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TOLERATING PROCESSOR-MEMORY PERFORMANCE GAP

CHAPTER 1 INTRODUCTION

As shown in Figure 1, while the performance gap between microprocessors

and main memory is ever increasing 50% each year [l][2], cache memory has been

a bridge to alleviate this discrepancy. In general, cache is made of 6-transistors

SRAM cell[3}[4] and two factors: cost and speed, determine the characteristic of

cache in a system design. Hence, compared to main memory, cache has to be

limited in a certain size. Because of this constrain, memory operations has become

the critical path in the current pipeline processors.

Cpu v.s. DRAM PERFORMANC
U--DRAM]

100000

10000 CPU improve

everyyear Processor-Memo

1000 Pertonnance Gap

100 Memory improve

10

Figure 1 CPU vs. DRAM performance

In this thesis proposal, we introduce three techniques to tolerate this

processor and memory speed imbalance. First of all, scheduling the dependent of

load instructions is a major challenge because the memory access latency is not

known until the address tag comparison is done. We propose the bloom filter

scheme to identify which load operant could cause cache miss and schedule the

dependent instructions accordingly. Second, as memory latency getting longer and
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longer, we propose a new fault-tolerant architecture design, named "ditto

processor", to verify the correctness of previous committed instructions. Third,

linked data structures (LDS) are increasing in importance due to the widespread use

of object-oriented programming and application domains that involve large

dynamic data structures. Hiding the memory latency incurred in traversals of such

data structures, however, is notoriously difficult. We proposal the new scheme to

identify these linked data structures as early as possible and prefetch the data from

cache into a small buffer before it is needed.

1.1 BLOOM FILTER SCHEME

To achieve the highest performance, a processor must execute a pair of

dependent instructions with no intervening pipeline bubbles. It must arrange for---

or schedule---the dependent instruction to begin execution immediately after the

instruction it depends on (i.e., the parent instruction) completes execution.

Accomplishing this requires knowing the latency of the parent.

Unfortunately, a modem processor schedules an instruction well before it

executes, and the latency of some instructions can only be determined by their

execution. For example, the latency of a load depends on where in the

cache/memory hierarchy the load data exists, and can only be determined by

executing the load and querying the caches. At the time the load is scheduled, its

latency is unknown. At the time its dependents should be scheduled, its latency

may still be unknown. Hence, the timely scheduling of the instructions that are

dependent on a load is a problem in modern processors.

The Intel Pentium 4 illustrates this problem. On an Intel Pentium 4[5][6], a

load is scheduled 7 cycles before it begins execution. Its execution (load-use)

latency is 2 cycles. At the time a load is scheduled, its execution will not begin for

another 7 cycles. Two cycles after the load is scheduled, if the load will hit the
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(first-level) cache, its dependent instructions must be scheduled to avoid pipeline

bubbles. However, two cycles after the load is scheduled, the load has not yet even

started executing, so its cache hitlmiss status is unknown. A similar situation exists

in the Compaq Alpha 21264[7]. A load is scheduled 2 cycles before it begins

execution, and its execution latency is 3 cycles. If the load will hit the (first-level)

cache, its dependents must be scheduled 3 cycles after it has been scheduled to

avoid pipeline bubbles. However, the load's cache hit/miss status is still unknown 3

cycles after it has been scheduled.

One possible solution to this problem is to schedule the dependents of a

load only after the latency of the load is known. The processor delays the

scheduling of the dependents until it knows the load hit the cache. This effectively

increases the load's latency to the amount of time between when the load is

scheduled and when its cache hit/miss status is known. This solution introduces

unnecessary bubbles into the pipeline, and can devastate processor performance.

Our simulations show that a processor using this solution drop 17% of its

performance (in Instructions Per Cycle [IPC]) compared to an ideal processor that

uses an oracle to perfectly predict load latencies and perfectly schedule their

dependents.

A better solution---and the solution that is the focus of this work---is to use

data speculation. The processor speculates that a load will hit the cache (a good

assumption given cache hits rates are generally over 90%), and schedules its

dependents accordingly. If the load hits, all is well. If the load misses, any

dependents that have been scheduled will not receive the load's result before they

begin execution. All these instructions have been erroneously scheduled, and will

need to be rescheduled.

Recovery must occur whenever instructions are erroneously scheduled due

to data (mis)speculation. Although misspeculation is rare, the overall penalty for

all misspeculations may be high, as the cost of each recovery can be high. If the

processor only rescheduled those instructions that are (directly or indirectly)
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dependent on the load, the cost would be low. However, such a recovery

mechanism is expensive to implement. The recovery mechanism for the Compaq

Alpha 21264 simply reschedules all instructions scheduled since the offending load

was scheduled, whether they are dependent or not. Although it's cheaper to

implement, the recovery cost can be high with this mechanism due to the

rescheduling and re-execution of the independent instructions. Regardless of which

recovery mechanism is implemented, as processor pipelines grow deeper and issue

widths widen, the number of erroneously scheduled instructions will increase, and

recovery costs will climb.

To reduce the penalty due to data misspeculations, the processor can predict

whether the load will hit the cache, instead of just speculating that the load will

always hit. The load's dependents are then scheduled according to the prediction.

As an example of a cache hit/miss predictor, the Compaq Alpha 21264 uses the

most significant bit of a 4-bit saturating counter as the load's hit/miss prediction.

The counter is incremented by one every time a load hits, and decremented by two

every time a load misses. Unfortunately, even with 2-level predictors[8], only

about 50% of the cache misses can be correctly predicted.

In this study, we describe a new approach to hit/miss prediction that is very

accurate and space (and hence power) efficient compared to existing approaches.

This approach uses a Bloom Filter (BF), which is a probabilistic algorithm to

quickly test membership in a large set using hash functions into an array of bits[9].

We investigate two variants of this approach: the first is based on partitioned-

address matching, and the second is based on partial-address matching.

Experimental results show that, for modest-sized predictors, Bloom Filters

outperform predictors that used a table of saturating counters indexed by load PC.

These table-based predictors operate just like the predictor for the Compaq Alpha

21264, except they have multiple counters instead of just one. As an example, for

an 8K-bit predictor, the Bloom Filter mispredicts 0.4% of all loads, whereas the

table-based predictor mispredicts 8% of all loads. This translates to a 6%



improvement in [PC over the table-based predictor. Compared to a machine with a

perfect predictor, a machine with a Bloom Filters has 99.7% of its [PC.

1.2 FAULT TOLERANT MICROARCHITECTURE

Transient errors, also called soft errors, can be introduced by alpha or

neutron particles strikes. They can also be introduced by power supply disturbances

or other environmental variations. As supply voltage scales to accommodate

technology scaling and to lower power consumption, transient errors are more

likely to be introduced[19][20][21][22][231. Transient errors may affect

microprocessors in many ways[24][25]. One possible manifestation of soft errors in

the modern processor is undetected data corruption. Experiments done by injecting

faults into unprotected microprocessors resulted in the observation of non-

negligible risk of data corruption[26]. Soft errors cannot be detected by

manufacturing testing nor by periodic testing. With widespread usage of

microprocessors in critical financial data processing, it is desirable to have

microprocessors capable of transparent recovery and protection from data

corruption in the face of soft errors.

The basic idea behind any error tolerance schemes involves some type of

redundancy. Redundancy techniques can be categorized in three general

categones[27] [28]: (1) hardware redundancy[29], (2) information

redundancy[30} [31] and (3) time redundancy[32] [33]. Hardware redundancy

employs physical duplication and achieves redundancy spatially. Information

redundancy with error detection and correction coding is effective in protecting

memory elements against transient faults. Transient faults that occur in the logic

blocks have no easy way to increase immunity besides utilizing either hardware

redundancy or time redundancy. Time redundancy re-executes operations with the

same hardware and obtain redundancy temporally. Time redundancy can be



performed at different levels of the microprocessor. Work done by Nicolaidis[34]

proposed a way to duplicate in time at the circuit level. This method introduces a

delay element between the combination logic and the pipeline register allowing the

data to be latched twice at different time. At the microarchitecture level, time

redundancy can be achieved by instruction re-execution or by check pointing and

rollback[35]. At the software level it can be accomplished by statically duplicating

the program in multiple versions[36]. It assumes that if one version fails, other

versions will produce correct results. In this study, we focus on the

microarchitecture level of time redundancy technique.

Existing microarchitecture level time redundancy mechanisms lose

performance due to blindly duplicating the execution of instructions at either

decode stage[37] [38] [39] [40] or at commit stage[4 1] [42] [43] [44]. Both schemes

verify the result at the point when the original copy is ready to retire and redundant

copy has completed execution.

1. Duplicating the instructions at decode stage generates many unnecessary

instructions to consume hardware resource when branch mis-prediction occurs.

2. The second scheme stored the committed instructions to a buffer in

program order. This buffer provides the information of retired instructions to the

fetch units. The instructions would then be re-fetched, re-decoded, re-renamed and

re-executed.

The main drawback of the first scheme is that it does not cover faults that

may occur at the frond-end of the pipeline. The second approach is commonly used

in Simultaneous multithreading (SMT) based fault tolerant processors. They have

better fault coverage compare to the first approach. However, if they only have

limited resources, the performance degradation of the second scheme is worse than

the first. The main reason is that the second scheme reduced the instruction

bandwidth available to the original instruction stream[38]. Since long latency

operations tend to stay in reorder buffer longer than short latency operation, our

study reveals that the long latency operations are important factor to the



7

performance loss of both schemes. Here we categorize memory reference micro-

operation, multiply and divide operations as long latency instructions and the rest,

including data effective address calculation, are short latency operations.

In this study we proposed a Ditto Processor to combine the advantages of

two previous schemes and still be able to reduce the performance loss needed for

reliable computing. It achieves the goal by handling short and long latency

instructions in slightly different ways. After the instructions are decoded, long

latency instructions would speculatively execute twice and the results are compared

before instructions committed. All instructions are cloned when they are ready to

retire. The duplicated instructions are held in a buffer and send back to the

beginning of the pipeline. Since results of long latency instructions are checked, the

clones of these instructions would not pass execution stage again after renaming

operation are verified. For the clones of short latency operations, once they

completed the re-execution, results are compared with the results of original

instructions. If the results of any types instructions do not match with their clones,

processor rollbacks to the point prior to the execution of these instructions.

This approach is unique in several ways:

1. It does not require SMT support and the operation system needs not to be

aware of the duplicated instructions.

2. The entire pipeline except the commit stage is covered instead of just

functional units. Commit stage must be duplicated in order to have full coverage.

3. Detecting the transient fault of short and long latency instructions in

different ways and having fewer penalty cycles for fault recovery help to reduce

performance loss. Our simulation result shows 1.8-13.3% performance

degradation.

This study attempts to quantify and compare performance degradation of

various time redundant schemes using a microarchitecture simulator when faults

are present. It assumes transient faults are few and occur only as isolated single

event. When a fault occurs during the simulation, it is always detected.



Performance lost due to re-execution and accounting is logged. This study does not

guarantee schemes used will detect all faults.

1.3 POINTER-CHASING PROBLEM

As performance gap between processor and memory wider each year, data

prefetching technique has proven to be the best way to tolerant this gap. A well-

designed data prefetching mechanism will correctly predict the load address and

bring the data into small memory structure, such as buffer or cache. How to

accurately predict the location of data and have it ready in time at Level One Cache

are two major concerns of data prefetching methodology.

If an application present regular address reference characteristic, a larger

cache size may easily solve the cache miss problem without data prefetching.

However, a larger cache would increase the access latency and it degrades the

processor core performance. Rather than increasing the size of cache, a stride

address predictor keep track of the history stride patterns, predict the future address

and prefetch the data into cache.

For some other applications, such as C++, JAVA or other object-oriented

program, the data structure may be dynamically, or statically, allocated and

deallocated. These types of program usually define an object as a node and use

pointer variable to link different objects or nodes together to build the complex data

structure, named Link-list Data Structure (LDS). LDS may be single link-list,

double link-list, tree or even multi-way tree. The most advantage of using LDS is

that the structure may be dynamically expended or shrink based on the run-time

program execution requirement. However, its advantage turns out to be a challenge

job for microarchitecture researcher. First of all, in order to access a specific node,

the program has to go through the entire predecessor nodes until it reach the target.

For instruction, without the knowledge of every node's location, if one try to find a



particular information in a tree structure, the only way is to travel from root and

then goes down to each level until it find the desired information. Second, when an

object is allocated at run-time, the Operation System may, or may not, provide an

available virtual memory space, which is near its predecessors. It means that for a

LDS, all nodes may spread all over the entire virtual memory. The stride predictor

will not be able to catch this kind of abnormal address pattern. "Pointer Chasing" is

usually a term to represent the problem of LDS application.

In this study, we propose a novel hardware-only data prefetch mechanism to

solve pointer-chasing problem. Our motivation is that when a LDS nodes is

allocated, it location will not change throughout its lifetime until it became trash.

Therefore, we use a small cache to dynamically profile all these nodes location.

This mechanism first identifies which load operation would producer the node's

address and only these loads, named Pointer load, and store operation may access

the small cache. The output of small cache will be the potential base address of next

nodes. After address computation, the data is prefetched in prefetch cache to not

pollute Level One data cache (L1-D cache). Since, the size of Ll-D cache is not

sensitive to the LDS application, we choose to downsize the L1-D cache and

append one small cache to store address and one cache to store prefetched data.

Later on, our study will reveal that the performance of these three small caches

together are 7% better than a single larger Ll-D cache.
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CHAPTER 2 BACKGROUND STUDY

2.1 DATA SPECULATIONS

2.1.1 The Fundamentals

To facilitate the presentation and discussion, we consider a baseline pipeline

model that is similar to the Compaq Alpha 21264[7]. We modified the

SimpleScalar out-of-order pipeline to match our baseline model for the

performance evaluations. In the baseline model, the front-end pipeline stages are:

instruction fetch and decode/rename. After decode/rename, the ALU instructions

go through the back-end stages: schedule, register read, execute, writeback, and

commit. Additional stages are required for executing a load. After decode/rename,

loads go through schedule, register read, address generation, two cache access

cycles, and an additional cycle for hit/miss determination (data access before

hit/miss using way prediction[1 1]), writeback, and commit. Thus, there are a total

of 7 and 10 cycles for ALU and load instructions, respectively.

Load rl<-O(r2 Schedule I register addgen cachel cache2
Hit/

iteback comt
I

add ,
all) writeback conrnt

Minimum 3c latency SpecuIativ'ue for hit
3-cycle speculative window

Figure 2 Example of Data Speculation for a load

Figure 2 illustrates the fundamental problem in scheduling the instructions

that are dependent on a load. For simplicity, the front-end stages are omitted. In
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this example, the add instruction consumes the data produced by the load

instruction. After the load is scheduled, it takes 5 cycles to resolve the hitlmiss.

However, the dependent add must be scheduled the third cycle after the load is

scheduled to achieve the minimum 3-cycle load-use latency and allow back-to-back

execution of these two dependent instructions. If the processor speculatively

schedules the add assuming the load will hit the cache, the add will get incorrect

data if load actually misses the cache. In this case, the add along with any other

dependent instructions scheduled within the illustrated 3-cycle speculative window

must be canceled and rescheduled.

3

2.5

n

C-) 1.5

1

0.5

0

C, 'q/ s:% /4
Figure 3 No-Speculation vs. Perfect Scheduling
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To demonstrate the performance potential of using data speculation for

scheduling instructions that are dependent on loads, we simulated the SPECint2000

benchmarks on the modified SimpleScalar model. We compare two scheduling

techniques. The first is a no-speculation scheme: the dependents are delayed until

the hit/miss of the parent load is determined. The second uses a perfect hit/miss

predictor that knows the hit/miss of a load in time to schedule its dependents to

achieve minimum load latency. The performance gap (in IPC) between these two

extremes demonstrates the performance potential of speculatively scheduling the

dependents of loads. Figure 3 shows the results. In these simulations, we double

the default SimpleScalar issue width to 8 and adjust the other parameters

accordingly. A more detailed description of the simulation model will be given in

Section X. On average, the IPC for perfect scheduling isl7% higher than the IPC

for the no-speculation scheme. Thus, the main focus of this study is to recover this

17% performance gap, by using mechanisms for efficient load data speculation.

2.1.2 Related Work

The Compaq Alpha 21264 uses a mini-restart mechanism to cancel and

reschedule all instructions scheduled since a misspeculated load was scheduled[7].

While this mini-restart is less costly than restarting the entire processor pipeline, it

is still expensive to reschedule (and re-execute) both the dependent and the

independent instructions. To alleviate this problem, the Compaq Alpha 21264 uses

the most significant bit of a 4-bit saturating counter as the load's hit/miss

prediction. The counter is incremented by one every time a load hits, and

decremented by two every time a load misses. The load's dependents are scheduled

according to the prediction. If the prediction is wrong, either the load was

predicted to miss and it hit, in which case the execution of the dependents will be
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unnecessarily delayed; or the load was predicted to hit and it missed, in which case

dependents may have been erroneously scheduled and will need to be rescheduled.

Yoaz et al.[8J used 2-level local predictors, 2-level global predictors, and

hybrid predictors for cache hit/miss prediction. Their results show that these

predictors only correctly identify half of the misses (for SPECint95), laying the

other half predicted as hits. Furthennore, they incorrectly identify a small

percentage of the hits as being misses.

The MIPS R10000 speculatively issues instructions that are dependent on a

load and reschedules them if the load misses the cache[12].

The Intel Pentium 4 achieves minimum 2-cycle load-use latency by

leveraging the fact that most accesses hit the first-level L1 cache. The scheduler

issues the dependent micro-operations (called uops) before the parent load has

finished executing[5] [6].

In most cases, the scheduler assumes the load will hit the L1 cache. A 'replay'

mechanism is used to handle the case where the load misses the L1 cache. The

replay logic keeps track of the dependent uops of each speculative load. When a

load misses, all its dependent uops are re-executed with the correct data when that

data becomes available.

Morancho, Llaberia, and Olive discuss a recovery mechanism for load

latency misprediction[ 13]. A recovery buffer retains all speculatively scheduled

instructions. After a latency misprediction, the load's dependent instructions can be

re-scheduled directly from the recovery buffer as soon as the data becomes

available. The recovery buffer allows the processor to remove instruction from the

scheduler earlier, providing more space for other instructions.
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2.2 BACKGROUND AND PREVIOUS WORKS ON FAULT TOLERANT
MICROARCHITECTURE

Present single-chip Commercial-Off-The-Shelf (COTS) microprocessors

have concentrated the design effort on performance. Reliability has not been the

primary focus. However, some fault tolerant features have been added into COTS

microprocessors [45] [46].

Hardware redundancy is one possible approach to cover logic errors. The

Pentium® Pro processor family has built-in mechanism to connect two processors

into the master/checker duplexing configuration for functional redundancy

checking. It allows duplicated chips to compare their outputs and detect errors.

However, this technique required 100% or more logic overhead. Other hardware

redundancy approaches adopted involve duplicating selected logic within the chip

and include error-checking logic in all functional elements. IBM's G5 processor is

a good example of this approach[45]{47]. G5 duplicates its I-unit and E-unit. It

incurs no delay penalty with the duplication because it is able to hide the compare-

and-detect cycle completely. Therefore G5 achieves improved checking without

any performance penalties. However, there is a 35% circuit overhead.

Recently there has been a resurgence of interest in utilizing time

redundancy at the microarchitecture level to recover transient faults. We may

classify these related works into two categories. The first category utilizes SMT

mechanism to execute two redundant threads in a processor with SMT support. The

second type focuses on modifying superscalar processor. We group several existing

designs into these two time-redundant schemes.
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2.2.1 Utilizing SMT mechanism in a SMT processor

Active-stream/Redundant-stream Simultaneous Multithreading (AR-SMT)

proposed by Rotenberg[41] exploits several recent microarchitectural trends to

protect computation from transient faults and some restricted permanent faults. In

this approach, a SMT processor executes an instruction stream called active stream

(A-stream) first. Results committed from this instruction stream are stored in a

delay buffer. A second stream (R-stream) of instructions tails behind the A-stream

with a distance equals to the length of the delay buffer. Results from the R-stream

execution are compared with results stored in a delay buffer and committed if they

match. Since there are two threads being executed, there are two memory images

maintained.

Recently, the same research group has proposed a new paradigm for

increasing both performance and fault tolerance coverage called "slipstream".

Instead of executing two exact instruction streams as in AR-SMT, slipstream

processors' A-stream is shortened by the removal of ineffectual instructions. This

approach[42] allows the A-stream to run ahead of the R-stream and thus provides

not only fault-tolerant coverage but also performance improvement.

Work done by Reinhardt and Mukerjee on the Simultaneous and

Redundantly Threaded (SRT) processor[44] also utilizes redundant thread in a

SMT processor to detect faults. The SRT dynamically schedules the redundant

thread to hardware resources to have higher performance. Their work introduces

the abstraction called sphere of replication to identify the fault coverage.

Rashid et. al. proposed fault tolerant mechanism in the Multiscalar

Architecture[43]. Multiscalar processor usually has many processing units to

exploit the instruction level parallelism (ILP). This technique utilizes a minor part

of the processing units for re-executing the committed instructions. Both permanent

and transient faults in the processor units can be detected.
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2.2.2 Modified superscalar processor

Work done by Franklin[37] utilizes spare resources in a superscalar

processor to implement time-redundancy. This approach duplicates all instructions

at either the dispatch or the issue stage. Duplicated instructions occupy the

otherwise under-utilized functional units to produce checking results for

verification.

Nickel et. al.[48] extended Franklin's work and tried to improve

performance of time-redundant processors by adding spare capacity. After an

instruction completes execution but before it is retired, a duplicated copy is placed

in a FIFO queue. This duplicated instruction is re-scheduled and re-executed. In

order to minimize the performance loss, this method also strategically adds extra

functional units to the pipeline.

Ray et. al.[39J proposed a similar scheme to what Franklin has done. A

single instructions stream creates multiple redundant threads at decode stage and

results from duplicated threads are verified at commit stage.

Mendelson et. al.[38] mentioned that if the decoding logic is not

implemented by table lookup (memory structure) one needs to employ some

methods to protect it from transient errors also. However, their approach focused

on re-executing the operations twice at execution stage and verifying results before

instruction commit. This scheme has minimum hardware requirement to perform

error checking and has less performance impact due to error detection. However,

compare to previous studies, this scheme has less fault coverage in that it only

verified the correctness of functional units.

Austin et. al.[401149] introduced the concept of using a less complex

checker named DIVA to verify faults. The DIVA checker can verify not only
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transient faults but also design faults. Moreover, the performance impact of this

extra checking mechanism is less than 3%.

In summary, we found works on using SMT to detect fault have better fault

coverage but suffer higher percentage performance loss. While works on using

existing superscalar processor, they do not cover the fault that may occur at the

frond-end of the pipeline. In this study, our goal is to provide a fault tolerant

processor, which has low cost, low performance degradation and high fault

coverage. We use a microarchitecture simulator to quantify the performance loss of

several schemes.

2.3 PREVIOUS STUDY ON POINTER-CHASING PROBLEM

Generally, data prefetching technique may divide into two groups:

sequential and irregular memory address reference. Sequential reference may sub-

divide into regular [53][54][55] and irregular stride addressing patterns [56] [57]

[58] [59] [60] [61] [62] [63] [70]. The proposed solution to pointer-chasing

problem may classify into three directions: hardware [65][66][67][68][69],

software [72][73][74] and hybrid scheme [75][76][77][78]. Hardware-only

mechanisms have two major advantages. First of all, with advance branch

predictor, it may early resolve run-time memory reference address more accurately.

Second, by monitoring memory port utilization, it may prevent normal data access

hinder from incorrect data prefetching. Software mechanisms analyze the program

code statistically and schedule data-prefetching operation carefully to match

relative memory reference[58]. Hybrid mechanism combine hardware and software

technique together to minimize the hardware requirement and still be able to gain

high address prediction.

Our study is focus on processor-side hardware prediction mechanism to

resolve the address of pointer load earlier on superscalar machine. For memory-side
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and multithreading pointer prefetl3ch study, interested reader may reference to

{66][70][71][79]. We begin with describing several hardware-only approaches and

then point out the fundamental problem of these solutions.

Amir Roth, et.al. [65] proposed to use Correlation Table (CT) to establish

the link between producer and consumer load operation at run-time. The Potential

Producer Window (PPW) records the possible producer that its result would be the

consumer's base address. Whenever a load is committed, its base address lookups

the PPW. If it matches the previous load operation's result, this producer-consumer

link is saved into CT indexed by producer's Program Counter (PC). A completed

load also probes the CT for existent link. For a match link, the predict address is

generated and prefetched from the cache. The results shows 1-25% improvement

L. Ramos, et. al. [67] adopt Dependence Table (DT) and Link Table (LT) to

find the possible linear link. DT contains producer load's tag and current time

stamp to implement the address-computing tree structure. LT use 2-bits confidence

counters to correctly identify the linear link. The result shows most of the

benchmark may predict over 75% of address.

M. Bekerman, et. al. [68] use context-based predictor to track the possible

LDS. This predictor contains Load Buffer (LB) and LT. LB records the history of

recently used address per load and LT provide the predict address. The author also

suggests that LB and LT should index by base address. Since base address may

reduce the number of link required to perform address prediction and reduce the

misprediction ratio. This study also use Gshare-based address predictor to identify

control-based load. The result shows 67% of addresses are correctly predicted.

B.K. Chung, et. al. [69] suggest to use Register Update Table (RUT) and

Update Link Table (ULT) to build the dynamic link of producer and consumer.

RUT is index by prior-renamed register id. It records the least instruction that

updates the register. ULT, similar to LT, records the link from the instructions that

updates the base register to the consumer load instructions. This study constructs

Cache-coordinate Resolution Table (CRT) to early predict the load address. The
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prefetched data is used to trigger load's dependent instructions. Combined with

stride-based predictor, this mechanism accurately predicts 97% of load address and

potential 18% performance improvement.

There are two fundamental problems for existent mechanisms:

1. Most of the schemes required two large tables to identify potential

pointer load and predict its address. One table records on-the-fly load

operation and another table keeps track of the link between producer

and consumer load.

2. As deeper and deeper pipeline stages of modern microarchitecture are

defined to accommodate higher circuit operation frequency, those

proposed scheme would be lost its prediction accuracy. Since in some

tight ioop application, many iterations of loop operations are already

fetched, decoded and renamed at Reorder Buffer (ROB). Those methods

would not be able to prefetch the data in time before a load request it.

To overcome these two problems, we propose a new mechanism, named

Pointer-Element-Prefetch-Unit (PEPU), to alleviate pointer-chasing performance

impact. PEPU is composed of four-subunits, Target Register Bitmap (TRB),

Bitmap Stack (BS), Prefetch Cache (PFC) and Address Cache (AC). These 4

subunits are controlled by finite state machine to perform predict and prefetch next

data from Li data cache. TRB is an n-bit table, where n is equal to the total number

of architecture integer registers in a system. It serves to identify Pointer Loads.

When branch miss prediction occur, BS rollback the TRB to correct state. The

prefetched data is placed into PFC to not pollute the data cache. AC records the

history of target address of pointer load. The size of PFC and AC combined

together are smaller than Li data cache size to gain faster access latency.



CHAPTER 3 BLOOM FILTERS

A Bloom Filter (BF) is a probabilistic algorithm to quickly test membership

in a large set using multiple hash functions into an array of bits[9]. A BF quickly

filters (i.e., identifies) non-members without querying the large set by exploiting

the fact that a small percentage of erroneous classifications can be tolerated. When

a BF identifies a non-member, it is guaranteed to not belong to the large set. When

a BF identifies a member, however, it is not guaranteed to belong to the large set.

To put it more simply, the result of the membership test is either: it is definitely not

a member, or, it is probably a member. In this study, we consider two variants of

the BF for filtering cache misses: one based on partitioned-address matching, and

the other based on partial-address matching. To simplify our discussion, we first

assume both the BF and the cache use physical addresses. Afterwards, we will

describe using virtual addresses.

3.1 PARTITIONED-ADDRESS BLOOM FILTER

Consider a cache line address with n bits (ignoring the offset bits). A large,

direct-mapped array of 2 bits is required to precisely record whether each cache

line address is in the cache. To reduce the space and allow a quick access, a

partitioned-address BF can be constructed. Instead of using the entire line address,

the address can be split into m partitions, with each partition using its own array of

bits. The result is m sub-arrays with 2i,'m bits, each of which records the

membership of the respective address partitions of lines stored in the cache. A

cache miss is identified when one or more of the address partitions for the address

of a requested line does not belong to the respective address partition of any line in

the cache. A filter error is encountered when a cache miss cannot be identified.
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This situation happens when the line is not in the cache, but all m partitions of the

line's address match address partitions of other cache lines. The filter rate

represents the percentage of cache misses that can be identified.

Figure 4 illustrates how the partitioned-address BF works. A load address

is partitioned, in this example, into 4 equally divided groups, Al, A2, A3, and A4.

Each of the four address partitions is used to index separate BF arrays, BF1, 13F2,

BF3, and BF4, respectively. Each entry in the BF arrays contains the information

of whether the address partition belongs to the corresponding address partition of

any line in the cache. If any of the 4 BF arrays indicates one of the address

partitions is absent from the cache, the requested line is not in the cache. Otherwise,

the requested line is probably in the cache, but it's not guaranteed to be.

Given the fact that a single address partition can exist for multiple lines in

the cache, the primary difficulty of the partitioned-address BF is to maintain the

correct membership information. When a line is removed from the cache, an

exhaustive search is necessary to check if the address partitions for the address of

the removed line still exist for any of the remaining lines. To avoid such a search,

each entry in the BF array contains a reference counter that keeps track of the

number of cache lines with the entry's corresponding address partition. When a

cache miss occurs, each counter for the address partitions for the address of the

newly-requested line is incremented, while the counters for the address partitions

for the address of the replaced line are decremented. A zero count indicates the

corresponding address partition does not belong to any line in the cache. Although

accurate, this counter technique requires extra space in the BF arrays for the

counters along with adders to handle the updates. A similar idea has been

considered to reduce the number of comparators for a set-associative cache[14} and

to filter cache-coherence traffic in a multiprocessor environment[15J.
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Figure 4 Partitioned-Address Bloom Filter for Cache Miss Detection

3.2 PARTIAL-ADDRESS BLOOM FILTER

The partial-address BF uses the least-significant bits of the line address to

index a small array of bits. Each bit indicates whether the partial address matches

any corresponding partial address of a line in the cache. The array size is reduced

to 2? bits, where p is the number of partial address bits. A filter error occurs when

the partial address of the requested line matches the partial address of an existing

cache line, but the other portion of the line address does not match. We call such

cases collisions. The least-significant bits are selected rather than more-significant
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bits to reduce the chance of collisions. Due to memory reference locality, the

more-significant line address bits tend to change less frequently. With a sufficient

number of low-order partial address bits to represent cache line addresses,

collisions are rare[16].

The design of a partial-address BF is illustrated in Figure 5. A BF array

with 2 bits indicates whether the corresponding partial address matches that of any

cache line. The BF array is updated to reflect any cache content change. When a

cache misses occurs, except for the caveat described in the paragraph below, the

entry in the BF array for the replaced line is reset to indicate that the line with that

partial address is no longer in the cache. Then, the entry for the requested line is

set to indicate that a line with that partial address now exists in the cache.

Requested Line Address

I
Tag

BF array Set bit on

r::i

;che

Reset bit on
cache miss
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F,

Index off setj-

partial address (p bits)

Li Cache Tag

Hit/Miss
I Detector

False, niss u..

True, (may) hit Partial Address (p-bits)
of Replaced Cache Line

Collision
Detector

Collision? (yes/no)

Figure 5 Partial-Address Bloom Filter for Cache Miss Detection
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If the partial address is wider than the cache index, when two cache lines

share the same partial address, they must be in the same set in a set-associative

cache. The BF array indicates which partial addresses exist in the cache, so if one

of these lines is replaced, the BF entry for the replaced line should not be reset,

since the partial address still exists for the line that was not replaced. When a cache

line is replaced, the collision detector checks the remaining cache lines in the same

set as the replaced line to see if any of them have the same partial address as the

replaced line. If any do have the same partial address, the BF entry is not reset.

Otherwise, the entry is reset. The collision detection is done in parallel with the

cache hitlmiss detection. The BF array is updated on the detection of a cache miss.

3.3 BLOOM FILTERS USING VIRTUAL ADDRESSES

The hit/miss prediction for a load must be done before the scheduling of its

dependents. If the physical address is not available in time to perform the

prediction, the virtual address must be used. When a virtual address is used to

access a BF, it is called a virtual-address BF. If the cache is virtually indexed and

tagged, the virtual-address BF operates analogously to the BF and cache that both

use only physical addresses. However, if the cache is either virtually-indexed

physically-tagged or physically-indexed physically-tagged, the BF array update for

the virtual-address BF must be modified. In this section, we describe these

modifications.

With virtual addresses, two virtual addresses can map to the same physical

address, causing an address synonym. With a virtual-address BF, the BF might

identify the first address as missing the cache, even though the line is in the cache

set identified by the second address. That is, the BF identifies a load as missing the

cache even though it hits. This situation can arise regardless of whether the cache

is physically or virtually indexed. In this situation, the processor simply delays
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scheduling the load's dependent instructions. Since cache hits by synonyms are

rare, the performance loss caused by the delayed scheduling is minimal. In fact, for

some virtually-indexed caches, the load-use latency for a synonym hit is longer

than for a non-synonym hit. For scheduling, the processor may initially treat the

synonym hit as a cache miss, in which case the BF should identify the synonym hit

as a cache miss anyway.

Requested Une Address

(CUT)
Tag Index Ottset Coffision & Update Table
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116 and
Cache Tag
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Resetbiton I II II
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Collision

Victim lnfonTtion Detector

False if I PartialAddress (p0-f p2) I

cache niss IoReLine fTwe if (e)U Colhion?(yeno)cache hit

Figure 6 Partial-Virtual-Address Bloom Filter for Cache Miss Detection

A more essential issue is correctly updating the BF array on cache misses.

Let's first focus on the partial-address BF shown in Figure 6. To simplify our

discussion, assume the cache is physically indexed and tagged with pO+pl index

bits, where p0 bits are within the page offset and pl bits are beyond the offset.

During a cache access, p1 bits are translated. Also assume pO-i-p2 partial virtual

address bits are used to access the BF, where p2 bits are beyond the page offset. To

correctly update the BF array, the p2 bits of each cache line are stored in a
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Collision and Update Table (CUT). When a line is replaced, its p2 bits are read

from the CUT. These p2 bits are then combined with the requested line's p0 bits to

update the BF array.

The CUT is organized as a two-dimensional array and indexed by the p0

bits. During each cache access, the set of p2 bits indexed by p0 are read from the

CUT. If a cache miss is detected, the p2 bits of the victim (e.g., LRU) line in the

accessed cache set are compared to the p2 bits for the other lines in that CUT set.

If the victim's p2 bits don't match any other line's p2 bits, there is no collision, and

the victim's p2 bits are used along with the p0 bits to reset the BF array to indicate

that the line with the pO+p2 partial address is no longer in the cache. If the victim's

p2 bits do match another line's p2 bits, the victim and the other line share the same

partial address, and there is a collision. In this case, the BF entry for the victim line

is left alone. Then, the BF entry for the requested line is set using the partial virtual

address of the requested line. Note that when the cache is virtually-indexed

physically-tagged, all the cache index bits are used to access the CUT. In this case,

only the partial address bits beyond the virtual cache index bits need to be saved in

the CUT and compared for collision detection.

Handling a virtual partitioned-address BF is straightforward. Virtual

address tags must be stored in the cache tag array along with the physical tags.

When a line is replaced, the replaced line's virtual address tag is used to update the

counter in each partitioned BF.

For the remainder of the study, we will assume virtual-address BFs. The

virtual address needed to access the BF is available after the address generation

cycle. Due to its rarity, we will omit discussions of synonym hits. If fact, for our

benchmarks there are no synonyms.
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3.4 THE MICROARCHITECTURE

In our baseline model, ALU instructions require a minimum of 7 cycles:

instruction fetch (WE), decode/rename (DEC), schedule (SCH), register read

(REG), execute (EXE), writeback (WRB), and commit (CMT). Loads extend the

execute stage to 4 cycles: address generation (AGN), two cache access cycles

(CA 1, CA2), and hit/miss determination (HIM). Assuming a load hits the L1 cache,

there is a 3-cycle speculative window in which the load's dependents and their

children are scheduled. When a miss occurs, all of the dependent instructions and

their children scheduled in these 3 cycles must be canceled and re-executed using

the correct data when it becomes available.

3.4.1 Predictor Timing and Mini-Restart

If data cache misses can be predicted early enough and accurately enough,

the processor's scheduler can avoid inserting pipeline bubbles between a load and

its dependent instructions. To be effective, the load's cache hit/miss prediction

must be done before its dependents must be scheduled. Thus, there are two basic

issues: (1) when, and (2) how fast the hit/miss prediction can be performed.

Hit/miss predictors that use saturating counters, like the one used by the Compaq

Alpha 21264, can access the counter at the beginning of the pipeline. Since our

pipeline has a minimum 3-cycle load latency, the prediction is available before any

of the load's dependents need to be scheduled. If a miss is predicted, the

dependents are blocked from scheduling until either the data comes back from the

outer levels of the memory hierarchy or the prediction is found to be incorrect.

The proposed Bloom Filter approach, on the other hand, requires the load

address to accurately identify (filter) misses. This filtering can only be performed



after the load address is calculated in the address generation cycle. As shown in

Figure 2, the load's dependent instructions must be scheduled the cycle after the

load's address generation to avoid pipeline bubbles. By using a small BF, cache

misses can be filtered in the cycle after the address generation, which is two cycles

before the hitimiss determination. However, it is still one cycle too late to prevent

the dependent instructions from scheduling.

To reap the prediction accuracy benefit provided by the BF, the load's

dependents are always aggressively scheduled assuming a cache hit. At the end of

the cycle the dependents are scheduled, the parent load has finished accessing the

BF. If a miss is identified, the dependents are canceled and recovered in the next

cycle. Since there is only a single-cycle speculative window, a precise recovery of

the load's dependents may be feasible without excessive hardware complexity.

This could be achieved by preventing the load's scheduled dependents from

broadcasting their tags to their dependents, inhibiting the wakeup of their

dependents. All independent instructions scheduled during this single-cycle

window would be allowed to continue.

The Compaq Alpha 21264 has a similar precise recovery scheme to handle

the dependents of floating-point loads. It also has a 3-cycle minimum load-use

latency (1 for address generation and 2 for cache access). The cache hitimiss

detection is done in the second cache access cycle, so the speculative window is

only 2 cycles. The dependents of floating-point loads are always delayed from

scheduling by one cycle. Consequently, the two-cycle speculative window for

integer loads is reduced to a one-cycle window for floating-point loads. When the

dependents of a floating-point load are being scheduled, the hit/miss detection is

being performed in the same cycle. If a miss is detected, the dependents in this

one-cycle window are precisely recovered in the next cycle[17]. This recovery

should incur minimum penalty, as these dependents have to wait for the load data

to return from the outer levels of the memory hierarchy anyway. The only potential

adverse impact is that these dependents unnecessarily occupy functional units.



If a load is predicted to hit the cache, and it is later identified by the normal

cache access as a miss, all dependent instructions scheduled during the entire 3-

cycle speculative window have been or will be incorrectly executed. It is not

sufficient to only re-schedule those instructions that directly depend on the load.

Descendants of those dependent instructions may have been scheduled, and also

need to be canceled and re-scheduled. A simple and workable scheme is to squash

all instructions scheduled during the 3-cycle speculative window, as is done by the

Compaq Alpha 21264. This simple recovery scheme reduces the hardware

complexity needed to track all the dependencies and speculative states. However,

both dependent and independent instructions scheduled in this 3-cycle window are

canceled and re-scheduled. Independent instructions are rescheduled the cycle after

the misprediction is detected. Dependent instructions are rescheduled according to

the correct completion time of the load, which in most cases is determined by the

level-2 cache access time.

Figure 7 illustrates the recovery mechanism for data mis-speculation.

Again, the first two pipeline stages are omitted to simplify the figure. When the BF

identifies a load as missing the cache, only those dependent instructions scheduled

in the same cycle are canceled. The cancellation does not affect any independent

instructions scheduled in this cycle, as shown in Part (a) of the figure. When a miss

cannot be correctly filtered by the BF, and the miss is detected during the regular

cache access, all of the instructions that were scheduled during the 3-cycle

speculative window are canceled. Cancellation and re-execution involves resetting

the canceled instructions processor state. We assume it takes a separate flush cycle

before the canceled instructions can be re-scheduled. Although independent

instructions can be re-scheduled right away, they encounter a minimum 2--4 cycle

penalty depending on where they reside in the speculative window. For example, a

4-cycle penalty occurs for those instructions that were scheduled in the first of the

three speculative cycles as marked in Part (b) of the figure. Other factors such as

data and resource dependencies may further increase the number of penalty cycles.
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(a) Cache Miss Filtered by BF: Canceled Only Dependents in 1 -cycle window

SCH REG AGN CA2 M/H 12 access

IMiss Filtered

Dependent: ---------------------------------SCH REJ

Independent: SCH REG EXE WRB CMT

(no penalty)

(b) Cache Miss Not Filtered by BF: Canceled All Instrucitons in 3-cycle window

SCH REG AGN CA2 M/H L2access

Speculative Window

N / _____
Dependent: REG EXE Flush -------- SCH REG

Dependent:

(4-cycle penalty)

I SCH I REGIndependent:

(no penalty)

Rush ----------------- SCH

EXE I Flush I SCH I REG I EXE

Flush SCH REG EXE/ N
(3-cycle penalty)

Figure 7 Recovery and Re-execution for:(a) Cache Miss Filtered by BF, and (b)
Cache Miss not Filtered by BF
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3.4.2 Prefetching and Memory Dependencies

Compared with other cache hitlmiss predictors, the BF is unique in that

misses that are identified must not exist in the L1 cache. Therefore, once a miss is

identified, it is safe to issue a miss request to the second-level cache L2. In our

pipeline model, this effectively reduces the L2 cache and memory latencies by two

cycles. Although other predictors also allow early L2 cache access, they may

incorrectly identify some L1 cache hits as being misses, introducing extra penalties

and complexity into the processor.

In our simulator, a Load-Store Queue (LSQ) is used to detect and enforce

memory dependencies. It also allows loads to fetch data directly from an aliasing

store in the LSQ without accessing the cache. The memory dependence is detected

after the address of the load is generated (AGN). The load is forced to wait if the

address of any potentially aliasing store in the LSQ is unknown. In our processor

model, we assume this memory dependence detection is done early and accurately

in the pipeline, which we model with a perfect memory dependence predictor. This

allows the scheduling of the cache access to be inhibited if the load depends on a

store in the LSQ. For the SPECint2000 benchmarks we tested, half of them have a

very low percentage (1 --3%) of loads which fetch data from the LSQ. However,

the other half have higher percentages, indicating the importance of knowing

memory dependencies before scheduling a cache access. If memory dependence

detection can not be done early enough to avoid pipeline bubbles, cache accesses

can be speculatively scheduled before memory dependencies are known. The

speculative cache access---and any instructions dependent on the load that were

scheduledlexecuted---are canceled and potentially re-scheduled and re-executed if a

memory dependence is later detected. The BF may also be used in conjunction

with a memory dependence predictor[18] to provide more accurate scheduling of



loads and their dependents. Further discussion in this direction is out of the scope

of this study.

3.5 PERFORMANCE EVALUATION

To evaluate the potential performance benefit of using a BF as a cache

hit/miss predictor, we modified SimpleScalar to support BFs and other hit/miss

predictors, and then ran most of the SPECint2000 benchmarks through the

simulator. Our evaluation will compare the proposed BF technique to the other

hit/miss predictors. Our simulated machine is a general-purpose out-of-order

processor capable of issuing 8 instructions per cycle. The branch predictor consists

of an 8K entry 4-way set-associative BTB and a 16 bit Gshare predictor. As

described in Section 3.4, the pipeline is a minimum of 7 stages for ALU

instructions and 10 stages for loads. A small 64-entry reorder buffer (called the

RUU in SimpleScalar) was used for our studies as a larger instruction window may

affect the cycle time. We modeled a detailed memory hierarchy, with the size and

latency at each level reflecting current trends. We slightly modified the original

SimpleScalar L1 cache: instead of updating the cache tag array when a miss is

detected, the tag array is updated when the missed data comes back from the outer

levels of the memory hierarchy. This modification more accurately simulates cache

misses, since the LRU line is not removed until the new data comes in.

Table 1 summarizes the simulation parameters. We simulated 10 of the

SPECint2000 benchmarks using the reference input file. For each benchmark, we

skip the first 500 million instructions and collect result statistics on the next 500

million instructions. We collect both prediction accuracy and IPC for the BFs and

other cache hit/miss predictors.
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Fetch/Decode/Issue Width I 8

Branch Predictor 8K-entry 4-way BTB

16-bit Gshare

RUU/LSQ Size 64

Li Inst/Data 16KB 4-way

L2 Cache 4MB 8-way

Access Latency: L1/L2/Mem 2/7/100

Memory Ports 4

Integer AddIMult ALU 4/2

Floating-P AddIMult ALU 4/2

Table 1 Bloom Filter simulation parameters

We simulated different sizes of the two BF variants. For the part itioned-

address BF, we simulated three (Partition-3) and four (Partition-4) equal partitions

of the line address (27 bits). Each entry in the BF array maintains a counter

capable of counting the entire number of L1 cache lines. To avoid overflow in our

simulations, each counter was 10 bits. For the partial-address BF, the BF array

size ranges from having only one entry per L1 cache line (Partial -lx) all the way up

to having 64 entries per L1 cache line (Partial-64x). In our baseline model, the L1

data cache is 16KB with a 32-byte line size. We also perform sensitivity studies on

cache size.

We also evaluate two previously proposed hit/miss predictors and some

simple extensions to them. The first is to always predict cache hit (Always-hit).

This method does not require any prediction table. The second is the predictor in

the Compaq Alpha 21264, which uses a single 4-bit saturating counter (Counter-i).

We also evaluate using an untagged table of 4-bit saturating counters, indexed by

the PC of the load. We vary the size of the table from 128 counters (Counter-i28)

to 8192 counters (Counter-8192). Since each counter is 4 bits, the total size of the
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Counter-128 predictor matches the size of the Partial-ix predictor. For the

counter-based predictors, the prediction is performed in the instruction fetch cycle,

and the counters are updated after the cache hitlmiss status is known. Table 2

summarizes the predictors we simulated and the amount of storage they require.

Note that besides the predictor array tables, other logic such as adders and

comparators are required to perform predictions.

Prediction Method Array Size (in bits)

Partition-3 15360

Partition-4 4480

Partial-ix 512

Partial-4x 2048

Partial-16x 8192

Partial-64x 32768

Always-hit 0

Counter-i 4

Counter-i28 512

Counter-512 2048

Counter-2048 8192

Counter-8 192 32768

Table 2 Cache hit/miss predictors and their required storage
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Figure 9 shows the average (over all the benchmarks) correct and incorrect

cache hitlmiss prediction rates. It shows the prediction accuracy for BFs as well as

other predictors. Correct predictions include both predict-hit-actual-hit and predict-

miss-actual-miss cases. Incorrect predictions are separated into two groups.

Incorrect-cancel is the case where a hit is predicted, but the load actually misses

the cache. All speculatively scheduled dependents of the load must be canceled

and rescheduled. Incorrect-delay is the case where a miss is predicted, but the load

actually hits the cache. This misprediction unnecessarily delays the scheduling of

the loads dependents and hence injects bubbles into the pipeline.

100% ----j -i-I-I-I-.---
90% ---------------I--80%--
70%

60%

50%-
40%-
30% Incorrect-cancel

0) 0 Incorrect-delayo - - - - - -
0 Correct hit/niss

10%- HHH
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0 . .' \

()>)c%
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Figure 9 Prediction Accuracies for Different Cache hit/Miss Predictors



The predictors using saturating counters have a significant percentage of

predictions in the Incorrect-delay group, and this percentage is insensitive to the

predictor size. For Counter-2048, 5.2% of predictions are in the Incorrect-delay

group and 2.7% are in the Incorrect-cancel group. The BFs, on the other hand,

don't have any predictions in the Incorrect-delay group. In addition, the percentage

in Incorrect-cancel decreases dramatically with larger BFs. The total misprediction

rate is only 0.4% for Partial-16x using a moderately sized 8K-bit BF array. As

expected, the simple Counter-i and Always-hit predictors have the two highest

average misprediction rates.

3.5.2 IPC improvement

Figure 10 compares the IPCs for several data speculation methods. In

addition to the different types of hit/miss predictors, we include the IPC of a

machine that doesn't use any data speculation and of a machine that uses a perfect

hit/miss predictor (Perfect-sch). Also, the benefit of data prefetching using Partial-

i6x and Perfect-sch are shown (labeled with -DP in the legend of the figure). We

show results for all the individual benchmarks since the IPC improvements are very

different among them. Partial-16x without data prefetching shows a 17\%

improvement over No-speculation and a 4% improvement over Always-hit.

Compared to Counter-i and Counter-2048, the improvements are 9% and 6%.

With data prefetching, the improvements rise to 19%, 6%, 11% and 8%,

respectively. It is important to point out that Partial-i6x reaches 99.7% of the IPC

of Perfect-sch, and Partial-i 6x-DP reaches 99.7\% of the IPC of Perfect-sch-DP.
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Gcc Pen Vortex

I-cache IPC% I-miss% Ruu-ocu IPC% I-miss% Ruu-ocu IPC% I-miss% Ruu-ocu

8k 7.7 6.3 15.5 5.3 8.5 14.3 1.5 10.5 14.7

16x 10.7 4.2 19.8 7.0 6.0 17.6 4.6 6.9 22.2

32x 16.3 2.0 27.6 13.6 2.9 26.4 7.9 4.3 30.5

Table 3 Percent IPC improvement, I-cache miss rate, and RUU occupancy for 3 I-

cache sizes

Table 3 summarizes the performance improvement of Partial-16x over No-

speculation for 3 different I-cache sizes. Note the IPC improvement grows as the I-

cache size increases. The IPC improvement for Always-hit also grows as I-cache

size increases (not shown in the table), but not as quickly as it does for Partial-16x.

20%

18%

16%
C
0
E

12%

10%

8%

8KB 16KB 32KB 64KB

Cache Size

Figure 11 IPC improvements Over No-speculation for Different Data Cache Sizes



3.5.3 Sensitivity Studies

In this section we examine the effect of BFs on processor performance for

various data cache sizes, RUU sizes, and different branch predictors.

Figure 11 plots the IPC improvement of Always-hit, Partial-16x, Partial-

16x-DP, and Perfect-sch-DP over No-speculation for four different data cache

sizes. We make three observations. First, the bigger the cache, the better the IPC

improvement for all 4 data speculation methods. With bigger caches, scheduling

becomes more important, because the performance bottleneck caused by data cache

misses is reduced. Thus, delaying the scheduling of a load's dependents until after

its cache hit/miss status has been determined (as is done by the No-speculation

method) is a bigger loss of opportunity. Second, the IPC of Always-hit improves

faster than the other methods as cache size increases. This is because its prediction

accuracy is directly tied to the cache hit rate, so it sees the biggest improvement in

prediction accuracy as the cache size increases. The IPC improvement of Partial-

16x-DP over Always-hit reduces from 5.9% to 5.4% to 4.9% to 4.3% as the cache

size is increased from 8KB to 64KB. Nevertheless, we expect future high-

performance processors will use smaller first-level caches to enable higher clock

frequencies. Third, due to high accuracy, Partial-i 6x-DP achieves

99.9% of the IPC of the machine with a perfect scheduler for large caches.

Figure 12 shows the IPC improvement of Partial-i 6x-DP, Partial-16x, and

Always-hit over No-prediction for three RUTJ sizes: 32, 64, and 128. We make

several observations.

First, the IPC improvement is the greatest for the small RU1J for all three

methods. To achieve high performance with a small RUTJ, instructions need to

flow through the RU1J freely. Without data speculation, instructions that are

dependent on loads block the flow. Thus, data speculation---even with all the
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rescheduling of dependent instructions due to mis-speculations---is essential for

high peiformance when the RUU size is small.
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Figure 12 1PC improvement Over Always-hit for Different RUU Sizes

Second, immediately prefetching the data when the BF identifies a miss

improves IPCs by an additional 2-3%.
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Figure 13 IPC improvement Over Always-hit for Different RUU Size

Third, the IPC improvement for Always-hit drops faster with increasing

RUU size than the other two methods. And the performance gap between Partial-

16x and Always-hit widens with bigger RUUs. To better illustrate this behavior,

Figure 13 plots the IPC improvement of Partial-16x-DP and Partial-16x over

Always-hit. In addition to the default Gshare predictor, the figure plots the

performance of the two methods using a perfect branch predictor (labeled with

perfectllR in the legend of the figure). The results clearly show that the IPC

improvement over Always-hit increases for bigger RUUs. Our simulation results

show that with a small RUTJ, Partial-16x and Always-hit have similar RUT]

occupancies even though Always-hit produces more mispredictions. With a larger
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RUU, Partial-16x produces fewer RUU-full stalls than Always-hit. Effectively,

Partial-16x has a larger instruction window in which to find instruction level

parallelism.

Lastly, in Figure 13, the IPC improvement of Partial-16x grows faster with

increasing RUTJ size for the perfect branch predictor than for the default Gshare

predictor. With a perfect branch predictor, the performance bottleneck due to

branch mispredictions is eliminated, and instruction scheduling becomes more

important. In addition, RUU occupancy is very high, since there are never any

branch mispredictions that flush the RUU. A critical scheduling resource---RUU

entries---becomes incredibly

scarce. Partial-16x makes better use of this critical resource than Always-hit, as it

cancels and reschedules fewer instructions. For a 128 entry RUTJ and a perfect

branch predictor, the proposed partial-address BF improves IPC by more than 9%

over the Always-hit method. Note that as branch prediction technology improves,

the performance characteristics of real processors approach the performance

characteristics of processors with perfect branch predictors.



4.1 DESIGN OF DIYFO PROCESSOR

Ditto Processor differs from previous approaches in that it splits long

latency operations and short latency operations into different verification path.

After the instructions are decoded, long latency instructions are identified and

speculatively executed twice. Results of these long latency instructions are

compared but they are not committed. All non-speculative instructions including

those non-speculative long latency instructions are cloned before retirement. These

duplicated instructions are held in a buffer and send back to the beginning of the

pipeline. Since the result of long latency instructions are executed twice and

checked, the clones of these instructions would not pass execution stage again after

renaming operation are verified.

For the clones of short latency operations, once they completed the re-

execution, results are compared with the results of original instructions. Any

transient fault can potentially be discovered when the result of the re-execution

differs from that of the original execution and simple recovery scheme is used. If

faults occurs at the decode stage, results will differ also and be detected.

Prior to our main study, we observe, in an average, only 12% of the

resources are utilized for integer and floating-point applications on a baseline 8-

issue superscalar processor. This means that there are plenty of opportunities to

take advantage of these unused resources to hide the overhead of program re-

execution, verification and transient fault recovery. However execution in a

superscalar tends to be busty at times. Without careful organization, time-

redundancy through cloning still degrades its performance.
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In the following sections we will describe in more details the design of

Ditto processor. After reading through the design details, interested reader may find

an example of pipeline flow for a small piece of sample code in the appendix.

4.1.1 What Hardware is added to support fault tolerant mechanism

Figure 14 illustrates the basic microarchitecture diagram of Ditto processor.

It has two additional blocks - a "delay buffer" and a "verify logic". Several existing

blocks in a superscalar processor also need to be modified. These include the re-

order buffer (ROB), the commit logic, the fetch unit and the decode unit. We

describe the changes needed for each of these blocks.

Delay Buffer: Instructions are executed normally the first time. Results of

committed instructions are queued in the delay buffer similar to other schemes

[41][42][48]. However, each entry not only stores the result but also includes the

associated instruction code and its instruction address. For long latency operations,

we also allocate the immediate entry that follows to store source operands' values.

We called these instructions stored in the delay buffer cloned instructions. These

cloned instructions are removed from the delay buffer when they are scheduled and

passed the registered read stage.

Fetch and decode units: Since the gap between processor cycle time and

memory access time will likely grow wider each year, most likely fetch and decode

units are not the bottleneck. We choose to split the fetch and decode units into two

equal parts. Half of the fetch and decode unit is reserved for cloned instructions

stream. In order to simplify the maintenance of normal instructions and cloned

instructions stream, an extra program counter is added for the cloned instructions

stream.
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Figure 14 Basic Architecture of Ditto Processor

Li Data Cache

Verify
logic

Reorder Buffer: We also found that the average reorder buffer (ROB)

occupancy in the baseline non-fault-tolerant system with 128-entries ROB is about

50% for integer benchmark and 90% for floating point benchmark. By allocating
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the redundant part of ROB to cloned instructions stream, we may reduce the

performance degradation without extra hardware overhead. After the cloned

instructions are decoded, they are placed at the lower part of ROB (LP-ROB) as

illustrated in Figure 1. Results of normal instructions are copied from the delay

buffer to the result field of LP-ROB. Error Correction Code (ECC) checking

mechanism protects this copy operation. In order to differentiate long latency

instruction and short latency instruction, extra bit is added to each ROB entry. We

will describe how to handle cloned instructions stream renaming in section 4.1.3.

Furthermore, the size of LP-ROB should be small enough to minimize the effect of

normal instructions streams throughput. Our study reveals that long latency

operations would have severe impact on LP-ROB pressure and degrade the

performance accordingly. Hence, we suggest that short and long latency

instructions should go through different verification path.

Status bit to handle duplicate execution: Since all long latency instructions

are executed twice including those that are speculative, we adopt the idea from[38]

to handle these duplicate computations. This approach requires the fewest

hardware overhead. An extra status bit is added to each of the ROB entries

indicating the long latency operation is ready to be executed the second time. Since

memory reference micro-ops belong to long latency operations, this extra status bit

is also appended to entries of the load store queue (LSQ). Furthermore, the verify

bit is used to confirm that the computation of duplicated long latency operations

were completed and verified. After these results are confirmed, results from

duplicated copies are discarded. Since results from the original instruction and the

duplicate copy may be ready at different cycles, we also need to address the

scheduling of their dependent instructions. We schedule dependent instructions

according to the data ready time of the original copy, since faults are not as

frequent This cause no further complication because a mismatch of results will

bring back execution prior to the faulty instruction.



Verify logic: Once these cloned instructions complete their execution,

cloned instructions' results are compared to the original instructions' results saved

in the result field of ROB. Verify logic, next to the write-back stage, is used to

handle this error detection and recovery. We will present this mechanism in the

following section.

4.1.2 Error detection and Fault recovery mechanism

Ditto Processor employs two checking mechanisms to detect potential

transient faults. The first mechanism is placed after the register-read stage. After a

cloned instruction's source operands are ready, we compare the decoded instruction

with the correspond entry in the delay buffer. It detects two places where transient

faults may occur.

1. If this re-fetched instruction does not match the correspond entry in delay

buffer, it indicates the occurrences of a transient error in the fetch unit or in the

decoder. For conditional and unconditional jump instructions, the decoded target

address is also verified.

2. For long latency operations if clones source operands values does not

match the correspond values in the delay buffer, it indicates the occurrences of a

transient error in renaming logic.

This mechanism allows us to detect faults occurs at earlier stages of the

pipeline. The verification process is overlapped with the execution stage and poses

no extra delay.
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Figure 15 Instruction renaming example

The second checking mechanism occurs when the cloned instructions

complete their computation. Results of cloned instructions are compared to the

original results stored in the result field of ROB entries. If the results are the same,

cloned instructions are removed from reorder buffer. If results do not match, then

we have detected a transient fault in functional units. Since long latency

instructions already verified computation results while in normal instructions

stream, these instructions would not go though this second mechanism.

In both mechanisms, we recover the system back to the known correct state

similar to branch mis-prediction recovery. Hence, there is no other extra hardware

needed beside what we have mentioned to handle this error recovery on register file

rollback. We will present this rollback mechanism in the following section. Since,

in this study, we assume the mean time between faults (MTBF) is about 10 million

cycles, after several cycles of error recovery, the second try1 should have a valid

result and program may continue to execute.

The second try means the instructions will be fetch, decode and execute twice as mentioned and
the result will be verify again.



4.1.3 Cloned instruction renaming and register file rollback mechanism

Since the decoder of normal instructions stream and cloned instructions

stream come from different paths, the renamer should not mix these two streams

together. Figure 15 shows a snapshot of the ROB during execution. Ditto

processor's ROB is divided into two regions the normal ROB entries region and

the LP-ROB entries region. The LP-ROB maintains the program order of cloned

instructions stream while the rest of the ROB is used for normal instructions

stream.

We present an example to describe how Ditto Processor handles

instructions renaming. Let's assume the LP-ROB starts with entryj. Since "multiu"

is at the head of LP-ROB, all previous cloned instructions have been verified. The

source operand (r2) of "multiu" is mapped to architecture register file, so is the

source operand (r4) of "sub" and (r2) of "addu". The source operand "ri" of

instruction "sub" is depending on the previous result of entry j. Since the previous

result has been copied from delay buffer to entry j as described in section 3.1, the

source operand (ri) of "sub" may use this value and schedule immediately after

renaming. This is true for instructions "1w" and "addu" also. This scenario contains

no data hazard and allows cloned instructions to fly through pipeline stages faster

then normal instructions. It also reduces possible performance loss due to re-

execution come with the time-redundant technique.

For long latency operations, if transient error occurs in this renaming

operation, the verify logic will detect the source operands' values are different from

values produced by the original instruction and will signal the recovery mechanism.

For short latency operations, the verify logic would detect this renaming error if the

clone's computation result is different from the original result since clone

instruction stream and normal instruction stream handle renaming operation

independently.
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In a redundant processor using simultaneous multithreading technique such

as AR-SMT, each thread must maintain its own register status and values by

register map [22], it requires some additional hardware when compared with Ditto

Processor. In Ditto Processor we only need to augment the state bits in architecture

register file. Whenever a normal instruction is ready to commit, it writes the result

to register file and transits the status bits from "invalid" to "transient". Once the

cloned instruction is verified, the status is changed from "transient" to "verified".

This approach requires only one extra bit added to each register. From the re-namer

and scheduler's point of view, they treat "transient" and "verified" value in the

same way as data ready. If a transient error is detected, all "transient" values are

flushed from the architecture register file. Moreover, all in-fly instructions are

squashed similar to miss-branch prediction recovery.

4.1.4 What types of operation are protected?

In the Ditto Processor design, we cover every type of instructions for

possible transient error. However, we do assume that there is no self-modifying

instruction in our system.

Short latency Arithmetic/logic instructions: After these instructions are ready to

retire, they store the result and other information to the delay buffer and ROB entry

is free for other normal instructions. The cloned instruction is then fetched,

decodedlrenamed, scheduled and executed. After the result is verified, the LP-ROB

is free for other cloned instructions. Since we assume the Branch Prediction Unit is

protected by the ECC mechanism, our scheme may verify the correctness of

decoded target address and the outcome of branch.

Multiply/Division instructions: Since these instructions have long execution

latency, they are duplicated after decode and speculatively execute twice and result

are compared and verified. Result of these instructions and other information are
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stored in delay buffer for verification later. These instructions are also cloned and

re-fetched. However, after it is decoded/renamed, scheduled and read from register,

they would not go through computation again. As mentioned before they are

checked by the first checking mechanism. After passing the first checking

mechanism, these instructions are free from LP-ROB.

LOAD/STORE type instructions: After this type instruction was decoded, it

generated two micro-ops: one for data address calculation and the other one for

memory reference. Since memory micro-op belongs to long latency operation, it

would access cache memory twice based on the normal instruction's calculated data

address. When this type instruction is ready to commit, it would store the result and

other information into delay buffer. After the clone instruction is decoded, it would

discard the memory micro-op since we only need to verify the correctness of data

address.

4.1.5 What are protected units?

From Figure 14 we see that processor core is inside the shaded area. In

other words, we assume any units outside of this area are protected by ECC logic.

Furthermore, any wires and control signals that communicate between processor

core and other units, such as data cache or ROB, are also protected by other fault-

tolerant techniques [1O][11] [21][22][23][24][31]. Whenever a system interrupt or

exception occurs, protection logic will guard the transient fault to make sure these

requested are being served correctly. Since the correctness of commit logic is

imperatively important on placing the result into delay buffer and this logic is very

small, we duplicated the commit logic to enforce its correctness.
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4.2 SIMULATION CONFIGURATION

We modified the SimpleScalar simulator[51] in order to evaluate the

performance degradation of different redundant schemes when transient faults are

present. We randomly generate faults with MTTF of 10 millions cycles. When each

fault occurs, it could occur at any point of the pipeline. In our study we randomly

assign the fault to a particular pipeline stage. 14 SPEC2000 benchmarks (8

integers, 6 floating points) [52] are used for our simulation study. All benchmarks

are executed for 500 million committed instructions after skipping the first 500

million instructions.

4.2.1 Baseline Model

In our baseline model, we extend the existing SimpleScalar pipeline model

into seven stages: fetch, decode/rename, schedule, register read, execution,

writeback and commit. Each stage takes one cycle. In order to eliminate the effect

of data speculation, we schedule the dependent instruction at the data ready cycles.

For example, in a cache-hit case, load operation takes 3 cycles to access data (2

cycles to access the tag array to determine hit/miss and 1 cycle to access data

array). The load dependent instructions will be scheduled 2 cycles later after data

effective address is calculated. Table 4 shows the overall baseline system

parameters.



Fetch, decode, issue, commit width 8

Branch Predictor

Branch Target Buffer

Gshare, 64-entry, 8 way,

8k-entry, 8 way

ROB / LSQ size 128/128 entries

Li lID cache 16KB/16KB

4-way, 32B line size

Li lID cache hit latency 1/3 cycles

L2 cache 1MB size

8-way, 32B line size

L2 / Memory latency 10/100 cycles

# of pipelined integer

ALUIMULTIDIV

4/1/1

Integer ALU/MULTIDIV latency 1/3/20

# of pipelined floating point

AdderIMULTIDIV

4/1/i

Floating point Adder/MUtT/DIV latency 2/4/24

Read/Write port 4

Table 4 Baseline model system parameters

4.2.2 Different Simulation Machine Model

In this study, we compare five different machine models. The baseline

model (Base) is described in section 4.2.1 In order to compare Ditto Processor with

AR-SMT [41], we adapt AR-SMT into superscalar model, named AR model. There

are two differences between AR-SMT and AR model. First, R-stream in AR model

does not perform memory reference micro-ops because this operation would

require operation system to be aware of A-stream and R-stream. Second, AR model
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does not contain trace cache. We further define that 30% of ROB entry allocated to

R-strearn would be AR-30 model (96 entries for A-stream and 32 entries for R-

stream). Similarly, R-stream of AR-lO model would utilize 10% of ROB entry

(Similarly, 112 and 16 entries).

In our experiment, Ditto Processor model's (Ditto) cloned instructions

utilize 10% of ROB (16 entries for LP-ROB). Our study reveals that this allocation

strategy would have the least performance effect on normal instructions stream.

Both AR and Ditto model use 128-entry delay buffer to store the committed

instructions.

We also model the 2-way redundant scheme (Dual) by Ray et. al. [39]. The

Dual model has the same system parameters as our Baseline. There are two

differences between Ray's original architecture and ours Dual model. First of all,

the original design has 64KB I-cache, 32KB D-cache, 512KB L2 cache and 2

readlwrite ports while our memory subsystem modeling is slighted different and

summarized in Table 1. Second, ours model has longer pipeline stages. Despite

these differences, our dual model matches their result closely.

Out-of-order Reliable Superscalar (O3rs) [38] is also implemented in this

study for comparison. System parameters of O3rs are the same as the Baseline

model. The O3rs model should have the best result in terms of Instructions Per

Cycle (IPC) degradation, since it only verifies the functional units and it does not

take away ROB entries from normal instructions like other schemes for re-

computation.

4.2.3 Fault Injection Mechanism

In our study, we inject faults randomly at different stages every 10 million

cycles for all different schemes described above. In other words, the fault could be

at fetch unit, decoder, scheduler, register read operation, execution, bypass logic or
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4.3.1 Performance degradation

Figure 16 illustrates the percent performance degradation of several time-

redundant fault-tolerant designs. AR-lO has slight performance improvement over

AR-30 in that the former utilizes less LP-ROB. However, for one of the floating-

point benchmark "mgrid", it shows a large difference in performance. Further

study reveals that "mgrid" has over 65% of long latency instructions. As LP-ROB

size reduces, it leaves more space in upper ROB to occupy long latency instructions

and, in turns, reduce the performance loss. The average floating-point benchmark

result also shows the same behavior that AR-lO outperforms AR-30 by about 7%.

Since integer benchmarks have over 70% of short latency operations* and these

operations enter and leave LP-ROB within a very short time, they give AR-b only

slight advantage over AR-30.

In the Dual model, after the instructions are decoded, it created another

copy of all instructions. A duplicated instruction also occupies a ROB entry as

described in [39]. This mechanism reduces the effective size of ROB by half.

Therefore, this scheme suffers severe performance loss in floating-point

benchmarks and "mcf". In these cases, compared to AR-30, Dual model degrades

the performance by about 9% in floating point benchmarks and 3% in "mèf'.. The

O3rs model has the least performance loss among five models because it does not

take away ROB entries for duplicated instructions. O3rs loses 1.7% and 2%

performance for integer and floating-point benchmarks respectively. As mentioned

O3rs does not cover front-end part of the pipeline nor memory instructions. Since

in our Ditto model the cloned long latency instructions do not pass through

execution stage again and reduce the pressure on LP-ROB, this further reduces the

performance loss. Ditto suffers about 1.8-13.3% performance degradation.

We also observe that "ammp" benchmark has very little performance loss,

only about 0.4%, on all models. Further study reveals that "ammp" has very high



58

Li and L2 data cache local miss ratio, about 50% and 90% respectively, most of

the operations are hinder by lengthy memory reference. In this case all our

simulated fault-tolerant models may be able to benefit from normal instructions

stream's low throughput and low functional units utilization.

In summary, AR-30, AR-iO and Dual model has an average of 10%

performance degradation on integer benchmarks. Ditto model outperforms these

three models and reduces the performance loss by 40% to about 6% on integer

benchmarks. For floating-point benchmarks, the performance loss of AR-30, AR-

iO and Dual models are about 19%, i2% and 28%, respectively. Ditto reduces the

degradation by 30% and 70% respectively to 8.6% when it is compared with AR-

10 and Dual models on floating-point benchmarks.

4.3.2 Functional units resource utilization

Since different models have different effects on functional unit's resource

utilization rate, Figure 17 presents each model's utilization ratio in more detail.

Compared to the Base model, all other models have better functional unites

utilization, especially Ditto. Since Ditto model verifies all types of instructions, it

utilizes resource more efficiently. On average, Ditto utilizes integer ALU units

about i5% more than Base model.

Dual model has the similar ratio as Ditto in integer benchmarks, but since it

duplicates all instructions including instructions that are speculative, the

performance loss is higher. For floating-points benchmarks, there are more long

latency instructions putting more pressure on the ROB. This further reduces the

effective instructions windows size. For example, Dual model only uses half of the

ROB to explore instructions level parallelism (ILP). Hence, Dual has the worse

integer ALU utilization rate for floating-point benchmarks. Because both Ditto and





4.3.3 The characteristic of Ditto Processor

Figure 18 depicts the percentage of IPC degradation when we compare the

Ditto to the Base model with different Li cache hit latency. We observe that as Li

cache hit latency increases, the Ditto model gradually reduces the performance loss

on both integer and floating-point benchmarks. One factor that affects the

percentage of performance degradation is the amount of idle time available in the

processor for time redundancy to perform transient fault checking. The basic

motivation for our approach is to utilizing these stalled processor cycles to verify

computation through re-execution. As memory latency increases in terms of cycle

time, we have more stalled cycles in the processor and more resources available.

This gives more opportunity to perform cloned instructions execution and reduce

the effect of performance degradation.

7.5%

5.5%

5.0%

3 4 5

Li Cache hit latency

Figure 18 Effect of Li cache hit latency on Ditto
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CHAPTER 5 LDS PREFETCH MECHANISM

5.1 POINTER ELEMENT PREFETCH UNIT (PEPU)

PEPU is composed of four subunits to perform predicting address and

prefetching data from Level One data cache (Li D-cache). Section 5.1 describes the

definition of pointer load. Section 5.2 explains how Target Register Bitmap (TRB)

can identify pointer load and BS may rollback to normal TRB. Section 5.3 shows

that data saved in Address Cache (AC) are used to predict next pointer element's

location in memory. Section 5.4 describes prefetched data is saved into Prefetch

Cache (PFC).

5.1.1 What is pointer load?

Pointer load is a load that its base address is depended upon the target value

of previous load operation [65]. Such load's address pattern is irregular and no

stride predictor can capture this pattern correctly. In this study, we choose to

classify pointer load into three different types depending upon its producer-

consumer relationship. Since branch and store operation do not update register

value, these two types instructions would not involve pointer-consumer

relationship.

a. Address load: If both of a load's producer and consumer are load

operations, this load is called Address load.

b. Data load: If the producer of this data load is also a load operation, its

consumer could be any operation except load operation.
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c. Data-Address load: Similar to data load, if this load's producer is load

operations, Its consumers are both load operation and non-load operation.

Figure 19 is a loop-unfold example extracted from "tsp" benchmark. Figure

19(a) shows that instruction 1 and 7 are Address loads and instructions 3

and 9 are Data loads. Figure 19(b) presents that instruction 2 is Data-

Address loads since its consumers are instruction 4 and 5.

(a) Example of A

1: Loop:lw
2: be
3: 1w

4: addi
5: Sw
6: jmp
7:Loop:lw

8: be
9: 1w

10: addi
11: sw

idress load and Data load
r4, 4(r4)
r4, rO, [Exit]
r3, 8(r4)
r3, r3, 4
r3, 8(r4)
Loop
r4, 4(r4)
r4, rO, [Exit]
r3, 8(r4)
r3, r3, 4
r3, 8(r4)

(b) Example of Data-Address load
1:1w r28,0x34

2:1w r2, -32304(r28)
3:be r2, rO, [Exit]
4:1w r3, 0(r2)
5:addi r2, r2, 4
6:srl r5, r3, 1
7:sw r2, -32304(r28)

Figure 19 Pointer load example from "tsp" olden benchmark

Figure 20 illustrate that, from 15 benchmarks simulation result, 18%-79%

of committed loads are Pointer loads and different benchmark has difference

distributions of Address loads, Data loads and Data-Address loads. Within these

benchmarks, over 60% of the Pointer loads are from Data loads and Data-Address

loads. Except for "voronoi", its Address loads are 57% of Pointer loads. These data

indicate that most of the target value of Pointer loads not only used to reference the

next pointer element but also been a input value to many arithmetic operations.

Especially, "health", "mst" and "perimeter" have less than 1% of Address loads.

"tsp" result shows that over 80% of Pointer loads are Data-Address loads since

most of the Pointer loads in "tsp" are similar to the example given in Figure 19(b).



5.1.2 Identify Pointer load

In general, a program dependency is established after decode stage. This

includes renaming the source operations' registers id to the producer's target

register id. It means that no matter if a load's base address is ready, its producer is

known after decode stage. Based on this knowledge, we proposed an n-bit bitmap,

named Target Register Bitmap (TRB), to keep track of the target prior-renamed

register id. The n is equal to the total number of architecture integer register file in

the system. As shown in Figure 22, the TRB works as follows:

1. Every load operation set the TRB indexed by its target prior-renamed

register id.

2. Every Register-written operation reset the TRB indexed by its target prior-

renamed register id. Since branch and store operation have no effect on

register value, these two types instructions would not update TRB.

3. Since move operation perform data migration from one register to another

register, whether the bit of source register id of the move operation in TRB

is set or reset, this bit value would copy to the bit of destination register id

in TRB. For example, if a instruction, MOVE Ri, R4, is decoded, TRB also

perform TRB[4]-> TRB[3] operation. The existent schemes recognize

register-moving operations is normal ALU types operations. From our

study, this register-moving operation plays an important role in tree data

structure, especially multi-way tree, since different child nodes may move

back to the same parent nodes. In other words, register-moving operation

would link the parent-child node together.

4. Whenever a load is decoded, its prior-renamed source register id is indexed

to TRB. If the indexed value is "1", it is Pointer loads.
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Figure 23 follows the previous example in Figure 19(a). Here assume that

before the first instruction is decoded, the value of TRB[4] is set to "1". As the

first instruction is decoded, this load operation would be identified as Pointer loads.

It implied that each ROB entry would maintain a bit to represent it. As instruction 3

is decoded, it would set the TRB[3] to "1" and reset to "0" after instruction 4 is

decoded.

Since miss branch prediction would erroneously setirest the TRB and affect

the accurate identification of Pointer load, Figure 22(b) shows that for each

decoded branch, it would push the TRB into a stack, named Bitmap Stack (BS).

After the direction of branch is determined, it would pop out the bitmap from the

stack. If the branch is miss-predicted, the popped value would update TRB to

rollback to the correct status of TRB prior this branch instruction. This stack may

be placed at Branch Prediction Unit to associate the bitmap with each on-the-fly

branch instructions. For our study, the BS size of half of Reorder Buffer (ROB) is

enough to keep all on-the-fly branch instruction's bitmap. If the ROB has 128



entries, total entries of BS would be 64 with 4Byte each entry (assume the system

has 32 integer registers file). The size of BS would be 256Bytes in above example.

After TRB identify a Pointer load, this load would update the Address

Cache (described in section 5.1.3). The later load may use this AC information to

prefetch data into Prefetch Cache (PFC). The main proposed of this Pointer Load

identification will be given at section 5.1.3.

(a) Pointer load classification

If [TRB identify a Pointer Load]
then ROB.pload = 1;
if [ consumer of this Load is arithmetic operation]
then ROB.dload = 1; # set data load field
if [ consumer of this Load is load operation]
then ROB.aload 1; # set address load field

(b) Pointer load truth table

pload dload aload Pointer load types

0 X X Not Pointer load

1 1 0 Data load

1 0 1 Address load

1 1 1 Data-Address load

X: means don't care

Figure 21 Pointer load definition

The Reorder Buffer (ROB) is added three bits information to differentiate

the Pointer Loads type. Figure 2 1(a) illustrates each bit's definition and Figure

2 1(b) pointer out the truth table of identifying different types of Pointer load.



5.1.3 Predict Pointer load base address

Even though for each pointer element's location is not known until its

previous element is known, most of the time these element's location are fixed

during run-time.

(a) Target Register Bitmap

Load's source
register Id index

theTRBto
determine

whether it is
pointer load

Load's target
register Id set the

value "1"

Register-written's
target resiger Id

reset the value "0"

(b) Conditional branch instruction's associate TRB

If [decoded a conditional branch operationi
then PUSH(current TRB value)

end if

TOP

Bottom

While [ result of conditional branch
operation is ready

Then POP(ternpTRB)
if [m iss-branch prediction]

then 1DB tern pTDB
I" else : discard tern pTDB /

end if

end While

Figure 22 Target Register Bitmap
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We proposed to save these locations into an Address Cache. Whenever a

producer Pointer load's virtual address is known, not only does this load begin

fetch target value from L1-D cache but this address is also indexed to AC to search

for the next possible element's location. After the target value of Pointer load is

ready, the value in AC, indexed by virtual address, is updated as well. Since Data

load's target value would not be a valid address value, only Address load and Data-

Address load may update AC. AC has to be small as to meet the one cycle hit

latency. Therefore, AC may be direct-map or 2-way associative cache design to

minimize the access latency. The line size of AC is 4Bytes line size in 32-bits

addressing system or 8Bytes in 64-bits.

Not only did the Address load and Data-Address load would update AC but

also store operation may do it as well. For instance, in Figure 19(b), the next

iteration of instruction 2 and current iteration of instruction 7 cause the memory

dependency case. This is not detectable by TRB. Therefore, in such situation, once

the store's virtual address is computed, it would lock the entry in AC (an lock bit is

added into each address line) until the store data is ready. If the following load

would index to the locked entry in AC, it would cancel the prediction.

The idea of AC is similar to context-based predictor [68] since it records the

history of loads' past addresses. The two differences between them are:

1 .The former only record the identified Pointer load's target value without

pollute the AC and the rear predictor attempted to record all the loads'

past addresses. Therefore, context-based predictor need large table to

maintain reasonable accurate address prediction ratio.

2.Since context-based predictor use base address to update address buffer,

in the multi-way tree application, 4-way or larger associative cache

structure would be needed to record all possible locations of child nodes.

An extra way-predictor is also necessary to predict the possible child that

have the same base address value. AC avoid these extra hardware by using

virtual address as index value to correctly reference the possible child.



TRB[3] TRB[4]

1:Loop:Iw r4,O(r4) 0 1

2: be r4, rO, [exit] 0 1

3: 1w r3, 8(r4) 1 1

4: addi r3, r3, 4 0 1

5: Sw r3, 8(r4) 0 1

6: jmp Loop 0 1

7: Loop: 1w r4, 0(r4) 0 1

8: be r4, rO, [exit] 0 1

9: 1w r3, 8(r4) 1 1

10: addi r3,r3,4 0 1

11: Sw r3,.8(r4) 0 1

Figure 23 TRB example

Figure 24 illustrates a sample tree data structure. Here we assume the

context of AC is valid before Figure 24(d)'s code is decoded. Figure 24(e) shows

that as the instruction 5's base address is ready, this value is index to context-based

predictor. If way-predictor made the wrong prediction about which child to

reference next, the context-based predictor may prefetch down to the wrong path of

a tree. Since the penalty of wrong-path prediction may be high, especially for the

tight loop application, many schemes [65J[68] limits the maximum level of

prefetching to reduce the penalty caused by wrong path prediction. Figure 24

Address Cache example(f) demonstrates that even though our scheme take extra

cycles waiting for instruction 5's virtual address computation, this address may

accurately predict the child path and eliminate the wrong-path penalty. One thing

need to remember is that the output of AC will not be used to speculatively index

the next possible address. From past study [65] and our experiment revel that



conservative fetching next element only for every address prediction in a LDS is

fair enough.

5.1.4 Data Prefetch

Because of the natural of LDS's irregular address pattern, two

characteristics of cache: spatial locality and temporal locality, may collapse.

Increasing the cache size does not a good solution in this pointer-chasing problem

any more.

(a) The sample binary tree structure

Addr=Ox1OO

'\sfset=8

Add r=0x200 Add r=0x300

Offset=8

Addr=0x400

(C) The Assembly code
Loop: 1w r3, 0(r4)

be r3, rO, Exit
sub riO, r3, r9 # r9=threshold
bne riO, rO, Right
1w r4, 4(r4) #go to left node
jmp Loop

Right: 1w r4, 8(r4) #go to right node
jmp Loop

(e) The Context-based predictor

index

100 200 300

200 400 500

(b) The C-program code

While(src) {
if(src->data != threshold)

src = src->right;
else

src = src->Ieft;

(d) The fetched program sequence
1. Loop: 1w r3, 0(r4) # Data load
2. be r3, rO, Exit
3. sub riO, r3, r9
4. bne riO, rO, Right
5. 1w r4, 4(r4) #Address load
6. jmp Loop
7. Loop: 1w r3, O(r4) #Data load
8. be r3, rO, Exit
9. sub riO, r3, r9
10. bne riO, rO, Right
ii. Right: 1w r4, 8(r4) #Address load
12. jmp Loop
13. Loop: 1w r3, 0(r4) #Data load
14. be r3, rO, Exit

(f) Address Cache
(direct-map in this example)

index

104 200

108 300

208 400

Figure 24 Address Cache example
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We verify this scenario by simulating the different L1-D cache sizes range

from 16K to 1M on 8-way RISC-like architecture. Here we assume L1-D cache

takes three cycles hit latency. 4MB unified L2 cache has ten cycles hit latency.

Only "health" benchmark may begin to takes advantage of the large cache size

when the size is larger than 128KB. "parser" benchmark has steady improvement

as the size increase, from 2.1% to 5%. The extra dark-bold-thick line with triangle

mark in Figure 25 is the average improvement over 16K L1-D cache IPC in 15

benchmarks. The average results shows that, with larger cache size from 32K to

128K, the IPC improvement is from 0.35% to 0.85%. When L1-D cache swell to 1

MB with fixed three cycles hit latency, the improvement is merely 2.3%. This

simulation result concludes that cache size is not always the panacea to gain

performance.
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_12%

10%
a)
>
0 aol
I_ ijiO

4%
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0%

T ----gcc
a--- mcf parser
i--perI -.--twolf

vortex bisort
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treeadd tsp
voronoi average

-

----.-
--

I

32k 64k 128k 1M

Cache Size

Figure 25 Different cache sizes IPC improvement over 16K L1-D cache size
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From above simulation study, we proposed to choose the smaller L1-D

cache size with added Prefetch Cache (PFC) and AC. For instance, if a base system

has 16KB L1-D cache size with three cycles hit latency, our mechanism would

have 8KB L1-D cache size with three cycles latency, 1KB-2KB PFC size and

64B-1KB AC size. Both PFC and AC has one cycles hit latency since they are

much smaller than L1-D cache. Section 5 would present that even though our

mechanism have about 10.5KB size (16KB L1-D cache, 1KB PFC, 1KB AC,

4Bytes TRB and 256Bytes BS), it performs better than 16KB L1-D cache system.

Since section 3.3 details the implementation of AC, PFC design is given here. The

PFC may either direct-map or fully-associative cache but the design configuration

must be the one cycle hit latency to match the speed of processor core.

The PFC methodology is as following: whenever AC generate a predicted

address or the base address is already in register after a load operation is decoded

(detail in section 4.1), the data is prefetched from L1-D cache to PFC. If cache miss

in L1-D cache, this prefetch request would go through L2 cache or main memory

when memory port is idle. This request would not update the content of L1-D cache

but fill the PFC when the data is return from lower-level memory hierarchy. After a

load is decoded, it would fly though renamed, schedule, register read and address

generation stage. If no memory dependency exist, the read request would send to

cache memory and PFC at the same time. If PFC hit, the request to L1-D cache will

be ignore/ cancelled. Since L1-D cache and PFC are separate physical memory

structure, a store operation not only update Ll-D cache but also, if this write

request hit PFC, it would also update PFC's content as well to maintain the cache

coherence in uni-processor system.
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Figure 26 Flow Chart of Pointer Element Prefetch Unit
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5.2 FLOW CHART OF POINTER ELEMENT PREFETCH UNIT (PEPU)

In this section, we present how PEPU manage to perform data prediction

and prefetching. After a load instruction is decoded, if its source value is already in

register, there is no need to predict its base address. In section 5.2.1, we describe

while the base address of a load is ready, how PEPU handle address prediction and

prefetching. In section 5.2.2, for those loads that its producer is still in transit state,

we demonstrate how those loads use predicted data to perform data prefetching.

Section 5.2.3 provides an example.

5.2.lWhen a load's base address is ready after decode stage

Our mechanism different from other proposed early prediction scheme

{68][69] is that we does not use PC to index the prediction table at front-end

pipeline and predict the load's base address before it was known. First of all, it

would require extra hardware to pre-decode the instruction after it was fetched into

Fetch Queue and pre-compute the address. Second, the prefetched data may early

trigger load's dependent instructions. When the address of this data is miss-

predicted, the hardware rollback mechanism need to enforce to rewind back to the

point prior error occur. However, this error window may be variable cycles and

make rollback scheme difficult to implement[80]. In order to reduce the system

design complexity, we choose to perform our prediction between front-end and

back-end pipeline stage.

In Figure 26, the left part of dash line is the source-ready load instruction

flow chart. After a Pointer load is decoded, the renamer would map the

programmer-visible register number to internal register number to eliminate write-

after-write and write-after-read dependency. At the same time, since data is ready at
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register file, the load operation may read the register at Ti cycle and compute

address at T2 cycles. As described in section 5.i.2, the Pointer load is identified

after decode stage. At T3 cycles, if no memory dependency exists, the data may

prefetch from L1-D cache into PFC. If it is Pointer load, it would index the AC at

the same cycle. At T4 cycles, the output of AC would propagate to the load's

dependent instructions, which are also load instructions. One thing need to address

here is that, at T3 cycles, we call the data is "prefetched" because in the regular

pipeline architecture, a load operations would fly through renamed, register read

and then address computation. This left part of instruction flow may potentially

reduces two cycles of load execution latency: first, the rename and register read

action are overlap at the same cycle4; second, the schedule/issue stage is removed

since an simple adder is dedicate to PEPU for generating address5.

5.2.2When a load's base address is NOT ready after decode stage

Most of the time, after a load is decoded, its producer operation is still in

transit. This is very common in LDS application since many iterations of loads may

be fetched and decoded and waiting the destination value of producer load

instruction return from cache memory. The right part of dash line in Figure 26

illustrates that if a pending load's source register value is forwarded from producer

load, it would jump to the left part of the PEPU flow as described in section 5.2.1.

If the pending load does not receive the forwarding data from producer load but

from the output of AC, it would speculatively compute the virtual address at T5 and

prefetch data form L1-D cache into PFC at T6 cycles.

"It assumes that no structure hazard in register file
It assumes that only one source-ready load generate address at each cycle. However, there could

be many source-ready loads ready to generate address in a cycle. The left part of flow may only
save at most one cycles in such case.
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5.2.3 A Linked-List Data Structure example

This example is from Figure 26(a). Here we assume this particular

architecture is 4-wide issues superscalar processor with unlimited hardware

resource and all the load operation would hit the L1-D cache with 3 cycles latency.

Table 5 shows the normal pipeline execution. Without PEPU, even though the

second iteration of instruction 7 is decoded at cycle 3, it will not begin execution

until cycle 9. These two iterations of a loop take 27 cycles to complete.

IluuuuuuuIuIJjJIuuIflhIk_IjIIIIIIIIUIIIIlJjJIIUI__.UIUhIIIIIlUIIIIIIIIIlIfl
_IoIuIuIIIuIuIUIJjJIlIIIIfl

uIuuuuuuIIuuIIIIuIJjJIulI.-IuuJuuuuu.uuuuuIflhuuIJjI'-1IUUUIIUUIIIIIIIIIIIIIIIU
Table S Normal pipeline execution6

6 D: decode stage, N: rename stage, S: schedule stage, R: register read stage, E: execute stage
A: address generation stage, W: writeback stage, C: commit stage, #1-3: L1-D cache hit latency
Ti: read register in PEPU, T2: generate address in PEPU, 13: index AC! prefetch in PEPU,
T4: propagate AC value in PEPU, T5: generate address in PEPU, T6: prefetch data in PEPU
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Assume that AC contain the valid address of these two iterations, Table 6

demonstrate the advantage of using PEPU. After instruction 1 is decoded, the load

will go though the left part of PEPU flow shown in Figure 26. The instruction 3

may begin executing at cycle 7, which is 2 cycles less than Table 5. At cycles 5, the

instruction 1 propagates the AC result to dependent instruction and instruction 3

and 7 may use this predicted address to prefetch data. Therefore, instruction 7 has

the data ready at cycle 11, which is 4 cycles less than Table 5's result. Compared to

Table 5 result, with PEPU, these two iterations take less cycle time to retire.

1 2 3 4 5 6 7 8 9101112131415161718192021222324252627

1.Loop:lw r4,4(r4) D N T2#1 #2 #3 W C

11 I'314

2. be r4,rO, lExit] D N S R E W C

3. Lw r3, 8(r4) D N 1112 3W C

T5 f6#2 #3

4. addi r3, r3,4 D N S R E W C

5. sw r3,8(r4) D N S R A C

6. jmp Loop D C

7.Loop:Iw r4,4(r4) D N ['1 2 F3T4W C

f5 16#2#3

8. be r4,rO, [Exiti D N S R W C

9. 1w r3,8(r4) D N ['1T213 W C

T516#2#3

10. addi r3,r3,4 D N S R E WC

11. sw r3,8(r4) D N S R A C

12. jmp Loop D C

Table 6 PEPU pipeline execution
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5.3 SIMULATION RESULT

In this section, we will compare PEPU with some other proposed schemes

and study the characteristic of our mechanism. Section 5.1 describes the base

system configuration and our simulation environment. Section 5.2 compared the

PEPU with different models. Section 5.3 shows the prediction accuracy of PEPU.

Section 5.4 shows the result of varying the size of PFC. By increase the size of

ROB in section 5.5, we study this effect on PEPU.

5.3.1 Simulation Environment

The architectural simulation used a modified version of the SimpleScalar

toolset [10] to evaluate the performance impact on using PEPU. Seven integer

SPEC 2000 benchmarks [52] and eight Olden benchmark [81] are used to evaluate

the effect. These benchmarks are compiled with level-3 optimization. As shown in

Figure 20, we choose these benchmarks because of higher Pointer load percentage,

18%-79%, than others. For SPEC 2000, after skipping the first 300 million

instructions, statistics for 300 million committed instructions are collected. For

Olden benchmarks, overall program execution's statistics data are collected.

Table 7 lists the base model configuration. It has 16KB L1-D cache and

four integer pipelined ALU units. The PEPU model has 8KB L1-D cache, 1KB AC

and 1KB PFC. These caches have its own two R/W port. This model use three

integer pipelined ALU units and one simple adder for address computation. We

also model the Dependency Based Prefetching scheme (DBP model) [65]and

Direct Load scheme (DL model)[69].

DBP model has 256-entries of PPW and 256-entries of CT. It established

the producer-consumer link at commit stage. The PFC is 1KB size. In this study,



DL model has some different configures from [69]. First of all, sine we focus on

the address prediction accuracy of LDS application, the stride predictor in [69] is

not implemented in DL model. Second, since speculative scheduling dependent

instruction is not the topic of this study, we choose not to include the rollback

mechanism and all instructions are scheduled at data ready cycles. Therefore, not

like [69], the prefetched data will place into PFC but not trigger the dependent

instructions. The DL model has 256-entries of CRT and 256-entry of ULT/RUT.

PEPU model, DBP model and DL model have the same 1KB of PFC and 8KB of

L1-D cache.

Description Configuration

Fetch, Decode, Schedule, Commit Width 8

FetchlDecode/Rename/Schedule/Register/
1/1/1/2/3IFU-latency/1/1

Execute/Writeback/Commit stage latency

Architecture Register File JO port 8 reads! 4 writes

Branch Predictor

Branch Prediction Table

16-bits Gshare

8K-entry, 8 way

ROBILSQ size 128/64

Li lID cache
16KB/16KB, 4-way, 32B

line size

Li I/fl cache hit latency 1/3 cycles

L2 cache 4MB

L2 I memory latency 10/100 cycles

# of pipelined integer ALU/MULT/DIV 4/1/1

Integer ALU/MULTIDIV latency 2/6/40

Floating-point AdderIMULTIDIV latency 4/8/48

Cache Read/Write port 4

Table 7 Base Model configuration
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5.3.2 Instruction Per Cycle (IPC) improvement

Figure 27 illustrates the result of three different models. All three models

are performed better than base model with larger L1-D cache size. It means that all

three models may improve the performance of LDS application. PEPU further

outperform others model by about average 5%. On average, the DL model has less

performance improvement since it required large table7 to gain the 71% prediction

accuracy. It is too costly in hardware implementation and, unlikely, able to access

the table within one cycle latency. We believe the 256-entries of CRT and ULT are

more suitable for this study's comparison. Using this size, DL model have merely

2.45% improvement on average. The DBP model has slightly better improvement,

about 2.67% on average. Since DBP model updates and prefetch the data at commit

stage, in many tight-loop codes, it was not able to return the data in time. While

pipeline stages will be deeper and wider in future architecture, it is conceivable that

the branch predictor will be smarter and lower the chance of polluting the

prediction table. One should focus on designing the fast response prediction table.

In the paper[69], it suggest 4K-entries (6 1KB) of CRT and 4K-entries (24KB) of ULT/RUT.





hinder by sever instruction cache miss, little improvement may be seen at back-end

stages.

There are two more reasons why PEPU outperform others model. First of

all, in our study, we observed that store operations would update the behavior of

Pointer loads. Figure 19(b) shows an exact example of this store-load memory

dependency situation. DBP and DL model only use load operations information to

keep tracking the possible future address. We waive this problem by allowing store

operations update AC as well. Second, PEPU model also recognize the register-

moving operations as a linker between child node and parent node as described in

section 5.1.2. Therefore, we may identify more pointer loads in some applications

and further improve the performance.

5.3.3 Prediction Accuracy

In this section, we present the address prediction accuracy of PEPU. Since

when a Pointer load go through the left part of PEPU flow in Figure 26, the base

address is known. There is no need to predict this load. Only those pending Pointer

load at the right part of PEPU flow will have the predict address from the result of

AC indexed by its producer. Except for "mst" and "tsp", most of the benchmarks

show over 80% of prediction accuracy in Figure 28. We also compare the

prediction accuracy of direct-map AC and 2-way associative AC. It shows similar

result. The average prediction accuracy is from 83% to 87% as AC sizes vary from

l28Bytes to 2Kbyes. The reasons why "mst" and "tsp" have worse prediction

accuracy is caused by higher miss branch prediction ratio and pollute the AC.

Therefore, "tsp" shows that for l28Byes AC the prediction accuracy is about 13%

and 2Kbyes AC is about 34%. Figure 29 provides the prediction accuracy with

perfect branch predictor. With perfect branch predictor, the address prediction

accuracy of "mst" and "tsp" has impressive improvement, about 99%. This result







BF improved by 19% over a machine that delayed the scheduling of the load's

dependents until the load's hitlmiss status was known, and by 6% over a machine

that speculated loads always hit the cache. We have also shown that this

performance improvement grows as the window size and branch prediction

accuracy increase. We expect that our BF technique will have an even greater

performance advantage as pipelines deeper and cache latencies increase.
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Figure 30 The effect of different size of prefetch cache size



CHAPTER 6 SUMMARIES

In the fault-tolerant microarchitecture we have presented the detail design of

a fault tolerant superscalar processor called Ditto Processor. This processor re-

fetches and re-decodes all instructions to protect all pipeline stages' logic from soft

errors to assure high computation confidence. It requires little extra hardware on

top of the baseline superscalar. We explain the additional microarchitecture

resources needed and what units we can protect. We also explain how to handle the

register renaming in Ditto Processor. We further identified that long latency

operations have significant impact on time-redundant fault-tolerant superscalar

processor. We studied the performance degradation of Ditto Processor in

comparison with baseline superscalar and other published schemes. In general,

Ditto Processor suffers only 1.8-13.3% of performance degradation for all

benchmarks.

As Ditto Processor have only 1-6% more performance loss compared to

O3RS scheme, our scheme have much better fault coverage. The degree of

reduction varies with amount of contention on the resources brought about by

duplication. We also observed that as memory latency increases, the performance

degradation on Ditto Processor is reduced. While memory processor performance

gap continues to grow with technology advancement, there will be more stalled

cycles available for time redundancy. Our study reveals that different applications

have different characteristics and have various requirements on hardware resources.

Adopting the time-redundant fault-tolerant technique based on this knowledge

would provide a balance designed fault-tolerant computing environment with less

performance loss.

In the study of pointer-chasing problem, we present a novel hardware-only

data prefetching mechanism to solve pointer-chasing problem. We first classify the

pointer load into three types: Address load, Data-Address load and Data load. Most

of the benchmarks are made of Data-Address load and data load. [n order to



identify the pointer load at run-time execution, we use a small bitmap structure to

recognize the pointer load. As the instructions decoded, we further identify the

types of pointer loads. We also implement a small address cache to profile the

history of address pattern. We believe that once a data structure is established at

program initial time, the address cache also recodes these addresses. After that

initialize time, the program may expend or shrink the data structure. We use store

operation to dynamically track these address changing. The prefetched data are also

placed into a prefetch cache to not pollute the L1-D cache. In order to cooperate

these units together, we define the flow chart of PEPU. The result shows that in an

8-way pipeline system, our scheme may outperform larger L1-D cache system by

average 7% and 83% of address prediction accuracy. As more advance branch

predictor is implemented, our predictor shows potential 100% address prediction

accuracy.
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