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introduced and its impact on the overall performance is described. An analytical model
of the hybrid multithreaded execution is developed and validated by simulation. Through
stochastic simulation, we find that the application of the hybrid multithreaded execution
model results in higher processor utilization than traditional software-controlled
multithreading.

Next, in the main part of this dissertation, a new architecture is proposed: the
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THE DYNAMIC SIMULTANEOUS MULTITHREADED

PROCESSOR

1 INTRODUCTION

Modern, high performance superscalar processors are designed to exploit dynamically
the instruction level parallelism (ILP) available in compiler-generated code. In contrast,

Very Long Instruction Word (VLIW) processors exploit the ILP extracted statically by a
specialized compiler [23,31,58].

In superscalar processors, instructions are fetched in order but may be executed
out of order sequentially or in parallel. However, out of order execution of instructions

must preserve the semantic contents of a program to produce correct results.
Accordingly, internal mechanisms in the architecture force instructions to commit their
values in order to the register file, ensuring at the same time, precise interrupt handling
[57].

Superscalar processors are single-threaded i.e., they can fetch and execute
instructions from a single program or control flow. In these processors, instructions
fetched from a single thread are decoded and their register operands renamed. The
renaming mechanisms eliminate false dependencies among instructions (WAR and
WAW). The residual true dependencies (RAW) represent the data-flow limit in ILP.

After the renaming step, independent instructions are issued for execution and
will eventually commit their results to the register file. In contrast, dependent
instructions are placed in the instruction window. These instructions will remain in the

instruction window until their dependencies are resolved [23,58]. When this occurs,
those instructions are issued for execution and later on, in the final stage of processing,
their results are committed to the register file.
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Branches disrupt the sequential fetching of instructions from memory. The

result of a conditional branch instruction is not known until late in the pipeline, until the
execution stage. For this reason, the fetching mechanism employs branch prediction

methods [59] to avoid unnecessary delays when a branch is found in the instruction
stream. Using branch prediction, the most probable branch direction and target address

are predicted based on the past history of a branch. Predicting the direction of a branch

allows the processor to continue fetching with no interruption when the prediction is
correct. However, when the prediction turns out to be wrong, all instructions fetched
after a branch must be flushed from the pipeline; then, fetching resumes execution in the
correct direction. Instructions located at both the taken and not-taken path following a

branch are called control-flow dependent. Branch misprediction is detrimental to a
processor's performance because clock cycles are consumed processing useless
instructions.

Unfortunately, control-flow and data-flow dependencies occur very often in
programs. Hence, they reduce the amount of ILP that superscalar processors are capable
of exploiting. This limitation in ILP is critical and generates a significant under-
utilization of processor resources that degrades performance. Fortunately, research on
data prediction and control-flow speculation [22, 36 and 40] has found that the
performance limitation on ILP due to data and control-flow dependencies is not absolute.

To overcome superscalar processor limitations in exploiting ILP, researchers have

proposed exploiting Thread Level Parallelism (TLP) [37]. In TLP a sequential stream of
instructions or thread is the basic unit of parallel execution. Maximum performance is

obtained when several threads are executed concurrently either in a single multithreaded
processor or in multiple single-threaded processors.

In multithreaded processors, TLP is used to tolerate long latencies or to
compensate for the lack of ILP in a thread. In the first case, multiple thread execution is

overlapped; the processor executes useful instructions from another thread while the
current thread latency is being fulfilled. In the second case, TLP increases instruction

window size, which compensates for the lack of per thread ILP; therefore, both ILP and
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TLP parallelism can be exploited on architectures with multiple thread processing units

capable of issuing simultaneously instructions from different threads.

To exploit TLP, threads have to be extracted within a program. One way to
extract multiple threads is through static techniques. Static techniques are used in binary

annotators [33,61] or in parallelizing compilers to identify threads [78]. Alternatively, in

other approaches to exploit TLP, an operating system task or program are the threads of
execution [73]. However, static methods have their own particular problems.
Parallelizing compilers become useless if the original source code is unavailable; binary

annotators tend to exploit fine-grain parallelism (e.g., basic blocks and inner loops) but

require in some cases modifications to the instruction set architecture (ISA).

Alternatively to static methods, in dynamic methods, threads are extracted using
run-time thread detection mechanisms. Without compiler or user help, dynamic methods

of thread generation generally employ speculative techniques. Threads in this case, are
created mainly from loop boundaries, subroutines or from exception handling routines [3,
70 and 82].

Dynamic and static methods to generate threads have their own merits. However,
no single method is sufficient to exploit TLP. Next generation processors will have to

harness all forms of parallelism to continue increasing performance.

In addition to generating threads, successful exploitation of dynamic TLP requires

support in the processor for controlling the execution of multiple threads. Also, special
mechanisms are required to resolve inter-thread, register and memory dependencies,
when threads are not completely independent. Lastly, a synchronization mechanism is
required to coordinate the execution of multiple threads.

The degree of support in hardware for multitbreading can vary greatly. For
example, it can be as simple as register windows for supporting multiple hardware
contexts [1] or as complex as in the TERA multiprocessor where each processor supports

up to 128 processor states [4]. In order to support multiple thread execution in hardware,

the state of a thread is stored in its context. A thread context contains the register file and

the program counter associated with a thread.
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Hardware-based models of multithreading have been roughly categorized as:

fine-grain, coarse-grain and simultaneous multithreading. The first two classifications,
fine and coarse grain multithreading, are based on the number of instructions executed by

a processor before switching contexts. The third category, Simultaneous Multithreading
(SMT), is not based on context switching frequency. Instead, multiple threads are
executed simultaneously, thereby keeping all contexts active without switching between
them.

In fine grain multithreading, processors switch contexts every clock cycle and
consequently resources are shared at a fine granularity. However, performance degrades

when there is only a single thread in the system. Additionally, even when multiple
threads are in execution, only a single thread can issue instructions in a single cycle. An
example of a fine grain multithreading system is the TERA multiprocessor [4].

In contrast, coarse grained multithreaded processors switch contexts when a

thread of execution gets blocked. A thread is blocked when long latency operations, such

as cache misses or thread synchronization, occur in the instruction stream. This type of

multithreading achieves high efficiency by overlapping the execution of a new thread
when the current thread of execution is blocked. Given that in this model of
multithreading only one thread is active at a time, instruction issuing is again limited to a
single thread. Hence, when there is not enough ILP to exploit in a thread, processor
resources are underutilized. Examples of this type of architecture are APRIL [1] and
MAJC [65, 67]. This model of multithreading is sometimes called vertical
multithreading.

Vertical multithreaded systems are especially suited for shared memory
multiprocessing systems. In these systems, data may be obtained from either local
memory as in the case of Uniform Memory Access (UMA) machines, or from remote

memory, as in the case of Cache Coherent Non-Uniform Memory Access (CC-NUMA)

machines [28]. A multithreaded processor in these machines hides memory latency by
overlapping the execution of a new thread with access to memory.

The third form of multithreading, Simultaneous multithreading (SMT) has
received considerable attention in recent years [73]. SMT is a tecimique that converts



5

TLP into ILP. Under this vision, SMT accommodates variations in parallelism.
Namely, when a program has a single thread, i.e., lacks TLP, the ILP extracted from a

thread uses all resources available. When more threads exist, TLP can compensate for
the lack of per-thread ILP. SMT, in contrast with coarse grain and fine grain
multithreading, enables multiple threads to issue multiple instructions every clock cycle.
Therefore, when a thread lacks ILP, another thread with enough ILP can compensate for
this deficiency increasing processor utilization through efficient resource sharing. For
this reason, SMT surpasses superscalar processor performance at the cost of extra
complexity required to fetch from multiple threads, control thread execution, and issue
from multiple threads.

To achieve maximum performance, SMT workloads are either multiple
independent programs or a single program that has been parallelized. A thread in the
former case is an entire independent program. In the latter case, a thread is a parallel
fraction of the whole program to which all dependencies have been removed by the
compiler.

The concept of multithreading is important in hardware for improving processor
performance but is also important in the software realm. Software support for
multithreading in uniprocessor machines enables applications to respond and perform
better by interleaving the execution of several tasks. For instance, special threads are
used in applications to manage lengthy 110 or communication requests without blocking
the processor.

Software support for multithreading is generally provided at two levels (herein
referred to as software-controlled multithreading): user and kernel-level threads.

At user-level, multithreading is generally made available to programmers through
language constructs or collections of library functions. These constructions and libraries
supply the methods required to create, execute, synchronize and schedule threads without
OS intervention. The Java language, for instance, includes specific methods to create,
execute and synchronize multiple threads in applets or applications [6].

Alternatively, support for user-level multithreading has been incorporated into
software libraries. An example of this approach is Pthreads, a user-level API employed



to create multithreaded applications. This API is also known as POSIX threads [15].
Pthreads supports a wide variety of programming constructs for multithreading such as:

thread creation and synchronization, mutual exclusion, conditional variables, etc. The

Pthreads library for the C language is available on numerous platforms.

The main advantage of user-level multithreading is efficient context switching as

threads share the same addressing space. However, the disadvantage of this approach is

that the OS is not fully conscious of all user-thread activity. Therefore, the OS will not

be able to detect when a thread is jammed and hence can not kill the thread or signal the
deadlocked condition to the user-level thread manager. Moreover, the OS could
inadvertently degrade application response time by scheduling for execution a task that
contains an idle thread.

Operating systems like Solaris, Linux and Windows provide support for kernel-

level multithreading in which the kernel manages all thread activities. Hence, the OS has

more control over the threads at the expense of higher context switching time. This is

because each thread has its own addressing space and saving and restoring thread state is
expensive.

To obtain the advantages of both approaches, kernel and user-level threads can be

combined in a hybrid software multithreaded system. Using this strategy good
performance and control over the threads is achieved at the same time. In this multiple-

level model of multithreading, several user-level threads are multiplexed to one or more
kernel-threads [5].

Software-controlled multithreading at the user or kernel level improves overall
application response time on single-threaded processors. However, it is when threads are

executed in parallel in either a single multithreaded processor or on multiple single
threaded processors that the advantage of multithreading is most noteworthy. Lastly,

software-controlled multithreading has become a very important program structuring
mechanism for software design. The reason is that many applications are suitable for
design as a collection of small tasks or threads. In this divide and conquer approach to
software design, each task provides one or more services. In comparison, more complex
designs use a single large monolithic task to provide all services. For this reason, and for



its improvement in performance, numerous client, server, and client-server applications

are being designed with multiple threads.

On the hardware facet of multithreading, numerous techniques have been
proposed to incorporate support for multithreading in modem processors. Moreover, the

recently proposed SMT architecture has been incorporated in new commercial processor
designs [62]. The emergence of these multithreaded processors in microprocessor
industry indicates that many of current generation processors will adapt or continue
adapting multithreading as a performance improving methodology.

This dissertation studies diverse techniques to support multithreading in hardware.

In the first part, a simplified model is used to describe how the different layers of support

for multithreading impact processor utilization.

Afterward, in the main contribution of this research, special mechanisms are

proposed to generate speculatively threads from a single program. Subsequently those

threads are executed on a SMT processor core augmented with checking mechanisms that

evaluate the outcome of speculation, squashing those threads whose speculation turned to

be wrong. Unlike other similar architectures, the Dynamic Simultaneous Multithreading

(DSMT) processor proposed in this dissertation uses simple mechanisms to keep track of

inter-thread dependencies in registers and memory. The following section describes
these topics in more detail.

1.1 Scope of the Thesis

New commercial processors like MAJC [65, 67] with multithreading-
multiprocessing capabilities; the PowerPC [10] with support for coarse-grain

multithreading, and the new Xeon processor from thtel [29] which is based on SMT
technology indicate that multithreading is gaining wide acceptance in microprocessor
industry.

In these multitbreaded systems, the scheduling mechanisms involved at software

and hardware levels play an important role in creating high performance systems. The

hybrid multithreaded model discussed in chapter two provides a high-level, general



representation of this type of system. Using a simplified model, the impact of different

thread scheduling techniques on processor's performance is evaluated using stochastic
simulation.

The hybrid multithreaded model studies the problem of distributing efficiently

software threads into hardware contexts which are capable of detecting and tolerating
long latency operations without sacrificing performance. For this reason, it surpasses the

performance of traditional single-threaded architectures. However, this type of latency-

tolerant multithreaded architecture is still limited in performance by the ILP contained
within a single thread. Furthermore, other multithreaded architectures such as SMT also

suffer from the same limitation in ILP when there is a single task in execution. To avoid

this deficiency, a novel architecture, the Dynamic Simultaneous Multithreaded (DSMT)

processor is proposed in this dissertation. This architecture employs diverse speculative

methods to extract dynamically ILP and TLP from sequential programs. Threads are
generated from loop boundaries and later executed on a SMT processor core.

SMT is an architectural approach to processor design, which was originally
proposed to overcome the limitations of single-thread issue architectures. This

technology is very cost effective because it improves processor utilization without adding

significant complexity. SMT technology is an evolutionary approach to current processor
designs since it is based on augmenting a superscalar core with support for the
simultaneous execution of multiple independent threads. The main motivation of SMT is

to share processor resources among threads, improving overall processor utilization.
Moreover, since modern OS workloads are comprised of multiple independent tasks,
these workloads are efficiently executed on SMT. For all these advantages, recent
processor designs [19, 29] have adopted the SMT model of multithreading. However,

one drawback of SMT architectures is that they do nothing to improve performance when

there is only a single program or task available for execution.

SMT and previous research on thread level speculation [37, 41, 44, 64] provide

the framework for the DSMT architecture proposed in this dissertation. DSMT augments

a SMT processor core with dynamic speculative generation and execution of threads.

Therefore, whereas a SMT processor is underutilized when the software system is unable
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of supplying enough independent tasks, a DSMT processor will still be able of
extracting and executing multiple threads dynamically from a single program. Hence,
DSMT architectures can overcome one of the main limitations of SMT.

DSMT employs various forms of speculation to extract dynamically TLP and ILP

from sequential programs. Unlike other similar architectures, DSMT provides good

performance using simple mechanisms to synchronize threads and keep track of inter-
thread dependencies, both in registers and memory. The mechanisms proposed for
DSMT employ the information obtained during the sequential execution of code
segments as a hint to speculate the future behavior of multiple threads. Moreover, DSMT

utilizes a novel greedy approach that chooses those sections of code that are most likely
to provide highest performance based on its past dynamic behavior.

To study dynamic multithreaded architectures such as DSMT, accurate simulation

tools are required. These simulation tools must be capable of reproducing the variety of

dynamic events that cause performance degradation in speculative architectures such as:

intra-thread and inter-thread mispredictions, as well as synchronization, squashing and

invalidation of threads. These events occur very often during the execution of multiple

speculative threads, and therefore, including their detrimental effect on the overall
performance is essential. However, there are only a few simulators publicly available
with the capabilities to emulate the dynamic behavior of high performance processors,

and such simulators in general are difficult to modify. Unfortunately, developing detailed

simulators requires dedicating substantial time during the design, testing and validation

phases. However, in spite of all these facts, simulators are invaluable tools to study and
evaluate new architectures.

For all the reasons previously mentioned, a new execution-driven procedural
simulator called DSMTSim was designed and implemented specifically for this research.

This simulator is capable of reproducing, in detail, mispredictions occurring during the
dynamic speculative execution of threads. For instance, DSMTSim executes
misspeculated intra-thread control paths due to branch mispredictions, recovering the
state of the processor when a branch is mispredicted. Also, it creates and passes register

values on-the fly from producer instructions to the consumers at intra and inter-thread
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levels, squashing those threads that might have used a value too early. Moreover,
mispredicted threads are created, synchronized and flushed by DSMTSim at run-time.

DSMTSim is also capable of simulating either a single-threaded wide-issue
superscalar processor or the multithreaded version of the DSMT architecture. The fast
mode included in DSMTS1m allows skipping non-representative initialization sections in

programs generated by a compiler derived from gcc.

During the development process of the simulation tools, the EMSim simulator was
also created. EMSim is an object-oriented simulator for superscalar architectures, which
can be extended to simulate more complex processors. Unlike other similar simulators,

EMSim provides a modern, modular software architecture that is reusable and easy to
modify. Different aspects related to the development of the simulation platform used in
this research and the techniques used to evaluate DSMT performance are described in
detail in this thesis.

1.2 Organization

This dissertation is organized as follows. Chapter 2 describes the hybrid execution
model of multithreading and shows how processor utilization is affected by different
thread scheduling policies. Chapter 3 discusses the concept behind the DSMT
architecture describing its micro-architecture in detail. Also, in this chapter, previous
related research work on dynamic multithreaded architectures is examined. Chapter 4
describes in detail the simulation environment designed to study the DSMT architecture
and discusses also some simple techniques that may be used to perform benchmark
simulation efficiently. Chapter 5 discusses the results obtained during simulation on the
performance of DSMT. Chapter 6 offers a conclusion.
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2 THE HYBRID MULTITHREADED EXECUTION MODEL

The hybrid multithreaded model is a software-controlled multithreaded system extended

with hardware support to efficiently perform context switching and thread scheduling.

The model assumes that threads are generated by the software system, and the processor
contains support for multiple contexts.

The central idea of the hybrid model is to depict a system where all the existing

features in a software-controlled multithreaded system are used, and at the same time,
some of the responsibilities of thread management are handled by the hardware.

In our model, the software thread scheduler selects a set of threads for execution
onto a multithreaded processor. Set scheduling acts as an interface between hardware and

software and provides a transparent view to the programmer. The main advantage of the

hybrid model is that expensive software context switching and thread scheduling costs

occur only when threads are initially scheduled onto the processor. Any subsequent

context switching or thread scheduling is implemented in hardware. Over time, this leads

to considerable reduction in the overhead cost thereby resulting in high processor
utilization.

To illustrate the advantage of having hardware support for multithreading,
consider the software-controlled multithreaded execution model illustrated in Figure 2-1.

This model assumes a single threaded processor with N software threads ready for
execution. Each thread issues a remote reference at an interval of R cycles, i.e., its run-
length, and becomes blocked for L cycles waiting for the response to return before
resuming execution. L depends on the memory access time and the delay through the
interconnection network to and from memory. This model assumes that the processor is
able to indicate to the software system, perhaps through an interrupt, that a cache miss
has occurred.

Also, in software-controlled multithreading, a context-switch occurs at a cost of C
cycles between run-lengths. The cost of thread scheduling is included in the context
switch overhead. The processor utilization, Usc, based on this execution model is given
by equation (1):
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Figure 2-1. Execution model of software-controlled multithreading

If the number of contexts supported is not sufficient, the processor will not be
able to completely hide the memory latency L, causing the processor to idle for I cycles

(as in the case of Figure 2.1). On the other hand, if there are a sufficient number of
contexts, the processor utilization Usc depends only on R and C. The important
parameter in this last case is the ratio C/R, which points out that, unless context switching

is extremely cheap, the remote reference rate must be kept low.

The model described by equation (1) for software-multithreading was originally

proposed by Saavedra et al. [54] for a multithreaded processor. In Saavedra's model the

multithreaded processor switches context during every cache miss. In the software-
controlled model the software is responsible of performing context switching.

As Equation (1) shows, processor utilization is directly related to context
switching and thread scheduling costs. In software-controlled multithreading, each

thread is associated with a context that contains a thread ID, a set of registers including a

PC, a thread priority and a pointer to the stack. Whenever a context switch occurs, a new

thread has to be selected (i.e., scheduled) from a pooi of ready threads, all the registers

associated with the current thread must be flushed onto the stack and registers are loaded

with the top frame of the new thread. The Thread Management System performs this

operation in software automatically, which is expensive. To reduce this cost, the hybrid

multithreaded model provides part of these features in hardware to make multithreading



13

as efficient as possible, and providing at the same time, a transparent view to the

programmer. The advantage of software-controlled multithreading is that no changes are

required in hardware, therefore any processor can benefit from this type of support for
multithreading. Figure 2-2 shows the model assumed by the software-controlled model.

I Thread Pool I

Thread
Management Software

System scheduler

Software Layer

Hardware Layer

I
Superscalar processor core

Figure 2-2. Software-controlled multithreading model

Although hardware support for thread scheduling and context switching would
benefit any processor design, the challenge is to incorporate these features with minimal
modifications to the operating system and the compiler, and at the same time to work
within the constraints established by the base processor architecture.

Figure 2-3 shows the hardware and software schedulers that coordinate thread
selection and execution in the hybrid multithreaded model.

The software side of our model consists of an existing Thread Management
System that contains a Software Scheduler that manages Thread Pool execution. In most
systems, the Thread Pool is implemented as a multi-level priority queue. In these



14

systems, a thread has a priority assigned by either the Thread Management System or

the user. The hybrid model assumes that a priority has been given to each thread.

I Thread Pool I

Thread r
Management Software

System scheduler

Software Layer

Hardware Layer

Multiple I Hardware

Contexts Scheduler

I

Superscalar processor core

Figure 2-3. Hybrid multithreading model

The responsibility of the Software Scheduler is to select a set of threads from the

Thread Pool and schedule them onto the Hardware Scheduler of the processor that
supports multiple contexts in hardware. The Software Scheduler, having the objective of

maximizing processor utilization, groups threads into sets. There are a number of
possible policies that can be used to schedule a group of threads onto the Hardware
Scheduler. One simple approach is to schedule the next set of threads only after the
previously selected threads have completed their execution. This approach is the most

appropriate if thread run-lengths are about the same. However, if the thread run-lengths

vary other possible scheduling policies are available. We explore these possibilities in

Section 2.3.

Hardware support for our model consists of a conventional superscalar processor

core augmented with a Hardware Scheduler and multiple contexts. Once a thread has
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been scheduled onto the processor, it can be in one of the following three states:
running, ready, or sleeping. Thread state transitions are shown in Fig 2-4.

thread finishes
Running \ ------------

long latency found

Context switch

thd5tWi5( Ready '\ ( Sleeping
latency resolved

Figure 2-4. Thread state transitions during thread's life

The responsibility of the Hardware Scheduler is to maintain the control of thread

states that have been scheduled onto the processor by the Software Scheduler. The

Ready-thread Queue (RQ) and the Sleeping-thread Queue (SQ), store the threads that are

ready for execution or waiting for execution respectively.

I2...

Hardware scheduler
Superscalar Processor

Core with Multiple
Hardware Contexts

Figure 2-5. Support in hardware for multithreading

Memory
System

A long latency operation detected by the memory management unit (MMU)
causes a thread to context-switch. The Hardware Scheduler accomplishes this task by
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placing the blocked thread in SQ and immediately scheduling a new thread from RQ

for execution. In addition to the hardware support shown in Figure 2-5 to keep control of

threads during execution, a processor also needs multiple hardware contexts where each

thread keeps its own state information. Support for hardware contexts can be
implemented in a number of ways. One possible method is to provide separate, fixed-

size contexts using a hardware managed register file (in the form of either register
windows or duplicated register sets). However, this fixed and inflexible partitioning of

the register file results in a waste of scarce 'high-speed registers. Since the number of

registers required by thread contexts varies, a more flexible approach, called Register

Relocation, was proposed in [75]. This method relies on the compiler or run-time system

to manage the allocation and use of contexts. Instruction operands specify context-

relative register numbers, which are numbered consecutively starting with register 0.

These context-relative register numbers are dynamically combined (using an OR
operation) with a special register relocation mask to form absolute register numbers that

are used during instruction execution. Any of these implementations could be used, since

the model does not take the implementation of hardware contexts into account.

SQ RQ

r1______
I I

Tk Wtk ii T
I i I

Ii Wtk T0

wti

Ii I

I

i

I

Tm

, w= L I Hardware
Scheduler

Figure 2-6. Support in hardware for multithreading

In order to manage multiple contexts, a tag T containing a thread ID, a PC and a

pointer to the thread stack represent each context inside the processor. When the
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Hardware Scheduler schedules threads for execution, thread tags are downloaded onto

the RQ. A thread is scheduled for execution when its tag is de-queued from RQ, the stack

register is updated and the first instruction pointed to by PC is fetched. When a thread is

blocked, its tag is placed in the SQ and a context-switch occurs to the next thread in RQ.

Later, when the blocked thread changes its state to ready, it is en-queued back onto RQ.

When all the threads from RQ (i.e., within a processor) have completed their execution,

the Software Scheduler schedules a new set of threads.

In order to keep track of the transition between sleeping and ready threads, each
thread, T, in SQ is associated with a timer, WI as is shown in Figure 2.6. When a context
switch occurs during the execution of thread T1, it is sent to SQ with WI set to L and a new

thread, Tm, is selected for execution from RQ. T1 will remain in SQ for L cycles waiting

for the memory to respond to its request. Eventually, when L cycles have elapsed, the
Hardware Scheduler will place Ti into RQ and its state will be changed to ready. To use
a timer for controlling thread scheduling must be assumed that L is known. This

assumption is valid in UMA single-threaded processor systems with multiple-levels of

cache memory, where the latency to access one of these levels is known, but not
otherwise.

If R andL are constant, SQ will behave as a FIFO queue and thus each thread will
be retired from SQ in order. However, these assumptions are not realistic for

multiprocessor system because, for example, in UMA machines bus contention will cause
L to vary. Moreover, in CC-NUMA machines, network contention and the routing
algorithm will affect L. Variation in memory latency can be handled by mapping cache
line tags to WI. The Hardware Scheduler then simply identifies threads whose request has

been served, and en-queues them onto RQ. The hybrid model assumes this method is
used when the latency changes stochastically.

2.1 An Analytical Model for Hybrid Multithreaded Execution

An analytical model for the hybrid multithreaded system allows us to study the effect that

set scheduling operations have on processor utilization. Figure 2-7 shows the



multithreaded execution model through a series of set scheduling operations. During

each operation, the Software Scheduler of the Thread Management System schedules N
threads onto the RQ at a cost of S cycles, i.e., S=NC. Between set scheduling operations,

there are a total of G hardware context switches, each with a cost of c cycles, among the
N contexts scheduled onto the processor.

Assuming that R, L, c, and C are constant, we can express processor utilization for

two separate cases. In the first case, the number of contexts supported by the processor is

not enough to hide the memory latency, and therefore the processor utilization UH

increases linearly as a function of N, i.e.,

NR
UH=

(2)

G

where G represents the total number of context switches for all the threads. Therefore

GIN represents the average number of context switches in a thread. In the second case,

the number of contexts is sufficient to hide the latency, thus performance loss comes

from the context switching overhead and the set scheduling cost (as in the case of Figure

2-6), i.e.,

R
UH= NCR+c+

G
(3)

Equation (3) shows the software scheduling and context switching cost C in Equation (1)

has been replaced by the hardware context switch cost c plus the amortized software
context switching cost over the average number of context switches in a thread NCIG.

This means that even in the saturation region GIN has some effect on processor
utilization. However, if GIN is sufficiently large, the processor utilization improves by a

factor of (R+C)I(R+c).
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Figure 2-7. Hybrid multithreaded execution model.

The hybrid multithreading model expands Saavedra's model [35] for a

multithreaded processor by considering the overhead produced by thread scheduling in

software. Also, although our model is still very general, it provides some details on how
to support multiple thread scheduling.

In [54], Saavedra finds an algebraic equation that describes how processor
utilization changes with context number when the thread run length changes
stochastically. However, in that model memory latency changes too, but
deterministically. The process to obtain a processor utilization equation consists of
building the Petri net that represents the multithreaded execution. Then, the Markov
chain is obtained by computing the reachability set of the Petri net. Finally, looking for

common patterns in the system reduces the equations found using this procedure. The
advantage of this method is that the solution is represented as a single equation.
However, the disadvantage of this approach is the complex analysis. Moreover, when the

analysis must include one or more extra stochastic variables, a new calculation needs to
be performed.

To avoid these hurdles, stochastic simulation was used to study the hybrid model.
Using this approach, we were capable of replicating Saavedra's [54] equation graph,
which was obtained analytically. Then, the simulator was used to compare our simple
analytical model with results obtained by simulation and additionally, to experiment with
different scheduling techniques. The experimental process is described in following
section.
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2.2 Simulation Results

To evaluate the perfonnance of the hybrid multithreaded system described in the previous

section, a stochastic simulation study was conducted. The structure of the hybrid model

was emulated with a special purpose simulator written in C++. Figure 2-8 shows a
simplified UML diagram of the main classes in the simulator.

Figure 2-8. UML class diagram of the simulator for the hybrid model.

Simulator class structure is based on containment and inheritance replicating the

model structure shown in Fig 2-2. The Thread class contains random number generators

that are able to produce different stochastic distributions. These stochastic distributions

were used to model different thread run-lengths and memory latency delays. The

simulator is also able of generating an output file in Matlab format. Using Matlab and

the data file created by the simulator we obtained the graphs described subsequently.
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Figure 2-9 compares the theoretical results and the results obtained from our
simulation for the hybrid multithreaded model on processor utilization whenR and L are

constant average values and C is changed. Plots were obtained by running 1,000 threads

with R=100 cycles, c=2 cycles, and L=500 cycles.
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Figure 2-9. Comparison between theoretical (solid lines) and simulation (dotted lines)

results.

The graph shows that the simulations results were comparable to the theoretical

results from equations (2) and (3). More importantly, as C increases from 10 tQ 50,

processor utilization only decreases by approximately 2%. The primary reason for this is

that the set-scheduling cost is incurred only once and all subsequent context switches are

done in hardware. Therefore, the hybrid method is more immune to variations in C.

To obtain a more realistic evaluation of our hybrid model, stochastic distributions

were considered for R and L. In this case, variations on run-lengths model cache misses

that provoke context switch. Variations on L model the behavior of multiprocessing
systems where cache access is not deterministic.

Figures 2-10 and 2-1 1 show the effects for both the hybrid and software-
controlled models of stochastic distributions for R and L. R was modeled with a
geometric distribution, and L with a negative exponential distribution. Our simulation
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results were obtained by running 1000 threads with an overall execution time of
approximately 500,000 cycles.

Figure 2-10 compares the performance when R has a mean value of 100 cycles, L

has a mean value of 500 cycles, and c = 2 cycles. Results show that not only does the

hybrid model outperform its software-controlled counterpart, but also, because it is more

immune to variations in C, the performance (i.e., processor efficiency) gap widens as C

increases. Our findings also indicate that the performance of the software-controlled

execution model is strongly affected by the granularity of threads. This result is shown in

Figure 3.2b where R has a mean value of 20 cycles, L has a mean value of 100 cycles,

and c = 1 cycle. When CIR is large, the performance of the software-controlled model is

affected severely by the software scheduling and context switching costs.

Another interesting observation is that when thread run-lengths vary, the
utilization goes down (see Figures 2-9, 2-10 and 2-11). This is because when total thread

run-lengths are the same, all threads complete their execution at about the same time.

Therefore, scheduling the next set of threads only after the previous set of threads has

completed execution will cause minimal idling. However, when thread run-lengths vary,

some threads will complete first reducing the number of threads from which to context

switch.

14 16 16
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Figure 2-10. Comparison between hybrid (solid lines) and software-controlled (dotted

lines) execution models: R = 100, L = 500, and c=2.
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Figure 2-11. Comparison between hybrid (solid lines) and software-controlled (dotted

lines) execution models: R = 20, L = 100, and c=1.
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Figure 2-12. Effects of scheduling policies when C10, R=20, L=100 and c=l.
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Figure 2-13. Effects of scheduling policies when C=20, R=20, L= 100, and c= 1.
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Figure 2-14. Effects of scheduling policies when C=50, R=20, L=°100, and c=1.

To determine how to overcome this deficiency, different scheduling policies were

tested. Those policies were:

(1) A new thread is scheduled immediately after a thread completes its execution

(2) Schedule N/2 new threads when N/2 threads complete their execution.
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Results of these two scheduling policies were then compared against
scheduling N new threads when N threads finish their execution.

main() User ProgramCalls Pthrea Return from
routine Pthreads routine

threads

Scheduler

User Library
Calls Pthreads Returns from Pthreads

Scheduler

Schedule Runtime System
Schedule Pthreads on New Thread Contexts and more
hardware / threads available

are full and threads are

tch

time out, or

Thread
Running

o new thread or contexts Swi

No new threads or
contexts are full and no

Cache miss satisfied threads ready

Hardware Scheduler

Figure 2-15. Thread states from the user-level to the hardware level.

Processor utilization results are shown in Figures 2-12, 2-13, and 2-14 when these

different scheduling policies are used for various values of C. In these graphs, R was
modeled by a geometric distribution with a mean value of 20 cycles, L by a negative
exponential distribution with mean value of 100 cycles, and c1 cycle. These results

show that, for all three values of C it is always better to schedule a new thread
immediately after a thread completes its execution. Thus, scheduling one at a time will

minimize idling due to lack of threads from which to context switch. Using the same
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general idea of the hybrid model, the simulator for the Multithreaded Virtual
Processor (MVP) model described in [34, 35] studied how user-level multithreading
affects Li instruction cache miss rate due to interference between threads. Also research

on MVP concluded that context switching to hide cache latency and data sharing between

threads improves performance. The hybrid model uses the high-level simplified scheme

depicted in Figure 2-2 to show how software and hardware schedulers interact. In

contrast, MVP provides a very detailed description of how these two schedulers interact.

This scheme is depicted in Fig 2-15. Figure 2-15 shows that the runtime system, which is

functioning as a small kernel, schedules a new thread onto a hardware context when the

processor indicates that a context is available. This policy was used in MVP after we
learned from hybrid model simulations that scheduling threads in this way produces the

highest processor utilization. To evaluate the performance of the MVP model,
benchmark programs were required. Research on SMT or single thread architectures
generally uses the SPEC95 benchmarks or the new SPEC2000 benchmarks to evaluate

processor performance. In the parallel processing arena, SPLASH-2 benchmarks are
used to test parallel architectures [80]. Unfortunately, there are no equivalent
benchmarks to perform evaluation of multithreaded architectures. For this reason a group

of multithreaded benchmark programs was written based on SPLASH-2 benchmarks
using Pthreads. As reported in [34], these benchmarks were used to study MVP
performance. To simplify the task of writing the multithreaded benchmarks, the
SPLASH-2 suite of programs originally written for shared-memory machines was
transformed to use Pthreads calls instead of the original ANL macros [38]. To perform

this task, some primitives not available in Pthreads, like barrier synchronization, were

added to emulate their counterpart in ANL macros. The multitbreaded benchmark
programs written were: FFT, MP3D and Radix Sort but all other SPLASH-2 benchmarks

can be converted to their multithreaded version by running a macroprocessor with the

appropriate macro conversion file. This file contains the translation of ANL macros to
Pthreads calls. The conversion process is depicted in Fig 2-16. Additionally to the
benchmarks mentioned above, new versions of Matrix Multiplication, Gaussian

elimination and Sieve algorithms were manually written to be multithreaded and included
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in the benchmarks. No optimizations were attempted when converting the serial
handwritten programs or the parallel SPLASH-2 benchmarks. In spite of their
advantages to tolerate long latencies, the vertical multithreading model used by MVP and

the hybrid model described in this chapter have limited capabilities to improve
performance. The main reason for this is that only a single thread is issuing instructions

at a time. Therefore, processor resources are underutilized when there is not enough ILP

to exploit in a particular thread.

Splash-2 r
Benchmark source Pthreads

I libraries

Macroprocessor

I

I Pthreads

I

Gcc
(M4) Benchmark compiler

source

Macro conversion
file with Pthreads

calls

Figure 2-16. Conversion of benchmarks to multithreading version.

Dynamic speculation and simultaneous multithreading are architectural approaches

to exploit effectively TLP and compensate for the lack of ILP in a single thread. The
DSMT processor described in the next chapter uses these techniques to overcome the
limitations of single-thread single-issuing architectures.



3 THE DSMT PROCESSOR

3.1 Motivation

Improving performance has been the main goal of most processor designs and is also the

goal of the DSMT processor. However, it is interesting to note that recent research [11]

has recognized that performance should not be the only goal of modern computer system

design. Other features in a computing system such as software and hardware failure

tolerance and recovery, which were partially addressed in the past, are becoming
increasingly important, especially for general-purpose computer systems.

Processor performance is measured by the total execution time consumed
executing a program. Total execution time is calculated by the following equation.

T =T xNxIPc (4)

Where Te is total execution time, T clock cycle time, N is the total number of
instructions in a program and IPC the number of instruction executed per clock cycle.

Equation (4) indicates that by reducing T (using a faster clock) or N (compressing

several instructions into one) the total execution time of a program will be reduced.
Therefore, is not surprising that most recent improvements in current superscalar
processors have been obtained applying the most recent advances in VLSI technology

aimed at reducing T. In these processors, a very short clock cycle allows instructions to

move quickly through the pipeline. However, with faster frequencies the problems of
clock generation and distribution in synchronous designs are exacerbated. Also, with
faster clocks the amount of processing that a pipeline stage is able to perform in a single

cycle decreases. Therefore, to compensate for this effect, deeper pipelines are required in

fast processors. However, in deep pipelines mispredictions become more expensive since

when they occur pipeline stages must be completely flushed and then, refilled with new

instructions. This flushlrefihl process consumes additional clock cycles as the length of
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the pipeline increases. Finally, it is known that future improvements obtained using

the fast clock approach will reach a limit in the long-term due mainly to physical and
technological constraints [30].

The other factor in Equation (4), the IPC, represents the average amount of ILP

exploited by a processor during every clock cycle. Increasing the value of this ratio is the

aim of mechanisms proposed to exploit ILP and TLP. IPC depends on a number of
factors including the inherent parallelism in a program, the size of the instruction
window, the issue width and other characteristics of the scheme used to extract
parallelism. Higher values in IPC can be obtained by using more complex issue logic.
However, increasingly complex issue logic can limit the clock speed of the
microarchitecture [49,5 8].

Dynamic speculative techniques of TLP have been proposed to improve processor

performance [62]. In dynamic multithreading, threads are generated speculatively at run

time. These speculative threads are constantly monitored to detect when a speculation
has mispredicted a value. When this happens, the offending thread is squashed and
execution resumes at the point of misprediction.

A number of methods for dynamic thread generation have been proposed in
literature [3, 70, 82]. Most of the proposed methods are based on detecting one or more
of the following conditions:

Loop boundaries (loop-iteration)

Procedure calls

Exception handling routines

Continuation code after a ioop body (loop-continuation)

Continuation code after a procedure (procedure-continuation)

Loops and procedures are programming structures used very frequently in
programs. For this reason, these structures are good candidates to create threads.
Numerical applications based mainly on matrix calculations contain many loops with
several nesting levels. Moreover, structured programming and modem 00 languages



that provide encapsulation mechanisms have encouraged the use of procedures or
methods through the use of get and set methods.

On the other hand, previous research [32] reported that half of total execution time

of some benchmarks is consumed inside loops. Later, [70] found that from the total
number of instructions executed in SPEC95-FP benchmarks, 64% on average correspond

to instructions from loops. However, this same percentage for SPEC95-Int benchmarks

is 30% on average. Hence, optimizing loop execution is fundamental for improving total

execution time in many programs, but especially in applications that perform numeric
calculations. This fact has been recognized by the plethora of research done into
parallelizing compilers [9, 21 and 78].

From all proposed methods of extracting threads, loops are very challenging
programming structures. This is because, very frequently, they contain dependencies that

serialize ioop execution. These dependencies are called loop carried dependencies, since

variable values are communicated between iterations. Loops that contain ioop carried
dependencies are called do-across and those who do not are called do-all in the literature.

Exploitation of do-all loops produces better performance because threads are independent

and can execute in parallel. On the contrary, do-across loops cause threads to get blocked

when a value produced by a previous iteration is needed by the current iteration,
serializing the execution of a loop. Additionally, for do-all and do-across ioops, the

dynamic behavior produced by internal conditional branches may complicate executing

efficiently its iterations in parallel. Moreover, in nested loops an optimal thread selection

mechanism must decide which nesting level is likely to provide better performance.
Inner loops provide parallelism at a finer grain compared with outer loops. All these
factors make exploitation of loops for TLP very challenging.

Certainly, thread generation based on ioop iterations do not preclude that one or

more of the other methods be also used in conjunction. However, using several methods

to generate threads requires more complex mechanisms to generate and control multiple

thread execution.

On the other hand, in spite of the multiple advantages that the SMT architecture

offers for processor design, one of its drawbacks is that this architecture does nothing to
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improve performance when there is only a single program or task available for
execution. To alleviate this hurdle, we propose the DSMT architecture.

The goal of DSMT is obtaining high IPC through the dynamic exploitation of
TLP and ILP on a SMT processor. DSMT enhances a SMT processor core with dynamic

speculative generation of threads. Threads are generated from a single program without

compiler help. Therefore, DSMT overcomes SMT limitations in performance when the

software system is unable of supplying more tasks.

To achieve its goal, DSMT multithreaded model uses speculation at several levels.

DSMT, like many superscalar processors, uses intra-thread speculation to predict
branches, perform out of order loading of values from memory and to predict the return

address of subroutines. Speculation is also used to generate threads, predict the number

of iterations in a loop and to predict register and memory dependencies.

Unlike other similar architectures, DSMT uses simple mechanisms to synchronize

threads, and keep track of inter-thread dependencies both in registers and memory. The

mechanisms proposed in DSMT employ the information obtained during single thread

execution as a hint to speculate the future behavior of multiple threads. Moreover,

DSMT utilizes a greedy approach that chooses those sections of code that are more likely

to provide highest performance based on its past dynamic behavior.

The following section describes previous research in academia and industry on
some multithreaded architectures closely related to DSMT.

3.2 Previous Related Work

The proposed architecture was drawn from a plethora of related works on
exploiting both ILP and TLP from a single program. These proposals share many
similarities on how thread level speculation is supported and basically differ on how

much of this support is provided in hardware versus software.

One of the first proposals to overcome limitations in ILP was the Multiscalar

processor [61]. The Multiscalar architecture increases the instruction window size of a

processor using multiple tasks extracted from a program. In this architecture, a special
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compiler or binary annotator divides a program into tasks that are executed on
processing units. Then, a special sequencer mechanism determines task order execution

and assigns the tasks to processing units. Processing units are connected using a
unidirectional ring topology that forwards information from one unit to the next.

A couple of other related proposals are the Trace Processor [53] and a technique

called Threaded MultiPath Execution (TME) [76]. TME is based on a technique called

Disjoint Eager Execution, which allows a processor to speculatively execute down
multiple branch paths in a program. TME as well as DSMT are variations of SMT. TME

executes speculatively both possible paths of conditional branches that have been
difficult to predict, when there are fewer threads than hardware contexts. Once the
correct result of a branch is known the incorrect path is flushed from the pipeline. TME

shows a performance improvement of 14%-23% on average for programs with high
misprediction rates.

The Trace Processor improves the instruction fetch bandwidth and thus increases

the size of the Instruction Window by capturing dynamic instruction sequences of fixed

length (i.e., a trace line). This concept has been also used to execute multiple trace lines

simultaneously through a modified superscalar processor [74].

In the following sections a brief description of other architectures related to
DSMT is provided.

3.2.1 SMT

SMT architecture allows multiple independent threads to issue multiple instructions
simultaneously to the execution units without any context switching delay. This is the
main characteristic that differentiates SMT from other types of multithreaded
architectures.

In SMT, multiple threads compete for and share available processor resources

every clock cycle. TLP and ILP are used interchangeably in SMT, accommodating

variations in TLP and ILP. Greater throughput and effective use of functional units is
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achieved by exploiting whichever type of parallelism exists. Figure 3-1 depicts the
architecture of a SMT processor.

In [73], it was reported that SMT compares advantageously with wide-issue
superscalar processors and chip multiprocessor systems (CMP). In the first case, SMT
provides better resource utilization than a wide-issue processor because TLP is used to

compensate for the lack of ILP in a single thread. In the second case, SMT performs
better than CMP because it is able to select dynamically the appropriate resources
required by the execution of multiple threads. In contrast, in a CMP system, resources
are statically allocated once threads are scheduled for execution; therefore, lack of ILP in

a thread causes resource under-utilization in a processor.

Reservation

Stations

Figure 3-1. SMT architecture

To support SMT the hardware context of a superscalar processor is replicated and
also per-thread mechanisms for pipeline flushing, instruction retirement, trapping, precise
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interrupts and subroutine return stack are added. Additionally per-thread address
identifiers in BTB and TLB are needed. Lastly, the fetching mechanism is redesigned to

allow fetching from multiple threads. Adding support for SMT on a superscalar
processor has a small impact on processor performance. In [73], it was found that single

thread performance in a SMT processor is around 1.5% worse than that of a single-thread

wide-issue superscalar processor. The reason for this is because two extra stages are
added to the SMT pipeline to compensate for a larger register file that requires longer
access time.
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Figure 3-2. Functional unit utilization in several technologies.

Figure 3-2 shows how functional unit utilization improves on SMT with respect to

several other technologies.

As Figure 3-2 indicates, processor utilization in SMT is higher that in CMP; more
functional units per clock cycle are busy executing instructions. This is because
resources are statically partitioned in CMP and therefore, threads scheduled for execution

in a processor will be limited to the ILP contained in those threads. In contrast, in SMT,

resources are dynamically assigned to each thread and therefore, if a thread lacks ILP, the

ILP contained in other threads can compensate for this effect.
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Functional unit utilization is also higher in SMT than in the coarse or fine grain

multithreading models. The cause is that in both cases, coarse and fine grain
multithreading, only one thread can issue instructions and therefore utilization is limited

to the ILP contained in a single thread.

Figure 3-3 shows an example comparing functional unit utilization in fine and

coarse grain multithreading. In this example, when the number of threads is the same, the

efficiency of fine and coarse grain multithreading is comparable. However, in general,

support for fine grain multithreading is less complex but its performance is significantly

lower than coarse grain multithreading during single thread execution.
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Figure 3-3. Resource utilization in fine and coarse grain multithreading.

Efficient utilization of processor resources is one of the main advantages of SMT
over other multithreading architectures. However, SMT has also some potential
problems. When there is only a single thread of execution or the number of threads is

less than the number of contexts, the resources required to control multiple-thread
execution are wasted.

In SMT, resource contention caused by sharing many of the hardware structures

among all independent threads, can lead to competition of those resources, producing
potentially more cache misses and branch mispredictions. Also, sharing the cache



36

hierarchy among multiple programs limits the efficiency of these resources in
comparison to running a single program.

Additionally, [25] found that the design of the memory hierarchy is an important

factor for SMT performance. Specifically, it was found that caches must be associative,

and Li cache size should be large enough so that contention in L2 does not degrade
performance when a small LI cache is used. Also, [24] found that for four or more
contexts the gain obtained using an out-of-order engine is not cost effective in SMT.

From a software perspective, SMT looks like a multiprocessor system. This
means that OS and user programs can schedule processes or threads to logical processors

as they would do on conventional physical processors. Therefore, OS changes to
schedule programs into the multiple processor contexts are minor, since most modern

OSs already support multiprocessor systems [51]. From a microarchitecture perspective,

instructions from these logical processors will persist and execute simultaneously on

shared execution resources.

DSMT, like SMT, activates simultaneously multiple contexts to exploit TLP.
However, unlike SMT, DSMT identifies and executes threads dynamically from a single

program.

3.2.2 DMT

Dynamic multithreading (DMT) generates threads dynamically at run time and is capable

of executing in parallel a ioop, a procedure and the code after the procedure [3]. DM1 is

designed around a SMT processor core.

This architecture employs trace buffers to keep the state of the speculative
threads. In case of an incorrect speculation, a recovery sequence is initiated, re-

dispatching misspeculated instructions for execution. Special trace buffers located out of

the main pipeline, enable DMT to keep larger instruction windows compared to a

superscalar processor.
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In DMT the hardware breaks up a program into loops and procedure threads

that execute simultaneously on a superscalar processor. Data speculation on the inputs to
a thread is used to allow speculative threads start its execution immediately.

Control logic keeps a list of the order and the start PC of each thread. A thread is

forced to stop fetching instructions when it reaches the start of the next thread in the order

list. However, if for some reason a thread never reaches the start of the next thread in list

order, is considered mispredicted and consequently squashed.

Threads communicate through registers and memory. Communication between

threads is one way only and dictated by their order. A new thread uses as input the
register contents of its parent thread. Loads are issued to memory speculatively assuming

that there are no dependencies with stores from previous threads. Data misspeculation is

common, since threads do not wait for their inputs to be ready. DMT uses selective
recovery on mispredicted instructions as soon as the correct input is available. Trace

buffers outside the main pipeline are used to hold all speculative instructions and their
results. During recovery, instructions are fetched from the trace buffers and re-

dispatched into the execution pipeline.

3.2.3 Superthreaded Architecture

This architecture integrates compilation and hardware support to exploit TLP and ILP in

programs [68, 69]. Thread level control speculation is done during compilation and data-

dependency checking is performed at run-time.

The compiler partitions the control flow graph of a program into threads. The
granularity of the threads is typically one or several iterations of a loop. A thread forks

successor threads on other processing elements until all thread processing units are busy.

The execution of a thread is partitioned into several stages, namely, continuation, target-

store-address-generation (TSAG), computation and write-back. When a thread finishes

performing the tasks of one stage, data is passed to the next thread, which in turn does the

same operation.



In the continuation stage, recurrence variables such as loop indices are
computed. These values are forwarded to the next thread before its thread activation. A

fork instruction at the end of the continuations stage causes the next thread to begin.

In the TSAG stage, the addresses of the target stores are calculated. These

addresses are forwarded to all concurrent threads. In the computation stage, the main
computations of a thread are performed. If the address of a load matches some of the
entries in the store buffer, data is either, read from the entry if is available or the thread

will wait until the data arrives from an earlier concurrent thread. If the value ofa target

store is computed during this stage, the current thread will forward the data and address
to all successor concurrent threads.

To maintain correct memory state, concurrent threads must perform their write-

back stages in their original order. Threads wait for a flag from the predecessor thread
before performing its writeback stage. This flag indicates that a thread can perform its

writeback stage once the previous thread has done it, preserving the in-order state of
memory.

3.2.4 Speculative Multithreaded Architecture

Speculative multithreaded architecture (SMA) [39, 41] consists of several thread

units (TU) that concurrently execute different threads of a sequential program. These
threads are dynamically obtained by a control speculation mechanism based on

identifying loops and executing speculatively different iterations of a loop. Thread units

are interconnected through a ring topology, and iterations are allocated to thread units
following their execution order. Each thread unit has its own physical register file,
register map table, instruction queue, functional units, local memory and reorder buffer.

Inter-thread data dependencies through registers and memory are predicted with
the help of a history table called a loop iteration table.

When a speculative thread is created, its logical register file and its register map

table are copied from its predecessor. A live and predictable register will be initialized

with the instruction add Ri, Ri, stride which is not part of the static code. Another
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table is used to store the number of remaining writes to a register. That table is
initialized with the number of writes performed by the last iteration of the loop. If an

instruction having register Ri as its destination is retired, the corresponding entry in the

register write table is decreased. When this entry becomes zero, the result of the
instruction is written in the i-th entry of the live-in register file of the succeeding thread
unit. When this event occurs, the instruction from the next thread (that was stalled
waiting for the value) can continue execution.

Inter-thread memory dependence speculation is performed by means of a multi-

value cache. This cache memory stores, for each address, as many different data words

as the number of thread units. For each store whose base register is predictable a special

instruction (not part of the static code) is inserted in the instruction queue. That

instruction adds the register with the corresponding offset (taken from the loop iteration

table). Figure 3-4 shows the microarchitecture of a SMA processor.
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Figure 3-4. Speculative Multithreaded Architecture



3.2.5 Multithreaded Commercial Processors

3.2.5.1 MAJC

The MAJC [65, 67] processor is based on a variable length VLIW architecture. The

MAJC processor unit consists of four functional units, each of which with its own set of
registers. In the MAJC architecture, unlike a traditional architecture, any functional unit
can operate on any type of data. Also any MAJC register can hold any type of data.
These features allow efficient use of processor resources.

Multiple processor units are organized on the same chip in a processor cluster.
Using this architecture, a multithreaded program would distribute its threads among the
various processor units in a cluster.

Speculative execution of threads is supported in MAJC. If a thread is executing
and it hits long execution time operations such as loops, under certain conditions, MAJC

can spawn off an entirely new speculative thread. This thread will execute the
instructions following the end of the ioop boundary. The thread can be allocated to
another processor entirely, so that the non-speculative thread is not slowed down. The

new spawned thread uses its own set of registers, which eliminates inter-thread, WAW

and WAR hazards. During execution, both threads communicate in real-time, so that the
speculative thread knows the results of the non-speculative thread execution. Tn case

RAW hazards occur, the speculative thread is rolled-back and its execution is restarted

again. This technique is called Space-Time Computing (STC).

In addition to STC, MAJC uses vertical multithreading; when a thread is
executing and a cache miss is detected, a context switch occurs. In this case, another
thread is executed while the blocked thread is waiting for the data to load from memory.

MAJC was designed only as a coprocessor.
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3.2.5.2 Intel Hyper-threaded Technology

Intel [29] has announced a new generation of processors based on hyper-thread
technology, which is very similar to SMT. These new processors are based on the IA-32

architecture, which has been extended to support SMT. One hyper-threaded processor

has two logical processors in the same chip, each keeping its architectural state
comprised of data, control, segment, debug registers and its own programmable interrupt

controller.

Each logical processor can be individually halted, interrupted, or directed to
execute a specific thread, independently from the other logical processor. Both logical

processors share the execution resources of the processor core, which include functional

units, the caches, the systems bus interface, and the firmware. Instructions from both

threads are simultaneously dispatched for execution by the processor core. Later, both

threads are executed concurrently using out-of-order dynamic scheduling to efficiently

utilize functional units each clock cycle.

Intel hyper-threaded processors will appear to the software as two independent

processors. Therefore, OS will run unmodified if it supports multiprocessing, as is the

case of most contemporary OSs. A special instruction called CPUID is used to detect the

presence of hyper-threaded processors. According to Intel a hyper-threaded processor

can provide a performance gain of up to 30% compared to a non hyper-threaded
processor.

3.2.5.3 Alpha EV-8

EV-8 is an 8-way issue SMT processor [19]. Four threads are supported by the
architecture in Thread Processing Units, sharing the internal resources of the processor.

On every cycle the fetch unit fetches eight instructions form each of two threads that are

not currently processing an instruction cache-miss. Instructions are selected for dispatch

form the first thread until either a branch or an end-of-cache line is encountered, at which

time instructions from the second thread are selected. The two threads used for fetching
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are selected according to ICount policy [72] that gives priority to the fastest-moving
threads. ICount also prevents thread starvation, since threads with fewest instructions in

the pipeline are the first to get new fetch cycles. From a programming point of view the

EV-8 processor is seen as a virtual CMP with four processors that share Li data without

the overhead of cache-coherency mechanisms. Unfortunately, the EV-8 processor project
was canceled.

3.3 DSMT Processor

The DSMT processor contains a superscalar processor pipeline as one of its main
components. Additionally, DSMT contains support for the execution of multiple threads,

which are active simultaneously hence multiple independent programs can also be
executed in DSMT as in SMT architectures. To enable the SMT mode of operation in
DSMT, the executive software must disable inter-thread register and memory
dependency handling. However, since the main scope of this thesis is to describe the
DSMT model, SMT mode of operation will not be described any further.

DSMT

IdIeFU

4 Synchronization
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I

e. multiple-thread
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Figure 3-5. Functional unit utilization in SMT and DSMT during single task execution
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Figure 3-5 compares functional unit utilization in SMT and DSMT

technologies. When there are several independent threads, SMT utilizes efficiently all

resources available in the processor. However when there is a single task, SMT does
nothing to improve performance; its performance is limited to the ILP contained in a
single thread. However in this case, DSMT unlike SMT is capable of generating
dynamically multiple threads, which will use more efficiently processor resources.
Moreover, since DSMT is based on SMT, it has all the advantages of SMT.

3.3.1 DSMT Operating Modes

The DSMT processor operates in either DSMT or non-DSMT mode. In the non-DSMT
mode, there is only a single thread in execution and thus the DSMT processor behaves as
a superscalar processor. In the DSMT mode, multiple threads are executed speculatively,

and there is always a single non-speculative thread. DSMT enters this mode of execution
when a loop is detected in the instruction stream fetched from memory.

In DSMT, speculative threads can be cloned only while the processor is in the
non-DSMT mode by the non-speculative thread. Thus, speculative threads are not
allowed to clone other speculative threads. This feature reduces the complexity that
would be required to control multiple speculative stages.

To identify ioops, each time a backward-taken branch instruction is detected, its
branch and target addresses are recorded in the LDBTB during fetch stage. Later, during
write-back stage, if another taken branch instruction with the same branch target address
is found, the processor enters pre-DSMT mode, which is still part of the non-DSMT
mode. Notice that this will occur during the second iteration of a loop if the branch
information is already in the LDBTB or during the third iteration if there was a LDBTB
miss.

During pre-DSMT mode, the decode/dispatch stage marks those registers that will
be live (i.e. those that will be used as destinations) in the local flags associated to each
register. At same time, the loop stride speculation table is initialized in the form
described in Section 3.8.
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During full-DSMT mode, the overlapped execution of ioop iterations occurs,
while the processor speculates all subsequent branch instructions (those with the same
target address as the one stored in the TCIU) as loop iterations. Using this policy, loops

with two or fewer iterations are discarded, eliminating in this way false backward
branches that do not belong to a loop and simplifying dynamic ioop detection.

In addition, among all branch instructions that could potentially branch
backwards, those corresponding to system calls or jumps to subroutines are discarded.

The reasons for this are twofold. First, in DSMT simulation environment system calls are

handled by the host OS. However, even if this were not the case although some
parallelism could be exploited from system calls, they occur relatively infrequent in
programs. Second, jumps to subroutines in the body of a loop generate mispredictions in

the simple value prediction mechanisms used by DSMT since registers are reused inside

the subroutine. Figure 3-6 shows the operating modes of DSMT.

Figure 3-6. DSMT Operating modes.
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3.3.2 Context States

As Figure 3-6 shows, DSMT architecture changes its operating mode from non-DSMT

mode to DSMT-mode and vice versa. However, once the processor enters DSMT mode a

context may go through a series of changes in state. These transitions are caused by the

dynamic conditions that occur during dynamic multithreading execution. A context,

which is spawned by the non-speculative context is labeled as speculative and placed in

its valid running state. Additionally, when a speculative context finishes executing one

loop iteration, it is placed in a synchronizing state waiting for the non-speculative thread

to synchronize. Also, a speculative context may be placed in the hold state when an
inter-thread dependency that could not be solved is found. Moreover, misspeculation

causes a speculative context to be invalidated. On the other hand, a non-speculative
context may be blocked in the hold state during a cache miss. Figure 3-7 shows the
possible state changes that a context may go through, during DSMT mode execution.

Figure 3-7. Context state transitions

In the following section we describe in detail the microarchitecture of the DSMT

processor and the tasks performed at each pipeline stage.



3.3.3 DSMT Microarchitecture

Figure 3-7 shows the microarchitecture of the DSMT processor. During the Fetch stage,

a block of instructions is fetched in the usual manner a superscalar processor performs

this task. However, DSMT can also fetch instructions from different threads based on

various scheduling policies offered by the Scheduler.

To support simultaneous execution of multiple threads, each thread in DSMT has

its own set of Instruction Queue (IQ), Reorder Buffer (ROB), Contexts, and Memory

Order Buffer (MOB), additionally to multiple Return Stacks. The multiple IQs provide a

more flexible means of dispatching instructions to the Reservation Stations (RS)
compared to a single large IQ. This fact reduces stalls caused by instructions that cannot

be dispatched due to inter-thread register dependencies. The multiple Return Stacks
enable each processor's context to predict a different return address from subroutines.

In DSMT as is in SMT architecture, each Context represents the state of a thread.

Multiple contexts are also interfaced to the Thread Creation and Initiation Unit (TCIU),

which controls how threads are cloned and executed.

DSMT also contains the Loop Detection Branch Target Buffer (LDBTB) in the

fetch unit, which is responsible for detecting loops, and supplying target addresses so that

multiple threads can be cloned. This special BTB is shared by all contexts.

Threads in DSMT are generated speculatively at loop boundaries and executed on

a simultaneous multithreaded architecture. Each context handles the execution of a
single iteration in a loop.

DSMT architecture controls intra-thread dependencies using the same ROB
tagging method that superscalar processors employ. Internal mechanisms in the
architecture keep track of inter-thread dependences, thread synchronization, and data

memory dependencies. These mechanisms are explained in Section 3.4.

In the following sections, we describe in more detail the tasks performed by each

of DSMT pipeline stages.
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3.3.4 DSMT Pipeline
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The DSMT processor is organized into seven pipelined stages: Fetch, Decode/Dispatch,

Issue, Execute, Memory, Writeback and Commit.

DSMT pipeline is depicted in Figure 3-9. Pipeline stages communicate
instructions from one stage to the other through internal queues and buffers. Instructions

processed in one stage are sent to the following stage for processing. However, the

memory stage is used only by load and store instructions being bypassed by all other
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instructions. The following sections describe in more detail the function and the tasks

performed by each pipeline stage during DSM and non DSMT modes.

Fetch Decode/Dispatch Issue Execute Memory Writeback Commit

Figure 3-9. DSMT processor pipeline

3.3.4.1 Fetch Stage

The Fetch Unit fetches one cache line from each cache read port. This unit has multiple

PCs and an interface to the Thread Control Unit that decides which PC(s) to fetch from.

Then, it sends some subset of the cache line off to the instruction queue. A cache line

may not be completely full of instructions if a branch instruction was found in the cache

line. Also, the starting PC may be offset from the beginning of the cache line due to the

occurrence of a previous branch, while a predicted branch prior to the end of a cache line

will cause the remainder of the cache line to be discarded.

The Fetch Unit stalls a PC on an immediate jump instruction until the address of

the jump is known. This occurs in the decode stage where the address ofan immediate

jump is computed. However, for conditional branches the fetch unit must predict the
result of a branch to avoid stalling the pipeline until the branch address is known.

For taken branch instructions, the branch address is passed to the Branch Target

Buffer (BTB) to access its prediction information. The BTB predicts if the branch will be
taken or not. If the Branch is predicted as taken, the remainder of the cache line is
discarded, and the PC updated to reflect the new fetching address. This predicted address

is stored in the BTB with the instruction. Then at writeback stage, the result of a
prediction is checked; if the prediction was wrong then the context that fetched the
mispredicted instruction is flushed from the pipeline.

Since DSMT is based on a SMT processor core, it implements the ICount2.8
fetching policy. Using this policy, two fetch ports are employed to fetch up to eight
instructions per thread. However, the original ICount2.8 policy described in [72] was



slightly modified for DSMT due to its particular characteristics. The fetching policy
used is called ICount2.8-modified. The modifications made to the original fetching
policy are the following:

1) One fetching port is always allocated to the non-speculative thread

unless that context is being blocked due to a cache miss. If the non-

speculative thread is blocked, then the next speculative context with

lesser number of instructions in its IQ and ROB is enabled to use the
fetch port reserved to the non-speculative context.

2) Among all speculative threads which are not: blocked due to cache
misses, invalid or that are placed in the hold or synchronization states,

the thread with the smallest number of instructions in its IQ and ROB is

given the highest priority.

As occurs in SMT architectures, this policy favors both, the non-speculative
thread and the speculative threads, which are moving faster in the DSMT processor
pipeline.

3.3.4.2 Dispatch Stage

During this stage, instructions from a context are taken out from the corresponding
instruction queue; at same time, a ROB entry is allocated for the instruction, and the
appropriate reservation station is also allocated by filling out all fields in the Reservation

Station data store. Additionally, for load and store instructions, slots are allocated in the
corresponding MOB in order.

The large number of locations an operand value may come from complicates
considerably the dispatching process.

An operand may come from the following sources:

An immediate value from the instruction itself.

A register value from the Register File

A renamed value from the ROB.
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The writeback bus at a later time. In this case the dispatched value needs

the ROB tag to watch for on the writeback bus.

Another predecessor context, when inter-thread dependencies are detected.

A tag obtained from the tag generator is used as an identifier to the destination

register that an instruction will produce. Since the value of the destination register will

be known until the execution stage the register tag of the destination register is marked as

waiting (or busy). Using the ROB tagging mechanism, WAW and WAR hazards are

eliminated by obtaining new tags for the destination registers involved in such false
dependencies. However, when there is a RAW hazard and the producer instruction does

not have the corresponding value ready, the dependent instruction is given the tag
associated with the register that will produce such value. During write-back stage those

instructions, which are waiting for register values, are updated. Additionally, once an

instruction has been executed, the ROB tagging mechanism facilitates dependent
instructions being enabled to read the required register value directly from the ROB.

To manage inter-thread dependencies the dispatch stage performs also the
following tasks. The Ready bit and the anchor bit (discussed in section 3.4) associated

with a source register are read; if the anchor bit of a register is set (meaning that another

context will produce the value required) and the current context Ready bit of a register is

not set then the predecessor context register file is accessed to obtain the value.
However, since a loop may exhibit dynamic behavior, if the Ready bit of the previous
context is not set, then all other previous speculative context's register files are scanned

looking for the context that has its local Ready bit set. The search is stopped when the

non-speculative context is reached.

The dispatch task is further complicated by the possibility that a register file has

its accesses blocked. This means that the dispatch unit may stop the dispatching of
instructions from a particular context when a context is blocked. Blocking may occur in

DSMT mode when a context is invalidated because speculation went wrong or when a

context has reached the backward branch address that caused entering DSMT mode in

first place. In this last case, the context must synchronize changing context state to hold
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and wait until the non-speculative context is being able to handle it the non-speculative

flag. Also instruction dispatching in a context may stop when all the following
conditions are met for a source register in an instruction:

. No instruction which has been already located in the local ROB will update
the register

The register value will not be produced locally (i.e., its Ready bit is not set).

The register was written in the Anchor bits (i.e., other context will produce
this register value)

The register value is not available in the predecessor context.

3.3.4.3 Issue Stage

The task of the Issue unit is to wait for entries in the reservation stations to be marked
ready for issue. This implies that they will have all of their necessary operand values
resolved, and therefore can be sent for execution. Instructions from different contexts,
speculative or non-speculative, have entries in the reservation stations. Once one of these

instructions is ready for issue it is sent to the execution unit. In case several instructions

are ready for issue, the oldest ones up to the issue bandwidth are issued for execution to

the functional unit associated with a reservation station. During this process, priority is

given to instructions belonging to the non-speculative context.

3.3.4.4 Execution Stage

The execution unit is composed of functional units. These units can be categorized by

their latency and pipeline nature. Thus a functional unit may be single cycle latency, no

pipelining (i.e. it accepts new instructions every cycle) or multi-cycle deeply pipelined

depending on the type of the functional unit.
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Memory access instructions form a special category of instructions to be
handled by the execution unit. For these memory instructions, specialized functional
units calculate the value of the target address.

3.3.4.5 Memory Stage

In this stage, the data cache memory is accessed by the loadlstore operations. Speculative

threads are allowed to read from memory, or from the current context's MOB, bypassing

memory but only the non-speculative thread can store values in memory. However,

speculative threads can store values in their MOB speculatively without blocking the

thread's ROB. Non-speculative store instructions are retired in order keeping consistent

the state of memory. Also, in this stage the mechanism (described in Section 3.7) that
keeps track of dependencies in memory is updated.

Instructions that do not access memory are sent directly from the execution stage
to the writeback stage bypassing the memory stage.

3.3.4.6 Writeback Stage

The write back unit takes the results coming out of the execute unit and places them on

the write back bus. This mechanism allows instructions waiting for the result in the
reservation stations and the ROB to simultaneously latch the value. During write back
stage results of register jumps (Jr $r) and conditional branches are obtained. In the case

of register jumps, the writeback unit updates the fetch unit with the corrected PC. In the

case of branches, it determines the validity of the predicted target address. Then, it
forwards the results of the prediction to the BTB to help in predicting future branches in

the same branch address. Finally, when a context has mispredicted a branch it flushes the
speculative instruction stream after the branch.
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3.3.4.7 Commit Stage

In the commit stage, instructions are retired from the ROB in order and the physical

register file of the context to which the committed instruction belongs is updated. Also in

this stage, the TCIU is updated. The TCIU decides, based on the calculated IPC in non-

DSMT mode and in pre-DSMT mode, if it is worth it or not to exploit or continuing

exploiting a loop. If the decision is to enter full-DSMT mode in the next cycle, the TCIU

unit sets the DSMT mode bit and spawns the new threads by activating the contexts and

copying the register file from the non-speculative context to the register file of the new

context spawned.

Additionally during this stage, the non-speculative context transfers the flag,
which indicates which context is working as non-speculative to the next successor
context. At same time the TCIU unit is updated with the context number of the new non-

speculative thread. This occurs when a loop continuation instruction is committed.

However, since it may occur that speculative contexts could finish a single loop iteration

before the non-speculative thread does, these contexts are put in a hold state which

disables them from fetching/dispatching new instructions until they are enabled again by

obtaining the non-speculative flag.

When a loop termination instruction commits (i.e., when a non-taken branch
instruction is found) at this stage, the TCIU flushes the remaining speculative contexts,

changes the state of the processor to non-DSMT mode and updates the LDBTB with the

final IPC obtained during DSMT mode.

3.4 DSMT Support for multiple contexts

In addition to multiple PCs that access the instruction cache to fetch instructions for the

multiple contexts, DSMT uses the following structures to support multiple contexts.
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3.4.1 Instruction Queue and MOB

The compacted results of instruction fetches after branches are fed to an instruction queue

(IQ). There is one IQ per context and each IQ structure is implemented as a circular

FIFO. During dispatching, instructions are taken from the head of the queue up to the

dispatch bandwidth associated to each thread.

One Memory Order Buffer (MOB) is also assigned to each context. During

dispatching, slots in the MOB are allocated to each load or store operation. Stores are

committed in order, but speculative and non-speculative loads are allowed to bypass
stores.

3.4.2 Reservation Stations

The reservation stations (RS) are used to hold instructions that may or may not be ready

for issue. Each entry in the RS contains immediate values or register values that were

read at dispatch. These operands are marked as valid. When all such operands are
marked valid the instruction is ready for issue.

For operands not yet valid, (i.e. those who have a dependency in which another

instruction will provide the required operand) each entry contains the tag name that is

used to latch the correct value from the writeback bus. Additionally, the reservation

station contains the ROB tag of the location to which the result should be written.
Reservation stations are shared by multiple contexts.

3.4.3 Reorder Buffer and Register File

The Reorder buffer is used to keep the correct order of instructions during retiring or

committing. To perform this task a circular FIFO queue is used. An entry in the reorder

buffer has an implicit tag in the form of an index. Additionally, the reorder buffer serves

as a register renaming mechanism in that it contains register values produced during the

execution phase. These values are then available to dispatched instructions before they
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haven been committed to the register file. In this way artificial WAW and WAR
hazards are eliminated. The Reorder buffer, like the instruction queue, is more efficiently

implemented as multiple reorder buffers (one per context).

Additionally, DSMT contains one register file per context. The register file from

a context is able to send and receive register values from other context's register files.

3.5 Loop detection mechanism

The main module of the loop detection mechanism in DSMT is the LDBTB. The
structure of the LDBTB consists of a specially modified Branch Target Buffer (BTB)

augmented with additional fields to facilitate loop identification. In addition to the
typical fields found in most modem superscalar processors BTB (e.g., branch address,

target address, op-code, and branch prediction information), it contains the following

information: a flag indicating that the target address of this branch is the starting address

of a loop; the number of iterations that this loop has executed (i.e., the number of
consecutive taken branches); and a type information indicating whether this is a "good"

or "bad" loop for speculative execution based on its previous behavior.

LDBTB contains a field that provides feedback on how loops behaved in their

previous executions. Three criteria are used to determine whether a loop is good or bad:

1. Number of iterations a loop executes,

2. Number of contexts currently available in DSMT,

3. How much overlapped execution of cloned threads exists and

4. Thread run-length.

The first two criteria determine the potential TLP in the cloned threads. However,

even in loops with a large number of iterations, it is possible that they may exhibit very

low ILP during execution. This could be caused by a large number of inter-thread
dependencies in the loop or by frequent miss-speculation of loop iterations. In this case,

the third criterion is used to determine the effectiveness of the DSMT execution. This
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criterion associates an Instructions-per-Clock (IPC) measure during the execution of a

loop in DSMT mode.

On the other hand, the fourth criterion together with the first two indicates how
sustainable the overlapped execution can be.

The four criteria are combined to form the sustained IPC (SIPC) measure for a
loop. A loop is labeled as good or bad based on a "break even" policy, where the
observed IPC during DSMT execution is compared against observed IPC for a non-
DSMT execution of the same loop. If the IPC measure breaks even then the loop is
labeled as a good loop for speculative execution. In this way, we can guarantee that
DSMT mode execution will result in as good or better performance than in non-DSMT

mode execution when speculation is correct.

Nested loops present opportunities to select the thread granularity that DSMT
exploits. In these loops, the SIPC measure is also used to select a particular ioop in the
nested loop structure that will provide the best performance. Control of nested loops is
handled by a special stack structure associated with LDBTB. Inner loops are stored at the
bottom of the stack and outer loops at the top of stack. This simple mechanism is capable

of detecting nested loops by storing the branch address and the target address of a loop in

the stack of loops. Then, when a new loop is detected, its branch and target address are

compared with the addresses stored at the top of the stack. If the new loop's branch and
target addresses include the range of addresses stored at the top of the stack, the loop is
pushed onto the stack. The stack is used to select for execution the loop in the nest that
will provide the best performance.

3.6 TCIU and multiple contexts

The structure of the TCIU and multiple contexts are shown in Figure 3-9. When LDBTB

detects a loop using the policies described earlier, it latches the target address of the

thread to be cloned to the Continuation register and sets the M-bit indicating the
processor is in full-DSMT mode. In this mode, the thread cloning process starts by
copying the target address in the Continuation register to the PC. Then it copies the
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values in the physical register file to the Logical Registers and sets the Valid (V) and
Speculative (S) mode bits of each context. The V-bit indicates that the context is valid
and, therefore, the Fetch stage can fetch instructions from its PC and update its local
registers.

In full-DSMT mode, only one context executes in non-speculative mode and all
other contexts are executed speculatively. In this last case, the S-bit, when set, indicates a
context is running speculatively.

After the speculative threads have been cloned, the Loop-Stride Speculation Table
(LSST) is used to "start" the cloned threads. LSST keeps a list of register increments
(i.e., induction variables) for eventual speculation. LSST contains also confidence bits
associated with the prediction associated to each register.
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Figure 3-10. Thread control and multiple contexts.
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In full-DSMT mode, each context has an associated Join (J) bit, which is set to

indicate to the TCIU that thread execution has completed. This bit is used to synchronize

thread execution.
The TCJU also has a set of Anchor bits, D_Anchor and R_Anchor bits, which are

the status of D and R bits respectively (explained below), of the thread just before threads

were cloned. These anchor bits provide a means of:

(1) Speculating whether cloned threads should read the registers of their own

context or from the registers of other contexts and

(2) Generating a new set of D bits for future speculation.

The logical register file is the local group of registers in a context. The logical
register files of different contexts are mapped to a single physical register file where the

actual state of the processor is stored. The logical register files allow register values to be

shared across different contexts and, additionally provide each context with a distinct

logical view of its state. They also provide fast register access in a context.

To facilitate forwarding between logical register files, in addition to the usual

ROB entry tags and busy bits found in a register file of modem superscalar processors,

each logical register is associated with a set of utility bits that keep track of inter-thread

register dependencies. They are:

1. Ready (R) bit When set it indicates some instruction(s) logically preceding this

one in the thread's program order has committed a value to the register;

otherwise, no value has been committed to the register and there are no
instruction(s) in the local ROB that will commit to this register (which is detected

by checking the register's Busy bit). R bits in conjunction with busy bits reflect

whether registers should be speculatively read from its own context or another
context. In addition, R bits of context i are interfaced to the context i-i. Whether

these contexts are physically connected or not, depend on the Head and Tail
registers of TCIU. This flag also indicates that successor contexts need look no

further than this context to get the value.

2. Dependency (D) bits Keeps track of registers that have inter-thread

dependencies. When a register is read, if its R-bit is zero and there are no other
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instructions in the ROB that will commit to the register, a check is then made to

see if its R_Anchor-bit is set. If both of these conditions are true (register not
written in the current context and the other context has written that register
previously), it means inter-thread dependence exists for the register. These bits

will serve as D_Anchor bits to facilitate speculation on how registers are
accessed.

3. Load (L) bit When an instruction attempts to read a register in its own context,

its L-bit is set if its R-bit is zero (meaning the current thread has not written to this

register) and there is no instruction(s) in the ROB that will commit to this register.

L-bits indicate that registers have been speculatively read from their own context.

At this point, there are two important implementation details to take into account.

First, before threads can be cloned, a couple of loop iterations must be executed in non-

DSMT mode to establish the contents of the Continuation register, LSST entries, and D_

and R_Anchor bits. Second, all cloned threads execute speculatively. The only non-

speculative thread is the parent thread, which means the parent thread's context has the

precise state of the processor. Thus, when the non-speculative thread completes, its

successor thread then becomes the non-speculative thread, and the Anchor bits located in

the TCIU unit are updated with the R and D bits of the just completed non-speculative

thread.

Lastly, is important to mention that during the DSMT mode of execution the

register file of the non-speculative thread contains the precise state of the processor and

therefore to guarantee a precise state interrupts must be disabled when the non-
speculative flag is transferred from one context to the next in the sequence.



3.7 Resolution of Inter-thread register and Memory Dependences in
Speculative Execution

Register dependencies between iterations are resolved by speculatively accessing
registers based on D_Anchor bits. If R-bit is set for a register, the register value can be
read directly from its own context. Otherwise, first-level speculation, called register

dependence speculation, is performed based on its D_Anchor bit to determine which
thread the value should be read from. For example, when an instruction in a thread tries

to read its own register with its R-bit equal to zero, the D_Anchor bit for the register is

checked. If the D_Anchor bit is set, it indicates that previous executions of the iterations

had an inter-thread dependency on the register. Therefore, the speculation assumes that
this inter-thread dependency will likely exist in the current execution of speculative
threads, and the register, when ready, is read from its immediate predecessor thread. If
the register dependence speculation turns out to be wrong due to dynamic behavior of
loop iterations and the immediate predecessor thread does not generate the register value,

the second-level speculation is used. This involves searching back for the last thread that
generated a value for the register.

On the other hand, if the D_Anchor bit of a register is zero, it indicates that
previous executions of the loop iterations did not have inter-thread dependence on the
register. However, since dynamic behavior of loop iterations may have changed a
register due to an inter-thread dependent register, the speculation used is to assume that
predecessors may have modified the register and read the register from the last thread that

wrote to this register. If no predecessor threads have modified the register, it is read from
its own context.

Since the DSMT processor relies very heavily on speculation, cloning and
speculative execution of threads, require a method to detect and squash threads when
misspeculation occurs. The detection of misspeculation is done when registers are

written. Whenever a thread writes to a register, its L bits of the successor threads are
checked to see if any thread has read the register. If so, that thread and all of its
successor threads are squashed and reinitiated. However, when this condition occurs a
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check is made before the context is squashed to see if the register value has changed.

If the value has not changed then the context is not flushed since this means that the
register value used is still correct, otherwise the context is flushed. Additionally, every

time a context is flushed due to an early reads in a context the confidence bits associated

to the register are updated as described later in this Section.

In order to ensure the proper ordering and yet maximize the overlapped execution

of the cloned threads, a new iteration is initiated in the context whenever any completes.

Thus, when a thread completes its iteration, the context signals to the TCIIJ by setting the
appropriate J-bit. Since the just completed iteration has properly updated its R and D
bits, these bits become the new set of Anchor bits. In addition, the just completed
thread's successor now becomes the non-speculative thread. The TCIU can therefore

reinitiate the next iteration by appropriately changing the Head and Tail registers and
cloning the new thread.

In DSMT, loads from different threads can be executed speculatively. However,

only the non-speculative threads must perform stores. To ensure that sequential
semantics are not violated, the Memory Dataflow Resolution Table (MDRT) is used. The

organization of the MDRT is shown in Figure 3-1 1. Load/Store operations are sorted in
one of the Memory Order Buffer (MOBs) according to its tag. In addition to allowing
loads to bypass stores, the MOB also acts a buffer so that stores can speculatively
commit. This prevents uncommitted stores from speculative threads blocking the ROB.
The Priority Logic selects Load/Store operations based on a priority and forwards it to the
memory subsystem. The MDRT checks these operations to ensure memory locations are
not corrupted.

MDRT is a fully associative buffer with each entry containing a valid (V) bit, a
word address (addr) and a value. In addition, each associated with each thread has an
bit and an S-bit indicating whether the memory word has been loaded or stored,
respectively by a particular thread.

The data cache used by DSMT has four ports. One of them is assigned to the
non-speculative context. The rest are assigned to the speculative contexts using a round-
robin policy. However when there are not enough valid speculative contexts, the non-
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speculative context may use the available data cache ports. Loads can proceed
normally for non-speculative threads. However, speculative threads performing a load
check first to see if an entry exists based on addr. If none exists, an entry is allocated for

the addr. If an entry is found, its L-bit for the thread is set and the load is allowed to
proceed with its operation. A store instruction is not allowed to update the memory
unless it is from a non-speculative thread and it is at the head of its ROB. This

guarantees that the precise state of the processor can be maintained. When a non-
speculative thread performs a store, it sets the S-bit for the thread. In addition, it checks

to see if other threads have their L bits set. If any thread has read previously the memory

value that the non-speculative thread has committed, such thread and all of its successors

are squashed.

From functional
units

<op,address, context>

Figure 3-11. Memory dependency resolution mechanism.

reservation
stations

Blind speculation may cause continuous squashing of threads who keep reading

the same register value too early all time. To avoid this detrimental effect on
performance, the TCIU contains a table of confidence bits (C) associated with each



register. Two bits are used to assign a confidence value to the speculation performed

when a register value is read from another context. The 2-bits counters are incremented

every time a thread is squashed due to wrong speculation and decremented when the

speculation turns out to be correct i.e., when a register value is read early but it is found

that the value did not change. A similar mechanism is used in the MDRT to keep track of

early loads from a thread. The confidence bits in TCIU and MDRT are reset to zero

every time the processor exits DSMT mode.

The confidence bits associated with the TCIU and MDRT are checked during the

dispatch stage, delaying if necessary, instruction dispatching when it has been determined

that the instruction has an inter-thread dependency but is very probable that it will be

squashed since the confidence is low.

3.8 Value Prediction

DSMT value prediction mechanisms are used to predict induction variables using the

Loop Stride Speculation Table (LSST). hiduction variables are used very often in
compiler generated code to keep track of the number of ioop iterations, or to accessing

memory in regular patterns. Induction variables have normally the prototype addiu

$r, $r, #imxn or its signed version addi $r, $r, #imm in the PISA instruction set. These

types of instructions may serialize loop iteration execution since the register values that

are used depend on the ioop iteration number. For instance, in the code section shown in

Figure 3-12, which corresponds to the inner loop of an optimized version of the matrix
multiplication algorithm, all instructions that employ immediate addressing mode are

marked as candidates for loop stride speculation during the decoding/dispatching stage.

Then, during pre-DSMT mode, the #1mm values associated with each source

register in the candidate instruction are stored in the LSST. Later, at context spawning

(in full-DSMT mode), the register values are speculatively calculated as:

$r+iterationnumber*imm by specialized hardware units. Notice that the current
iteration number executed by the non-speculative thread is contained in the TCIU. This

number is updated every time that the non-speculative thread commits its results. When



the non-speculative thread spawns new threads, it assigns to each one an iteration
number that is used later to calculate the stride.

<main+90> addu $vO[2],$tl[9],$vl[3]
<main+98> 1.s $f2,O($aO[4]
<main+aO> 1.s $fO,O($vO[2])
<main+a8> mul.s $f2,$f2,$fO
<main+bO> 1.s $fO,O($a2[6])
<main+b8> addiu $vl[3],$vl[3],80
<main+cO> add.s $f2,$f2,$fO
<main+c8> addiu $al[5],$al[5],1
<main+dO> addiu $aO[4],$aO[4],4
<main+d8> siti $vO[2],$al[5],100
<main+eO> s.s $f2,O($a2[6])
<main+e8> bne $vO[2],$zero[O],00400280 <main+90>

Figure 3-12 Inner loop in the matrix multiplication algorithm

At the end of an iteration, to check the result of LSST speculation, the final

register values obtained during the execution of the non-speculative thread are checked

against the speculated values used by the successor speculative context. If those values

are different, the context associated with the mispredicted register value and all its
successors are flushed from the pipeline.

As Figure 3-12 indicates, is possible to dispatch instruction addu

$vO[2] , $tl [9], $vl [3] in parallel from all contexts since register $tl [9] never

changes (is dead) and the value of register $vl [3] is speculatively generated by the
LSST. The same argument is valid for instruction 1. s $f2, 0 ($aO [4]) and 1. s

sf0, 0 ($vO [2]) because registers $aO [4]and $vO [2] are assigned a value speculatively.

On the contrary, if those register values were not speculatively generated, then the first

three instructions in the loop will not be enabled for dispatching, causing serialization of

that portion of code. This fact was verified experimentally executing the matrix
multiplication algorithm code shown in Figure 3-12 with the LSST turned off. When this
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experiment was performed very little improvement in performance was obtained even

for such very parallel loop.

3.9 IPC Measurement Mechanism

DSMT sustained IPC policy to decide whether the parallelism available in a loop

is worth exploiting is based on measuring the IPC obtained during DSMT mode as

described in section 3.5. Since IPC is a ratio, its calculation, a fixed point division, may

take several clock cycles. However, the decision to enter full DSMT mode should be

done in a single cycle. Moreover, additionally to calculate IPC, the values obtained

during sequential execution in pre-DSMT mode must be compared with those obtained

during parallel execution in full-DSMT mode. The comparison is performed to decide

which mode of operation will give better performance. However, when a precise
measurement of IPC is expensive to carry out, an approximate method may be used.
Using an approximate method, a comparison of the numerator of the IPC ratio (number

of instructions committed) in DSMT mode is performed while keeping fixed the
denominator of the ratio (number of clock cycles). One possible simple implementation

of this mechanism using counters and comparators is depicted in Figure 3-11.

In this implementation, the TCI unit specifies each clock cycle, which is the
current operating mode of the processor that is either, non-DSMT pre or full-DSMT
mode. Once the DSMT architecture is operating in pre or full-DSMT mode, the cycle
counters keep track of the number of cycles that the processor has spent on an operating

mode. At the same time, instructions counters keep track of the number of instructions

committed.
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Figure 3-13. Mechanism employed to calculate relative IPC.

The cycle and the instruction counters corresponding to pre-DSMT mode are halted

when the processor decides to enter full-DSMT mode. Those values are used later as the

reference that indicates in which clock cycle the TCIU will decide if the IPC obtained in

full-DSMT mode is better or worse that the performance obtained during pre-DSMT
mode.
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4 DSMT SIMULATION ENVIRONMENT

A simulation platform centered on a new simulator, DSMTSim, was created to study the

performance of DSMT architecture. DSMTSim is an execution-driven simulator that is

able to operate in different execution modes. These modes are:

Fast mode simulation.

Wide issue, single context out-of-order simulator.

SMT multiple contexts.

DSMT simulator.

DSMTSim is an execution-driven simulator that accepts the binary files generated

by Simplescalar's gcc compiler (SS-gcc) [14]. SS-gcc generates instructions for PISA,

which is a modified version of the MIPS instruction set.

DSMTSim loads a binary program into internal memory and then simulates cycle

by cycle, all operations performed by the internal pipeline during single and multiple-

thread execution. Values are passed from producer to consumer instructions or memory

on fly. Hence, detailed simulation of the out of order engine is completely simulated.
DSMTSim is able of simulating single and multiple context execution with a command
line option.

In DSMT instructions in a thread commit their results out of order. However,

threads may also commit their results out of order with respect to other threads. This

dynamic behavior causes microarchitectures such as DSMT being difficult to simulate.

For this reason, several simulators of superscalar architectures were evaluated before
deciding to develop DSMTSim. The following section describes some of those
simulators in detail.
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4.1 Simulation Tools in Computer Architecture

There exist a number of simulation tools that contain detailed models of today's high

performance microprocessors. SimpleScalar (SS) tool suite 14 is a popular simulation
platform that provides several classes of simulators of varying accuracy/speed. Among

these, sim-outorder simulates a superscalar microarchitecture, and is the most complex

simulator of the tool suite; this simulator is a hybrid of a functional and trace simulator.

Traces are generated on-the-fly by the front-end simulation engine, executing those

instructions in-order, modifying the values of registers and memory. Later, in the back-

end, those traces are used to emulate an out-of-order processor, this time without
modifying registers or memory.

Sim-outorder handles system calls by passing them to the host operating system.

The host OS executes the system calls and passes the results back to sim-outorder. SS
tool suite is being widely used in computer architecture research. SS is written in C,
executes only user-level application programs, and has been ported to many different
platforms. A large percentage of the research published in major conferences and
journals is done using 55. However, sim-outorder is not easy to modify due to its
structure, and additionally the trace front-end that it contains makes difficult simulating

dynamic multithreading architectures since the simulation must reconstruct the effects of

the dynamic events from the trace.

In contrast to the SS approach, SimOS simulates all the hardware in a computer
system, including 110 devices such as hard disks and network interfaces 52. SimOS

simulates the hardware components in sufficient detail to boot and execute a complete
05. Using this simulator, it is possible to study the effects of more realistic workloads on

the performance of a complete computer system. SimOS is written in C, models the
MIPS R4000, Ri 0000 and Digital Alpha processor families and executes IRIX and
Digital Unix OS. SimOS comes with an in-order processor simulator but an out-of-order
version (MXS) 20 is also available for some platforms. However, one drawback of
SimOS is that runs only the binaries of Irix 05.



PSim 16 is a simulator for the PowerPC architecture. PSim implements the
three levels of the PowerPC instruction set architecture (ISA): User, virtual, and
operating environments. In the user mode, PSim can run static programs compiled for

any of the following operating systems: NetBSD, Solaris or Linux. This simulator comes

integrated with the gdb debugger.

Other superscalar processor simulators were designed as teaching tools.

Examples of this type of simulator are: SuperDLX [43], and SATSim [79]. There are

also simulators that are variations of SS, such as SIMCA [27], which has multithreading

capabilities. This special purpose simulator requires support from the compiler to
generate threads. In addition, some simulators run only on specific platforms or require
special compilers such as MIPS 17 or SMTSim 71. All these simulators are execution-
driven.

In contrast, there are simulators that are both, event-driven and execution-driven,

e.g., RSIM 48. RSIM simulates an out-of-order processor similar to MIPS R10000 and is

partially written in C and C++. RSIM is also capable of simulating a multiprocessor
system using event-driven simulation.

Another hybrid simulator is fMW 8, which is a descendent of the trace simulator
VMW 18. This simulator contains a trace engine called MW that directs the order of

instruction execution of PSim. PSim calculates results and sends the data back to MW,
which calculates IPC and processor utilization.

Unfortunately, in spite of their simplicity, simulators based on traces are unlikely
to capture all the processor's behavior [98]. For instance, speculative loads may not
show up in a memory reference trace. Moreover, the dynamic speculative behavior of

threads is very difficult to recreate from a trace. For these reasons, and due to the lack of

detail required to simulate dynamic multithreading in existing trace and non-trace

simulators, a new simulation environment was designed for DSMT architecture. Next

section, describes the simulation environment created for this purpose.
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4.2 Simulation Environment

During the simulation tool development process for DSMT architecture, two new

simulators were designed and implemented. The first simulator called EMSim [46] is an

object-oriented simulator that emulates the architecture of a generic superscalar
processor. Therefore, this simulator supports only single context simulation. The second

simulator called DSMTSim is a procedural simulator, which simulates DSMT in detail
with multiple contexts.

Both simulators in their current version are compatible with the compiler, linker,

assembler, and libraries of the SS tool suite. As a result, they share with SS the way in
which data, stack, and code areas are mapped into memory. However, parts of the
macros that define the implementation of the instruction set and the system calls of SS
were modified to make them compatible with DSMTSim and EMSim. In both
simulators, the simulation parameters can be configured from the command line or from a
text file in both simulators. The configuration parameters include: size and associativity

of cache memories and BTB; size of the instruction queue, ROB and reservation stations;
and number and type of functional units.

DSMTSim and EMSim are execution-driven simulators. These simulators are
capable of operating in different execution modes, which are: (a) fast, in-order simulation
and (b) detailed wide-issue, out-of-order simulation in case of EMSIM and multiple
context simulation in case of DSMTSim. The fast simulation mode employed by both
simulators, allows the user to quickly place a simulator in a particular section of the
benchmark code, skipping non-representative parts like initialization. During fast mode
simulation, instructions are read directly from memory and executed in sequence.
Conversely, in the detailed simulation mode, all the memory hierarchy and the pipeline
stages of the simulator are exercised. Using the detailed mode, the simulators load a
binary program into their internal memory and then simulate in detail, cycle-by-cycle, all

the processing performed by the pipeline. During instruction processing, register values

are calculated and passed from producer instructions to consumer instructions or memory

on-the-fly. On-the-fly value passing closely emulates the action of real superscalar
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processors, and is also used as a means for checking the correct operation of the
tagging and out-of-order execution mechanisms included in each simulator. In this way,

correct manipulation of instruction values is ensured during speculative execution.

Functional validation of EMSim and DSMTSim was performed in two ways.

First, the contents of memory and the internal registers on each simulator were compared

on a cycle-by-cycle basis with the corresponding values obtained by simplescalar's sim-
outorder executing the same benchmark. Furthermore, special benchmarks, which
perform intensive mathematical calculations, were executed on a real machine. The
output result sent to the console obtained by these benchmarks was compared with the

results obtained from EMSim and DSMTSim. In both cases, the simulators obtained the

same results as sim-outorder and the real machine. This test confirmed that all the out of

order mechanisms and the control speculation were correctly implemented.

Figure 4-1. EMSim's superscalar model.

Next sections describe in more detail the two simulators developed for this
research: EMSim and DSMTSim.
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4.3 EMS1m

EMSim was designed to develop eventually into the simulation platform for DSMT
architecture. The specific superscalar architecture that EMSim simulates is shown in

Figure 4-1 EMSim consists of seven main stages: Fetch, Decode! Dispatch, Issue,
Execute, Write-Back, Memory and Commit.

GUI (Java)

Comm.
Thread

V

Host B

Figure 4-2. EMSim's distributed architecture.

EMSim was designed using object-oriented (00) techniques. The advantages of

an 00 approach to software design in general are well documented [13]. They include
many well-accepted design goals of quality program development, such as modularity,

modifiability, and maintainability [13]. Moreover, designs centered on objects are
especially suited to use in simulation.

Simulation speed is obviously an important factor in a simulator. However, the

features that the 00 approach provide to software design in general, are equally or
perhaps more important in a simulator. Languages such as C++ offer useful 00
mechanisms, such as inheritance, polymorphism, and templates. Templates support the

design of software using generic programming techniques. In generic programming,
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software components are created so that they can be easily reused in a wide variety of

situations. The data structures and algorithms in the Standard Template Library (STL)
[7] are examples of the application of generic programming. In this library, software

components such as queues, sets, lists, etc., are able to handle different types of objects

employing different algorithms.

Figure 4-3. UML diagram of EMSim's main classes

EMSim provides modularity, code reutilization, and extendibility through the use

of classes, inheritance and generic programming. Modifications to EMSim are easily
integrated since these features are available to a developer. To obtain fast execution
speed, EMSim was developed in C++. In addition, the implementation of EMSim was

carried out employing STL's generic containers and iterators. Moreover, the interfaces

defined using virtual functions allow subclasses to specialize methods with their
particular implementation.

EMSim has a distributed architecture that consists of a graphical user interface

(GUI), a core simulation engine, and communication facilities. This is in contrast with
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existing simulators that consist of only a single executable with a simple command line

user interface where all simulation parameters are specified.

The Java language provides, through the Swing library, abundant graphical
elements to build complex user interfaces that are portable across different platforms [6].

To make use of these capabilities and without sacrificing simulation speed, EMSim was

designed using Java's Swing libraries for the user interface and C++ for the core
simulator. The simulation environment designed with this architecture allows decoupling

the GUI from the simulator, a useful feature during testing or when benchmarking is

performed.

EMSim's user interface handles user events and creates a special thread to
communicate with the main simulator through TCP/IP sockets. On the other hand, the

core simulator creates a Posix thread (pthreads) to execute the communication routines.

Figure 4-4. UML diagram of EMSim's pipeline

The communication thread in the GUI receives commands from the user to
control simulation execution. A simple protocol was designed to transfer data between
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the simulator and the GUI. The communication library socket++ [60J is employed to

receive/send the C++ input/output streams fromlto the simulator. EMSim's distributed

architecture makes feasible to use the simulator with the GUI on a single computer or

remotely over the network. EMS1m is also able to run on a single computer without the
GUI in text mode. In the latter case, the output streams generated by the simulator are re-

directed to the standard output instead of through the TCP/IP sockets.

EMSim's design is organized in a hierarchy of classes. A partial UML diagram of

the main classes in EMSim is shown in Figure 4-3. The base clase CObject provides
common methods and variables to all classes derived from it. The Instruction-cache

(ClCache), Data-cache (CDCache), and BTB (CBTB) classes are specializations of the

base classs CCache used to store instructions, data, and branch prediction information
respectively. Other classes are also defined to keep processor state and provide the
actions performed by the register file (CRegFile), main memory (CMMem), reservation

stations (CResStat), instruction pool (CinsPool), and writeback queue (CWBQueue).

EMS1m pipeline was modeled using the UML class hierarchy diagram shown in

Figure 4-4. The class CSimulator contains the classes used to model the pipeline stages

and the main simulation loop. As is illustrated in Figure 4-4, classes were defined to
emulate a processor pipeline consisting of fetch (CFetch), decode/dispatch (CDecode),

issue (Clssue), execute (CExecute), write-back (CWriteBack), and commit (CCommit)
stages. In addition, memory instructions are processed during the memory stage
(represented by CMemory). The base class CProcess provides the features that are

common to all derived classes representing the pipeline stages (e.g., bandwidth). Utility
classes (not shown) were also designed to handle statistics, exceptions, memory data,
clock, timers, etc.

The design of EMSim also provides support for debugging. The class CBreak in

Figure 4-4 allows breakpoint conditions to be declared. This class also contains methods

to dump the state of a pipeline stage when a breakpoint condition occurs during
simulation. The information dumped includes the state and contents of the queues

handled by the stage. A new class derived from CBreak may override the dump method

to print any other information required by the user. In its design, EMSim employs
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different STL generic containers such as sets, lists and queues. Although the design of

STL was optimized in some parts for fast execution, this library adds an overhead to the

total simulation time. Hence, to minimize this overhead, STL's generic containers were

employed only in those parts of the simulator that do not negatively impact EMSim's
performance. Therefore, containers of objects that are used very frequently were
implemented using templates and arrays instead of STL generic containers. EMSim's

main loop processes all the pipeline stages at each simulation cycle as the following code

shows:
obj list iterator p;

for (;;;)

for (p=s RunList . begin 0;
p!= sRunList.end;

p++)

(*p) ->Run H;

clock. Tick (

Figure 4-5. Main loop of EMSim

As this code segment illustrates, there are no specific references to any particular

pipeline stage in the main loop. Pipeline objects are stored in the STL generic container

sRunList during initialization, and then, accessed through the object iterator p. This
design reduces the amount of changes required and simplifies modifying EMSim. For
instance, to add a new pipeline stage into EMSim, a new class derived from CProcess is

created. This class will include the implementation of the virtual method Run shown in

the segment of code above. Virtual methods are the interface that is implemented in
different ways at each pipeline stage. Later, an instance of the class would be stored in

sRunList. Pipeline objects are stored using the push_back () method of the
container sRunList. The iterator in the main loop of EMSim will automatically

process the new pipeline stage by calling its Run method. Using this generic
programming approach, the main loop of the simulator remains unchanged regardless of

how many pipeline stages are added (changes occur mainly in the new class code).
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In EMSim, pipeline stages communicate through instruction queues. Hence,

after being processed, instructions must be placed in the appropriate output queue so that

the next pipeline stage could access those instructions. Thus, no global structures are

accessed during this process. In contrast, adding a new pipeline stage in SS's sim-
outorder requires changing the main simulation routine. In addition, the new procedure

must update, in an appropriate way, the global structures and variables (e.g., queues and

flags) that keep track of the processor's state in the RUU unit [99]. However, since the

RUU unit is a centralized structure, this process must be performed very carefully to
avoid causing unintended effects in other parts of the simulator.

The 00 structure of EMSim facilitates extending its capabilities to simulate other

types of architectures and allows also a quick visualization of the changes that will be

required to perform those extensions. For instance, extending EMSim to simulate a SMT

processor entails creating additional object instances for the register file (or processor's

context), instruction queue, ROB, and Memory Order Buffer (MOB). In addition, using

the generic programming approach, such instances would be stored in generic containers

that the appropriate pipeline stage would access in order to process instructions
corresponding to different contexts. Other changes to EMSim required to implement a

SMT processor would involve extending the data cache memory to support multiple
ports, overriding the fetch method that access the instruction cache memory to support a

new fetching policy, overriding the method that is used to dispatch instructions, etc.

4.4 DSMTSim

DSMTSim is the procedural simulator for the DSMT architecture. This simulator has all

the elements and mechanisms required to simulate a SMT architecture, such as: multiple

contexts, multiple instruction and data-cache ports, multiple ROB's, MOB's, and
multiple return stacks. Additionally, DSMTSim includes the data structures required to

support the DSMT model described in detail in Section 3.3. For instance, DSMTSim

implements the code to simulate elements such as: TCIU, MDRT, LDBTB, anchor bits

etc., as described in Section 3.3.
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Figure 4-6 shows the programming environment used by DSMTSim and
EMSim. Both simulators were written for the Linux platfonn and the SS compiler (gcc

2.72 ported to generate PISA code) was used to generate all of the benchmarks used in
simulation.

rBenchmark Simulation
Lprogram parameters

lj!

rSjmPJeScalar}

Binary

fDSMTSimIEMSim_]

SS libraries

Simulation
results

Figure 4-6. DSMTSim and EMSim's progranmling environment.

Feature
SimpleScalar

sim-outorder 3.Ob
DSMTS1m 1.Ob EMS1m 1.Oa

Simulator type Hybrid (trace front-end) Execution Driven Execution Driven
Multiple contexts No Yes No
Object Oriented No No Yes

Fast execution mode No (only in sim-fast) Yes Yes
Distributed architecture No No Yes

Configurability Very Some Minimum
On-the-fly value passing No Yes Yes

Multiplatform Yes No No

Table 4-1 Comparison of features
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Table 4-1 compares some of the capabilities provided by Simplescalar's sim-
outorder, DSMTSim and EMSim in their current versions.

In spite of the fact that the main goal of DSMTSim and EMSim was not to achieve

fast simulation speed, two code optimizations were included in the design of both
simulators. First, the maximum number of instructions that a simulator is able of
processing in its internal data structures is allocated only once during initialization, and

placed in an instruction pool. When a context fetches an instruction from memory, such

instruction is marked as busy in the instruction pool. Later, when that instruction
commits its results it is marked as free. This recycling policy enables instructions to be

reused, avoiding the cost of allocating new blocks of memory every time an instruction is

processed. Second, instructions processed in one pipeline stage are passed from one
stage to the next by changing only the instruction pointers associated with them.

4.5 DSMTS1m Incremental Development and Functional Validation

DSMTSim was developed incrementally to ease debugging and testing. During

development, several versions of the simulator were created, namely: single context
DSMTSim-fast, single context superscalar DSMTSim-SS and multiple contexts

DSMTSim. Simpler versions of the simulator were tested and used as the basis for the

more complex simulators. This process facilitated debugging and the smooth,
incremental development of DSMTSim.

DSMTSim-fast is a fast and very simple version of a single context processor.

This version is roughly equivalent to SimFast from the SimpleScalar toolset. DSMTSim-

fast does not have cache memory or pipeline stages. Instructions are taken from memory,

and decoded and executed in sequence. The goal of this simulator was twofold; first to

test the modules that are shared by all simulators, such as program loader, decoder,
register file and the instruction set; and second to provide the fast simulation mode that

DSMTSim uses to execute benchmark initialization code. Initialization code is generally

discarded when obtaining performance measurements.



Functional validation for DSMTSim was performed at several levels. First,
since DSMTSim is actually passing values between instruction registers, the output
generated by the simulator was compared with the output of the same program using a
real processor, i.e. the output sent to the console for both the simulator and the real
processor was compared. Second, to debug and validate DSMTSim-fast, a special test

program was written. The testing program is able of comparing the state of the internal

memory and the register values with the contents of memory and registers in

SimpleScalar's sim-fast simulator, when both simulators are executing the same
benchmark program. However, Simplescalar's sim-outorder simulator was modified to
generate the output in the same format as DSMTSim does.

In order to perform validation using sim-outorder simulation, a test program
called DSMTTest was written. This test program spawns two Unix processes
corresponding to both simulators: DSMTSim and SimpleScalar's sim-outorder. Then,
each simulator, working in parallel, executes a single instruction and sends all its
registers values and its memory contents to the parent process (DSMTTest) through OS
pipes. Later, the parent process compares the received values and generates a report file
in case an error in the register file or in memory is found. Otherwise, simulation
continues normally.

Figure 4-7 shows a block diagram of the method used to validate DSMTSim
using DSMTTest and sim-outorder.

On the other hand, the full-fledge superscalar simulator EMSim was
debuggedlvalidated using an instance of EMSim in fast mode. The fact that EMSim is
written in C++ made testing phase easier, since instances of EMSim fast mode and
EMS1m regular superscalar objects are created easily. To allow comparing EMSim fast
mode with EMSim superscalar output, the commit stage of EMS1m superscalar was
changed to stop committing instructions after the retirement of a single instruction.
Figure 4-8 shows how C++ objects facilitated the testing procedure.
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TTest

Fork(
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memory contents

Error Report
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Figure 4-7. Functional validation of DSMTSim.

EMSim-Fast emsimFast = new EMSim-Fast(); /1 create simulators

EMSim emsimSS=new EMSim();

emsimFast.execute(l);//executes and commits a single instruction

emsimSS.execute(l);//all pipeline used, commits one instruction

for (mt i=O;i<EMSim::registernum;i++) {//compares register values

if (emsimFast.getRegister(i) emsimSS.getRegister(i)

generateReport(); // if error generates report

break;

// do the same with memory

Figure 4-8. Code used to compare states of EMSim and EMSim-fast.



4.6 Software Tool for Parallel Benchmarking

In computer architecture research and in many other engineering areas,

performance evaluation requires very time-consuming simulation runs. These

simulations can take a long time to produce performance results. During simulation, a

benchmark program is usually executed using a specific set of simulation parameters.

Later, a new simulation is started, but this time with some of the input parameters
changed. These steps are repeated for different benchmarks using different simulation

parameters. Finally, when all simulations have finished, simulation results are collected

and sorted for final analysis. This entire process makes performance evaluation a long

and error-prone process. However, total simulation time may be improved if a group of

networked computers is employed. In this case, each computer performs different
simulations, reducing considerably total benchmark simulation time because all

computers are working in parallel. However, simulation data results still have to be
collected and sorted manually. Furthermore, in this environment, there is no way to
guarantee good load balancing in the network and therefore, different simulations could

finish at unpredictably times.

A parallel computing cluster, like the SWARM Beowulf cluster [45], can
ameliorate all of these hurdles. SWARM, along with software specifically written to
work in this parallel environment, substantially reduces the time required to perform
detailed architectural simulation studies. At the same time, load balancing is obtained

through specialized software that is in charge of analyzing network load, assigning tasks

to nodes that have a lesser load. A software tool was created to work on the SWARM for

improving benchmark simulation time and data collection.

Simulation nodes in a parallel environment like SWARM need to communicate in

order to send simulation results. Message Passing Interface (MPI) [47] is a collection of

library functions that provide communication primitives using message passing.
DSMTSim was modified with MPI calls to send and receive simulation data.

Figure 4-10 shows the parallel simulation environment created for parallel
benchmarking of DSMTSim. This environment is composed mainly of:



A GUI application written in Java

A colection of Perl and shell scripts

DSMTSim modified with MPI calls.

Additionally, the following tools, already available on SWARM, were used as

part of this simulation environment.

The MPI library

The LSF job queue management system

The GUI allows the user to configure the simulation parameters. Some of the
information provided by the user includes: a variable to measure (IPC, cache miss rate

etc), range of simulation (context number range), benchmark program to execute and

format of output results. Once the user enters all this information, a text file is created

with the script data needed to generate a desired simulation cycle.

A Pen script reads this simulation information and executes the load balancing

software program in SWARM given the required number of simulation nodes. Once the

simulation processes are sent to the queue of processes, simulation nodes are initialized

by the MPI system.

During initialization, each node calculates its identification number. A particular

simulation node to get simulation parameters such as the context number uses this
number. A node in SWARM will execute the simulation corresponding to a single
context execution, another to two contexts and so on.

Figure 4-9 shows partially the code used in the root node to spawn simulation

nodes and to sendlreceive data from slave nodes.

During parallel benchmarking execution, the root node coordinates simulation

execution but each node reads in parallel the information needed to perform a particular

simulation run. When a node finishes one simulation cycle, it synchronizes with all other

nodes in the MPI communication world and sends its results back to the root node. At

this time the node simulation is free to start a new simulation cycle.
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MPIInit(&argv,&argc); //initializes the MPI system
MPIComin-rank(MPICOMMWORLD,&idnum);//get id number for the node
MPI Comm size (MPI COMM WORLD, &num proc) ;//get number of process

MPI Barrier (MPI COMM WORLD);
getSimulationParameters (id num) ; //obtain simulation parameters
do

PerformSimulation(idnum); II call DSMTSim to execute benchmark
MPI Barrier(MPI COMM WORLD); 1/ synchronize nodes
for (mt i=O; i< num_data; i++)

getSimulationValue (i, &value);
If (!idnum) I/root process

MPIRecv (&value, 1, MPI FLOAT, I, tag, MPI COMM WORLD, &status)

else // node process
MPI Send(&value,MPI FLOAT, O,tag,MPI COMM WORLD);

while ( simulations_done);
MPI Finalize ()

Figure 4-9. MPI code to send and receive simulation data in parallel bechmarking.

When all nodes terminate the total benchmark simulation cycle, they send their

final simulation results to the root node. With this data, the root node creates a single file

with the complete simulation results. Also at this point, the LSF system used by
SWARM sends an email to the user indicating that a simulation cycle has ended.

At this point the user can execute the Java GUI to read the simulation results file

and optionally to generate a graph of those results.

Figure 4-10 shows the components of the DSMT simulation software tool set on

SWARM, and Figure 4-1 1 depicts the GUI used to configure simulation parameters for

DSMTSim during parallel benchmarking.
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Figure 4-10. Parallel benchmarking on SWARM
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Figure 4-11. GUI for DSMTSim parallel benchmarking.
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5 DSMT SIMULATION PERFORMANCE RESULTS

This section discusses the simulation results obtained during DSMT performance

evaluation. First, the well-known Livermore loops are used to evaluate the effect of
different fetching policies on DSMT. The Livermore loops where chosen for their
features, generality, and variety. Livermore loops consist of 24 core calculations used in

familiar numerical algorithms such as: matrix multiplication, Cholesky's conjugate
gradient, Monte Carlo's search etc. All the kernels were compiled without modifications

to the original C source code, using gcc with the 03 optimization flag turned on.

FU Type mt ALU Tnt Mu! Tnt Div FP Add FP Mu! FP Div L/S

Number 8 2 1 2 2 1 2

of FU

Reservation 8 2 2 4 4 2 4

Stations

Table 5-1 DSMT functional unit configuration

DSMTSim's functional unit configuration used during simulation is based on

Table 5-1. Table 5-2 shows the simulation parameters used in the experiments.

Instr. Queue L/S Queue ROB size/context InstJDataJL2.Cache Shared BTB size

size/context size/context

64 64 32 (2 bits) 128/128/256 KB, 2 K, 2-way

2-way

Table 5-2 DSMT configuration.

To assess the effect of the number of fetching ports and the issue width on
DSMT's performance, an ideal configuration was used in the first in the experiments, i.e.

the fetch unit was enabled to use as many ports as contexts are available in the processor.

Also, each context was allowed to issue up to four instructions per clock cycle.
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Figure 5-1. DSMT performance with variable number of fetching ports
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Figure 5-1 shows the speedup obtained by the DSMT processor with 2, 4, and 8

contexts when compared to a single context 8-wide issue superscalar processor executing

the same benchmarks. In the graph shown, GMean represents the geometric mean of the

speedup obtained by all twenty four kernels.

As Figure 5-1 shows, the maximum speedup obtained by DSMT was 100% on
average with 8 contexts, followed by 4 contexts with a speedup of 84% and 2 contexts
with speedup of 34% on average. Performance results on Figure 5.1 show that for a few

loops the speedup was negligible. However, statistics gathered by the simulator showed

that in Kernel-8 (integration), for instance, DSMT's LSST mechanism has a high
misprediction rate. This occurs because the pattern to access memory used in that loop is

more complex, and therefore the simple value prediction method used by LSTT is unable

to predict correctly the value of the induction variables used in that loop.



On the contrary, Kernel- 10 (difference predictor) low performance is due to a

combination of two factors: LSST's low prediction rate and high thread synchronization

rate. As was explained in Section 3.7, a speculative thread gets blocked when due to

dynamic conditions it is able to finish execution before the non-speculative context does.

Since the non-speculative context is the only one capable of enabling other speculative

contexts to become non-speculative, the gap produced when the non-speculative thread is

delayed causes degradation in performance.

On the other hand, the other factor that is causing degradation in performance

during the execution of kernel 22 (plankian distribution) is a high branch misprediction

rate.

Figure 5-1 also indicates that DSMT does not always obtain the best performance

from the maximum number of threads. The reason for this is twofold. First, since each

context executes nearly the same code (when there are no conditional branches inside),

the requirements of each thread in terms of processor resources are very similar during

each iteration. Therefore, increased competition exists for the shared resources. This

issue is especially critical in loops with either a very large number of numerical

calculations, a large number of memory accesses or both, such as kernels: 8 (integration),

and 10 (difference predictor).
Lastly, dynamic behavior inside loops is the other main cause for the poor

performance exhibited by some loops on an eight context DSMT processor. Loops with

dynamic behavior tend to generate higher inter-thread mispredictions. Mispredictions

occur mainly when register values are read too early by the speculative threads as is in

the case of Kernel- 17 (conditional computation) which contains five goto statements in

the loop body. In this ioop, statistics gathered by the simulator indicate that mispredicted

threads that are squashed when the end of ioop was found cause the decrease in

performance for eight contexts. An analysis of the code indicates that some internal

backward jumps are confused by the loop detection mechanism as loops. However, since

these backward branches are dependent of internal variables in the loop sometimes a

backward branch is taken and some other times is not. Therefore, using the maximum



number of contexts increases the probability that many more of threads will be
squashed when the conditional branch is not taken.
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Figure 5-2. DSMT performance when ICount2.8-modified policy is used

Figure 5-2 shows DSMT performance when a more realistic configuration for the

number of fetching ports and issue bandwidth is used for DSMT. In this simulation, the

I-cache is two-ported [77] and the fetching policy used is similar to ICount2.8 [72].
However, as is described in Section 3.3.4.1, SMT's original ICount2.8 policy was slightly

modified (called ICount2.8-modified).

Results in Figure 5-2 show that the difference in performance between the two

configurations used (ideal and ICount2.8-modified) is 0%, 5%, and 3% on the average for

2, 4 and 8 contexts respectively. This indicates that the performance obtained using two

fetching ports with ICount2.8-modified policy is very close to the one obtained by the

ideal configuration. The reason for the small difference in performance is twofold. First,

the policy used in DSMT to maintain the precise state of the processor forces the



speculative threads that have reached the join state to wait for the non-speculative

context before committing. Therefore, the non-speculative thread should be kept running

as fast as possible so that speculative threads may be taken out of that waiting state as

quickly as possible. This policy is enforced in ICount2.8-modified, which gives priority

to the non-speculative thread. Second, due to the limited precision of the prediction

mechanisms used (i.e. LSST and value prediction for registers and memory), an increased

fetch bandwidth augments the probability that misspeculated instructions may enter the

pipeline. Therefore, the competition in resources among non-speculative and speculative

(but correctly predicted) instructions on one hand, and misspeculated instructions on the

other, produces diminishing returns in performance.
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Figure 5-3 shows the average number of data cache ports accessed per clock cycle

when the Livermore loops are executed on DSMT. As this figure indicates for most of

the loops, with more contexts in the processor more pressure is exercised on the data
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cache ports every cycle. However, Kernel-8 and Kernel- 17 reveal a different pattern in

accessing data cache: with 8 contexts less data cache ports are used. DSMT statistics

shows that in these loops LSST misspredictions occur very often (especially in Kernel-

17) due to dynamic behavior in the loop and therefore, with more contexts, more threads

are squashed reducing the pressure on the data cache. However, in these loops

performance also degrades with more threads.
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Figure 5-4. Instruction committed in DSMT mode for Livermore loops
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Figure 5-3 suggests that the number of data cache ports required by DSMT is

around 3. However, to take into account the more demanding requirements in terms of

memory of more complex programs DSMT uses four fetching ports. It is interesting to

note that reducing the fetch bandwidth of DSMT (using ICount2.8-modified), reduces

also the pressure on the data cache ports. Therefore there is a tradeoff between increasing

the fetch bandwidth to improve performance, and also limiting the fetch bandwidth if

misspeculations occur very often.
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Figure 5-4 shows the percentage of instructions committed in DSMT mode for
each of the Livermore loops. On the average nearly 80% of the instructions were
committed in DSMT mode, which indicates that DSMT loop detection mechanism is

very effective in detecting and exploiting these loops. However, notice that the number

of committed instructions includes also instructions that could have been committed and

later squashed due to misspeculation.

As Figure 5-4 indicates, DSMT is able to find very good amounts of TLP in
kernels 8 and 10. However, as Figure 5-2 illustrates the speedup obtained in those loops

is negligible due to misspeculation. On contrary, DSMT is unable to find enough TLP in

kernel 22 due to a very high branch misprediction rate. DSMT statistics also show that

Loops 14, 16 and 18 which have several internal loops and if-then-else statements in the

loop body produce a relatively high number of branch mispredictions.



93

The Livermore loops were used to explore part of the design space of DSMT

and to characterize its dynamic behavior. However, the real advantage of DSMT is when

more complex applications are executed. Figure 5-5 illustrates DSMT performance
results during the execution of several SPEC95 benchmarks.

All SPEC95 benchmarks were executed on DSMTSim using the configuration

shown in tables 5.1 and 5.2 with an ICount2.8-modified policy. In the simulations 500

million of instructions were executed. The first 200 hundred million instructions
corresponding to code initialization were skipped using the fast simulation mode
provided by DSMTSim. These code sections are non-representative of the general

behavior of a program because generally they contain many system calls used to read
initialization or input files. The reference inputs of the SPEC95 benchmarks were used

during all SPEC95 simulations.

Figure 5-5 shows the performance results obtained by DSMT for both the
SPEC95 floating point (SPEC95-FP) and the integer benchmarks (SPEC95-Int). Results

show that the average speedup obtained by DSMT in all benchmarks is 26% on average

for 8 contexts, 16.5% for 4 contexts and approximately 7% for a two-context DSMT
processor. Speedups obtained were relative to a single-threaded 8-wide issue superscalar

processor with the same internal configuration as the DSMT processor.

As other previous studies have found [22, 39, 40, 70], in the DSMT architecture

SPEC95-FP benchmarks provide the better speedup (32.5% on average with 8 contexts).

The reason is that essentially they contain many more loops than SPEC95-Int. SPEC95-

mt obtained an average speedup of 19% average speedup with 8 contexts. As these
results show, numerical applications will benefit more from the DSMT model than non-

scientific applications.



6 CONCLUSIONS

This dissertation presented efficient mechanisms in hardware to support multithreading

on modern high performance processors. First, a simple model of a system with support

in software and hardware for multithreading was introduced. The model describes the

interaction between software and hardware thread schedulers, and how different
scheduling policies affect processor utilization.

Then the Dynamic Simultaneous Multithreading (DSMT) processor was
introduced and its simulation environment was described in detail. The simulation

environment consists mainly of two simulators, designed and implemented especially for

this research. During the development process of these simulators, it was acknowledged

that object oriented technologies are specially suited for computer architecture
simulation. However, a few simulators have been developed using this methodology. As

occurs in other areas of software development, these methodologies ease the design,

debug, testing and validation of a simulator. It was also envisioned that the features of an

00 simulator jointly with the expressiveness of an XML [81] schema used to describe

processor microarchitectures could create powerful simulation platforms for the next

generation of simulators in computer architecture. For instance, XML could be used to

describe microarchitectures, in such a way that simulators capable of processing XML
could be able to read such descriptions and simulate the required architecture.

The DSMT architecture was described in detail and its performance results were

presented and evaluated. DSMT employs aggressive forms of speculation to extract TLP

and ILP from sequential programs dynamically. Unlike other similar architectures,
DSMT uses simple mechanisms to synchronize threads and keep track of inter-thread
dependencies, both in registers and memory. The novel mechanisms proposed in DSMT

employ the information obtained during the sequential execution of code segments as a

hint to speculate the subsequent behavior of multiple threads. Moreover, DSMT utilizes

a novel greedy approach which chooses those sections of code that are more likely to
provide the highest performance based on its past dynamic behavior.
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The simulation results of DSMT were obtained using a very accurate simulator,

which is capable of executing mispredicted paths of execution, jointly with run-time
generation, control and synchronization of multiple threads. In contrast, other similar

architectures that showed the potential of exploiting loops for improving performance
used trace simulation [41, 39].

DSMT simulation results show that speculative dynamic multithreading based on

extracting threads from loops only has very good potential to improve SMT's
performance when only a single task is available for execution. DSMT obtained nearly

100% speedup executing the Livermore loops and 26% of improvement on average when

the SPEC95 benchmarks were executed. However, the improvement in performance
obtained by the DSMT model, which is based on exploiting only loops, is limited,
especially for non-numerical applications. The reasons for this are threefold. First, the

relative lack of loops, jointly with the limited parallelism available in the loops found in

some applications creates a strong limitation for a model based on exploiting only loops

such as the one used by DSMT. Second, Amdahl's law imposes an absolute limit on the

performance that a processor may achieve within an application that consists of
sequential and parallel sections of code [44]. Finally, as the simulations results have
shown, the dynamic behavior of speculative multithreading causes frequent

mispredictions in some loops that additionally to a higher resource competition among

speculative and non-speculative threads may produce a detrimental effect on processor's

performance.

Simulation results also showed that a tradeoff exists between increasing the
amount of TLP that DSMT is capable of exploiting (increasing for instance the accuracy

of the loop detection mechanism, the number of contexts, fetch bandwidth etc.) and
reducing at same time the frequency of misspeculations.

There are a number of ways the DMST architecture can be improved. First, as

[44] found, the combined exploitation of procedures and loops will provide higher
improvements in performance. However, an analysis on the tradeoff between the
complexities required by this superspeculative architecture and its expected overall
performance needs to be evaluated. Second, as simulation results showed, more



sophisticated value prediction mechanisms will lead to improving noticeably DSMT's

performance at the cost of additional complexity.

An important bottleneck of DSMT observed during simulations, was the memory

dataflow mechanism, which consists of MDRT, context's MOB and the data cache ports

used. Long running threads that access a large number of memory locations may cause

MDRT to quickly fill-up when the number of data cache ports is insufficient resulting in

the entire pipeline to backup. This was the reason why the dynamic loop detection
mechanism did not choose the outer-loop in some of the benchmarks, such as Kernel-2 1

(matrix multiplication), to clone threads. But, even when the middle-loop is chosen, its

speculative threads generate a large number of loads and stores, especially stores that
cannot commit. This causes the MDRT to backup and the result of this bottleneck
percolated all the way back up to the IQs.

Also, the current limitation with the dynamic thread generation method employed

by DSMT architecture is that the thread granularity is based on the chosen loop level.

Although this approach of defining threads is consistent with a number of proposals in
the literature [3, 22], a method that "throttles" the thread execution is needed to avoid
filling up the MDRT too quickly. For example, in a doubly nested loop, the thread
detection mechanism will clone each iteration of the outer-loop if it has been determined

that cloning the inner loop resulted in a poor performance. However, since having a large

number of iterations in the inner-loop may cause a bottleneck, each iteration of the outer-

loop could be subdivided into smaller threads and cloned onto the multiple contexts.
This approach combined with the already existing feedback mechanism to identify
"good" threads will provide more flexibility in choosing an appropriate granule of
threads.

Simulation results also show that choosing the best number of contexts for
execution may be critical for some applications. However, selecting at run-time an
optimal number of threads to exploit is difficult. However, one possible solution is to
carry this information from the compiler to the architecture using a technique similar to

the one described in [50].
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Finally improving the branch prediction mechanism employed by DSMT,
which is currently based on a simple 2-bit saturating counter, will increase also DSMT's

performance on some benchmarks.

In summary, considering the very good improvement in performance obtained by

DSMT, this architecture turns out to be more attractive when the low complexity of the

mechanisms used to keep track of inter-thread dependencies in register and memory is

considered jointly with all the advantages offered by its SMT core.
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