.1186/s41235-
022-00361-1 

Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian Cognitive Modeling: A Practical Course (1st 
ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139087759 

Lee, S. J., Mo, K., & Seong, P. H. (2007). Development of an Integrated Decision Support System to 
Aid the Cognitive Activities of Operators in Main Control Rooms of Nuclear Power Plants. 

https://doi.org/10.1207/S15327876MP1303_2
https://doi.org/10.1518/001872097778667960
https://doi.org/10.1016/j.dss.2010.08.010
https://doi.org/10.4324/9781003203636
https://doi.org/10.1037/0278-7393.7.5.344
https://doi.org/10.1016/j.apergo.2020.103094
https://doi.org/10.1177/00187208211062985
https://doi.org/10.1038/s41562-021-01177-7
https://doi.org/10.1186/s41235-022-00361-1
https://doi.org/10.1186/s41235-022-00361-1
https://doi.org/10.1017/CBO9781139087759


39 
 

 

2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, 
146–152. https://doi.org/10.1109/MCDM.2007.369429 

Liang, G., Sloane, J. F., Donkin, C., & Newell, B. R. (2022). Adapting to the algorithm: How 
accuracy comparisons promote the use of a decision aid. Cognitive Research: Principles and 
Implications, 7(1), 14. https://doi.org/10.1186/s41235-022-00364-y 

Liechty, Molly M. (2019). The Effect of Differing Degrees of Automation and Reliability on 
Simulated Luggage Screening Performance [Doctoral dissertation]. Old Dominion 
University 

Ly, A., Raj, A., Etz, A., Marsman, M., Gronau, Q. F., & Wagenmakers, E.-J. (2018). Bayesian 
Reanalyses From Summary Statistics: A Guide for Academic Consumers. Advances in 
Methods and Practices in Psychological Science, 1(3), 367–374. 
https://doi.org/10.1177/2515245918779348 

Maltz, M., & Shinar, D. (2004). Imperfect In-Vehicle Collision Avoidance Warning Systems Can Aid 
Drivers. Human Factors: The Journal of the Human Factors and Ergonomics Society, 46(2), 
357–366. https://doi.org/10.1518/hfes.46.2.357.37348 

McBride, S. E., Rogers, W. A., & Fisk, A. D. (2011). Understanding the Effect of Workload on 
Automation Use for Younger and Older Adults. Human Factors: The Journal of the Human 
Factors and Ergonomics Society, 53(6), 672–686. https://doi.org/10.1177/0018720811421909 

McCarley, J. S. (2009). Response Criterion Placement Modulates the Benefits of Graded Alerting 
Systems in a Simulated Baggage Screening Task. Proceedings of the Human Factors and 
Ergonomics Society Annual Meeting, 53(17), 1106–1110. 
https://doi.org/10.1177/154193120905301713 

Metz, C. E., & Shen, J.-H. (1992). Gains in Accuracy from Replicated Readings of Diagnostic 
Images: Prediction and Assessment in Terms of ROC Analysis. Medical Decision Making, 
12(1), 60–75. https://doi.org/10.1177/0272989X9201200110 

Meyer, J. (2001). Effects of Warning Validity and Proximity on Responses to Warnings. Human 
Factors: The Journal of the Human Factors and Ergonomics Society, 43(4), 563–572. 
https://doi.org/10.1518/001872001775870395 

Morphew, M. E., & Wickens, C. D. (1998). Pilot Performance and Workload Using Traffic Displays 
to Support Free Flight. Proceedings of the Human Factors and Ergonomics Society Annual 
Meeting, 42(1), 52–56. https://doi.org/10.1177/154193129804200113 

Munoz Gomez Andrade, F., Duncan-Reid, J., & McCarley, J. S. (2022). The Effect of Correlated 
Observations on Human-Automation Interaction in a Signal Detection Task. Proceedings of 
the Human Factors and Ergonomics Society Annual Meeting, 66(1), 2062–2066. 
https://doi.org/10.1177/1071181322661290 

Munoz Gomez Andrade, F., & McCarley, J.S. (2023). The Effect of Higher Information Redundancy 
in Aided Signal Detection. Manuscript in preparation [Manuscript in preparation]. School of 
Psychological Science, Oregon State University.  

https://doi.org/10.1109/MCDM.2007.369429
https://doi.org/10.1186/s41235-022-00364-y
https://doi.org/10.1177/2515245918779348
https://doi.org/10.1518/hfes.46.2.357.37348
https://doi.org/10.1177/0018720811421909
https://doi.org/10.1177/154193120905301713
https://doi.org/10.1177/0272989X9201200110
https://doi.org/10.1518/001872001775870395
https://doi.org/10.1177/154193129804200113
https://doi.org/10.1177/1071181322661290


40 
 

 

Murrell, G. A. (1977). Combination of evidence in a probabilistic visual search and detection task. 
Organizational Behavior and Human Performance, 18(1), 3–18. 
https://doi.org/10.1016/0030-5073(77)90015-0 

Neyedli, H. F., Hollands, J. G., & Jamieson, G. A. (2011). Beyond Identity: Incorporating System 
Reliability Information Into an Automated Combat Identification System. Human Factors: 
The Journal of the Human Factors and Ergonomics Society, 53(4), 338–355. 
https://doi.org/10.1177/0018720811413767 

Novotny, T., Bond, R., Andrsova, I., Koc, L., Sisakova, M., Finlay, D., Guldenring, D., Spinar, J., & 
Malik, M. (2017). The role of computerized diagnostic proposals in the interpretation of the 
12-lead electrocardiogram by cardiology and non-cardiology fellows. International Journal 
of Medical Informatics, 101, 85–92. https://doi.org/10.1016/j.ijmedinf.2017.02.007 

Parasuraman, R. (2000). Designing automation for human use: Empirical studies and quantitative 
models. Ergonomics, 43(7), 931–951. https://doi.org/10.1080/001401300409125 

Parasuraman, R., & Riley, V. (1997). Humans and Automation: Use, Misuse, Disuse, Abuse. Human 
Factors: The Journal of the Human Factors and Ergonomics Society, 39(2), 230–253. 
https://doi.org/10.1518/001872097778543886 

Parasuraman, R., Molloy, R., & Singh, I. L. (1993). Performance Consequences of Automation-
Induced “Complacency.” The International Journal of Aviation Psychology, 3(1), 1–23. 
https://doi.org/10.1207/s15327108ijap0301_1 

Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model for types and levels of human 
interaction with automation. IEEE Transactions on Systems, Man, and Cybernetics - Part A: 
Systems and Humans, 30(3), 286–297. https://doi.org/10.1109/3468.844354 

Rice, S., & McCarley, J. S. (2011). Effects of response bias and judgment framing on operator use of 
an automated aid in a target detection task. Journal of Experimental Psychology: Applied, 
17(4), 320–331. https://doi.org/10.1037/a0024243 

Robinson, D. E., & Sorkin, R. D. (1985). A contingent criterion model of computer assisted 
detection. In R. E. Eberts & C. G. Eberts (Eds.), Trends in ergonomics/human factors II 
(pp. 75-82). Amsterdam, Netherlands: North-Holland.  

Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for 
ANOVA designs. Journal of Mathematical Psychology, 56(5), 356–374. 
https://doi.org/10.1016/j.jmp.2012.08.001 

Rouder, J. N., Morey, R. D., Verhagen, J., Swagman, A. R., & Wagenmakers, E.-J. (2017). Bayesian 
analysis of factorial designs. Psychological Methods, 22(2), 304–321. 
https://doi.org/10.1037/met0000057 

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for 
accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237. 
https://doi.org/10.3758/PBR.16.2.225 

https://doi.org/10.1016/0030-5073(77)90015-0
https://doi.org/10.1177/0018720811413767
https://doi.org/10.1016/j.ijmedinf.2017.02.007
https://doi.org/10.1080/001401300409125
https://doi.org/10.1518/001872097778543886
https://doi.org/10.1207/s15327108ijap0301_1
https://doi.org/10.1109/3468.844354
https://doi.org/10.1037/a0024243
https://doi.org/10.1016/j.jmp.2012.08.001
https://doi.org/10.1037/met0000057
https://doi.org/10.3758/PBR.16.2.225


41 
 

 

Rovira, & Parasuraman. (2007). Effects of Imperfect Automation Support on Air Traffic Controller 
(ATCO) Performance, Mental Workload, and Attention Allocation: Miss vs. False Alarm 
Prone Automation. 

Rovira, E., McGarry, K., & Parasuraman, R. (2007). Effects of Imperfect Automation on Decision 
Making in a Simulated Command and Control Task. Human Factors: The Journal of the 
Human Factors and Ergonomics Society, 49(1), 76–87. 
https://doi.org/10.1518/001872007779598082 

Sorkin, R. D., & Dai, H. (1994). Signal Detection Analysis of the Ideal Group. Organizational 
Behavior and Human Decision Processes, 60(1), 1–13. 
https://doi.org/10.1006/obhd.1994.1072 

Sorkin, R. D., Hays, C. J., & West, R. (2001). Signal-detection analysis of group decision making. 
Psychological Review, 108(1), 183–203. https://doi.org/10.1037/0033-295X.108.1.183 

Sorkin, R. D., Kantowitz, B. H., & Kantowitz, S. C. (1988). Likelihood alarm displays. Human 
Factors: The Journal of the Human Factors and Ergonomics Society, 30(4), 445–459. 
https://doi.org/10.1177/001872088803000406 

Tanner, W. P., & Birdsall, T. G. (1958). Definitions of d ′ and η as Psychophysical Measures. The 
Journal of the Acoustical Society of America, 30(10), 922–928. 
https://doi.org/10.1121/1.1909408 

Tikhomirov, L., Bartlett, M. L., Dr, Duncan-Reid, J., & McCarley, J. S. (in press). When the Going 
Gets Tough: The Efficiency of Automation-Aided Signal Detection Declines with Task 
Difficulty. https://doi.org/10.31219/osf.io/tu7qpti 

van den Bergh, D., van Doorn, J., Marsman, M., Draws, T., van Kesteren, E.-J., Derks, K., 
Dablander, F., Gronau, Q. F., Kucharský, Š., & Gupta, A. R. K. N. (2020). A tutorial on 
conducting and interpreting a Bayesian ANOVA in JASP. L’Année Psychologique, 120, 73. 

Wang, L., Jamieson, G. A., & Hollands, J. G. (2009). Trust and Reliance on an Automated Combat 
Identification System. Human Factors: The Journal of the Human Factors and Ergonomics 
Society, 51(3), 281–291. https://doi.org/10.1177/0018720809338842 

Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E.-J. (2011). 
Statistical Evidence in Experimental Psychology: An Empirical Comparison Using 855 t 
Tests. Perspectives on Psychological Science, 6(3), 291–298. 
https://doi.org/10.1177/1745691611406923 

Wickens, C. D., & Dixon, S. R. (2007). The benefits of imperfect diagnostic automation: A synthesis 
of the literature. Theoretical Issues in Ergonomics Science, 8(3), 201–212. 
https://doi.org/10.1080/14639220500370105 

Wickens, C., & Colcombe, A. (2007). Dual-Task Performance Consequences of Imperfect Alerting 
Associated With a Cockpit Display of Traffic Information. Human Factors: The Journal of 
the Human Factors and Ergonomics Society, 49(5), 839–850. 
https://doi.org/10.1518/001872007X230217 

https://doi.org/10.1518/001872007779598082
https://doi.org/10.1006/obhd.1994.1072
https://doi.org/10.1037/0033-295X.108.1.183
https://doi.org/10.1121/1.1909408
https://doi.org/10.31219/osf.io/tu7qpti
https://doi.org/10.1177/0018720809338842
https://doi.org/10.1177/1745691611406923
https://doi.org/10.1080/14639220500370105
https://doi.org/10.1518/001872007X230217


42 
 

 

Wickens, T. D. (2001). Elementary Signal Detection Theory. Oxford University Press. 
https://doi.org/10.1093/acprof:oso/9780195092509.001.0001 

Wiczorek, R., & Manzey, D. (2014). Supporting Attention Allocation in Multitask Environments: 
Effects of Likelihood Alarm Systems on Trust, Behavior, and Performance. Human Factors: 
The Journal of the Human Factors and Ergonomics Society, 56(7), 1209–1221. 
https://doi.org/10.1177/0018720814528534 

Wiegmann, D., McCarley, J. S., Kramer, A. F., & Wickens, C. D. (2006). Age and automation interact 
to influence performance of a simulated luggage screening task. Aviation, Space, and 
Environmental Medicine, 77(8), 825–831. 

Yamani, Y., & McCarley, J. S. (2018). Effects of Task Difficulty and Display Format on Automation 
Usage Strategy: A Workload Capacity Analysis. Human Factors: The Journal of the Human 
Factors and Ergonomics Society, 60(4), 527–537. 
https://doi.org/10.1177/0018720818759356 

Yaniv, I. (2004). The Benefit of Additional Opinions. Current Directions in Psychological Science, 
13(2), 75–78. https://doi.org/10.1111/j.0963-7214.2004.00278.x 

Yeh, M., & Wickens, C. D. (2001). Display Signaling in Augmented Reality: Effects of Cue 
Reliability and Image Realism on Attention Allocation and Trust Calibration. Human 
Factors: The Journal of the Human Factors and Ergonomics Society, 43(3), 355–365. 
https://doi.org/10.1518/001872001775898269 

Zhang, Y., Antonsson, E. K., & Grote, K. (2006). A new threat assessment measure for collision 
avoidance systems. 2006 IEEE Intelligent Transportation Systems Conference, 968–975. 
https://doi.org/10.1109/ITSC.2006.1706870 

 

  

https://doi.org/10.1093/acprof:oso/9780195092509.001.0001
https://doi.org/10.1177/0018720814528534
https://doi.org/10.1177/0018720818759356
https://doi.org/10.1111/j.0963-7214.2004.00278.x
https://doi.org/10.1518/001872001775898269
https://doi.org/10.1109/ITSC.2006.1706870


43 
 

 

 

 

 

 

 

Appendices 

 

 

  



44 
 

 

Appendix A 
 

Table  

Descriptive statistics for measures of d’.  

    95% BCI    95% BCI 

Difficulty M SD n Low High M SD n Low High 

 Raw d’ 

 Unaided Aided 

High Reliability           

  Difficult Task 0.917 0.277 32 0.817 1.017 1.802 0.795 32 1.515 2.089 

  Easy Task 2.658 0.417 30 2.502 2.814 2.851 0.492 30 2.668 3.035 

Low Reliability           

  Difficult Task 0.871 0.305 33 0.763 0.979 1.190 0.288 33 1.088 1.292 

  Easy Task 2.550 0.476 32 2.379 2.722 2.398 0.393 32 2.257 2.540 

 Aided d’ 

 Empirical Optimal 

High Reliability           

  Difficult Task 1.802 0.795 32 1.515 2.722 3.009 0.013 32 3.004 3.014 

  Easy Task 2.851 0.492 30 2.668 2.814 3.667 0.275 30 3.564 3.769 

Low Reliability           

  Difficult Task 1.190 0.288 33 1.088 0.979 1.618 0.134 33 1.57 1.665 

  Easy Task 2.398 0.393 32 2.257 1.017 2.834 0.419 32 2.683 2.985 

M = mean.   
SD = standard deviation. 
BCI = Bayesian Credible Interval.   
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Appendix B 

Table  

Descriptive statistics for measures of aid-effect and aid-use efficiency.  

   
 

95% BCI 

Condition M SD n Low High 

 Aid Effect 

High Reliability      

  Difficult Task 0.885 0.913 32 0.555 1.214 

  Easy Task 0.193 0.607 30 -0.033 0.420 

Low Reliability      

  Difficult Task 0.318 0.467 33 0.153 0.484 

  Easy Task -0.152 0.434 32 -0.308 0.005 

 Efficiency 

High Reliability      

  Difficult Task 0.427 0.346 32 0.302 0.552 

  Easy Task 0.629 0.233 30 0.542 0.716 

Low Reliability      

  Difficult Task 0.590 0.287 33 0.488 0.692 

  Easy Task 0.744 0.219 32 0.665 0.823 

M = mean.   
SD = standard deviation.  
BCI = Bayesian Credible Interval. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


