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In this dissertation we present a compilation of the research conducted during the author’s

doctoral program. In the first part, we discuss a case study regarding the impact of scholar-

ships on student success at Oregon State University (OSU). Specifically, we look at the grad-

uation and retention rates and aim to determine how the amount of financial aid provided

to the students impacts these metrics, especially those who belong to vulnerable student

groups.

In the case study, we analyze data from first-time full-time (FTFT) freshmen that enrolled

at OSU between 2011 and 2013. Using statistical models we first quantify and characterize

the relationship between the amount of financial aid received by the students and the corre-

sponding retention and graduation rates. As expected, the results show that the probabilities

of retention and graduation increase as the amount of gift aid increases.

We find that financial aid seems to have a greater impact on first year students. Further-

more, we are able to characterize how these probabilities change when comparing students

from different demographic groups. We find that these changes are more noticeable when

looking at students in groups determined by Pell-eligibility, first-generation student status

and financial need, even after accounting for metrics of student performance.



We also discuss the problem of developing accurate models to predict the probability of

retention and graduation based on the amount of financial aid offered to students and other

relevant information. Such predictive models can be potentially used to guide policies and

determine thresholds for scholarship amounts required to achieve the desired levels of grad-

uation and retention rates at the university. Moreover, these models can be used to close

achievement gaps for students from traditionally under-privileged backgrounds.

We discuss the technical problem of binary classification with an imbalanced response vari-

able and overlap in the feature space. These data difficulties present a challenge to the

development of good predictive models for classification. The development of solutions to

this problem is an area of active research in statistical and machine learning. In order to

contribute a solution to this problem we first use simulations to characterize the impacts of

imbalance and overlap in a variety of scenarios. The results of the simulation study are used

in the creation of our novel algorithm for correcting the technical problem. Upon revisiting

the predictive component of our practical problem on student success we found evidence of

improved performance in certain cases where our algorithm was applied.

The second part of the dissertation concerns the development and expansion of pedagogical

practices for teaching statistical methods in higher education. Specifically, we discuss simple

bootstrap methods that are often taught in introductory statistics courses. Bootstrapping

and other resampling methods are progressively appearing in the textbooks and curricula of

courses that introduce undergraduate students to statistical methods.

Some simple bootstrap-based inferential methods have more relaxed assumptions than their

traditional counterparts possibly making it difficult to communicate their importance to

students. Students and instructors of introductory statistics courses who are made aware of

differences in the performance of these methods will better understand the importance of

these assumptions. We detail some of the assumptions that the simple bootstrap relies on

when used for uncertainty quantification and hypothesis testing.



We emphasize the importance of these assumptions by using simulations to investigate the

performance of these methods when they are or are not met. We also discuss software

options for introducing undergraduate students to these bootstrap methods including the

newly developed R package bootEd.

The individual parts of this dissertation fall under the unifying theme of statistics in educa-

tion. The results of our case study and our novel algorithm contribute to the use of statistics

in the education sector. Meanwhile our pedagogical research on the bootstrap contributes

to the teaching of statistics in the education sector. The ideas presented in this dissertation

can, however, be extended to improve the teaching of subjects other than statistics and the

analysis of data generated outside of educational settings. This research could also moti-

vate future efforts to increase the functionality of institutions of education, which are quite

foundational to a progressive and ethical society.
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Assessing the Effect of Scholarships on Student

Success



2

Chapter 1: Introduction

Understanding how to help students succeed has always been an important goal in education.

Research that contributes to this goal comes from both the educational perspective (e.g.

Tinto 2006; Kahu and Nelson 2018) and the data-driven perspective (e.g. Kabra and Bichkar

2011; D’Amico and Dika 2013). In recent years, Oregon State University (OSU) has made a

number of new efforts to increase student success.

For example, the Undergraduate Student Success Initiative (USSI) at OSU has been tracking

and collecting relevant data that may be useful for designing strategic plans, decision making,

and the evaluation of current student success strategies. Fig. 1.1 shows a screenshot of one

of the many summaries available for these data on the USSI webpage. Graphics such as these

allow us to observe current trends in retention and graduation rates using data aggregated

at the university level or separated by colleges or demographics of interest.

Though these visuals may be useful for finding general patterns in the data, they typically

are not sufficient for properly detecting and quantifying the presence and magnitude of any

underlying trends. Therefore, they offer limited insight on the true structures of the data

which are needed to answer more relevant questions. One such question is: What is the

role that financial aid plays on student success? While this question is straightforward, the

answer is not trivial as it must consider several aspects. For instance, although it is important

to determine the impact that different amounts of financial aid will have on student success,

it is also important to determine how such effects will vary across different demographics in

particular for those corresponding to vulnerable groups. In other words, it is important to

answer the more specific question: How much financial aid makes an impact and for whom?
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Figure 1.1: Screenshot from the Undergraduate Student Success Initiative (USSI) summary page.

Further support for answering such questions comes from the OSU Board of Trustees 2020

student success goals for the OSU community 1. These include:

• Raising the six-year graduation rate from 63.1 to 70.0 percent for all students

• Raising the first-year retention rate for all students from 83.8 to 90.0 percent

• Closing the achievement gap

With these goals in mind, the College of Science (COS) at OSU initiated a project to study

the impact that gift aid has on retention and graduation rates of students. Gift aid is defined

1https://leadership.oregonstate.edu/provost/undergraduate-student-success-initiative

https://leadership.oregonstate.edu/provost/undergraduate-student-success-initiative
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as merit- or need-based aid that students do not have to repay. In collaboration with the

Financial Aid Office and the Office of Institutional Reporting and Analytics (IRA) at OSU,

data were collected on three cohorts of students, entering in the 2011/12, 2012/13, and

2013/14 academic years. These data include information on first-year retention, six-year

graduation, gift aid of various types, tuition status, high school GPA, and more. Broadly,

the available data can be categorized as financial, academic, and demographical data on

students.

Student populations that are of key interest to the administrative bodies involved are first-

time full-time (FTFT) freshmen and junior transfer students. First-time full-time freshmen

include those students whose number of credit hours completed, 45 or less, places them in

the freshmen category and they have enrolled at the institution with a full-time academic

load, 12 or more credit hours, for the first time ever. Junior transfer students are those

students who transfer from another institution with at least 90 credits completed.

Freshmen students with little or no prior college experience are considered a vulnerable

student population (Ameri et al. 2016). For this reason, and due to the interests of the

COS, our research focuses on this student population. The final data set contains about 200

variables for over 9,000 FTFT freshmen students. Specifically, the response variables that

we are most interested in modeling are defined as:

• first-year retention - The re-enrollment of a student after their first year at the univer-

sity (binary)

• six-year graduation - A student graduating within six years of first enrolling at OSU

as a freshmen (binary)

The respective covariates whose impacts we are most interested in are total first year gift

aid, defined as:
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xFYgift = Amount received from Pell Grants (1st year)+

Federal Supplemental Educational Opportunity Grant (1st year)+

State External Gift Aid (1st year)+ Funded Gift Aid (1st year)+

Unfunded Gift Aid (1st year).

and total gift aid over first four years, defined as:

xTgift = Amount received from Pell Grants (1st year)+

Federal Supplemental Educational Opportunity Grant (1st year)+

State External Gift Aid (1st year)+ Funded Gift Aid (1st year)+

Unfunded Gift Aid (1st year)+

Amount received from Pell Grants (2nd year)+ . . .+ Unfunded Gift Aid (2nd year)

Amount received from Pell Grants (3rd year)+ . . .+ Unfunded Gift Aid (3rd year)

Amount received from Pell Grants (4th year)+ . . .+ Unfunded Gift Aid (4th year)

We denote the probabilities that we are most interested in modeling as:

pret(X) = P (first-year retention | X) and pgrad(X) = P (six-year graduation | X),

where X is a matrix containing all feature vectors, x1, . . . ,xp. In addition to first-year

retention, we also look into second- and third-year retention, defined as whether the student

enrolled in the university for a third and fourth year, respectively. Other covariates of

primary interest for our research include binary gender: male or female, students of color:
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students that are not White or International, Pell eligibility: students that are Pell eligible,

residency: Oregon resident or non-resident, first generation: students whose parents did not

attend college, and financial need: none, low, medium, high.

The goals of our research are two-fold: (1) to assess the effect of xFYgift and xTgift on pret(X)

and pgrad(X), respectively, in the presence of these other covariates, and to (2) develop

models for predicting pret(X). These two goals are the inferential and predictive components

of our case study, respectively. Due to the two-fold nature of our goals, our research includes

detailed data summaries and descriptive statistics, as well as a flexible class of models that

allows us to characterize the relationships between variables of interest, and obtain estimates

of the probabilities of retention and graduation for students in different demographic groups,

based on the received amount of financial aid.

While working on the predictive component of our case study a few technical issues were

brought to light. Desertion is not a common event and any institution would hope for this

to be true of their student populations. However, this does present a challenge to predicting

when students will desert because of the small amount of data available on students with

this outcome. This issue is termed imbalance and we define it more thoroughly in Chapter

3.

The response variables that we are interested in are skewed in the sense that desertion

and failure to graduate in six years are far less commonly observed than their positive

converses. A classification model that predicts the most frequently observed outcome every

time regardless of the covariate vector would arbitrarily achieve a high accuracy. This could

mislead us to assume that our models have strong predictive capabilities if we do not assess

the class-specific accuracies. Upon doing so we find that the minority class accuracy is poor

but the majority class accuracy is high. These two classes the minority and majority classes

correspond to students who deserted and returned, respectively.
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In addition to the issue of imbalance we also found that many of the covariates in our

dataset had little to no variation between students who deserted or did not graduate and

that were retained or graduated. This is known as overlap in the feature space and it

presents a challenge to predicting student outcomes. This may be due to the population

of students that we are studying. The students in our dataset are made up of first-time

full-time (FTFT) freshmen in the early stages of their studies. These students are likely to

have similar attributes since they are coming out of a K-12 system that has similar standards

and goals across the country.

Classification models aim to find patterns in the feature space that are indicative of an

outcome. When these patterns are similar regardless of the outcome of an observation,

incorrect classifications are more likely to occur. Though our outcome of interest is the

positive class, retained, the practical goal of our research is to identify students that have a

low chance of success and strategically award aid in a manner that will increase their chances

of succeeding. Therefore, we must carefully watch out for both false positives, predicting

a student will be retained when they actually deserted, and false negatives, predicting a

student will desert when they actually returned.

Imbalanced learning is a well-developed and still-growing area of research (e.g. Krawczyk

2016; A. Fernández et al. 2018). The most popular technique for correcting imbalance to

date is the Synthetic Minority Oversampling TEchnique (SMOTE) introduced by Chawla

et al. (2002). In order to tackle the predictive component of our practical research objective

we must also assess solutions to these two data difficulties. Though research concerning the

issue of overlap independently exists (e.g. Xiong et al. 2010; Oh 2011), solutions that deal

with both imbalance and overlap have become more common (e.g. Denil and Trappenberg

2010; Borsos et al. 2018; Z. Li et al. 2021).

After reviewing the current solutions to the issue of imbalance and overlap, we deemed it

necessary to develop a novel method that tackles these two issues in the presence of other data
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difficulties, such as missing or mixed-type data. Our research includes a simulation study that

connects various oversampling methods and predictive performance as data characteristics

change. This simulation study assisted us in characterizing the problem of imbalance and

overlap. Our insights and findings are implemented in a novel algorithm called The Strategic

SMOTE (S-SMOTE). We discuss the characteristics of this algorithm and return to the OSU

dataset to find that we are able to achieve better predictive performance in certain cases.

In Chapter 2 we present our inferential findings from the case study at OSU. In Chapter 3

we begin a preliminary discussion on the predictive component of the research and formally

define and explain the issues of imbalance and overlap. In Chapter 4 we discuss the simulation

study and the creation of S-SMOTE. Finally in Chapter 5, we provide example applications

of S-SMOTE and make comparisons between it and SMOTE. In Chapter 6 we provide

concluding remarks and summarize our findings.
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Chapter 2: Modeling Student Success: A Case Study at Oregon State

University (OSU)

In our review of the literature, we found that solutions to the issue of student success and,

more generally, discussions about student success, come from at least two perspectives. Re-

search from the education-focused perspective often looks at the problem from the viewpoint

of educators and psychologists and aims to produce fresh educational and psychological in-

sight on how to improve student success in higher education. (e.g. Perna and Thomas 2008;

Núñez-Peña et al. 2013; Hwang et al. 2021).

Such research has produced a variety of literature, ranging from the seminal textbook Leaving

College: Rethinking the Causes and Cures of Student Attrition (Tinto 1987), which specif-

ically focuses on student retention, to more recent literature by Kahu and Nelson (2018)

which discusses the intricate and interrelated components that influence student success.

Though no single definition of student success dominates the literature, most definitions

pertain to the continued and successful progress of students in a program, a university, or

higher education in general, over a certain amount of time (Mullin 2012).

Research from the data-focused perspective often views data as a key informant of student

success and aims to find patterns in the data that shed light on how to improve student

success metrics (e.g. Jones-White et al. 2010; Kabra and Bichkar 2011; Natek and Zwilling

2014). We believe that the literature from this research perspective will best inform our

research and, therefore, we will not review further literature from the former perspective,

but we refer the curious reader to the references that we have already given as a starting

point.
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We found that most of the literature that discusses student success from a data-focused

standpoint centers around the development of models that are commonly used in the field

of statistics and machine learning. Examples include the articles referenced in the previous

paragraph and those that we will discuss next. Based on our review, and that of Zeineddine

et al. (2021), the most popular models applied in the literature include logistic regression,

decision trees, random forests, and neural networks. Often, a combination of these and other

methods are used and their results are compared. We discuss some of the literature that led

to these conclusions next.

Using linear and logistic regression models D’Amico and Dika (2013) discovered factors that

influence the first-year GPAs and second-year retention statuses of first-generation college

students and non-first-generation college students, separately. In general, a first-generation

college student is defined as a student whose parents never attended college (e.g. Terenzini

et al. 1996; Ishitani 2006). Logistic regression, decision trees, and neural networks were

all used by Raju and Schumacker (2015), where first-semester and high-school GPA were

found to be some of the most important factors influencing retention leading to graduation

in FTFT freshmen. Logistic regression and machine learning techniques were also applied

by C. H. Yu et al. (2010) and Chatterjee et al. (2018) as they studied the impact of a variety

of factors on the retention and graduation of FTFT freshmen.

Other insightful, but less commonly used, approaches to understanding student success in-

clude those undertaken by Goldrick-Rab et al. (2012), Miller and Lesik (2014), Bettinger

(2015), Ameri et al. (2016), and Zeineddine et al. (2021). An experimental design approach

was used by Goldrick-Rab et al. (2012) to assess the effect of a need-based college grant

on first-year retention. They found that students who were randomly assigned the grant

were more likely to return, earned more credits, and had slightly better grades. This study

establishes a causal relationship between receiving need-based aid and first-year retention.

Survival analysis models were developed by Miller and Lesik (2014) who found that partic-
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ipation in a first-year seminar impacted the first-year retention of students, but its efficacy

dropped after their second-year. A survival analysis framework was also used by Ameri

et al. (2016) who developed a time-dependent survival model which was able to estimate

the semester in which a student would drop out with over 70% accuracy regardless of the

semester.

Automatic machine learning (AutoML) was used by Zeineddine et al. (2021) to predict

the first-semester GPA of first-time students, using data known at the time of admission.

AutoML searches for the most optimal combination of algorithms and hyper-parameters that

produce the best predictions (Tuggener et al. 2019). The winning model was an ensemble

classifier, that aggregated predictions from neural networks, logistic regression, decision trees,

and other machine learning algorithms to predict the GPA of a student.

After reviewing the literature, we identified a need for research into the specific impacts of

total gift aid. Much of the literature implements such monetary information in some form,

but we found that the effects of total aid are not carefully and directly studied in much of

the literature. Rather it is often lumped in with many other covariates possibly masking its

significance or changes in its impacts over time. Therefore, we aim to develop simple models

which can be used to make inference on the impact of total gift aid more specifically. This

will produce useful and fresh insight into the problem of student success from a data-driven

perspective.

We begin by looking at data summaries and descriptive statistics before moving on to mod-

eling. These summaries are helpful for condensing relevant information and revealing im-

portant patterns and features that may be related to some of our questions of interest. The

results of this exploratory analysis will help to guide us when we get to modeling.
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2.1 OSU Data Summaries

First we assess enrollment numbers over time for each cohort that we have data on. Table

2.1 gives enrollment numbers for the initial year and four subsequent years for each cohort.

Values in parentheses indicate the percentage of students that enrolled in the subsequent

year. The last column gives the number of students that graduated within six years for each

cohort.

Cohort Enroll. yr. 1 Enroll. yr. 2 Enroll. yr. 3 Enroll. yr. 4 Grad. 6 yr.

2011-2012 3154 (100%) 2648 (84.0%) 2415 (76.6%) 2245 (71.2%) 2090 (66.3%)

2012-2013 3101 (100%) 2627 (84.7%) 2406 (77.6%) 2271 (73.2%) 2100 (67.7%)

2013-2014 3328 (100%) 2798 (84.1%) 2559 (76.9%) 2359 (70.9%) 2258 (67.8%)

Total 9583 (100%) 8073 (84.2%) 7380 (77.0%) 6875 (71.7%) 6448 (67.3%)

Table 2.1: Enrollment numbers for each cohort over their first four years at OSU, and final six-year
graduation rates. Numbers in parentheses give the percent of students, out of all initially enrolled,
that continued through in subsequent years. The last row shows the totals over the three cohorts.

For example, 3154 students entered in the 2011-2012 academic year, from whom 2648 (about

84%) continued on to their second year. In the third year, only 2415 students (76.6% of those

initially enrolled) continued their education, and so on. In the last cell, we have that 2090

out of the 3154 students initially enrolled for that cohort achieved graduation within six

years at OSU. The very last row in the table provides the total values for enrollment and

graduation obtained by adding the numbers over the three cohorts.

Although Table 2.1 depicts a clear and consistent decline in the enrollment numbers through-

out the years (enrollment drops to about 84% on year 2, 77% on year 3 and 71% on year

4), these values should not be directly interpreted as “retention rates.” In order to obtain

the actual retention rates, we need to adjust the values so they account for the enrollment

in the previous year and not the starting year of the corresponding cohort. By doing so,

contrary to the enrollment downward trend depicted in Table 2.1, the retention rates can
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either increase or decrease depending on the number of students that are actually retained

from one year to the next. The actual retention rates are shown in Table 2.2, where the

first column “1st yr. ret.” displays the proportion of students that were retained by the

university going from the first year into the second year in each cohort, the second column

“2nd yr. ret.” displays the proportion of students that were retained by the university going

from the second year into the third year in each cohort, and so on. For instance, looking at

cohort AY2011-2012, we find that the first year retention, that is, the proportion of student

in year one that continued their education on year two is 84.0%, or equivalently, 2648/3154.

Similarly, the second year retention for the same cohort was 91.2%, or simply 2415/2648.

The last column in this table shows the graduation rates with respect to the enrollment in

year four for the corresponding cohorts.

Cohort 1st yr. ret. 2nd yr. ret. 3rd yr. ret Grad wrt EY4
2011-2012 84.0% 91.2% 93.0% 93.1%
2012-2013 84.7% 91.6% 94.4% 92.5%
2013-2014 84.1% 91.5% 92.2% 95.7%

Overall 84.2% 91.4% 93.2% 93.8%

Table 2.2: Retention rates and graduation rates with respect to enrollment in year four per cohort.
The overall values shown in the last row are based on the totals included in Table 2.1.

There are a few things that is important to note in these tables. In Table 2.2 we observe

that in all three cohorts the first year retention rates are noticeably lower than the retention

rates in years two and three. This suggests students that complete their first year of college

and enroll into their second year are more likely to remain at school and continue their

education, than they were when starting their first year of college. Or in other words, that

we will observe a larger proportion of students dropping out from college in their first year,

than in year two or three. In Table 2.1 total enrollment decreased about 16% in year two,

7% in year three and 5% in year four. This decrease shows that while the proportion of

students who drop out from college declines year-after-year, there is still a drop of about 4

to 5% between the enrollment in the fourth year and the number of students that achieve
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graduation within six years. These numbers suggest that even after four years of college

there is still a good chance that an important proportion of students will not complete their

education. Finally, the values and trends across the cohorts in both tables are remarkably

similar suggesting that these patterns are fairly consistent with little to none cohort-to-cohort

variation.

2.1.1 Evaluating Student Success and Demographics

In terms of demographics, Table 2.3 shows the proportions of students in each group with

respect to the initial enrollment for each cohort. Information about gender, race, and first-

generation status were self-reported by the students when applying. Categorization of this

information is done following the USSI guidelines. In the table, we observe the breakups of

these groups across cohorts are very similar. For gender we have a fairly balanced split of

student in all three cohorts with male students showing a slightly higher proportion. We also

observe that a clear majority of the students in each cohort are in-state White students and

that only 30% or less correspond to Pell eligible or first-generation students in each cohort.

Gender Stnt. of col. Pell elig. State Res. First-gen.
Cohort Female Male No Yes No Yes No Yes No Yes
2011-2012 48.2% 51.8% 71.8% 28.2% 67.8% 32.2% 24.8% 75.2% 81.3% 18.7%
2012-2013 47.5% 52.5% 70.7% 29.3% 68.7% 31.3% 23.3% 76.7% 75.1% 24.9%
2013-2014 48.3% 51.7% 70.0% 30.0% 70.9% 29.1% 24.2% 75.8% 77.4% 22.6%

Table 2.3: Proportion of students in each demographic groups with respect to the initial enrollment
of the corresponding cohorts.

The retention and graduation rates for each one of these groups are shown in Table 2.4.

Looking at the retention rates, we observe small differences, less than 2%, for gender, stu-

dent of color and state of residency, in contrast with the larger differences between 4 to 6%,

observed for the groups determined by Pell eligibility and first-generation status. These dif-

ferences are fairly consistent across the years and between cohorts. Notice than even though

the retention rates for all categories seem to improve over time, Pell eligible and first gener-
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ation students exhibit consistently lower retention rates than their respective counterparts

for all years. Looking at graduation rates, we observe important differences in all categories.

But again, the larger gaps can be found for Pell eligible and first-generation students, where

the observed graduation rates go as low as 56.1% for Pell eligible students and 58.6% for

first-generation students. Once again we observe that the overall patterns are pretty similar

across the different cohorts suggesting a small cohort-to-cohort variation.

Gender Stnt. of col. Pell elig. State Res. First gen.

2011-2012 Female Male No Yes No Yes No Yes No Yes
1st year ret. 85.3% 82.8% 83.3% 85.6% 86.4% 78.8% 84.7% 83.7% 84.8% 80.5%
2nd year ret. 91.1% 91.3% 91.5% 90.4% 92.4% 88.5% 91.1% 91.2% 91.9% 88.0%
3rd year ret. 93.0% 92.9% 92.8% 93.3% 93.4% 91.8% 95.7% 92.1% 92.8% 93.5%
Grad. 6 yr. 70.1% 62.7% 66.4% 65.8% 71.1% 56.1% 70.0% 65.2% 68.0% 58.7%

2012-2013 Female Male No Yes No Yes No Yes No Yes
1st year ret. 84.8% 84.6% 84.5% 85.1% 86.2% 81.4% 83.7% 85.0% 86.7% 78.6%
2nd year ret. 93.0% 90.3% 91.5% 91.9% 93.8% 86.5% 92.1% 91.4% 92.5% 88.4%
3rd year ret. 94.1% 94.7% 94.3% 94.5% 94.8% 93.3% 94.2% 94.4% 93.9% 96.1%
Grad. 6 yr. 71.4% 64.3% 68.4% 66.1% 71.7% 59.1% 66.1% 68.2% 70.2% 60.3%

2013-2014 Female Male No Yes No Yes No Yes No Yes
1st year ret. 85.1% 83.1% 84.4% 83.4% 86.4% 78.3% 82.3% 84.7% 85.8% 78.1%
2nd year ret. 91.7% 91.2% 92.5% 88.9% 92.1% 89.7% 89.9% 91.9% 91.9% 88.9%
3rd year ret. 92.5% 91.9% 91.7% 93.4% 93.4% 88.9% 93.1% 91.9% 92.8% 89.8%
Grad. 6 yr. 71.7% 64.2% 68.8% 65.7% 72.3% 57.0% 66.4% 68.3% 70.5% 58.6%

Table 2.4: Retention and graduation rates by demographics in each cohort

So far, the biggest takeaways from these summaries are first, that Pell eligible and first-

generation students are the most vulnerable populations with respect to student success,

and second, that first-year retention and six-year graduation rates need to be improved.

However, we have not yet considered the financial component of the problem. Next, we will

focus on financial need as a potentially important factor for determining student success.
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2.1.2 Understanding Student Success with Considerations to Financial Need

and Demographics

The Office of Financial Aid and Scholarships considers four distinct categories for the severity

of a student’s financial need. If their expected family contribution (EFC) is greater than or

equal to their budget estimate, then their financial need level is “No Need”. If their EFC is

less than 33% of their budget estimate, then they are “High Need”. If their EFC is 34-66%

of their budget estimate, then they are “Medium Need”, and if their EFC is 67-99% of their

budget estimate, then they are “Low Need”. If a student’s Free Application for Federal

Student Aid (FAFSA) or budget is missing, then they are marked as “Unknown Need” or

“No Budget”, respectively.

In comparison, a student’s Pell-eligibility status is a binary yes or no indicator of need

determined using a student’s Cost of Attendance (COA) and their EFC. COA is a more

general estimate of how much a student will need in order to attend college. Both financial

need and Pell-eligibility capture information on costs not covered by EFC, therefore, we

expect these variables to be dependent. However given the motivations behind this research

and the many administrative bodies interested in its results we will include both financial

need and Pell-eligibility in our analyses whenever independence is not an issue. This will

allow both metrics of student need to be evaluated.

Table 2.5 summarizes the actual number of students in each financial need category for

the first four years of college by cohort. The last column contains the total enrollment for

each year/cohort combination as a reference and the percentages in parentheses indicate the

proportion of students that received gift aid in the corresponding category. The numbers

within brackets in the last column indicate the proportion of students with financial need

for the respective year-cohort combination.
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Year 1

Cohort High (% aid) Medium (% aid) Low (% aid) None (% aid) Enroll. [% need]

2011-2012 1189 (95.5%) 449 (64.5%) 257 (59.5%) 687 (60.5%) 3154 [60.1%]

2012-2013 1186 (95.4%) 431 (60.1%) 281 (66.2%) 713 (60.31%) 3101 [61.2%]

2013-2014 1194 (95.8%) 441 (52.8%) 335 (53.7%) 868 (46.2%) 3328 [59.2%]

Year 2

Cohort High (% aid) Medium (% aid) Low (% aid) None (% aid) Enroll. [% need]

2011-2012 1138 (78.4%) 347 (53.0%) 237 (51.1%) 438 (49.5%) 2648 [65.0%]

2012-2013 1064 (82.0%) 378 (53.4%) 242 (52.9%) 497 (43.2%) 2627 [64.1%]

2013-2014 1040 (78.2%) 369 (45.0%) 239 (46.0%) 546 (37.7%) 2798 [58.9%]

Year 3

Cohort High (% aid) Medium (% aid) Low (% aid) None (% aid) Enroll. [% need]

2011-2012 952 (84.9%) 321 (53.9%) 185 (47.6%) 382 (52.1%) 2415 [60.3%]

2012-2013 905 (82.5%) 309 (52.4%) 217 (52.1%) 369 (46.6%) 2406 [59.5%]

2013-2014 888 (83.7%) 315 (53.3%) 211 (45.5%) 424 (42.2%) 2559 [55.3%]

Year 4

Cohort High (% aid) Medium (% aid) Low (% aid) None (% aid) Enroll. [% need]

2011-2012 834 (87.1%) 265 (56.6%) 166 (54.2%) 321 (52.0 %) 2245 [56.3%]

2012-2013 797 (86.3%) 308 (61.4%) 160 (51.3%) 332 (47.0%) 2271 [55.7%]

2013-2014 762 (83.3%) 302 (49.0%) 172 (48.3%) 355 (38.9%) 2359 [52.4%]

Table 2.5: Number of students in high, medium, low, and no financial need and enrollments per
cohort for the first four years. The numbers in parentheses indicate the percentage of students
that received some form of gift aid in each group and the numbers within brackets indicate the
proportion of students with financial need for the respective year-cohort combination

For example, 1189 students had high financial need in their first year for the cohort 2011-

2012. Of these students, only 1,136, about 95.5%, received gift aid. Furthermore, only

51 of the students withdrew from the university: a withdrawal rate of less than 5%. For

students in the 2011-2012 cohort with medium financial need, 64.5% received gift aid and

about 22% withdrew. Thus, retention seems to be impacted by both the financial status of

students and whether or not students receive gift aid. However, the relationship based on

the numbers alone is unclear. This motivates the need to examine the relationships using

more advanced modeling. We note that about 60% of the student have some level of financial

need during their first year, and for the most part, the proportion of students with financial

need fluctuates between 55-65%. We also observe that a large proportion of students with

high financial need receive gift aid across the years, with this proportion being as high as

95% on year 1. However, the decrease in the number of students in each category across
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years suggests that financial need might be a relevant factor for student retention.

With respect to demographics, Table 2.6 shows the percentages of students in each demo-

graphic group, by financial need status during Year 1, for each cohort. Regardless of need,

we observe some differences between all demographic groups. The most obvious differences

are observed for students with high financial need, however. For these students, we find that

the most vulnerable are those who are females, students of color, Pell eligible, in-state and

first-generation students. Among these, the two groups that concentrate over 50% of their

populations in this category are Pell-eligible and first-generation students. Note that these

differences are consistent across the cohorts.

This table also shows that there is a strong relationship between Pell-eligibility and financial

need, as we indicated earlier. This can be seen by noting that there is decrease in the

proportion in each financial need category as we move from high to low need for non-Pell-

eligible students but we see an increase for Pell-eligible students. However, for students who

are not Pell-eligible, financial need gives a more intricate description of their financial need.

2.1.3 Understanding Whether Scholarships Effect Student Success

Determining the effect that gift aid has on student success is difficult. We have seen in

previous tables that a majority of students have some level of financial need, and out of the

students with a high level of financial need, a vast majority receives some form of financial

aid. This situation leaves little room in the data to make meaningful comparisons when

controlling for several factors including potential confounding variables. To address this

issue and facilitate any comparisons, we aggregate financial need information as follows: for

each year we combine the levels high need and medium need into a level called more severe

need, and the levels low need and no-need into less severe need. Extending the notion of

financial need over the course of several years is more difficult. We define more severe if a
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Cohort 2011-2012
Gender Stnt. of col. Pell elig. State Res. First gen.

Need year 1 Female Male No Yes No Yes No Yes No Yes
High 39.6% 35.9% 33.6% 48.1% 9.1% 97.7% 28.1% 40.9% 31.5% 64.5%
Medium 14.4% 14.1% 14.5% 13.5% 21.0% 0.0% 15.0% 14.0% 15.0% 10.7%
Low 8.1% 8.2% 9.0% 6.1% 12.0% 0.0% 8.2% 8.1% 9.0% 4.6%
None 22.5% 21.1% 25.0% 13.6% 32.2 % 0.0% 20.9% 22.1% 24.3% 10.7%

Cohort 2012-2013
Gender Stnt. of col. Pell elig. State Res. First gen.

Need year 1 Female Male No Yes No Yes No Yes No Yes
High 39.7% 36.9% 33.5% 49.6% 11.1% 97.6% 25.9% 42.0% 30.0% 63.0%
Medium 14.3% 13.5% 14.6% 12.2% 20.2% 0.0% 15.4% 13.5% 14.4% 12.5%
Low 10.2% 8.0% 10.6% 5.2% 13.2% 0.0% 10.8% 8.5% 10.0% 6.4%
None 22.7% 23.2% 26.0% 15.6% 33.5% 0.0% 24.1% 22.7% 27.6% 9.2%

Cohort 2013-2014
Gender Stnt. of col. Pell elig. State Res. First gen.

Need year 1 Female Male No Yes No Yes No Yes No Yes
High 38.1% 33.8% 31.4% 46.3% 9.5% 99.9% 27.0% 38.7% 26.9% 66.5%
Medium 13.6% 12.9% 14.1% 11.2% 18.7% 0.0% 13.8% 13.1% 13.5% 12.2%
Low 10.0% 10.2% 10.9% 8.1% 14.2% 0.0% 11.2% 9.7% 11.5% 5.2%
None 27.1% 25.1% 29.9% 17.2% 36.8% 0.0% 25.4% 26.3% 30.3% 11.7%

Table 2.6: Percentages of students with high, medium, low, or no financial need during their first
year by demographic groups for each cohort. Students with an unknown need status or no budget
are not included in the table.

given student has high or medium need for 2 or more years, and as less severe if a given

student is in the low need or no-need category for 3 or more years. Note that by using

these definitions it is possible for some students to have an undetermined status for their

financial need. For instance, if a given student is identified as medium need for one year, low

need for another year, and for the other two years there are no records, then the financial

need of that student is not flagged as more-severe nor less-severe, and their status remains

unknown. While this aggregation is arbitrary, it facilitates the comparisons and allow us to

extract relevant information that distinctly separates students that face high or moderate

levels of financial need during their college experience from those that do not. Based on

these definitions, the two panels of Table 2.7 summarize information for first year retention

and graduation rates in each cohort. On the left panel, we find the success rates based on the

corresponding levels of financial need. We observe consistently higher proportion of retention

and graduation among those students with less-severe financial need than those in the more
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severe category. These differences are substantially larger when comparing graduation rates

and remain largely unchanged across cohorts.

Cohort Fin. need Cohort Gift aid

2011-2012 less-sev more-sev 2011-2012 below med. above med.
1st year ret. 87.0% 80.3% 1st year ret. 74.8% 82.3%
Grad. 6 yr. 86.1% 65.6% Grad. 6 yr. 47.5% 73.4%

2012-2013 less-sev more-sev 2012-2013 below med. above med.
1st year ret. 86.7% 82.4% 1st year ret. 76.8% 84.3%
Grad. 6 yr. 87.8% 67.8% Grad. 6 yr. 45.7% 76.7%

2013-2014 less-sev more-sev 2013-2014 below med. above med.
1st year ret. 87.1% 80.9% 1st year ret. 72.8% 84.0%
Grad. 6 yr. 84.7% 66.7% Grad. 6 yr. 48.8% 72.5%

Table 2.7: First year retention and graduation rates by demographics for students in the cohort
2011-2012

On the right panel, we look only at students with more-severe financial need and compare the

students retention and graduation rates based on the amount of gift aid received by them.

On the left side we have the success rates for the 50% of students that receive less than the

median amount of gift aid, and on the right side the observed rates for the students that

receive more than the median amount. The median gift aid for the cohorts AY2011-2012,

AY2012-2013, and AY2013-2014 are 2,100, 3,500 and 3,000 dollars, respectively. Note that

these medians were calculated without filtering out students who received $0 first-year aid.

We observe in all cases fairly large gaps for the success rates between those students that

receive less than the median gift aid and those that receive an amount exceeding the median

value. These results provide a deeper insight into those presented in Table 2.2, and suggest

that the chances of success for students with financial need can be largely improved based

on the amount of scholarship aid that is given to them. What is unclear based on the table

is how student demographics might be confounding these results.

In order to assess how the amount of financial aid affects success rates in different demo-

graphics, we can use Figure 2.1. Retention and graduation rates are further broken down

by whether the awarded gift aid is more or less than the median amount for all students,
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and demographics. The median amount of total first year gift aid for students in need was

7,095 dollars. The median amount of total gift aid over the first four years for students in

need was 15,197 dollars. These values were again calculated including students who received

$0 for first-year or total four-year gift aid. Demographics of interest are binary gender,

Pell-eligibility, whether the student is non-white and non-international, termed a student of

color, Oregon residency, and first-generation status. In general, first-year retention is lower

for students whose gift aid is less than the median. However, for most demographical char-

acteristics, there are further disparities in first-year retention other than those created by

aid.

In the first plot of the first row of Figure 2.1, we see that the bars are approximately the

same height for males and females regardless of aid. This indicates that there are no further

discrepancies in retention based on gender. However, looking at the first plot in the second

row of Figure 2.1, the difference in graduation rates between gender categories is larger

for students whose gift aid was less than the median. Males who received less than the

median gift aid have an even lower retention rate. The largest combined effect of aid and

demographic can be seen when considering Pell-eligibility. For students receiving more than

the median amount of gift aid, those who were Pell-eligible had a retention rate 12.1% lower

than those who were not. Meanwhile, for students receiving less than the median amount of

gift aid, Pell-eligible students had a retention rate 41.9% less than those who were not. In

summary, the differences in student success between demographic groups are less severe for

students receiving more aid. This provides empirical evidence that increasing gift aid could

eliminate demographical disparities in student success.
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2.1.4 Examining Student Success and Racial Group

The variable student of color broadly categorizes students as non-white and non-international,

or not, which conforms to the government-set reporting standards used by administrative

bodies at OSU. However, combining students across many racial categories could mask

important results for students in smaller racial groups. Therefore, in this section we ex-

plore similar patterns as before in our data but using the variable race description rather

than student of color. This variable gives a students self-selected race from nine categories:

American-Indian or Alaska Native, Asian, Black or African-American, Hispanic, Multiple

Races, Native Hawaiian or Pacific Islander, White, International Student, and Unknown.

Table 2.8 gives the percentage of students in each racial group by cohort. The majority

of students are White, and the next largest groups are students who are Asian, Hispanic,

or Multiple races. The other racial groups - American Indian or Alaska Native, Black or

African American, Native Hawaiian or Pacific Islander, International, or Unknown - are quite

underrepresented in our dataset. We provide Table 2.8 first so that this can be taken into

account before generalizing the results and conclusions made in this section, and the rest of

the report, to students of all races.

Cohort Cohort 2011-2012 Cohort 2012-2013 Cohort 2013-2014 Overall

American Indian
or Alaska Native

2.63% 2.48% 2.58% 2.57%

Asian 9.35% 8.64% 8.32% 8.77%

Black or African
American

0.86% 1.16% 1.05% 1.02%

Hispanic 8.34% 8.77% 9.38% 8.84%

Multiple 6.88% 7.93% 8.38% 7.74%

Native Hawaiian
or Pacific Islander

0.16% 0.32% 0.27% 0.25%

International 0.82% 0.52% 0.57% 0.64%

Unknown 0.44% 0.48% 0.54% 0.49%

White 70.51% 69.69% 68.90% 69.69%

Table 2.8: Percentage of students falling into each racial category and overall, by cohort.
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Table 2.9 provides the number and percentage of students who were retained in consecutive

years by racial group and cohort. For example, 217 students of multiple races enrolled in the

2011-2012 academic year. Of these 217 students, 181 (83.4%) returned for their second year.

Of those 181 students, 163 (90.1%) returned for their second year, and so on. We see that the

greatest drop in subsequent enrollment for students in all racial groups happens after their

first year. However, non-trivial drops in enrollment are seen beyond the first year for students

whose racial groups are Unknown, Black or African American, Native Hawaiian or Pacific

Islander, American Indian or Alaska Native, or International. Upon examining students

by racial groups we now find that additional improvements may be needed in second-year

retention and onward for students in underrepresented racial groups.



25

E
n

ro
ll

ed
1s

t
y
r.

E
n

ro
ll

2n
d

y
r.

E
n

ro
ll

3r
d

y
r.

E
n

ro
ll

4t
h

y
r.

G
ra

d
.

6
y
r.

C
oh

or
t

20
11

-2
01

2

A
m

.
In

d
.

or
A

K
N

at
.

83
(1

00
%

)
73

(8
8%

)
64

(8
7.

7%
)

60
(9

3.
8%

)
55

(9
1.

7%
)

A
si

an
29

5
(1

00
%

)
26

4
(8

9.
5%

)
24

1
(9

1.
3%

)
22

8
(9

4.
6%

)
21

9
(9

6.
1%

)
B

la
ck

or
A

f.
A

m
.

27
(1

00
%

)
21

(7
7.

8%
)

20
(9

5.
2%

)
18

(9
0%

)
13

(7
2.

2%
)

H
is

p
an

ic
26

3
(1

00
%

)
21

8
(8

2.
9%

)
19

6
(8

9.
9%

)
18

1
(9

2.
3%

)
16

1
(8

9%
)

M
u

lt
ip

le
21

7
(1

00
%

)
18

1
(8

3.
4%

)
16

3
(9

0.
1%

)
15

1
(9

2.
6%

)
13

3
(8

8.
1%

)
N

at
.

H
I

or
P

ac
.

Is
l.

5
(1

00
%

)
5

(1
00

%
)

5
(1

00
%

)
5

(1
00

%
)

5
(1

00
%

)
In

te
rn

at
io

n
al

26
(1

00
%

)
19

(7
3.

1%
)

15
(7

8.
9%

)
11

(7
3.

3%
)

11
(1

00
%

)
U

n
k
n

ow
n

14
(1

00
%

)
13

(9
2.

9%
)

11
(8

4.
6%

)
10

(9
0.

9%
)

8
(8

0%
)

W
h

it
e

22
24

(1
00

%
)

18
54

(8
3.

4%
)

17
00

(9
1.

7%
)

15
81

(9
3%

)
14

85
(9

3.
9%

)

C
oh

or
t

20
12

-2
01

3

A
m

.
In

d
.

or
A

K
N

at
.

77
(1

00
%

)
70

(9
0.

9%
)

67
(9

5.
7%

)
64

(9
5.

5%
)

55
(8

5.
9%

)
A

si
an

26
8

(1
00

%
)

24
6

(9
1.

8%
)

23
7

(9
6.

3%
)

22
0

(9
2.

8%
)

20
8

(9
4.

5%
)

B
la

ck
or

A
f.

A
m

.
36

(1
00

%
)

30
(8

3.
3%

)
24

(8
0%

)
23

(9
5.

8%
)

19
(8

2.
6%

)
H

is
p

an
ic

27
2

(1
00

%
)

22
1

(8
1.

2%
)

20
3

(9
1.

9%
)

19
2

(9
4.

6%
)

16
9

(8
8%

)
M

u
lt

ip
le

24
6

(1
00

%
)

19
9

(8
0.

9%
)

17
5

(8
7.

9%
)

16
7

(9
5.

4%
)

14
6

(8
7.

4%
)

N
at

.
H

I
or

P
ac

.
Is

l.
10

(1
00

%
)

8
(8

0%
)

5
(6

2.
5%

)
5

(1
00

%
)

4
(8

0.
0%

)
In

te
rn

at
io

n
al

16
(1

00
%

)
14

(8
7.

5%
)

12
(8

5.
7%

)
11

(9
1.

7%
)

10
(9

0.
9%

)
U

n
k
n

ow
n

15
(1

00
%

)
13

(8
6.

7%
)

10
(7

6.
9%

)
9

(9
0%

)
9

(1
00

%
)

W
h

it
e

21
61

(1
00

%
)

18
26

(8
4.

5%
)

16
73

(9
1.

6%
)

15
79

(9
4.

4%
)

14
80

(9
3.

7%
)

C
oh

or
t

20
13

-2
01

4

A
m

.
In

d
.

or
A

K
N

at
.

86
(1

00
%

)
78

(9
0.

7%
)

75
(9

6.
2%

)
68

(9
0.

7%
)

67
(9

8.
5%

)
A

si
an

27
7

(1
00

%
)

24
4

(8
8.

1%
)

22
9

(9
3.

9%
)

21
1

(9
2.

1%
)

20
8

(9
8.

6%
)

B
la

ck
or

A
f.

A
m

.
35

(1
00

%
)

29
(8

2.
9%

)
22

(7
5.

9%
)

21
(9

5.
5%

)
19

(9
0.

5%
)

H
is

p
an

ic
31

2
(1

00
%

)
24

0
(7

6.
9%

)
20

9
(8

7.
1%

)
20

2
(9

6.
7%

)
18

6
(9

2.
1%

)
M

u
lt

ip
le

27
9

(1
00

%
)

23
4

(8
3.

9%
)

19
9

(8
5%

)
18

3
(9

2%
)

17
1

(9
3.

4%
)

N
at

.
H

I
or

P
ac

.
Is

l.
9

(1
00

%
)

7
(7

7.
8%

)
6

(8
5.

7%
)

6
(1

00
%

)
5

(8
3.

3%
)

In
te

rn
at

io
n

al
19

(1
00

%
)

14
(7

3.
7%

)
12

(8
5.

7%
)

9
(7

5%
)

7
(7

7.
8%

)
U

n
k
n

ow
n

18
(1

00
%

)
17

(9
4.

4%
)

15
(8

8.
2%

)
14

(9
3.

3%
)

11
(7

8.
6%

)
W

h
it

e
22

93
(1

00
%

)
19

35
(8

4.
4%

)
17

92
(9

2.
6%

)
16

45
(9

1.
8%

)
15

84
(9

6.
3%

)

T
ab

le
2.

9:
R

et
en

ti
on

ra
te

s
of

al
l

st
u

d
en

ts
,

b
y

ra
ci

al
gr

ou
p

an
d

co
h

or
t,

w
it

h
re

sp
ec

t
to

p
re

v
io

u
s

ye
ar

en
ro

ll
m

en
ts

.



26

In order to further understand the impact of aid on retention and graduation rates between

racial groups, we focus on those students who have more severe need. Recall that we catego-

rized a student as having more severe need in their first year if they had high need or medium

need in their first year. Similarly, we categorized a student as having more severe need over

their first four years if they had high need or medium need for 2 or more of their first four

years. Figure 2.2 provides the first-year retention rates for students with more severe need

in their first year. This is broken down by racial group and whether the student received

more than the median amount of gift aid in their first year. The median amount of total

first year gift aid for students in need was 7,095 dollars including students who received $0

first-year aid.

Figure 2.2: Retention rates for students with more severe need. These are broken down by
racial group and whether total first-year gift aid was greater than the overall median for all
students with more severe need (7,095 dollars). Lower rates observed for student receiving
less aid, and decrease varies across racial groups.

Examining Figure 2.2 we see that regardless of racial group first-year retention rates are
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lower for students who received less than the median amount of gift aid in their first year.

Additionally, there is more variability in retention rates between racial groups for students

who received less than the median amount of gift aid. The greatest change in retention

rates for students who received more than the median aid amount happens between students

whose racial group is Unknown (N = 9) and International (N = 13). This difference

was 100%-84.6% = 15.4%. Meanwhile, the greatest change in retention rates for students

who received less than the median gift aid amount takes place between Native Hawaiian

or Pacific Islander (N = 9) and International (N = 26) students. This difference was

88.9%-61.5%=27.4%. This is an increase of almost 80% in the largest difference in retention

rates. Though there were very few students in these groups, if we constrain our comparisons

to racial groups with better representation, we still see larger differences for students who

received less than the median amount of gift aid. These results indicate that, for students

with more severe need, differences in retention rates between racial groups exist, but these

differences are further impacted by the amount of gift aid that students receive.

Looking within a given racial group, the largest decreases in retention rates between students

receiving more or less than the median amount of gift aid were observed for Hispanic, Inter-

national, and Black or African American students. These difference were 87.7% - 64.3% =

23.3%, 84.6%-61.5% = 23.1%, and 90.5% - 67.6% = 22.9%, respectively. Meanwhile, Native

Hawaiian or Pacific Islander, Asian, and White students saw the smallest change between

aid brackets. These differences were 1.1%, 11.9%, and 13.4%, respectively.

Figure 2.3 provides the six-year graduation rates for students with more severe need, broken

down by racial group and whether the student received more than the median amount of

total gift aid over the first 4 years. The median amount of total gift aid over the first four

years for students in need was 15,197 dollars, including $0 aid amounts. We observe patterns

that are similar to, but more severe than, those seen in Figure 2.2.

Specifically, the decrease in graduation rates for students who received less than the median
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Figure 2.3: Graduation rates for students with more severe need. These are broken down
by racial group and whether total gift aid over the first 4 years was greater than the overall
median for all students with more severe need (18,003 dollars). Even lower rates than
observed with retention are observed for student receiving less aid, and this decrease greatly
varies across racial groups, more than in retention rates.
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amount of gift aid is much greater regardless of racial group. The largest changes were

observed for students whose racial group is Unknown, Hispanic, and Black or African Amer-

ican. These were 54.8%, 52.0%, and 44.7%, respectively. The smallest changes were for

students whose racial group is International, Asian, and White. These were 28.2%, 30.1%,

and 32.0%, respectively. However, these are still quite large in comparison to the changes

in retention rates for a given racial group between those receiving more than the median

amount and those that did not. These results indicate that, for students in need and within

each racial group, the effect of aid on graduation rates is stronger than that on retention

rates. This motivates the need to study metrics beyond the first year, as we will do in some

parts of this analysis, in order to fully understand the effect of aid on student success.

2.1.5 Trends and Patterns within Demographic Groups

When analyzing large amounts of data, it is not completely uncommon to observe a pattern

in grouped data that disappears or diminishes when data are aggregated. When an observed

pattern in grouped data reverses or disappears after aggregating the data, this is referred

to as Simpson’s Paradox (e.g. Alin 2010). It is possible that grouping occurs in our dataset

since there are a variety of demographical variables taking a variety of values (e.g. gender,

race, need, residency, parent income). Further investigating patterns within some of these

groups could help us to make more accurate conclusions based on the aggregated dataset.

For example, Table 2.10 provides first-year retention and six-year graduation rates by racial

group. Overall 84.8% of students returned after their first year. However, after grouping

the data by race this value ranges from about 74% for International students to about 93%

for students of an Unknown race. The overall six-year graduation rate was 68.9% in the

aggregate data, but this value ranges from 45.7% for International students to 78.6% for

Asian students in the grouped data. These results indicate that the overall retention and
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graduation rates do not reflect student success for all student groups with quite the same

accuracy.

Race Deserted (%) Retained (%)
American Indian or Alaska Native 2 (22.2%) 7 (77.8%)
Asian 56 (8.6%) 594 (91.4%)
Black or African American 16 (19.5%) 66 (80.5%)
Hispanic 132 (18.4%) 585 (81.6%)
Multiple 83 (16.1%) 433 (83.9%)
Native Hawaiian or Pacific Islander 2 (11.8%) 15 (88.2%)
International 12 (26.1%) 34 (73.9%)
Unknown 2 (6.9%) 27 (93.1%)
White 679 (15.4%) 3729 (84.6%)
Overall 984 (15.2%) 5490 (84.8%)

Race Not Graduated (%) Graduated (%)
American Indian or Alaska Native 2 (22.2%) 7 (77.8%)
Asian 139 (21.4%) 511 (78.6%)
Black or African American 39 (47.6%) 43 (52.4%)
Hispanic 271 (37.8%) 446 (62.2%)
Multiple 189 (36.6%) 327 (63.4%)
Native Hawaiian or Pacific Islander 7 (41.2%) 10 (58.8%)
International 25 (54.3%) 21 (45.7%)
Unknown 12 (41.4%) 17 (58.6%)
White 1331 (30.2%) 3077 (69.8%)
Overall 2015 (31.1%) 4459 (68.9%)

Table 2.10: First-year retention and six-year graduation counts and proportions by racial
group. Results indicate that the problem of student success is not the same across all racial
groups.

Table 2.11 gives retention and graduation rates for students by severity of need. This was

calculated using the aggregate data and data broken down by racial groups. Data on severity

of need status over all four years was not available for any American Indian or Alaska

Native students, and there were zero Native Hawaiian or Pacific Islander students with less

severe need. This missing information or zero counts led to missing proportions which are

represented by dashes in the table. Other groups also had students with missing data on

need so there are disparities in the totals when compared to Table 2.10. This table was

calculated using data only on students with data on need.



31

N
o

n
ee

d
N

ee
d

R
ac

e
D

es
er

te
d

R
et

ai
n

ed
D

es
er

te
d

R
et

ai
n

ed
A

m
er

ic
an

In
d

ia
n

or
A

la
sk

a
N

at
iv

e
-

-
-

-
A

si
an

9
(6

.1
%

)
13

9
(9

3.
9%

)
46

(1
0%

)
41

4
(9

0%
)

B
la

ck
or

A
fr

ic
an

A
m

er
ic

an
1

(1
2.

5%
)

7
(8

7.
5%

)
15

(2
0.

8%
)

57
(7

9.
2%

)
H

is
p

an
ic

10
(1

0.
3%

)
87

(8
9.

7%
)

12
1

(2
0.

6%
)

46
6

(7
9.

4%
)

M
u

lt
ip

le
16

(1
4%

)
98

(8
6%

)
66

(1
7.

8%
)

30
5

(8
2.

2%
)

N
at

iv
e

H
aw

ai
ia

n
or

P
ac

ifi
c

Is
la

n
d

er
1

(1
00

%
)

0
(0

%
)

1
(6

.2
%

)
15

(9
3.

8%
)

In
te

rn
at

io
n

al
1

(9
.1

%
)

10
(9

0.
9%

)
11

(3
2.

4%
)

23
(6

7.
6%

)
U

n
k
n

ow
n

0
(0

%
)

12
(1

00
%

)
2

(1
1.

8%
)

15
(8

8.
2%

)
W

h
it

e
13

6
(9

.9
%

)
12

38
(9

0.
1%

)
51

1
(1

9.
4%

)
21

20
(8

0.
6%

)
O

ve
ra

ll
17

4
(9

.9
%

)
15

91
(9

0.
1%

)
77

3
(1

8.
5%

)
34

15
(8

1.
5%

)

N
o

n
ee

d
N

ee
d

R
ac

e
N

ot
G

ra
d

u
at

ed
G

ra
d

u
at

ed
N

ot
G

ra
d

u
at

ed
G

ra
d

u
at

ed
A

m
er

ic
an

In
d

ia
n

or
A

la
sk

a
N

at
iv

e
-

-
-

-
A

si
an

3
(5

.5
%

)
52

(9
4.

5%
)

10
6

(2
2.

8%
)

35
8

(7
7.

2%
)

B
la

ck
or

A
fr

ic
an

A
m

er
ic

an
3

(7
5%

)
1

(2
5%

)
27

(4
2.

2%
)

37
(5

7.
8%

)
H

is
p

an
ic

6
(1

2%
)

44
(8

8%
)

21
0

(3
7.

6%
)

34
9

(6
2.

4%
)

M
u

lt
ip

le
6

(1
1.

5%
)

46
(8

8.
5%

)
13

4
(3

7.
3%

)
22

5
(6

2.
7%

)
N

at
iv

e
H

aw
ai

ia
n

or
P

ac
ifi

c
Is

la
n

d
er

-
-

6
(3

7.
5%

)
10

(6
2.

5%
)

In
te

rn
at

io
n

al
0

(0
%

)
4

(1
00

%
)

19
(5

9.
4%

)
13

(4
0.

6%
)

U
n

k
n

ow
n

1
(3

3.
3%

)
2

(6
6.

7%
)

10
(5

8.
8%

)
7

(4
1.

2%
)

W
h

it
e

59
(9

%
)

59
5

(9
1%

)
82

0
(3

3.
4%

)
16

36
(6

6.
6%

)
O

ve
ra

ll
78

(9
.5

%
)

74
4

(9
0.

5%
)

13
32

(3
3.

6%
)

26
35

(6
6.

4%
)

T
ab

le
2.

11
:

F
ir

st
-y

ea
r

re
te

n
ti

on
an

d
si

x
-y

ea
r

gr
ad

u
at

io
n

co
u

n
ts

an
d

p
ro

p
or

ti
on

s
b
y

ra
ci

al
gr

ou
p

fu
rt

h
er

b
ro

ke
n

d
ow

n
b
y

n
ee

d
.

P
at

te
rn

s
in

th
e

or
ig

in
al

d
at

a
w

er
e

n
ot

al
w

ay
s

th
e

sa
m

e
af

te
r

gr
ou

p
in

g
b
y

ra
ce

.
D

at
a

on
se

ve
ri

ty
of

n
ee

d
st

at
u

s
ov

er
al

l
fo

u
r

ye
ar

s
w

as
n

ot
av

ai
la

b
le

fo
r

an
y

A
m

er
ic

an
In

d
ia

n
or

A
la

sk
a

N
at

iv
e

st
u

d
en

ts
,

an
d

th
er

e
w

er
e

ze
ro

N
at

iv
e

H
aw

ai
ia

n
or

P
ac

ifi
c

Is
la

n
d

er
st

u
d

en
ts

w
it

h
le

ss
se

ve
re

n
ee

d
in

th
ei

r
fi

rs
t

tw
o

ye
ar

s.
T

h
is

m
is

si
n

g
in

fo
rm

at
io

n
or

ze
ro

co
u

n
ts

le
d

to
m

is
si

n
g

p
ro

p
or

ti
on

s
w

h
ic

h
ar

e
re

p
re

se
n
te

d
b
y

d
as

h
es

in
th

e
ta

b
le

.



32

In the overall data we see that the retention rate was higher than the desertion rate regardless

of need. We also see that retention rate was higher for students not in need than those in

need. 90.1% of student not in need were retained while this was 81.5% for students in

need. Similar conclusions apply for graduation rates, with more students graduating than

not regardless of need, and students not in need having a higher graduation rate. When

we examine the data grouped by race, however, the relationship between need and student

success is not so clear. Contrary to the overall pattern, 57.8% of Black or African American

students in need graduated while 25% of those not in need graduated. Students in need who

were International or of an Unknown race also had graduation rates below 50%. Additionally,

the drop in retention and graduation rates for students in need is not the same for all racial

groups. For example, the difference in retention rates between students in need and not in

need is greatest for International students at 23.3%, but this was only 8.6% when the data

were aggregated. These differences could be due to the low counts in these racial groups.

More data would need to be obtained on students in these racial groups to further examine

the relationship between need and student success for them and make comparisons to the

overall trend.

Our results also show that there are variables which are more useful to classification for some

groups than for others. It is desirable that a variables values can be separated into two or

more subsets such that the classes of observations in each of those subsets are mostly the

same then this variable. Such variables are useful for the classification task because they

can be used to create decision boundaries. For example, if 90% of students in need deserted

and 90% of students not in need returned, this variable would be a very clear indicator of

student success. In terms of graduation, the behavior of students in need was less clear-cut

for students whose race was Black or African American, International or Unknown. This is

because the graduation rates for students in these racial groups who were also in need are

close to 50%.
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Results such as these were continually observed in the data when studying the relationship

between student success and two or more demographics. These indicate that there are

students whose characteristics are typical of those that succeeded based on the rest of our

data, but they did not succeed. These students contribute to anti-separation in the dataset -

their covariates are indicative of a certain outcome based on the rest of the data, but they did

not achieve this outcome. For example, referring to Table 2.11, we saw that 93.9% of Asian

students with less severe need returned after their first year, but 6.1% did not. A classifier

is very likely to misclassify these few observations that break the norm. The underlying

issue is that we have little data on students with these “success” characteristics who do not

actually succeed and we also have little data on students with “failure” characteristics - that

is, characteristics indicative of not succeeding based on patterns observed in the rest of the

data, who do succeed.

Overall, these results indicate that our analysis of these data will be most representative of

White students that are ineligible for the Pell grant, Oregon residents, non-first-generation,

and less severely in need. Though we aim to find patterns in the data and generalize these

to broader populations, caution should be used before generalizing these results to smaller

subsets of the population or minority groups within the student population because very

little data are available on these groups. There will always be students who do not follow

the general patterns that we aim to discover in the data. More work would need to be done

to understand factors contributing to or detracting from the success of such students.

The results presented in this section show that first-year retention and six-year graduation

can be improved. However, they also show that this problem is more intricate than simply

studying retention versus gift aid. The impacts of student demographics and financial need

were shown and these have a non-trivial impact on retention and graduation rates. While

these results are a good start at exploring the data, formal statistical models will need to

be fit in order to further flush out the impacts of aid on student success, and that between
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various student groups. In the next section we will discuss our modeling approach to the

inferetial component of the problem.

2.2 Modeling Approaches for Inference

Our two main goals for this research are to (1) construct models that can adequately describe

the relationship between graduation or retention and the amount of gift aid received, while

taking other variables into account, and (2) develop predictive models that can be used to

determine how the predicted success of a given student changes with gift aid, and how gift

aid impacts these predictions. These two goals respectively fall under two pillars of statistics,

namely, inference and prediction. We will now discuss our modeling approach to the first

component of this problem. We begin with a brief overview of statistical learning, and work

our way towards descriptions of the methods that we will use to tackle the first of these two

problems.

2.2.1 A Brief Introduction to Statistical Learning

Fundamentally, statistical learning is the study of the relationships between predictor vari-

ables X1, . . . , Xp for a population, and one or more response variables Y1, Y2, . . . . In the

simplest case, we observe the values of one quantitative or categorical response variable, Y ,

as well as p many predictors X1, . . . , Xp. We assume there is a usually unknown relationship

between these observed values defined as Y = f(X1, . . . , Xp) + ϵ, where ϵ denotes a random

or unobserved error term independent of X1, . . . , Xp.

The overarching goal of statistical learning is, therefore, to obtain an estimate, f̂ , of f , given

data on X and Y . Doing so results in a model that takes in X as input and outputs our

best guess Ŷ for Y . However, even if we have a perfect estimate for f in Y = f(X) + ϵ,
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the predicted value Ŷ = f̂(X) of Y may not equal Y , since Y also depends on ϵ, a term

independent of the data. This means that our models have reducible error, which comes

from better estimating f using X, and irreducible error, which cannot not reduced using

information from the data, since it is independent of X. Some sources of irreducible error

include unmeasured variables or unmeasurable variation in the data.

When we train a model, we aim to learn f using the information present in our observed

dataset. Often, we use domain knowledge to assume the functional form of f (e.g. a linear

equation). Then we use a procedure to estimate the parameters of this function in a manner

that minimizes the reducible error. These are called parametric methods. We may also forgo

any assumptions about the shape of f and work with a more general class of functions,

with the goal of finding the one that most minimizes the reducible error. These are called

non-parametric methods. Unfortunately, if care is not taken, these models can be prone

to overfitting, where the model closely matches the observed data, but does not properly

represent the true unobserved relationship between the variables.

Statistical learning problems also fall into a pair of categories: regression problems, wherein

we measure the magnitude of a quantitative response variable, and classification problems,

wherein we sort a qualitative response variable into several discrete classes. Though our

problem of predicting student success involves understanding the probability of retention

or graduation, when this probability is above a certain threshold, we will classify students

as retained/graduated or deserted/did not graduate. Therefore, the underlying problem

that we are solving is a classification problem. Next, we discuss how we define error for

classification models and issues that can arise when we focus more on models that minimize

the reducible error.

A more in-depth introduction to statistical learning can be found in the introductory-level

textbook An Introduction to Statistical Learning (James et al. 2013), and an advanced treat-

ment of statistical learning can be found in Elements of Statistical Learning (Hastie et al.
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2009). Note that our discussions will focus on supervised learning, where the true value/label

of the response variable is available at the time of training, and can be used to evaluate model

performance. This is not the case with unsupervised learning where the goal is to learn pat-

terns from the unlabeled data.

2.2.2 Accuracy Versus Interpretability

The accuracy, loss, or error of a model gives the user a sense of how well a model is able

to correctly predict real observations from the training data or test data (Makridakis 1993).

Training data refers to the data that a model is trained on, while test data is unseen by

the model during training and used to assess the accuracy of our predictions after training.

In a binary classification problem, let P and N denote the number of examples in the class

of interest and its complement, respectively. We call these the positive class and negative

class, respectively. The accuracy is then defined as Accuracy = TP+TN
P+N

, where TP and TN

denote the number of true positives and true negatives, respectively. The training error of

a binary classification model can, therefore, be defined as Error = FP+FN
P+N

, where FP and

FN denote the number of false positives and false negatives, respectively.

The interpretability or explainability of a model can be defined as how accessible the decision

making process of the model is to its users - that is, how well the model can be understood

(Bibal and Frénay 2016). Models that are interpretable provide output that can be used

by humans to understand which factors influenced the classifications made by the model.

Alternative definitions of interpretability, and its somewhat subjective nature, are further

discussed by (e.g. Bibal and Frénay 2016).

When there are a few simple covariates in the data, statistical methods like logistic regression

can be easily interpreted and used to understand the effect of xFYgift and xTgift on pret(X) and

pgrad(X), respectively. However, they may not take full advantage of larger data sets with
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complex features (Bussmann et al. 2020). For example, our dataset includes the variable

xmajor, the primary major of a student, which has over 100 possible levels. The presence

of such variables, coupled with the limitations of logistic regression as it pertains to model-

ing higher-order interactions (Levy and O’Malley 2020), supports the use of more complex

algorithms.

It is a common consensus that machine learning algorithms, such as Random Forests (Breiman

2001) and Neural Networks (Rojas 2013) are able to better incorporate information from large

and complex data sets, which affords them greater predictability (Bussmann et al. 2020).

Each individual decision tree in a random forest models higher-order interactions (Levy and

O’Malley 2020), and neural networks overcome the problem of feature selection by finding

the feature representation that minimizes the given loss function (Goodfellow et al. 2016).

However, this increase in predictability often comes at a cost, namely explainability (Burkart

and Huber 2021). Due to the lack of information that these models provide to the user on

how their classifications were made, they have been termed “black box models” by some (e.g.

Carvalho et al. 2019; London 2019; Bikmukhametov and Jäschke 2020). In comparison to

other statistical methods, such as logistic regression, there is more work that the user must

do in order to understand the results of these methods. This trade-off between accuracy and

explainability is our motivation for using a variety of models to achieve our research goals.

2.2.3 Regression Methods for Inference

Note that our response variables, denoted as Ygrad and Yret for graduation and retention,

respectively, are binary. That is, their outcomes can be represented by a 1 if the student

successfully graduated within six years or returned after their first year, or a 0 if the student

did not graduate within six years or return after their first year. It is difficult to find patterns

when directly examining binary data. A simple first option is to create a scatterplot, as in
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Figure 2.4, where first year retention (y) and gift aid (x) are plotted. The blue points depict

whether a particular subject was retained, a y-value equal to 1, or was not retained, ay-value

equal to 0, after the first year. It is nearly impossible to observe any patterns by direct visual

examination of the data, however, and a better option is needed.

Figure 2.4: Scatterplot of first year retention vs total gift aid. The blue points indicate the students
that were retained, y = 1, and were not retained, y = 0, after the first year for the corresponding
amount of total gift aid.

For visualization purposes, we can divide the values of total gift aid into equally sized brackets

and represent with points each one of the students that fall into each category, retained or

deserted, within each bracket. Figure 2.5 depicts this situation, where the cloud of points

next to the “Yes” category represents all the subjects that were retained after year one,

for a given range of total gift aid, and the points next to the “No” category represent that

information for those who deserted. Only data for students receiving more than 0 dollars of

gift aid in their first year is plotted.

Interestingly, the data in Figure 2.5 start revealing a pattern. As the amount of financial

aid increases, we observe more students falling in the ”Yes” category relative to the “No”

category, or equivalently, the observed odds of retention increase as the amount of total

aid increases. The odds of an outcome (e.g. first-year retention) can be calculated as the
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Figure 2.5: Jitter plot of first year retention vs. total gift aid bracket. The points in each bracket
represent the students that were and were not retained after their first year and received the
corresponding range of total gift aid.

ratio of the number of times that the outcome occurs to the number of times that it does

not. Alternatively, we can define the odds of an outcome as the ratio of the probability

that the outcome happens to the probability that it does not happen. This is denoted as

odds = p/1 − p.

The observation that we made about Figure 2.5 can be formalized and further analyzed using

logistic regression models, which aim to describe and characterize these types of patterns.

More specifically, logistic regression models provide a framework to study the relationship

between the odds of success of a response of interest and a set of given covariates. We are

interested in modeling the probabilities

pret(X) = P (first-year retention | X) and pgrad(X) = P (six-year graduation | X).

A more general definition for the probability of success, given a set of variables, X, is
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pY (X) = P (Y = 1|X).

Suppose that we have just one variable, X, and that the functional form, f , of the relationship

between the log odds of the event “Y = 1” is linear in X. Then we have the following relation

between the log odds and X,

ln

(
pY (X)

1 − pY (X)

)
= β0 + β1X.

Writing this in terms of the odds, we obtain

pY (X)

1 − pY (X)
= eβ0+β1X .

Increasing X by 1 increases the log odds of Y = 1 by a constant amount, while increasing X

by 1 increases the odds of Y = 1 by a constant relative rate. Lastly, we can solve for pY (X)

to obtain

pY (X) =
eβ0+β1X

1 + eβ0+β1X
,

and we arrive back at our probabilities of interest.

In order to estimate the parameters, β0, β1, we can use maximum likelihood (ML) estimation.

ML estimation compares all possible models and selects the one for which the observed data

has highest probability of occurring. In order to keep our discussion moving forward, we

point the reader to Chapters 4-6 of the textbook Categorical Data Analysis (Agresti 2012)

for more information on ML estimation for generalized and logistic regression models.

To predict the specific outcome, we can define the following rule: predict a success if pY (X) >

t, where 0 < t < 1, otherwise predict a failure. A typical values for the threshold, t, is 0.50.

However, larger or smaller values may be chosen for the threshold if the consequence of

incorrectly predicting a success or failure, respectively, is high. If we desire to use p variables

to understand the relationship between the log odds of success and X, then we can extend
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the functional form of f to

ln

(
pY (X)

1 − pY (X)

)
= β0 + β1X1 + β2X2 + . . . + βpXp.

Calculations for the odds, probability of success, and estimation of the parameters follows

closely to those for the simple univariate case.

In order to understand how the probability of first year retention changes for every $1000

increase in total first year gift aid, we first consider a model of the form

logit(pY (X)) = log

(
py(X)

1 − py(X)

)
= β0 + β1X, (2.1)

where X is total gift aid for year 1 in thousands of dollars, (β0, β1) are constants to be

estimated from the data, and p denotes the probability that a student is retained after the

first year, for a give value of X. Using statistical software, we fit the model and obtain the

regression output in Table 2.12.

Estimate Std. Error z value p-value
Intercept 1.234 0.062 19.952 < 0.001

Gift Aid Year 1 0.084 0.010 8.779 < 0.001

Table 2.12: Regression output of simple logistic regression model for first-year retention
using total first year gift aid in thousands of dollars. Only data for students receiving more
than 0 dollars of aid was used.

We can use the estimates in Table 2.12 to directly predict the probabilities of first-year

retention for any given amount of total first year gift aid, X. Specifically, the equation for

the regression curve is

p̂ =
e1.234+0.084X

1 + e1.234+0.084X
. (2.2)

Figure 2.6 depicts this regression curve. The probabilities of first year retention (y) are given

for the entire range of observed values of total first-year gift aid (x). The vertical dashed

line indicates the average amount of total gift aid given to students in their first year and
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the horizontal line corresponds to a first-year retention probability of 0.85. According to this

model, the probability of first-year retention for students that receive the average amount of

total first year gift aid, ≈ $6, 233 for aid-receiving students, is about 85.3%, and the amount

of total aid required to attain a probability of retention equal to 0.85 is about $5,953.

Figure 2.6: Estimated probabilities for first year retention in terms of total first-year gift aid. The
dashed lines depict a first-year retention probability of 0.85 on the y-axis and the average total gift
aid for year 1 on the x-axis.

These results are somewhat confirmatory of our overall inferential research question. We

see that the predicted probability of first-year retention increases as total first-year gift aid

increases. However, the relationship between retention and aid is far more complex than

this. We will need to include more information from our dataset in our models in order to

understand the impact that demographics, academic preparedness, and other information

have on this relationship.

2.3 Statistical Analysis Towards Inference

We will use logistic regression models to describe the effect of scholarships on the probabilities

of retention and graduation, accounting for different factors. We specifically focus on the
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inferential component of the problem, with the aim of fitting and interpreting models that

will allow us to understand the effect of gift aid, how this effect changes with demographics,

differences between retention and graduation rates, and more. These models will help us to

expand our understanding of factors that influence the variability in student success rates.

2.3.1 Cohort-by-Cohort Models

We begin by looking at the differences of this effect when comparing the retention rates for

the first, second, and third year, depicted in Figure 2.7. We observe that for almost any

fixed amount of aid, the probabilities of retention for first year students are considerably

lower than chances of retention of those students in their second or third year. These results

confirm the observations made earlier that freshmen students appear to be more vulnerable

in terms of retention than upperclassmen.

Figure 2.7: Predicted probability curves for first-, second-, and third-year retention across each
cohort. Regardless of cohort, first-year retention is lower across all aid categories. If the average
award amount for the first year (about 6,200 dollars for those receiving aid) were also awarded in
subsequent years, higher probabilities of retention would result.
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In fact, a student receiving the average amount of gift aid during their first year, about

6,200 dollars for students receiving aid, still places their chances of success below 85%,

compared to nearly 90% for students receiving the same amount in their second or third

year. Interestingly, the overall features for the first year retention curve remain almost

unaltered when looking at the different cohorts, and the small differences observed for the

second and third year retention curves are not statistically significant. Other preliminary

analyses show there is no evidence of cohort-to-cohort variation, and therefore we pool the

data from these three cohorts in all the results discussed in the rest of this section.

2.3.2 The Effect of Aid by Demographics

In order to look at demographics we considered models that include an additive and an

interaction term to to detect group differences. For instance, when looking at gender we

considered models of the form

logit(p) = β0 + β1aidyear1 + β2gender + β3(aidyear1× gender), (2.3)

where β2gender represents the additive effect and β3(aidyear1 × gender) the interaction

term. Effectively, these models produce distinctive curves for each group, say

logit(p) = β0 + β1aidyear1

for female students, and

logit(p) = (β0 + β2) + (β1 + β3)aidyear1,

for male students. Therefore, the closer β2 and β3 are to zero, the closer these two curves
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will be. And if any of these terms deviate from zero, we will notice differences in terms of

shifts or curvature between these curves, indicating differences in the scholarship effect due

to demographics.

Table 2.13 summarizes the results of fitting the models for first, second and third year reten-

tion vs gift aid by demographics. In the table, the letters “a” and “i” indicate the additive

and interaction terms were significant, at a significance level of α = 0.05, respectively. Ob-

serve that while all the variables show evidence of a significant effect in some of the models,

only Pell eligibility, first generation and financial need are consistently flagged as significant

in all the models. It should be noted, however, that statistical significance implies the data

shows evidence that the relationship between the probabilities of graduation/retention in

terms of financial aid change when we move from one demographic group to another, but

such results might be largely influenced by the number of observations in each group and do

not mean necessarily that the magnitude of these changes are of any practical importance.

To help visualize these differences Figures 5-8 depict the estimated probabilities of retention

Demographics Retention year 1 Retention year 2 Retention year 3 Graduation
gender None None i a

flagpellelig a i a i a i a i

studentofcolor None a None a

residency None i None a i

flagfirstgen a i a i a i a

financial need a a a i a i

Table 2.13: Summary of significance of the demographic variables when modeling retention and
graduation rates in terms of gift aid. The letter a indicates the additive term was significant at level
0.05. the letter i indicates the interaction term was significant at level 0.05, and None indicates
that none of these terms were significant at a significance level of α = 0.05.

for years 1-3 and graduation versus gift aid for each of the groups determined by the cor-

responding demographics. Confidence bands are also included, which were calculated using

the Wald interval for maximum-likelihood estimates. In some cases, the standard error of

an estimate was larger than normal, resulting in wider confidence bands. In all the figures,

the dashed lines indicate a probability of 85% for retention or graduation on the y-axis, and
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the average amount of gift aid on the x-axis. We observe that Pell eligibility, first-generation

status,and financial need seem to have a greater effect on the estimated probabilities in all

years.

For instance, when looking at first-year retention versus gift aid, the predicted probabilities

of retention are substantially higher for the students that are not Pell-eligible than for those

that are Pell-eligible, in particular, in the range from 0 − 5, 000 dollars of gift aid. The

average amount of gift aid in year one is about $4,200 for all students, including those not

receiving any aid. For this amount the predicted probability of retention for those that are

not Pell-eligible is 89.9%. This is compared to only 64.1% in the Pell-eligible group. Pell-

eligible students would need almost twice as much gift aid as those that are not Pell-eligible

in order to have a predicted probability of retention around 80%. Not surprisingly, financial

need seems to have a substantial effect as well. In particular, for first-year retention and

six-year graduation rates.
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First year retention vs gift aid by demographics
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Figure 2.8: Plots for the estimated probabilities of first year retention in terms of gift aid, account-
ing for the effect of the demographics of interest. The dashed lines indicate a probability of 85% in
the y-axis, and the average amount of gift aid in the x-axis. We observe that Pell-eligibility, first
generation and financial need seem to have a greater effect in the estimated probabilities.

2.3.3 Accounting for Academic Performance

These results indicate that gaps in student success due to demographics could be closed

through the strategic awarding of gift aid. However, any of these models could inadvertently

overstate or understate the significance of these results since we have not adjusted for other
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Second year retention vs gift aid by demographics
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Figure 2.9: Plots for the estimated probabilities of second year retention in terms of gift aid,
accounting for the effect of the demographics of interest. The dashed lines indicate a probability of
85% in the y-axis, and the average amount of gift aid in the x-axis. We observe that Pell-eligibility,
first generation and financial need seem to have a greater effect in the estimated probabilities.

relevant factors. For example, it would be sensible to incorporate information on academic

performance these models as this may have an underlying impact on student success. To be

clear, the issue we want to further address is whether these demographic variables continue

playing a significant role in student success, after adjusting for academic performance. In

this regard, some metrics of academic performance are available, and though most of them
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Third year retention vs gift aid by demographics

0.5

0.7

0.9

0 5000 10000 15000 20000
Gift aid

P
ro

b.
 o

f r
et

en
tio

n 
th

ird
 y

ea
r

Female

Male

Gender

0.5

0.7

0.9

0 5000 10000 15000 20000
Gift aid

P
ro

b.
 o

f r
et

en
tio

n 
th

ird
 y

ea
r

No

Yes

Pell eligible

0.5

0.7

0.9

0 5000 10000 15000 20000
Gift aid

P
ro

b.
 o

f r
et

en
tio

n 
th

ird
 y

ea
r

No

Yes

Student of color

0.5

0.7

0.9

0 5000 10000 15000 20000
Gift aid

P
ro

b.
 o

f r
et

en
tio

n 
th

ird
 y

ea
r

No

Yes

Residency

0.5

0.7

0.9

0 5000 10000 15000 20000
Gift aid

P
ro

b.
 o

f r
et

en
tio

n 
th

ird
 y

ea
r

No

Yes

First−generation

0.5

0.7

0.9

0 5000 10000 15000 20000
Gift aid

P
ro

b.
 o

f r
et

en
tio

n 
th

ird
 y

ea
r

No

Yes

Financial need

Figure 2.10: Plots for the estimated probabilities of third year retention in terms of gift aid,
accounting for the effect of the demographics of interest. The dashed lines indicate a probability of
85% in the y-axis, and the average amount of gift aid in the x-axis. We observe that Pell-eligibility
seem to have the greater effect in the estimated probabilities, and first generation and financial
need seem to have a moderate effect. Confidence bands are wider when the standard error of a
prediction was larger than normal. Predicted probabilities close to 1 produced upper bounds above
1, which were capped to 1. This was the case with the model for financial need.

are correlated, they do seem to play an important role in explaining student success.

For example, Figure 2.12 provides the predicted probabilities of first year-retention for various

values of gift aid, after accounting for SAT scores and GPAs. In the left-hand panel we
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Graduation vs gift aid by demographics
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Figure 2.11: Plots for the estimated probabilities of graduation in terms of gift aid, accounting
for the effect of the demographics of interest. The dashed lines indicate a probability of 85% in
the y-axis, and the mean total amount of gift aid in the x-axis. We observe that Pell-eligibility,
first generation and financial need seem to have a greater effect in the estimated probabilities, and
student of color seem to have a moderate effect.

provide the predicted probabilities of retention as aid increases, for students whose composite

SAT score is less than, or greater than or equal to, a score of 1600. In the right-hand panel

we provide the predicted probabilities of retention as aid increases, for students whose high-

school GPA at the time of application is less than, or greater than or equal to, a GPA of
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3. For reference, the observed median SAT score and high-school GPA of first-year students

receiving aid were 1640 and 3.71, respectively.

Figure 2.12: First year retention probabilities versus gift aid. The left- and right-hand panels
give the estimated probabilities as aid increases, after accounting for composite SAT scores and
high school GPA, respectively. In both plots the red line corresponds to the group with lower
academic performance in the respective metric, and the blue line corresponds to the group with
higher performance. Only students receiving aid were included here.

Differences in the predicted probabilities of the left-hand panel of Figure 2.12 are quite no-

ticeable. Low-performing students receiving the average amount of gift aid have an estimated

probability of retention near 80%. In contrast, high-performing students have an estimated

probability of retention near 90%. Though this gap in predictions due to SAT scores nar-

rows as gift aid increases, the differences are still fairly substantial at the 10,000 dollar mark,

which well exceeds the 75th percentile of gift aid awarded in year one. Similarly, the right

panel shows that students entering with a high-school GPA less than 3.0 have lower chances

of success which barely narrows as aid increases.

These models that incorporate academic performance provide evidence that not all dis-
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crepancies in student success may be effectively dealt with through awarding more gift aid.

However, it would be more thorough to consider how academic performance and demograph-

ics impact student success. Recall that our question was whether the demographic variables

continue playing a significant role when explaining the after adjusting for academic perfor-

mance. Therefore, combining our previous two models into one may give better insight into

how these factors impact student success for low-performing and high-performing students

in different demographic groups. It is important to include both pieces of information in the

models so that we can properly identify significant results for all groups in our population.

Table 2.14 provides the estimated coefficients of the additive and interaction terms for each

demographic variable obtained from models describing the first-year retention and six-year

graduation rates, before and after adjusting for high school GPA and class rank. The blue

color indicates those coefficients that were flagged as statistically significant at α = 0.05

level. Aid variables were scaled to thousands of dollars when fitting these models.

Estimated Coefficients Retention year 1 Graduation
(adjusting for academic performance) add/inter add/inter

gender 0.101/-0.025 -0.096/-0.003
flagpellelig -1.547/0.048 -2.020/-0.022

studentofcolor -0.150/-0.039 -0.491/0.008
residency -0.036/0.029 0.496/-0.020

flagfirstgen -0.956/0.057 -0.800/0.000
financial need -1.076/0.039 -1.669/-0.044

Estimated Coefficients Retention year 1 Graduation
(not adjusting for academic performance) add/inter add/inter

gender -0.081/-0.001 -0.188/-0.001
flagpellelig -1.843/0.057 -2.066/-0.033

studentofcolor -0.189/0.028 -0.353/-0.003
residency 0.186/0.008 0.433/-0.020

flagfirstgen -1.045/0.045 -0.895/-0.003
financial need -1.071/-0.043 -1.53/-0.086

Table 2.14: Estimated coefficients for additive (add) and interaction (inter) terms of the corre-
sponding demographic variables when modeling the first year retention and graduation probabilities
with and without adjusting for academic performance. The numbers in blue indicate the coeffi-
cients that are significant at the level α = 0.05.
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We observe that the estimated coefficients agree in magnitude, direction, and statistical

significance in most cases. When differences exist, they occur mostly in terms with a small

size effect. This can be seen in the first-year retention interaction term for Pell-eligible

students and the six-year graduation interaction term for financial need. As a result, the

overall conclusions remain the same: Pell-eligibility, first-generation status, and financial

need status are the demographic variables that are predicted to have the most impacts on

retention and graduation rates.

2.3.4 Further Exploring the Impact of Gift Aid by Race

The results of the bivariate logistic regression models of the previous section indicate that

Pell-eligibility, first-generation status, and financial need most impact student success. Since

the variable student of color broadly categorizes students as non-white and non-international,

or not, we could be overlooking important results about the impacts of aid for students of

different races. Therefore, in this section we will fit similar models as before, but using race

description. Recall that this variable gives a students self-selected race from nine categories:

American-Indian or Alaska Native, Asian, Black or African-American, Hispanic, Multiple

Races, Native Hawaiian or Pacific Islander, White, International Student, and Unknown.

Due to the very low percentages for their groups seen in Table 2.8, we combined students

whose racial categories were American Indian or Alaska Native, Native Hawaiian or Pacific

Islander, International, or Unknown into one category termed “Other”. The percentage of

students in these individual groups was less than 1% each.

Figure 2.13 shows the estimated probability curves for first-year retention as total gift aid

in the first year increases, for students in each racial group. In the first panel, we report

this information based on a model which accounted for race, but not for severity of need. In

the second and third panel, we provide the resulting curves after accounting for both race
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and severity of need. It is clear that the model that accounts for racial group alone does

not tell the entire story. There is a clear shifting up and down in the predicted probabilities

when we include information on whether the student had less or more severe need, respec-

tively. Hispanic and Black or African American students had very similar probabilities after

accounting for need, making their probability curves almost indistinguishable.

Figure 2.13: Fitted probability curves from logistic regression models for total first-year gift
aid and first-year retention. Left-most panel are curves from model that accounts only for
race. Right-most two panels are results for model that accounts for race and need. Rug gives
range of total first-year gift aid variable for each population in the model corresponding to
the facet.

According to Figure 2.13 awarding the average first-year gift aid to students who are in less

severe need would result in a predicted probability of success above 0.90 for all races with

even higher probability for Asian students. However, awarding this same amount to students

who are in more severe need would results in predicted probabilities of retention that are
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lower than 0.8 for all students except Asians. It will be around 0.87 for Asian students.

These results provide evidence that the effect of race is further impacted by severity of need.

The achievement gaps between races are predicted to narrow as more aid is awarded but

larger amounts of aid are needed to see this effect when considering only students in need.

The effect of race diminishes when we account for need but it is still present, this is more

true for students in more severe need when lower amounts of aid are awarded.

Figure 2.14 gives six-year graduation predictions for all students by race, and less- or more-

severely in need students by race. Additive effects are present for both race and need, noted

by the change in starting points between the second and third panel and within each of these

panels as well. In this case however, the gaps in graduation curves are similar regardless

of severity of need. This indicates that when considering six-year graduation the impact of

severity of need on the probability of graduation is not further related to how much total

gift aid is awarded. The impacts of the latter are fairly similar regardless of severity of need.

Table 2.15 gives the coefficients of the additive racial group terms depicted in Figures 2.13

and 2.14. To clarify, there are four separate models of retention or graduation on total aid (in

thousands of dollars) and racial group, for students in need and not in need. The coefficients

for Asian students are just the intercepts from the models, as all other racial group indicator

variables would evaluate to zero. Blue text indicates that the term was statistically significant

at the 0.05 significance level. The variables total first-year aid and total aid over the first

four-years were significant in all models. These results indicate that a significant additive

effect of race on six-year graduation is present for all races when considering students in

need. This remains true for all students except those of race Other when considering first-

year retention. However, there are fewer significant coefficients when considering students

who are not in need. In this case, the only significant additive effects are those for the

retention of students in racial groups Asian or Multiple.



56

Figure 2.14: Six-year graduation predictions for all students by race, and then less- or more-
severely in need students by race. Additive effects are present for both race and need, noted
by the change in starting points between the second and third panel and within each of these
panels as well. Rug gives range of total gift aid over first four years for each population in
the model corresponding to the facet.

2.4 Moving Towards Predictive Models

We have developed models to examine the relationship between gift aid and student success

for students from varying demographical backgrounds. The model results indicated that

achievement gaps can be closed through the strategic awarding of gift aid for students who

are Pell-eligible, first-generation, from minority racial groups, and have more severe financial

need. These results remained the same after correcting for the academic preparedness of

students as measured using SAT results.

The models that we have fit thus far are useful for making conclusions about the effect of aid
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Estimated Coefficients First-Year Retention Six-Year Graduation
(students in need)

Asian 1.16 -0.54
Black or African American -0.88 -1.06

Hispanic -0.87 -0.83
Multiple -0.65 -0.65

Other -0.68 -0.91
White -0.67 -0.29

Estimated Coefficients First-Year Retention Six-Year Graduation
(students not in need)

Asian 2.06 1.18
Black or African American -0.39 -2.53

Hispanic -0.49 -0.63
Multiple -0.91 -0.79

Other -0.23 -0.93
White -0.49 -0.48

Table 2.15: Coefficients of additive terms for models of retention and graduation on total
aid by race for students in need and those not in need. All but one of the coefficients are
significantly different from 0 for students in need, while for students not in need only two
are. Additionally, many coefficients are more negative or smaller for students in need than
those not in need.

on student success in the presence of other covariates, such as demographics and academic

performance. However, another important component of our analysis pertains to predicting

the probability of retention or graduation given a set of covariates. In the next chapter we

will shift our focus to this component. We will discuss an underlying issue with our dataset

that poses a challenge to predictability. We focus the rest of our analysis on first-year

retention because these data are available at the end of each academic year for updating

predictive models while those for six-year graduation take longer to collect. We will first

tackle the predictive problem using the same logistic regression models already discussed

but with more variables included. We will evaluate and discuss the predictive metrics of

such a model as a way to motivate our need for more complex models that better tackle the

predictive component of the problem. We will then discuss those more complex models and

explore some solutions to the technical problem that underlies our analysis.
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Chapter 3: Dealing with Imbalanced Data and the SMOTE Approach

Key issues that were addressed by Zeineddine et al. (2021) in their study were that of

overlap and imbalance. In general, when certain values of a variable are observed with a

higher frequency than others, the variable is called imbalanced (He and E. A. Garcia 2009).

Class overlapping is defined as the presence of examples in areas of the feature space where

the decision boundaries of a classifier intersect (Alejo et al. 2013). We found that these issues

were ignored in most of the literature on student success models.

For example, Miller and Lesik (2014) notes that the groups which they studied were largely

equivalent in terms of ACT scores, class rank, gender, and other factors, but they did not

address how this overlap could impact their results. Additionally, the semester drop out

rates reported by Ameri et al. (2016) give evidence that these variables are imbalanced, but

they did not address the possible impacts of this imbalance on their predictions.

As noted by Zeineddine et al. (2021), in order to better guide student success efforts and

help students who are truly in need, student success models must be able to predict negative

and positive outcomes with high accuracy. Since reductions in classifier performance can be

attributed to the combined impact of imbalanced classes and overlapping between classes

(Batista et al. 2005), the presence of these two data difficulties is likely to present a challenge

to achieving this goal.

Students who do not return after their first year, or do not graduate within six years,

form a smaller subset of the entire population. Table 3.1 gives the proportion of students

who deserted, stayed, graduated, or did not graduate, for a six year period. Though these

negative outcomes are not the events of interest, obtaining accurate predictions for these
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students is key to understanding how their probabilities of success can be increased through

the strategic awarding of gift aid. Since we have less information on students with these

specific characteristics we will need to adapt our statistical procedures to account for this.

Deserted Retained Not Grad Grad
1st year 15.76% 84.24% - -
2nd year 22.99% 77.01% 99.90% 0.10%
3rd year 28.26% 71.74% 97.93% 2.07%
4th year 65.50% 34.50% 64.70% 35.30%
5th year 90.63% 9.37% 39.08% 60.92%
6th year 96.45% 3.55% 32.71% 67.29%

Table 3.1: Retention and graduation rates over time, for all cohorts. Imbalance observed in
first-year retention and six-year graduation.

For a binary classification task such as ours, most statistical methods will try to discover

values that are not common to both classes. These values will then be used to form decision

rules used to determine which class a new observation falls into. Since our models give

similar predictions for similar observations, observations that have similar covariate values

but different labels, will have the same predictions. This will negatively impact the accuracy

of our predictions. An example of this issue is given in Figure 3.1, where total aid in

thousands of dollars is plotted for retained and deserted students, over four years. Observe

that the range of values for total aid is quite similar between retained and deserted students.

There were retained students with higher amounts of total aid in years one through three,

however, there is still a considerably amount of overlap.

These results provide evidence that the issue of overlap and imbalance underlies our data

analysis. Therefore, we must tackle this issue if we desire to truly develop predictive models

that will help all students. In order to further motivate our need for more complex models and

a solution for the overlap and imbalance we first attempt to extend the logistic regression

models discussed in the last chapter. We show that simply adding more variables is not

sufficient for correcting these issues.
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Figure 3.1: Total aid in thousands of dollars given to students who were retained (blue) and
who deserted (brown). In each year, many values for aid are similar regardless of a students
retention status. This issue is called overlap, and it presents a challenge when trying to
classify observations.

3.1 Extending the Logistic Regression Model

In order to obtain a more accurate reflection of the predictive capabilities of our models,

we will train models on 70% of the data, called the training set, and obtain predictions

from those models using the other 30% of the data, called the testing set. To preserve

the original distribution of the response variable in the training and testing sets, we use

stratified sampling to create these subsets. Additionally, we will use k-fold cross validation

to fit models at times. In order to implement this method we first split the training data

into k folds of roughly equal size. For i = 1, . . . , k, a model is trained on all but the i-th
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fold, and then predictions and their performance metrics are obtained using the i-th fold.

This is repeated for all k folds. This method allows us to obtain another estimate of the

performance of our models on unseen data while reserving our test data until our very final

assessment of predictive capability, after we have fully trained the models. The distribution

of the response variable in each fold was consistent with that of the overall dataset, preserving

the imbalance.

Denote the number of true positives, true negatives, false positives, and false negatives as

TP, TN, FP, and FN, respectively. Let P and N denote the number of positive and negative

examples in the dataset. The positive class is retention since we are interested in predicting

probabilities of retention. Performance metrics that quantify the quality of a classifier’s

predictions include those given below.

• Accuracy =
TP + TN

P + N

• Sensitivity = Recall = True Positive Rate (TPR) =
TP

TP + FN

• Specificity = True Negative Rate (TNR) =
TN

TN + FP

• Precision = Positive Predictive Value (PPV) =
TP

TP + FP

• F-score =
2 × PPV × TPR

PPV + TPR
(geometric mean of precision and recall)

• Balance accuracy = 0.5 × (TNR + TPR)

Due to the imbalanced nature of our data it is possible to find models that perform well

simply by predicting the positive class always. These models are termed random classifiers

and can be quite misleading. Usually their poor performance is flagged when they are used

to predict unseen data but when training models it is best to protect against selecting these

as a final model. In order to quantify the difference in the predictions of our models and
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those of a random classifier Cohen’s Kappa coefficient can be used. For a binary classification

problem it is

κ =
2 × (TP × TN − FN × FP

(TP + FP ) × (FP + TN) + (TP + FN) × (FN + TN)
.

κ gives a measure of agreement between the truth and predictions in the binary classification

case. A value of 1 indicates total agreement between truth and predictions, while a value

at or near 0 indicates no agreement other than that due to chance. A negative value could

indicate no relationship or non-random differences between the truth and predictions.

The full logistic regression model that we fit includes: high school GPA, class rank, total first-

year aid, binary gender, Pell-eligibility, race description, Oregon residency, first-generation

status, and severity of need. Interactions were also included between total first-year aid and

each of these covariates. The results in Table 3.2 provide the predictive performance results

from 10-fold cross-validation. The consistently low specificity and high sensitivity indicates

that the model under predicts desertion and over predicts retention. This issue may be due

to the much higher number of retained students in our dataset.

In order to improve upon the metrics reported in Table 3.2, threshold selection processes

could be used to find the threshold that most maximizes the TPR while minimizing the FPR.

The threshold is the value of the predicted probability over which we classify an observation

as a success. While this is often set at 0.5, a larger or smaller threshold could give better

accuracy for both classes overall.

One useful indicator of the predictive performance of a model as the threshold changes is

the receiver operator characteristic (ROC) curve. The ROC curve maps the False Positive

Rate (FPR, or 1-Specificity) to a corresponding True Positive Rate (TPR, or Sensitivity) for

various decision thresholds p ∈ (0, 1). A perfect classifier will result in an ROC curve that

passes through the point (0,1) as p decreases. This would indicate that there exists a value
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Fold Accuracy Kappa AUC Sens Spec Precision Recall F-Score

1 0.849 0.148 0.803 0.974 0.13 0.866 0.974 0.917
2 0.85 0.163 0.769 0.989 0.12 0.855 0.989 0.917
3 0.854 0.163 0.785 0.985 0.125 0.862 0.985 0.92
4 0.854 0.187 0.773 0.977 0.156 0.868 0.977 0.919
5 0.861 0.292 0.754 0.982 0.231 0.87 0.982 0.922
6 0.812 0.015 0.675 0.973 0.037 0.83 0.973 0.896
7 0.856 0.175 0.773 0.975 0.149 0.872 0.975 0.92
8 0.847 0.16 0.781 0.971 0.143 0.865 0.971 0.915
9 0.844 0.243 0.701 0.969 0.212 0.861 0.969 0.912

10 0.853 0.253 0.824 0.988 0.189 0.856 0.988 0.918
Mean 0.848 0.18 0.764 0.978 0.149 0.861 0.978 0.916

SD 0.013 0.075 0.045 0.007 0.054 0.012 0.007 0.008

Table 3.2: Cross-validation results from full model for retention with many covariates and
interactions. Results across folds are consistent. The model struggles to predict the negative
class (desertion) with consistently high specificity but consistently low sensitivity. This shows
consistent misclassification for the negative class.

of the decision threshold p for which all predictions are correct. This is most achievable

when the model produces very pure predicted probabilities. However, this rarely happens

in practice and a more attainable goal is to achieve an ROC curve above the line y = x.

A curve lying along this line would indicate that the models predictions are no better than

random chance.

Additionally, to quantify the quality of the ROC curve, the area under the ROC curve (AUC)

can be calculated. This value will range between 0 and 1. A value near 0.5 indicates no

better performance than a random classifier, values above 0.5 indicate better than random

performance. Values below 0.5 indicate worse performance than a random classifier. Figure

3.2 provides the ROC Curve with the AUC in the title and a tile plot of specificity and

sensitivity from the model. The FPR increases non-trivially with the sensitivity across

almost all values on the x-axis. This implies that increasing the threshold will always result

in a non-trivial decrease in the sensitivity. The tile plot also shows this with more detail. The

tile plot shows that the trade-off between sensitivity and specificity does not begin until a

threshold of about 0.75 is reached and that it is strong. This indicates that deserted students
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are being classified as retained with very high probability.

Given that we can only improve our predictions with a trade-off we are likely dealing with

both imbalance and overlap. The predicted probabilities of retention will be large for students

who actually deserted when their characteristics in the data are similar to most students who

were retained. Visually, this would mean that these points fall into areas of the feature space

that are dominated by the majority class. The patterns learned by the model will flag points

with these characteristics as belonging to the majority class, but some actually belong to

the minority class.

A reliable binary classifier is one that predicts a low probability for any class that a point does

not truly belong to and a high probability for the class that it does belong to. In our case, we

would hope that students who were retained have high predicted probabilities of retention

and that those who deserted have low predicted probabilities of retention. We visualize the

reliability of our model using Figure 3.3. The predicted probabilities of retention for each

point in our test set were binned into the intervals given on the x-axis. These are plotted

against the true retention status of the student, on the y-axis. Additionally, the text label

above each panel give the relative frequency of retention taken over all points with predicted

probabilities of retention falling inside the interval on the x-axis.

A classifier that produces very pure probabilities will result in a reliability diagram with a

large density of points in the top-right corner and bottom-left corners. Figure 3.3 reveals

that our model predictions for deserted students have high bias and high variance. While the

bias in predictions for retained students is much lower, there is still quite a bit of variability

in the predictions. This figure also shows that threshold selection will not be helpful to the

overall quality of the model. Even with a threshold of 0.5, quite a few retained students are

misclassified and this would only become worse is we increased the threshold.

More predictive metrics from the logistic regression model are given in Table 3.3 . These were
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Figure 3.2: ROC Curve and tile plot of specificity and sensitivity from larger logistic re-
gression model for retention. The ROC curve provides TPR (y) and FPR (x) for varying
thresholds. The colors in the tile plot are mapped to the value of the sensitivity and speci-
ficity for various thresholds (p) on the x-axis. The threshold is the value of the predicted
probability over which we classify an observation as a success or retained. These plots pro-
vide evidence that using a lower threshold will produce a larger decrease in sensitivity than
the increase in sensitivity.
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Figure 3.3: Reliability diagram for test set predictions using fuller logistic regression model.
The panel labels give the relative frequency of retention taken over all points with predicted
probabilities of retention falling inside the interval on the x-axis.

calculated on the test dataset. The underlying issue of imbalance and overlap will impact

predictive metrics other than the specificity and sensitivity as well. In order to achieve

the predictive goals of our research we should not only use more complex machine learning

models but we should also deal with the overlap and imbalance in our dataset before doing

so. We will now discuss methods that were developed to address the issues of overlap and

imbalance. After this we will discuss machine learning models that are less interpretable but

are known to produce better predictions than logistic regression.

Accuracy Bal. Accuracy Sensitivity Specificity F-Score AUC Kappa
0.842 0.551 0.974 0.128 0.913 0.745 0.144

Table 3.3: Performance metrics for predictions of test data set using fuller logistic regression
model. Balanced accuracy is much lower than overall accuracy, indicating inconsistent per-
formance across the classes.
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3.2 Overlap and Imbalance

The literature on solutions to the imbalance and overlap issue can be placed into three

non-exhaustive categories: algorithm-level methods, data-level methods, and combinations

of these two (Kotsiantis et al. 2006). Additionally, some have used ensemble methods,

which aggregate predictions from multiple models, to deal with overlap and imbalance (e.g.

Xiong et al. 2010; Galar et al. 2011; Diez-Pastor et al. 2015). Algorithm-level methods

look to adapt how a classifier learns, rather than modifying the data set that it learns on

(Alberto Fernández et al. 2018). Such methods include the use of weighted loss functions (e.g

Barandela et al. 2003; Shahee and Ananthakumar 2021), threshold selection (e.g. Johnson

and Khoshgoftaar 2019), and cost-sensitive learning (e.g. Domingos 1999; Thai-Nghe et al.

2010).

Though the performance of algorithm-level methods does not depend on the data, their use

is harder to generalize since they are specific to certain classifiers (Alberto Fernández et al.

2018). Data-level methods do not have this issue and are, therefore, said to be more versatile

(Douzas et al. 2018). The themes that emerge from the literature on data-level methods

for overlap and imbalance include feature selection methods, undersampling methods, and

oversampling methods. We discuss the literature on these themes in more detail next.

3.2.1 Overlap Metrics

Overlap metrics have been introduced by Oh (2011), Borsos et al. (2018), and Z. Li et al.

(2021), which can be used to quantify the amount of overlap present in a feature, a class, or

the entire data set. Moreover, these can be used to select features such that the overlap of

the resulting data set is minimized. The R-value initially introduced by Oh (2011) is equal

to the proportion of examples, in either class, who have more than θ nearest neighbors, out
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of k, that are of the opposite class. It was found that the R-value of the data set is strongly

correlated with the accuracy of classifiers. Improvements that adjust the R-value to account

for class imbalance were introduced by Borsos et al. (2018) and Z. Li et al. (2021). These

were shown to have successively stronger correlations with the classification performance of

a variety of algorithms.

3.2.2 Random Undersampling and Editing Methods

One of the simplest methods for handling imbalance is random undersampling (RUS). In

RUS, majority class observations are removed at random until the desired class frequencies

are achieved. An obvious concern with RUS is that one risks removing information on the

majority class that may be pertinent to making good classifications (He and E. A. Garcia

2009). Many informed undersampling methods have been introduced as solutions to this

issue. These include Condensed Nearest Neighbors (CNN) (Hart 1968), Edited Nearest

Neighbors (ENN) (Wilson 1972), Tomek Links (TL), (Tomek 1976), One-sided selection

(OSS) (Kubat and Matwin 1997), and Near-miss undersampling (NMU) (Mani and I. Zhang

2003). Additionally, an ensemble algorithm, EasyEnsemble, and a sequential algorithm,

BalanceCascade, were been introduced by Liu et al. (2008), which involve undersampling.

CNN, ENN, TL, OSS, and NMU each aim to undersample majority class examples that can

cause confusion for the classifier. These include majority class examples whose neighbors

belong to the minority class, who crowd a minority example, or who are near the boundary of

the decision region. Removing such examples can correct imbalance and overlap simultane-

ously. The EasyEnsemble algorithm creates several balanced data sets and trains a classifier

on each of them, then combines the output from these learners, creating one ensemble classi-

fier. BalanceCascade creates a sequence of classifiers, each training on a data set from which

minority examples that were correctly classified by the last classifier have been removed.
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Such algorithms are different from the editing methods previously discussed in that none of

the majority class examples are completely ignored.

An upside to editing methods is that the size of the data set, and therefore the computation

time, decreases. However, experiments performed by Batista et al. (2004) showed that some

undersampling methods provide less accurate results than oversampling, in terms of the area

under the ROC curve (AUC). Also, Mani and I. Zhang (2003) note that undersampling

can cause a trade-off between precision and recall. Precision is defined as the proportion of

correct positives out of all positives predicted and recall is defined as the proportion of true

positives out of all positive observed.

3.2.3 Random Oversampling (ROS) and Its Derivatives

Alternatively, class imbalance can be corrected by simply oversampling minority examples

at random until balance is reached. This method is termed random oversampling (ROS) or

bootstrap-based oversampling (e.g. He and E. A. Garcia 2009; Yang et al. 2011). However,

due to the increased cost of misclassifying points that fall into very specific areas of the

feature space, pure oversampling results in decision rules that are too specific, which causes

overfitting (He and E. A. Garcia 2009). A variety of more sophisticated oversampling meth-

ods have therefore been introduced. These include methods for estimating the distribution

of the minority class, uninformed oversampling methods, which do not take characteristics

of the feature space into account when introducing new minority examples, and informed

oversampling methods, which target areas of the feature space that would benefit the most

from having more minority examples. We discuss the most popular oversampling method to

date next.
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3.2.4 The Synthetic Minority Oversampling TEchnique (SMOTE)

As noted by (S. Garcia et al. 2016), the most popular and influential oversampling method

is the Synthetic Minority Oversampling TEchnique (SMOTE) introduced by Chawla et al.

(2002). For each minority class example, SMOTE creates synthetic examples by randomly

selecting a certain number of points from all those that lie along the line segments formed

by the minority example and its k-nearest neighbors from the minority class. The synthetic

point generated by SMOTE can be defined as z = x0 + w∆, where w ∼ Uniform(0, 1),

∆ = xi − x0, xi is the feature vector for the nearest neighbor used, and x0 is the feature

vector for the minority example of interest. More plainly, this method adds back a random

proportion of the difference between the point of interest and one of its nearest minority

neighbors, and labels this as a new point in the minority class. The k-nearest minority

neighbors of a point x0 are those points x1, . . . , xk that belong to the minority class and have

the k smallest distances from x0. The distance is calculated using a metric of choice (e.g.

Euclidean distance). A graphical example of the SMOTE in 2D is given in Figure 3.4.

In order to deal with mixed data SMOTE-NC was proposed by the authors of SMOTE,

where NC stands for nominal-continuous. In this adaptation, the standard deviations of

all quantitative variables is first calculated. Then, for a given reference point, the median

of these standard deviations is added to the distance, calculated using only quantitative

variables, between it and another point each time their levels of a given categorical variable

differ. We will refer to both of these algorithms more generally as SMOTE when discussing

them throughout but our discussions about SMOTE are also applicable to SMOTE-NC.

When applying the algorithm we will use the appropriate version for the type of dataset.

Evidently overlap and imbalance presents a challenge to the predictive component of our

overall goal. We aim to use data-level methods to overcome this challenge. In order to max-

imize their usefulness it is important that we combine them with more complex statistical
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Figure 3.4: Visual of the SMOTE. Minority class points are black circles while majority
class points are the open triangles. For the two minority class examples of interest (in
red), synthetic points are randomly generated along the solid lines joining them to their 5
neighbors.
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learning models with more predictability, though these may be more difficult to interpret.

In the next section we will discuss more complex statistical learning models, whose charac-

teristics can also help us to overcome the problem of overlap and imbalance.

3.3 Statistical Learning Methods for Prediction

Due to the two-fold nature of our problem it is necessary to discuss the details of a few

statistical learning algorithms that we will use to tackle the predictive component of the

problem. Recall our earlier discussion on accuracy versus interpretability, which motivated

the need for both simple interpretable models, like logistic regression, and complex, but

possibly more accurate, models, like random forests and neural networks. Use of these more

complex models can also help us to tackle the overlap and imbalance issue. We will now

briefly discuss the underlying details of these two models. Without loss of generality, we

discuss them in the context of a binary classification problem. However, it should be noted

that random forests and neural networks can be used for a wide variety of classification

and regression problems. For a more in-depth discussion of these methods the reader is

encouraged to read An Introduction to Statistical Learning (James et al. 2013) and Elements

of Statistical Learning (Hastie et al. 2009).

3.3.1 Random Forests

Random Forests is a tree-based statistical learning algorithm, first introduced by Breiman

(2001), for performing regression and classification tasks. Though the original random forests

algorithm was introduced over two decades ago, it has continued to grow in popularity

through various applications and adaptations (e.g. Hothorn et al. 2006; Lakshminarayanan

et al. 2014; Belgiu and Drăguţ 2016; Zeini et al. 2023). In order to understand the random
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forests algorithm, we must first understand the concept of decision trees.

A basic classification tree partitions a feature space, X, into k regions, R1, R2, . . . , Rk with

the aim of observations in each region having similar class labels. If an unseen test point,

X0, falls into region Rt, then the class frequencies for Rt are used to estimate the class

probabilities of X0. Furthermore, the class occurring most frequently in Rt - that is, the

majority vote, is taken to be the predicted class for X0.

The following steps can be used to create the regions R1, R2, . . . , Rk:

1. Search every value of every predictor of X for the value that, when used for splitting,

produces two groups R1 and R2 with the greatest improvement in purity - that is, with

the most members belonging to the same class in each region as compared to X.

2. Repeat step 1 for each of R1 and R2.

3. Continue splitting each subdivision until some stopping criteria is met (e.g. there are

few observations in a region)

An obvious metric for quantifying the impurity of a given node in the tree is the classification

error. This is defined as the proportion of observations in node m that are not in the most

common class, or c classes. That is,

Em = 1 − maxc(p̂mc) where p̂mc = proportion of observations in node m in class c.

Suppose that we have 100 observations of a variable, X, and their classes, Y , labeled as A or

B. Consider the two candidate trees given in Figure 3.5, formed by splitting on two different

values of X. For Tree 1, the majority vote in R1 is class B, and the 10 points belonging to

class A are misclassified. In R2 of Tree 1, the majority vote is class A, and 10 points in class

B are misclassified. Therefore, the overall classification error of Tree 1 is 20/100 = 0.20.
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Likewise, for Tree 2 the overall classification error is (20 + 0)/100 = 0.20.

Though these two trees have the same classification error, R2 of Tree 2 is a totally pure

terminal node since all observations belong to the same class. This tree will, therefore,

produce more certain predictions, with predicted probabilities closer to 0 or 1. However, this

added advantage is not captured by the classification error.

Figure 3.5: Two candidate decision trees yielding the same classification error. However,
Tree 2 has greater purity.

An alternative to the classification error is the Gini Index (G). This is defined as

Gm =
c∑

i=1

p̂mc(1 − p̂mc) where p̂mc = proportion of observations in node m in class c.

Suppose we perform an experiment where there are c possible outcomes. Outcome j has

probability of occurrence pj, where j = 1, . . . , c. If we reproduce the experiment two in-

dependent times, then the probability of observing j twice is pj × pj. The probability of

observing any category twice in two independent runs is
∑c

j=1(pj × pj). The probability of

observing two different outputs is thus

1 −
c∑

j=1

(pj × pj) =
c∑

j=1

pj −
c∑

j=1

(pj × pj) =
c∑

j=1

pj − (pj × pj) =
c∑

j=1

pj(1 − pj) = G.

Therefore, the Gini index measures impurity by quantifying how likely we are to obtain two

different outcomes from the same node.
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Denote GRtL
and GRtR

as the left and right child nodes created by splitting Rt, respectively.

Other than a small node size, a small decrease in G can also be used as a stopping criteria.

For a given region, Rt, if no split exists such that GRt − GRtL
+ GRtR

< γ, then we may

decide not to split that region any further. In practice, a computationally inexpensive way

to fit a single decision tree is to grow the tree as large as possible and then work back and

remove any splits that did not meet our threshold γ. This is called cost-complexity tuning

since it decreases the complexity of the tree, increasing its generalizability to test data, and

lowering our risk of overfitting. Despite their simplicity, single decision trees are known to

have poorer performance than their successors, such as bagging, random forests, and boosting

(e.g Freund 1995; Breiman 1996; Bartlett et al. 1998; Bühlmann and B. Yu 2002; Ali et al.

2012). Therefore, we choose to point readers to Patil et al. (2010) for further discussion on

pruning algorithms, and we continue on with a discussion of bagging and random forests,

which do not require pruning.

There are three sources of error when estimating f , the relationship between our data and one

or more response variables. The irreducible error, ϵ, that we discussed earlier, is independent

of the data X. Therefore, it cannot be reduced using information from the data during

training. Another source of error, called the bias, comes from failing to capture important

features of f in our estimate f̂ . This is termed underfitting, and it can be reduced during

training. Conversely, another source of error is called the variance, which comes from an

estimate f̂ that captures the unhelpful random noise in the data, not just the important

features. This is termed overfitting, and it can also be reduced during training.

However, by definition, the bias and variance cannot be reduced simultaneously during train-

ing. To reduce the bias, we must increase the complexity of f̂ by learning more about its

form based on the training data, but this risks overfitting. This is known as the bias-variance

trade-off. In the context of decision trees, it is known that the results of a single decision

tree strongly depend on the data that they are trained on (e.g. Breiman 1996) - that is, they
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have high variance from one training set to another.

One solution to this issue, proposed by Breiman (1996), is to fit multiple decision trees to

bootstrap samples of the training set, and then, for a given example, predict the majority

vote of its classifications from every tree as its class. This method is called bagging and it

can be used with any underlying model, not just decision trees. Since the prediction is an

average of the results of each tree, the variance of the bagged model, from one training set

to another, is reduced. Additionally, the probability that an observation does not appear in

a bootstrap sample of size n is (n−1
n

)n = (1− 1
n
)n → e−1 ≈ 0.37. Therefore, each observation

is left out of the bootstrap samples used to create about 1/3 of the trees. Such observations

are termed out-of-bag for a given tree, and these can be used to estimate the test error of

the bagged model, eliminating the need for an additional validation set. Moreover, these

can be used to evaluate the error of the bagged model as more trees are added, in order to

determine how many trees are needed to achieve desirable performance without overfitting.

Bagged decision trees are most useful when changes to the training data cause non-trivial

changes in the resulting decision tree - that is, when the individual trees vary from one

bootstrap sample to another. However, when a few predictors account for most of the vari-

ation in the response variable, these predictors are usually selected in all trees in the bagged

model, decreasing the variability from one tree to another. When models are correlated in

this manner, the bagged models will have high variance, returning us to the original issue.

In order to increase the variability from one tree to another, we can force the model to

consider only m randomly selected predictors, out of p, and search these for the best split.

This restriction reduces the correlations among trees, decreasing the overall variance of the

bagged model. This method is termed random forests, and bagging is a special case of it

where m = p. When there are a large number of strong predictors, selecting a small value

for m is best. This will ensure that weaker predictors are not overlooked amongst all of

the trees and, therefore, the trees will be more diverse. Similar to the case of bagging, the
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out-of-bag error can also be calculated with random forests and used to determine the ideal

number of trees.

Due to the complex nature of random forests and bagging, interpretability, an understanding

of why and how the models make certain predictions, can be lost. Nevertheless, there are at

least two interpretable values that can be calculated from random forest models: the mean

decreases in the Gini index and permutation-based accuracy. Specifically, these are used to

understand how important each predictor is to the certainty and accuracy of our predictions,

respectively, if at all. For a given variable, its mean decrease in the Gini index is the total

decrease in node impurities from splitting on that variable as each tree is built, averaged over

all trees. Its mean decrease in the permutation-based accuracy is obtained by calculating

the difference in the prediction accuracy on the out-of-bag portion of the data, before and

after permuting the values of that variable, averaged over all trees, and normalized by the

standard deviation of these differences.

3.3.2 Neural Networks

While random forests are based on single decision trees, neural networks are inspired by

the biological neural networks of the brain. For brevity, we discuss the feed-forward neural

network in which output from former nodes are only used in latter nodes, and connections

between nodes do not form a cycle. We believe that these less complex neural networks may

help use tackle the predictive component of our problem. Recall that the technical issue

with the predictive component of the problem was binary classification with an imbalanced

response variable and overlap in the feature space. Neural networks overcome the problem

of feature selection by finding the feature representation that most minimizes a given loss

function (Goodfellow et al. 2016), and use of this alternative feature representation could

help us overcome the issue of overlap.
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The input layer of a single-layer feed-forward neural network is made up of p features X =

(X1, X2, . . . , Xp), each of which are fed into K hidden units, or neurons, giving a certain

output. The output for the k-th hidden unit, called the activation, is defined as

Ak = hk(X) = g

(
wk0 +

p∑
j=1

wkjXj

)
, k = 1, . . . , K,

where g(z) is a nonlinear activation function that we select before fitting the model. Each

Ak is, therefore, a transformation of a linear combination of the original features. These

activations are then fed into the output layer, resulting in the following linear regression

model for the K activations

f(X) = β0 +
K∑
k=1

βkAk.

A visual representation of the neural network is given in Figure 3.6.

Figure 3.6: Visual representation of a single-layer feed-forward neural network for data with
p = 4 features, K = 5 hidden units, and a single output layer. The input layer (yellow)
is made up of the features, each of which is provided to the hidden units in the single
hidden layer (violet). The output of the hidden units are the activations. The output layer
(red) provides a linear combination of these. Credit: An Introduction to Statistical Learning
(ISLR) (James et al. 2013).

Of the many options for the activation function, g(z), the most popular include the sigmoid

activation function, also known as the logistic function, and the rectified linear unit (ReLU)
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activation function (e.g. Nwankpa et al. 2021). These are respectively defined as

g(z) =
1

1 + e−z
and g(z) = max(0, z).

The sigmoid function can be used to convert values to probabilities. Therefore, when the task

is binary classification it can also be used for the output layer. However, its drawbacks include

slow convergence and non-zero centered output (e.g. Nwankpa et al. 2021). Meanwhile, the

ReLU function is very close to being linear, giving it nice properties for gradient descent, an

optimization method used to estimate the parameters β0, . . . , βK and w10, . . . , wKp from the

data.

Mutli-layer neural networks have additional hidden layers with fully-connected nodes to the

next layer, similar to the initial input layer. The algorithms used to train neural networks

are quite complicated and this method is not the focus of our research. Therefore, for further

discussion on back-propogation, optimization algorithms, and other types of neural networks,

such as convolutional and recurrent neural networks, we refer the reader to An Introduction

to Statistical Learning (ISLR) (James et al. 2013) for preliminary reading and Deep Learning

(Goodfellow et al. 2016) for deeper reading.

The models that we have discussed in this section will help us to tackle the second of our

two main goals for this research. As a reminder, these were to (1) construct models that can

adequately describe the relationship between graduation or retention and the amount of gift

aid received, while taking other variables into account, and (2) develop predictive models

that can be used to determine how the predicted success of a given student changes with

gift aid, and how gift aid impacts these predictions. We will now discuss the results of our

data analyses towards prediction. We will also discuss the issue of imbalance and overlap

and investigate the performance of current solutions on our data when combined with these

more complex statistical learning methods.
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3.4 Statistical Analysis Towards Predictions

The technical problem of developing good predictive models in the presence of overlap in

the feature space and imbalance in the response variable must be tackled directly to achieve

our overall research objectives. Therefore in this section we address this issue by using more

advanced statistical/machine learning models to predict student success well. We aim to

first develop models that have better predictions and then we will study these to recover

conclusions that can still contribute to the inferential component of the problem.

3.4.1 Single Decision Trees

Our exploratory analysis of the data showed that there are some observations with feature

values that most often match those of observations with the opposite class label. Since

classification models aim to partition our feature space into sections that are indicative of

class labels, these observations pose a challenge to the classifier. However, we were able to

find some of these observations by examining higher order interactions between covariates in

our data set (e.g. studying retention rates by need and race in Table 2.11). Though logistic

regression models are limited in this respect (e.g. Levy and O’Malley 2020), by design,

decision trees are able to model these higher order interactions. Each terminal node in a

tree is reached by following a sequence of decision rules each involving a single covariate.

Therefore, a deep tree that uses a variety of covariates models higher order interactions

between covariates. Modeling these higher order interactions could lead to a model that

better handles the overlap in our feature space. We include high school GPA, class rank,

total first year gift aid, binary gender, Pell-eligibility, race, residency, first-generation status,

and severity of first-year need.

In order to fit a decision tree, we must determine the hyperparameters of the model. These
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are the parameters under which the tree will be created. The primary hyperparameter to

tune is the complexity parameter (cp) which effectively prunes the tree. In the context of

binary decision trees, any split that does not improve the Gini index by a factor of cp will

not be attempted. The larger cp, the more conservative our tree growing process and only

splits that results in large increases in purity are attempted. Other important constraints

include the minimum number of observations that must exist for a node to be further split

(minsplit), the minimum number of observations in any terminal node (minbucket), the

maximum depth of any node of the final tree (maxdepth). Each of these is related and they

control how large the tree is grown.

We used cross-validation to decide on the correct hyperparameters for the decision tree. Data

were split into 10 folds. For each combination of cp and minsplit, a decision tree was fit to

9 of the 10 folds, then predictions were obtained for the left out fold along with predictive

metrics. This is repeated until each fold has been left out and the predictive metrics are

averaged. Figure 3.7 provides the cross-validated average accuracy, area under the curve,

sensitivity, and specificity of trees fit using each combination of cp (x) and minsplit (y).

Including the standard deviations for each estimate of test error is infeasible given the num-

ber of cross-validation iterations. However, the median standard deviation for the average

accuracy, AUC, sensitivity, and specificity values reported in Figure 3.7 were 0.0095, 0.0413,

0.0098, and 0.0510, respectively. In each plot, the cells towards the top-right correspond to

less complex models while cells towards the bottom-left correspond to more complex models.

The plots in the bottom row of Figure 3.7 indicate disagreement between the models. Com-

plex models with lower values for cp produce lower sensitivity but higher specificity. However,

the specificity only goes as high as 0.25 and the sensitivity only goes as low as 0.94. There-

fore, the models that perform the worst on the positive class still perform very poorly on

the negative class, making the trade-off not worth it. This is also reflected in the plot for

overall accuracy, in which the highest values near 0.85 most often occur near the center. It
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Figure 3.7: Average performance metric for each combination of cp and minsplit based
on 10-fold cross validation. Accuracy, ROC (the area under the curve), sensitivity, and
specificity are provided. The right-top indicates less complex models while the left-bottom
indicates more complex models. The direction towards which each metric increases does not
agree across all metrics, indicating that a tradeoff is inevitable.

should be noted that if we were to predict all observations in the training set as retained

rather than using an actual classification model, our accuracy would be 0.848. Therefore,

these models are performing similarly to or worse than random guessing using empirical

probabilities. Given these disagreements, we elect to use the ROC to select the best set of

hyperparameters since it is indicative of performance on both the positive and negative class.

The hyperparameters producing the simplest model whose AUC is within one standard

deviation of the largest AUC will be used. Simplicity is first determined by the largest

cp and then the largest minsplit. The final hyperparameters used were therefore cp =

0.0064 and minsplit = 25. Figure 3.8 and Table 3.4 provide the resulting decision tree, and

predictive metrics for the test data, respectively.
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Figure 3.8: Decision tree for first-year retention. Amongst all variables considered, high
school GPA was deemed to be the most influential factor. First-year gift aid was most often
used to separate class labels. Salmon colored nodes correspond to predicting retention and
brown nodes desertion. The two decimals in each node give the proportion of observations
in that node that deserted and returned, respectively. The percentage in each node gives the
percent of observations falling into the node out of all students in the training set. There
are some discrepancies due to rounding.

Accuracy Bal. Accuracy Sensitivity Specificity F-Score AUC Kappa
0.853 0.549 0.985 0.112 0.919 0.696 0.146

Table 3.4: Performance metrics for predictions of test data set using single decision tree.
Balanced accuracy is much lower than overall accuracy, indicating inconsistent performance
across the classes.

Recall that we included high school GPA, class rank, total first year gift aid in thousands of

dollars, binary gender, Pell-eligibility, race, residency, first-generation status, and severity of

first-year need in our model. Amongst all variables considered, high school GPA was deemed

to be the most useful variable for creating an initial split of the data. The first decision rule

tests whether high-school GPA is below 3.6. 41% of students did meet this criteria and 59%

did not. After high-school GPA, the most useful predictor of retention was first-year gift

aid. This variable was most often used to separate classes throughout the tree as well.
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This model indicates that first-year retention is influenced by an intricate relationship be-

tween academic preparedness as measured by high-school GPA and class rank, financial need

as measured by Pell-eligibility, and the amount of first-year aid awarded. The purest terminal

node, occurring on the far right, is allotted to high performing students with a high school

GPA above 3.6 and at least 910 dollars in gift aid. 8% of students in this node deserted

while 92% returned. Students in this node make-up about 58% of the training set. However,

students who were high performing but received less than 910 dollars in aid are predicted to

desert. This indicates that the success of students with strong academic backgrounds can

still be negatively impacted by receiving low amounts of aid.

If high-school GPA is below 3.6 for a given student but they received more than 7000 dollars

of gift aid in their first year, then they are predicted to return after their first year. 18% of

all students in the training set fell into this node. Again, this indicates that low academic

performance may not immediately results in student failure but that this depends on how

much aid they receive. Summarizing the results of the model more generally we conclude

that Pell-eligible students with low high school GPAs who also had low amounts of aid and

low class ranks were predicted to desert.

While these results certainly contribute to the inferential component of the problem, the

predictive component of the problem is not helped nearly as much. This can be noted

by examining the purity of the terminal nodes in the trees. Terminal nodes belonging to

retained students contain up to 41% students that were not retained and those belonging to

the deserted class contain up to 35% of students that were retained. Over 88% of the data

fall into the most pure nodes - that is, those with over 80% of observations belonging to

the same class. However, many observations belonging to the minority class (desertion) also

fall into these nodes. This issue is also reflected in Table 3.4 where the test set sensitivity

was 98.5% while the specificity was only 11.2%. The balanced accuracy (54.9%) was also

much lower than the overall accuracy (85.3%) indicating that there was unequal predictive
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performance between the two classes.

A calibration plot of predictions for the test set is provided in Figure 3.9. The predicted

probabilities of retention were binned into intervals from 0 to 1 by 0.05 with right-side

inclusion. The average predicted probability of retention (x) and true retention rate (y) was

calculated for observations in each bin. These are plotted along the purple line in Figure

3.9. For reference, the line y = x is also provided in black. Point labels give the number

of observations in each bin and the interval for the bin. Intervals that did not contain any

observations were omitted.

Figure 3.9: Calibration plot for test set predictions from single tree trained using cross-
validated hyperparameters. Predicted probabilities of retention were binned from 0 to 1 by
0.05. Purple points give the average predicted probability (x) and retention rate (y) by bin.
The line y = x is also provided in black. Labels give the number of observations and bounds
of the interval. Intervals without observations are omitted.

A model that is well calibrated will result in points that lie very close to or directly on the

reference line as we scan the x-axis from left to right. Points falling above the reference line

indicate under-prediction because the average predicted probability of retention would be

lower than the relative frequency of retention. Similarly, points falling below the reference
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line indicate over-prediction. Not surprisingly, the results show that larger predicted proba-

bilities from the model are better calibrated than small predicted probabilities. The relative

retention rate is noticeably larger than the average predicted probability for the first and

third bins pictured. This indicates that our model is more reliable for predicting student

success than failure.

In order to understand how student success can be improved by increasing aid, we must

first be able to identify when a student is unlikely to succeed - that is, we must be able to

predict student failure as well as student success so that students who actually need help

can receive it. The lack of information that we have on students that fail creates a barrier

to achieving this however, therefore, more complex methods must be used to tackle the

predictive component.

Earlier we discussed a simple but naive solution to correcting the imbalance in our response

variable called random oversampling (ROS). This method involves selecting a certain percent

of minority class examples from the original dataset, by randomly sampling with replacement,

and then replicating these rows in the dataset. The number of minority class examples can

be increased by any percent with this method. If the number of majority and minority class

examples are nmaj and nmin, respectively, then to achieve complete balance the minority

class should be oversampled (
nmaj − nmin

nmin

)
× 100%.

Regardless of how one oversamples, the majority class accuracy will likely decrease since

the cost of misclassifying the minority class increases. However, ROS increases the cost of

misclassifying a single minority example in proportion to how many times it is oversampled.

In order to decrease misclassification costs, classifiers trained on ROS data must therefore

correctly classify points in very small regions of the feature space. This leads to overfit

classifers - that is, classifiers whose decision regions do not generalize well to unseen data.



87

To determine whether ROS can positively impact our decision tree classifier, we increased

the number of minority class examples in our training set by a certain percentage and fit

a decision tree. We pruned the tree using 10-fold cross-validation to select the complexity

parameter and then calculated class-specific and overall accuracies from predictions on the

test data. This was repeated 250 times for each percentage of oversampling. The results are

plotted in Figure 3.10.

Figure 3.10: Overall and class-specific performance metrics (y) resulting from oversampling
the minority class a certain percentage (x). Specificity increases but sensitivity and overall
accuracy decrease, indicating an disadvantageous trade-off between class-specific accuracies.
Trees were pruned using 10-fold cross-validation to select the complexity parameter and the
process was repeated 250 times.

Before oversampling, the accuracy, sensitivity, and specificity were 85.3%, 98.5%, and 11.2%,

respectively as reported in Table 3.4. After oversampling the minority class at 100%, the

accuracy and sensitivity decrease to 82.5% (± 0.0138) and 91.5% (± 0.0170), respectively,

while the specificity increases to 31.7% (± 0.0257). Despite this initial large increase in

specificity, oversampling at 200% and beyond does not increase the specificity by any more

than 3% each time. Even at 500% oversampling, the specificity only reaches 46.9% (±
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0.0288), a difference of about 15% compared to unbalanced data. Meanwhile, the sensitivity

decreases to 76.2% (± 0.0134) at 500% oversampling, a difference of 22% compared to

unbalanced data.

There is also more variability in the performance metrics for the minority class due to the

added randomness introduced by ROS. Additionally, trees fit to oversampled data were

consistently much larger than the tree fit before oversampling. This happened because the

classifier was learning very specific rules so as to not misclassify single points that largely

increase the error due to their replication. Larger decision trees are more prone to overfitting

as we saw when we applied these to the test data. Moreover, we found that the actual

decision regions of the resulting trees were not much different from that of the original tree

- that is, the model was not learning new decision rules indicative of desertion. The models

simply labeled decision regions as ‘belonging’ to the minority class more often and further

partitioned the same initial decision regions to capture our specific dataset. Coupled with

the size of the trees, these issues made interpretations difficult so that oversampling also

detracted from the inferential component of the problem.

These results show that there is a trade-off between accuracy on the negative class and

positive class. Since the losses on the majority class outweigh the gains on the minority

class, the overall accuracy decreases. Losing more accuracy on the majority class than is

gained on the minority class defeats the predictive purpose of our research, which is to predict

student success well for all students.

The initial results from our decision tree in Figure 3.8 showed that it was indeed able to

model higher-order interactions between covariates. This led to a better understanding of

the intricate relationship by which these covariates determine student success. However,

due to the imbalance in our dataset, decision trees do not pay careful enough attention to

misclassified points in the minority class, and they find patterns that are more indicative

of retention than desertion. We would like to use an oversampling method that provides a
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more advantageous trade-off than that observed so far. We combine SMOTE and random

forests next to overcome the issues with ROS and single decision trees, respectively.

3.4.2 Random Forests + SMOTE

Single decision trees become less biased as they are grown larger but they also became

more variable. Bagging is a method were the results of many unpruned decision trees, fit to

bootstrap samples of the training data, are averaged. Due to the averaging, the bagged model

has less variability than individual decision trees and is therefore less likely to overfit to the

training data. Random forests further decreases the variability by searching through m ≤ p

candidate covariates to determine the best choice for each split. When m = p, this amounts

to bagging. Random forest effectively decorrelates the individual trees, thereby capturing

more of the variability between trees. In the context of our problem, using random forests

allows us to grow larger decision trees, thereby finding more specific minority class regions

of the feature space, but without as much of a risk of overfitting.

Hyperparameters of the random forest algorithm include the number of candidate predictors

to consider at each split point mtry, the number of trees to grow ntree, the minimum size of

terminal nodes nodesize, and the maximum number of terminal nodes trees in the forest can

have maxnodes. Stratified sampling can be used to preserve the distribution of the response

variable. ROS, RUS, or a mixture of both can also be applied to each bootstrap sample by

using weights. In addition to the issues with ROS that we identified in the last section, when

the minority class is oversampled many times there will be some minority class observations

who are present in every tree in the forest, therefore these will have no OOB estimate for

error. Rather than oversampling, we elect to apply SMOTE before fitting random forests.

By way of comparison we also fit random forests to the unbalanced data.

Random forest models can handle much larger amounts of data than we have trained on
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thus far. In addition to the covariates used in single decision trees we also include high

school graduating class size, whether a student entered college immediately after graduating,

number of college credits completed before entering, SAT math score, whether the student

received a scholarship in their first year, college of entry, and more. We used a total of 25

covariates and since there were a mixture of categorical and numeric variables we applied

SMOTE-NC, which we refer to more generally as SMOTE.

A total of 5 neighbors were used in SMOTE to generate 4 synthetic examples from each

minority example. There were 3445 minority examples in the oversampled dataset while

the unbalanced dataset had 689. The number of majority examples was 3843 giving an

imbalance ratio of 5.578 in the unbalanced set and 1.116 in the oversampled dataset. In

order to train the models we used 5-fold cross-validation to select the best values from ntree

= 50, 500, 1000, nodesize = 1, 10, 100, 1000, and mtry = 1, 10, 25. Results might have been

different if we also trained for the best amount of oversampling and number of neighbors

to use for oversampling, however, we choose to focus on training parameters of the random

forest model for now.

The results of training are plotted in Figure 3.11. Each cell represents the average AUC,

sensitivity, or specificity from fitting a random forest to each of 5 folds of the training

data with the corresponding values of mtry, ntree, and nodesize. Due to the presence of

synthetic data some of the performance metrics will be inflated. Models fit to oversampled

data outperformed those fit to unbalanced data with respect to all metrics except for the

sensitivity, which was always greater than or equal to 0.988. Metrics from models fit to

oversampled data also had lower variability most of the time. Additionally, models with 500

or 1000 trees, a node size of 1 or 10, and mtry = 10 produced larger values for the AUC

and specificity in most cases. Sensitivity ranged from 0.988 to 1.000 in all cases. Meanwhile

specificity ranged from 0 to 0.755 for unbalanced data and 0.775 to 0.95 for oversampled

data.
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Figure 3.11: Cross-validated metrics from random forest models fit to unbalanced training
data (top row of panels) and after applying SMOTE (bottom row of panels). A total of
5 neighbors were used in SMOTE to generate 4 synthetic examples from each minority
example. Models were trained via 5-fold cross validation to find the optimal values for mtry,
number of trees (y) and node size (x). SMOTE results may be inflated due to the additional
synthetic examples. Note that the color gradient is not the same across all metrics since
they did not all have the same range.
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Given these results we move forward with the model fit to oversampled data with ntree

= 500, nodesize = 10, and mtry = 10. The by-tree out-of-bag (OOB) error rate for this

model is plotted in Figure 3.12. This was calculated for all OOB data, non-synthetic OOB

data, and the test data. The final OOB error rates for the minority and majority classes

were 0.050 and 0.003, respectively, when including synthetic data points. After dropping

synthetic data points the OOB error rate for the minority class increased to 0.253. The error

rate on the test data for the positive and negative classes was 0.007 and 0.624, respectively.

The large increase in the minority class error rate between non-synthetic training examples

and testing examples is an indication of overfitting.

Figure 3.12: OOB and test data error rates by tree. The dotted lines correspond to corrected
errors calculated using only non-synthetic data. These were calculated to guard against the
reporting of inflated errors alone. The large increase in error for the negative class on test
data in comparison to OOB data provides evidence of overfitting.

The use of random forests in combination with SMOTE has improved our predictions in

comparison to logistic regression and single decision trees. Table 3.5 provides the predictive

metrics from the random forest model, decision trees, and logistic regression. All of the
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predictive metrics were higher for predictions obtained using random forests and SMOTE.

The largest increases were observed with the specificity, AUC, and Kappa coefficient. About

25% and 26% more minority class examples in the test set were correctly classified than when

logistic regression or decision trees was applied without oversampling, respectively. In these

cases the overall accuracy only increased by about 6% and 5%, respectively, since there are

so few minority examples in the dataset. The balanced accuracy does reflect this improved

performance on the minority class however.

Model Acc Bal. Acc Sens Spec F-Score AUC Kappa

Logistic Regression + No SMOTE 0.842 0.551 0.974 0.128 0.913 0.745 0.144

Decision Tree + No SMOTE 0.853 0.549 0.985 0.112 0.919 0.696 0.146

Random Forest + SMOTE 0.899 0.685 0.993 0.376 0.944 0.960 0.485

Table 3.5: Performance metrics for test set predictions obtained using random forest models
trained using data that were first oversampled with SMOTE. Results from single decision
tree and logistic regression applied to original training data are also included for reference.
The use of random forests and SMOTE improves all performance metrics.

Though this model performs better, its calibration plot shows that it often over-predicts the

probability of retention, especially for students that deserted. The predicted probabilities

from the model were placed into bins of size 0.05 from 0 to 1 and the average was calculated

over each bin. The proportion of students retained in each bin was also calculated. These are

plotted on the x- and y-axis of Figure 3.13, respectively. The calibration line consistently falls

below the reference line and the difference was worse when the average predicted probability

was lower.

There is evidence that the use of a larger threshold than 0.5 could lead to better predictions.

This is reflected in Figure 3.14 where the ROC plots shows that a threshold of about 0.86

gives much higher specificity (0.8983) than the default 0.5 whose specificity was 0.3763. Use

of this threshold drops the sensitivity from 0.9927 to 0.8913 however, indicating that there

is still a trade-off after applying SMOTE. This is because the issue of overlap is not directly

tackled by SMOTE, only imbalance.



94

Figure 3.13: Calibration plot for random forest model fit to training data with SMOTE
applied. Results were obtained using test data predictions. The model over-predicts often,
especially when the relative frequency of retention was actually low.

Figure 3.14: ROC plot for random forest model fit to training data with SMOTE applied.
Results were obtained using test data predictions. The threshold giving the highest sum
sensitivity plus specificity is plotted. Results indicate that a higher threshold could lead to
better predictive results overall.
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When there is overlap and imbalance is corrected without consideration of the overlap deci-

sion rules that should lead to a test point being classified in the majority class will become

biased to predict points as belonging in the minority class. This is why we see a decrease

in the majority class accuracy. The increase in majority class accuracy is to be expected

whenever we oversample, but how much of an increase in specificity we get for this loss will

determine if it is worth it. This will also depend on the size of the majority class. When it

is very large decreases in majority class accuracy that are small can have a major impact on

the overall accuracy.

Though the predictions coming from the use of Random Forest + SMOTE were still neg-

atively impacted by some of the data difficulties in our dataset, we do obtain some useful

interpretable output that contributes to the inferential component of the problem. The vari-

able importance plots from this model are given in Figure 3.15. The mean decrease in Gini

index is the total decrease in node impurities from splitting on the indicated variable on

the y-axis average over all trees. Large amounts indicate that the variable contained split

points which were very useful to separating the classes. The mean decrease in accuracy is

obtained by permuting the values of the indicated variable before obtaining predictions on

the out-of-bag (OOB) data for each tree. This effectively destroys the information in the

variable. The difference between this and pre-permutation OOB predictions is calculated

and these differences are averaged over all trees and normalized by the standard error of the

differences. Large differences indicate that the variable is important to the predictions since

loss of its information decreased the accuracy a large amount. These were obtained using

data with synthetic examples so they will be slightly inflated in a manner similar to what

we saw in Figure 3.12.

In terms of class separability the type of financial aid that a student received for their housing

is most useful to separating classes. After this the most useful variables to class separation

are the type of tuition that a student was charged, the number of hours they completed
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Figure 3.15: Variable importance plots for random forest model fit to training data with
SMOTE applied. Results were obtained using oversampled data so values are inflated. Left-
and right-hand panels correspond to the importance of the variable to node purity (separating
the classes) and overall predictions.
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before entering college, their racial group, and the college that they entered. These same

five variables are most important in terms of the accuracy of predictions but the order is

different. In terms of overall prediction accuracy, the number of hours completed, type of

tuition, racial group, type of financial aid for housing, and primary college of a student upon

entry are the top five most important variables.

However, the order of importance is not the same when considering the changes in the class-

specific accuracy. For retained students the type of financial aid awarded for housing is the

third-most important factor before racial group. Additionally there are many variables, such

as the amount of direct student loans and 12-month expected family contribution (EFC) that

are more important for predictions on the positive class than the primary college on entry

and these have similar importance measures. Meanwhile the five most important variables to

correct predictions of desertion are the type of tuition that a student is charged, their racial

group, the number of hours completed, financial aid for housing, and the primarily college

they entered into. The changes in the order of importance show that not all variables have

the same impact on accuracy for each group. These results also show how using just the

decrease in overall accuracy may be misleading because this is large even if the variable is

only important for one class. A better metric would be the change in the balanced accuracy.

3.4.3 Neural Networks + SMOTE

We saw that combining random forests with SMOTE gave better predictions with a threshold

of 0.5 and that these could be improved with a trade-off if we increased the threshold of

about 0.86. By design, neural networks create abstract representations of the feature space

which could tackle the issue of overlap and omit this trade-off. To determine if we might

be able to obtain better predictions we also applied neural networks to the unbalanced and

SMOTE oversampled data. We included as many variables in the dataset as possible with
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the only criteria being that they must contain information which would be known after the

students first year. Data were split into training, validation, and testing sets, median-mode

imputation was applied, and we also one-hot encoded categorical variables to create a strictly

numeric matrix.

We selected the combination of hyperparameters from the following that maximized the AUC

on the validation set after all epochs were completed: hidden layer dropout rates (rate1, rate2

= 0.1, 0.2), number of units in hidden layers (units1, units2 = 43, 21), and a batch size of 32.

The ReLu activation function was applied in the input and hidden units while the sigmoid

activation function was applied in the output unit. Binary cross-entropy was used as our loss

function with an adadelta optimizer and we trained each model for 100 epochs. The set of

hyperparameters that maximized the AUC when data were not oversampled with SMOTE

were rate1 = 0.1, rate2 = 0.1, units1 = 21, units2 = 43. When they were oversampled with

SMOTE the best values were rate1 = 0.2, rate2 = 0.1, units1 = 43, and units2 = 21.

The performance metrics of the final tuned model using predictions on the test data are given

in Table 3.6 for the model with unbalanced data and after applying SMOTE. The overall

accuracy and balance accuracy do not agree regardless of whether SMOTE was applied

or not. This indicates that the accuracy does not reflect the performance of both classes

well. After applying SMOTE the accuracy increased to 0.843 from 0.722 while the balanced

accuracy decreased to 0.548 from 0.650. Moreover, the specificity decreased after applying

SMOTE while the sensitivity increased. These results indicate that there is also a trade-off

that occurs when SMOTE is applied and neural networks are fit but in a different way. In

comparison to the accuracy, balanced accuracy, sensitivity and other metrics produced by

random forests + SMOTE, the neural networks do not perform better. The one area where

they do perform better is in regards to the specificity when the unbalanced data are trained.

These results may indicate that the algorithms used to fit neural networks can overcome the

issue of imbalance and overlap to some extent without the need for additional oversampling.
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Model Acc Bal. Acc Sens Spec F1 Score AUC Kappa

Neural Networks + No
SMOTE

0.722 0.650 0.753 0.546 0.821 0.696 0.217

Neural Networks +
SMOTE

0.843 0.548 0.972 0.125 0.913 0.696 0.137

Table 3.6: Performance metrics for test set predictions obtained using neural networks.
Networks were trained using unbalanced data and data oversampled with SMOTE. Only the
F1 Score is improved by oversampling. Surprisingly, the specificity decreased after applying
SMOTE which oversamples the negative class. The increase in sensitivity and corresponding
drop in specificity indicates that there is a trade-off in class accuracies after oversampling.
The underlying issue is the overlap in the feature space.

Figure 3.16 provides the validation and training data performance metrics as training was

performed over each epoch. Each iteration of training is conducted using a bootstrap sample

of the training data, performance is evaluated on the validation data and the parameters of

the model are adjusted. Another bootstrap sample is then taken from the training data and

the process continues until the number of epochs has been reached or some other stopping

criteria that was specified has been met.

The training accuracy of the unbalanced data increased while the validation accuracy de-

creased, evidencing that the model is overfit to the training data. When SMOTE was applied

the training and validation accuracy agreed. The validation set AUC was mostly consistent

between unbalanced and SMOTE oversampled data. However the training AUC was further

from the validation AUC when SMOTE was applied indicating more severe overfitting. The

sensitivity on the validation data consistently tracked that on the training data when SMOTE

was applied. However, the validation set sensitivity for the unbalanced data decreased while

that for the training set increased. For both unbalanced and SMOTE oversampled data the

validation set specificity decreased while that for the training set increased. This disagree-

ment was more severe when SMOTE was applied. These results indicate that the application

of SMOTE bettered the training process only in regards to the specificity, and thereby the

accuracy. However, the training process of the AUC and specificity was negatively impacted.
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Figure 3.16: Tracking performance as neural networks are trained. Hyperparameters were
first selected using holdout validation. Then those which maximized the AUC were selected
and the final models were trained. The performance by epoch is given for each metric. Models
were trained for 100 epochs. The model trained on SMOTE oversampled data exhibited more
signs of overfitting than that trained on unbalanced data. This can be seen by comparing
the differences between training set performance and validation set performance.
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3.5 The Need to Further Study and Improve SMOTE

The results that we have obtained in this chapter indicate that in order to tackle the predic-

tive component of the problem we must first deal with the issue of imbalance and overlap.

We have applied one of the most popular oversampling methods to the data and fit more

complex models. However, we still find that there is a trade-off in the class-specific accu-

racies which inhibits us from obtaining good predictions on the minority class. Moreover,

we see that both overlap and imbalance must be tackled in combination in order to truly

solve the predictive component of the problem. We now proceed to discuss the shortcomings

of SMOTE and our simulation-based investigation into them. We also discuss the novel

algorithm that we created using the results of those simulations.
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Chapter 4: The Strategic SMOTE (S-SMOTE) Algorithm: A

Simulation-Based Approach

Though SMOTE was shown to be an improvement over ROS, the authors of the technique

note that when minority examples are crowded by majority class examples, the resulting de-

cision rules will likely be biased towards the minority class. This creation of ‘noisy examples’,

that is, examples in overlapping areas, is a known shortcoming of SMOTE. This effectively

creates a trade-off between majority class and minority class accuracy. Additionally, since

SMOTE does not consider whether a minority example is crowded by other minority exam-

ples, already-dense clusters of the minority class may see a larger increase in density than

sparse clusters of the minority class. The presence of such within-class imbalance, known as

the ‘small disjuncts’ problem, can cause poor classifier performance (e.g. Prati et al. 2004;

Denil and Trappenberg 2010; Stefanowski 2016). In Figure 3.4, a small disjunct would be

created if we blindly oversampled the minority class cluster in the left circle. Similarly, the

amount of overlap in that toy data set could increase if we oversampling using points in the

top-left quadrant of the circle on the right side.

Improvements upon the original SMOTE usually involve rectifying these two issues - where to

generate synthetic examples, so as to not create more overlap, and how much to oversample,

so as to not further inflate already dense spaces, or ignore sparse areas. Though most

adaptations of SMOTE usually apply a cluster-based approach, there are some that do not

use clustering to inform the oversampling process.

The most popular adaptation to SMOTE that does not rely on clustering is Borderline-

SMOTE1 and Borderline-SMOTE2 (Han et al. 2005). The former algorithm only oversam-
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ples examples from the minority class that are on the borderline of the areas of the feature

space belonging to each class. An example is called a borderline example if more than half

of its k-nearest neighbors belong to the majority class. Borderline-SMOTE1 only uses near-

est neighbors from the minority class while Borderline-SMOTE2 additionally uses neighbors

from the majority class. Though improvements were shown for the minority class, the au-

thors did not discuss how their algorithm impacts classifications for the majority class and

the issue of small-disjuncts was not addressed. The Adaptive Synthetic Sampling Approach

(ADASYN) introduced by He, Bai, et al. (2008) generates more synthetic observations for

harder to learn examples, where an example is considered harder to learn when many of its

k nearest neighbors belong to the majority class. Though this deals with the small disjuncts

issue, this approach is likely to increase the presence of noisy examples (Barua et al. 2012).

As a cluster-based adaptation of SMOTE, k-means SMOTE (Douzas et al. 2018), focuses on

removing between- and within-class imbalance by only applying SMOTE within clusters that

are dominated by the minority class and by generating more synthetic examples in sparse

minority class dominated clusters. This algorithm addresses the issues of overlap, imbalance,

and small-disjuncts, however, the authors note that its effectiveness depends on finding an

appropriate number of clusters to use, if any can be found. Cluster-SMOTE (Cieslak et al.

2006) uses k-means to cluster the minority class and then performs SMOTE in a cluster-

based manner. However, the issues of overlap and small-disjuncts are not rectified by this

because the minority class dominance of the cluster is not factored into the oversampling

process. Cluster-based oversampling was also introduced by Jo and Japkowicz (2004), which

aims to balance the number of examples within majority class clusters and minority class

clusters, while balancing the classes overall. Since this method only oversamples, it is possible

that it could create overly specific decision regions, as does ROS. Other solutions include

those introduced by Bunkhumpornpat et al. (2009), Sáez et al. (2015), Zhu et al. (2017),

and Rivera (2017).
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A few works have also been recently introduced which focus on how to generate synthetic

examples along the line segments which SMOTE creates between a point and its nearest

neighbor of the minority class. In a novel and comprehensive analysis of SMOTE, Elreedy

and Atiya (2019) showed that, in general, the distribution of synthetic data generated by

SMOTE will be more ‘contracted’ than the distribution of the original minority examples,

when points are generated along these line segments according to a Uniform(0, w∗) distribu-

tion. They showed that as w∗ increases, this compactness decreases - that is, as these line

segments are allowed to intersect the neighbors of interest, and extend beyond them, the

contraction becomes less severe. However, as this line is extended, it may encroach into an

area of overlap or majority class dominance. Their work does not directly address solutions

to the issues of overlap, imbalance, or small disjuncts.

Some recent extensions of SMOTE use different probability distributions to select points

along the line segments joining an example and its neighbors (e.g. Lee et al. 2017; Kamalov

and Denisov 2020; Tarawneh et al. 2020; Bernardo and Della Valle 2021). The use of

the Gamma distribution is discussed by Kamalov and Denisov (2020) who aimed to place

synthetic examples in proximity to, and in the direction of, nearby minority points. However,

they did not discuss how their method impacts overlap or the small disjuncts issue. The use

of both a Uniform and Gaussian distribution, in subsequent steps, is discussed by Lee et al.

(2017), however, they also did not discuss the issues of overlap or small disjuncts.

To the best of our understanding there has not been a thorough simulation study conducted

to understand how the distribution of w∗, the interpolation and extrapolation factor in

SMOTE, impacts the predictive performance of models fit to data oversampled with SMOTE.

This factor is used to determine where points fall along the line segments joining a minority

class example and its nearest neighbor. The location of synthetic points in the feature space

determines whether SMOTE will introduce further overlap and small disjuncts.

We have identified a need for a simulation study that not only studies this element of the
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SMOTE algorithm but also does so with consideration to overlap, imbalance, and other data

characteristics (e.g. missing data). Such a study can be used to characterize the performance

of SMOTE in a variety of situations. The results can also be used to create a novel SMOTE-

inspired algorithm that more informedly generates synthetic data in scenarios where multiple

data difficulties are present.

Most of the research conducted regarding the performance of SMOTE and possible im-

provements was not conducted under the premise that negative and positive predictions are

equally important. Therefore, there is also a need for a simulation study that sheds insight

on the performance of SMOTE in this scenario. In this chapter, we will discuss the results of

a simulation study that tackles each of these needs. We will also present our novel SMOTE

algorithm called Strategic SMOTE (S-SMOTE) whose creation was informed by the results

of our simulation study. Lastly, we provide an example application of S-SMOTE.

The technical problem of binary classification with an imbalanced response variable and

overlap in the feature space is a difficult one to overcome. We do not aim to provide S-

SMOTE as an outright solution to the problem. Rather, we present an algorithm that

incorporates the useful insights and novel findings that we have discovered so far as we forge

towards a solution. Our goal is to use simulations to (1) characterize the challenges that

this problem creates for predictive modeling in a variety of data scenarios, (2) determine

whether SMOTE overcomes or fails to overcome these challenges, and (3) find scenarios in

which S-SMOTE also overcomes or better overcomes these challenges, if any.

4.1 Preliminary Details of S-SMOTE

In order to apply S-SMOTE we first require a training dataset. This dataset can have any

number of rows and columns but the size of the minority class in the dataset will directly

impact the computation time of the algorithm. In addition to the unbalanced dataset, the
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response variable and number of synthetic examples desired must be specified. Though the

user could also specify a distribution to use for interpolation/extrapolation, the results of our

simulation study in the next section will be used to select this more informedly. In order to

explain the details of the technique and provide examples we use a Uniform(0,1) distribution

for now which is the same as SMOTE. The parameters of S-SMOTE include the maximum

number of nearest minority neighbors kmax that can be used for oversampling a given minority

example and the dominance η = (η1, . . . , ηl) that each minority class example is tested for to

approve its use for oversampling. η is a decreasing vector. Gower’s distance (Gower 1971) is

used in order to incorporate differences in categorical variables when determining the nearest

neighbors of a point.

The oversampling technique begins by using pmin = 0% of minority examples for oversam-

pling and ηnow = η1. While pmin < 75% and we have not used all values in η, for each

minority example and for k = 1, . . . , kmax, of all points that are as close as the k-th minority

neighbor, the proportion that belong to the minority class is calculated. We denote this vec-

tor of proportions as propmini
which is the dominance at each minority neighbor of minority

point i, where i = 1, . . . , nmin and nmin is the number of minority examples. For each point

i, we then determine how many neighbors we can use before this threshold first drops below

ηnow and use that many neighbors for oversampling.

If less than 75% of minority points had at least one neighborhood meeting ηnow, we decrease

the dominance to the next largest value for η and find points which have neighborhoods

meeting that dominance. This process continues as we successively find the most strongly

dominated minority neighborhoods of the feature space until we have enough minority points,

at least 75%, for oversampling. If no minority points were deemed fit for oversampling after

exhausting all thresholds, then no points were deemed fit for oversampling. In this case the

dominance threshold may be to strict for the amount of overlap in the feature space and it

could be lowered.
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We then calculate the relative dominance of the neighborhoods of the minority class points

deemed fit for oversampling. We denote this vector as rpropmin for the i-th point. By calcu-

lating the relative dominance we are able to determine which minority class neighborhoods

are least dominated relative to those that met at least ηl dominance. The algorithm returns

the percent of minority examples used for oversampling. If too few examples are used relative

to how much oversampling is desired then too little information is being used to generate

synthetic examples which could negatively impact the predictability of the resulting models.

Additionally, the five number summaries for the number of neighbors used and the relative

final dominance of each point are returned. Note that if maxi{propmini
} = 1 then the relative

dominance is the same as the original dominance for all points.

Figure 4.1 gives a plot of the relative dominance and number of neighbors deemed fit for

oversampling for a simulated dataset. We applied S-SMOTE to a simulated dataset of

1000 observations with 60 variables, 27 of which were categorical, an overlap amount of

0.70, 85% majority examples, and no missing data. We provide more details on how we

simulate data with these characteristics in the next section. In order to see the points

clearly we jittered them. We used kmax = 15 and the dominance thresholds checked were the

decreasing sequence from 0.6 to 0.20 by -0.02. 91.3% of minority examples were deemed fit

for oversampling (137/150), the minimum number of neighbors used was 1 and the maximum

was 10, and the final relative dominance thresholds ranged from 0.583 to 1.

In Figure 4.1 the red values in parentheses indicate the preference with which points should

be oversampled. The horizontal and vertical lines indicate the median number of neighbors

used and relative dominance threshold, respectively. Quadrants are defined using values less

than or equal to the median number of neighbors and greater than or equal to the median

relative dominance. Points in quadrant 3 have the least dominance and density, therefore

they are used for oversampling the most, after which points in quadrant 2 are used for

oversampling.
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Figure 4.1: Example jittered plot of relative dominance and number of minority neighbors
used for oversampling. This is plotted for each point in the minority class. Red numbers
indicate priority of points when oversampling. Points in region 1 have the least dominance
and density, therefore they are used for oversampling the most. Horizontal and vertical lines
are the medians of the respective axes. Quadrants are defined using values less than or
equal to the median number of neighbors and greater than or equal to the median relative
dominance.

There is clear variability in the number of neighbors used for oversampling and the relative

dominance of each point. This indicates that not all points deemed fit for oversampling have

equal need for oversampling. This is where our algorithm tackles an issue that the original

SMOTE algorithm does not. In order to oversample with respect to this information we

select a vector of decreasing weights ρ = (ρ1, ρ2, ρ3, ρ4) (e.g. (0.1, 0.3, 0.5, 0.1)) which we use

for oversampling. These values correspond to the probability with which we select a point in

quadrants 1 through 4 for oversampling, respectively. Using the example vector of weights,

when selecting a minority point to oversample we will select from quadrant 1 with probability
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0.1, for quadrant 2 with probability 0.3 and so on. These weights are also hyperparameters

of S-SMOTE.

In order to perform the actual oversampling we randomly select a minority neighbor deemed

fit for oversampling and one of its neighbors within the neighborhood that met the strongest

dominance criteria possible. The data values of the synthetic point generated can be defined

as z = x0 +w∆, where w ∼ F , ∆ = xi − x0, xi is the feature vector for the nearest neighbor

used, and x0 is the feature vector for the minority example of interest. Similar to SMOTE-

NC, when there are categorical variables the level of each categorical variable that was

most commonly observed amongst its neighbors is given to the synthetic point. Similar to

SMOTE, this method adds back in a random proportion of the difference between the point

of interest and one of its nearest neighbors, and labels this as a new point in the minority

class. The key differences between S-SMOTE and SMOTE/SMOTE-NC are that (1) we

determine which points to oversample and which of their neighbors to use for oversampling

by successively checking for the strongest possible neighborhood dominance, (2) we use the

results of our simulation to guide the selection of the distribution for w which determines how

interpolation and extrapolation are performed, and (3) we use Gower’s distance to determine

how similar points are which incorporates differences in categorical variables.

Recall that SMOTE-NC uses the median of the standard deviations of the quantitative

variables to adjust the Euclidean distance (calculated using only the quantitative variables)

when the levels of a categorical variable are different. Similar to SMOTE, missing data are

perpetuated throughout the dataset. If a neighbor has missing values for a given variable,

then the synthetic point generated with it will also have missing values for that variable.

Additionally if all neighbors of a reference point are missing data for a given categorical

variable, the synthetic point will have missing values for that categorical variable, otherwise

the majority vote after dropping NAs is used. In order to avoid this, missing data should

be handled separately before oversampling. Our simulations include the evaluation of the
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predictive performance of our algorithm in the presence of missing data.

4.2 Outline of Simulation Study

We will now provide the details of our simulation study. Understanding these details is

necessary to understand the results of the simulations and the performance of these algo-

rithms. The purpose of the simulation study is to evaluate the performance of S-SMOTE

and SMOTE under a variety of data difficulties as w changes. The results will allow us

to characterize the problem of binary classification with overlap in the feature space in the

presence of other data difficulties. These results will also bring us closer to the final version

of S-SMOTE as we will use them to select a distribution for w.

In order to evaluate the performance of these algorithms under a variety of scenarios we

need to generate simulated data with varying characteristics. After setting the sample size

(sampsize) and number of variables (ndim), we set the proportion of majority class observa-

tions (propmaj, ranging from 0 to 1), and the proportion of categorical variables (perccat,

ranging from 0 to 1). Each quantitative column in the simulated dataset contains random

deviates sampled from a statistical distribution (e.g. Normal, Poisson, Gamma). The distri-

bution is the same for the majority and minority class, therefore the dataset contains overlap

at the onset. We refer to the value used to adapt overlap as ovlap and it ranges between 0

to 1.

We remove overlap from the dataset by shifting the majority class distribution of each

quantitative variable away from that of the minority class by an amount determined by

ovlap. Each categorical variable in the simulated dataset is created by randomly sampling

from a vector of a certain size containing factor levels. The probabilities with which elements

in this vector are selected is determined by randomly sampling a vector of weights from a

Dirichlet distribution. In order to remove overlap in the categorical variables we find the
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largest frequency for the minority class and share the majority class frequency of this level

amongst the other levels. This effectively causes the most common level of the minority class

to appear the least frequently in the majority class.

In order to introduce missing data we use two schemes (typemiss). Data can be missing

completely at random (MCAR), missing at random because the observation is in the minority

class (MAR), or not missing at all (none). The percent of missingness (amountmiss) is a value

ranging between 0 and 1 giving the proportion of cells in the entire dataset, or only the

minority subset if typemiss = "MAR", that are set to NA.

The values that we considered for each of these characteristic is given below:

• ovlap: 0.2 and 0.8

• propmaj: 0.55, 0.85, and 0.95

• sampsize: 750 and 1750

• ndim: 20, 100, and 150

• perc cat: 0, 0.25, and 0.85

• typemiss: ("MCAR"), ("MAR"), and ("none")

• amountmiss: 0, 0.3, and 0.7

Given that we desire to investigate many data characteristics, we held some characteristics

constant while studying others. Each group of simulated datasets holds four combinations of

ovlap and propmaj constant while the other data characteristics change. For example, the

first two sets of simulations that we performed used training data with the characteristics

given below.

ovlap propmaj sampsize ndim perc_cat typemiss amountmiss
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0.2 0.55 750 100 0 none 0

0.8 0.55 750 100 0 none 0

0.2 0.85 750 100 0 none 0

0.8 0.85 750 100 0 none 0

ovlap propmaj sampsize ndim perc_cat typemiss amountmiss

0.2 0.55 1750 100 0 none 0

0.8 0.55 1750 100 0 none 0

0.2 0.85 1750 100 0 none 0

0.8 0.85 1750 100 0 none 0

We studied a total of 10 set values for the data difficulties in combination with imbalance

and overlap. This gave a total of 40 individual scenarios that we studied. For each scenario

we simulated both training and testing datasets. We then applied different oversampling

techniques to compare the predictive performance of models trained on oversampled data

with those trained on the unbalanced dataset.

There were four options that we considered when balancing datasets:

• Population oversampling (Pop): Balancing the dataset by sampling minority class

points from the population distributions that the data were originally simulated from.

• Random oversampling (ROS): Balancing the dataset by taking bootstrap samples from

the minority class and replicating each selected rows in the dataset.

• Synthetic Minority Oversampling TEchnique (SMOTE): Using interpolation to ran-

domly generate synthetic minority class examples as explained earlier. The interpo-

lation is performed by randomly adding back in some percentage w of the difference

between the point of interest and the selected neighbor.



113

• Strategic SMOTE (S-SMOTE): Using interpolation and extrapolation to randomly

generate synthetic minority class examples as explained earlier. The most minor-

ity class dominated areas are first oversampled and then the dominance is decreased

incrementally until enough examples have been deemed fit for use. The interpola-

tion/extrapolation is performed by randomly adding back in some percentage w of the

difference between the point of interest and the selected neighbor.

• No oversampling (None): In this case we do not oversample the dataset at all and it

remains unbalanced.

For both SMOTE and S-SMOTE, w was randomly generated from the distributions below:

Four-Parameter Beta Distribution Gamma Distribution Uniform Distribution
FPB(0.5, 0.5,−1, 1) G(shape = 0.5, scale = 1.0) U(−3, 4)

FPB(1, 3,−3, 4) G(shape = 1, scale = 2) U(0, 1)

FPB(1, 3, 0, 1)

FPB(2, 2, 0, 1)

FPB(2, 5, 0, 1)

FPB(5, 1,−2, 3)

There were, therefore, a total of 23 different oversampling methods applied to each of the

40 types of simulated datasets. This gives a total of 920 individual simulation scenarios.

For each of these 920 combinations of oversampling method and dataset type, we performed

500 simulations and fit models to the resulting training datasets. The models considered

were LASSO logistic regression, random forests and neural networks. Neural networks were

computationally expensive to fit in a loop. Due to computation times we decreased the

simulation size to 200 when training some neural networks. This entire process was repeated

for every model under consideration. In order to keep results consistent the same datasets

were used for all 23 oversampling methods. That is, for a given set of data characteristics,

we applied all 23 oversampling methods to each of the same 500 datasets and fit models to
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these same datasets. We did this in order to evaluate changes in performance due only to

the changes in oversampling method and model used, not the underlying dataset that was

oversampled itself.

The regularization parameter of LASSO logistic regression models was the value in 2x, x ∈

(−15,−14, . . . , 14, 15) that minimized the 10-fold cross-validation AUC. The variable selec-

tion properties of LASSO logistic regression could come at the cost of predictive capability.

We include this model amongst random forests and neural networks in order to further inves-

tigate this. Random forest models were fit using min(sampsize/4, 250) trees,
√
p variables

tried, and a minimum node size of sampsize*0.05. Neural networks had two hidden layers

with number of nodes equal to 45% and 20% of the number of columns in the training data,

respectively. The ReLu activation function was applied to each hidden layer and the Sigmoid

activation function was applied to the output layer, giving probabilities between 0 and 1.

Binary Cross-Entropy was used for the loss function and the Adadelta optimizer was used.

Networks were trained for 100 epochs on batches of size 32. A threshold of 0.5 was used for

all class predictions for all models.

We would like to make a note about computational issues that we faced. We did not tune

random forest and neural network models as we did in the case of LASSO logistic regression

due to their lengthier training times. We fit a total of 460,000 models since there were 23

oversampling methods applied to 40 individual data scenarios with 500 repetitions. When

available, the defaults suggested by the makers of randomForest were used.

However such defaults do not exists for neural networks since they have many hyperparam-

eters taking many values. Incompatibilities between the R interface to keras and caret

prevented us from performing a grid search for the best hyperparameters. Additionally, the

tuning functions provided by tfruns, a package with training tools for tensorflow requires

the use of a different script for each tuning iteration which is not feasible given how many

models we desire to fit. We also attempted to use the R interface of kerastuneR but we had
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unresolvable issues installing its Python module with the R interface and the Python instal-

lation was not recognized. The time taken to complete our simulations for neural networks

(without tuning) was approximately 1.5 months using the R interface to keras. A

Future work will involve performing these simulations in a faster programming language (e.g.

Python) so that all models can be trained well. We will still include these models in our

discussion about the results of our simulations. However, the challenges that we faced should

be taken into account as we present our simulation results and make comparisons between

models.

In order to evaluate the predictive performance of models we calculated a variety of values

from the test set predictions. Let the number of true positives = TP, true negatives = TN,

false positives = FP, false negatives = FN, observed positives = P, and observed negatives

= N. For every model that we fit, we obtained predictions for the test set and calculated the

values below.

• Accuracy (Acc) = TP+TN
TP+TN+FP+FN

• Sensitivity (Sens) = True positive rate (TPR) = TP
TP+FN

• Specificity (Spec) = True negative rate (TNR) = TN
TN+FP

• Balanced accuracy (Bal Acc) = TPR+TNR
2

• Negative predictive value (NPV) = TN
TN+FN

• Positive predictive value (PPV) = TP
TP+FP

• F1 score = 2TP
2TP+FP+FN

, the harmonic mean of Sens and PPV

• Area under the receiver operating characteristic (ROC) curve (AUC): Area under the

plotted curve of TPR and FPR (or 1 - Specificity) for various probability thresholds.
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• Kappa coefficient: (κ) = 2×(TP×TN−FN×FP )
(TP+FP )×(FP+TN)+(TP+FN)×(FN+TN)

. This gives a measure of

the agreement between the truth and predictions. A value of 1 indicates total agreement

between truth and predictions, while a value at or near 0 indicates no agreement other

than that due to chance. A negative value could indicate no relationship or non-random

differences between the truth and predictions.

One effect of the many computational issues that we had with neural networks is that the

balanced accuracy, sensitivity, specificity, PPV, and NPV produced by them could be be

under- or over-estimated. We observed many values near 55/45 and 85/15 for the sensitiv-

ity/specificity and many values near 50 for the balanced accuracy, even in the best case data

scenarios. As we discuss the results of our simulation study we will point out these issues.

In order to study how these oversampling methods impact the within-class imbalance for

the minority class, and how this further impacts the predictive performance of models, we

performed k-means clustering on the minority class, after oversampling the training set, and

calculated the values below. We first attempted all cluster sizes from two to the maximum

amount that would allow for at least 20 points in each cluster. The average silhouette

widths (taken over all clusters) were calculated and we selected the number of clusters that

maximized this. This cluster allocation was then used to calculate the minimum, Q1, median,

Q3, mean, maximum, and IQR of the resulting cluster sizes and the number of clusters.

In order to understand how other characteristics of the training data are related to the

performance of models that they are trained on, we also calculated values indicative of the

minority class distribution after oversampling using the methods that we outlined earlier.

The first value was the relative difference in the Frobenius norms of the correlation matrix

of the quantitative variables in the minority portion of the training data, between the un-

balanced and balanced datasets. This gives us an idea of how the amount of variability in

the feature space changes between the unbalanced dataset and the oversampled dataset, for

the minority class. The second value is the proportion of points in the minority or majority
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class that have more than two out of six nearest neighbors from the opposite class. These

are called the minority class and majority class overlap metrics, respectively. We aim to

understand how these training data characteristics are related to performance metrics as we

study the results.

4.3 Results of SMOTE Simulation Study

Our first step towards understanding the simulation results is to evaluate the median predic-

tive performance of LASSO logistic regression, neural networks, and random forests applied

to data which have been oversampled using each of the oversampling methods discussed

earlier (including no oversampling). For every oversampling method, type of dataset (type

as determined by amount of imbalance, overlap, missingness, and other characteristics), and

model, we have 500 values for each performance metric. We calculated the median of these

500 values, giving us one median for each oversampling method, type of dataset, model, and

performance metric. We then calculated the median and standard deviation (SD) of these

medians over all oversampling methods, giving us one overall median and SD of these for

each type of dataset, model, and performance metric.

Figure 4.2 provides the numeric value for this overall median for the AUC and balanced

accuracy, as well as the standard deviation in parentheses. Plot for other metrics can be

found in the Appendices. These are plotted using a gradient of yellow (0) to green (1) for

the AUC, Balanced Accuracy, F1 Score, Kappa Coefficient, NPV, PPV, TPR, and TNR.

Each point on the y-axis gives the change that we made to the Base Case. The Base Case

is datasets with N = 750, 100 variable, and no categorical or missing data. In the case of

85% categorical variables and 70% data MAR, only 5% of simulated data belonged to the

minority class, not 15%. We looked at more severe imbalance in these cases than in the

others but we use the same x-axis label for organizational purposes.
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Figure 4.2: Median AUC and balanced accuracy, taken over the median performance for
each oversampling method. X-axis provides overlap and imbalance amounts. Y-axis indicates
which data difficulty was present. The Base Case is N = 750, 100 variables, and no categorical
or missing data. The median was calculated out of 23 medians which were themselves
calculated out of 500 values.
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It is evident that there is a drop in performance whenever overlap increases. For most

metrics, data cases, and models, the color goes back and forth from dark green to yellow-

green as we scan across the x-axis. However in the case of neural networks this pattern

does not occur for AUC, balanced accuracy, NPV, PPV, and Kappa. Neural networks had

higher sensitivity when the percent minority was 15% but they have lower sensitivity when

it was 45%. Random Forests had high sensitivity when the percent minority was 15% and

continued to have high sensitivity when it was 45%. Although it decreased when the overlap

was 0.8, it remained high in the harder cases when data were MCAR and MAR.

The sensitivity of neural networks increased when the percent in the minority class decreased

but the specificity decreased when the percent in the minority class decreased. Random

forests performed very poorly in terms of AUC when 70% of minority data were missing

at random and the overlap was 0.8 and only 5% of the data belonged to the minority

class. Logistic regression had the best overall performance in terms of specificity followed

by random forests. However, in most cases all models struggled to achieve high sensitivity.

Especially when the overlap was 0.8 and 15% of rows belonged to the minority class. In this

case it was always lower than 0.50 and random forests struggled the most. The specificity

was especially poor for random forests when 70% of the minority class data were MAR and

only 5% of all rows belonged to the minority class

Evidently the presence of categorical and missing data has a huge impact on the predictive

performance of these models. There is evidence that overlap may have an even greater

negative impact in these cases than imbalance. When both are present there is an even

sharper decrease in performance. Our results also provide evidence that after specificity

overlap and imbalance impact the Kappa coefficient and then the NPV the most negatively.

To gain further understanding about the performance of these models when there are cate-

gorical or missing data we visualize the individual median performance for each oversampling

method rather than the overall median. We plot these in Figures 4.3 and 4.4, respectively.
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We used a darker gray for the median corresponding to unbalanced data. Then we also

plotted the medians of these in purple. Sometimes this overlaps with the darker gray point.

These plots are faceted by metric and model combination. Each space on the x-axis notes

the overlap-imbalance combination used to simulate that dataset. These plots give us a finer

view of the results discussed in the previous set of plots because we can now see the medians

relative to each oversampling method, and unbalanced data, as well as the overall median.

Additionally, we can see how variable the medians actually are across oversampling methods.

Similar plots for all performance metrics and data scenarios are available in the Appendices.

We assessed all of the plots in the Appendices including those here and found that there were

many non-trivial differences in the performance. We saw more variability in the medians

when it came to the NPV, especially when 15% of the data belonged to the minority class.

When N=20 though the variability was low as in the general case. The PPV was not quite

variable in comparison to other metrics but was most variable with respect to itself when

neural networks were fit and 85% of data were categorical with 5% of rows belonging to the

minority class. This was also true when data were MCAR or MAR.

The Kappa coefficient was also noticeably more variable than other metrics. Especially

when there was also imbalance. The balanced accuracy exhibited more variability when

overlap=0.2 and 15% of data belonged to the minority class. When 30% of minority data

were MAR the AUC from random forests were quite variable when there was also imbalance.

Specificity was also quite variable in a manner similar to the NPV. In other cases, the medians

were fairly similar and there was little variability due to the oversampling method.

These results indicate that when there is categorical or missing data as well as imbalance

and overlap the decision about which oversampling method and distribution for w to use is

more important. This is evidenced by the increased variability in performance metrics when

we enter these scenarios than when we look at the base case for example.
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Figure 4.3: Median specificity and sensitivity given by light gray point. Median was calcu-
lated over 500 repetitions for a given sampling method. Each training set had 750 rows and
100 variables. Of those 25% or 85% of variables were categorical and there was no missing
data. The purple point gives the median for each group of points over all sampling methods.
Dark gray point mark the results for unbalanced data.
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Figure 4.4: Median specificity and sensitivity given by light gray point. Median was calcu-
lated over 500 repetitions for a given sampling method. Each training set had 750 rows and
100 quantitative variables. 30% or 70% of cells in the dataset belonging to the minority class
were missing at random. The purple point gives the median for each group of points over
all sampling methods. Dark gray point mark the results for unbalanced data.
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We desire to know whether the variability that we observed in the median performance

metrics is simply due to the oversampling method regardless of the distribution used for

w. If so, we might expect to see differences simply due to the oversampling method. To

that effect, we plotted the distributions of each performance metric for each oversampling

method. We aggregated over the distribution of w for SMOTE and S-SMOTE and we

aggregated over the amount of imbalance and overlap, the data scenario, and the model used

for all methods. The median and standard deviation of each performance metric taken with

respect to oversampling method is given at the top of each facet in the plots. Distributions

for the balanced accuracy and Kappa coefficient are given in Figure 4.5. We will discuss the

full results however which can be found in the Appendices.

Models trained on unbalanced datasets produced predictions with the highest median accu-

racy, sensitivity, NPV, and F1 score. These also had the lowest balanced accuracy, specificity,

AUC, and Kappa coefficient. Models trained on datasets that were balanced by oversampling

directly from the minority class population produced predictions with the lowest median ac-

curacy, sensitivity, and F1 score but the highest median balanced accuracy, specificity, AUC,

PPV, and kappa coefficient. It had the second-highest NPV. The second-lowest median

accuracy and F1 score were produced by ROS but it also produced the second-highest bal-

anced accuracy and AUC. Furthermore, ROS produced predictions with the third lowest

sensitivity, specificity, NPV, and Kappa.

SMOTE produced predictions with the second-highest accuracy and sensitivity after no over-

sampling but it also produced the second lowest balanced accuracy and specificity. S-SMOTE

had third highest accuracy and balanced accuracy. Though S-SMOTE the second-lowest sen-

sitivity it had the second highest specificity. SMOTE and S-SMOTE were essentially tied

for third place in terms of the median AUC. All methods except for population oversam-

pling were tied for second place in terms of the PPV but S-SMOTE had the lowest standard

deviation. SMOTE and S-SMOTE had the lowest and second-lowest NPVs, respectively.
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Figure 4.5: Distribution of balanced accuracy and Kappa coefficient based on oversampling
method. Data were aggregated over all simulations to make an initial determination about
whether the oversampling method used has an impact.
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SMOTE had the second highest F1 score while Strategic smote had the third-highest one.

S-SMOTE produced the second highest median Kappa coefficient while SMOTE had the

second lowest one. This was a difference of 0.015 for values on a scale of 0 to 1.

It is not surprising that unbalanced data produces the highest median accuracy but the

lowest balanced accuracy since accuracy is a biased measure of performance in the presence

of imbalance. The same can be said of the high median sensitivity which can be made

arbitrarily high when the data are imbalanced by simply predicting the positive class always.

This is exposed by the low Kappa coefficient of 0.129 on a scale of 0 to 1 which indicates

that the predictions and truth had little to no agreement other than that due to chance.

Obtaining more minority examples directly from the population produced superior results

with respect to all metrics except the accuracy, sensitivity, and F1 score. Oversampling

directly from the population balances the dataset in the best possible way but there may be

a small cost to pay for accuracy on the majority class. This cost is likely smaller than all

other methods though since the rest of the performance metrics were still higher than those

for all other methods.

Though ROS is a competitor in terms of balanced accuracy and AUC its performance with

respect to the other predictive performance metrics falls short of the other oversampling

methods often. This is to be expected given that ROS produces overly specific decision

regions. Since SMOTE produced higher median accuracies than balanced accuracies this

indicates that after oversampling with it the accuracy still may not be an accurate predictor

of model performance. On the other hand, S-SMOTE produced the third highest accuracy

and balanced accuracy indicating that its accuracies may better reflect performance on both

classes. S-SMOTE produced the second highest specificity and second lowest sensitivity

indicating that there is a tradeoff between these two. The same is true for SMOTE but it

produced higher sensitivity than specificity.

There is clearly quite a bit of variability in performance metrics due to the oversampling
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method applied. It is evident that population-balanced data are the best option in many

cases, but this cannot be applied in reality. These will be used as a sort of baseline for

understanding our simulation results. It is also evident that working with unbalanced data

produces poor results but it is not always poorer than the use of oversampled data. However,

these results do not take into account the model applied or any characteristics of the data. An

oversampling method may prove superior in aggregate but it may be weaker when considering

special cases. This brings us to our next set of results.

We also created plots of the distribution of each metric for SMOTE and S-SMOTE aggre-

gated over the distribution of w and overlap and imbalance amount. We did facet based on

the data scenario and the model used though. The median and SD taken over the distri-

bution for w and amount of overlap and imbalance is given at the top of each panel in the

plot. The text is bolded whenever S-SMOTE performed better than SMOTE. The x-axis

indicates the metric being plotted. All of these plots are given in the Appendices in their

full size. We provide a smaller version in Figure 4.6 for reference but our discussion pertains

to the full results.

In terms of accuracy S-SMOTE performs better than or as good as SMOTE in 12/18 of

the cases where there was categorical or missing data. There were 18 of these scenarios:

6 different data scenarios to which 3 models were applied. This was especially true when

random forests or neural networks were applied. In other cases the accuracies produced

from data oversampled with SMOTE were larger than those produced by S-SMOTE. The

median balanced accuracy for S-SMOTE was higher than that for SMOTE in 9/10 data

scenarios when neural networks were applied and 8/10 data scenarios when random forests

were applied. However, it was only higher than SMOTE in 2/10 cases when LASSO logistic

regression was applied. These were (1) when 85% of data were categorical and (2) when 70%

of data were MAR. Recall that this was also when only 5% of observations belonged to the

minority class.
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Figure 4.6: Distribution of balanced accuracy from training data where SMOTE or S-
SMOTE (Strategic) was applied. Results were aggregated over the distribution of w and the
amount of overlap and imbalance. Each column label of the facet indicates the change from
the base case of N = 750, 100 variables, and no categorical or missing data.
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S-SMOTE lagged behind SMOTE quite a bit when considering the median sensitivity except

where neural networks were applied. In that case, it was superior to or as good as SMOTE

in 8/10 cases. Otherwise, SMOTE was superior to S-SMOTE in terms of sensitivity. In

terms of specificity though, S-SMOTE outperformed SMOTE in many cases, especially when

random forests and neural networks were applied. There were some cases in which both

the sensitivity and specificity produced by S-SMOTE was higher than or as good as that

produced by SMOTE. This occurred in all cases when neural networks were applied except

the base, 85% categorical, and 70% MCAR cases. This occurred in no cases were LASSO

logistic regression was applied, and in the 25% categorical and all missing data cases when

random forests was applied. In terms of the AUC, when logistic regression was applied we

again saw that S-SMOTE outperformed SMOTE only when 85% of data were categorical

and only 5% of observations belonged to the minority class. It outperformed SMOTE in all

cases when neural networks were applied and mostly when data were missing or 25% of data

were categorical and random forests was applied.

The results observed for the PPV from LASSO logistic regression and neural networks were

similar to those observed for the specificity. There were a lot more cases where the PPV was

very similar for S-SMOTE and SMOTE than the sensitivity however. When random forests

was applied the PPVs produced by S-SMOTE were equal to or trivially larger than the

median PPV for SMOTE. Most differences and the largest ones again occurred when data

were categorical or missing. Though SMOTE performed equally to or superior to S-SMOTE

in terms of NPV, in the case of 25% and 85% categorical variables, the median percentage

of negative predictions that were truly negative was 18% and 22% higher, respectively, when

S-SMOTE was applied than when SMOTE was applied. In terms of F1 score, SMOTE

outperformed S-SMOTE in most if the cases were data were not categorical or missing. The

Kappa coefficient was higher for S-SMOTE when neural networks were applied in most cases

and for random forest when data were categorical or missing.
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These results concerning specificity and sensitivity occur again because of the trade-off that

S-SMOTE is making by paying more attention to the minority class. However, since there

were some cases where both of these metrics were superior to SMOTE when S-SMOTE

was applied this indicates that S-SMOTE does not always make a trade-off but rather it

may actually produce better predictions on both classes at times. These results show that

both the oversampling method and model applied impact predictive performance. Therefore,

these should not necessarily be selected independent of each other. In almost every case were

logistic regression was used SMOTE outperformed S-SMOTE, except when there were many

categorical variables and 5% of rows were of the minority class. However, when random

forests or neural networks were applied, S-SMOTE often outperformed SMOTE. Especially

when there was categorical or missing data.

Lastly, these results show that in the presence of categorical variables or missing data, S-

SMOTE often outperforms SMOTE when neural networks or random forests are applied. In

almost every case, when 85% of data were categorical and logistic regression was applied, S-

SMOTE also outperformed SMOTE. This leads us to believe that the case of categorical and

missing data should be furthered study. Though these results show that there are definite

differences in performance based on whether SMOTE or S-SMOTE is applied, it is not clear

how the amount of imbalance and overlap impacts these results. It also is not clear how the

selection of the distribution for w impacts these results. We have only studied the individual

data cases by model type and we aggregated over imbalance and overlap amounts and the

distribution of w. In order to incorporate information on these other characteristics of our

simulations even more detailed plot are needed. We discuss these next.

We begin with the median performance metric taken with respect to the oversampling

method, including SMOTE and S-SMOTE with each of their distributions for w, data sce-

nario, amount of overlap and imbalance, and the model applied. Then we calculate the

difference between the median performance metrics from predictions made on data balanced
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using SMOTE or S-SMOTE and those balanced using Population data. We also calculate the

difference for data balanced with S-SMOTE and SMOTE. This gives us a set of differences

for each performance metric. With this information we aim to discover the specific scenarios

in which S-SMOTE, SMOTE, or Population oversampling are superior to one another.

We made comparisons between SMOTE and S-SMOTE and population oversampling since

we saw that population oversampling performed better than all other oversampling methods

with respect to many metrics. A snippet of the results is given in Figures 4.7 and 4.8 while

the full results are in the Appendices. At times the difference was very small or values were

missing. For example, an NA for the NPV because there were no negative predictions. This

created some facets that seemed to have no data plotted since a common x-axis scale was

used.

The median accuracies produced by S-SMOTE and SMOTE were larger than those produced

by population oversampling when neural networks were applied and there was any type and

amount of missing data. This was always true for S-SMOTE and was true for all but one

distribution of w for SMOTE. It was true for all combinations of imbalance and overlap, but

the difference was largest when 15% of examples, or 5% in the case of 70% MCAR, belonged

to the minority class. This was also true when lasso logistic regression was applied and the

combination of overlap and % minority was (0.8, 0.15) which is the worst case scenario.

In that case it was true for all distributions of w. When w ∼ FPB(5, 1,−2, 3) S-SMOTE

showed greater improvements over population oversampling than SMOTE.

The median AUCs produced by SMOTE and S-SMOTE were mostly smaller than those

produced by population oversampling. When 30% or 70% of data were MAR and neu-

ral networks were applied there were small improvements. In these cases, S-SMOTE with

distributions FPB(5,1,-2,3), FPB(1,3,-3,4) and G(1,2) showed slightly more improved per-

formance over population oversampling than SMOTE also applied with these distributions

for w. Note that when there was any type and amount of missing data we obtained some
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Figure 4.7: Difference in median Kappa between S-SMOTE and population oversampling.
The median was calculated for a given data scenario, model, amount of overlap and imbal-
ance, and oversampling method specific to the distribution of w. Positive differences indicate
superior performance of S-SMOTE, however when this occurs it occurs for most distributions
which does not clarify which version of S-SMOTE is superior.
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Figure 4.8: Difference in median NPV between S-SMOTE and SMOTE. The median was
calculated for a given data scenario, model, amount of overlap and imbalance, and over-
sampling method specific to the distribution of w. Positive differences indicate superior
performance of S-SMOTE, however when this occurs it occurs for most distributions which
does not clarify which version of S-SMOTE is superior.
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NAs for the sensitivity, NPV, and balanced accuracy resulting from applying SMOTE and

S-SMOTE with neural networks and random forests. We also consistently saw very similar

performance metrics is these cases while analyzing the results of these simulations.

Due to computational issues were not able to obtain a median balanced accuracy or sen-

sitivity when neural networks were applied to data oversampled with SMOTE and the

FPB(5, 1,−2, 3) distribution or when population oversampling was applied and there was

any kind of missing data of any amount. Also, the NPV from random forests were missing

in three data scenarios where there was missing data. After investigating this issue we found

that it occurred whenever the minority class when never predicted.

With respect to the NPV and Specificity S-SMOTE outperformed SMOTE and population

oversampling when there were 25% or 85% categorical variables and random forests was

used on data with 15% minority examples and overlap 0.2 or 0.8. This also held true against

population oversampling when 30% or 70% of data were MCAR and the overlap and percent

minority were 0.8 and 0.15, respectively. Though there were a non-trivial number of cases

were population oversampling or SMOTE performed better than S-SMOTE, we noticed that

when S-SMOTE was superior the percent in the minority class was often 0.15 (or 0.05). This

indicates that S-SMOTE may have superior performance in the presence of more extreme

imbalance as well as when there is missing and categorical data.

We also visualized each performance metric by data case and distribution for w aggregated

over amount of overlap and imbalance, model, and whether SMOTE or S-SMOTE was

applied. Figures 4.9 and 4.10 give snippets of the full results which are available in the

Appendices. The majority of distributions had multiple modes indicating differences in

performance due to the imbalance and overlap, model, and whether SMOTE or S-SMOTE

was applied. However, these modes were often located in similar places on the x-axis across

distributions for w and for the same data scenario. Upon further inspecting the medians

of these aggregated distributions for the balanced accuracy, we found that the Gamma(1,2)
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distribution was superior to others for the Base, N = 1750, 20 vars, and 150 vars cases.

Figure 4.9: Distribution of balanced accuracy aggregated over all amounts of overlap and
imbalance, models, and whether S-SMOTE or SMOTE was applied. Though there are
changes in the distributions across data scenarios, distributions within a given column are
quite similar. Indicating that changes in performance due to the distribution of w may be
minimal in comparison to those that occur because of the underlying data scenario.

After that the FPB(0.5, 0.5, -1,1) distribution had superior performance when there was

categorical data. When data were missing the differences in balanced accuracy due to the

distribution of w were even smaller. When data were MCAR no one method was found to

be superior with respect to the balanced accuracy. When 30% and 70% of minority data

were MAR, the Gamma(1,2) and Uniform(-3,4) distributions were superior.

When w ∼ FPB(0.5, 0.5,−1, 1) the median specificity was superior in all data cases except

those for which data were missing. The largest difference in the medians was for the base

case with a 9.3% increase in the median number of true positive identified. When there
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Figure 4.10: Distribution of specificity aggregated over all amounts of overlap and imbalance,
models, and whether S-SMOTE or SMOTE was applied. Though there are changes in the
distributions across data scenarios, distributions within a given column are quite similar.
Indicating that changes in performance due to the distribution of w may be minimal in
comparison to those that occur because of the underlying data scenario.
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were 20 variables and 25% or 85% categorical variables, the differences were 3.8%, 2.6% and

2.2%, respectively. Though use of this distribution did not also produce the highest median

sensitivities its results were competitive with those of the other distributions and there was

no noticeable trade-off.

Using a minimum of -1 and a maximum of 1 with this distribution effectively performs an

equal amount of interpolation and extrapolation. A key characteristic of this distribution is

that it samples further away from a reference point more often than nearby (see Figure 4.11).

Values between -0.5 and 0.5 are sampled about 33% of the time while values less than -0.5

or greater than 0.5 are sampled about 67% of the time. This could lead to lesser amounts

of overlap introduced when this distribution is used for oversampling.

Figure 4.11: PDF and CDF of Four-Parameter Beta distribution with parameters α =
0.5, β = 0.5, min = -1, max = 1.

The main purpose behind our study of the distribution of w is to determine if there is a

distribution that does not introduce as much overlap into the dataset. Such a distribution

can be expected to generate better predictions. To that effect, we visualized the difference
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in the amount of overlap in the unbalanced training set and the oversampled training set

for each method of oversampling. We again broke these down by the characteristics of each

simulated data set (e.g. imbalance, overlap, missingness). Since we oversampled before

fitting the model these results are the same regardless of the model applied.

We found that there was only one simulation scenario in which the median difference in

overlap metrics for both classes decreased after oversampling. This was when overlap was

0.8, 45% of observations belonged to the minority class and 25% of data were categorical.

This was observed for about 6 different oversampling methods, however, and there was no

one distribution or method that produced this characteristic more frequently than another.

Upon examining the individual differences we observed the counts in Figure 4.12 for the

number of times that the difference was negative in both cases, meaning that the overlap

decreased for both classes after oversampling. This occurred in only about 1% of cases out

of 460,000 simulation scenarios and 6 out of 920 scenarios (0.652%) after taking the median

over each set of 500 simulations. Most often this occurred when 25% of data were categorical.

To determine whether changes in the overlap between unbalanced and oversampled data

impact the predictive performance we visualized their relationships with respect to the value

of each performance metric. We calculated the difference in performance metrics of random

forests between the test set predictions obtained using a model trained on unbalanced data

and that for predictions obtained using a model trained on oversampled data. A small

snippet of the results is given in Figure 4.13 but we do not include the full results in the

Appendices for the sake of space and since they are redundant.

We did not observe improvements in the performance metrics from random forest for points

near the origin. These points are of interest because median differences near the origin would

indicate less change in the amount of overlap for each class meaning that the oversampling

method tampered with the overlap a minimal amount. This was not necessarily linked to

better performance though because the performance metrics were not higher in cases where
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Figure 4.12: Number of times (x-axis) that difference in majority and minority class overlap
both decreased after oversampling. Color and y-axis provide details of the simulation scenario
in which these occurred. 500 repetitions were performed for each data scenario, amount of
overlap and imbalance, and oversampling method. When 25% of data were categorical many
applications of oversampling resulted in the same or less amounts of overlap in the majority
and minority class.
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Figure 4.13: For each oversampling method the amount of overlap introduced into the data
was calculated as the difference in the class overlap metrics before and after oversampling.
The median differences are calculated over all 500 repetitions for a given oversampling
method and data scenario. These are the same regardless of the model applied. Here
we visualize their relationship as well as the difference in the AUC of test set predictions
for models trained with unbalanced and oversampled data. These values did depend on the
model applied. We did not observe any further relationship between the changes in overlap
and the predictive performance on the test data.
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the amount of overlap introduced was smaller. We did however see the same negative trend

in all plots meaning that the median difference in the majority class overlap increased as the

corresponding value for the minority class decreased.

In order to further confirm whether there were changes in performance due to the type of

distribution used for sampling w, we ranked the median performance metrics. For each

metric, the medians were calculated with respect to the data scenario, amount of overlap

and imbalance, and the oversampling method and model applied. These medians were then

ranked with respect to the oversampling methods. A snippet of the results for ranks is given

in Figure 4.14. The fuller results are available in the appendices. We discuss the key findings

out of all that we observed.

When 70% of minority class data were MAR or MCAR and random forests were applied

there was no clear method that performed best in terms of balanced accuracy and all of the

methods performed quite similarly. When 30% of minority class data were MAR and random

forests were applied, the ranks of balanced accuracy for S-SMOTE were noticeably better

than those for SMOTE but there were still many methods with little variability in between

them. When data were 25% or 85% categorical and random forests was used, S-SMOTE

had noticeably better ranks. In Figure 4.14 we see many of the brown points falling to the

left of the green points indicating a higher rank. This was also true for 85% categorical data

when LASSO logistic regression was applied. Considering other metrics, the sensitivity had

very little variability in oversampling methods when data were missing and random forests

were applied. Whenever the ranks for S-SMOTE or SMOTE were better than the other it

was the case for multiple distributions for w. Therefore, these results do not quite provide

more insight into which distribution is better.

The distribution of w may not always have any impact on how S-SMOTE and SMOTE

perform. There are clearly cases (e.g. missing data) where no amount of oversampling

is helpful or superior. Though we saw some changes in the performance metrics when
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Figure 4.14: Ranks of median accuracy given on x-axis for each oversampling method on
the y-axis. The y-axis labels were removed for the sake of space. Colors are mapped to
the general category of oversampling method applied. Medians were calculated with respect
to each data scenario, amount of overlap and imbalance, model, and oversampling method.
Ranks were then calculated with respect to the oversampling methods. When superior
performance of S-SMOTE or SMOTE occurs (e.g. 25% categorical and random forests) it
occurs for most distributions of w. These results indicate that superior performance may be
due to the general category of oversampling method rather than changes in the distribution
of w.
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comparing population oversampling to S-SMOTE and S-SMOTE to SMOTE, these changes

were observed for all distributions of w for a specific data scenario. Changes in the underlying

data scenario caused more changes in the predictive performance between methods than

changes in the distribution of w. The model applied also caused more changes in performance

than the distribution of w.

Though the changes observed in the median performance metrics in the plots that we have

discussed so far were often small in size imbalanced classification problems can include

datasets with millions of examples and only 1% of rows belonging to the minority class

(e.g. credit card fraud data). In cases such as these, a small drop in our ability to predict

the majority class can result in a major decrease in overall predictability. Meanwhile a large

increase in our ability to predict the minority class result in only a small increase in overall

predictability. The impact this has on the metrics that we have discussed depends on which

of these is the positive class. Either way, the larger and more imbalanced the dataset, the

more of an impact a few incorrect or correct predictions can have on the class-specific and

overall accuracy.

Therefore, we will move forward with the oversampling method that proved to be best with

respect to minority class performance metrics and had comparable performance with respect

to other metrics. Due to its superior performance in terms of the sensitivity in many data

scenarios we will move forward with the distribution FPB(0.5, 0.5,-1,1) in our algorithm.

However, future work will involve further studying the impacts of the distribution of w,

possibly from a theoretical approach.

Though our results are not quite conclusive, they do provide evidence that there is some

type of impact on predictive performance as w changes. These simulations have helped

us to characterize the issue of oversampling in a variety of scenarios where overlap and

imbalance are present. When random forests were applied in scenarios with the largest

amount of imbalance considered and there were categorical variables, S-SMOTE showed
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superior performance. It also had comparable or better performance in many scenarios

where minority class examples were MAR.

We will now proceed to further investigate the other elements of S-SMOTE. By way of

reminder these were the number of neighbors checked for dominance, the sequence of domi-

nance thresholds checked for, the weights with which quadrants 1-4 of Figure 4.1 are sampled,

and the percentage of minority class examples that should be approved for oversampling be-

fore the search ends.

4.4 Studying Hyperparameters of Strategic SMOTE (S-SMOTE)

The number of neighbors that S-SMOTE will check the dominance of is denoted as kmax.

The distances between a reference point and kmax minority neighbors are used to specify

the neighborhoods around the point. These neighborhoods are then checked to determine

what proportion of minority class points are as far as the k-th neighbor, k = 1, . . . , kmax,

out of all points that are as far as it. This proportion is called the dominance for the k-th

neighborhood.

We denote a set of dominance thresholds that we desire for the neighborhoods to meet as

η = (η1, . . . , ηl). This is a decreasing sequence of values such as 0.60, 0.58, . . . , 0.20 whose

length varies. If this dominance is greater than or equal to the current threshold η1 then the

neighborhood is said to be minority class dominated and we move to the next neighborhood

made up of all points as close as the next furthest minority neighbor and check the dominance

there as well. This process continues until a neighborhood that does not meet the threshold

is found. We then move back to the previous neighborhood and use it for oversampling.

The minimum proportion of minority points that we would like to use for oversampling is

denoted as pmin. This value should be set to at least 0.75 at the onset of the algorithm
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to ensure that enough information on the minority class is used for oversampling. After all

minority points are checked for a neighborhood with a dominance of at least η1 the algorithm

then checks whether at least pmin minority points were deemed fit for oversampling. If not,

then the algorithm decreases the threshold to η2 and searches for areas that meet this new

dominance threshold. This process repeats itself until the proportion of points that we have

found neighborhoods for reaches pmin or we have reached ηl. If no points were deemed fit

for oversampling in the end an error is returned and the values in η can be adjusted.

When kmax is set to a larger value (e.g. 20 or 30) S-SMOTE is able to find larger neighbor-

hoods that are dominated by the minority class, if they exists. This would lead to the use of

more minority neighbors for oversampling to create large areas dominated by the minority

class. If the threshold is also high then this can be done without biasing majority class areas

of the feature space. However, if the algorithm has already run for a few iterations and the

threshold has been lowered then a large value for kmax could result in finding large areas of

the feature space that are weakly dominated by the minority class. Oversampling in these

areas could contribute to biasing more areas that truly belong to the majority class.

If S-SMOTE is provided with a large value for η1, such as 0.98 or 0.95, the search for the best

areas to oversample in will begin with stricter criteria. How long the search takes depends on

the difference between η1 and ηl and the increments between values in η. As the difference

between ηl and η1 increases and the space between values in η decreases the algorithm takes

longer to run. Though using small increments for η will take longer doing so may prevent the

algorithm from skipping over better dominated areas. For example, checking for a dominance

of at least 0.80 and then 0.78 would result in finding areas that are more strongly dominated

than if the algorithm checked for dominance thresholds of 0.80 and then 0.76. In the latter

case the algorithm may skip over the areas that have dominance thresholds of 0.78.

It is important to select a value for kmax that is small enough to avoid biasing majority

class regions of the feature space as the threshold decreases. Future work involves studying
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the performance of this algorithm with an adaptation that allows kmax to decrease with the

threshold. This would effectively oversample the largest and most strongly dominated areas

first and then smaller more weakly dominated areas. To determine the impact of kmax and

η on performance we simulated datasets with varying amounts of imbalance and overlap

and applied S-SMOTE to these unbalanced datasets with varying kmax and η. We then

performed 5-fold cross validation to select hyperparameters for a random forests model for

each dataset. The hyperparameters of random forest (number of trees, minimum node size,

and number of variables tried) that maximized the ROC were used to fit the final random

forest model and we obtained predictions on the test set. We performed 50 simulations for

each scenario and datasets were simulated in the same manner that was used for the larger

simulations discussed earlier.

The results for the balanced accuracy are given in Figure 4.15 while the appendices contains

those for other performance metrics which we will also discuss. Specifically, Figure 4.15

provides the distribution of the balanced accuracy (y-axis) for various values of kmax (x-

axis). The results are faceted by the sequence of thresholds and the amount of overlap

and percent minority points in the simulated dataset. When 5% of points belonged to the

minority class 700 synthetic samples were still generated as in the 15% case. This was done to

avoid using very little information on the minority class for a large amount of oversampling.

The variability in the spread and center of the distributions of each of the performance

metrics decreases as kmax increases and the distributions become more similar. The most

obvious changes come from the amount of overlap and imbalance in the simulated data set

to which S-SMOTE was applied. Comparing the distributions of accuracy to those of the

balanced accuracy shows that the accuracy is biased whenever the imbalance is high. The

balanced accuracy better reflects the true performance of the models as we would expect.

Changes observed in the distribution of most performance metrics as kmax varied were similar

for a given amount of overlap and imbalance even if η differed. This was true for most
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Figure 4.15: Distribution of balanced accuracy as the maximum number of nearest neighbors
kmax considered by S-SMOTE varies. Facet labels correspond to the sequence of dominance
thresholds checked (top facet label) and the amount of overlap and percent minority examples
in the simulated data (bottom facet label). Data were simulated with 60 columns, 30%
categorical variables, and 1000 examples before oversampling. 700 synthetic examples were
generated.
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performance metrics except the AUC and the NPV. Using the stricter thresholds of values

between 0.80 and 0.60 decreasing by 0.02 produced distributions of the AUC that were

shifted slightly higher than those when thresholds between 0.60 and 0.20 decreasing by 0.02

were used. However, when weaker thresholds were used the results were less variable. The

distributions for the NPV had more spread, larger centers, and less variability across kmax

when the stricter set of thresholds was used.

There were some instances in which no predictions were made for the minority class and the

NPV was missing. Figure 4.16 provides the proportion of times that this occurred out of each

set of 50 simulations. This occurred most often when the percent of points in the minority

class was 5%. In addition, the less strict threshold produced slightly more NAs than the

stricter threshold. A model that never predicts the minority class when provided with test

data has failed to learn decision rules for the minority class that generalize well to unseen

data. This can occur when the model over-learns the decision regions of the minority class

that are specific to the training set. It can also occur if the feature space is so over-saturated

with majority class examples that the model simply does not learn to predict the minority

class.

For each minority point that S-SMOTE deems fit for oversampling there is a corresponding

number of neighbors that will be used for oversampling. This defines the neighborhood

where oversampling is performed and its dominance defines how saturated this area already

is by minority class instances. These two characteristics - the dominance and density of

the neighborhood where oversampling takes place - are used to determine how often each

minority class point is selected for oversampling. Minority class neighborhoods that contain

only a few minority points and that are not well dominated, relative to other areas deemed

fit for oversampling, should be oversampled first.

The median relative dominance of the neighborhood around each minority point and the

number of neighbors used for oversampling it can be used to determine whether a point is
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Figure 4.16: Proportion of simulations in which no predictions were made for the minority
class out of 50. When 5% of points belonged to the minority class 700 synthetic samples
were still generated as in the 15% case. This was done to avoid using very little information
on the minority class for a large amount of oversampling.
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more or less dominated and crowded relative to other points. Categorizing the points that

will be oversampled using these medians was exampled in Figure 4.1. We denoted the vector

of weights used for oversampling points in each quadrant of such a plot as ρ. This effectively

oversamples points that are in sparser more weakly dominated areas more often.

The default that we have used for ρ thus far in our simulations has been ρ = (0.1, 0.3, 0.5, 0.1).

We used simulations to gain insight on how the values in ρ impact the performance of models

fit to data oversampled with S-SMOTE. Figure 4.17 gives the distribution of the balanced

accuracy for varying ρ. The results are faceted by the amount of overlap and imbalance

and what percent of variables were categorical. Results for other metrics are given in the

appendices for brevity but we will discuss these here as well.

The distributions for the balanced accuracy were quite similar for the first scenario (left-most

panel) in Figure 4.17 but the distribution of ρ = (0.1, 0.4, 0.4, 0.1) was slightly shifted above

the others. The distributions shifted up as ρ1 decreased and more weight was distributed to

other quadrants. When 85% of variables were categorical (middle panel) the distributions

were even more similar in spread and center and there were very small changes in the center

and spread of the distributions. When only 5% of points belonged to the minority class

(right-most panel) there was little to no variability in the balanced accuracy as compared to

other data scenarios and the boxplot can hardly be seen. The values ranged from 0.486 to

0.594 for all weight vectors in this case. This lack of variability was observed for all metrics

except the NPV and AUC for data with 5% of points belonging to the minority class.

The distributions for the accuracy showed similar patterns to those of the balanced accuracy

but they were shifted much higher due to its susceptibility to the imbalance. In the first

scenario the distributions for the sensitivity shifted down as ρ1 decreased but those for

the specificity increased as ρ1 decreased. This indicates that oversampling more or only in

neighborhoods that are the least realtively dominated and crowded by the minority class

benefits the majority class. Meanwhile sampling in all minority neighborhoods improves the
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Figure 4.17: Distribution of balanced accuracy as the weights used to select minority ex-
amples for oversampling ρ varies. The median dominance threshold and median number of
neighbors used for oversampling was used to determine whether a point was more or less
dominated and crowded, respectively. The median was calculated with respect to all mi-
nority class points deemed fit for oversampling. Facet labels correspond to the amount of
overlap and percent minority examples in the simulated data and characteristic of the data.
Each simulated dataset had 60 columns and 1000 rows before oversampling. 700 synthetic
examples were generated.
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specificity though it decreases the sensitivity. The distributions of the AUC, PPV, F1 score,

and Kappa were quite similar as ρ differed but these varied across data scenarios. There

were again missing values for the NPV when 5% of examples belonged to the minority class.

These results show that the performance of S-SMOTE depends mostly on the difficulty of the

data to which it is applied. Our simulations support setting kmax = 15 since trivial changes in

the distribution of performance metrics were observed for kmax >= 15 and using a very large

kmax will increase computing time. If the number of minority examples is less than 16 then

kmax = nmin−1, the number of minority examples minus one. This is the maximum number

of neighbors possible. Due to the less variable AUC observed for η = (0.6, 0.58, . . . , 0.20)

we continue forward with this vector of thresholds. In order to curb the trade-off between

specificity and sensitivity that results from oversampling, ρ = (0.05, 0.3, 0.6, 0.05) will be

used. This vector had comparable performance for many metrics and its use produced the

third highest median sensitivity and third lowest specificity. These medians were fairly

similar so selecting this vector for ρ∗ could minimize the loss on both the sensitivity and

specificity. These simulations were performed with only 50 repetitions in order to provide

time for properly training the random forest models. Future work includes performing a

larger number of simulations to obtain more accurate results.

The original SMOTE algorithm is a special case of S-SMOTE. Let η = {0}, kmax = k (a

single value for all minority examples), pmin = 1, and ρ = {1/nmin}. In this case all k

neighbors are used for oversampling and all minority points are oversampled with the same

probability until the desired balance is reached. In this case our algorithm is the same as

SMOTE except that we use Gower’s distance to incorporate information on the categorical

variables when calculating distances. If we additionally calculated the Euclidean distance

using the quantitative variables and added the median standard deviation of the quantitative

variables to the distance for each mismatched categorical variable then our algorithm would

be exactly the same as SMOTE-NC.
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4.5 Statement of S-SMOTE Algorithm

Algorithm S-SMOTE (data, drop, nsynth)

Input: Unbalanced training data with response variable data; Column index of response

variable in data drop; The number of synthetic examples desired which will default to the

amount needed for complete balance nsynth

Output: The balanced dataset with nsynth synthetic examples and a flag indicating which

rows are synthetic

1. minority = level of the response variable

2. nmin = number of minority examples

3. nmax = number of majority examples

4. If the number of synthetic points is not defined then calculate and use the number needed

for perfect balance.

5. if nsynth = NULL then nsynth = nmax - nmin endif

6. minexs = row indices of minority examples

7. isfact = column indices of nominal variables

8. distances minority = matrix of distances between each minority example and all other

examples with nmin rows and (nmin + nmax ) columns

9. kmax = min{15, nmin - 1} = the maximum number of nearest neighbors of the minority

class that we will check the dominance of.

10. threshestotry = seq(from = 0.60, to = 0.20, by = -0.02) (S-SMOTE will iteratively check

for minority class areas that contain this proportion of minority class examples as near as

the k-th nearest neighbor.)

11. run: keeps count of how many values we have used from threshestotry, initialized to 0

12. donemin: tracks of the proportion of minority examples that S-SMOTE has deemed fit

for oversampling, initialized to 0

13. nminseq : minority examples that have yet to be deemed fit for oversampling, initialized
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to seq(from = 1, to = nmin, by = 1)

14. rnmstouse = a list containing the neighbors deemed fit for use to oversample each minor-

ity example, initially has length nmin (Each vector in the list is initially empty and remains

empty if an example is never deemed fit for oversampling by S-SMOTE.)

15. k to use = number of neighbors deemed fit for use when oversampling each minority

class example, initially has length nmin

16. prop last met thresh = final dominance of neighborhood around each minority example

after S-SMOTE has exited, initially has length nmin (Each element in the vector is initially

zero and remains zero if an example is never deemed fit for oversampling by S-SMOTE.)

17. while donemin < 75% and run < length(threshestotry)

18. run = run + 1 (Update the number of runs with each iteration.)

19. thresh = threshestotry [run] (Decrease threshold after each run.)

20. for i in nminseq (For each minority class example.)

21. prop less k dist in min = the proportion of minority class points that

are as far as the k-th nearest neighbor, length kmax

22. k fornow = the value k before which prop less k dist in min first drops

below thresh, will be kmax if this never occurs

23. rnmstouse[[i]] = save neighbors 1 through k fornow to use for

oversampling minority example i

24. k to use[i] = k fornow how many neighbors will be used to oversample

minority example i

25. prop last met thresh[i] = proportion of minority class points that are

as far as k fornow

26. endfor

27. nminseq = minority examples that have yet to be deemed fit for

oversampling

28. endwhile
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29. If all of the values in k to use are 0 a warning is issued that S-SMOTE was unable to

find any well-dominated minority examples and the algorithm exits.

30. rel prop last met thresh = prop last met thresh/max(prop last met thresh) (Calculate

the dominance relative to the largest minority neighborhood dominance found.)

31. Oversampling will take place based on characteristics: (1) number of neighbors used,

which corresponds to the size of the area that we are oversampling in and (2) the dominance

met, which corresponds to the strength of the area. Points in quadrant 3 will be oversampled

the most since they are the most weakly dominated relative to other areas and also have lower

density. Then points in quadrant 2, quadrant 4, and lastly quadrant 1 will be oversampled,

respectively.

32. quad1 = minority examples with k to use > median(k to use) and rel prop last met thresh

≥ median(rel prop last met thresh)

33. quad2 = minority examples with k to use > median(k to use) and rel prop last met thresh

< median(rel prop last met thresh)

34. quad3 = minority examples with k to use ≤ median(k to use) and rel prop last met thresh

< median(rel prop last met thresh)

35. quad4 = minority examples with k to use ≤ median(k to use) and rel prop last met thresh

≥ median(rel prop last met thresh)

36. initialweights = (0.05, 0.3, 0.6, 0.05) (These are used to perform a weighted selection

from the approved minority samples for the creation of each synthetic example. A normalized

version is used if one of the quadrants has no points in it.)

37. exsprobs = probabilities for each quadrant divided by and repeated for the number of

points in that quadrant

38. synthexlist = list of new synthetic examples with length nsynth

40. synthdist = distribution that multiplier for interpolation or extrapolation will be sam-

pled from. (This is the Four-parameter Beta distribution with shape1 = 0.5, shape 2 = 0.5,

min = -1, and max = 1.)
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39. for i in 1 to length(synthexlist)) (For the creation of each synthetic minority example.)

40. refpoint = data vector of a randomly selected point from the approved

minority points using exsprobs to weight the sampling, its index is denoted

as refind

41. neigh = data vector of a randomly selected neighbor of refpoint from their

approved neighbors contained in rnmstouse

42. w = a value randomly drawn from synthdist

43. synthexlist [[i]][,-isfact ] = refpoint [-isfact ] + w*(neigh[-isfact ] -

refpoint [-isfact ]) (Use interpolation/extrapolation to generate quantitative

values for synthetic points.)

44. synthexlist [[i]][,isfact ] = mode(data[rnmstouse[[refind ]], isfact]) (The mode

of each categorical variable taken over all approved neighbors of refpoint

is assigned to the synthetic example.)

45. synthexlist [[i]][,drop] = minority (Assign minority level of response variable

to synthetic example.)

45. endfor

46. return rbind(data, synthdat) (Combine synthetic data and original data and return bal-

anced dataset.)
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Chapter 5: Example Applications of S-SMOTE to Real Data

In the previous chapter we used simulated data to evaluate and compare the performance

of SMOTE and S-SMOTE. In this chapter we will apply S-SMOTE to real-world datasets

in order to evaluate its performance outside of a simulation setting. First we will revisit

the dataset from OSU that we discussed earlier. This dataset was used to obtain inferential

findings about the relationship between total gift aid and student success after accounting for

a variety of demographic and academic factors. We also began working towards predictive

modeling with this dataset when we ran into the issue of overlap and imbalance. We will

return to the predictive component of that problem in this chapter and apply S-SMOTE.

We will also discuss other real-world examples of imbalance and overlap and evaluate the

performance of S-SMOTE in these cases. We will use the Pima Indians Diabetes dataset

(Smith et al. 1988) and Haberman’s survival data (Haberman 1976) for this. These were

downloaded from Kaggle and the University of California Irvine (UCI) Machine Learning

Repository, respectively. These examples have been used as benchmark datasets in many

research papers on imbalance and overlap (e.g. Napiera la et al. 2010; D. Li et al. 2010;

Jeatrakul et al. 2010; Soh and Yusuf 2019; Nivetha et al. 2020; Mqadi et al. 2021). These

benchmark examples come from the medical industry while the OSU data come from the

education sector. These are just a few examples of the many areas in which one may

encounter data with imbalance and overlap.
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5.1 Revisting OSU Data

We return to the predictive component of the problem of predicting student success by fitting

random forest and neural network models with SMOTE and S-SMOTE applied. We compare

their performance to each other and the use of unbalanced data. In order to train random

forest models we first split the entire OSU dataset into training (70%) and testing (30%)

sets. We used stratified sampling to do this in order to preserve the class distributions in

each. We selected 25 of the most pertinent variables to predicting first-year retention from

the entire training set. Some variables such as a student’s major upon entry had more than

52 levels and could not be used in random forests.

We fixed missing values in these datasets using median-mode imputation with respect to

the classes. Then we applied SMOTE and S-SMOTE to the unbalanced training data and

moved forward with three training sets - two balanced via S-SMOTE and SMOTE and the

unbalanced set. In order to tune the hyperparameters of random forest we selected the

combination of values that maximized the 5-fold cross validation AUC for each of these

training sets. These were selected out of all combinations of: minimum node size = 1, 10;

number of variables to try at each split = 2, 5; and number of trees = 100, 250, 500.

A similar process was used with neural networks, however, we split the entire dataset into

training (50%), testing (30%), and validation (20%) sets. Due to the usefulness of neural

networks for larger datasets we selected all columns that an administration office would

truly know at the end of a student’s first year. We oversampled the data, performed median-

mode imputation, one-hot encoded categorical variables, and scaled the data before applying

neural networks. Means and standard deviations from each of the training sets were used

to scale the validation and test sets. Hyperparameters for the neural networks were selected

from all combinations of the following values: dropout rate of first and second hidden layer

= 0.1, 0.2, respectively; number of hidden units in two hidden layers: 5% and 10% of the



158

number of columns. All models were trained for 100 epochs with a batch size of 32. The set

of values corresponding to the maximum validation data AUC after 100 epochs were used

to fit final models.

After fitting the final models we obtained predictions on the corresponding test sets. Per-

formance metrics for these predictions are given in Table 5.1. Italicized text indicates a

maximum with respect to that column and type of model. When random forests were ap-

plied S-SMOTE had superior performance in comparison to SMOTE with respect to all

metrics except for the sensitivity, NPV, and McNemar’s p-value.

Model + Oversampling Method Accuracy Bal. Accuracy Sensitivity Specificity

Random Forest + SMOTE 0.913 0.725 0.995 0.454
Random Forest + S-SMOTE 0.933 0.909 0.943 0.875
Random Forest + None 0.909 0.710 0.996 0.424

Neural Networks + SMOTE 0.503 0.515 0.497 0.532
Neural Networks + S-SMOTE 0.341 0.513 0.267 0.759
Neural Networks + None 0.683 0.612 0.715 0.508

Model + Oversampling Method AUC PPV NPV F1 Score Kappa McNem. p

Random Forest + SMOTE 0.964 0.911 0.944 0.951 0.571 0.000
Random Forest + S-SMOTE 0.973 0.977 0.733 0.960 0.757 0.000
Random Forest + None 0.965 0.906 0.947 0.949 0.543 0.000

Neural Networks + SMOTE 0.520 0.856 0.159 0.629 0.015 0.000
Neural Networks + S-SMOTE 0.535 0.861 0.156 0.407 0.010 0.000
Neural Networks + None 0.656 0.890 0.242 0.793 0.154 0.000

Table 5.1: Performance metrics from predictions for test OSU dataset. These were ob-
tained using random forests and neural networks. Data were oversampled with S-SMOTE
or SMOTE or were left unbalanced. Italicized digits are the maximum for that metric out of
all model and method combinations. Performance of neural networks with unbalanced data
was better than their performance when SMOTE or S-SMOTE was applied.

The p-value from McNemar’s test is the resulting p-value from a test of the null hypothe-

sis that the number of discordant pairs (truth, prediction) are equally split. These values

correspond to cells b = [1,2] and c = [2,1] of a confusion matrix. A small p-value provides

evidence that b is significantly different from c and therefore the model is misclassifying one

class more than another. The test was always rejected regardless of the model or oversam-

pling method applied. The sensitivity produced by S-SMOTE when random forests were



159

applied was about 5% lower than that of SMOTE or the unbalanced data. Meanwhile the

specificity was over 40% higher than when SMOTE oversampled or unbalanced data were

used for training. This indicates that S-SMOTE performs a worthy trade-off in order to

increase the minority class accuracy. That being said, S-SMOTE performed poorly when

applied with neural networks. With respect to the accuracy, balanced accuracy, NPV, F1

score, and Kappa it lagged behind SMOTE oversampled and unbalanced data. These re-

sults agree with those seen in our simulations where performance results depend on both the

model applied and the oversampling method used.

We also assessed the calibration of these models and these results are plotted in Figure

5.1. The application of S-SMOTE with random forests produced a slightly wider range

of predictions than use of SMOTE oversampled or unbalanced data. Use of S-SMOTE

resulted in less under-prediction than there was over-prediction when SMOTE oversampled

or unbalanced data were used. S-SMOTE continued to under-predict however, even for

higher probabilities, while SMOTE and unbalanced predictions neared the reference line.

In the case of neural networks all three oversampling options performed poorly and results

from SMOTE or S-SMOTE oversampled data had more variability. All three options under-

predicted quite a bit and this decreased as the average predicted probability of retention

increased. For neural networks, the relative frequency of retention stayed fairly high as the

average predicted probability of retention ranged from 0 to 1. This indicates that it produced

poorer performance than random forests.

These results indicate that random forests provide better predictions than neural networks

for our data. Additionally, they indicate that S-SMOTE may work best when applied in

conjunction with random forests. Table 5.2 gives the mean of the squared differences between

the average predicted probabilities and the relative frequency of retention for binned test set

predictions. The predicted probabilities were binned using a sequence from 0 to 1 by 0.05.

There were 21 bins for each combination of model and method though some were empty in
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Figure 5.1: Calibration plot for OSU retention dataset. Relationship between average pre-
dicted probability and relative frequency of retention from test data. Predicted probabilities
were binned using sequence from 0 to 1 by 0.05. The average was taken over each bin with
respect to each model+method combination. The relative frequency of retention was also
calculated in this manner as well. The black line is y = x which serves as a reference of the
ideal model.
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some cases. The denominator of the mean indicates the number of bins for the respective

model and method combination (i). The average was taken over all non-empty bins with

respect to each model+method combination. The relative frequency of retention was also

calculated in this manner. The results further confirm that Random Forest + S-SMOTE

outperforms other options but that its performance with neural networks was the poorest.

When neural networks were applied the unbalanced data produces the best calibration as

defined by this average difference.

Model + Method
∑

i=1(p̄i − ȳi)
2/|bini|

Random Forest + SMOTE 0.056
Random Forest + S-SMOTE 0.026

Random Forest + None 0.073

Neural Networks + SMOTE 0.224
Neural Networks + S-SMOTE 0.248
Neural Networks. + None 0.134

Table 5.2: Mean of the squared differences between the average predicted probabilities and
the relative frequency of binned test set predictions. Predicted probabilities were binned
using a sequence from 0 to 1 by 0.05. There were 21 bins for each combination of model and
method though some were empty in some cases. The denominator of the mean indicates
the number of bins for the respective model and method combination (i). The average was
taken over all non-empty bins with respect to each model+method combination. The relative
frequency of retention were also calculated in this manner.

Given that our dataset is also imbalanced in terms of certain covariates (e.g. race, pell-

eligibility) it would be sensible to evaluate its performance on these groups. This can help us

to understand how well we have achieved the goal of the predictive component of the problem

for under-represented students. Figures 5.2 through 5.4 provide the accuracy, sensitivity, and

specificity of random forest and neural network models by racial group and Pell-eligibility,

respectively. Recall the counts from Table 2.8 and that there were some racial groups that

had very low counts. Due to the small number of American Indian or Alaska Native students

in our data, there were no students from this racial group in the test set. Additionally,

there were other small student groups who had 0% or 100% rates of retention. These data

characteristics led to variations in the figures such as missing races or values of 0 or 1 for

the performance metrics.



162

F
ig

u
re

5.
2:

A
cc

u
ra

cy
of

te
st

se
t

p
re

d
ic

ti
on

s
b

ro
ke

n
d

ow
n

b
y

m
o
d

el
an

d
ov

er
sa

m
p

li
n

g
m

et
h

o
d

,
ra

ce
,

an
d

P
el

l-
gr

an
t

el
ig

ib
il

it
y

(a
n

in
d

ic
at

io
n

of
st

u
d

en
t

fi
n

an
ci

al
n

ee
d

).



163

F
ig

u
re

5.
3:

S
en

si
ti

v
it

y
of

te
st

se
t

p
re

d
ic

ti
on

s
b

ro
ke

n
d

ow
n

b
y

m
o
d

el
an

d
ov

er
sa

m
p

li
n

g
m

et
h

o
d

,
ra

ce
,

an
d

P
el

l-
gr

an
t

el
ig

ib
il

it
y

(a
n

in
d

ic
at

io
n

of
st

u
d

en
t

fi
n

an
ci

al
n

ee
d

).



164

F
ig

u
re

5.
4:

S
p

ec
ifi

ci
ty

of
te

st
se

t
p

re
d

ic
ti

on
s

b
ro

ke
n

d
ow

n
b
y

m
o
d

el
an

d
ov

er
sa

m
p

li
n

g
m

et
h

o
d

,
ra

ce
,

an
d

P
el

l-
gr

an
t

el
ig

ib
il

it
y

(a
n

in
d

ic
at

io
n

of
st

u
d

en
t

fi
n

an
ci

al
n

ee
d

).



165

For all combinations of Pell-eligibility and racial group, random forests produced higher

accuracies than neural networks. This was true in all cases except for Native Hawaiian

or Pacific Islander students who were not Pell-eligible. The superior performance of S-

SMOTE that was observed when comparing overall accuracies was still mostly present when

examining model performance by racial group and Pell-eligibility. However, there were two

cases in which random forests trained with S-SMOTE oversampled data had lower accuracy

than both SMOTE oversampled and unbalanced data. This occurred for students who were

Pell-eligible and also Asian or Black or African-American.

Comparing sensitivity and specificity with respect to student racial group and need reveals

that models trained on unbalanced data consistently produced higher sensitivities for all

combinations of these covariates. Though neural networks performed more poorly than

random forests in aggregate there were some student groups in which the specificity produced

by neural networks and S-SMOTE was comparable to that produced by S-SMOTE and

random forests and higher than that produced by other methods. This was true for Asian

students and Black or African American students regardless of need. This was also observed

with regards to the sensitivity but mostly for racial groups with low counts, therefore, the

values may be arbitrarily large due to the small sample size.

These results are useful to the discussion of how well our models predict student success for

all students. We desire to develop models that can be used to determine how the strategic

awarding of gift aid can help students to succeed. Therefore algorithms that are able to

predict student success well for all students could lead to more equitable results from this

study. Such a characteristic is especially important given the practical component of our

research. No model will predict all students perfectly, but this should still be a point of con-

cern in studies such as ours. Next we will discuss the application of S-SMOTE to benchmark

imbalanced datasets.
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5.2 Application to Benchmark Imbalanced Datasets

The Pima Indians Diabetes dataset provides medical information on a sample of female

patients who were at least 21 years old and of Pima Indian heritage. This group of Native

Americans living in Mexico and Arizona (e.g. Schulz et al. 2006) were known to have a high

rate of diabetes. The data were first used in a 1988 article published by Smith et al. (1988)

where the ADAP algorithm was applied to the data. The covariates in the dataset include:

the number of times the patient was pregnant, their plasma glucose concentration at 2 hours

in an oral glucose tolerance test, diastolic blood pressure (mm Hg), Body Mass Index (BMI,

kg/m2), diabetes pedigree function, the likelihood of diabetes based on family history, age

(years), and whether the patient tested positive for diabetes (1) or not (0), the response.

A patient is considered to have diabetes if, after taking a liquid containing glucose, their

2-hour blood sugar level is 200 mg/dL or higher.

Haberman’s survival dataset contains information on patient survival after breast cancer

surgery. The data were introduced by Haberman (1976) in a 1976 article about a study

conducted between 1958 and 1970 at the University of Chicago. Covariates in the dataset

include the age of the patient at the time of the surgery, the two-digit year in which the

surgery happened (years since 1900), and the number of axillary lymph nodes in which cancer

was detected. Cancer that has spread from the original tumor site to the axillary lymph

nodes is considered to be more advanced. The response variable takes two levels: 1 if the

patient survived for five years or longer and 2 if the patient died within five years.

Table 5.3 summarizes relevant information about these three datasets. The Pima Indians

diabetes dataset has less imbalance and less overlap in the overall dataset and minority

class. The Haberman survival dataset has more imbalance and it has fewer rows. Note that

the positive class is the minority class for the Pima Indians dataset but the majority class

for Haberman’s survival data. In these two cases we would like to predict if a patient has
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diabetes and whether a person survived after surgery.

N Positive Class Npos % Positive Nneg % Negative
Haberman Cancer 306 Survived 225 73.53 81 26.47
Pima Diabetes 768 Diabetes 268 34.90 500 65.10

Minority Class Overlap Majority Class Overlap All Overlap
Haberman Cancer 0.70 0.08 0.25

Pima Diabetes 0.38 0.11 0.20

Table 5.3: Information on benchmark datasets. Top table: Sample size N, label of positive
class, number and percentage in positive class, and number and percentage in negative class.
Bottom table: Minority class, majority class, and overall overlap metrics. The overlap
metric is the proportion of examples with more than three out of six nearest neighbors in
the opposite class. This is calculated within classes and for the entire dataset.

We split these datasets into training and testing sets using a 70/30 split, respectively, strati-

fied by the class of the response variable. Median-mode imputation was used to replace NAs

in the training and test datasets with the median and mode for quantitative and nominal

variables, respectively. This was also performed with respect to the class of the response

variable. Both SMOTE and S-SMOTE were applied to the training dataset and we also

performed classification on the unbalanced datasets for reference.

We then performed 5-fold cross-validation to select the best hyperparameters for random

forests from the number of trees, minimum node size, and number of variables to try. We also

performed 10-fold cross validation to select the best λ for LASSO logistic regression models

that maximized the AUC. The variable selection property of LASSO logistic regression may

result in a loss of predictive capability, especially since there were only eight columns in the

Pima Indians dataset. Due to its popularity for binary classification in practice we include

LASSO logistic regression here for completeness. In all cases, the set of hyperparameters

that maximized the AUC was selected, the final models were fit, and test predictions were

obtained. We performed these analyses for SMOTE and S-SMOTE oversampled data and

the unbalanced datasets. The predictive performance results are provided in Table 5.4.

In regards to the Pima Indians diabetes dataset, S-SMOTE outperformed SMOTE with
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Pima Indians Diabetes Data

Model + Oversampling Method Accuracy Bal. Accuracy Sensitivity Specificity

Random Forest + SMOTE 0.757 0.740 0.688 0.793
Random Forest + S-SMOTE 0.791 0.776 0.725 0.827
Random Forest + None 0.774 0.728 0.575 0.880

LASSO Logistic Reg. + SMOTE 0.761 0.747 0.700 0.793
LASSO Logistic Reg. + S-SMOTE 0.757 0.743 0.700 0.787
LASSO Logistic Reg. + None 0.743 0.687 0.500 0.873

Model + Oversampling Method AUC PPV NPV F1 Score Kappa McNem. p

Random Forest + SMOTE 0.851 0.640 0.826 0.663 0.473 0.504
Random Forest + S-SMOTE 0.859 0.690 0.849 0.707 0.545 0.665
Random Forest + None 0.844 0.719 0.795 0.639 0.477 0.038

LASSO Logistic Reg. + SMOTE 0.835 0.644 0.832 0.671 0.483 0.418
LASSO Logistic Reg. + S-SMOTE 0.834 0.636 0.831 0.667 0.476 0.350
LASSO Logistic Reg. + None 0.833 0.678 0.766 0.576 0.398 0.009

Haberman’s Survival Data

Model + Oversampling Method Accuracy Bal. Accuracy Sensitivity Specificity

Random Forest + SMOTE 0.703 0.585 0.836 0.333
Random Forest + S-SMOTE 0.714 0.605 0.836 0.375
Random Forest + None 0.714 0.565 0.881 0.250

LASSO Logistic Reg. + SMOTE 0.725 0.493 0.985 0.000
LASSO Logistic Reg. + S-SMOTE 0.736 0.660 0.821 0.500
LASSO Logistic Reg. + None 0.736 0.500 1.000 0.000

Model + Oversampling Method AUC PPV NPV F1 Score Kappa McNem. p

Random Forest + SMOTE 0.662 0.778 0.421 0.806 0.181 0.441
Random Forest + S-SMOTE 0.644 0.789 0.450 0.812 0.223 0.556
Random Forest + None 0.624 0.766 0.429 0.819 0.151 0.078

LASSO Logistic Reg. + SMOTE 0.669 0.733 0.000 0.841 -0.022 0.000
LASSO Logistic Reg. + S-SMOTE 0.669 0.821 0.500 0.821 0.321 1.000
LASSO Logistic Reg. + None 0.669 0.736 0/0 0.848 0.000 0.000

Table 5.4: Performance of LASSO logistic regression and random forests on Pima Indians and
Haberman’s survival datasets. Results after applying SMOTE and S-SMOTE are provided
as well as those from unbalanced data. S-SMOTE performs better on the minority class, a
positive test for diabetes, at some cost of predictive accuracy on the negative class, negative
test for diabetes. Random forests performed better than LASSO logistic regression when
S-SMOTE was applied or data were left unbalanced. McNem. p refers to the p-value for
the test of equal discordant pairs, or misclassifications, in both classes. For each metric and
dataset the maximum out all combinations of model and oversampling method is italicized
when it exists.
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respect to all metrics when random forests was applied. Its performance was comparable to

SMOTE when LASSO logistic regression was applied for all metrics except the p-value from

McNemar’s test. In this case, the p-value produced by S-SMOTE was noticeably smaller than

that produced by SMOTE. However, it still was not statistically significant at the α = 0.05

level and it was much higher than that produced when no oversampling was performed.

A key takeaway from the Pima Indians results in Table 5.4 is that S-SMOTE produced

better predictions for the minority class at less of a cost to the majority class than SMOTE.

The drop in specificity when S-SMOTE and SMOTE were applied was 0.053 and 0.087,

respectively. The gain in sensitivity when S-SMOTE and SMOTE were applied was 0.15

and 0.113, respectively. Combining random forests and S-SMOTE also produced the highest

p-value from McNemar’s test of equal discordant pairs in the confusion matrix. A p-value

much larger than 0.05 indicates that its predictions provide no evidence of misclassifying one

class more than another. The test only rejected when data were not oversampled at all.

The predictive performance results of Haberman’s survival data included zero values for the

specificity and NPV when LASSO logistic regression was applied to SMOTE oversampled

or unbalanced data. This can occur when there are no correct predictions for the negative

class or there are no predictions at all, either correct or incorrect. In the latter case the NPV

will be 0/0 which is undefined. When S-SMOTE was applied with LASSO logistic regression

the specificity and NPV were the highest at 0.50. However, the sensitivity was lower than

that for SMOTE or unbalanced data with LASSO logistic regression. When LASSO logistic

regression was applied S-SMOTE performed better than SMOTE and unbalanced data with

regards to the balanced accuracy, specificity, PPV, NPV, Kappa coefficient, and McNemar’s

p-value. This was also true when random forests were applied. Similar to the Pima Indians

dataset, these results indicate that S-SMOTE is able to obtain more correct predictions

for the minority class but at a cost. In this case, the amount that the sensitivity drops is

the same for both SMOTE and S-SMOTE. This was 0.881 − 0.836 = 0.045. However, the

specificity increases from 0.250 to 0.375 with S-SMOTE and from 0.25 to 0.333 with SMOTE.
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This indicates that applying S-SMOTE effectively caused more correct classifications on the

minority class with the same loss on the majority class.

Given the context of these dataset, consideration should be given to the practical severity

of the trade-offs made by oversampling. For the Pima Indians diabetes data, the sensitivity

corresponds to the proportion of patients with diabetes that we correctly classified as such.

Fewer patients tested positive for diabetes however so the TPR is lower than the TNR

since there is less information on positive examples for the model to learn. Increasing the

TPR would lead to the correct identification of diabetes more frequently. However, if the

TNR correspondingly decreases this could lead to false positives which could lead to the

unnecessary implementation of procedures for managing diabetes and the misallocation of

resources. In this case however, a false negative is more consequential than a false positive.

Concerning Haberman’s survival data, more patients survived five years after surgery than

those that did not and this is the positive class. Though a higher TPR can be expected our

ability to determine when a patient will not survive correctly is very important. Otherwise a

surgery may be performed on a patient who is unlikely to survive afterwards. In this case, the

trade-off is well worth it and we would rather incorrectly use an alternative treatment to the

surgery than incorrectly perform the surgery. Depending on the efficacy of the alternative

treatment one could argue that the cost of a false positive and false negative are equally

consequential.

In practice when performing oversampling one should always be prepared for the cost of

misclassifying the majority class more often than if oversampling was not performed. Con-

sideration should be given to the implications of this and domain knowledge should be used

to assess whether it is worth it. Thus far we have often oversampled in a manner that

achieves complete balance 100% of the difference between class counts but one may consider

oversampling at a rate of 50% or even 25% of the difference between class counts in order to

control the trade-off between the TPR and the TNR.
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Figures 5.5 and 5.6 contain the calibration plots for the final models applied to the Pima

Indians and Haberman’s survival data test sets. Table 5.5 also contains the mean of the

squared differences between the average predicted probabilities and the relative frequency

of a positive. These were also obtained using the test set. The calibration plots show the

average predicted probability and relative frequency of a positive in the test data. The

predicted probabilities were placed into bins using a sequence of values from 0 to 1 by 0.05

with the right end of the interval closed. The average probability of a positive was calculated

for each bin with respect to each model and method combination. The relative frequency of

a positive was also calculated for these subsets of results. The black line indicates the line

y = x which gives the results we would expect from a perfect model.

Pima Indians Diabetes Data

Model + Method
∑

i=1(p̄i − ȳi)
2/|bini|

Random Forest + SMOTE 0.0148
Random Forest + S-SMOTE 0.0275

Random Forest + None 0.0197

LASSO Logistic Reg. + SMOTE 0.0310
LASSO Logistic Reg. + S-SMOTE 0.0510

LASSO Logistic Reg. + None 0.0374

Haberman’s Survival Data

Model + Method
∑

i=1(p̄i − ȳi)
2/|bini|

Random Forest + SMOTE 0.0838
Random Forest + S-SMOTE 0.0909

Random Forest + None 0.0990

LASSO Logistic Reg. + SMOTE 0.1118
LASSO Logistic Reg. + S-SMOTE 0.1747

LASSO Logistic Reg. + None 0.2059

Table 5.5: Mean of the squared differences between the average predicted probabilities and
the relative frequency of binned test set predictions. Predicted probabilities were binned
using a sequence from 0 to 1 by 0.05. There were 21 bins for each combination of model and
method though some were empty in some cases. The denominator of the mean indicates
the number of bins for the respective model and method combination (i) The average was
taken over all non-empty bins with respect to each model+method combination. The relative
frequency of the positive classes (diabetes and survival) were also calculated in this manner.

Regarding the calibration of models for the Pima Indians diabetes dataset, the calibration

plot shows that there is clear variability in their predictive capabilities. The calibration lines
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Figure 5.5: Calibration plot for Pima Indians diabetes dataset. Relationship between average
predicted probability and relative frequency of diabetes from test data. Predicted probabil-
ities were binned using sequence from 0 to 1 by 0.05. The average was taken over each bin
with respect to each model+method combination. The relative frequency of diabetes was
also calculated in this manner. The black line is y = x which serves as a reference of the
ideal model.
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Figure 5.6: Calibration plot for Haberman’s survival dataset. Relationship between average
predicted probability and relative frequency of survival from test data. Predicted probabil-
ities were binned using sequence from 0 to 1 by 0.05. The average was taken over each bin
with respect to each model+method combination. The relative frequency of survival was
also calculated in this manner. The black line is y = x which serves as a reference of the
ideal model.
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for predictions from LASSO logistic regression models extend all the way to 0.973 while

those for random forests extend to 0.907. This indicates that logistic regression was able to

predict higher probabilities than random forests. These high average predicted probabilities

were also quite close to the reference line, especially when the data were oversampled with

S-SMOTE.

However, the sum of the squared differences between the average predicted probabilities and

the relative frequency were largest when S-SMOTE was applied. This can be noted in Table

5.5. They were smallest when SMOTE was applied and the unbalanced data produced the

second highest differences. The differences produced by S-SMOTE were noticeably larger

than those produced by SMOTE, especially when logistic regression was applied. This

indicates that logistic regression models trained using data oversampled with SMOTE may

be better calibrated than those trained with S-SMOTE.

The calibration plot for Haberman’s survival data shows that the predicted probabilities

from LASSO logistic regression models trained on S-SMOTE oversampled and unbalanced

data do not vary much. The probabilities produced by random forests became more accurate

with respect to the black reference line as the relative frequency of survival increased. As

with the Pima Indians dataset, S-SMOTE produced higher differences between the average

predicted probability of survival and the relative frequency of survival. However, this was

lower than those produced by the predictions obtained from models trained on unbalanced

data.

These real-world examples provide evidence that S-SMOTE is also useful in applications

outside of institutional research. Furthermore, they show that there are instances were S-

SMOTE has superior performance to the original SMOTE. When applied in combination

with random forests, S-SMOTE had very good performance and was often superior to the

performance of SMOTE. Regardless of how oversampling is performed a drop in accuracy

on the majority class will occur. The goal of S-SMOTE is not to completely eliminate this
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trade-off but to achieve a better trade-off than that exhibited by the original SMOTE. Our

results, especially those obtained when random forests were applied show that this goal has

been achieved.



176

Chapter 6: Conclusions

In this part of the dissertation we first considered the problem of assessing the effect of schol-

arships on student success at Oregon State University (OSU). The population represented

by the data in our case study was first-time full-time (FTFT) freshmen at OSU. These are

students who have enrolled full-time for the first time and have completed few enough credit

hours to give them freshmen standing. We defined student success in terms of graduation and

retention rates and determined whether and how these rates differ as student demographics

and academic backgrounds change.

In order to tackle the inferential component of our research, we first used logistic regression

models to discover the relationship between retention and graduation and the amount of

gift aid received by students. One of the advantages of this approach is the flexibility

and interpretability of these models. This characteristic allows us to directly estimate the

probability of retention or graduation for a given amount of financial aid. It also enables us

to determine amounts of financial aid that will lead to the preset probabilities of retention

or graduation desired by administrative offices.

On the other hand, the flexibility of the models allow us to incorporate relevant demographic

information to quantify the changes in the response curves observed for different groups.

As expected, the models showed a positive relationship between financial aid and student

success. Larger amounts of financial aid paired with improved chances of retention and

graduation. In terms of demographics, we found that Pell-eligibility, first-generation status

and financial need were important factors that exhibited gaps in achievement, even after

accounting for academic performance.
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We also developed models that can be combined with more recently collected data for the

predictions of first-year retention. Our initial attempts at predictive modeling revealed two

difficulties in our dataset that were preventing our models from achieving a high balanced

accuracy. These were the issue of imbalance in the response variable and overlap in the dis-

tributions of features between classes of the response variables. In order to accomplish the

predictive component of our research we, therefore, deemed it necessary to better understand

the issue of imbalance and overlap and develop a new solution. Therefore, we performed a

simulation study to characterize the performance of the most popular method for handling

class imbalance, the Synthetic Minority Oversampling TEchnique (SMOTE), as data char-

acteristics changed. This algorithm uses interpolation to generate synthetic examples in the

feature space but it does not handle overlap in the feature space. This effectively creates

more decision regions that belong to the minority class while possibly biasing majority class

regions, thereby bringing down the accuracy on the majority class.

These simulations brought to light issues with SMOTE that exists when there is both imbal-

ance in the response variable and overlap in the feature space. We found that the impact that

oversampling has on predictive performance also depends on the model that the oversampled

data are fit to. Moreover we found that the distribution used for w during the interpolation

of SMOTE leads to less variability in performance as compared to those produced by changes

in the underlying characteristics of the dataset.

Using the results of our simulation study we developed a novel algorithm called the Strategic

SMOTE (S-SMOTE) that tackles the issue of both overlap and imbalance. S-SMOTE is

strategic in that it uses information on the neighborhood of minority points to determine

where to oversample and how much to oversample. This effectively leads to the oversampling

of minority class regions that are well dominated by the minority class already. Additionally,

the amount of oversampling that is performed with a given minority example is determined

by how densely populated the example already is. We then revisited the data from our case
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study to determine if we could better predict student success using S-SMOTE. The results

showed that our algorithm gave superior performance when combined with random forests

but more work is needed to refine its performance when combined with neural networks.

Specifically we found that S-SMOTE was able to achieve a better trade-off between the true

negative rate (TNR) and true positive rate (TPR) after oversampling than that produced by

oversampling with SMOTE. The accuracy on the minority class increased while the accuracy

on the majority class decreased less than when SMOTE was applied. We saw similar results

when we applied S-SMOTE to benchmark imbalanced datasets indicating that our algorithm

produces improvements but may need further refinement before being applied with neural

networks.

Future work will involve performing the simulation study with a higher number of repetitions

and making corrections to the simulations performed with neural networks. We ran into

many challenges when fitting neural networks due to the use a package that uses a of a

Python back-end. This future work will therefore include fitting these models in a different

programming language in order to obtain results more quickly. These improvements will lead

to more accurate insight that reflects the true performance of these algorithms and models.

We will conduct this work very soon as it is necessary for the completion and publication of

our follow-up manuscript.

In the future we also aim to understand how and why S-SMOTE gave better performance

when combined with random forests than with neural networks when we revisited the case

study data. We face the issues present with neural networks in the simulation study when

revisiting the OSU dataset since it was a single-use case. Therefore, it is not clear whether

this performance is due to some technical error in our analysis or if the method needs further

refinement. These are areas of further research.

Lastly, in the more distant future we desire to study the usefulness of an adaptation to

S-SMOTE that may be even more strategic. In this adaptation the number of neighbors
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considered during the iterative check for minority class dominated neighborhoods of the fea-

ture space would decrease along with the threshold. This may lead to further improvements

in predictive performance and even less of a trade-off between the TPR and TNR. The au-

thor plans to conduct this follow-up work further into the future as a new faculty member

after the current research is in publication.
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Part II

A Simulation-Based Approach to Teaching the

Bootstrap
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Chapter 7: Introduction

Bootstrapping is a computer-based method introduced by Efron (1979) as a technique for

estimating the standard deviation of a sample statistic. In its simplest form, the term

bootstrap sampling refers to the process of randomly sampling with replacement from the

original sample. This process is taken to be analogous to sampling from the entire population

and, as noted by Efron and Tibshirani (1993), the bootstrap estimate of standard error is

always available regardless of the complexity of the original estimator.

Since its introduction, bootstrap methods have gained popularity (see Horowitz 2019; Utzet

and Sánchez 2021) and found use in a variety of diverse applications such as linear regression

(see Eck 2018; Pelawa Watagoda and Olive 2021) and bootstrap aggregated neural networks

(see Khaouane et al. 2017; Osuolale and J. Zhang 2018). The growth of statistical computing

has also led to the bootstrap appearing more regularly in courses which introduce under-

graduate students to statistical methods with examples including courses taught at Stanford

University1, The Pennsylvania State University2, Oregon State University3, and Montana

State University4. Textbooks about, or which feature, the bootstrapping method thus range

from the seminal graduate-level text by Efron and Tibshirani (1993) to intro-level texts (e.g.

Field et al. 2012; Ismay and Kim 2019; R. H. Lock, P. F. Lock, et al. 2020).

Teaching the bootstrap can equip students with a very powerful tool and lay a solid founda-

1STAT 191 - Introduction to Applied Statistics at Stanford University (https://explorecourses.
stanford.edu)

2STAT 200 - Elementary Statistics at The Pennsylvania State University (https://online.stat.psu.
edu/stat200/)

3STAT 351/352 - Introduction to Statistical Methods I & II (https://stat.oregonstate.edu/content/
yearly-courses)

4STAT 216 - Introduction to Statistics at Montana State University (https://math.montana.edu/
courses/s216/)

https://explorecourses.stanford.edu
https://explorecourses.stanford.edu
https://online.stat.psu.edu/stat200/
https://online.stat.psu.edu/stat200/
https://stat.oregonstate.edu/content/yearly-courses
https://stat.oregonstate.edu/content/yearly-courses
https://math.montana.edu/courses/s216/
https://math.montana.edu/courses/s216/
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tion for teaching statistical thinking. Therefore the discussion of how to teach the bootstrap

well is an important one to have. Pedagogical discussions about whether bootstrap meth-

ods should be taught, which bootstrap methods to teach, and how to teach them include

Hesterberg (2015b) and Hayden (2019).

In this chapter, we will highlight the assumptions behind simple bootstrap hypothesis tests

and confidence intervals. First we discuss the benefits of and current issues pertaining to

teaching statistical computing and the bootstrap, as found in the literature on statistics

education. Then we discuss the theoretical details of the bootstrap in order to clearly point

out the assumptions behind these methods. By assumptions, we mean the suppositions under

which the theoretical details of these intervals are derived. Namely, those having to do with

pivotal quantities. Our focus is on the studentized, basic, and percentile bootstrap intervals

and their corresponding hypothesis tests. We choose this focus because these methods, or

methods related to them, are often taught in undergraduate introductory statistics courses.

7.1 Benefits of Teaching Statistical Computing and the Bootstrap

According to the Guidelines for Assessment in Statistics Education (GAISE), students in

introductory statistics courses should, “Demonstrate an understanding of, and ability to use,

basic ideas of statistical inference, both hypothesis tests and interval estimation, in a variety

of settings.” (GAISE College Report ASA Revision Committee 2016, p. 8) This implies that

students should be able to recognize when a particular statistical method detracts from the

quality of their analysis. Furthermore, upon realizing this, they should be able to pull an

alternative method from their knowledge-base and apply it appropriately.

Depending on learning goals and student backgrounds, including topics that incorporate

statistical computing in a course, such as resampling, randomization, or simulation, can help

students achieve these objectives. For example, Wood (2005) notes that through general
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simulation methods students are able to “actively and intelligently” apply the methods

they are taught to solve problems of current concern. Also, Tintle et al. (2012) found that

the use of a randomization-based curriculum led to a higher retention of concepts, after

four months, than using the consensus curriculum based on Agresti and Franklin (2007).

Simulation methods are also incorporated by Son et al. (2021) in their discussed “practicing

connections” approach to building an introductory statistics course. Their approach was

found to make students capable of applying previously learned material in new and more

sophisticated contexts.

It was noted by R. H. Lock and P. F. Lock (2008) that students’ understanding of confidence

intervals and statistical inference rests greatly on their understanding of sampling distribu-

tions. They suggested that teaching bootstrapping allows students to make inferences on

non-conventional parameters and that their understanding of concepts like sampling distri-

butions can be fortified through the use of simulations and bootstrapping. Indeed, when the

form of the standard error of an estimator cannot be derived using statistical theory or it

depends on unknown parameters and/or the true distribution of the estimator is completely

unknown, the bootstrap can be useful, provided that its own assumptions are met.

Howington (2017) notes that that, though its desirability as a measure of center when the

data are skewed is often mentioned, corresponding inferential methods for the median are

rarely taught in introductory statistics courses. Suggested methods for teaching confidence

intervals on the median included use of the bootstrap. The use of simulation-based inferential

methods was also discussed by Gehrke et al. (2021), where the incorporation of methods,

such as the bootstrap, in their improved curriculum, helped students to more clearly explain

p-values and confidence intervals and to understand the limitations of statistics as it pertains

to describing the real world.

The idea that statistical computing should be taught more, in order to better equip students

for present-day workforce expectations, undercurrents much of the literature on statistics in
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the undergraduate curriculum and, in general, statistics education. Besides the aforemen-

tioned literature, various articles in the collection complied by Horton and Hardin (2015)

express this idea. Technically, the more statistical methods a student is introduced to, the

better equipped they should be to meet the GAISE guideline discussed earlier and to tackle

real-world data challenges. In reality though, as students learn more statistical methods,

discerning which one is appropriate to use becomes harder. Especially if students are not

clearly taught how to check whether a method is appropriate for their data.

For example, many incorrect or unfounded claims have been made about simple bootstrap

intervals, making it hard to know when their use is appropriate. These claims were investi-

gated in greater detail by Hayden (2019) for the percentile bootstrap interval that we define

in the next chapter and the bootstrap interval that uses twice the standard deviation of the

bootstrap distribution as the margin of error. In their article, the claim that these bootstrap

intervals have fewer or no underlying assumptions than their traditional counterparts was

debunked and shown to clearly be false.

It was also found that these bootstrap intervals do not actually perform better when nor-

mality and large sample size conditions are not met. Their supposed simplicity was said

to be the result of a failure to communicate their assumptions as clearly as those of the

traditional methods. Introducing these intervals to students, before appropriate scenarios

for their use are better established, was discouraged. In Hesterberg (2015b), issues with

the percentile and basic bootstrap intervals were also discussed and use of the studentized

bootstrap interval (called the bootstrap t interval there) was said to be preferable.

Given the pedagogical and methodological benefits of the bootstrap, students and instruc-

tors need to understand the assumptions behind these methods. This can lead to students

learning and applying them more carefully. We will now discuss some of the theoretical

underpinnings of the basic, studentized, and percentile bootstrap intervals, as well as their

corresponding bootstrap hypothesis tests. Specifically, our intention is to show that these
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methods rely on assumptions concerning pivotal quantities. For a more rigorous and expan-

sive discussion on the theory behind the bootstrap, we refer readers to Athreya and Lahiri

(2006).
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Chapter 8: General Assumptions for Simple Applications of the Bootstrap

In order to make an inference on a population parameter, θ, we begin by taking an indepen-

dent and identically distributed sample of size N , x = (x1, x2, . . . , xN), from the population

of interest. This sample should be taken in such a way that it captures most of the infor-

mation in the population about θ. We denote an estimate for θ based on the observed data

as θ̂(x). If this is calculated with a bootstrap sample we use θ̂(x∗). If it is based on the not

yet observed data we use θ̂(X), where X denotes the unobserved data vector. The estimate,

θ̂(x), should summarize the information about θ that is contained in the observed data. For

example, if θ is the population mean, then θ̂(x) may be the observed sample mean, x̄.

However, we often desire to gather more information than that contained in θ̂(X) alone.

Options for achieving this include confidence intervals and hypothesis testing. Many methods

exist for constructing confidence intervals and hypothesis testing, such as z- and t-methods

for the mean and jackknife or permutation approaches. When the parameter of interest is

one which does not have an established method or the data do not meet the conditions for

using traditional methods, alternative methods can be used. These alternative methods will

likely have their own assumptions and these should also be checked. If they are reasonable,

then the alternative method can be used. One such alternative is the bootstrap, whose

details and assumptions we discuss in this section. Specifically, we highlight the dependence

of these intervals on pivotal quantities.

The concept of bootstrapping through simple random resampling is as follows: Obtain B

samples, x∗
1,x

∗
2, . . . ,x

∗
B, each of size N , by resampling from the original sample, x, with re-

placement and calculate their corresponding statistics, θ̂(x∗
1), θ̂(x∗

2), . . . , θ̂(x∗
B). These boot-

strap statistics make up the bootstrap distribution. Though the underlying concepts of this
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bootstrapping method may seem straightforward, there are many details that users should

be aware of when applying it for interval estimation and hypothesis testing.

8.1 Interval Estimation

The bootstrap distribution can be used as an estimate of the sampling distribution, which

provides a means for quantifying the uncertainty in an estimate. The basic, percentile,

and studentized bootstrap intervals each use the bootstrap distribution in this manner but

have different underlying assumptions, most of which pertain to the shifted or studentized

sampling distribution. The details we discuss next will be helpful for readers who desire to

become familiar with these bootstrap intervals as they are presented by Davison and Hinkley

(1997) and Efron and Tibshirani (1993). Our explanation is not exhaustive, however, so

readers who desire a more in-depth understanding of these methods and their assumptions

should consult those texts directly. Those who are already familiar with these methods, can

skip to the summary of their form and assumptions given in Table 8.1.

Let 0 < α < 1 denote the significance level or desired Type I error rate. In order to construct

a (1−α)100% confidence interval for θ, we may employ a pivotal quantity - a quantity whose

distribution does not depend on any unknown parameters. When this quantity is a function

of the parameter and estimate, the quantiles of its distribution can be used to construct

confidence intervals for the parameter.

Denote the α/2 and 1 − α/2 quantiles of the distribution of θ̂(X) − θ as aα/2 and a1−α/2,

and suppose that this quantity is pivotal. In general, when we refer to the p quantile of the

distribution of θ̂(X) (or its shifted or scaled versions), we are referring to the value, a, for

which P (θ̂(X) ≤ a) = p. If aα/2 and a1−α/2 are known, then

1 − α = P (aα/2 ≤ θ̂(X) − θ ≤ a1−α/2) = P (θ̂(X) − a1−α/2 ≤ θ ≤ θ̂(X) − aα/2)



188

and a (1 − α)100% equi-tailed interval for θ, provided the expression exists, is

(
θ̂(x) − a1−α/2, θ̂(x) − aα/2

)
. (8.1)

If the distribution of θ̂(X) − θ is unknown, the problem becomes one of estimating a1−α/2

and aα/2. Using the bootstrap distribution, one may estimate these quantiles in a variety of

ways. For convenience, we discuss estimation in terms of the p quantile, ap.

8.1.1 The Basic Interval (The Base Case)

The basic bootstrap interval is obtained by estimating ap with the (B+1)p-th smallest value

of the distribution of θ̂(x∗) − θ̂(x). For example, if α = 0.05 and B = 999 then

(B + 1)(α/2) = (999 + 1)0.025 = 1000 ∗ 0.025 = 25

and similarly, (B + 1)(1− α/2) = 975. Thus, the 25th smallest and 975th smallest values of

the distribution of θ̂(x∗) − θ̂(x), denoted as a∗(25) and a∗(975), would be used to estimate a0.025

and a0.975, respectively. Note that the 25th smallest value is less than the 975th smallest

value so the upper bound will be greater than the lower bound since we subtract off a smaller

number1.

Using this estimate, the expression in (8.1) becomes

(
θ̂(x) − a∗((B+1)(1−α/2)), θ̂(x) − a∗((B+1)(α/2))

)
.

1We will assume that (B+1)α and (B+1)(1−α) are integers for our purposes. If they are not, then the
procedure outlined by Efron and Tibshirani (1993) can be used, assuming α ≤ 0.5. Define k as the largest
integer that is ≤ (B+1)α. Then the α and 1−α quantiles are defined as the k-th largest and (B+1−k)-th
largest values of the distribution of interest, respectively.
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Let rp and r∗p be the p quantiles of the distributions of θ̂(X) and θ̂(x∗), respectively, then

note that

a((B+1)p) = r((B+1)p) − θ and a∗((B+1)p) = r∗((B+1)p) − θ̂(x).

Therefore, the bounds of the interval can be further simplified to

θ̂(x)−a∗((B+1)(1−α/2)) = 2θ̂(x)−r∗((B+1)(1−α/2)) and θ̂(x)−a∗((B+1)(α/2)) = 2θ̂(x)−r∗((B+1)(α/2)).

The final form of the basic bootstrap interval is then

(
2θ̂(x) − r∗((B+1)(1−α/2)), 2θ̂(x) − r∗((B+1)(α/2))

)
.

If there are any constraints on the value of θ, the bounds of this interval may not meet these

constraints. That is, this interval can contain values that are not plausible for the population

parameter, such as values below 0 or above 1 in an interval for the population proportion.

The accuracy of this interval depends on how well the distribution of θ̂(x∗) − θ̂(x) conforms

to that of θ̂(X)−θ. If the latter does not depend on any unknown parameters, then θ̂(X)−θ

is actually a pivotal quantity and conformity can be expected.

8.1.2 The Percentile Interval (The Symmetric Case)

Suppose that the distribution of θ̂(X) is asymptotically Normal with mean θ and variance

SE(θ̂(X))
2
, where SE(θ̂(X)) denotes the standard error of θ̂(X). This provides another option

for estimating ap. Namely, with ŜE(θ̂(x)) ∗ zp, where zp is the p quantile of the standard

normal distribution. For example, in the case of the sample mean we may use ŜE(θ̂(x)) =

s/
√
n where s denotes the sample standard deviation. The use of standard normal quantiles

with an estimated standard error produces what is termed the standard normal interval (e.g.
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Efron and Tibshirani 1993). This is given as

(
θ̂ − ŜE(θ̂(x)) ∗ z1−α/2, θ̂ − ŜE(θ̂(x)) ∗ zα/2

)
.

When the assumptions of this interval are not met, it can lead to poor performance. An

alternative is the percentile interval introduced by Efron and Tibshirani (1993) which is

given as

(r∗α/2, r
∗
1−α/2),

where we again denote the p quantile of the distribution of θ̂(x∗) as r∗p.

The assumption behind the percentile interval is that there exists some monotone trans-

formation ϕ̂ = m(θ̂(X)) such that ϕ̂ ∼ Normal(ϕ, c2) for all population distributions F

(including the case F = F̂ ), where ϕ = m(θ), for some standard deviation c. Then, it holds

that

1 − α = P

(
zα/2 ≤

ϕ̂− ϕ

c
≤ z1−α/2

)
= P (−ϕ̂ + zα/2 · c ≤ −ϕ ≤ −ϕ̂ + z1−α/2 · c) =

P (m−1(ϕ̂− z1−α/2 · c) ≤ θ ≤ m−1(ϕ̂− zα/2 · c)).

Since the assumption holds for F = F̂ it is also the case that ϕ̂∗ ∼ Normal(ϕ̂, c2), where

ϕ̂∗ = m(θ̂(x∗)). Therefore,

1 − α = P∗

(
zα/2 ≤

ϕ̂∗ − ϕ̂

c
≤ z1−α/2

)
= P∗(ϕ̂ + zα/2 · c ≤ ϕ̂∗ ≤ ϕ̂ + z1−α/2 · c) =

P∗(m
−1(ϕ̂− z1−α/2 · c) ≤ θ̂(x∗) ≤ m−1(ϕ̂− zα/2 · c)).

Moreover we see that r∗α/2 = m−1(ϕ̂− z1−α/2 · c) and r∗1−α/2 = m−1(ϕ̂− zα/2 · c)). Therefore

the percentile interval agrees with the standard normal interval applied to the appropriate

transformation of θ. That is, the transformation that causes the assumptions of the standard
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normal interval to actually hold. However, the appropriate transformation does not need to

be known to construct the percentile interval, making it superior to the standard normal

interval.

For a finite number of bootstrap replications the two-sided percentile interval is

(r∗(B+1)(α/2), r
∗
(B+1)(1−α/2)).

Similar derivations can also be used to derive the one-sided versions:

(−∞, r∗(B+1)(1−α)) and (r∗(B+1)(α),+∞).

When the assumptions of the standard normal interval are met, the percentile interval will

agree with it. When the standard normal interval would be correct for a certain transforma-

tion, the percentile interval agrees with the results of the standard normal interval applied

under that transformation. There are many cases in which the assumption that such a trans-

formation exists is quite reasonable. Such as when θ̂(X) is the sample mean, proportion, or

a regression coefficient. In these and other cases where a central limit theorem applies the

identity transformation suffices.

Since its introduction the percentile interval has been interpreted in a pivotal framework

(e.g. Hinkley 1988; Shao and Tu 1995). If the distribution of θ̂(X) − θ is symmetric, then

−a1−α/2 = aα/2 and a1−α/2 = −aα/2. Therefore, we can rewrite (8.1) as

(
θ̂(x) + aα/2, θ̂(x) + a1−α/2

)
.

Upon estimating these quantiles with the appropriate order statistics from the bootstrap
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distribution we obtain

(
θ̂(x) + a∗((B+1)(α/2)), θ̂(x) + a∗((B+1)(1−α/2))

)
.

Observe that a∗((B+1)p) = r∗((B+1)p) − θ̂(x), so instead we can write

θ̂(x) + a∗((B+1)(α/2)) = r∗((B+1)(α/2)) and θ̂(x) + a∗((B+1)(1−α/2)) = r∗((B+1)(1−α/2)).

Hence we arrive at the same quantiles of the bootstrap distribution.

The simplicity of the percentile interval provides a pedagogical advantage. Students can eas-

ily verify if the method is appropriate by checking the bootstrap distribution for normality.

The interval is also transformation-respecting and range-preserving. However, the nonpara-

metric percentile interval has received criticism for its poor performance (e.g. Hinkley 1988;

Hesterberg 2015b; Hayden 2019). It has also been noted that the percentile interval uses the

“wrong pivot backwards” relative to the basic interval (e.g. Hall 1992). This is discussed by

Efron and Tibshirani (1993) who state that neither the percentile nor basic intervals, “work

well in general”. However, they note that the percentile interval works better than the basic

interval in practice.

A suggested improvement to the percentile interval is the bias-corrected and accelerated

percentile interval, which accounts for possible bias in θ̂(X). Its details are discussed in

Chapter 14 of Efron and Tibshirani (1993). These details are more intricate and complex

than those of the percentile and basic interval and, depending on the students’ mathematical

backgrounds, they may be outside of the scope of an undergraduate introductory statistical

methods course.
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8.1.3 The Studentized Interval (The Studentized Case)

Under some circumstances, such as when θ̂(X) = X̄, the distribution of θ̂(X)−θ is asymptot-

ically Normal with mean 0 and variance SE(θ̂(X))
2
, where SE(θ̂(X)) denotes the standard

error of θ̂(X). This provides another option for estimating a1−α/2 and aα/2. Namely, with

ˆSE(θ̂(x)) ∗ z1−α/2 and ˆSE(θ̂(x)) ∗ zα/2, respectively.

For finite samples, however, this is only an approximation. In the case of the sample mean,

a better approximation may be obtained by using the quantiles of a tn−1 distribution, which

accounts for estimating the standard error. In this case, a1−α/2 and aα/2 are estimated with

ˆSE(θ̂(x)) ∗ t(1−α/2),(n−1) and ˆSE(θ̂(x)) ∗ tα/2,(n−1), respectively.

The studentized bootstrap interval, also known as the bootstrap t-interval, further replaces

these t-quantiles with a bootstrap approximation. Though its form is motivated by the t-

interval it is useful for inference outside of the mean. Rather than using a z- or t-table, the

studentized bootstrap interval uses “bootstrap tables” which are fit for the specific data set

observed. This adjusts for skewness in the underlying population and other errors that can

arise when θ̂(X) is not the sample mean.

The values tα/2,(n−1) and t(1−α/2),(n−1) are estimated with the (B+1)(α/2)-th and (B+1)(1−

α/2)-th smallest values of the distribution of z∗ =
(
θ̂(x∗) − θ̂(x)

)
/ ˆSE(θ̂(x∗)), respectively,

where ˆSE(θ̂(x∗)) is an observed estimate of the standard error of θ̂(x∗). Substituting these

bootstrap estimates leads to an interval whose final form is

(
θ̂(x) − ˆSE(θ̂(x)) ∗ z∗((B+1)(1−α/2)), θ̂(x) − ˆSE(θ̂(x)) ∗ z∗((B+1)(α/2))

)
.

Though the Central Limit Theorem (CLT) gives a formula for the standard error of the

mean, there are many statistics which do not have such a formula. The bootstrap may be
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used to obtain estimates for the standard errors of θ̂(X) and θ̂(X∗). The plug-in principle

discussed by Efron and Tibshirani (1993) can be used to estimate the standard error of θ̂(X)

with the square root of

σ̂2 =
1

B − 1

B∑
i=1

(
θ̂(x∗

i ) −
¯̂
θ(x∗

(·))

)2

,

where
¯̂
θ(x∗

(·)) denotes the mean of the bootstrap sample statistics.

In order to estimate the standard error of θ̂(x∗) an iterative bootstrap method can be used.

In this method one obtains M second-level bootstrap samples from each of the B original

bootstrap samples. For each of these second-level bootstrap samples, M statistics are then

calculated and denoted as θ̂(x∗
i,j) for i = 1, . . . , B and j = 1, . . . ,M . From these we calculate

the bootstrap estimate of standard error for the ith bootstrap sample as the square root of

σ̂2∗
i =

1

M − 1

M∑
j=1

(
θ̂(x∗

i,j) −
¯̂
θ(x∗

i(·))
)2

,

where
¯̂
θ(x∗

i(·)) now represents the mean of the second-level bootstrap sample statistics.

While Efron and Tibshirani (1993) suggests that M = 25 is sufficient for estimating the

standard error of a bootstrap estimate, B = 1000 is needed for estimating any desired

quantiles. A few suggestions for M , ranging from 10 to 50, are also given by Davison

and Hinkley (1997) under different scenarios. Depending on computational resources, these

bootstrap methods, especially the studentized interval, may be considered computationally

expensive. If B = 999 and M = 25, then over twenty-four thousand resamples must be

performed in total.

As with the basic and percentile bootstrap intervals, the accuracy of this interval depends

on whether the distribution of (θ̂(X) − θ)/ ˆSE(θ̂(X)) is indeed pivotal. It is noted by Efron

and Tibshirani (1993) that the results of the studentized bootstrap interval can be largely

influenced by outliers in the data. They also warn that the studentized bootstrap interval
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works best for variance-stabilized parameters and that it is especially applicable to location

statistics.

Table 8.1 summarizes the three different bootstrap-based interval estimation methods dis-

cussed in this section along with their accompanying assumptions.

Simple bootstrap interval name and form Underlying assumption(s)

Basic bootstrap interval(
2θ̂(x) − r∗((B+1)(1−α/2)), 2θ̂(x) − r∗((B+1)(α/2))

) This method assumes that the distri-
bution of θ̂(X) − θ is approximately
pivotal

Percentile bootstrap interval(
r∗((B+1)(α/2)), r

∗
((B+1)(1−α/2))

)
There exists some monotone trans-
formation ϕ̂ = m(θ̂(X)) such that
ϕ̂ ∼ Normal(ϕ, c2) for all population
distributions F (including the case
F = F̂ ), where ϕ = m(θ), for some
standard deviation c.

Studentized bootstrap interval(
θ̂(x) − ˆSE(θ̂(x)) ∗ z∗((B+1)(1−α/2)),

θ̂(x) − ˆSE(θ̂(x)) ∗ z∗((B+1)(α/2))

)
The distribution of (θ̂(X) −
θ)/ ˆSE(θ̂(X)) is approximately
pivotal

Table 8.1: A summary of our discussion on the basic, percentile, and studentized boot-
strap intervals. Here B is the number of bootstrap samples (e.g. 999) and 1 − α is the
desired confidence level. The values (B + 1)(1 − α/2) and (B + 1)(α/2) are assumed to
be integers which, when used as subscripts, denote the corresponding order statistics of the
distribution. We denote an estimate of the standard error of θ̂(X), based on the data, as

ˆSE(θ̂(x)). Also, we denote the studentized distribution of bootstrap sample statistics as

z∗ =
(
θ̂(x∗) − θ̂(x)

)
/ ˆSE(θ̂(x∗)), where ˆSE(θ̂(x∗)) is an estimate of the standard error of

θ̂(x∗).

8.2 Bootstrap-Based Hypothesis Tests

The goal of hypothesis testing is to make an inference about some population parameter of

interest, θ, specifically in regards to whether or not there is sufficient evidence to indicate
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that the parameter is a value other than one which we hypothesize to be true. Similar to

confidence intervals, when the data do not meet the requirements needed to use traditional

hypothesis testing methods, such as the z- or t-test, bootstrap hypothesis tests are an al-

ternative so long as their own assumptions are met. Many early manuscripts and textbooks

(e.g. Beran 1988; Hinkley 1988; Efron and Tibshirani 1993; Davison and Hinkley 1997) give

guidance on bootstrap hypothesis testing and discuss possible approaches. The approach

that we outline next is based on the idea of using a pivotal quantity. Readers who desire

more details about this approach should reference Chapter 4 of Davison and Hinkley (1997)

and Chapter 16 of Efron and Tibshirani (1993). A summary is given in Table 8.2 for readers

who are already familiar with these concepts.

In general, to conduct a one-sample level-α bootstrap hypothesis test of H0 : θ = θ0, two

components must be obtained: (1) t(X), a test statistic, and (2) T̂0, an estimate of, T , the

distribution of t(X), under H0. Pivotal bootstrap hypothesis tests use test statistics whose

distributions do not depend on any unknown parameters, including θ, so that only T̂ needs

to be estimated, without regards to H0.

Using the plug-in principle, B bootstrap test statistics, t(x∗), can be generated from the

bootstrap sample data and used to estimate T . The accuracy of this estimate depends on

how well the distribution of t(x∗) approximates that of t(X). As was the case when estimating

quantiles for confidence intervals in the last subsection, the two will conform well when t(X)

is actually pivotal.

For a one-sided lower alternative hypothesis, that is HA : θ < θ0, we can calculate the

achieved significance level, an approximate p-value, with

ASL = P ∗ (t(x∗) < t(x)) .

Here t(x) is the observed test statistic, and we use an asterisk to note that this approxi-
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mate probability is calculated using the distribution of the bootstrap test statistics. If the

alternative hypothesis is one-sided upper, then

ASL = P ∗ (t(x∗) > t(x))

and if it is two-sided, then

ASL = 2 × min
(
P ∗(t(x∗) < t(x)

)
, P ∗(t(x∗) > t(x)

))
.

In all cases, we reject H0 if ASL < α, where α is the desired significance level.

8.2.1 Studentized Pivots

Suppose that t(X) =
(
θ̂(X) − θ

)
/ ˆSE(θ̂(X)) is a pivotal quantity - its distribution does not

depend on θ. Then the bootstrap hypothesis test outlined above may be used. In this case,

T is estimated with the distribution of t(x∗) =
(
θ̂(x∗) − θ̂(x)

)
/ ˆSE(θ̂(x∗)) and the observed

test statistic is t(x) =
(
θ̂(x) − θ0

)
/ ˆSE(θ̂(x)). Depending on the alternative hypothesis, the

ASL can be calculated using one of the expressions given earlier.

Note that, if θ0 is contained in the studentized interval given in Table 8.1, then

z∗((B+1)(α/2)) < (θ̂(x) − θ0)/ ˆSE(θ̂(x)) < z∗((B+1)(1−α/2)).

The quantity in the center is t(x), the observed test statistic based on a studentized pivotal

quantity. If we estimate the α/2 and 1 − α/2 quantiles of the distribution of t(X) with the

(B + 1)(α/2)-th and (B + 1)(1 − α/2)-th smallest values of the distribution of t(x∗), then

containment of θ0 in the studentized interval implies that t(x) is in the rejection region of

the two-sided level-α bootstrap hypothesis test. Therefore, performing this hypothesis test
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is equivalent to rejecting values of θ0 which are not contained in the studentized interval.

8.2.2 Locational Pivots

If we suppose, instead, that t(X) = θ̂(X) − θ is a pivotal quantity, then the bootstrap

hypothesis test can again be used in a similar manner. In this case, the observed test

statistic is t(x) = θ̂(x) − θ0 and the bootstrap test statistics, t(x∗) = θ̂(x∗) − θ̂(x), can be

used to estimate T . The ASL can be calculated using the statements defined earlier.

If θ0 is contained in the basic bootstrap interval of Table 8.1 then,

r∗(B+1)(α/2) − θ̂(x) < θ̂(x) − θ0 < r∗(B+1)(1−α/2) − θ̂(x).

If it is contained in the percentile interval, then

−(r∗(B+1)(1−α/2) − θ̂(x)) < θ̂(x) − θ0 < −(r∗(B+1)(α/2) − θ̂(x)).

Again, we see that the quantity in the center of each statement is the observed test statistic,

based on a locational pivot. Furthermore, by the symmetry assumption of the percentile

interval, the bounds of these statements are the same. If the (B + 1)(α/2)-th and (B +

1)(1 − α/2)-th smallest values of the distribution of t(x∗) are used to estimate the α/2 and

1−α/2 quantiles of T , then the values in the rejection region of this test are the same as the

values contained in the basic bootstrap interval, or the percentile bootstrap interval under

the symmetry assumption.

The use of pivotal quantities is not unique to bootstrap hypothesis testing. The z- and

t-tests use the same underlying idea, with additional assumptions about the shape of the

distribution of the test statistic. When the test statistic is not approximately pivotal, the
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performance of these bootstrap hypothesis tests may be negatively impacted. For reference,

these bootstrap hypothesis tests are summarized in Table 8.2.

8.3 Summary

The theoretical underpinnings that we have discussed show that the basic and studentized

bootstrap intervals, and their corresponding hypothesis tests, rely heavily on the assumption

that the distribution of θ̂(X) can be made approximately pivotal through shifting (by θ) or

studentization (shifting by θ and scaling by ˆSE(θ̂(X))). The percentile interval assumes

that a normalizing transformation of the sampling distribution exists. Whether this is a

reasonable assumption depends on the parameter of interest and the underlying population

data. In many cases, such as that of the sample mean, the distribution of θ̂(X) will depend

on some scale parameter and the former assumption will be unreasonable. Next we will use

simulations to investigate how these bootstrap methods perform when their assumptions are

or are not reasonably met.
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Studentized pivot Locational pivot

Assumption Distribution of (θ̂(X) −
θ)/ ˆSE(θ̂(X)) is approximately
pivotal

Distribution of θ̂(X) − θ is ap-
proximately pivotal

Observed test
statistic

t(x) =
θ̂(x) − θ0
ˆSE(θ̂(x))

t(x) = θ̂(x) − θ0

Bootstrap dis-
tribution of test
statistics

t(x∗) =
θ̂(x∗) − θ̂(x)

ˆSE(θ̂(x∗))

t(x∗) = θ̂(x∗) − θ̂(x)

Rejection criteria Two-sided test rejects if

ASL = 2 × min
(
P ∗(t(x∗) < t(x)

)
, P ∗(t(x∗) > t(x)

))
.

One-sided upper test rejects if

ASL = P ∗ (t(x∗) > t(x)) < α

One-sided lower test rejects if

ASL = P ∗ (t(x∗) < t(x)) < α

Table 8.2: Summary of the bootstrap hypothesis tests discussed. ˆSE(θ̂(x)) is an estimate
for the standard error of θ̂(x), while ˆSE(θ̂(x∗)) is that for θ̂(x∗). The achieved significance
level (ASL) is an approximate p-value, calculated with respect to the bootstrap distribution
of test statistics. The level-α hypothesis test based on the studentized pivot is equivalent to
rejecting values of θ0 which are not contained in the (1 − α) ∗ 100% studentized bootstrap
interval. Similarly, the test based on the locational pivot is equivalent to rejecting values of
θ0 which are not contained in the basic bootstrap interval or, if the symmetry assumption
holds, the percentile bootstrap interval.
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Chapter 9: Simulation-Based Performance Evaluations of the Bootstrap

To evaluate the performance of these bootstrap intervals and their corresponding hypothesis

tests, we applied their two-sided versions under a variety of simulated scenarios where their

assumptions were or were not reasonably met. We discuss the following performance metrics:

Coverage proportion (C): the proportion of two-sided intervals that contained the true pa-

rameter value. For a (1 − α)∗100% bootstrap interval, it is desirable to have this equal to

1 − α.

Significance level (α): the proportion of times that the null hypothesis was rejected, in favor

of a two-sided alternative, when it was actually true. In light of the bootstrap hypothesis

testing methods discussed, α = 1 − C. That is, the proportion of times that H0 : θ = θ0

was rejected in favor of HA : θ ̸= θ0, where θ0 = θ, the true population parameter, at the α

significance level, is equal to the proportion of (1−α)∗100% two-sided intervals that did not

contain the true parameter value.

Power (β): the proportion of times the null is rejected, in favor of a two-sided alternative,

when it is in fact false. It is usually desirable to have this value increase to 1 as the sample size

increases. For more insight, we studied the behavior of β as |θ0−θ| increased, for a variety of

increasing sample sizes. Since the corresponding two-sided bootstrap hypothesis tests reject

any values that are not contained in the two-sided interval, this is simply the proportion of

two-sided intervals that did not contain each hypothesized value of θ0 ∈ [θ− d, θ + d], where

d is some constant specifying the absolute distance from the truth.

For simplicity, we call these performance metrics by their theoretical names, however, our

results are simulation-based and, therefore, some deviations from what we would expect
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based on statistical theory can be expected.

Results pertaining to the proportion of intervals or hypothesis tests which exhibited some

behavior (e.g. containment of a true or false parameter value) were calculated out of 10,000

intervals or tests, each constructed using a different random sample taken under the specified

simulation constraints. However, in some cases, such as when the sample size was small, there

was little to no variability to estimate and this produced studentized bootstrap intervals

with undefined bounds (0/0 or a value divided by 0). In these cases we only considered

intervals that did not contain undefined values when calculating performance metrics, so the

performance metric was calculated out of fewer than 10,000 intervals. More information is

given on this behavior as we discuss the simulation results and we note how many undefined

intervals were observed in the results tables.

All studentized bootstrap intervals were constructed using the iterative second-level method

discussed earlier. We elected to use the bootstrap estimate of standard error for the studen-

tized interval in order to gain insight into the performance of the method when a formula

for the standard error is not available.

In order to determine if there was any difference in the performance due to the number

of bootstrap samples used, bootstrap intervals were constructed using both B = 99 and

B = 999 bootstrap samples. Also, the significance level was kept at α = 0.05 throughout.

That is, all confidence intervals were constructed with a desired 0.95 coverage probability

and hypothesis tests were conducted with a desired Type I error rate of 0.05. For comparison

purposes, we included simulation results for traditional z and/or t methods as appropriate

for a given problem. These were the one-sample z- and t-tests and intervals for the mean

and the one-sample z-test and interval for the proportion (Wald interval). The details of

these methods can be found in most any introductory statistics textbook.
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9.1 Simulation Results

We began with the problem of constructing interval estimates for the population mean

under different scenarios. In the first scenario, random samples of size N = 10, 40, and

100 were taken from a Normal(1, 1) population. In the second scenario, random samples of

size N = 5, 10, and 20 were taken from an Exponential(1) population (with rate parameter

λ = 1), which is a right-skewed distribution. Connecting this problem to the notation used

in the previous chapter, we have θ̂(X) = X̄, the sample mean, and θ = µ, the population

mean.

To determine if the assumptions of the basic and percentile bootstrap intervals were met,

we calculated X̄ − µ ten thousand times using samples of varying sizes from a variety of

Normal(µ, σ2) and Exponential(λ) populations. We selected values for λ such that the un-

derlying population distributions would have less right-skew as λ increased. For the Normal

population, µ and σ2 were chosen such that the spread and center of the underlying popu-

lation slightly varied. Figures 9.1a and 9.1b give the distributions of shifted sample means.

For Normal populations, it was clear that the spread of the distributions of X̄ −µ depended

on the population variance. For example, in the first row, third column of Figure 9.1a, the

spread of the distribution is greatest, while in the first row, fourth column it is least. This

corresponds to changes in the variance of the underlying population. For the Exponential

populations, inconsistencies were also observed between distributions as the skew and spread

varied with λ. However, as the sample size increased, the distributions became more consis-

tent across populations. For both scenarios, we concluded that the assumptions of the basic

and percentile intervals were not met when the sample size was small but became better met

as it increased.

To determine if the assumption of the studentized bootstrap interval was met, we used the

same simulations as before, but now we checked whether the distribution of (X̄ − µ)/σ̂ was



204

(a) Normal populations

(b) Exponential populations

(c) Bernoulli populations

Figure 9.1: Shifted sampling distributions. For each population and sample size 10,000 sample
statistics were calculated. Each sample statistic was shifted by the corresponding parameter of its
population.
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approximately the same across the different populations. Here σ̂ is the bootstrap-based

plug-in estimate of standard error. We may refer to scaling by this estimate more broadly

as “studentization”.

The simulated distributions are given in Figures 9.2a and 9.2b. The dark and light gray

shading correspond to the use of B = 99 and B = 999 bootstrap samples, respectively. The

value of B did not have an impact on the resulting distribution, but the sample size did.

The first is evidenced by the strong overlap of the dark and light gray bars in the histograms

and the second by the differences between histograms within the same column.

For example, comparing the distributions in the first column of Figure 9.2a, the spread in

the distributions slightly decreases as N increases. However, making comparisons across the

first row of Figure 9.2a, the distributions are approximately the same in shape, spread, and

center. For these reasons, we concluded that the assumptions behind the studentized interval

were met when the underlying population was Normal or Exponential and the parameter of

interest was the mean.

It is known that the t-interval does not perform well when N is small and the data are

skewed (see Huang 2017; Meeden 1999). Therefore, the assumptions of the t-interval were

reasonably met in the first scenario, where the underlying population was Normal, but less

reasonably met in the second scenario, where the population was right-skewed and N was

small. The assumptions of the z-interval were met in both scenarios since samples were

independent and identically distributed (iid) and the underlying population variance was

technically known.

The coverage proportions of the bootstrap intervals and the z- and t-intervals for the mean

are given in Table 9.1 for each scenario of interest.

When the underlying population was Normal(1, 1), the coverage proportions of the z- and

t-intervals were very close to the nominal 0.95, for most all values of N . Larger discrepancies
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(a) Normal populations

(b) Exponential populations

(c) Bernoulli populations

Figure 9.2: Studentized sampling distributions. For each population, sample size, and num-
ber of bootstrap samples 10,000 sample statistics were calculated. Each sample statistic
was shifted by the corresponding parameter of its population and scaled using its bootstrap
estimate of standard error. B = 99 and B = 999 correspond to dark gray and light gray
bars, respectively.
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Normal(1, 1) Exponential(1)
Interval B N C N C
Basic 99 10 0.905 5 0.773

40 0.941 10 0.849
100 0.946 20 0.898

Basic 999 10 0.904 5 0.765
40 0.941 10 0.842
100 0.946 20 0.890

Percentile 99 10 0.907 5 0.789
40 0.940 10 0.862
100 0.946 20 0.909

Percentile 999 10 0.902 5 0.791
40 0.940 10 0.863
100 0.946 20 0.909

Studentized 99 10 0.962 5 0.949 (52)
40 0.965 10 0.956
100 0.965 20 0.961

Studentized 999 10 0.956 5 0.935
40 0.962 10 0.950
100 0.960 20 0.958

z - 10 0.950 5 0.958
40 0.950 10 0.959
100 0.947 20 0.956

t - 10 0.948 5 0.878
40 0.949 10 0.905
100 0.948 20 0.922

Table 9.1: Coverage proportions (C) of intervals for the population mean. 10,000 samples of
the specified size (N) were taken from each population. Then, with each sample, B bootstrap
samples were used to construct the bootstrap intervals while the traditional intervals were
constructed with their usual formulas. The proportion of intervals which contained the true
population mean, out of ten thousand, was calculated. These values should be near 0.95
since the significance level was 0.05. The coverage proportion for the studentized interval is
out of 9982 intervals because it contained undefined bounds in 52 cases.
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were observed for the bootstrap intervals though. The percentile and basic bootstrap in-

tervals had moderate under-coverage, especially for small N . The lowest coverage observed

amongst these two intervals for the Normal(1,1) population was 0.902. Alternatively, the

studentized interval had over-coverage with proportions as large as 0.965.

When the population was Exponential(1), the coverage proportions of the t-interval dropped

well below 0.95, while those of the z-interval reached above 0.95. Pointed decreases in the

coverage proportions of the bootstrap intervals were also observed. The most severe changes

were observed for the percentile and basic bootstrap intervals for N = 5. In these cases,

some coverage proportions dropped by over 10%.

The coverage proportions of the studentized interval were higher than that of the t-interval

when small samples were taken from an Exponential(1) population. However, the widths

of the studentized bootstrap intervals were significantly larger than those of the t-intervals,

especially when N was small. Figure 9.3 gives the distributions of the widths (upper bound

- lower bound) of the studentized and t-intervals for each value of N when the underlying

population was Exponential(1). These were plotted on the log scale for ease of visibility.

The dashed lines in each panel mark the width of the z-interval, which is constant for a fixed

N and significance level. The widths of the studentized interval were quite large and varied

greatly, especially for N = 5. This explains why the coverage proportions were higher than

that of the t-interval in this case.

Large widths were observed when the denominator of either z∗((B+1)(α/2)) or z∗((B+1)(1−α/2))

was near zero and this occurred when there was little variability between the second-level

bootstrap sample statistics. In some extreme cases, all of them were the same and the second-

level bootstrap estimate of standard error was exactly equal to zero, giving undefined values

for z∗((B+1)(α/2)) or z∗((B+1)(1−α/2)). This behavior was observed in 52 (out of 10,000) intervals

for the population mean. These intervals were removed before calculating the coverage

proportions in Table 9.1.
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Figure 9.3: Log of the widths of 10,000 studentized bootstrap, t-, and z-intervals for the
population mean when the underlying population was Exponential(1). The widths of the
z-interval, which were constant for a given value of N and significance level, are marked
by a single dashed line. The studentized bootstrap interval produced very wide intervals,
especially when the sample size was very small. This may be a reason for the high coverage
proportions we observed. 52 studentized bootstrap intervals had undefined values when
N = 5 and B = 99. These were removed before plotting.

In the case of the population proportion, which we discuss next, there was even less vari-

ability to estimate since only TRUE or FALSE was sampled. Therefore, the original sample

statistic, bootstrap sample statistics, and second-level bootstrap sample statistics were all

the same in some cases. This also produced estimates of zero for the first- and second-level

bootstrap estimates of standard error and, therefore, undefined bounds for the studentized

intervals. We only considered intervals that did not have undefined bounds when calculating

performance metrics.

The population proportion, p, is analogous to the mean for binary data. We evaluated the

performance of the bootstrap intervals and the z-interval for proportions, also called the Wald

interval, under a variety of scenarios. Connecting the notation from the previous chapter
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to this problem, θ̂(X) = p̂, the sample proportion, while θ = p, the population proportion.

We selected samples of size N = 5, 20, 50, and 150 from Bernoulli(p) populations with

p ∈ {0.1, 0.25, 0.5}. These values were selected so that the distribution of p̂ would vary from

right-skewed when N and p were small, to symmetric when N was large and p was 0.5.

The distributions of shifted and studentized sample proportions for samples from Bernoulli(p)

populations were given back in Figures 9.1c 9.2c, respectively. For N = 5 or 20, the distribu-

tions of shifted and studentized sample proportions differed noticeably as p increased. These

differences subsided slightly as N increased, though they were still noticeable. When N was

small, we obtained some zero estimates for the standard error of p̂, resulting in undefined stu-

dentized sample proportions. These were removed before plotting, which likely contributed

to inconsistencies between the distributions in Figure 9.2c. Due to these observations, we

again concluded that the assumptions of these bootstrap intervals were not well met in this

scenario for small N , but, were better met for large sample sizes.

The z-interval for proportions is known to be inappropriate when the sample size is small

and p is near zero or one (see Newcombe 1998; Brown et al. 2001). When p is near zero, the

distribution of the number of successes, and therefore the proportion of successes, is right-

skewed and when p is near one, it will be left-skewed. When the sample size is additionally

small, this skewness makes the Normal approximation inappropriate.

The coverage proportions of the bootstrap intervals and the z-interval for the population

proportion are given in Table 9.2. The coverage proportions of most intervals were quite far

from the desired 0.95 regardless of N , B, or p.

The basic bootstrap interval mostly had under-coverage: for p = 0.25 and p = 0.1, it never

achieved a coverage proportion at or above 0.95, though it got close with 0.938. For N = 50

or N = 150 and p = 0.5, the coverage proportions came closer to the desired 0.95. The

percentile interval had a mixture of over- and under-coverage. For N = 5, there was only
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Interval B N Bernoulli(0.1) Bernoulli(0.25) Bernoulli(0.5)
Basic 99 5 0.401 (0.314) 0.747 (0.423) 0.620 (0.414)

20 0.879 (0.579) 0.897 (0.141) 0.936 (0.005)
50 0.865 (0.230) 0.929 (0.001) 0.950 (0.005)
150 0.929 (0.001) 0.938 (0.000) 0.949 (0.000)

Basic 999 5 0.401 (0.326) 0.749 (0.403) 0.620 (0.317)
20 0.880 (0.611) 0.897 (0.124) 0.956 (0.001)
50 0.879 (0.222) 0.935 (0.000) 0.948 (0.000)
150 0.931 (0.000) 0.935 (0.000) 0.947 (0.000)

Percentile 99 5 0.404 (0.590) 0.751 (0.238) 0.924 (0.063)
20 0.878 (0.119) 0.953 (0.003) 0.959 (0.000)
50 0.952 (0.005) 0.940 (0.000) 0.957 (0.000)
150 0.951 (0.000) 0.943 (0.000) 0.959 (0.000)

Percentile 999 5 0.401 (0.590) 0.749 (0.238) 0.937 (0.063)
20 0.879 (0.119) 0.963 (0.003) 0.958 (0.000)
50 0.960 (0.005) 0.939 (0.000) 0.960 (0.000)
150 0.955 (0.000) 0.943 (0.000) 0.958 (0.000)

Studentized 99 5 0 (9999) 1 (9994) 1 (9982)
20 0.954 (8820) 0.986 (2798) 0.993 (82)
50 0.981 (3413) 0.981 (15) 0.974 (0)
150 0.975 (7) 0.967 (0) 0.967 (0)

Studentized 999 5 0 (10000) 0 (10000) 0 (10000)
20 0.961 (8745) 0.991 (2238) 0.998 (32)
50 0.985 (2515) 0.983 (3) 0.972 (0)
150 0.975 (2) 0.961 (0) 0.964 (0)

z - 5 0.402 (0.410, 0.590) 0.742 (0.759, 0.241) 0.935 (0.935, 0.065)
20 0.882 (0.744, 0.117) 0.894 (0.216, 0.004) 0.961 (0.002, 0.000)
50 0.884 (0.244, 0.006) 0.940 (0.000, 0.001) 0.937 (0.000, 0.000)
150 0.930 (0.000, 0.000) 0.937 (0.000, 0.000) 0.936 (0.000, 0.000)

Table 9.2: Coverage proportions (C) of bootstrap intervals and the z-interval (Wald inter-
val) for the population proportion. Samples of size (N) were taken from each Bernoulli(p)
population and B bootstrap samples were used to construct the bootstrap intervals. The
z-interval was constructed using its usual formula. Values in parentheses represent the pro-
portion of basic intervals which contained invalid values, the proportion of percentile intervals
which contained equal bounds, the number of studentized intervals which contained unde-
fined bounds, and the proportion of z-intervals which contained both invalid values and equal
bounds.



212

under-coverage but results were not consistent for other values of N since there was both

over- and under-coverage as p varied.

The studentized interval mostly had over-coverage, with coverage proportions as large as

0.974 when no intervals were undefined. For N = 5, there were very few intervals whose

bounds were not undefined, if at all, especially when p was also small. The z-interval had

under-coverage for the most part: its nearest coverage proportions were 0.940 and 0.961. Its

lowest coverage proportions were observed when p = 0.1.

Another, possibly more serious, issue that we observed pertained to the behavior of the

actual intervals themselves. The basic intervals contained invalid values and the percentile

intervals had bounds which were exactly equal. The z-intervals also had invalid values and

equal bounds and, as we already noted, the studentized intervals had undefined bounds. The

frequency with which these issues were observed is given in parentheses next to the coverage

proportions in Table 9.2.

The basic and percentile bootstrap intervals exhibited odd behavior mostly when p = 0.1

or N was small. In one case over 61% of basic bootstrap intervals contained invalid values

and, in another case, 59% of percentile bootstrap intervals had equal bounds. However, as

N and p increased, this behavior was not observed as frequently.

Use of the studentized interval produced many undefined bounds. When the underlying

population proportion was near zero, or N was small, some second-level bootstrap estimates

of standard error were zero, producing undefined values for the bootstrap z-statistics used

to construct the interval, whose divisor is this estimated standard error. If there was also

no variability in the original sample, then the z-statistic was 0/0, which is also undefined.

Undefined values were removed before calculating the coverage proportion which is why some

coverage proportions were exactly zero or one. The number of intervals which were removed

before calculating the coverage proportion is given in parentheses.
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The z-interval exhibited behavior similar to that of the basic and percentile bootstrap in-

tervals. This was especially true when N was small or p = 0.1. In these cases, both invalid

values and intervals with equal bounds were observed. The behavior that we observed with

the z-interval, and other issues that arise with its use, are also discussed by Newcombe (1998)

and Brown et al. (2001).

As we mentioned earlier, the achieved significance level of the two-sided bootstrap hypothesis

tests, α, is equivalent to 1 −C. That is, since we calculated the proportion of intervals that

contained the true parameter value, we also had the proportion of times we would fail to

reject this true value if two-sided bootstrap hypothesis tests were performed. Subtracting

this from one gave us the proportion of times we rejected this true null value. For brevity,

we did not tabulate these since they are just one minus the values given in Tables 9.1 and

9.2. However, note that coverage proportions calculated when many studentized intervals

had undefined bounds will less accurately reflect α.

In scenarios where few or no bootstrap intervals were removed, those which had coverage

proportions near 0.95 also performed well in terms of significance levels near the desired

0.05. Those that had coverage proportions above or below 0.95 rejected too often or too

rarely, respectively. Since many studentized intervals, both for the mean and proportion,

had coverage proportions well above 0.95, it was the more conservative method in comparison

to the basic and percentile bootstrap intervals.

For direct comparison, we obtained the rejection rates of the one-sample z- and t- tests for

the mean as well as the z-test for the proportion. These are given in Tables 9.3 and 9.4. To

obtain these, we performed each of these tests 10,000 times under each of the same scenarios

used earlier and calculated the proportion of tests which rejected the true hypothesized value.

The rejection rates of the z-test for the mean were near the desired 0.05 in most cases. When

N = 10 and the underlying population was Exponential(1), it was lowest at 0.041. When
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Test N Normal(1,1) N Exponential(1)

z-test 10 0.048 5 0.041
40 0.050 10 0.045
100 0.051 20 0.048

t-test 10 0.051 5 0.120
40 0.047 10 0.095
100 0.050 20 0.081

Table 9.3: Significance levels (α) of the z- and t-tests for the mean. For each population and
sample size (N), 10,000 samples were taken. The z- and t-test were used to test H0 : µ = 1
(which is true for both populations). The proportion of tests which rejected was recorded.

Test N Bernoulli(0.1) Bernoulli(0.25) Bernoulli(0.5)

z-test 5 0.083 0.017 0.061
20 0.045 0.066 0.039
50 0.031 0.051 0.062
150 0.064 0.048 0.061

Table 9.4: Significance levels (α) of the z-test for proportions. For each Bernoulli(p) popu-
lation and sample size (N), 10,000 samples were taken. The z-test for proportions was used
to test H0 : p = p0, where p0 was the true population proportion. The proportion of tests
which rejected was recorded.

samples came from a Normal(1, 1) population, the t-test for the mean produced rejection

rates near the desired 0.05. However, a non-trivial increase in its rejections rates was observed

when small samples from an Exponential(1) population were used. This concurs with the

decrease in coverage proportions that we also observed earlier. The rejection rates of the

z-test for proportions was consistently far from 0.05 in both directions and there did not

seem to be a clear pattern to these rates as N or p decreased.

We also investigated the performance of the z, t, and bootstrap hypothesis tests in regards to

their ability to reject incorrect hypothesized values for the population mean and proportion.

This performance metric was defined earlier as the power of these tests.

Figure 9.4 gives the rejection rates of the z, t, and bootstrap hypothesis tests for the mean

under the same simulation constraints used earlier when the parameter of interest was the

mean. The studentized intervals that produced invalid results were removed before calcu-
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lating these rejection rates so some rates were calculated out of fewer than ten thousand

intervals.

When the underlying population was Normal(1, 1), the rejection rates of the z- and t-test

were similar, though the former rejected incorrect values slightly more often. The studentized

interval contained incorrect values, which were not rejected, more often than the basic and

percentile intervals. Whether B = 99 or B = 999 did not seem to have a noticeable impact

on the rejection rates. For all methods, the rejection rates improved as N increased.

This was also true when samples came from an Exponential(1) population but the rejection

curves were not nearly as well-behaved. For the t-test and bootstrap hypothesis tests, the

rejection rates were far less symmetric about the true mean. Both the distance and direction

with which the hypothesized value strayed away from the true mean impacted the results.

The rejection rates of the t-test and bootstrap hypothesis tests reached one more quickly

as the hypothesized mean moved below the true mean than when it moved above the true

mean.

The test based on the studentized interval had even more conservative results than in the

Normal(1, 1) case and, even as the sample size increased, the rejection rates remained lowest

of all methods. The distance between the lowest rejection rates and the significance level,

marked by a long-dashed line at y = 0.05, was quite large for the hypothesis tests based on

the basic and percentile bootstrap intervals. This agrees with the low coverage proportions

we observed for these intervals earlier in the same population scenario.

The rejection rates of the z-test for proportions and the bootstrap hypothesis tests for the

proportion are given in Figure 9.5.

Regardless of the method used or the value of p, the rejection rates went to one very slowly

for N = 5. However, for N = 150, the rejection rates went to one more quickly as p0

strayed away from p. For p = 0.1, larger samples where needed to more quickly achieve
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(a) Normal(1,1) population. Line types denote the sample size (N):
solid = 10, dashed = 40, dotted = 100.

(b) Exponential(1) population. Line types denote the sample size
(N): solid = 5, dashed = 10, dotted = 20.

Figure 9.4: Rejection rates of z- and t-tests, and bootstrap hypothesis tests for the mean.
The y-axis gives the proportion of tests that resulted in rejection for a given hypothesized
value, on the x-axis. The vertical and horizontal long-dashed lines mark the true mean and
the significance level 0.05, respectively.
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high rejection rates as p0 strayed from p. The rejection rates of the hypothesis test based on

the basic bootstrap interval were slightly less conservative than that based on the percentile

bootstrap interval and the z-test. The studentized intervals performance was the most

conservative. It had the lowest power since, as p0 strayed from p, its rejection rates were

consistently lower than that of the other methods.

9.2 Discussion

The results that we obtained primarily show that, when their underlying assumptions per-

taining to pivotal quantities are not met, there can be non-trivial differences in the perfor-

mance of the basic, percentile, and studentized bootstrap intervals. We observed decreased

coverage proportions, increased Type I error rates, and decreased rejection rates when the

null hypothesis was false. In many cases, the frequency with which these were observed

increased as N decreased and rarely improved when B increased. Also, there did not ap-

pear to be an improvement in performance when these bootstrap methods were used as an

alternative to traditional methods whose conditions were broken.

When the parameter of interest was the mean and the underlying population was Normal(1, 1)

or Exponential(1), the shifted sampling distributions were inconsistent across populations,

especially for small sample sizes. This provided evidence that the assumptions of the per-

centile and basic bootstrap intervals were less reasonable for small sample sizes. These

intervals had lower coverage proportions and higher Type I error rates, when the sample

size was small. The assumptions of the studentized interval were reasonable though, and its

coverage proportions were better than that of the t-interval when small samples were taken

from an Exponential(1) population.

In some cases, though, these high coverage proportions were not simply due to its superiority

over the t-interval, but rather due to its larger widths. When the underlying population was
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Normal(1, 1), the coverage proportions, Type I error rates, and correct rejection rates of

these methods were better than when the population was Exponential(1). This indicates

that non-Normality in the underlying population has an impact on the performance of these

methods.

Taking this, and the coverage proportions of the z- and t-intervals into account, we concluded

that their performance was better than the basic and percentile bootstrap intervals and com-

parable to, if not better than, the studentized bootstrap interval. Moreover, these bootstrap

intervals were not necessarily an improvement over the t-interval in scenarios where it was

known to have poor performance - that is, when N was small and the data were skewed.

When the parameter of interest was the population proportion, the assumptions of the basic

and percentile bootstrap interval still were less reasonable for small sample sizes. Their

coverage proportions and Type I error rates were not at the desired levels, especially for small

N and p. In these cases, issues with the studentized interval also became more apparent

and its assumptions were not reasonable. Estimating first- and second-level standard errors

was an issue when N was small and, in many cases, we obtained undefined estimates. The

reliability of the coverage proportions was negatively impacted by this since many intervals

had to be disregarded.

In cases where few or no intervals were thrown out, the coverage proportions were high.

However, this was again due to large widths rather than superiority over the other methods.

This became apparent when we moved to assess the power of these methods. The studentized

interval had lower power than other methods indicating that it contained incorrect values,

which were not rejected, more frequently than the other methods. Meanwhile, the z-interval

and the basic and percentile bootstrap intervals had comparable power. Again, we found

that the bootstrap methods were not necessarily an improvement over the z-interval for

proportions when it is known to perform poorly - that is, when N and p were small.
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It is worth noting that the behavior of the studentized intervals may have been different if we

were to use a formula to obtain estimates of the standard error of the original and bootstrap

sample statistics. However, in many cases such a formula does not exist, therefore, we

wanted to investigate the performance of the studentized interval when bootstrap estimates

of standard error were used.

The performance of the studentized interval using a formula for the standard error of the

mean was investigated by Hesterberg (2015b). They found that the studentized interval

(called bootstrap t interval there) performed well for small samples from Normal and Expo-

nential populations and outperformed the percentile and basic bootstrap intervals as well as

the t-interval. Our results expand on this by analyzing its performance when the data are

binary and we included direct comparisons with z- and t-methods.

The results that we obtained further emphasize the falsehood of the claim discussed by

Hayden (2019) that “they are more accurate than traditional methods for small samples”.

When the sample size was small, the metrics that we observed for the bootstrap intervals

were not always an improvement over those of traditional methods. Even when they were,

other issues came to the forefront, such as very large widths or undefined bounds. More-

over, the assumptions behind these intervals, which pertain to pivotal quantities, were less

reasonable for small sample sizes. Our results show that the performance of these bootstrap

methods decreases non-trivially as their assumptions, given in Tables 8.1 and 8.2, become

less reasonable. It is important that the bootstrap intervals that we discussed be constructed

using quantities that are pivotal after shifting or studentization.

Though the unfavorable results that we obtained were generated under specific settings,

they still show that there are situations in which the bootstrap can fail, especially when the

sample size is small and they are used for quantities which are not pivotal. Therefore, it is

pertinent that the assumptions of these bootstrap methods be discussed when teaching them

so that students use more caution when applying them and are aware of changes in their
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performance when these assumptions are not met. Though their assumptions may be hard

to verify in some cases, students should still be made aware of them and informed of cases

where they are known to be unreasonable, such as those we reported and others given in the

literature. This can help students to understand that these methods are not a direct solution

when the assumptions of traditional methods are not met, but rather another option.

9.3 bootEd: An R Package for Teaching the Bootstrap

Section 4 showcased some ways in which simulations can be used to understand the assump-

tions behind these bootstrap intervals, verify how reasonable they are, and comprehend the

repercussions of applying them when they are not reasonable. Performing similar simulations

with students in the classroom can help students to better understand the methods taught

so that they can reap the many benefits of applying the bootstrap and other statistical

computing methods appropriately.

In order to assist with this, the functions that we used for the simulations were complied

into an R package called bootEd. These functions are straightforward applications of the

intervals that we have discussed. We give a minimal example of how to use the package here.

More information is given in the package repository at github.com/tottyn/bootEd. The

code used to perform our simulations are also given there.

We begin by installing the package from GitHub and loading it:

devtools::install_github("tottyn/bootEd")

library(bootEd)

Then, we construct a 95% percentile bootstrap interval for the population median using 999

bootstrap samples:

github.com/tottyn/bootEd
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percentile(sample = rnorm(n = 20, mean = 3, sd = 2.5),

parameter = "median", B = 999, siglevel = 0.05, onlyint = FALSE)

The sample argument takes the vector of data. In this example, the sample consists of 20

values randomly generated from a Normal(3, 6.25) distribution. The parameter argument

can take any base R function (e.g. sd, mean) or any user defined summary function that

returns a single value. The arguments B and siglevel take the number of bootstrap samples

and significance level, respectively. When the onlyint argument is set to TRUE only the

bootstrap interval is returned, which can be useful for performing simulations.

The following output and plot are given:

The percentile bootstrap interval for the median is: (2.199231, 3.386698).

Assumptions: the shifted sampling distribution of the statistic of interest

is symmetric and it does not depend on any unknown parameters, such as

the underlying population variance.

Figure 9.6: Histogram of bootstrap sample statistics. The original sample statistic is marked
by a solid line. This plot is returned as part of the output from the percentile function.
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The output of the function is not only the bootstrap interval, but also information about

its assumptions. Verifying assumptions pertaining to the shifted or studentized sampling

distribution can be difficult without prior knowledge about the sampling distribution. The

bootstrap distribution is our best estimate to the sampling distribution and, though it is not

exact, it can at least be used to determine if the assumptions of the method are reasonable.

In this example, the bootstrap distribution is not symmetric. Therefore, either the sampling

distribution also is not symmetric or, if it is, then the bootstrap distribution is not an accurate

reflection of it. Either way, the assumptions behind the percentile bootstrap interval are not

met. Each of the interval construction methods that we discussed have a separate function in

the package with similar syntax, output, and plots. These can be used to generate insightful

discussion about the plausibility of the assumptions behind these methods, so that students

can learn to use them responsibly.

When selecting a tool for statistical computing, teachers should consider the scope of the

course in which the tool will be used and the computational backgrounds of the students.

Teachers should avoid using tools that will bind students in the ”ritualized thinking” that

Son et al. (2021) indicates the teaching practices of traditional methods has unfortunately

led to. Also, the criteria and goals set forth in the statistics education literature should be

brought into consideration.

For example, a goal given in the GAISE is that students, “should be able to interpret and

draw conclusions from standard output from statistical software packages.” (GAISE College

Report ASA Revision Committee 2016, p. 8) Important aspects of a contemporary statistical

computing tool, which were discussed in great detail by McNamara (2018), should also be

considered. These include accessibility, ease of entry, built-in documentation, and adjustable

plot creation.

Other packages that are useful for teaching bootstrapping in introductory statistic courses
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include: boot (Canty and Ripley (2019)), wboot (Weiss (2016)), simpleboot (Peng (2019)),

bootstrap (Tibshirani and Leisch (2017)), mosaic (Pruim et al. (2017)), and resample (Hes-

terberg (2015a)). Though the mosaic package performs many tasks that do not pertain

to bootstrapping, the do function is useful for rerunning code multiple times, as is needed

for creating a bootstrap distribution. Also, the resample package has options for multiple

resampling methods including the jackknife and permutation tests as well as capabilities for

both one-sample and two-sample problems.
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Chapter 10: Conclusions

We have discussed the percentile, basic, and studentized bootstrap intervals and their cor-

responding hypothesis tests were discussed. We showed that these methods have important

underlying assumptions which should be discussed in the classroom. Performance metrics

such as the coverage proportion, Type I error rate, and power were obtained under a va-

riety of simulation scenarios. It was shown that the performance of these intervals differs

non-trivially when their assumptions pertaining to pivotal quantities are or are not met.

Specifically, when the sample size was small, these assumptions were less reasonable.

The performance metrics of their traditional counterparts, z- and t-methods for the mean and

the z-interval for proportions (Wald interval), were also obtained under the same simulated

scenarios. We found that when the assumptions of traditional methods were not met, these

bootstrap intervals were rarely an improvement. Furthermore, their performance was also

impacted by a small sample size and non-normalcy.

When teaching these bootstrap methods, it is pertinent that teachers emphasize that they

are not substitutes for traditional methods nor are they solutions for issues that arise from

having a small sample size. Their assumptions pertaining to pivotal quantities should be

clearly communicated in lectures, course materials, and textbooks so that students leave the

classroom with a broader understanding of these methods and how they relate to traditional

methods. Teachers should aim to make students well informed about situations where these

methods are already known to perform poorly and equip them with the ability to judge

whether these methods are best for a given situation.

These methods can also be used as a conceptual stepping stone to teaching more traditional
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methods. For example, Hesterberg (2015b) suggests that the distribution of studentized

bootstrap sample statistics can effectively be used to evaluate whether CLT-based methods

are appropriate for the specific data set. This could be done in addition to checking whether

the sample data are Normal or the sample size is above 30. When a formula for the stan-

dard error is not available, however, the computational intensity and observed “small-N”

inaccuracies of the second-level bootstrap estimate of standard error should be kept in mind.

Our results pertain to the performance of the basic, percentile, and studentized bootstrap

intervals for the population mean or proportion. While we studied Bernoulli(p) populations

with p ∈ {0.1, 0.25, 0.5}, we did not investigate the performance of these methods for p ∈

(0.5, 1]. The performance of these methods could possibly be different as the population

proportion increases past 0.5. We also have not discussed the performance of the “better

bootstrap intervals” introduced by Efron and Tibshirani (1993) which are said to be an

improvement. There is room for comparison between those bootstrap intervals and the ones

that we have discussed here.

Future work could include an assessment of the performance of these methods when order

statistics, such as the median, or non-location parameters, such as the correlation and vari-

ance, are used. When the data are skewed or there are outliers, we may encourage students

to use the median as a measure of center. Statistical methods for the sample median that

may be taught in undergraduate introductory statistics courses include the bootstrap inter-

vals we have already discussed and the Sign test. The latter is known to have performance

issues, in terms of power and Type I error, when observations are tied (see Coakley and

Heise 1996; Fong et al. 2003). A comparison of the performance of the bootstrap intervals

and the Sign test in these scenarios could also be investigated.

Also, an effort could be made to assess the performance of these methods in two-sample

scenarios and compare their performance to that of permutation or two-sample traditional

methods. An assessment of another claim discussed by Hayden (2019) - that these methods
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are easier for students to understand could also be undertaken. A qualitative analysis of

student understanding and engagement with different forms of instruction and content could

be used to accomplish this.

The use of statistical computing in the classroom equips students with a variety of tools to

use in many situations. It also increases students’ retention of concepts and aids the teacher

in explaining complex topics. We aim to benefit both teacher and student by making them

aware of the assumptions behind simple bootstrapping methods which pertain to pivotal

quantities. We did this so that they can better teach and implement bootstrapping with

their introductory statistics students. It is important that these students understand the

usefulness and the correct scope of this tool before leaving the classroom so that they are

well equipped to handle a variety of situations.
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Figure A.1: Median sensitivity and specificity out of all oversampling methods. Median
performance metrics was calculated over all 500 results for each data scenario, amount of
imbalance and overlap, model, and oversampling method. Then the median was calculated
again over the 23 oversampling methods. X-axis provides overlap and imbalance amounts.
Y-axis indicates which data difficulty was present. The Base Case is N = 750, 100 variables,
and no categorical or missing data. The median was calculated out of 23 medians which
were themselves calculated out of 500 values.
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Figure A.2: Median negative predictive value (NPV) and positive predictive value (PPV)
out of all oversampling methods. Median performance metrics was calculated over all 500
results for each data scenario, amount of imbalance and overlap, model, and oversampling
method. Then the median was calculated again over the 23 oversampling methods. X-axis
provides overlap and imbalance amounts. Y-axis indicates which data difficulty was present.
The Base Case is N = 750, 100 variables, and no categorical or missing data. The median
was calculated out of 23 medians which were themselves calculated out of 500 values.
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Figure A.3: Median F1 score and Kappa coefficient out of all oversampling methods. Median
performance metrics was calculated over all 500 results for each data scenario, amount of
imbalance and overlap, model, and oversampling method. Then the median was calculated
again over the 23 oversampling methods. X-axis provides overlap and imbalance amounts.
Y-axis indicates which data difficulty was present. The Base Case is N = 750, 100 variables,
and no categorical or missing data. The median was calculated out of 23 medians which
were themselves calculated out of 500 values.
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Appendix B: More Detailed Supplementary Visualizations of SMOTE

Simulation Results

Figure B.1: Median Performance Metrics: Gray points are median specificity taken over 500
predictive performance results. The characteristics of each training set are given in the title
at the top of each plot. Each page corresponds to a different set of data characteristics. The
balancing methods with the three largest averages are given at the top of each panel as text.
The rank was calculated with respect to the metric, model, and data difficulty scenario.
The purple point gives the median for each group of points and it was also calculated with
respect to these elements. Dark gray point mark the results for unbalanced data. Viewers of
these and other very large and detailed plots in the Appendices may need to use the zoom
function of their PDF viewer for a better inspection of the results.
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278

Figure B.2: Distribution of Performance Metrics Solely By Oversampling Method: Distri-
bution of balanced accuracy and Kappa coefficient based on oversampling method. Data
were aggregated over all simulations to make an initial determination about whether the
oversampling method used has an impact.
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Figure B.3: Distribution of Performance Metrics For SMOTE and S-SMOTE By Data Case
and Model: Distribution of performance metrics by oversampling method (S-SMOTE and
SMOTE). Data were aggregated over all distributions for w and overlap/imbalance amounts
in order to make initial comparisons between the two methods.
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298

Figure B.4: Differences In Performance Metrics By Oversampling Method: Comparisons
were made between S-SMOTE, SMOTE and Population oversampling. Differences were
calculated with respect to data case, model, amount of overlap and imbalance, and which
distribution was used for w.
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Figure B.5: Distribution For Performance Metrics By Distribution for w and Data Scenario:
Distributions of each performance metrics are given aggregated over all characteristics except
the data scenario and distribution used for w. These were used to determine if there were any
changes in performance due simply to the distribution used for w and what data scenarios
these occurred in.
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Figure B.6: Ranks of Median Performance Metrics By Oversampling Method, Model, and
Data Scenario: The median performance metrics were calculated with respect to each data
scenario, amount of imbalance and overlap, model applied, and oversampling method used.
These were then ranked with respect to oversampling method (ranks of 1 to 23 possible).
The rank is plotted on the x-axis for each oversampling method. Facets correspond to the
model fit and data scenario.
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347

Appendix C: Supplementary Visualizations of Simulation Results Studying

Hyperparameters of S-SMOTE

Figure C.1: Distribution of Performance Metrics For Various Parameters of S-SMOTE: The
first set of plots (4 facets per page) provides the distribution of performance metrics (y-
axis) as the maximum number of nearest neighbors considered ranges from one to 20. We
denoted this parameter as kmax when describing S-SMOTE. This is faceted by the sequence
of thresholds tried in S-SMOTE and the amount of overlap and percent minority examples in
the simulated dataset. The second set of plots (3 facets per page) provide the distribution of
performance metrics (y-axis) as the sampling weights used to select minority class examples
for oversampling change. These weights determine how often we oversample minority points
after they have been separated using the median dominance threshold met and number of
neighbors deemed fit for oversampling. The third value corresponds to the quadrant that
least dominated and crowded minority examples fall into followed by the second value, fourth
value, and the first value. 50 repetitions were performed for each simulation with a different
dataset each time. Datasets were simulated in the same manner that was used for the larger
simulations. When the overlap amount was 0.9 and 5% of points belonged to the minority
class many values for the NPV were missing, leading to more variable results (see Figure
4.16).
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