
AN ABSTRACT OF THE DISSERTATION OF

Valentina Bayer Zubek for the degree of Doctor of Philosophy in Computer Science

presented on July 16, 2003.

Title: Learning Cost-Sensitive Diagnostic Policies from Data.

Abstract approved:

Thomas G. Dietterich

In its simplest form, the process of diagnosis is a decision-making process in which

the diagnostician performs a sequence of tests culminating in a diagnostic decision.

For example, a physician might perform a series of simple measurements (body tem-

perature, weight, etc.) and laboratory measurements (white blood count, CT scan,

MRI scan, etc.) in order to determine the disease of the patient. A diagnostic policy

is a complete description of the decision-making actions of a diagnostician under all

possible circumstances. This dissertation studies the problem of learning diagnostic

policies from training examples. An optimal diagnostic policy is one that minimizes

the expected total cost of diagnosing a patient, where the cost is composed of two

components: (a) measurement costs (the costs of performing various diagnostic tests)

and (b) misdiagnosis costs (the costs incurred when the patient is incorrectly diag-

nosed). The optimal policy must perform diagnostic tests until further measurements

do not reduce the expected total cost of diagnosis.

The dissertation investigates two families of algorithms for learning diagnostic

policies: greedy methods and methods based on the AO* algorithm for systematic

search. Previous work in supervised learning constructed greedy diagnostic policies

that either ignored all costs or considered only measurement costs or only misdiag-

nosis costs. This research recognizes the practical importance of costs incurred by

performing measurements and by making incorrect diagnoses and studies the tradeo�

between them. This dissertation develops improved greedy methods. It also intro-

duces a new family of learning algorithms based on systematic search. Systematic

search has previously been regarded as computationally infeasible for learning diag-

nostic policies. However, this dissertation describes an admissible heuristic for AO*

that enables it to prune large parts of the search space. In addition, the dissertation

shows that policies with better performance on an independent test set are learned

when the AO* method is regularized in order to reduce over�tting.

Experimental studies on benchmark data sets show that in most cases the sys-

tematic search methods produce better diagnostic policies than the greedy methods.

Hence, these AO*-based methods are recommended for learning diagnostic policies

that seek to minimize the expected total cost of diagnosis.

c
Copyright by Valentina Bayer Zubek

July 16, 2003

All Rights Reserved

Learning Cost-Sensitive Diagnostic Policies from Data

by

Valentina Bayer Zubek

A DISSERTATION

submitted to

Oregon State University

in partial ful�llment of

the requirements for the

degree of

Doctor of Philosophy

Presented July 16, 2003

Commencement June 2004

Doctor of Philosophy dissertation of Valentina Bayer Zubek presented on

July 16, 2003.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of

Oregon State University libraries. My signature below authorizes release of my dis-

sertation to any reader upon request.

Valentina Bayer Zubek, Author

ACKNOWLEDGMENTS

To the Holy Trinity, thank You for my life, for the people around me and for this

beautiful world. Thank you for giving me hope and showing me there is life outside

my narrow research universe, in the beauty of grass,
owers, trees, mountains, oceans

and in the songs of birds. Thank you for lifting up my heart and letting the sun shine

on me after the rain. Thank you for Oregon. Thank you for carrying me through

the adversities of the last year, and making me appreciate how fortunate one is to be

healthy and able to do research in a quiet environment in a rich country.

To my advisor, Professor Tom Dietterich, thank you for your trust in me. Thank

you for your patience in making me understand, in teaching me how to do research,

how not to get caught up in details (I mostly do!) and how to improve my writing.

I learned a lot from you. Thank you for your time (I always demanded more!),

scienti�c and personal guidance, thank you for supporting me as a research assistant

and introducing me to the scienti�c community. Thank you for your generosity,

enthusiasm and patience, and for being a great teacher. Thank you for your careful

reading of my thesis and for allowing me to do pure research during the last year.

I will always be proud to have been your student. And thank you for encouraging

me in several key moments. And for being so understanding with my backpacking

endeavors. You are the reason I came to Oregon State University and the optimistic

scienti�c wave that �nally brought me to the shore of completing my Ph.D.

To Professor Prasad Tadepalli, thank you for being one of the most kind professors

I have met. To me, you are the image of the perfect teacher, knowledgeable, patient

and caring. Thank you for taking time to clarify my questions whenever I knocked

on your door, for advising me and encouraging me to continue when I was ready to

give up. Thank you for your comments on my thesis, research and feedback on talks.

Thank you to my other committee members, Professors Bella Bose, Bruce

D'Ambrosio and Paul Adams, for their comments on my thesis and for fruitful

discussions. Professor Bose was my temporary advisor when I came here with a

fresh B.S. and he warned me not to pursue a Ph.D. degree unless I really like what

I am doing. Little did I know at that time what research was like; no wonder it

took a long while to learn, fail, like it, dislike it, and �nally �nishing it up (though

my advisor will disagree, saying that research is never done). This is my advice to

prospective Ph.D. students: sooner or later you will regret starting a Ph.D. There

will be moments when you are totally alone (though still in the hand of God), when

neither your family, friends, colleagues nor advisor will be there to help you. You will

fall. But you can always rise.

Thank you to the other faculty in our Computer Science department, my professors

over the years who taught me so much: Paul Cull, Michael Quinn, Margaret Burnett

and Tim Budd. Thank you to Greg Rothermel, Ron Metoyer and Jon Herlocker for

career advice.

Thank you to the people in my research group: Dragos Margineantu, Xin Wang,

Bill Langford, Chandra Reddy, Tom Amoth, Eric Chown, Tony Fountain, Wes Pin-

chot, Dan Forrest, Adam Ashenfelter, Ashit Gandhi, Saket Joshi, Diane Damon,

Poncho Wu. Warm thanks to Xin Wang for her kindness, generosity in helping me

with programming questions and for special moments snowshoeing, dune buggying.

She can be such a joy! Thank you to Dragos Margineantu for greeting me at the air-

port when I �rst came to America, for research advice and for his big heart. Thank

you to all my colleagues for feedback on my research and nice talks on life issues.

Thank you to my fellow Ph.D. students in Dearborn Hall: Alexey Malishevsky,

Scott Burgess, Bader AlMohammad, Paul Oprisan, Mohammad Borujerdi, Laura

Beckwith and Doug Chow. Special thanks to Alexey and Paul for help with formatting

this thesis.

Thank you to Jalal Haddad, our computer support person, for never tiring of my

problems.

Thank you to the people in our Computer Science o�ce, always helpful and cheer-

ful: Bernie Feyerherm, Nancy Brown, Janice Abele and Brian Lindsley.

Thank you to our janitor/custodian, Eric Wukovitz, who brought a ray of human-

ity to my abstract mental life during many evenings.

Thank you to the graduate students in the Physics department with whom we

shared many Thanksgivings and picnics. Thank you to Dr. William Hetherington,

Dr. Tomasz Giebultowicz and Tim Taylor, in the Physics department, with whom

we had many interesting conversations.

Seven years in grad school! Thank you Oregon State University for many cultural

events, talks, presentations and conferences on larger issues, thank you for a beautiful

campus!

Thank you to these fellow researchers who were very generous with their time,

scienti�c expertise and personal advice: Michael Littman, Tony Cassandra, Peter

Turney, Eric Hansen, Milos Hauskrecht, Ron Parr, Pedro Domingos, Omid Madani,

Blai Bonet, Andrew Ng, Judy Goldsmith and Rich Sutton. Thank you to Amy

Greenwald for recommending me for the "Research, Careers, and Computer Science:

A Maryland Symposium," where I bene�ted from comments on my recent research

from Dana Nau, Daniel Jimenez and Kiri Wagsta�. Thank you to Manuela Veloso

who advised me not to let people tell me how good my paper is. Thank you for the

feedback I received on earlier stages of my research on cost observable MDPs at the

AAAI Doctoral Consortium from Raymond Mooney, Janyce Wieb and Mary Harper.

Thank you to David Brogan for his career advice during a DARPA workshop.

Thank you to the friends I made at the AAAI, ICML and UAI conferences: Michail

Lagoudakis, Pascal Poupart, Ion Muslea, Adrian Silvescu and Doina Caragea, Marina

Meila, Doina Precup and Stephen Majercik. Thank you to Prof. Judea Pearl for his

cheerfulness at a UAI banquet; hope it stays with you.

Thank you to the National Science Foundation and the Air Force O�ce of Scien-

ti�c Research for supporting my research. I want to acknowledge grants IRI-9626584,

F49620-98-1-0375 and IIS-0083292.

Thank you to my physical therapists, Cari Gleason, Rich Lague, Guido Van

Ryssegem, Pamela Hough and Mike Joki, to ergonometrist Bryan McCampbell and

to Ron Stewart, without whom I would not have been able to type this thesis. Thank

you to my doctors LaDonna Johnson and William Ferguson. Dr. Ferguson was right,

the body heals itself from repeated motion injuries, though it may take a whole year.

To whoever reads this, please make sure you take frequent breaks from the computer

and correct your posture! Thank you Janet Beary, Sandy Baer and J'aime Phelps,

and thank you Cari, Rich and LaDonna for your care and help over all these years.

To our Romanian community in which I spent nice hours laughing, talking and

eating, thank you for the memories of picnics, New Year's Celebrations, Christmas

and Easter, weddings, birthdays and funerals. Thank you to Monica and Dan Onu,

George and Cleo Hirsovescu, Costel Vasiliu, Gabi Zapodeanu, Dragos and Daciana

Margineantu, Andra and Nicu Vulpanovici, Telu and Mihaela Popescu, Lucian Chis,

Angie and Catalin Doneanu, Veronica and Iulian Mart, Paul Oprisan, Dorina and

Adrian Avram, Gabriela and Dan Chirica, Peter and Erika Kiss, Ovidiu Iancu, Corina

Constantinescu, Diana Luca, Silvia Stan, Corina Anghel, Cristi Dogaru, Cornelia,

Tony and Beatrice Pintea.

Thank you to Nicu Vulpanovici who passed away before I could get to know him

better and appreciate him more, whom I loved like the brother I never had.

Thank you to my professors and teachers in Romania: Octavian Stanasila,

Maria Honciuc, Ion Constantin, Valentin Matrosenco, Rodica Munteanu, Georgeta

Paunescu, Anisoara Paun, Silviu Calinescu and Cristian Giumale.

Thank you to my Romanian friends who did not forget me over these years: Corina

Cadariu, Nicoleta Pomojnicu (now Ruckensteiner), Raluca Capatina-Rata, Miki Dabu

(now Morgan), Anca Duica, Alex Moldovanu, Cosmin Deciu, Dana Dragomirescu,

Bogdan Panghe, Laura Stan, Oana Popescu, Simona Popescu (now Condurateanu),

Dan Sevcenco, Costin \Coco" Mihaila and Jeanina Giurea.

Thank you to my international friends: Asami Onada, Toshiko Noda (now Sessel-

mann), Elena Camarillo Banuelos (now Westbrook), Szilvia Pelikan, Trina Siebert,

Dave Stephen and Jill Anthony, Julie and Erwin Schutfort, Roger Klein, Emily

Townsend (a most gentle soul), Kyle Winkler and to my host family Judy and Roland

deSzoeke.

Thank you to Father Stephen Soot and Mona, and to the people in our beautiful

St. Anne Orthodox Church, and to the kids.

Thank you to the authors of several of my favorite books, The Lord of the rings,

The way of a pilgrim, To kill a mockingbird. Thank you Dostoyevski. Thank you

Ioan Dan for your wonderful adventure books, that still make me laugh even if I know

them by heart.

To the people of my immediate family, my grandparents Florina, Virgil and Mag-

dalena, uncles Rica and Corny, and aunt \tusica" Ana, to all my relatives, friends and

professors that I knew and loved and are no more, my heart and prayers are always

with you.

Thank you to grandfather \tataie" Constantin, uncle Marian and aunt Anisoara,

cousin Mariana and Tatiana, \verita" Ana, uncle Vergica, aunts \tanti" Ana and Mar-

iana, uncle Aurel, and to my family-in-law Cathy and Brian, aunts Alice, Catherine

and Rita.

Thank you to our godparents, Daniel and Viorica Adam, for their love and gen-

erosity.

Thank you to Anna Zubek, my mother-in-law, for her love and gentle nature.

To my husband, Edward Zubek, thank you for the ups and downs and for putting

up with me. Ed, thank you for your forgiveness. Thank you for sharing ideas and

stories, for teaching me about the environment, for being there most of the time to

share laughter or dry a tear. Thank you for your patience and kindness, and for your

love and care. Thank you for sleeping under the stars, for swimming in the lakes, for

holding my hand on narrow traverses and when crossing glacier streams, for enjoying

the pure beauty of wild
owers and snow capped mountains. Without you, I would

not have been there. Without you, I would not be here. Thank you for help with

typing and editing. Open your heart and fear not, for with love everything is possible.

To my parents, Constantina and Mihai Bayer, I love you and I missed being away

from you all these years. Thank you for your love and sacri�ces and for encouraging

me to �nish my Ph.D. Thank you for your patience and help while I prepared the

�nal manuscript of this thesis. You were the motivating force behind me at all times.

Thank you for giving me everything. I love you. Multumesc mami si tati pentru ca ati

suportat si nu v-ati plins niciodata de faptul ca am plecat la studii de doctorat si am

trait departe unii de altii sapte ani. Multumesc pentru dragostea voastra, pentru cum

m-ati crescut sa �u un om. Multumesc pentru ca m-ati sprijinit in orice moment, si

pentru toate momentele petrecute impreuna. Ma gindesc la voi mereu si imi pare rau

de supararile produse. America poate sa ma � schimbat in mai toate privintele, dar

nu in dragostea pentru voi. Fara incurajarea voastra, n-as � terminat aceasta teza.

Multumesc pentru ajutorul si rabdarea voastra in timpul prepararii manuscrisului

�nal al tezei. Va multumesc pentru tot ce sinteti si faceti pentru mine. Va multumesc

pentru ca mi-ati dat tot ce aveti. Va iubesc.

TABLE OF CONTENTS
Page

Chapter 1: Introduction 1

Chapter 2: Cost-sensitive Learning (CSL) 5

2.1 Supervised Learning . 5

2.2 Markov Decision Problems (MDPs) 8

2.3 Formal Description of the Cost-sensitive Learning Problem as an

(Acyclic) MDP . 12

2.4 Example of Diagnostic Policies . 18

2.5 Assumptions and Extensions of Our Cost-sensitive Learning Framework 23

2.5.1 Complex Attribute Costs and Misclassi�cation Costs 23

2.5.2 Complex Actions . 25

2.5.3 CSL Problem Changes in Time 27

2.5.4 Missing Attribute Values . 28

2.5.5 Multiple Classes . 29

2.5.6 Continuous Attributes . 29

2.5.7 Objective Function . 30

2.6 Literature Review for the Cost-sensitive Learning Problem in Machine

Learning . 30

2.7 Related Work in Decision-theoretic Analysis 33

2.8 Summary . 36

Chapter 3: Greedy Search for Diagnostic Policies 37

3.1 General Description of Greedy Algorithms 37

3.2 InfoGainCost Methods . 38

3.3 Modi�ed InfoGainCost Methods (MC+InfoGainCost) 42

TABLE OF CONTENTS (Continued)

Page

3.4 One-step Value of Information (VOI) 44

3.5 Implementation Details for Greedy Algorithms 51

3.6 Summary . 52

Chapter 4: Systematic Search for Diagnostic Policies 53

4.1 AND/OR Graphs . 54

4.2 AO� Algorithm . 58

4.2.1 Overview of the AO� Algorithm 58

4.2.2 Admissible Heuristic . 59

4.2.3 Optimistic Values and Optimistic Policy 60

4.2.4 Realistic Values and Realistic Policy 61

4.2.5 Selecting a Node for Expansion 62

4.2.6 Our Implementation of AO� (High Level) 63

4.2.7 AO� for CSL Problems, With an Admissible Heuristic, Con-

verges to the Optimal Value Function V � 64

4.2.8 Pseudocode and Implementation Details for the AO� Algorithm 66

4.3 Regularizers . 78

4.3.1 Memory Limit . 79

4.3.2 Laplace Correction (L) . 79

4.3.3 Statistical Pruning (SP) . 80

4.3.4 Pessimistic Post-Pruning (PPP) Based on Misclassi�cation Costs 85

4.3.5 Early Stopping (ES) . 88

4.3.6 Dynamic Method . 89

4.3.7 AND/OR Graph Initialized with a Known Policy 89

4.3.8 Combining Regularizers . 91

4.4 Review of AO� Literature . 92

4.4.1 AO� Relation with A� . 92

4.4.2 AO� Notations, Implementations, and Relation with Branch-

and-Bound . 92

4.4.3 Theoretical Results on AO� . 94

TABLE OF CONTENTS (Continued)

Page

4.4.4 POMDPs . 95

4.4.5 Decision-theoretic Analysis . 97

4.4.6 Test Sequencing Problem . 97

4.4.7 Relation of CSL with Reinforcement Learning 100

4.5 Summary . 101

Chapter 5: Experimental Studies 102

5.1 Experimental Setup . 103

5.1.1 UCI Domains . 103

5.1.2 Setting the Misclassi�cation Costs (MC) 108

5.1.3 Training Data, Test Data, Memory Limit 114

5.1.4 Notations for the Cost-Sensitive Algorithms 116

5.1.5 Evaluation Methods . 118

5.2 Over�tting . 127

5.3 Results . 129

5.3.1 Laplace Correction Improves All Algorithms 132

5.3.2 Results on the bupa Domain 133

5.3.3 Results on the pima Domain 136

5.3.4 Results on the heart Domain 146

5.3.5 Results on the breast-cancer Domain 151

5.3.6 Results on the spect Domain 161

5.3.7 Summary of Algorithms' Performance 161

5.4 Discussion . 164

5.4.1 An Overall Score for Algorithms (Chess Metric) 164

5.4.2 The Most Robust Algorithms 164

5.4.3 Comparing The Most Robust Algorithms Against the Best Al-

gorithm on Each Domain . 168

5.4.4 Summary of Discussion . 170

5.4.5 Insights Into the Algorithms' Performance 171

5.5 Summary . 178

TABLE OF CONTENTS (Continued)

Page

Chapter 6: Conclusions and Future Work 181

6.1 Contributions of This Dissertation . 181

6.2 Future Work . 183

6.3 Thesis Summary . 186

Bibliography 187

Appendices 193

Appendix A: Details on Our AO� Implementation 194

Appendix B: More Information on the Experimental Studies 199

B.1 Misclassi�cation Costs Matrices for the UCI Domains 199

B.2 Comparing the Worst Algorithms in the Systematic and Greedy Search

Families . 199

B.3 Comparing AO� with All the Other Algorithms using BDeltaCost . . 201

B.4 Results of Comparing Each Laplace-Corrected Algorithm with All the

Other Laplace-corrected Algorithms, on Each Domain and Misclassi-

�cation Cost Level (MC) . 202

B.5 Paired-Graphs Comparing the Best Algorithm on Each Domain with

Our Recommended Algorithms . 204

LIST OF FIGURES
Figure Page

2.1 Diagnostic policy �1. 21

2.2 Another diagnostic policy �2, making the same classi�cation decisions

as �1, but with a changed order of attributes, and therefore with a

di�erent policy value. 21

2.3 Optimal diagnostic policy on the training data. 22

4.1 The AND/OR search space is a directed acyclic graph (DAG). 54

4.2 Qopt(s; x) for unexpanded AND node (s; x) is computed using one-step

lookahead and hopt to evaluate the resulting states s0. x is an attribute

not yet measured in state s, and v is one of its values. 59

5.1 Spect domain, selecting �ve values for m = MC(fp), used to de�ne

the misclassi�cation cost matrices. 113

5.2 Heart, MC3, Vtest of AO
� shows high variability across replicas. 126

5.3 Anytime graph of AO� on pima, MC3, one of the replicas. 127

5.4 Anytime graphs of AO� and AO�-L on pima, MC3. Laplace correction

helps AO�. 130

5.5 In its anytime graph, AO� learns a better policy than VOI, measured

on the test data, but then forgets it. 131

5.6 Bupa domain. Graphs of average Vtest over replicas, and its 95% normal

con�dence interval (CI). 137

5.7 Pima domain. Graphs of average Vtest over replicas, and its 95% normal

con�dence interval (CI). 142

5.8 Heart domain. Graphs of average Vtest over replicas, and its 95% nor-

mal con�dence interval (CI). 147

5.9 Breast-cancer domain. Graphs of average Vtest over replicas, and its

95% normal con�dence interval (CI). 152

5.10 Spect domain. Graphs of average Vtest over replicas, and its 95% nor-

mal con�dence interval (CI). 157

LIST OF FIGURES (Continued)

Figure Page

5.11 Graphs of Memory (measured in Bytes, and averaged over replicas),

for all algorithms, as the misclassi�cation costs increase. 174

5.12 Graphs of CPU time (measured in seconds, and averaged over replicas),

for all algorithms, as the misclassi�cation costs increase. 175

5.13 Graphs of expected number of attributes, abbreviated as eatp, averaged

over replicas, for all algorithms, as the misclassi�cation costs increase. 177

5.14 Graphs of error rate (averaged over replicas), for all algorithms, as the

misclassi�cation costs increase. 179

LIST OF TABLES
Table Page

2.1 Notations for the examples' predictions versus their observed classes. . 7

2.2 Training set of labeled examples for a simple diabetes diagnosis task. . 19

2.3 Test costs. 20

2.4 Misclassi�cation costs. 20

3.1 The Greedy search algorithm. 38

3.2 The one-step Value of Information (VOI) search algorithm. . . 46

4.1 Pseudocode for the AO� algorithm. 68

4.2 Creating a new OR node. 69

4.3 Expanding AND node (s; a) of fringe OR node with state s. 73

4.4 Updating V opt, Qopt and �opt after the expansion of �opt in fringe OR

node. 75

4.5 Updating V real, Qreal and �real after the expansion of �opt in fringe

OR node. 77

4.6 Pseudocode for the AO� algorithm with statistical pruning SP. 82

4.7 Checking if an unexpanded AND node (s; �opt(s)) needs to be statisti-

cally pruned. 83

4.8 Pessimistic Post-Pruning for a complete policy � (in our case, �real). . 87

4.9 Pseudocode for initializing the AO� algorithm with a policy �0. 90

5.1 BUPA Liver Disorders (bupa). 104

5.2 Pima Indians Diabetes (pima). 105

5.3 Heart Disease (heart). 106

5.4 Breast Cancer (breast-cancer). 107

5.5 Spect (spect). 109

LIST OF TABLES (Continued)

Table Page

5.6 The BDeltaCost statistical test compares the expected costs of two

diagnostic policies �1 and �2 on the test data. 123

5.7 Abbreviations. 132

5.8 The e�ect of Laplace correction on each greedy search algorithm, across

all domains. 134

5.9 The e�ect of Laplace correction on each systematic search algorithm,

across all domains. 135

5.10 Bupa, BDeltaCost of VOI-L paired with each of the Laplace corrected

algorithms. 138

5.11 Bupa, BDeltaCost ofMC-N-L paired with each of the Laplace corrected

algorithms. 138

5.12 Bupa, BDeltaCost of Nor-L paired with each of the Laplace corrected

algorithms. 139

5.13 Bupa, BDeltaCost of AO�-L paired with each of the Laplace corrected

algorithms. 139

5.14 Bupa, BDeltaCost of ES-L paired with each of the Laplace corrected

algorithms. 140

5.15 Bupa, BDeltaCost of SP-L paired with each of the Laplace corrected

algorithms. 140

5.16 Bupa, BDeltaCost of PPP-L paired with each of the Laplace corrected

algorithms. 141

5.17 Pima, BDeltaCost of VOI-L paired with each of the Laplace corrected

algorithms. 143

5.18 Pima, BDeltaCost ofMC-N-L paired with each of the Laplace corrected

algorithms. 143

5.19 Pima, BDeltaCost of Nor-L paired with each of the Laplace corrected

algorithms. 144

5.20 Pima, BDeltaCost of AO�-L paired with each of the Laplace corrected

algorithms. 144

LIST OF TABLES (Continued)

Table Page

5.21 Pima, BDeltaCost of ES-L paired with each of the Laplace corrected

algorithms. 145

5.22 Pima, BDeltaCost of SP-L paired with each of the Laplace corrected

algorithms. 145

5.23 Pima, BDeltaCost of PPP-L paired with each of the Laplace corrected

algorithms. 146

5.24 Heart, BDeltaCost of VOI-L paired with each of the Laplace corrected

algorithms. 148

5.25 Heart, BDeltaCost ofMC-N-L paired with each of the Laplace corrected

algorithms. 148

5.26 Heart, BDeltaCost of Nor-L paired with each of the Laplace corrected

algorithms. 149

5.27 Heart, BDeltaCost of AO�-L paired with each of the Laplace corrected

algorithms. 149

5.28 Heart, BDeltaCost of ES-L paired with each of the Laplace corrected

algorithms. 150

5.29 Heart, BDeltaCost of SP-L paired with each of the Laplace corrected

algorithms. 150

5.30 Heart, BDeltaCost of PPP-L paired with each of the Laplace corrected

algorithms. 151

5.31 Breast-cancer, BDeltaCost of VOI-L paired with each of the Laplace

corrected algorithms. 153

5.32 Breast-cancer, BDeltaCost of MC-N-L paired with each of the Laplace

corrected algorithms. 153

5.33 Breast-cancer, BDeltaCost of Nor-L paired with each of the Laplace

corrected algorithms. 154

5.34 Breast-cancer, BDeltaCost of AO�-L paired with each of the Laplace

corrected algorithms. 154

LIST OF TABLES (Continued)

Table Page

5.35 Breast-cancer, BDeltaCost of ES-L paired with each of the Laplace

corrected algorithms. 155

5.36 Breast-cancer, BDeltaCost of SP-L paired with each of the Laplace

corrected algorithms. 155

5.37 Breast-cancer, BDeltaCost of PPP-L paired with each of the Laplace

corrected algorithms. 156

5.38 Spect, BDeltaCost of VOI-L paired with each of the Laplace corrected

algorithms. 156

5.39 Spect, BDeltaCost ofMC-N-L paired with each of the Laplace corrected

algorithms. 158

5.40 Spect, BDeltaCost of Nor-L paired with each of the Laplace corrected

algorithms. 158

5.41 Spect, BDeltaCost of AO�-L paired with each of the Laplace corrected

algorithms. 159

5.42 Spect, BDeltaCost of ES-L paired with each of the Laplace corrected

algorithms. 159

5.43 Spect, BDeltaCost of SP-L paired with each of the Laplace corrected

algorithms. 160

5.44 Spect, BDeltaCost of PPP-L paired with each of the Laplace corrected

algorithms. 160

5.45 Best and worst algorithms on each domain, according to the normal

con�dence intervals and BDeltaCost results. 162

5.46 Chess score = wins+ 0:5 � ties. 165

5.47 BDeltaCost wins, ties and losses of each algorithm on each domain,

summed over all other algorithms, MCs and replicas. 166

5.48 Best and worst Laplace-corrected algorithms on each domain, accord-

ing to the chess metric. 169

LIST OF TABLES (Continued)

Table Page

5.49 Best and worst Laplace-corrected algorithms on each domain, accord-

ing to the normal con�dence intervals and BDeltaCost results (Sec-

tion 5.3). 169

LIST OF APPENDIX FIGURES

Figure Page

B.1 Bupa, paired-graphs Vtest of ES-L and SP-L for every replica, ordered

by Vtest of ES-L (best algorithm on bupa). 212

B.2 Bupa, paired-graphs Vtest of ES-L and VOI-L for every replica, ordered

by Vtest of ES-L (best algorithm on bupa). 213

B.3 Pima, paired-graphs Vtest of VOI-L and SP-L for every replica, ordered

by Vtest of VOI-L (best algorithm on pima). 214

B.4 Heart, paired-graphs Vtest of SP-L and VOI-L for every replica, ordered

by Vtest of SP-L (best algorithm on heart). 215

B.5 Breast-cancer, paired-graphs Vtest of MC-N-L and SP-L for every

replica, ordered by Vtest of MC-N-L (best algorithm on breast-cancer). 216

B.6 Breast-cancer, paired-graphs Vtest of MC-N-L and VOI-L for every

replica, ordered by Vtest of MC-N-L (best algorithm on breast-cancer). 217

B.7 Spect, paired-graphs Vtest of VOI-L and SP-L for every replica, ordered

by Vtest of VOI-L (best algorithm on spect). 218

LIST OF APPENDIX TABLES

Table Page

B.1 BUPA Liver Disorders (bupa), misclassi�cation costs matrices. 200

B.2 Pima Indians Diabetes (pima), misclassi�cation costs matrices. 200

B.3 Heart Disease (heart), misclassi�cation costs matrices. 201

B.4 Breast Cancer (breast-cancer), misclassi�cation costs matrices. 201

B.5 SPECT (spect), misclassi�cation costs matrices. 202

B.6 BDeltaCost of AO� paired with each greedy search algorithm, across

all domains. 203

B.7 BDeltaCost of AO� paired with each systematic search algorithm (ex-

cept AO�-L), across all domains. 204

B.8 BDeltaCost of VOI-L paired with each Laplace corrected algorithm,

across all domains. 205

B.9 BDeltaCost of MC-N-L paired with each Laplace corrected algorithm,

across all domains. 206

B.10 BDeltaCost of Nor-L paired with each Laplace corrected algorithm,

across all domains. 207

B.11 BDeltaCost of AO�-L paired with each Laplace corrected algorithm,

across all domains. 208

B.12 BDeltaCost of ES-L paired with each Laplace corrected algorithm,

across all domains. 209

B.13 BDeltaCost of SP-L paired with each Laplace corrected algorithm,

across all domains. 210

B.14 BDeltaCost of PPP-L paired with each Laplace corrected algorithm,

across all domains. 211

DEDICATION

S�ntei Treimi, pentru tot.

Parintilor mei, pentru ca sint intotdeauna cu mine.

Sotului meu, pentru calatoria noastra impreuna.

To the Holy Trinity, for everything.

To my parents, for always being with me.

To my husband, for our journey together.

Learning Cost-Sensitive Diagnostic Policies from Data

CHAPTER 1

INTRODUCTION

We confront uncertainty every day. To decide how to act, we envision di�erent

outcomes of our actions and we plan ahead from each contingency, assessing and

weighing the risks and bene�ts of di�erent courses of action. Sequential decision

problems involve decision making in uncertain environments, sensing, and reasoning

about utilities. We encounter examples of this sequential decision making process

when we make travel, business, or future career plans.

The goal of this dissertation is to develop practical and near-optimal algorithms

for learning (from training examples) how to solve cost-sensitive classi�cation tasks

when there are costs for measuring each attribute and costs for making misclassi-

�cation errors. This is important in many domains, from medicine to automotive

troubleshooting to computer fault detection and diagnosis.

Traditionally, machine learning [47, 72] has built classi�ers to minimize the ex-

pected number of errors (also known as the 0/1 loss). This overlooks the importance

of estimating the cost of the classi�cation process. For example, to diagnose a cold

most accurately, a CT scan can be performed, but such an expensive test will never

be ordered in practice for such a minor condition. Some classi�cation errors may be

more expensive than others (for example, declaring a sick patient to be healthy can

be more expensive than declaring a healthy patient to be sick). The performance of

a 0/1 loss classi�er, or, more generally, of a classi�er that seeks to minimize either

expected test costs or expected misclassi�cation costs but ignores the others, will

inherently su�er when evaluated with both types of costs.

This dissertation argues for the need to consider both kinds of costs together,

because it is not rational to minimize one without the other. There are two types

2

of actions in our framework: (a) measurement actions (also called measurements,

diagnostic tests, or simply tests) and (b) classi�cation actions (or diagnoses). Both

have costs: measurement costs and misclassi�cation costs. Measurement actions are

purely observational, they do not change the true class. They are needed to get more

information, to reduce uncertainty, to guide us closer to the true class that we aim to

discover.

Let us consider the task of diagnosing diabetes. The diagnostician performs a

sequence of tests, gathers their results, and then makes a diagnosis (in real life, she

will also prescribe a treatment, but we do not consider this step). She may ask a

series of questions (such as the patient's age, health history, family history of medical

conditions), perform simple measurements (measure body mass index, blood pressure)

and order lab tests (glucose, insulin). Each measurement has an associated cost |

some are cheaper (i.e., measuring the weight and calculating the body mass index),

and some are more expensive (i.e, the blood tests). The diagnostician analyzes the

results of each test selected and decides whether there is enough information to make

a diagnosis or whether more tests are needed. When making a diagnosis, she must

take into account the likelihood of each disease and the costs of the misdiagnoses. For

example, diagnosing a diabetic patient as healthy can incur costs (such as the cost of

aggravating the patient's medical condition); diagnosing a healthy patient as having

diabetes can also incur costs (such as the cost of unnecessary treatments).

A diagnostic policy (simply, a policy) speci�es what test to perform next, based

on the outcomes of the previous tests, and when to stop (by choosing to classify).

A diagnostic policy takes the form of a decision tree whose nodes specify tests and

whose leaves specify classi�cation actions. The interesting decision problem is how

to choose among di�erent policies. Shall we classify now, shall we perform a single

high-cost test, or shall we perform sequences of cheap tests before classifying?

Thesis Objective

We de�ne cost-sensitive learning as the problem of learning diagnostic policies

minimizing expected total costs, given as inputs a training set of labeled examples,

3

the measurement costs, and the misclassi�cation costs. This dissertation is about

learning, not planning, and learning is done from data. Each example records the

results of all tests and has an associated class (diagnosis). An example can be seen as

a set of attribute values, \attribute" being used interchangeably for measurement/test.

We assume there are no missing attribute values. The training data is used to compute

probabilities of measurements' outcomes and probabilities of classes conditioned on

those outcomes.

It is interesting to note that the problem of learning good diagnostic policies is

di�cult only when the cost of testing is comparable to the cost of misclassi�cation.

If the tests are very cheap compared to misclassi�cation costs, then it is optimal (or

close to optimal) to measure all of them to gain as much information as possible. If

the tests are very expensive compared to misclassi�cation costs, then it is optimal (or

close to optimal) to classify directly without measuring anything.

We will evaluate diagnostic policies by their expected total costs. This is a widely

accepted measure, but it is not the only possible one. In some settings, worst-case or

best-case cost might make more sense. In other settings, there may be multiple eval-

uation criteria that cannot be summarized as a single measure of cost. For example,

when planning a trip from Portland, Oregon to Glacier National Park, you may want

to minimize the expense, maximize the enjoyment, minimize environmental impact,

and minimize transit time. There are tradeo�s among these measures, and it may be

di�cult or impossible to summarize them in a single cost measure.

This thesis de�nes and studies two families of algorithms for learning diagnostic

policies.

The �rst family consists of greedy methods closely related to standard top-down

decision tree algorithms ([9, 63]). These methods construct the diagnostic policy top-

down by selecting attributes to measure based on a one-step lookahead search, with

some costs involved.

The second family of algorithms consists of new methods based on the AO� algo-

rithm for systematic search of AND/OR graphs. AO� computes the optimal policy on

4

the training data. It performs a systematic search of the space of all diagnostic poli-

cies, but avoids exhaustive search by pruning parts of the search space that provably

cannot contain the optimal policy. Systematic search of the space of diagnostic poli-

cies has previously been regarded as computationally infeasible, because the search

space is super-exponential in size.

This dissertation explores several ways of making systematic search feasible while

learning good policies. First, we note that the size of the training data has a profound

e�ect on the size of the AO� search graph. When training on data sets of ordinary

sizes (less than 10,000 examples), the AO� graph is much smaller than it would be

for exhaustive search, because many sequences of test outcomes have zero probability,

since they do not appear in the training data. Second, we introduce an admissible

heuristic that allows AO� to prune large parts of the search space. Third, we introduce

several modi�cations of AO� to reduce the risk of over�tting during learning. These

modi�cations are called \regularizers." Some of these have the side-e�ect of further

pruning the search space. Finally, we explore a form of \statistical pruning" that

deletes branches from the search space that are unlikely to lead to good solutions.

The dissertation presents experimental evidence to support the following theses:

Thesis 1: Systematic search (with an appropriate admissible heuristic and regu-

larizers) is computationally feasible for real-world cost-sensitive learning problems.

Thesis 2: A method called SP-L, which combines AO� search, Laplace correc-

tions, and statistical pruning, gives the most robust overall performance when mea-

sured on independent test data.

The dissertation is organized as follows. Chapter 2 formalizes the cost-sensitive

learning problem addressed in this work and reviews previous work on this and sim-

ilar problems. Chapters 3 and 4 present, respectively, the greedy and systematic

search families of cost-sensitive learning algorithms. Chapter 5 presents a series of

experiments that measure the e�ciency and e�ectiveness of the various methods on

real-world data sets. Chapter 6 presents the contributions of the thesis and discusses

future work extending our cost-sensitive learning framework.

5

CHAPTER 2

COST-SENSITIVE LEARNING (CSL)

This chapter formally introduces the problem of cost-sensitive learning. We de-

�ne cost-sensitive learning (CSL) as the problem of learning diagnostic policies that

minimize the expected total cost of diagnostic tests and classi�cation errors based on

a set of training examples. In this formulation, CSL borrows from both supervised

learning and Markov Decision Problems. Indeed, as in supervised learning, we want

to learn an hypothesis predicting the class of new, unseen examples, from a set of

labeled training examples. But our objective function is cost-sensitive, and subject

to its minimization, we want to learn in which order to perform the diagnostic tests

followed by classi�cation actions. This is a sequential decision problem that can be

modeled by a Markov Decision Problem (MDP). Given the costs of all actions (diag-

nostic tests and classi�cations) and given a set of training examples from which we

can compute the transition probability model, we can de�ne an MDP whose solutions

are optimal diagnostic policies. We present exact and approximate methods for solv-

ing this MDP in the next two chapters. Here, we brie
y describe supervised learning

and the MDP framework, then we show how the CSL problem can be formulated as

an MDP. The relevant notations and concepts are illustrated on a simple diagnostic

task. We discuss restrictions of our framework and possible extensions. Then we

review relevant literature.

2.1 Supervised Learning

An application of supervised learning is the PAPNET technology, a computer-assisted

Pap smear test that classi�es cells as normal or precancerous (for this FDA-approved

PAPNET Testing System, Neuromedical Systems, INC. holds two U.S. patents; see

6

http://www.fda.gov/fdac/features/896_pap.html and http://www.hknet.com/Papnet).

The system (a neural network) was trained on images of cervical cells having di�er-

ent shapes and colors. The images were manually labeled as benign or malignant.

The neural network learns patterns for identifying each type of cell; for example,

large and misshapen nuclei can signify cancer. After training, the network is used to

quickly scan new slides and rank the top 128 most abnormal cells. These are then

presented to a human for evaluation. Traditionally, humans scanning the cells under

a microscope miss from 10% � 30% of abnormal cases. The automation of the test

reduced human fatigue by eliminating 98% of the work, and it increased the detection

of abnormalities up to 30%.

This is an instance of supervised learning. Formally, given a sample of labeled

examples (x; y) drawn from a distribution D(x; y), where x is a vector of attributes

and y is its label, the task is to learn a hypothesis h that labels x with the most likely

class. The predicted class h(x) is denoted by ŷ. The distribution D(x; y) from which

the labeled examples are drawn can be factored into two probability distributions, a

class probability P (y) and a conditional probability P (xjy).
The attributes can be symbolic or numeric (discrete or continuous). The labels

can be discrete (in which case the task is called classi�cation, and the labels are

called classes) or continuous (in which case the task is called regression, for example,

predicting the temperature in a furnace).

Our CSL framework assumes the attributes are numeric and the labels are discrete,

so it focuses on classi�cation tasks. The labels are called the observed classes.

In traditional classi�cation tasks, the goal is to �nd an hypothesis h that mini-

mizes the expected number of misclassi�cation errors, that is, the expected number

of examples incorrectly classi�ed:

minE(x;y)�D[L(h(x); y)] = min
X
(x;y)

D(x; y)L(h(x); y); (2.1)

where the loss function L(h(x); y) is 1 when h(x) 6= y and 0 otherwise. These classi�ers

are also known as minimizing the expected 0/1 loss, and their underlying assumption

is that misclassi�cation errors have the same cost, and, in addition, no attention is

7

TABLE 2.1: Notations for the examples' predictions versus their observed classes.
The class y = 1 is interpreted as having the disease, and y = 0 as not having it.

observed class

y = 0 y = 1

ŷ = 0 true negatives false negatives

ŷ = 1 false positives true positives

paid to attribute costs.

Cost-sensitive learning is an extension of the classi�cation task of supervised learn-

ing. First, it takes into account di�erent costs for misclassi�cation errors. It also

considers attribute costs because it realizes that there is a cost associated with ob-

taining each attribute value. The objective of cost-sensitive learning is to minimize

the expected total cost.

In supervised learning, for the case when there are only two classes (0 and 1), we

call a positive example one whose class is y = 1 and a negative example one whose

class is y = 0. It helps to think of this in terms of medical diagnosis. A patient is

\diabetes positive" if he has the disease (y = 1) and \diabetes negative" if he does

not (y = 0). The classes assigned by the hypothesis can be correct or not, so we

talk about \true positives" and \true negatives", when the predictions match the

observed classes, and \false positives" and \false negatives" when they do not; see

Table 2.1. Let ŷ = h(x) be the class predicted by hypothesis h. Then a false positive

is an example (x; y) where ŷ = 1 and y = 0 (a healthy patient was diagnosed with

diabetes). Similarly, a false negative example was assigned class ŷ = 0 when in fact

its observed class is y = 1 (a sick patient was diagnosed to be healthy).

After an hypothesis is learned, we want to see how good it is at predicting the

classi�cation of new, unseen examples. The strategy is to divide the data into two

sets, a training set and a test set. Learning is done on the training set; then the

8

hypothesis is evaluated on the test set. Because we know the observed labels of the

test examples, we can compare them to the predicted labels of the hypothesis and

compute the number of errors (false positives and false negatives).

One of the most serious problems facing learning from training data is over�tting.

Over�tting is picking up noise or regularities from the training data that are not

characteristic of the entire data population. In the extreme case, the hypothesis can

memorize perfectly the training data, but it has a reduced power of generalization on

new examples, so it is almost useless. Sometimes it is better (in terms of generalization

power, i.e., performance on the test set), not to be perfect on the training data.

Quoting Professor Thomas Dietterich, \sometimes it is optimal to be suboptimal."

We postpone discussion of over�tting until Chapter 5, but we wanted to mention that

the CSL problem is not immune to it, since it learns from data.

2.2 Markov Decision Problems (MDPs)

Cost-sensitive learning requires learning (optimal) diagnostic policies, which are se-

quences of decisions made under uncertainty, each decision depending on previous

decisions and their outcomes. The notations of the Markov Decision Problem will be

very useful in formalizing the notions of diagnostic policies and the objective function

of minimizing expected total costs.

An MDP is a mathematical model for describing the interaction of an agent

(learner and decision maker) with an environment. At each step the agent perceives

the state of the world st, based on which it chooses an action at and receives a reward

rt+1 (or pays a cost ct+1). Then it perceives the resulting state st+1, chooses another

action at+1, and the cycle repeats. The action at is selected from the set of actions

available in state st, at 2 A(st). The agent's goal is to choose its actions such as

to maximize the long term rewards from the environment. In terms of costs, this

translates into minimizing expected total costs, since costs can be seen as negative

rewards. We will present the MDP model in terms of costs (though traditionally

reward functions are employed).

9

If the state representation contains all the relevant information for future decisions,

then it is said to have the Markov property. In this case, the probability distributions

of the next state st+1 and cost ct+1 only depend on the current state st and action

at, and not on the history of past states, actions, and costs:

P (st+1; ct+1jst; at; ct; st�1; at�1; : : : ; c1; s0; a0) = P (st+1; ct+1jst; at):

Formally, a (discrete) Markov Decision Problem ([60]) is a tuple

hS0; S;A; Ptr(SjS;A); C(S;A; S)i;

where S0 is the set of initial world states, S is the set of all world states, A is the

set of actions, Ptr(st+1jst; at) is the transition probability of moving to state st+1 at

time t+ 1, after performing action at in state st at time t, and C(st; at; st+1) is the

expected immediate cost for performing action at in st and making a transition to

st+1. We assume the state and action sets are �nite. There is no discount factor,

because we are interested in episodic tasks (i.e., tasks that terminate after a �nite

number of actions have been executed).

An action can have a deterministic or a stochastic e�ect. If it is deterministic, from

a state st the transition is to a single next state with probability 1. If it is stochastic,

there may be more than one possible resulting state. We write Ptr(st+1jst; at) for the
probability of moving to state st+1 at time t+ 1, after performing action at in state st

at time t. Note that
P

st+12S Ptr(st+1jst; at) = 1 (so this is a probability distribution

over the next states).

The cost function C(st; at; st+1) is the expected cost associated with the transi-

tion from st to st+1, after performing action at. The expectation is with respect to

unknowns in the environment, C(st; at; st+1) = Efct+1jst; at; st+1g.
A (deterministic) policy is a mapping from states to actions � : S ! A, and it

chooses an action to take in each state. The value of a state s under a �xed policy

�, V �(s), is the expected sum of future costs incurred when starting in state s and

following � afterwards ([66], chapter 3):

V �(s) = E�

(X
k

ct+k+1

����� st = s

)
:

10

The expectation is taken with respect to the randomness in the e�ects of the actions

and in the cost function. For episodic tasks, a terminal state sf is eventually reached

after a �nite number of actions, and V �(sf) = 0;8�.
The value function V � of a policy � satis�es the following recursive relationship,

known as the Bellman equation for V �:

V �(s) =
X
s02S

Ptr(s
0js; �(s)) � �C(s; �(s); s0) + V �(s0)

�
;8�;8s: (2.2)

This can be viewed as a one-step lookahead from state s to each of the next states

s0 reached after executing �(s). Given a policy �, the value of state s can be computed

from the value of its successor states, by adding the expected costs of the transitions,

then weighting them by the transition probabilities.

In addition to V �, it is useful to de�ne the action value function Q� as follows:

Q�(s; a) =
X
s02S

Ptr(s
0js; a)� �C(s; a; s0) + V �(s0)

�
:

Note that V �(s) = Q�(s; �(s)).

Solving the MDP means �nding a policy that minimizes the expected sum of

costs, in other words, �nding a policy with minimum value function. Such a policy

is called an optimal policy (there can be several of them), and it chooses the best

action in each state. Policies can be partially ordered according to their values. A

policy �1 is better than �2 if its policy value is smaller: V �1(s) � V �2(s);8s. An

optimal policy �� has the minimum value function in every state, so it is better than

or equal to all other policies. All optimal policies share the optimal value function V �,

with V �(s) = min� V
�(s);8s; and the same optimal Q-function Q�, with Q�(s; a) =

min�Q
�(s; a);8(s; a):

The optimal value function V �, sometimes called the value function of the MDP,

satis�es the Bellman optimality equations (one equation for every state):

V �(s) = min
a

X
s02S

Ptr(s
0js; a)� �C(s; a; s0) + V �(s0)

�
;8s: (2.3)

11

Similarly, the Bellman optimality equations for Q� are (one equation for every

state-action pair):

Q�(s; a) =
X
s02S

Ptr(s
0js; a)� �C(s; a; s0) + V �(s0)

�

=
X
s02S

Ptr(s
0js; a)�

�
C(s; a; s0) +min

a0
Q�(s0; a0)

�
;8s;8a: (2.4)

Q�(s; a) is the value of executing action a in state s, followed by executing the optimal

policy in the resulting states s0.

We also write V �(s) = minaQ
�(s; a). If we know the optimal value function V �,

the probability transition model and the cost function, then any policy that is greedy

with respect to V � is an optimal policy:

��(s) = argmin
a

X
s02S

Ptr(s
0js; a)� �C(s; a; s0) + V �(s0)

�
:

If the Q� function is known, then we can compute the optimal policy directly, without

doing the one-step lookahead: ��(s) = argminaQ
�(s; a).

Value iteration is an algorithm that solves MDPs by iteratively computing their

value functions. Value iteration belongs to a class of methods, called dynamic pro-

gramming methods, that compute V � by solving the Bellman optimality equations 2.3

or 2.4. These methods require a model of the transition probabilities and of the cost

function. In value iteration, at iteration i+ 1, the value function is updated using a

one-step lookahead based on the value function computed in the previous iteration i,

Vi+1(s) := min
a

X
s02S

Ptr(s
0js; a)� �C(s; a; s0) + Vi(s

0)
�
: (2.5)

We also say that the value function has been backed up. The value function may be

initialized with arbitrary values (though it is easier to understand the update process

if the initial values are zero). For �nite MDPs in which the terminal state is reached

after a �nite number of steps, the value iteration algorithm converges to the optimal

value function V �.

Value iteration can also be interpreted as turning the Bellman optimality equa-

tion 2.3 into an update rule. Based on the value function Vi, the policy can also be

updated �i+1(s) := argmina
P

s02S Ptr(s
0js; a)� [C(s; a; s0) + Vi(s

0)] :

12

An MDP is said to be acyclic if starting from the initial state(s) the state tran-

sitions form a DAG ending in the terminal state. In an acyclic MDP, value iteration

can compute the optimal value function V � in a single sweep through the state space,

backing up values starting from the terminal state (which has zero value) and pro-

ceeding through the DAG all the way to the initial state(s):

V (s) := min
a

X
s02S

Ptr(s
0js; a)� �C(s; a; s0) + V (s0)

�
: (2.6)

2.3 Formal Description of the Cost-sensitive Learning Problem as an
(Acyclic) MDP

The decision making process in cost-sensitive learning involves performing diagnostic

tests (observation actions), gathering their results, based on which more tests will

be chosen, with the purpose of gathering enough information about the class of the

example (patient) to be able to identify it.

Cost-sensitive learning combines aspects of both supervised learning and MDPs.

Like supervised learning, the data consist of examples of the form (x; y). But as in

MDPs, the goal is to learn a decision-making policy for making a sequence of decisions

that minimizes the expected total cost. We will use terms and notations from both

�elds. For example, we will call the hypothesis a policy, a term from MDPs, though

all policies take the form of decision trees (a structure frequently used in supervised

learning). We will use measurements, actions, tests, and attributes interchangeably,

and we will also use classi�cation and diagnosis as synonyms.

Informally, given a training set of labeled examples where all attributes are mea-

sured, and given attribute costs and misclassi�cation costs, the goal of cost-sensitive

learning is to learn a policy with low expected costs on new examples.

The problem of cost-sensitive learning can be represented as a Markov Decision

Problem (MDP). We assume that the class we want to identify (belonging to a discrete

set of classes f1; 2; : : : ;Kg) is part of the environment and that the policy cannot

modify it; that is, all the tests are pure observations. In other words, none of the

13

measurement actions of the CSL problem can make the patient sick nor cure the

patient. This is not true, for example, in automobile diagnosis where the policy

may include repair actions (e.g., replace spark plugs), nor in medicine if the policy is

permitted to include attempted therapies (e.g., try an injection of steroids and observe

the results). We also assume that the order in which we perform the measurements

does not in
uence the values of other measurements, though it may a�ect the value of

a policy. Our CSL formulation only requires the identi�cation of the class, subject to

minimizing the expected total cost, assuming the testing process has no side e�ects.

We begin by de�ning the actions A of this MDP. We assume that there are N

measurement actions (tests) and K classi�cation actions. Measurement action n

(denoted xn) returns the value of attribute xn, which we assume is a discrete variable

with possible values v1; :::; vVn . Classi�cation action k (denoted fk) is the act of

classifying the example (patient) into class y = k.

We emphasize that in this thesis, xn denotes a variable, not a value. xn is the

attribute and v is its value.

Now let us de�ne the states S of the MDP. A state is a complete history of all past

observations, and because it retains all the relevant information for future decisions,

this state representation has the Markov property. We emphasize again that the

observed class y is not part of the state representation. There is a single initial world

state, s0, also called the start state, so S0 = fs0g. In the start state, no attributes

have been measured (so we write s0 = fg). The set of all world states S contains one

state for each possible combination of measured attributes, as found in the training

data. For example, the state fage = old, insulin = lowg is a state in which the \age"

attribute has been measured to have the value \old" and the \insulin" attribute has

been measured to have the value \low". We assume that once an attribute is measured,

it cannot be tested again (since all attributes are measured in the training data, by

measuring the attribute we obtain its value and there is no reason to measure it again

to get the same value). The set A(s) of actions executable in state s consists of those

attributes not yet measured and all the classi�cation actions.

14

There is also a special terminal state sf . Every classi�cation action makes a tran-

sition to sf with probability 1 (i.e., once a classi�cation is made, the task terminates).

By de�nition, no actions are executable in the terminal state, A(sf) = fg, and its

value function is zero, V �(sf) = 0;8�.
If all attributes xn have the same arity, Vn = V;8n, then the total number of

states of the MDP is (V +1)N +1, because an attribute can be either measured (so it

will have one of the V values) or not yet measured, plus we have the terminal state.

But on a given training set, not all of these states may be reachable, because not all

combinations of attribute values may be observed in the training examples. For N

attributes and m training examples, the upper bound on the number of reachable

states is 2N �m:

We now de�ne the transition probabilities and the expected immediate costs of

the MDP. For measurement action xn executed in state s, the result state s0 will be

s0 = s [fxn = vg, where v is one of the possible values of xn. The probability of

this transition will depend on the values of all of the previously-measured attributes,

which are stored in state s: Ptr(s
0js; xn) = P (xn = vjs). The expected cost of this

transition is C(s; xn; s
0). We assume that the cost of measurement action xn depends

only on the action itself and not on which other measurements have already been

performed (so it does not depend on s), nor on its measured value v (so it does not

depend on s0), and we also assume that it does not depend on the observed class

y. We believe these assumptions can be relaxed without substantial changes to our

framework.

The expected cost of a classi�cation action fk depends on the observed class y of

the example. Let MC(fk; y) be the misclassi�cation cost of guessing class k when the

observed class is y. Because the observed class y of an example is not known to the

learner, the cost of a classi�cation action (which depends on y) performed in state

s must be viewed as a random variable whose value is MC(fk; y) with probability

P (yjs), which is the probability that the observed class is y given the current state s.

Fortunately, to compute the optimal policy for the MDP, we only need the expected

15

cost of each action. The expected cost of classi�cation action fk in state s is

C(s; fk) =
X
y

P (yjs) �MC(fk; y); (2.7)

which is independent of y. C(s; fk) is a shorthand notation for C(s; fk; sf), and we

omit sf because classi�cation actions transition to the terminal state sf with proba-

bility 1. To keep a consistent notation, we also write C(s; xn) (instead of C(s; xn; s
0))

for the expected cost of measurement action xn, though with our assumptions it

could just be written as C(xn). This allows us to write the expected immediate cost

as C(s; a) where the action a can be either a measurement or a classi�cation action.

We will say that an example matches a state s if the example agrees with the

attribute values de�ning s.

Given a training set of labeled examples with no missing attribute values, we can

directly estimate the MDP's transition probabilities from the training set. Ptr(s
0js; xn)

is estimated as the number of training examples that match state s0 (where xn = v)

divided by the number of training examples that match s. We can also estimate

the class probabilities P (yjs) needed to compute the expected costs, C(s; fk), of the

classi�cation actions. P (yjs) is the fraction of training examples matching state s

that belong to class y.

A policy � for an MDP is a mapping from states to actions. Note that in the cost-

sensitive learning problem, all policies are proper, that is, they reach the terminal

state with probability 1. The terminal state is always reached, because only �nitely-

many measurement actions can be executed after which any classi�cation action will

cause the MDP to enter the terminal state.

Because the states of our MDP record the values of measured attributes, and

because each attribute can only be measured once, the MDP for CSL problems is

acyclic. For a given start state s0, the CSL policy is a decision tree. The root of

the tree is the start state of the MDP. Each internal node in the tree corresponds

to a state that is reached by � in the MDP, and the attribute tested in the node is

the action chosen by �. The branches descending from such a node specify each of

the values of the attribute, and lead to new nodes. The classi�cation labels in the

16

leaves of the tree are the classi�cation actions of the MDP. All diagnostic policies are

decision trees, so the hypothesis space of decision trees contains the optimal policy

��.

Since building decision trees that minimize the 0/1 loss is NP-complete [29], and

this problem can be reduced to our cost-sensitive learning problem (by having all

attribute costs be zero, and having all error costs be one) it follows that the CSL

problem is also NP-complete.

The value function of a policy, V �(s), is the expected total cost of following policy

� starting in state s until the terminal state is reached. If we knew the true underlying

distribution D(x; y), we could compute the true value function V �. But we only have

a data sample from D(x; y), which we divide into a training data set and a test data

set. The training data set is used by the learning algorithm to construct the policy, so

using it to evaluate the policy gives a biased estimate of the true value function. The

independently chosen test data set gives an unbiased estimate of V �. Nevertheless,

both training and test data sets can only produce estimates of the true value function

V �.

Any policy � we learn will start in the initial state s0. In general, by the policy

value we mean the value of the policy in the start state, V �(s0). The goal of CSL is to

learn policies that minimize V �(s0) on the test data (actually on the true distribution,

but we do not know it at learning time).

The optimal policy �� (on the training data) minimizes V �(s) for all states, and

its optimal value is V �(s). With our CSL notations, we can rewrite equations 2.2

and 2.3 as follows. The Bellman equation for policy values becomes

V �(s) = C(s; �(s)) +
X
s02S

Ptr(s
0js; �(s))� V �(s0); (2.8)

and the Bellman optimality equation becomes

V �(s) = min
a2A(s)

"
C(s; a) +

X
s02S

Ptr(s
0js; a)� V �(s0)

#
= min

a2A(s)
Q�(s; a): (2.9)

Equation 2.8 can be further rewritten, depending on whether �(s) is a measure-

ment action xn with possible values v, or if it is a classi�cation action fk. In the

17

former case,

V �(s) = Q�(s; xn) = C(s; xn) +
X
v

P (xn = vjs)� V �(s [fxn = vg): (2.10)

In the latter case,

V �(s) = Q�(s; fk) = C(s; fk); (2.11)

because V �(sf) = 0 by de�nition.

During learning and evaluation, we will need to estimate V �(s0) from a set of

labeled examples. There are two methods for doing this. One is to use the labeled

examples to estimate various probabilities which can then be plugged into equations

2.10 and 2.11. Speci�cally, we need to estimate P (yjs) for each state s where a

classi�cation action is chosen. This allows us to compute C(s; fk) according to 2.7.

And we need to estimate P (xn = vjs) for each state reached by � and for the attribute

xn = �(s) chosen in state s.

The second method for computing V �(s0) is to take advantage of the fact that the

policy � has the form of a decision tree. This means that each example, when classi�ed

by the tree, will follow a path from the root to one of the leaves. To compute V �(s0),

do the following: for each example in the data set, compute the cost of measuring

each attribute tested along the path followed by this example. Then compare the

classi�cation action fk in the leaf reached by this example to the observed class y and

add in the misclassi�cation cost MC(fk; y). This gives the total cost of classifying

that example. Average this over all of the examples to obtain the estimated value of

the policy on the given data set.

There can be examples with the same attribute values but di�erent classes; this

re
ects a reality in medicine, for example, where based on the results of a limited

number of tests, a sick patient and a healthy patient may appear the same. Even if the

observed class label of an example is wrong, our policy will incur a misclassi�cation

cost for not matching it, because we have no way of knowing whether the label is

correct.

18

Because the MDP corresponding to the cost-sensitive learning problem is acyclic,

we can employ the single sweep value iteration update 2.6. With our notations,

V (s) := min
a2A(s)

"
C(s; a) +

X
s02S

Ptr(s
0js; a)� V (s0)

#
: (2.12)

Alternative Formulation of the Cost-sensitive Learning Problem as a
POMDP

In this thesis, the cost-sensitive classi�cation problem is formulated as an MDP where

the states are combinations of measured attributes. There is a di�erent formulation

of the CSL problem as a POMDP (Partially Observable MDP) with belief states

over the possible classes of the problem. The belief states also need to specify the

set of remaining actions (because the same class probability distribution P (yjs) can
appear after di�erent sets of tests were measured). This is another way of formulating

the cost-sensitive learning problem using belief states of the form hP (s); A(s)i. The
underlying MDP for this POMDP is trivial, since its states are simply the classes of

the problem, so no measurement action needs to be performed, and V �
MDP (s) = 0

(assuming classifying in the correct class has zero cost), and ��(s = fy = k)g = fk.

2.4 Example of Diagnostic Policies

Let us illustrate the above notions with a simple example. Suppose the task is to learn

how to diagnose diabetes, and we have a dataset of 100 labeled examples with two

tests, Body Mass Index (BMI) and Insulin, and two classes, Healthy and Diabetes.

The training dataset is described in Table 2.2.

Tables 2.3 and 2.4 illustrate the costs for tests and for misclassi�cations. BMI has

a lower cost, C(BMI) = 1 < C(Insulin) = 22:78. The misclassi�cation costs are

asymmetric: the false negatives are more expensive than the false positives, MC(f =

Healthy; y = Diabetes) > MC(f = Diabetes; y = Healthy). Correct classi�cations

have zero costs.

From the training data set we can compute maximum likelihood estimates of the

19

TABLE 2.2: Training set of labeled examples for a simple diabetes diagnosis task.

Body Mass Index Insulin Class # examples

small low Healthy 15

small low Diabetes 2

small high Healthy 30

small high Diabetes 3

large low Healthy 12

large low Diabetes 28

large high Healthy 8

large high Diabetes 2

MDP probabilities, for example P (BMI = largejfg) = :5, computed as the ratio

between the 50 examples matching state fBMI = largeg and the total number of

training examples (100). Similarly, P (Insulin = highjfBMI = largeg) = (8 +

2)=50 = 10=50 = :2. The class probabilities are estimated as the ratio between the

number of examples matching a state and having a certain class, and the total number

of examples matching the state. For example, P (y = HealthyjfBMI = smallg) =
(15 + 30)=50 = 45=50 = 0:9, and P (y = HealthyjfBMI = large; Insulin = lowg =
12=(12 + 28) = 12=40 = :3.

In our notation, A(s) is the set of actions executable in state s: those attributes not

measured in s and all the classi�cation actions. For example, A(fBMI = smallg) =
fInsulin; f = Healthy; f = Diabetesg:

Figure 2.1 illustrates a simple policy �1. We describe the policy and show how can

we compute its value in a single sweep, starting at the leaves. In the start state fg,
the BMI (Body Mass Index) attribute is measured. If the result of this test is fBMI

= smallg, a classi�cation action is made, classifying as Healthy. This is an incorrect

20

TABLE 2.3: Test costs.

Test Cost

BMI $1:00

Insulin $22:78

TABLE 2.4: Misclassi�cation costs.

observed class y

Healthy Diabetes

predicted class ŷ = Healthy $0 $100

predicted class ŷ = Diabetes $80 $0

classi�cation 10% of the time, therefore the expected cost of this classi�cation action

is C(fBMI = smallg; f = Healthy) = :9�0+:1�100 = 10, according to equation 2.7.

This is also the value of the leaf state, V �1(fBMI = smallg) = 10.

If the result of the Body Mass Index test is fBMI = largeg, the policy �1 measures
Insulin, after which it classi�es. The values of the leaf states are V �1(fBMI =

large; Insulin = lowg) = C(fBMI = large; Insulin = lowg; f = Diabetes) =

:3 � 80 + :7 � 0 = 24 and V �1(fBMI = large; Insulin = highg) = C(fBMI =

large; Insulin = highg; f = Healthy) = :8 � 0 + :2 � 100 = 20.

The value of the state fBMI = largeg is backed up according to equation 2.10,

V �1(fBMI = largeg) = C(fBMI = largeg; Insulin) + P (Insulin = lowjfBMI =

largeg)�V �1(fBMI = large; Insulin = lowg)+P (Insulin = highjfBMI = largeg)�
V �1(fBMI = large; Insulin = highg) = 22:78 + :8 � 24 + :2 � 20 = 45:98. Finally,

the value of the entire diagnostic policy �1 is V �1(fg) = C(fg; BMI) + P (BMI =

21

.3

.7

100

0

Incorrect

Correct

0

Incorrect

Correct

Healthy

Diabetes

high

low

.2

.8
Insulinlarge

.5

Healthy

80

28.99

.845.98

10

20

24

100

0

.1
Incorrect

Correct.9

{ BMI = large, Insulin = high }

{ BMI = large, Insulin = low}

{ BMI = small }

{ BMI = large }
22.78

1

.2

small

.5

BMI{ }

FIGURE 2.1: Diagnostic policy �1. Internal nodes contain states delimited by f; g,
and specify which attribute (BMI, Insulin) is tested. Leaves are labeled with classi�-
cation actions (Healthy, Diabetes) and we write the probabilities of that classi�cation
being correct and incorrect. We write the costs of attributes underneath them, and
the misclassi�cation costs next to the solid squares. The policy values of states are
written under the states.

Correct

Healthy

Diabetes

12

40.138

{ Insulin = low }

22.78
{ }

21.4
.57

.43

low

high
{ Insulin = high }

Incorrect

Insulin 12

24

.12

.88
{ BMI = small, Insulin = low }

small

large

.3

.7
{ BMI = large, Insulin = low}

80.3

.7

100

0

Incorrect

Correct

0

1
BMI

.88

.12 100

0

Incorrect

Correct
Healthy

FIGURE 2.2: Another diagnostic policy �2, making the same classi�cation decisions
as �1, but with a changed order of attributes, and therefore with a di�erent policy
value.

22

small
Healthy

.5

large

1

{ BMI = large }

{ BMI = small }
.9 Correct

Incorrect
.1

0

10010

Diabetes
Correct

Incorrect

0

80

.6

.432

22

.5

{ } BMI

FIGURE 2.3: Optimal diagnostic policy on the training data.

largejfg) � V �1(fBMI = largeg + P (BMI = smalljfg) � V �1(fBMI = smallg) =
1 + 0:5 � 45:98 + 0:5 � 10 = 28:99.

It is interesting to notice that the order in which attributes are measured has

a large e�ect on the value of the policy. Indeed, if Insulin is measured �rst, then

policy �2 from Figure 2.2 has a larger policy value V �2(fg) = 40:138 > V �1(fg) =
28:99. Policy �2 still makes the same classi�cation decisions as �1 for all the training

examples, but it costs much more.

A simpler policy �3, measuring only BMI and then classifying (see Figure 2.3),

has a better policy value than �1, V
�3(fg) = 22; in fact, this policy is the optimal

policy �� on the training data.

Unlike with standard 0/1 loss, the majority class is not necessarily the best cost-

sensitive class. In this problem, for example, P (y = Healthyjfg) = :65 and P (y =

Diabetesjfg) = :35, so the expected classi�cation costs are C(fg; f = Healthy) =

:65 � 0 + :35 � 100 = 35 and C(fg; f = Diabetes) = :65 � 80 + :35 � 0 = 52. Therefore

the majority class (Healthy) is also the cheapest diagnosis. But if the misclassi�cation

costs of false negatives is doubled, that is, ifMC(f = Healthy; y = Diabetes) = 200,

then C(fg; f = Healthy) = :35 � 200 = 70 > C(fg; f = Diabetes) = 52, so the

minority class (Diabetes) becomes the cheapest diagnosis.

23

2.5 Assumptions and Extensions of Our Cost-sensitive Learning Frame-
work

In the following subsections we discuss several important issues related to cost-

sensitive learning problems. We introduce �rst the general setting, then we discuss

the assumptions of our CSL framework and its possible extensions.

2.5.1 Complex Attribute Costs and Misclassi�cation Costs

2.5.1.1 Attribute Costs

Using Turney's terminology for conditional test costs [70], the measurement cost of

attribute xn may depend on

� prior test selection (e.g., blood tests can share a common cost of collecting the

blood).

� the results of prior tests (e.g., drawing blood from a newborn is more costly

than from an adult; in this case, the result of a previous test \observe patient

age" in
uences the cost of the next test \draw blood").

� the outcome of xn (e.g., in computer network diagnosis [41], doing a \ping" to

measure the round-trip-time to a host is very fast if the host is reachable but

waits 20 seconds for a timeout if the host is down or not reachable).

� the class (e.g, tests can become more expensive for patients in critical medical

condition).

In general, measurement costs can depend on the action performed xn, the current

state s (history of prior measurements and their values), the resulting states s0 (since

s0 = s [fxn = vg, this is a dependency on the outcomes of xn), and the class of the

example y, so the most general form of the cost function is C(s; xn; s
0; y). In order

to reason with complex test costs, we would �rst need to acquire them, either from

training data or from being told. Note that we cannot learn cost dependencies from

24

our existing, order-free, training data. Once the cost model is known, we can easily

incorporate more complex test costs in our framework than the current test costs

C(s; xn).

Since the state s can also be described in terms of the matching training exam-

ples (these are the examples that agree with the attribute values de�ning s), state-

dependent costs are equivalent to example-dependent costs. This holds for both

attribute and misclassi�cation costs. For attribute costs,

C(s; xn) =
X
v

P (xn = vjs) �
X
y

C(s; xn; (s [fxn = vg; y)); (2.13)

where we also write s0 = s [fxn = vg.

2.5.1.2 Misclassi�cation Costs

Misclassi�cation costs can also be example-dependent, MC(fk; x; y), where for each

example (x; y), x is the vector of attributes, y is the observed class, and fk is the

predicted class. For example, donation amounts in solicitation campaigns depend on

the individual; purchasing amounts in catalogue mailing also depend on the customer;

see [77, 56] for more details about the application of direct marketing.

In general, we can assume there is a distribution P (x; yjs) of examples that match
state s. Then we can estimate the expected cost of classi�cation action fk in state s

as:

C(s; fk) = EP [MC(fk; x; y)] =
X
x;y

P (x; yjs)MC(fk; x; y): (2.14)

In our experimental studies, we considered the simple case where test costs are

constant (they depend only on the attribute xn, C(xn)), and misclassi�cation costs

are constant as well (they do not depend on examples, just on the predicted and

observed class). But we can incorporate both attribute and misclassi�cation costs of

these more complex forms in our CSL framework, as described above in Equations 2.13

and 2.14, and the model remains an MDP because the Markov property still holds.

25

2.5.1.3 Costs Unknown at Learning Time

We assume test costs and misclassi�cation costs are known during the learning phase.

If costs are not known at learning time, we may still be able to learn some policies

based on bounds of costs, and prune some policies. Let B represent a set of bounds

on test and misclassi�cation costs. We could prune a policy �1 if minb2B V �1
b >

maxb2B V �2
b , where V �

b is the value of policy � for cost values b.

If costs are known only at execution time and real-time decisions are needed, this

rules out systematic search methods, because of their computational cost. Greedy

algorithms can still be applied.

2.5.2 Complex Actions

We list several types of complex actions, mainly to suggest directions of future work.

Our CSL framework can not currently address them.

2.5.2.1 Repeated Tests

We assume an attribute can be tested only once. But in general, tests may be re-

peated. For example, to diagnose a cracked tooth, the biting test and the cold-

sensitivity test can be applied several times.

To capture repeated tests, the state representation will need to specify the history

of repeated tests. The di�cult part for learning is obtaining su�cient training data

for repeated tests.

2.5.2.2 Side-e�ects of Tests

We assume our tests are pure observations, followed by a single diagnosis. In general,

tests may have many kinds of side-e�ects that would require changing our approach.

1. The execution of one test may in
uence the costs of other tests. Suppose a test

on the transmission of a car requires removing the engine from the car. Once

the engine is out, other tests which also required removing the engine (e.g.,

26

checking the clutch) become much cheaper. Conversely, tests that require that

the engine is in the car become much more expensive (because the engine needs

to be put back into the car).

2. The execution of one test may in
uence the results of other tests. For example,

if you administer a glucose intolerance test (by asking the patient to drink a

very sweet drink and then measuring blood glucose), this will change the results

of doing a measurement of blood insulin. Hence, blood insulin (and baseline

glucose levels) should be measured before the glucose intolerance test.

3. The execution of a test may change the class variable (the disease of the patient).

These tests are usually called attempted repairs or attempted therapies. A test

like "administer penicillin and see if it cures the patient" clearly has the potential

to change the class variable.

The �rst case can be handled by extending the MDP state to include a variable that

indicates whether the engine is in or out of the car. The test cost information must

then specify the cost of each test for both cases (engine in, engine out) and it must

indicate whether the test causes the engine to change state. This doubles the number

of states in the MDP, but otherwise our approach can be applied.

The second and third cases invalidate our approach to training data. In our

approach, the training data consist of an unordered list of tests and their results, and

we assume that the tests would give the same results for all possible orderings. For

the second and third cases, this is not true, so our training data would need to record

the actual order in which the tests were performed. In the worst case, we would need

to provide training examples exhibiting all possible test orderings so that we could

detect all possible interactions.

In problems where therapies or repairs are available, our simple model of diagnosis

(make observations, then predict the disease of the patient) does not make sense.

Instead, the problem can be formalized as one of performing a mix of observations and

repairs until the problem is solved (i.e., the patient is healthy, the car is working, etc.).

27

We emphasize that this is a di�erent problem de�nition than the CSL problem studied

in this thesis, because the goal is repair or treatment rather than just diagnosis.

2.5.2.3 Delayed Test Results

We assume the result of a test is received immediately (i.e., without a time delay).

In medicine, this is true for some tests but not all. For example, a blood test might

require an hour; a test for strep throat might require 48 hours; a cancer biopsy might

require several days. Furthermore, these tests may measure multiple attributes at

once (for example, a blood lipid pro�le returns triglycerides, HDL, VLDL and LDL

cholesterol). A physician may order one of these tests and then proceed with other

diagnostic tests while waiting for the results. The CSL problem with delayed test

results is no longer an MDP, but a Semi-MDP [60, 12], because actions take variable

amounts of time.

2.5.3 CSL Problem Changes in Time

In real life, the CSL problem will change in time. This means that the MDP changes.

Here are some possible causes of the changes in the MDP model:

� New training data arrives. This is more and more the case as hospitals and

businesses keep track of records.

� New tests are discovered (for example, the test A1c for diabetic patients). Some

tests become obsolete.

� New outcomes of old tests or treatments appear (for example, resistance to

antibiotics).

� New diseases appear (such as SARS). Some diseases are eradicated.

� Costs change in time.

28

There is no easy way to deal with these changes in the MDP model. It is likely that

the policy needs to be re-learned. In special cases, incremental updates are possible,

or parts of the old search space may be reused.

2.5.4 Missing Attribute Values

Our work assumes that in each training example, every attribute has been measured.

We can imagine that the training data was collected and labeled by an \observe-

everything" exploration policy. Because of this, we can evaluate any policy on the

collected training data. This kind of data can be collected in medical research studies.

However, in observational data, such as data extracted from hospital records, such

training examples are not likely to be observed. The reason is that physicians follow

their own diagnostic policies, and of course these policies attempt to tradeo� the cost

of tests against the cost of misclassi�cations.

It is possible to learn the optimal policy �� by observing training examples col-

lected under some other policy � provided that three conditions hold:

1. The policy � has a non-zero probability of reaching every state s that can be

reached.

2. The policy � has a non-zero probability of executing every test in every reachable

state s.

3. The policy � is only selecting actions based on the observed results of executed

tests. That is, no outside information sources are being used.

Under these conditions, the transition probabilities of the MDP can be estimated and

the methods described in this thesis can still be applied.

Unfortunately, these conditions are unlikely to be satis�ed in practice by a physi-

cian following his or her own policy. The conditions could be guaranteed by modi-

fying the physician's policy so that with a small probability every possible action is

considered at each step (e.g., by slightly randomizing the physician's policy). Such

29

techniques have been applied in reinforcement learning to guarantee that the optimal

policy �� can be learned [66].

2.5.5 Multiple Classes

Classi�cation problems often have more than 2 classes, and this is easily accommo-

dated in our approach. More classi�cation actions simply add a constant amount

of computation when evaluating every state s through the computation of their ex-

pected costs: C(s; fk) =
P

y P (yjs)�MC(fk; y). Neither the greedy nor the systematic

algorithms introduced in this thesis are limited to binary classes.

The most di�cult problem is getting enough training data for all these classes.

There is an additional overhead for determining the misclassi�cation costs MC(fk; y)

for more than two classes.

2.5.6 Continuous Attributes

Most real problems have continuous attributes, but the systematic search algorithms

described in this thesis require attributes to have a small number of discrete values.

The simplest approach to handle this is to consider all possible values as the outcomes

of a test. This will increase the risk of over�tting for the algorithms (especially for the

systematic search ones), since the state space becomes larger. Over�tting happens

because data becomes fragmented and all decisions based on a smaller sample are

less accurate. Over�tting also a�ects a di�erent approach in which we change the

decision nodes in the policy from \test attribute xi" to \test if xi � threshold",

with binary outcomes; in this case we will charge the cost of measuring xi only once.

Greedy algorithms introduced in Chapter 3 can easily deal with continuous attributes,

providing the branching factor is not huge.

If the measured attribute values are continuous, our systematic search algorithms

require that they be discretized prior to learning. We recommend no more than 10

values for the discretized attributes in order to avoid small data partitions and the

30

ensuing over�tting. In this dissertation, we discretized continuous attributes in three

partitions.

For systematic algorithms, we might use a simple greedy algorithm at each internal

node for choosing a threshold for each continuous attribute.

2.5.7 Objective Function

Di�erent CSL problems may have di�erent objective functions. For example, in a

bomb-threat the objective is to to �nd (and disable) the bomb, while minimizing

time and loss of human lives and property.

If the objective function can be expressed as a single utility function (in terms of

\costs"), then our CSL framework is applicable. Our goal is to �nd the diagnostic

policy that minimizes the expected total cost. \Cost" can be time, etc., for example

in a medical emergency the objective is to minimize the time to �nd the cause of the

injury (e.g., which internal organ is failing?).

We can not address multiple objective functions.

2.6 Literature Review for the Cost-sensitive Learning Problem in Ma-
chine Learning

Machine learning has tackled several di�erent settings for the classi�cation problem,

mentioned here in historical order:

1. classi�ers minimizing 0/1 loss (see 2.1). This has been the main focus

of machine learning, from which we mention only CART [9] and C4.5 [63].

These are standard top-down decision tree algorithms. C4.5 introduced the

information gain as a heuristic for choosing which attribute to measure in each

node. CART uses the GINI criterion.

Weiss et al. [75] proposed an algorithm for learning decision rules of a �xed

length for classi�cations in a medical application; there are no costs (the goal is

to maximize prediction accuracy). Their paper also de�nes the commonly used

31

medical terms of sensitivity and speci�city of tests from a machine learning

perspective.

2. classi�ers sensitive only to attribute costs: Norton [51], Nunez [52] and

Tan [68, 67]. The splitting criterion of these decision trees combines information

gain and attribute costs. These policies are learned from data, and their objec-

tive is to maximize accuracy (equivalently, to minimize the expected number of

classi�cation errors) and to minimize expected costs of attributes.

A related problem is the test sequencing problem [53], from electronic systems

testing. Pattipati and Alexandridis point out that \the test sequencing problem

belongs to the general case of binary identi�cation problems that arise in botan-

ical and zoological �eld work, plant pathology, medical diagnosis, computerized

banking and pattern recognition." The objective of the test sequencing problem

is to unambiguously (deterministically) identify the system state (either one of

the faulty states, or the fault-free state) by performing tests with minimum

expected total cost. The assumptions are that only one of the system states

occurs (or equivalently, the faults are mutually exclusive), the probability dis-

tribution over the system states is given and so is the binary diagnostic matrix

(which tells if a test detects a fault or not). The test sequencing problem is

a simpli�ed version of the cost-sensitive classi�cation problem, because faults

are identi�able with probability 1.0, and therefore there are no misclassi�cation

costs.

3. classi�ers sensitive only to misclassi�cation costs: Breiman and al. [9],

Hermans et al. [28], Gordon and Perlis [21], Pazzani et al. [54], Knoll et

al. [32], Fawcett and Provost [17], Gama [20], Margineantu [43], Zadrozny

and Elkan [77], and Ikizler [30]. This problem setting assumes that all data is

provided at once, therefore there are no costs for measuring attributes and only

misclassi�cation costs matter; this is not a sequential decision making problem.

The objective is to minimize the expected misclassi�cation costs.

32

This work can be further divided depending at which point in the learning

process the knowledge about misclassi�cation costs becomes available:

(a) misclassi�cation costs known during the learning of classi�ers

(CART [9], MetaCost [14], post-pruning of decision trees using misclassi�-

cation costs (Bradford et al. [8], Kukar and Kononenko [35], Webb [74])).

(b) misclassi�cation costs not known until execution time. Two strate-

gies are employed.

The �rst one learns cost-insensitive classi�ers with improved conditional

class probabilities P (yjx), then classi�es each test example x into the class

with the minimum expected cost:

ŷopt(x) = argmin
ŷ

X
y

P (yjx)L(ŷ; y):

This approach includes logistic regression, Friedman and Stuetzle's projec-

tion pursuit regression [19], Naive Bayes, Domingos and Provost's B-PETs

[15], Margineantu and Dietterich's B-LOTs [44].

The second strategy learns a range of operating points on an ROC curve.

When costs become known at execution time, an operating point is chosen

(Provost and Fawcett's ROC convex hull [58] and [59]).

4. classi�ers sensitive to both attribute costs and misclassi�cation costs.

More recently, researchers have begun to consider both test and misclassi�cation

costs: [71, 22]. The objective is to minimize the expected total cost of tests and

misclassi�cations. Both algorithms learn from data as well.

Peter Turney in 1995 [71] developed ICET, a cost-sensitive algorithm that em-

ploys genetic search to tune parameters used to construct decision trees. Each

decision tree is built using Nunez' criterion (described in Section 3.2), which

selects attributes greedily, based on their information gain and costs. Turney's

method adjusts the test costs to change the behavior of Nunez' heuristic so

that it builds di�erent trees. These trees are evaluated on an internal holdout

33

data set using the real test costs and misclassi�cation costs. After several trials,

the best set of test costs found by the genetic search is used by the Nunez'

heuristic to build the �nal decision tree on the entire training data set. Because

Turney simply modi�es the attribute selection in C4.5 to add attribute costs

when implementing the Nunez' criterion, his algorithm can deal with continuous

attributes and with missing attribute values.

Turney's is a seminal paper laying the foundations of cost-sensitive learning with

both attribute costs and misclassi�cation costs. Turney compares his algorithm

with C4.5 and with algorithms sensitive only to attribute costs (Norton, Nunez

and Tan). He does not compare ICET with algorithms sensitive to misclassi�ca-

tion costs only, because in his experiments he used simple misclassi�cation cost

matrices (equal costs on diagonal, equal costs o� diagonal) which make algo-

rithms sensitive only to misclassi�cation costs equivalent to minimizing 0/1 loss.

ICET outperformed the simpler greedy algorithms on several medical domains

from the UCI repository.

Greiner, Grove & Roth's 2002 paper [22] is a theoretical work on a dynamic

programming algorithm (value iteration) searching for best diagnostic policies

measuring at most a constant number of attributes. They compute a theoretical

sample size for which value iteration comes within � of V �, with probability at

least 1 � � (a PAC-learning result). Their theoretical bound is not applicable

in practice, because it requires a speci�ed amount of training data in order to

obtain close-to-optimal policies.

2.7 Related Work in Decision-theoretic Analysis

Decision analysis has addressed a problem similar to cost-sensitive learning, called

troubleshooting. In the troubleshooting problem, it is known that the system is faulty,

and the objective is to repair it, while minimizing the expected total cost of repairs

and observations. It is assumed that a model is given (usually a Bayesian network)

34

from which the necessary probabilities can be inferred. The Bayesian network is

usually elicited from experts as opposed to being learned from training data.

The troubleshooting problem is slightly di�erent from the cost-sensitive learning

problem. The purpose is fault repair, not diagnosis. In addition to pure observation

actions (similar to our tests), troubleshooting has repair actions that a�ect the state of

the device (change the class, in our terminology). More precisely, they can change the

state of the device from faulty to functioning. Repairs are similar to our classi�cation

actions, but a repair action is terminal only when it �xes the device. The costs of

the observation and repair actions are deterministic and independent. There is no

learning from data; instead a model is assumed.

Heckerman et al. [27] characterize a class of problems for which the optimal policy

can be computed greedily, assuming there is a single faulty component and there are

only repair actions with independent costs. Let there be n components in the system.

Let Cr
i be the cost of repairing component ci and pi the probability (in the start

state) that repairing this component �xes the system. Repairing a component does

not a�ect other components. The assumption is that after �xing all components, the

system will be in working condition (or else a service call, of known cost, can be made,

and it guarantees to get the system to function). With the above assumptions, the

repair policy is optimal; it performs a sequence of repair actions in decreasing order

of pi
Cr
i
, until the system is working. We can think of this repair sequence as a macro

terminal action (it will eventually �x the system). We will also refer to the repair

sequence as the \stop testing" policy.

When both repair actions and observation actions are available, Heckerman et al.

construct a policy using the one-step value of information (VOI) heuristic. The idea

is to compute the value of information of each possible observation action and choose

the action with the largest VOI. The value of information of an observation action

is the di�erence in expected cost of performing the repair sequence now, versus per-

forming �rst the observation, then executing the corresponding repair sequence (after

computing the repair probabilities pi based on the outcomes of the observation). If

35

the VOI of all observations is negative, the repair sequence is executed without per-

forming any observations. If VOI is positive, the best observation action is executed

and then the VOI values are recomputed based on its outcomes. In the domain of

troubleshooting car problems, the expected cost of the one-step VOI policy was close

to optimal and this policy outperformed simpler planners.

On a di�erent problem, Fountain et al. [18] applied iterative one-step VOI to

decide which integrated circuit chip (die) on a wafer should be tested next, and when

to stop testing. The problem is to compute a policy for choosing which dice to test on

a wafer in order to maximize the total pro�t resulting from testing, packaging, and

selling the ICs.

Each die can be subjected to a die-level functional test to determine if it operates

correctly. Traditionally, all dice on a wafer are tested, the bad ones are inked, the

wafers are shipped to a di�erent location, cut apart (discarding the inked ones),

packaged (or assembled into ICs), tested one more time in package form (these are

called package tests) and �nally sold. Since package tests double check the quality

of the ICs, die-level functional tests are only needed to avoid packaging defective

dice (and therefore cut costs), and also to diagnose problems with the manufacturing

process.

Fountain et al. �t a Naive Bayes model to historical data from the Hewlett

Packard company, hypothesizing that there is a class (or fault) variable that causes

each individual die to fail, independently of the rest. Since this data is unlabeled,

the authors experimentally set the number of classes to four, then employ the EM

algorithm to learn the parameters of the Naive Bayes model. Interestingly, Fountain

et al. divided the data into training data, to which they �t the Naive Bayes, and test

data, on which the learned policy is evaluated.

There are 209 dice on a wafer, which creates too large a branching factor to

attempt exhaustive search. The one-step VOI was applied to decide between testing

one more die (after which it performs \stop testing" policies), and \stop testing"

now. Fountain et al. only perform this greedy policy at run time, based on the actual

36

results of tests performed so far, rather then at a separate learning time.

Computing the value of the \stop testing" policy is more complex than our com-

putation of the expected costs of classi�cations actions. An inking decision must be

made for each die; note that the inference of probabilities for the inking decision is

easy because of the simple Naive Bayes model. There is an additional decision of

whether to discard the entire wafer. Then, if the wafer is not discarded, the costs of

shipping, cutting, packaging, package testing, and �nally selling the good ICs must

be computed.

The greedy VOI policy produces more net pro�t than simple policies that test all

dice exhaustively or that test no dice at all (at the functional level). Moreover, the

one-step VOI policy detects abnormal wafers (so it can give feedback to the fabrication

process in real time) and is robust to changes in testing costs.

Both troubleshooting and die-level testing problems are MDPs where each state

stores the history of test outcomes. Both application problems employ a model to infer

the probabilities and perform greedy search (the one-step VOI) to compute policies.

The action space includes tests, but it does not include classi�cation actions, though

it has similar terminal actions (which enable the one-step VOI policy to compute the

value of the \stop testing" policy).

2.8 Summary

This chapter formalized the cost-sensitive learning problem by using terminology from

supervised learning and the MDP framework. We borrowed the format of the data

(sets of labeled examples) and the task of predicting the class from supervised learning.

We borrowed the notion of sequential decision processes and the goal of minimizing

the expected total cost from MDPs. We showed that diagnostic policies take the

form of decision trees. We demonstrated that the order in which diagnostic tests are

performed is important. We identi�ed restrictions of our framework and discussed re-

lated work. The following chapters delve into the design space of CSL algorithms. We

introduce greedy methods in Chapter 3, and systematic search methods in Chapter 4.

37

CHAPTER 3

GREEDY SEARCH FOR DIAGNOSTIC POLICIES

This chapter describes a design space of greedy search algorithms for diagnostic

policies. In Chapter 5 we will perform an experimental comparison of various algo-

rithms in this space. Greedy algorithms perform a limited lookahead search, using

information speci�c to the problem (informativeness of attributes, attribute costs or

misclassi�cation costs or both, etc.), but once they commit to a choice of an attribute

to test, that choice is �nal; that is, usually they can not revise their choices, and the

policies they produce will not be optimal in general.

We start by reviewing several existing algorithms whose attribute selection heuris-

tics combine attribute information gains and attribute costs, but which ignore mis-

classi�cation costs. Then we extend these algorithms by adding Laplace corrections

and by choosing classi�cation actions sensitive to misclassi�cation costs. Last we

describe the well-known one-step value of information (VOI) algorithm from decision

theory.

Even if the greedy policies are, in general, not optimal, on many problems their

performance can be good enough, and they have the advantage of fast execution.

They also require less information to be extracted from the training examples, which

reduces the risk of over�tting.

3.1 General Description of Greedy Algorithms

The greedy algorithms described here employ a top-down strategy of selecting at-

tributes. They di�er in the way they select attributes, in the stopping conditions,

and in the way they choose classi�cation actions. Table 3.1 gives the pseudocode for

greedy search, and we will describe how each method addresses the numbered steps.

38

TABLE 3.1: The Greedy search algorithm. Initially, the function Greedy() is called
with the start state s0.

function Greedy(state s) returns a policy � (in the form of a decision tree).

(1) if (stopping conditions are not met)

(2) select attribute xn to test;

set �(s) = xn;

for each value v of the attribute xn add the subtree

Greedy(state s [fxn = vg);
else

(3) classify state s in bestf , set �(s) = bestf ;

(4) post-prune(state s).

In their search through the space of decision trees, the greedy algorithms never

backtrack to reconsider other attributes, but we will see that post-pruning (step 4)

may replace an attribute and the subtree underneath it by a classi�cation action, but

it does not consider measuring other attributes.

3.2 InfoGainCost Methods

InfoGainCost methods grow a policy recursively top down. At each node, they choose

to measure the attribute with the maximum value of the InformationGainCost crite-

rion, de�ned below. After an attribute has been chosen, the training examples are

partitioned according to their values for the selected attribute. This process is re-

peated recursively for each of the resulting child nodes. The leaf nodes specify the

classi�cation actions.

These methods pay attention to test costs and accuracy. Note that, conceptually,

this is equivalent to assuming huge misclassi�cation costs, rather than zero misclas-

39

si�cation costs (because zero costs for errors imply direct classi�cation in any of the

classes, without measuring any attributes, and the classi�cation problem is trivial).

The InfoGainCost methods specialize the generic algorithm of Table 3.1 as follows.

For line (1) they use the C4.5 stopping conditions described below. For line (3) they

classify in the majority class. Line (4) is a post-pruning step using C4.5's pessimistic

post-pruning (with an added optional
avor of Laplace correction).

A node with state s is classi�ed according to the majority class, bestf =

argmaxy P (yjs), when one of these stopping conditions is satis�ed (these are the

C4.5 stopping conditions):

� there are no more attributes to be tested,

� all matching examples have the same class (pure node), or

� no attribute splits the data into at least 2 subsets with � 2 examples.

As the policy is grown, nodes can be collapsed (a node will be made into a leaf if

its children make more misclassi�cation errors than it does).

We will consider several ways of implementing step (2). All of them employ in some

way the information gain (or mutual information) of an attribute. The information

gain of attribute xn in state s is the expected reduction in class entropy by splitting

on this attribute:

ig
def
= InfoGain(s; xn) = Entropy(s)�

X
v

P (xn = vjs) �Entropy(s [fxn = vg);

where Entropy(s) = �Py P (yjs) � log2 P (yjs).
In state s, for attribute xn not yet measured, with attribute cost C(s; xn), we

de�ne the InformationGainCost(s; xn) criterion to be one of the following variants:

� ig. This selection criterion is borrowed from ID3 and C4.5. This method,

denoted InfoGain (or just IG), is cost-insensitive. It ignores both attribute

costs and misclassi�cation costs.

40

� ig=C(s; xn) (Norton's criterion [51]).

� ig � ig=C(s; xn) (Tan's criterion [68, 67]).

� (2ig � 1)=(C(s; xn) + 1) (Nunez' criterion [52] | slightly modi�ed here).

At each internal node in the decision tree, the attribute with the maximum Infor-

mationGainCost value will be selected (step (2)),

�(s) = arg max
xn2A(s)

InformationGainCost(s; xn);

and the training examples will be recursively partitioned according to the value of

the selected attribute. Since we require that an attribute be tested only once, the

selected attribute becomes unavailable for future selection. This is easily checked by

examining the state s and only computing InformationGainCost(s; xn) for attributes

that have no assigned value, so they have not yet been measured, xn 2 A(s).

While the last three methods, Norton, Tan and Nunez, do not have a clear cost-

sensitive objective (in our opinion, they strive for good classi�cations with low ex-

pected attribute costs), they do bias the search in favor of low-cost attributes; indeed,

attributes with smaller cost C(s; xn) will have a larger InformationGainCost and will

be placed closer to the root than in ID3 or C4.5. Nevertheless, the greedy selection

of an attribute that appears to contribute most to reducing classi�cation errors and

least to the testing costs ignores interactions among attributes, and may just postpone

selecting important, but expensive, tests.

For step (4), we apply a post-pruning procedure in all four variants. Consider

any node in the policy matching n training examples, out of which ny belong to class

y. The error rate of classifying into the majority class bestf = argmaxy P (yjs) is
p = 1�maxyP (yjs).

The number of errors at a node has a binomial distribution with parameters

(n; p), n being the sample size (the training examples matching the node) and p the

proportion of failures. We pessimistically estimate the error rate as the upper bound

41

of the 75% con�dence interval for this binomial distribution, that is,

p+ zc �
p
p � (1� p)=n+ 0:5=n;

where 0:5=n is the correction for continuity (because we use the normal distribution

to approximate the sampling distribution of a proportion, which is not continuous)

and zc = 1:15 is the con�dence coe�cient corresponding to a 75% con�dence interval.

When p = 0, the new estimate for error rate is 0:5=n > 0:

The pessimistic estimate of the number of errors is obtained by multiplying n with

this upper bound for error rate. A node will be pruned if the sum of its children's

pessimistic errors is greater than or equal to its own pessimistic error, if the node were

classi�ed. This pruning may help reduce over�tting. Indeed, if we do not prune, the

policy is likely to over�t the data, by overestimating how informative the attributes

are, and we will end up paying too much for them.

In Section 5.3.1, we study whether it is useful to apply a Laplace correction (of +1)

to the error rate p before computing the pessimistic bound. The Laplace-corrected

error rate is pL =

P
y 6=bestf

(ny+1)

n+K =
K�1+Py 6=bestf

ny

n+K , whereK is the number of classes.

This can be viewed as adding a \fake" example to each class before computing the

probabilities.

In Section 2.4, policy �1 in Figure 2.1 is the policy constructed by the Info-

Gain method (in this simple problem, all the InfoGainCost methods construct the

same policy). In the start state s0, the attribute BMI is both cheaper and more

informative than the attribute Insulin: C(BMI) = 1 < C(Insulin) = 22:78 and

InfoGain(s0; BMI) = 0:21 > InfoGain(s0; Insulin) = 0:14. In state fBMI =

smallg, �1 �rst measures Insulin and classi�es as Healthy in the resulting states. But
since the number of errors of this subtree is equal to the number of errors of classify-

ing Healthy in fBMI = smallg, the subtree is collapsed. In state fBMI = largeg,
Insulin is chosen to be measured. After measuring Insulin, there are no more at-

tributes to test, so the algorithm will choose to classify. In this problem, it so

happened that the majority class in all the policy's leaf states is also the action

with minimum expected cost. In state s1 = fBMI = smallg, P (Healthyjs1) = :9,

42

in state s3 = fBMI = large; Insulin = lowg, P (Diabetesjs3) = :7 and in state

s4 = fBMI = large; Insulin = highg, P (Healthyjs4) = :8. Pessimistic post-pruning

(with or without Laplace correction) does not change the policy constructed by the

InfoGainCost methods (it does not help in this case).

Note that policy �1, constructed in this way, is not the optimal policy. The optimal

policy (Figure 2.3) tests BMI and then classi�es.

3.3 Modi�ed InfoGainCost Methods (MC+InfoGainCost)

We now describe four new greedy methods, which we call MC+InfoGainCost methods,

that are sensitive to both attribute costs and misclassi�cation costs. These methods

inherit steps (1) and (2) in Table 3.1 from the InfoGainCost methods, but they modify

steps (3) and (4) as follows:

� in step (3), they classify into the class with the minimum expected classi�ca-

tion cost, bestf = argminfk C(s; fk) (see equation 2.7, C(s; fk) =
P

y P (yjs) �
MC(fk; y)), instead of classifying into the majority class (with minimum error

rate).

� in step (4), if �(s) = xn, they prune this action if C(s; bestf) � Q�(s; xn) (see

equation 2.10, Q�(s; xn) = C(s; xn) +
P

v P (xn = vjs) � V �(s [fxn = vg)); so
when the Q value of (s; xn) surpasses the expected cost of the best classi�cation

action, the node corresponding to state s is turned into a leaf that classi�es into

bestf .

As we mentioned in the previous section, all the InfoGainCost methods con-

structed an identical policy for the problem in Section 2.4, the policy shown in

Figure 2.1, and this is also the policy grown by our MC+InfoGainCost methods

before the post-pruning phase, because the majority classes in the leaf states hap-

pen to also have the minimum expected cost. Indeed, in state s1 = fBMI =

smallg, C(s1;Healthy) = 10 < C(s1;Diabetes) = 72, in state s3 = fBMI =

43

large; Insulin = lowg, C(s3;Diabetes) = 24 < C(s3;Healthy) = 70 and in state

s4 = fBMI = large; Insulin = highg, C(s4;Healthy) = 20 < C(s4;Diabetes) = 64.

We now explain how post-pruning works. During the top-down phase, the greedy

policy chooses to measure the remaining attribute, Insulin, in state s2 = fBMI =

largeg. Because Q�(s2; Insulin) = 45:98 > C(s2; bestf = Diabetes) = 32, the sub-

tree rooted at s2 will be pruned and replaced by the classi�cation action Diabetes.

In state s1 = fBMI = smallg, the greedy policy tested Insulin as well, and classi�ed

as Healthy in the resulting states. Pruning will eliminate this extra test, because

the cost of the subtree is C(s1; Insulin) + C(s1;Healthy), which exceeds the cost

of classifying directly into s1 as Healthy, C(s1;Healthy). This example shows that

this type of pruning, based on misclassi�cation costs, is more general than collaps-

ing, which was based on errors made by the majority class, and therefore collapsing

is not needed in the MC+InfoGainCost methods. In the start state s0, there is no

pruning, because the cost of the best classi�cation action C(s0;Healthy) = 35 ex-

ceeds Q�(s0; BMI) = 22 (this cost re
ects the new policy value in s2 after pruning,

V �(s2) = 32).

Note that, during the pruning phase, we need to compute the classi�cation action

bestf with minimum expected cost in every state reached by the policy. For example,

in state s2 = fBMI = largeg, bestf = Diabetes because C(s2;Diabetes) = 32 <

C(s2;Healthy) = 60. In this problem, the MC+InfoGainCost policy is optimal (see

the policy in Figure 2.3).

We have studied the option of adding a Laplace correction of +1 to the probabilities

P (yjs) and P (xn = vjs) involved in the computation of C(s; fk) and Q�(s; xn) in steps

(3) and (4). This is accomplished by adding a fake example to each of the possible

cases, as described below.

If the estimated class probability is P (yjs) = ny=n, where n is the number of

training examples matching state s and out of them, ny belong to class y, then the

Laplace corrected class probability is

PL(yjs) = ny + 1

n+K
; (3.1)

44

where K is the number of classes. A fake example was added to each of the classes

when computing PL(yjs).
Let nv be the number of training examples matching state s0 = s [fxn = vg |

in other words, nv is the number of training examples matching state s with value v

for attribute xn. If the estimated transition probability is

P (xn = vjs) = Ptr(s
0js; xn) = nv=n;

then the Laplace corrected transition probability is

PL(xn = vjs) = nv + 1

n+Arity(xn)
: (3.2)

A fake example was added to each of the attribute values when computing PL(xn =

vjs).
Let us assume there are no training examples matching state s0 = s [fxn = vg,

so P (xn = vjs) = 0, and we originally classi�ed state s0 in the best class of s. With

the Laplace correction, PL(xn = vjs) = 1=(n + Vn), and PL(yjs0) = 1=K. Therefore,

CL(s0; fk) =
P

yMC(fk; y)=K, and state s0 will be classi�ed into the class with

minimum average misclassi�cation costs. The Laplace correction has no e�ect on the

example policy above.

3.4 One-step Value of Information (VOI)

This is another method that pays attention to both attribute costs and misclassi�-

cation costs. The one-step VOI algorithm iteratively selects the attribute that looks

best according to the following simple lookahead: measure the attribute; then for each

of its possible values classify into the best class (with minimum expected cost). Once

an attribute is selected, the process is repeated in the resulting states. The method

stops when there are no more attributes to measure (we write this A(s) = �) or when

it is cheaper to classify. Intuitively, the one-step VOI repeatedly asks the question, in

every state it reaches: is it worth testing one more attribute, after which it classi�es,

or should it stop now and classify?

45

We de�ne the one-step lookahead value of attribute xn in state s, called 1-step-LA(s; xn),

to be equal to the cost of measuring this attribute plus the expected cost of making

the best classi�cations in the resulting states:

1-step-LA(s; xn)
def
= C(s; xn) +

X
v

P (xn = vjs)�min
fk

C(s [fxn = vg; fk): (3.3)

The one-step value of information of attribute xn in state s weighs the value of

classifying now against the value of measuring xn, followed by classi�cation. By

de�nition, V OI(s; xn) is the di�erence in expected costs between classifying before

and after the attribute is measured:

V OI(s; xn)
def
= C(s; bestf)� 1-step-LA(s; xn):

Step (2) in Table 3.1 selects attribute x�n with minxn 1-step-LA(s; xn), or, equiv-

alently, the attribute with the maximum V OI(s; xn). Attribute x
�
n is measured only

if it has a strictly positive value of information, V OI(s; x�n) > 0, or C(s; bestf) >

1-step-LA(s; x�n), otherwise it is cheaper to classify in state s.

Step (3), selecting the best classi�cation action, is the same as for the MC+InfoGainCost

methods, so bestf = argminfk C(s; fk):

Steps (1) and (2) are tightly related. In fact, during step (1), we �rst calculate

bestf , the classi�cation action with the minimum expected cost. If A(s) = � we

classify into bestf , otherwise we calculate the one-step lookahead value of each xn 2
A(s) as in equation 3.3. In step (2) we select the attribute x�n with the minimum

1-step-LA(s; xn) and compare this value with C(s; bestf). If classifying is cheaper,

then we stop and classify, otherwise we measure the attribute and add subtrees for

its outcomes. We formally list the operation of each of the steps in Table 3.1, then we

rewrite the one-step VOI algorithm in Table 3.2. With our notations, one-step VOI

is the algorithm, VOI is the policy it learns, and VOI is the function in Table 3.2.

� in step(1), stop when A(s) = � or C(s; bestf) � minxn2A(s)1-step-LA(s; xn).

� in step (2), select attribute x�n = argminxn2A(s) 1-step-LA(s; xn).

46

TABLE 3.2: The one-step Value of Information (VOI) search algorithm. Ini-
tially, the function VOI() is called with the start state s0.

function VOI(state s) returns a policy (in the form of a decision tree).

Compute bestf = argminfk C(s; fk).

Compute x�n = argminxn2A(s) 1-step-LA(s; xn); where

1-step-LA(s; xn)
def
= C(s; xn) +

X
v

P (xn = vjs)�min
fk

C(s [fxn = vg; fk):

if (A(s) = �) or (C(s; bestf) � 1-step-LA(s; x�n))

classify into bestf , set policy VOI(s) = bestf .

else

select attribute x�n to test;

set policy VOI(s) = x�n;

for each value v of the attribute x�n add the subtree

VOI(state s [fx�n = vg);

� in step (3), classify into bestf = argminfk C(s; fk).

� we show that step (4) is not necessary, because the VOI policy already satis�es

the condition Q�(s; xn) < C(s; bestf) if �(s) = xn.

We can summarize the de�nition of the VOI policy computed by the one-step VOI

algorithm as

VOI(s) = arg min
fk;xn2A(s)

fC(s; fk); 1-step-LA(s; xn)g ;

breaking ties in favor of classi�cation actions, after which we prefer the action with

the lowest index. If there are no more attributes to be tested, that is A(s) = �, then

we classify into the class with minimum expected cost.

Theorem 3.4.1 proves that no pruning (step (4)) is necessary, because pruning is

built-in.

47

Theorem 3.4.1 Let s be any of the non-leaf states reached by the VOI policy �, and

let �(s) = xn. Then Q�(s; xn) � 1-step-LA(s; xn) < C(s; bestf), where bestf =

argminfk C(s; fk):

Proof by induction:

Because �(s) = xn, it follows from the de�nition of one-step VOI (and from

the way we break ties in favor of classi�cation actions), that 1-step-LA(s; xn) <

C(s; bestf): So we only need to show that Q�(s; xn) � 1-step-LA(s; xn):

Base case

Let s be any state reached by � whose children s0 = s[fxn = vg are leaf states, so
�(s0) = argminfk C(s

0; fk); and V �(s0) = minfkC(s
0; fk): Recall that P (xn = vjs) =

Ptr(s
0js; xn) so we will be using the second notation for brevity. Then

Q�(s; xn)
def
= C(s; xn) +

P
s0 Ptr(s

0js; xn)� V �(s0)

= C(s; xn) +
P

s0 Ptr(s
0js; xn)�minfkC(s

0; fk)
def
= 1-step-LA(s; xn);

therefore Q�(s; xn) = 1-step-LA(s; xn): This establishes the base case.

Now let s be any state that has at least one non-leaf child. We assume all its

non-leaf children s0 satisfy the induction hypothesis:

Induction hypothesis

If �(s0) = x0n, then Q�(s0; x0n) � 1-step-LA(s0; x0n) < C(s0; best
0

f), where best
0
f =

argminfk C(s
0; fk).

Since �(s0) = x0n, it follows that V
�(s0) = Q�(s0; x0n), and from the induction

hypothesis, by transitivity of <, we have V �(s0) < C(s0; best0f).

If s has leaf children s0, then by de�nition V �(s0) = C(s0; best0f):

Then, because s has at least one non-leaf child s0 for which V �(s0) < C(s0; best0f),

we have

Q�(s; xn)
def
= C(s; xn) +

P
s0 Ptr(s

0js; xn)� V �(s0)

< C(s; xn) +
P

s0 Ptr(s
0js; xn)� C(s0; best

0

f)
def
= 1-step-LA(s; xn);

therefore Q�(s; xn) < 1-step-LA(s; xn): Q.E.D.

48

In Section 2.4, the policy in Figure 2.3 is the policy constructed by the one-step

VOI method, and in this simple problem this policy is optimal on the training data.

We will explain in detail the construction of the VOI policy for this problem, following

the steps in Table 3.2. We �rst invoke the function in the start state s0, VOI(s0). We

compute bestf in s0 to be Healthy, because C(s0;Healthy) = 35 < C(s0;Diabetes) =

52. Next we compute the one-step lookahead value of attributes BMI and Insulin,

1-step-LA(s0; BMI) = 22 < 1-step-LA(s0; Insulin) = 49:38, so x�n = BMI. In fact,

we do not even have to compute 1-step-LA(s0; Insulin); it is enough to notice that

1-step-LA(s0; Insulin) � C(s0; Insulin) = 22:78 > 1-step-LA(s0; BMI) = 22:

Because C(s0;Healthy) > 1-step-LA(s0; BMI), BMI will be chosen and VOI(s0) =

BMI.

Next we recursively call the one-step VOI function in the resulting states s1 =

fBMI = smallg and s2 = fBMI = largeg. In state s1, bestf = Healthy be-

cause C(s1;Healthy) = 10 < C(s1;Diabetes) = 72. There is a single attribute

remaining, Insulin, and 1-step-LA(s1; Insulin) = 32:78. Since C(s1;Healthy) <

1-step-LA(s1; Insulin), we classify s1 as Healthy and set VOI(s1) = Healthy. Again,

we could notice right away that

1-step-LA(s1; Insulin) � C(s1; Insulin) = 22:78 > C(s1;Healthy) = 10:

Similarly, in state s2, bestf = Diabetes because

C(s2;Diabetes) = 32 < C(s2;Healthy) = 60:

There is a single attribute remaining, and 1-step-LA(s2; Insulin) = 45:98. Since

C(s2;Diabetes) < 1-step-LA(s2; Insulin), we classify s2 as Diabetes and set VOI(s2) =

Diabetes.

The resulting one-step VOI policy is shown in Figure 2.3. On this problem with

only two attributes, the one-step VOI policy is optimal because

� it chose the best attribute in the start state, VOI(s0) = ��(s0), and

49

� in the resulting states s0 there is a single attribute left to measure, after which

classi�cation is the only possibility, so the myopic computation of one-step VOI

is optimal in these states s0, 1-step-LA(s0; xn) = Q�(s0; xn).

After comparing with C(s0; bestf), VOI(s0) = ��(s0). The same explanation ap-

plies to the MC+InfoGainCost methods for this problem, because their policy � has

Q�(s0; xn) = Q�(s0; xn); in the states s0 where there is only one unmeasured attribute.

This is a trivial result that holds in general: for any state s with a single attribute

xn left to measure, and for any policy that classi�es in the cheapest class after mea-

suring xn, we have Q
�(s; xn) = Q�(s; xn): There could be more than one such policy

if there is a tie among classi�cation actions in the leaves.

Laplace correction can be applied to the probabilities P (yjs) and P (xn = vjs) as
in equations 3.1 and 3.2. These can then be used in the computation of bestf and

x�n in Table 3.2. The Laplace correction has no e�ect on the policy computed in the

above example.

In General, the VOI Policy is Not Optimal

Because the one-step lookahead values are based on classi�cations in the resulting

states s0, and the classi�cation costs overestimate the optimal value function,

C(s0; bestf) � V �(s0) def
= min

xn2A(s0)

�
C(s0; bestf); Q�(s0; xn)

	
;

it follows that 1-step-LA(s; xn) � Q�(s; xn). Therefore the choice of actions of the

VOI policy is not optimal. Indeed,

VOI(s) = arg min
fk;xn2A(s)

fC(s; fk); 1-step-LA(s; xn)g ;

while

��(s) = arg min
fk;xn2A(s)

fC(s; fk); Q�(s; xn)g ;

so there is no guarantee that the VOI policy is optimal. Of course, to prove that a

policy is suboptimal we need to compare its value function with the optimal value

function in the start state, V �(s0), because there can be several tied optimal policies.

50

The proof that the value of the VOI policy overestimates the optimal value function

V � is more complicated. Let � = VOI, and let V � be the value function of the VOI

policy. Let s be a state reached by the VOI policy. There are two cases in which the

VOI policy can be suboptimal:

1. it stops testing too early, that is �(s) = bestf , while ��(s) = xn. Because

V �(s) < C(s; bestf) = V �(s), it can be proven by induction that V �(s0) <

V �(s0), where s0 is the start state. In this case � = VOI is suboptimal.

2. it chooses the wrong attribute to test, that is, �(s) = x1, �
�(s) = x2, and

x1 6= x2. Nevertheless, the two policies may still be equally good (i.e., V �(s0) =

V �(s0)), if subsequent attributes measured by � improve its value.

We present an example of case 1, where the one-step VOI policy is not opti-

mal. Consider the case where there are two binary attributes x1 and x2, and the

class y is the XOR function, y = x1
 x2. Assume there are equal numbers of ex-

amples for each combination of attributes. The attribute costs are c1 and c2, with

0 < c1 < c2, and the misclassi�cation costs are zero if ŷ = y and m if ŷ 6= y,

with c1 + c2 < 0:5 � m: In s0, before any attributes are measured, P (y) = 0:5, so

both classi�cation actions are equally expensive, with C(s0; bestf) = 0:5 �m. After

measuring either attribute, the class probabilities do not change, so in the resulting

states s0, C(s0; bestf) = C(s0; bestf). Therefore the one-step lookahead values are

1-step-LA(s0; x1) = c1 + C(s0; bestf) and 1-step-LA(s0; x2) = c2 + C(s0; bestf), with

1-step-LA(s0; x1) < 1-step-LA(s0; x2) (so x1 is cheaper according to the 1-step-LA).

Because C(s0; bestf) < 1-step-LA(s0; x1) = c1+C(s0; bestf), that is, in s0 classifying

is cheaper than testing the best attribute and classifying afterwards, the one-step VOI

policy chooses to classify in s0, and VOI(s0) = bestf . The value of the VOI policy in s0

is C(s0; bestf). On the other hand, the optimal policy achieves perfect classi�cation

after measuring both attributes, and V �(s0) = c1 + c2. By construction, this is less

than C(s0; bestf) = 0:5 �m. Therefore the VOI policy is not optimal (and would not

be optimal even if the attributes had equal costs).

51

In practice, when learning from data, what matters is not how close the one-step

VOI policy comes to the optimal policy on the training data, but how close it gets to

the optimal policy on the true underlying distribution of the data. Being suboptimal

on the training data may reduce over�tting and trigger better performance on a

di�erent sample (in particular, the test set).

The same reasoning applies to show that the VOI policy may stop testing earlier

than the InfoGainCost methods. In the case of the XOR example, greedy policies

selecting attributes based on InfoGain will be able to compute the optimal policy even

if the information gain of each attribute is zero, because they keep testing attributes

until the C4.5 stopping conditions are satis�ed.

3.5 Implementation Details for Greedy Algorithms

In our implementation, we break ties following this rule: classifying is preferred to

testing attributes. In the case of ties among classi�cation actions, we prefer the class

with the lowest index; and in case of ties among attributes, we break the tie in favor

of the attribute with the lowest index.

If there are no training examples traveling down to state s [fxn = vg, that is,
P (xn = vjs) = 0, then we ignore that branch in the calculation of InfoGain(s; xn)

and 1-step-LA(s; xn), and the state s [fxn = vg will be classi�ed into the best class

of state s, bestf . For the InfoGainCost methods, bestf is the majority class; for the

MC+InfoGainCost methods and for the one-step VOI, bestf is the class with the

minimum expected cost.

For InfoGainCost and MC+InfoGainCost methods, we used information gain, and

not C4.5's information gain ratio, because we discretized the attributes in at most

three levels, so we do not have the risk of attributes over-splitting the data.

The InfoGainCost methods were designed to solve a di�erent problem, one that

maximizes accuracy while minimizing attribute costs. We still study them in our

CSL framework, which considers both test costs and misclassi�cation costs. But of

course in our CSL framework, we always evaluate a policy using both test costs and

52

misclassi�cation costs.

3.6 Summary

We described several greedy algorithms that construct suboptimal policies based on

a limited lookahead. The next chapter describes systematic search algorithms that

produce optimal policies (optimal on the training data).

53

CHAPTER 4

SYSTEMATIC SEARCH FOR DIAGNOSTIC POLICIES

This chapter describes a systematic search algorithm that computes an optimal

cost-sensitive diagnostic policy, optimal with respect to the training data. The natural

search process for this optimal policy is in the space of AND/OR graphs, and the

algorithm is called AO�. This algorithm belongs to the family of best-�rst algorithms

guided by admissible heuristics. As Hansen points out in [25], heuristic search has

an advantage over dynamic programming methods when searching from a given start

state, because it computes an optimal policy but it does not need to evaluate the

entire state space.

In this chapter, we introduce notations for AND/OR graphs, we de�ne an admis-

sible heuristic, and we describe the implementation of the AO� algorithm for CSL

problems. The search process is guided by a lower and an upper bound to the op-

timal value function. These bounds provide signi�cant cuto�s in the search space.

The bounds correspond to value functions computed for an optimistic and a realistic

policy. The realistic policy is of particular interest, because we may stop the search

process at any time and return this policy.

Because we aim to avoid over�tting, we introduce several regularizers into the AO�

algorithm. As a result, AO� with regularization will no longer compute an optimal

policy on the training data, but rather a policy whose quality will hopefully be better

on the test data. These regularizers modify AO� by (a) imposing a memory limit

on the search space, (b) computing probabilities using the Laplace correction, (c)

pruning the search space in various ways, and (d) stopping training early using a

holdout set. We also initialized the AO� search graph with a greedy policy (any of

the MC+InfoGainCost methods), which may speed up the search, without changing

the �nal policy.

54

x

= 0x

= 1x

3test x test x

AND node

OR nodeOR node

AND node

classify

OR node

AND node

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

= 0

AND node

classify

OR node

classifyclassify

3 = 0x

OR node

AND node

OR node

classify

= 11x

2test x

AND node

OR nodeOR node

classify

AND node

1

1

22

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

1

3 = 1x

3test x

3test x

= 122 x= 0x

OR node

AND node

OR node
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

= 01x

1 = 1x

test x

�
�
�

�
�
�

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�
�
�

�
�
�

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�
�
�

�
�
�

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

3test x

2test x

FIGURE 4.1: The AND/OR search space is a directed acyclic graph (DAG). This
�gure shows part of the AND/OR graph for a classi�cation problem with 3 binary
attributes (e.g., BMI, Glucose, and Insulin); \classify" is the terminal action choosing
among several class labels (e.g., Healthy, Diabetes Type I, and Diabetes Type II).
OR nodes have a choice between classifying and measuring one of the remaining
attributes. If classi�cation is chosen, the OR node is called a leaf node (marked by
the solid square). AND nodes (marked by arcs) specify the outcomes of the tests;
all test results must be considered. The OR node with state fx1 = 0; x2 = 0g was
generated for the �rst time on the leftmost branch, by measuring �rst x1, then x2.
The branch measuring x2 = 0 then x1 = 0 points to the same OR node. When the
same test results are obtained in a di�erent order, a single OR node is stored in the
graph.

4.1 AND/OR Graphs

Figure 4.1 shows a simple AND/OR graph. An AND/OR graph is a directed graph

composed of two kinds of nodes, AND nodes and OR nodes. The root of the graph is

an OR node. Every OR node has out-going links to AND nodes which are called the

55

children of the OR node. Every AND node has out-going links to OR nodes, which

are called the children of the AND node.

In cost-sensitive learning, an OR node corresponds to a state s in the CSL MDP.

It stores a representation of s, a current policy �(s), which speci�es what action to

take in state s, and a current value function V (s). (Below, we will describe other

information stored in the OR nodes.) The root OR node corresponds to the start

state s0 = fg.
Each AND child of an OR node represents one of the possible measurement actions

xn 2 A(s) that can be taken in s. Each AND node stores Q(s; xn), the expected cost

of measuring xn and then continuing with the current policy. Each OR child of an

AND node represents one of the possible states s0 = s [fxn = vg that results from
measuring attribute xn; for each value v of the attribute there is a state s0.

If the current policy in an OR node chooses a classi�cation action instead of a

measurement action, then we will say that the OR node is classi�ed. A classi�ed

OR node will always be classi�ed into the best class according to the training data:

�(s) = bestf = argminfk C(s; fk).

A complete diagnostic policy consists of a subtree of the AND/OR graph. The

subtree begins at the root OR node and contains only one of its AND children, the

one corresponding to the measurement action xn chosen at the root of the diagnostic

policy. The subtree contains all of the children of the AND node (which correspond

to the possible outcomes of the measurement action). This pattern continues: at

each OR node, only one child is included; at each AND node, all of the children

are included (hence the names!). The leaves of the diagnostic policy correspond to

classi�ed OR nodes.

The AND/OR graph search works by growing the AND/OR graph and updating

the Q values in the AND nodes, the V values and the policy � in the OR nodes until

a termination condition is satis�ed. At termination, the subtree starting at the root

node and selected by the current policy � in each OR node will be a complete optimal

policy for the CSL problem.

56

The graph is initialized by creating the root node and AND children for each of the

possible measurement actions. The graph is then expanded by iteratively choosing

an unexpanded AND node (corresponding, say, to attribute xn), creating an OR node

for each possible outcome v of measuring xn, and creating an unexpanded AND node

for each possible child of those OR nodes. There are two exceptions to this: a)

there are no possible AND children of an OR node, because all possible measurement

actions have been performed, and b) classifying is the cheapest action in an OR node

(though such an OR node may have AND nodes previously expanded and may also

have unexpanded AND nodes). The resulting OR node is called a leaf OR node, and

it must be classi�ed. Hence, at all times, the leaves of the AND/OR graph consist

either of unexpanded AND nodes or of leaf OR nodes.

The current diagnostic policy � is incomplete if it reaches some OR node s such

that �(s) chooses a measurement action that leads to an unexpanded AND node.

It is important to note that the AND/OR graph is not itself a tree. This is because

there may be multiple paths from the root to an OR node. Consider, for example, an

OR node corresponding to the state fx1 = 0; x2 = 0g. This node could be reached

by a path from the root that �rst tests x1 and then tests x2 or by a path that �rst

tests x2 and then tests x1. Hence, the AND/OR graph is a DAG. In general, if an

OR node corresponds to a state s where n attributes have already been measured,

then there can exist up to n! paths from the root to s. Obviously, an important goal

in AND/OR graph search is to �nd the optimal policy without completely expanding

the entire graph.

Every state s corresponds to exactly one OR node in the AND/OR graph, and

each state-action pair (s; xn) corresponds to a child AND node. Because there is a

one-to-one relationship between OR nodes and states, we will denote OR nodes by

their states and use the terms \OR node" and \state" interchangeably. (We store the

OR nodes in a hash table to avoid creating multiple OR nodes for a single state s.)

Similarly, we will use the terms \AND node" and \state-action pair" interchangeably.

We visualize the AND/OR graph as growing downwards. Given a set of training

57

examples, it is possible to \drop" them through the AND/OR graph as follows. All

of the examples start at the root node. At each OR node, the examples are \cloned"

and sent down all of the AND children. At each AND node, the examples are sent

to the OR child whose state they match (an example matches a state if the example

agrees with the attribute values de�ning the state). When multiple paths reach an

OR node, the node will receive the same \cloned" training examples along all of them,

and the \clones" can be reunited. Equivalently, we can view each OR node as storing

pointers to the training examples that match its corresponding state.

Suppose that we have expanded the AND/OR graph completely, so that each

leaf is a leaf OR node. We will initialize the current policy � in each node to be

unde�ned. Now imagine that we have \dropped" a set of training examples through

the graph. We can then compute the optimal policy and value function by performing

value iteration over the AND/OR graph. Because the graph is acyclic, we can do this

in a single pass. We start at the leaf OR nodes and classify each such node s into

bestf = argminfk C(s; fk). Then we interleave the following two steps in any order

until we reach the root of the AND/OR graph:

� Find an AND node (s; xn) all of whose OR children have de�ned policies �.

Compute the Q value Q(s; xn) = C(s; xn)+
P

v P (xn = vjs)�V (s[fxn = vg).

� Find an OR node s all of whose AND children have computed their Q values.

Compute the value of classifying s, minfk (Q(s; fk) = C(s; fk)), and the value

of measuring an attribute, minxn2A(s)Q(s; xn), and choose the action with the

smallest Q value. Set the current policy �(s) to this action.

The action �(s0) computed at the root of the AND/OR graph will be the root of an

optimal diagnostic policy. The above computations are equivalent to ExpectiMin, by

replacing AND nodes with EXPECT nodes, and OR nodes with MIN nodes.

The goal of the rest of this chapter is to describe algorithms that selectively expand

the AND/OR graph and that selectively update the current policy � and the current

58

Q and V values so that the optimal policy can be found without expanding the entire

AND/OR graph.

At various points in our description, it will be useful to ignore the AND nodes and

view the AND/OR graph as a DAG of OR nodes. For this purpose, we will say that

OR node s1 is a parent of node s2 if s2 can be reached from s1 by traversing exactly

one AND node. Conversely, we will say that s2 is a successor of s1. If at least one

AND node must be crossed to get from s1 to s2, then s2 is a descendant of s1, and s1

is an ancestor of s2.

4.2 AO� Algorithm

4.2.1 Overview of the AO� Algorithm

The AO� algorithm [50] computes an optimal solution graph of an AND/OR graph,

given an admissible heuristic. A heuristic is admissible if it never over-estimates the

optimal cost of getting from a state s to a terminal state.

During its search, AO� considers partial (or incomplete) policies in which not all

nodes have been expanded. The AO� algorithm repeats the following steps: in the

current best partial policy, it selects an AND node to expand; it expands it; and then

it recomputes (bottom-up) the optimal value function and policy of the revised graph.

The algorithm terminates when the best decision in all leaf OR nodes of the current

policy is to classify.

In Nilsson's description of the AO� algorithm, at any given time, only one type of

policy is considered. We call this policy the optimistic policy, �opt. Its value function

V opt is a lower bound on V �. This is enough to compute an optimal policy �� [45].

The optimistic policy �opt is a partial, incomplete policy because it does not end with

all terminal leaf OR nodes, since some of the AND nodes are unexpanded. When �opt

is a complete policy, it is in fact an optimal policy ��.

In our algorithms, it is useful to introduce a second policy, �real, which is called

the realistic policy. Its value function V real is an upper bound on V �. This policy is

always a complete policy, so it is executable at any time after any iteration of AO�,

59

s’
v

xs

 to evaluate

opt
use h

FIGURE 4.2: Qopt(s; x) for unexpanded AND node (s; x) is computed using one-
step lookahead and hopt to evaluate the resulting states s0. x is an attribute not yet
measured in state s, and v is one of its values.

while the optimistic policy is only complete when AO� terminates. We will use this

anytime feature of the realistic policy to �nd an optimal stopping point for the AO�

algorithm in a version of early stopping. We also use the realistic values to help choose

which AND nodes to expand.

Basically we expand �opt of the OR node with the largest gap between V real and

V opt (so with the largest uncertainty about V �), weighted by the \popularity" of this

node (how easy is it to reach it from the root, according to �opt; note that this is a

path, because in a given policy there is a single way of reaching an OR node from the

root).

We next introduce the notion of admissible heuristic that estimates the values of

unexpanded AND nodes, and thus guides the search process of which AND node to

expand next.

4.2.2 Admissible Heuristic

Our admissible heuristic provides an optimistic estimate, Qopt(s; x), of the expected

cost of an unexpanded AND node (s; x). It is based on an incomplete two-step

lookahead search (see Figure 4.2). The �rst step of the lookahead search computes

Qopt(s; x) = C(s; x)+
P

s0 Ptr(s
0js; x)�hopt(s0). Here s0 iterates over the states resulting

60

from measuring attribute x. The second step of the lookahead is de�ned by the

function hopt(s0) = mina02A(s0)C(s0; a0); which is the minimum over the cost of each

classi�cation action and the cost of each remaining attribute x0 in s0. That is, rather

than considering the states s00 that would result from measuring x0, we only consider

the cost of measuring x0. It follows immediately that hopt(s0) � V �(s0) 8s0, because
C(s0; x0) � Q�(s0; x0) = C(s0; x0) +

P
s00 Ptr(s

00js0; x0) � V �(s00). The key thing to notice

is that the cost of measuring a single attribute x0 is less than, or equal to, the cost

of any policy that begins by measuring x0, because the policy must pay the cost of

at least one more action (classi�cation or measurement) before entering the terminal

state sf .

4.2.3 Optimistic Values and Optimistic Policy

The de�nition of the optimistic Q value Qopt can be extended to apply to all AND

nodes as follows:

Qopt(s; a) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

C(s; a)

if a = f (a classi�cation action)

C(s; a) +
P

s0 Ptr(s
0js; a) � hopt(s0)

if (s; a) is unexpanded

C(s; a) +
P

s0 Ptr(s
0js; a) � V opt(s0)

if (s; a) is expanded

where V opt(s)
def
= mina2A(s)Qopt(s; a).

The optimistic policy is �opt(s) = argmina2A(s)Q
opt(s; a): Every OR node s stores

its optimistic value V opt(s) and policy �opt(s), and every AND node (s; a) stores

Qopt(s; a). Theorem 4.2.1 proves that Qopt and V opt form an admissible heuristic.

Theorem 4.2.1 For all states s and all actions a 2 A(s), Qopt(s; a) � Q�(s; a); and V opt(s) �
V �(s):

Proof by induction:

61

Base case for Qopt: If a is a classi�cation action f , then Qopt(s; f) = C(s; f) =

Q�(s; f). If (s; a) is unexpanded, then Qopt(s; a) = C(s; a)+
P

s0 Ptr(s
0js; a)�hopt(s0) �

C(s; a) +
P

s0 Ptr(s
0js; a) � V �(s0) = Q�(s; a), because hopt(s0) � V �(s0).

Base case for V opt: If all attributes were measured in state s, then classifying is

only possibility, so V opt(s) = minf C(s; f) = V �(s):

Let su be any state all of whose AND nodes (su; a) are unexpanded. Then

V opt(su) � V �(su) follows from the base case of Qopt.

Any other state se in the graph has at least one AND node (se; a) previously

expanded. Let sc be any of the resulting states of (se; a).

Induction hypothesis: If V opt(sc) � V �(sc);8sc, then Qopt(se; a) � Q�(se; a), 8a 2
A(se), and V opt(se) � V �(se).

We only need to consider the case of an expanded action a 2 A(se), because the

other situations are covered by the base case of Qopt. By de�nition, Qopt(se; a) =

C(se; a) +
P

s0 Ptr(s
0jse; a) � V opt(s0). Because s0 is one of the resulting states of

(se; a), we can apply the induction hypothesis with sc = s0, so V opt(s0) � V �(s0),

hence Qopt(se; a) � Q�(se; a). It follows that Qopt(se; a) � Q�(se; a);8a 2 A(se), and

V opt(se) � V �(se). Q.E.D.

4.2.4 Realistic Values and Realistic Policy

We also introduce an upper bound, V real(s), which is an overestimate of the value of

the optimal policy rooted at s. Every OR node s stores a realistic value V real(s) and

policy �real(s), and every AND node (s; a) stores a realistic Q value, Qreal(s; a). For

a 2 A(s) de�ne

Qreal(s; a) =

8>>>>>>>>><
>>>>>>>>>:

C(s; a)

if a = f (a classi�cation action)

C(s; a) +
P

s0 Ptr(s
0js; a) � V real(s0)

if (s; a) is expanded

ignore if (s; a) is unexpanded

62

and V real(s) = mina2A0(s)Q
real(s; a); where the set A0(s) is A(s) without the unex-

panded actions. The realistic policy is �real(s) = argmina2A0(s)Q
real(s; a):

In the current graph expanded by AO�, assume that we ignore all unexpanded

AND nodes (s; a). We call this graph the realistic graph. The current realistic policy

is the best policy (according to the training data) from this realistic graph.

Theorem 4.2.2 The realistic value V real is an upper bound: V �(s) � V real(s);8s:

Proof: Base case: By de�nition, a leaf OR node s in the realistic graph has

�real(s) = f , where f is the best classi�cation action in s. Therefore V real(s) =

C(s; f) � V �(s), because we ignore unexpanded AND nodes (s; xn), and it could well

be that C(s; f) � Q�(s; xn). Induction step: The internal nodes in the graph compute

their realistic values using a one-step Bellman backup based on realistic values of the

next states, V real(s) = min
a2A0(s)

[C(s; a) +
X
s0

Ptr(s
0js; a) � V real(s0)]: Q.E.D.

Corollary 4.2.3 If a is an expanded action in state s or a classi�cation action, then

Q�(s; a) � Qreal(s; a):

Proof: If a is a classi�cation action f , then Qreal(s; f) = C(s; f) = Q�(s; f). If a

is an expanded action, the proof is immediate from the de�nition of Qreal(s; a) based

on one-step lookahead, and using Theorem 4.2.2 in the resulting states s0. Q.E.D.

4.2.5 Selecting a Node for Expansion

In the current optimistic policy �opt, we choose to expand the unexpanded AND node

(s; �opt(s)) with the largest impact on the root, de�ned as

argmax
s

[V real(s)� V opt(s)] � Preach(sj�opt);

where Preach(sj�opt) is the probability of reaching state s from the root, following

policy �opt. The di�erence V real(s) � V opt(s) tells how much we expect the value of

state s to change if we expand �opt(s).

63

The rationale for this heuristic is based on the observation that AO� terminates

when V opt(s0) = V real(s0). Therefore, we want to expand the node that makes the

biggest step toward this goal.

4.2.6 Our Implementation of AO� (High Level)

Our implementation of AO� is the following:

repeat

select an AND node (s; a) to expand (using �opt; V opt; V real).

expand (s; a).

do bottom-up updates of Qopt; V opt; �opt and of Qreal; V real; �real.

until there are no unexpanded nodes reachable by �opt.

It is also possible to expand more AND nodes per iteration. We did not explore

this.

The only way the value function of a state s changes is if one of its descendants

sd has changed its value.

Theorem 4.2.4 For all states s in the graph expanded so far, subsequent iterations

of AO� increase their optimistic values: V opt
i (s) � V opt

i+1(s):

Proof: For optimistic values, any change in V opt is triggered by the expan-

sion of an AND node. Say unexpanded AND node (sd; a) was chosen for expan-

sion during iteration i of the AO� algorithm; then �opti (sd) = a and V opt
i (sd) =

Qopt
i (sd; a) = C(sd; a) +

P
s0 Ptr(s

0jsd; a) � hopt(s0). After expansion, Qopt
i+1(sd; a) =

C(sd; a) +
P

s0 Ptr(s
0jsd; a) � V opt

i+1(s
0); where s0 are the states in the newly created

OR nodes (i.e., the children of the AND node (sd; a)), so all their AND node chil-

dren, if any, are currently unexpanded. Therefore V opt
i+1(s

0) = mina02A(s0)Q
opt
i+1(s

0; a0) �
mina02A(s0)C(s0; a0) = hopt(s0); which implies Qopt

i (sd; a) � Qopt
i+1(sd; a). Since only the

Qopt value of AND node (sd; a) has changed in state sd, we have V
opt
i (sd) � V opt

i+1(sd)

and this can only trigger an increase (or no change) in V opt in the ancestors of state

sd. Q.E.D.

64

Theorem 4.2.5 For all states s in the graph expanded so far, subsequent iterations

of AO� decrease their realistic values: V real
i+1 (s) � V real

i (s):

Proof: For V real, the change comes after the expansion of an unexpanded AND

node (sd; au). V
real
i (sd) = mina2A0(sd)Q

real
i (sd; a), where the set of actions A

0(sd) in-

cludes classi�cation actions and previously expanded attributes (if any). After the ex-

pansion of au, A
0(sd) will include au, and V real

i+1 (sd) = min(V real
i (sd); Q

real
i+1 (sd; au)) �

V real
i (sd) and this can only trigger a decrease (or no change) in V real in the ancestors

of state sd. Q.E.D.

Theorem 4.2.6 For an unexpanded AND node (s; a), if V real(s) < Qopt(s; a), then

action a does not need to be expanded (so it can be pruned).

Proof: In this case, V opt(s) � V �(s) � V real(s) < Qopt(s; a) � Q�(s; a). So

V opt(s) < Qopt(s; a)) �opt(s) 6= a, and V �(s) < Q�(s; a)) ��(s) 6= a. This theorem

shows that our heuristic provides a cuto� in node expansions when there exists a

complete policy �real with smaller expected cost. Note that in future iterations of

AO�, V real can stay the same or it can decrease (Theorem 4.2.5), so it remains cheaper

than Qopt(s; a). Q.E.D.

The AO� algorithm can be viewed as an \anytime" algorithm. If we want to stop

the algorithm after a certain number of nodes have been expanded or if we run out

of memory, then we can return the realistic policy �real computed up to that point.

4.2.7 AO� for CSL Problems, With an Admissible Heuristic, Converges
to the Optimal Value Function V �

As more nodes are expanded, the optimistic values V opt increase, becoming tighter

lower bounds to the optimal values V �, and the realistic values V real decrease, be-

coming tighter upper bounds. They converge to the value of the optimal policy on the

training data: V opt(s) = V real(s) = V �(s), 8s reachable by ��. When �opt becomes

a complete policy (so all the leaf OR nodes in �opt are classi�ed), it is equal to �real

because it is the best complete policy in the graph, and it is actually ��.

65

Theorem 4.2.7 If hopt is an admissible heuristic, then the AO� algorithm for CSL

problems converges to an optimal policy ��, and V opt(s0) = V �(s0).

The proof is based solely on V opt, because V real is not necessary for the conver-

gence of AO�. The stopping condition does not depend on V real, and we could expand

AND nodes (s; �opt(s)) in state s with maxs V
opt(s)� Preach(sj�opt).

In the worst case, AO� does exhaustive search (in a �nite graph) until its �opt

becomes a complete policy, so the algorithm always converges.

When AO� converges, its �opt is a complete policy. In the following, by V opt(s) we

denote the optimistic values, when the algorithm terminates, of the states s reachable

by �opt.

Proof by induction:

Base case

The leaf OR nodes s of �opt are classi�ed, so V opt(s) = C(s; bestf) = mina2A(s)Qopt(s; a).

Therefore C(s; bestf) � Qopt(s; a);8a 2 A(s). In Theorem 4.2.1 we proved that be-

cause hopt is an admissible heuristic, Qopt(s; a) � Q�(s; a);8a 2 A(s). Therefore

C(s; bestf) � Q�(s; a);8a 2 A(s), which implies V �(s) = C(s; bestf) = V opt(s). This

proves that in the leaves s of �opt, V opt(s) = V �(s).

Induction hypothesis

Let s be a state in an internal node of �opt, such that all its successor OR nodes

s0 through �opt have V opt(s0) = V �(s0). Then V opt(s) = V �(s).

Let �opt(s) = a, therefore V opt(s) = Qopt(s; a). Because s is an internal node

of �opt, it follows that (s; a) was expanded, and by de�nition Qopt(s; a) = C(s; a) +P
s0 Ptr(s

0js; a)� V opt(s0). Because the induction hypothesis assumes that V opt(s0) =

V �(s0), we have Qopt(s; a) = Q�(s; a).

V opt(s) = Qopt(s; a) impliesQopt(s; a) � Qopt(s; a0);8a0 2 A(s): Because Qopt(s; a0) �
Q�(s; a0);8a0 2 A(s), according to Theorem 4.2.1, it follows that Qopt(s; a) =

Q�(s; a) � Qopt(s; a0) � Q�(s; a0);8a0 2 A(s). Therefore Q�(s; a) � Q�(s; a0);8a0 2
A(s), so V �(s) = mina02A(s)Q�(s; a0) = Q�(s; a): Since V opt(s) = Qopt(s; a))
V opt(s) = V �(s):

66

We proved that for all states s reached by the optimistic policy �opt when AO�

terminates, V opt(s) = V �(s): Therefore this policy is an optimal policy. Because the

initial state s0 is part of any policy, therefore also of this policy, we have V opt(s0) =

V �(s0). Q.E.D.

Corollary 4.2.8 When algorithm AO� terminates, V opt(s) = V real(s) = V �(s) for

all states s reached by ��, and �opt(s) = �real(s) = ��(s).

Proof: The proof that �opt(s) = �real(s) at convergence follows immediately from

the fact that �opt is now a complete policy. More precisely, it is the best complete

policy in the graph expanded so far. Therefore it is equal to the realistic policy (since

both policies break ties in the same way). And we already showed that the optimistic

policy is an optimal policy ��. Q.E.D.

4.2.8 Pseudocode and Implementation Details for the AO� Algorithm

In our current implementation, we store more information than necessary, but this

makes the description and the implementation clearer. We store Q, V , �, though it

would be enough to store just the Q function, because the policy � and the V function

can be computed from Q.

4.2.8.1 Data Structures

An OR node stores

� the corresponding state s,

� the best classi�cation action in s, bestf according to the training data, and its

expected cost C(s; bestf) = minfk C(s; fk) (We store these so we do not have to

compute them repeatedly.),

� the current optimistic policy, �opt(s), and its optimistic value, V opt(s),

� the current realistic policy, �real(s), and its realistic value, V real(s),

67

� a
ag that marks this node as solved,

� a list of (pointers to) children AND nodes, for all attributes not yet measured

in s, and

� a list of (pointers to) parent OR nodes, along with markers set to 1 if s is reached

by �opt(parent).

Because our graph is a DAG and we do not want to generate the same OR node

multiple times, the OR nodes are stored in a hash table. Before generating a new OR

node with state s, we double check, using the measured attributes of state s, that

such an OR node does not exist already. If it does, we only update the links to its

parents.

An AND node (s; a) stores

� the action a that measures attribute xn,

� a
ag that marks this node as expanded or not (it also marks if the AND node

was pruned by the statistical pruning regularizer SP, see below),

� the optimistic Q-value, Qopt(s; a),

� the realistic Q-value, Qreal(s; a),

� a vector of probabilities for each of the possible values v of attribute xn, P (xn =

vjs), computed from the training data (We store these probabilities because they

will be used in future updates of the value functions.), and

� a vector of (pointers to) children OR nodes corresponding to states s[fxn = vg.

An AND node (s; xn) does not need to store the state s, because it is stored in the

parent OR node.

68

TABLE 4.1: Pseudocode for the AO� algorithm.

function AO�(int Mem-limit) returns a complete policy.

iteration i = 0;

Memory = 0;

create hash-table;

(1) OR node * root = create-OR-node(s0, (OR Node *) 0, hash-table, Memory);

(2) while ((Memory < Mem-limit) && (root not solved))f
i++;

(3) in current �opt, select fringe OR node s with

AND node (s; a) to expand (�opt(s) = a).

(4) expand AND node (s; a) by creating children OR nodes s0.

update A0(s) with the newly expanded action a, A0(s) = A0(s) [fag.
(5) do bottom-up updates of Qopt; V opt; �opt for s and its ancestors.

(6) do bottom-up updates of Qreal; V real; �real for s and its ancestors.

g
return last �real.

4.2.8.2 Pseudocode

Table 4.1 gives the pseudocode for the AO� algorithm, and we will describe each step

of it. Step (1) is described in Table 4.2, step (4) in Table 4.3 and steps (5) and (6) in

Tables 4.4 and 4.5.

Step(1): Creating a New OR Node

First we compute the classi�cation action bestf with the minimum expected cost in

state s, using the class probabilities estimated from the training data (see equation 2.7,

C(s; fk) =
P

y P (yjs) �MC(fk; y)). We initialize the realistic policy to be bestf and

69

TABLE 4.2: Creating a new OR node. If s = s0 (for the root node), there is no
parent.

function create-OR-node(state s, OR node * parent, hash-table, int & Memory)

returns an OR node.

compute bestf in s, bestf = argminfk C(s; fk),

and set �real(s) = bestf ; V
real(s) = C(s; bestf).

A(s) = fclassi�cation actions and attributes not measured in sg:
A0(s) = fclassi�cation actionsg:
for every attribute a not measured in s, compute

Qopt(s; a) = C(s; a) +
P

s0 Ptr(s
0js; a) � hopt(s0):

�opt(s) = argmina2A(s)Qopt(s; a), V opt(s) = mina2A(s)Qopt(s; a).

if (�opt = bestf)

solved = 1.

else

solved = 0;

for every attribute a not measured in s,

if Qopt(s; a) < C(s; bestf)

create AND node (s; a):

else

remove a from A(s).

if (parent)

add parent to the list of parents.

create OR node n.

store pointer to OR node n in the hash-table.

update Memory by counting memory for OR node n

and its children AND nodes.

return OR node n.

70

the realistic value V real(s) to be its cost.

Then, for every attribute a not yet measured in s (if any), we compute Qopt(s; a)

using the optimistic heuristic hopt in the resulting states s0. Then we compute

the optimistic policy choosing between the best classi�cation action (recall that

Qopt(s; bestf) = C(s; bestf)) and the attribute with the smallest heuristic estimate.

We break ties following the rules in section 4.2.8.3.

If �opt = bestf (so V opt(s) = C(s; bestf)), then we do not need to store any of

the AND nodes (here, the optimistic heuristic provides some cuto�), and the newly

created OR node will be marked as solved. Otherwise, a new AND node is created

for each attribute a whose Qopt(s; a) is strictly less than the expected cost of bestf .

If C(s; bestf) � Qopt(s; a), then the AND node (s; a) does not need to be stored

(admissible heuristic cuto�), since according to Theorem 4.2.1 Qopt(s; a) � Q�(s; a),

therefore C(s; bestf) � Q�(s; a), and because we break ties in favor of classifying,

��(s) 6= a. If such an (s; a) were to be expanded, its Qopt(s; a) could only increase,

and it will never beat C(s; bestf), so a will never become �opt(s).

When creating an AND node (s; a), we set its action a, we mark it as unexpanded

(expanded = 0), and we store its computed Qopt(s; a), we store a default value for

Qreal(s; a) (since the AND node is unexpanded, its realistic value is not de�ned), and

we compute the probability distribution P (a = vjs) from the training data.

If the call to create-OR-node speci�es a parent, then we add this parent to the

list of parents of the new OR node. We �nally create the new OR node with state

s, bestf and its expected cost, �opt and V opt, �real and V real, solved, children AND

nodes and updated list of parents. We add the newly created OR node to the hash

table (using the values of the measured attributes in state s as the hashing function).

The global variable Memory keeps track of the total amount of memory consumed

by the AND/OR graph. When updating Memory, we count the memory used by this

OR node, its AND children (if any), the memory to store a link to its parent and to

store a pointer to this OR node in the hash-table.

The root gets added to the hash-table as the �rst OR node created. For all other

71

OR nodes, we �rst check that they are not already in the hash-table, before storing

them.

Step(2): OR Node Becomes Solved

In the following, we explain what it means for an OR node to be solved. This is a

general concept, though in step (2) of Table 4.1 it is applied for the root node. An

OR node becomes solved when all its children OR nodes, reached by �opt, are solved.

The base case for this recursive de�nition is a leaf OR node with state s, which is

solved when �opt(s) = bestf . This leaf OR node is called a terminal leaf, because the

classi�cation action deterministically transitions from s to the terminal state sf .

De�nition 4.2.1 An OR node with state s is solved if it is a leaf OR node and

�opt(s) = bestf , or if it is an internal OR node and all its children OR nodes, reached

by �opt, are solved.

Once an OR node s becomes solved, it stays solved. Indeed, its optimistic policy

is a complete policy, the best one in the subgraph rooted at this OR node. With a

proof similar to Theorem 4.2.7, it can be shown by induction that �opt(s) = ��(s),

starting with the leaf nodes that have optimal classi�cation actions. After updating

the OR node's realistic value, we will also have �real(s) = �opt(s) = ��(s); because

�opt is the best complete policy in the graph expanded so far, and therefore it is the

realistic policy. The solved node stays solved because its choice for �opt will not be

changed, as we see in the code for selecting the AND node to expand.

Step(3): Select Node to Expand

We traverse the current optimistic policy �opt depth-�rst, keeping track of the leaf

OR node s with unexpanded �opt(s) having the largest score

h
V real(s)� V opt(s)

i
� Preach(sj�opt):

In fact, we are interested in the leaf OR node s, though we expand its AND node

(s; �opt(s)); the reason for this will become apparent in the description of the next

72

steps of the AO� algorithm.

The OR node returned by the depth-�rst search of �opt is called a fringe node.

Since the root is not solved, there must be at least one unexpanded AND node in

�opt, so the fringe node exists. In case there are multiple leaf nodes tied for the best

score, we return the �rst one reached in the depth-�rst traversal of �opt, though we

do have to visit all (nonterminal) leaf nodes of �opt.

In general, note that an OR node s is a leaf with respect to a particular policy �,

in the sense that the AND node (s; �(s)) is unexpanded, though in the graph this OR

node may have other AND child nodes, measuring other attributes, already expanded.

Preach(sj�opt) can be computed by counting the number of training examples

reaching state s divided by the total number of training examples. This is due to

the fact that in any policy � reaching state s, the probability Preach(sj�) is indepen-
dent of the order in which the attributes in s are measured. Preach(sj�) is independent
of the policy | the proof is immediate using the chain rule for probabilities and the

commutativity and associativity of the multiplication operation. In fact, Preach(sj�)
is equal to the state probability P (s), de�ned as the fraction of training examples that

match state s. So all paths reaching a state s from the root have the same probability.

We can stop the search down a branch of �opt if we �nd a solved OR node, because

the optimistic policy under that node is complete (all its leaf OR nodes are classi�ed),

therefore there are no unexpanded AND nodes in it. This proves that once an OR

node becomes solved, it stays solved. It also makes the implementation more e�cient.

Step(4): Expand AND Node

Table 4.3 shows the details for expanding an AND node (s; a). The probability

P (a = vjs) has been computed and stored in the AND node at its creation. If the

child OR node with state s0 = s [fa = vg was already created, then it is stored in

the hash-table, and it is su�cient to mark the connector from the child OR node to

its parent fringe OR node as being part of the optimistic policy (this is useful for

future updates of optimistic values and policy). Otherwise, we need to create a new

73

TABLE 4.3: Expanding AND node (s; a) of fringe OR node with state s.

function expand-AND-node(OR node * fringe, hash-table, int & Memory).

s = state of fringe OR node.

a = �opt(s):

for every value v of attribute a

if (P (a = vjs) > 0)

let state s0 = s [fa = vg:
if (state s0 is already in the hash-table)

let child be its OR node.

add fringe to the child's list of parent OR nodes.

mark the link/connector child-fringe as being part of �opt.

update Memory to count the link to this new parent.

else

OR node * child = create-OR-node(s0, fringe, hash-table, Memory).

add child with state s0 as a child OR node for AND node (s; a):

mark AND node (s; a) as expanded (expanded = 1).

else

do not store anything.

when evaluating policy on test or validation data, classify examples

reaching s0 = s [fa = vg into the same class as bestf in state s.

74

OR node. In either case, the child OR node with state s0 is added below the AND

node (s; a), corresponding to the outcome a = v.

Note that if the probability of reaching state s0 from state s is zero according to

the training data (Ptr(s
0js; a) = P (a = vjs) = 0), then we do not add an OR node.

When we evaluate additional data points and if some of them travel down the policy

from state s to state s0, we will classify them into the best classi�cation action of

state s.

Step(5): Bottom-up Updates of Optimistic Values and Policy

For both optimistic and realistic updates, Vi+1(s) are the new values at the end of

iteration i+ 1. All states s in the graph whose values were not modi�ed in iteration

i + 1 have Vi+1(s) = Vi(s). The same holds true for Q values and policies. The

changes propagate from bottom-up, so when updating the value of state s we already

computed the value Vi+1 of its children states. The action set A(s) of valid actions

in any state s does not change from one iteration of AO� to another.

Table 4.4 details the updates of optimistic values and policies. Starting with the

fringe node, we propagate changes in the optimistic values upward in the graph by

pushing OR nodes, which can be a�ected by these changes, onto a queue (called the

optimistic queue in order to di�erentiate it from the queue used for realistic updates).

Only the Q values for expanded AND nodes need to be updated, based on the al-

ready computed V opt of their children OR nodes. For every OR node in the optimistic

queue, it is necessary to perform the updates for all its expanded AND nodes.

After updating the Q values, we recompute �opt and V opt. If the optimistic policy

has changed, we need to mark its new successor OR nodes as being reachable by

�opt, and unmark the connectors for the old policy �opt. It is important to have a

marker between a child OR node and its parent OR node, if the child is reached from

the parent by following �opt. These markers, which are similar to reversed links, will

be useful after children OR nodes update their V opt and these changes need to be

propagated to their marked parents, which will be pushed onto the optimistic queue.

75

TABLE 4.4: Updating V opt, Qopt and �opt after the expansion of �opt in fringe OR
node.

function optimistic-update(OR node * fringe).

push fringe OR node onto the optimistic queue.

while (optimistic queue not empty)f
pop OR node n with state s from the optimistic queue.

recompute Qopt(s; a) for all expanded AND nodes (s; a),

Qopt
i+1(s; a) := C(s; a) +

P
s0 Ptr(s

0js; a) � V opt
i+1(s

0).

for unexpanded AND nodes (s; a), and for a = bestf ,

Qopt
i+1(s; a) := Qopt

i (s; a):

�opti+1(s) := argmina2A(s)Q
opt
i+1(s; a), V

opt
i+1(s) := mina2A(s)Q

opt
i+1(s; a).

if (�opti+1(s) = bestf)

mark OR node n as solved.

else

if (AND node (s; �opti+1(s)) is expanded)

mark all its child OR nodes as being reachable by �opt from node n.

if (�opti (s)) 6= �opti+1(s)))

mark all the child OR nodes of �opti (s) as unreachable by �opt from

node n.

if (all successor OR nodes through �opti+1 are solved)

label OR node n as solved.

if ((OR node n solved) or (V opt
i+1(s) > V opt

i (s)))

push onto the optimistic queue all marked parents of OR node n.

g

76

If an OR node becomes solved, or its V opt changes (which can only be an increase

in value, according to Theorem 4.2.4), then all its marked parents get pushed onto the

optimistic queue. The connectors to the parent OR nodes were marked as being part

of �opt in previous iterations of AO�. Such a marked OR node gets pushed only once,

per iteration, onto the optimistic queue, because its �opt speci�es only one action,

therefore a single child OR node will push it.

The optimistic updates are triggered by expanding an AND node of the fringe

OR node sd. After expanding the AND node (sd; a) by creating its OR children,

we update its Qopt(sd; a) value (which was initially computed using the admissible

heuristic hopt). If this leads to an increase in V opt(sd), then this increased value needs

to be propagated in the graph expanded so far, to all the ancestors of the fringe OR

node that can be a�ected by it.

The trick that saves computation time, instead of updating all ancestors of state

sd, is to update only those ancestors that reach state sd through their optimistic poli-

cies. Because their descendants' optimistic values have increased (assuming V opt(sd)

has increased), they may only in
uence V opt of their ancestors if they are reached by

optimistic policies, otherwise there already exist other actions with smaller Qopt than

theirs. This e�cient way of computing V opt is correct because at the end of each AO�

iteration, every OR node in the graph has the correct �opt and V opt.

If V opt
i (sd) < V opt

i+1(sd), we push onto the optimistic queue each parent OR node of

state sd whose link/connector is marked as being part of some �opt. These parents,

when their turn to be updated comes, will push their marked parents onto the queue,

and this continues until the queue is empty.

Step(6): Bottom-up Updates of Realistic Values and Policy

Table 4.5 details the updates of realistic values and policies. After expanding an AND

node (s; a) and computing its Qreal(s; a), it is necessary to recompute the V real(s)

value of its parent OR node. If this results in a decrease (Theorem 4.2.5 shows that

realistic values decrease or stay the same), then this needs to be propagated to the

77

TABLE 4.5: Updating V real, Qreal and �real after the expansion of �opt in fringe OR
node.

function realistic-update(OR node * fringe).

push fringe OR node onto the realistic queue.

while (realistic queue not empty)f
pop OR node n with state s from the realistic queue.

recompute Qreal(s; a) for all expanded AND nodes (s; a),

Qreal
i+1 (s; a) := C(s; a) +

P
s0 Ptr(s

0js; a) � V real
i+1 (s

0).

ignore unexpanded AND nodes (s; a).

for a = bestf , Q
real
i+1 (s; a) := Qreal

i (s; a) = C(s; bestf):

�reali+1 (s) = argmina2A0(s)Q
real
i+1 (s; a), V

real
i+1 (s) = mina2A0(s)Q

real
i+1 (s; a).

if (V real
i+1 (s) < V real

i (s))

push onto the realistic queue all parents of OR node n.

g

78

ancestor OR nodes of OR node s. We again employ a queue to do this, called the

realistic queue. Unlike with V opt, we cannot employ the time-saving trick of only

updating OR nodes that reach the fringe OR node by following an optimistic policy.

When V real(s) decreases, this, in turn, decreases the Qreal in ancestors of s, and the

corresponding actions may become �real in their nodes. Therefore we must push all

of the ancestor OR nodes of state s onto the realistic queue. It is possible for an OR

node to be pushed more than once, per iteration, onto the realistic queue.

4.2.8.3 Tie Breaking

As in the previous chapter on greedy search for diagnostic policies, we break ties

following this rule: classifying is preferred to testing attributes, and in case of ties

among classi�cation actions we prefer the one with the lowest index. In case of ties

among attributes, we break the tie in favor of the attribute with the lowest index.

Both optimistic and realistic policies follow these rules for breaking ties.

The code could be improved by selecting a solved AND node in a tie, where an

AND node becomes solved when all its children OR nodes are solved.

This concludes our description of the AO� algorithm. The Appendix A includes

additional notes on our AO� implementation.

4.3 Regularizers

In order to reduce the risk of over�tting the training data, we introduce several regu-

larization techniques. Over�tting tends to occur when the learning algorithm extracts

too much detailed information from the training data. This can occur when the learn-

ing algorithm computes too many probabilities from the data or when the learning

algorithm bases its decisions on only a small number of training examples. The most

extreme case arises when AO� decides that a node in the graph has probability 0 of

being reached because none of the training examples reach that node.

The risk of over�tting increases as AO� expands more nodes. There are several

reasons. First, each additional expansion requires computing additional probabilities

79

from the training data. Second, additional expansions may cause the AND/OR graph

to grow deeper, which typically means that fewer training examples are reaching the

newly expanded nodes, so the computed probabilities are based on fewer training

examples. Hence, many of the regularizers that we describe in this section act to

prevent AO� from expanding all of the nodes it would otherwise expand.

Recall that an example matches a state s if the example agrees with the attribute

values de�ning s, as de�ned in Chapter 2. This notion is used in several of the

regularizers below.

4.3.1 Memory Limit

One way to regularize AO� is to set a limit on the amount of memory that the

AND/OR graph can consume. When this memory limit is reached, we terminate

AO� and return the current realistic policy �real.

4.3.2 Laplace Correction (L)

A second way to regularize AO� is to prevent it from interpreting the complete absence

of examples at a node as implying that the node is reached with probability 0. This

can be accomplished by applying a Laplace correction to all probabilities calculated

from the training data.

A Laplace correction of +1 is applied to both class probabilities P (yjs) and tran-

sition probabilities P (xn = vjs) computed from the training data, as described in

equations 3.1 and 3.2, which we rewrite below. Laplace correction does not a�ect the

test data, nor the holdout data. Note that changes in class probability P (yjs) imply
a change in expected cost of classi�cation actions C(s; f). These changes in proba-

bilities (and expected costs of classi�cation actions) induce a change in the MDP.

Let P (yjs) = ny=n be the class probability, where n is the number of training

examples matching state s and out of them, ny examples have class y. Then the

Laplace corrected class probability is PL(yjs) = (ny + 1)=(n + K); where K is the

80

number of classes. Intuitively, each class has been given an extra training example.

Let P (xn = vjs) = nv=n be the transition probability, where out of the n training

examples matching state s, nv have value v for attribute xn. With the Laplace correc-

tion, the transition probability becomes PL(xn = vjs) = (nv+1)=(n+Arity(xn). This

is equivalent to creating an extra training example for each value of each attribute.

In the AO� algorithm, whenever a probability is computed from the training data,

and the Laplace option is on, we apply the above Laplace corrections. This causes all

probabilities to be non-zero. As a result, the AND/OR graph usually gets larger.

If the transition probability P (xn = vjs) is zero, in the original AO� code for

expanding the AND node (s; xn) in Table 4.3 we do not create an OR node for state

s0 = s[fxn = vg. But with the Laplace correction this transition probability becomes
greater than zero, and that is why we reach state s0 now. In create-OR-node() for state

s0 of Table 4.2, we classify this node using the Laplace-corrected class probabilities.

4.3.3 Statistical Pruning (SP)

Even though the admissible heuristic can prune parts of the search space, its bene�ts

may be limited (for example, if the attribute costs are small). We would like to prune

additional parts of the search space. The statistical motivation is the following:

given a small training data sample, there are many pairs of diagnostic policies that

are statistically indistinguishable. Ideally, we would like to prune all policies in the

AND/OR graph that are statistically indistinguishable from the optimal policies.

Since this is not possible without �rst expanding the graph, we need a heuristic that

approximately implements the following indi�erence principle:

Indi�erence Principle. Given two diagnostic policies whose values are statisti-

cally indistinguishable based on the training data set, a learning algorithm can choose

arbitrarily between them.

This heuristic is called statistical pruning (abbreviated SP), and is applied in each

fringe node s to the currently unexpanded optimistic policy �opt(s) and the current

realistic policy �real(s). The action speci�ed by �opt(s) (in fact, the AND node

81

(s; �opt(s))) will be pruned from the graph if a statistical test cannot reject the null

hypothesis that V opt(s) = V real(s). In other words, between an incomplete policy

�opt and a complete policy �real, we prefer the last one. The statistical test checks if

V opt(s) falls inside a con�dence interval around V real(s).

This is a pruning heuristic applied as the AO�'s AND/OR graph is grown. The

idea is to design a statistical test for pruning an unexpanded AND node (s; a), similar

to the admissible heuristic's pruning when V real(s) � Qopt(s; a). The purpose is to

prune useless nodes, and thereby reduce the size of search space, which may also

reduce over�tting.

When an AND node (s; a) is selected for expansion, we �rst check to see if this

AND node should be pruned instead. If it can be pruned, we mark this AND node

as pruned (expanded = 2). This action will then be ignored in further computations.

In our current implementation, this pruning of actions is irreversible. While we

refer to pruning of AND nodes, note that once an AND node is pruned, the entire

graph that could have potentially been constructed under this node is also pruned.

The SP option modi�es steps (4) and (6) of the AO� algorithm from Table 4.1.

We rewrite the pseudocode for AO�+SP in Table 4.6.

By marking an AND node (s; a) as pruned, the e�ect is that it is eliminated from

the set A(s) of actions valid in state s. Therefore in the updates of Qopt and Qreal, in

steps (5) and (6), we ignore pruned actions. This implies immediately that a pruned

action cannot be part of �opt, and therefore pruned actions will be ignored in step (3)

as well.

We can also free the memory for the pruned AND node, since it no longer matters

in the graph.

When we prune the current �opt(s) = a in the fringe node, we need to recompute

its new optimistic policy �opt(s) from the set of actions A(s)nfag. This may increase
V opt(s) and/or render the fringe node solved, therefore leading to optimistic updates

in its marked ancestors. The code in Table 4.4 can be used without any change.

If the AND node (s; a) of the fringe OR node was pruned, there is no change in the

82

TABLE 4.6: Pseudocode for the AO� algorithm with statistical pruning SP.

function AO�+SP(int Mem-limit) returns a complete policy.

iteration i = 0;

Memory = 0;

create hash-table;

(1) OR node * root = create-OR-node(s0, (OR Node *) 0, hash-table, Memory);

(2) while ((Memory < Mem-limit) && (root not solved))f
i++;

(3) in current �opt, select fringe OR node s with

AND node (s; a) to expand (�opt(s) = a).

(4) if ((SP-option = on) and (AND node (s,a) needs pruning))

mark AND node (s,a) as pruned (expanded = 2).

A(s) = A(s)� fag.
do not update A0(s).

free memory for this AND node.

else

expand AND node (s; a) as usual (Table 4.3).

update A0(s) with the newly expanded action a,

A0(s) = A0(s) [fag.
(5) do bottom-up updates of Qopt; V opt; �opt.

(6) if (AND node (s; a) was expanded)

do bottom-up updates of Qreal; V real; �real for s and its ancestors.

g
return last �real.

83

TABLE 4.7: Checking if an unexpanded AND node (s; �opt(s)) needs to be statisti-
cally pruned. The statistical test is a one-sided test checking if V opt(s) belongs to a
normal con�dence interval for V real(s), for a speci�ed con�dence level 1� �SP .

function AND-node-needs-pruning(OR node * fringe) returns prune=yes/no.

s = state of fringe OR node with unexpanded AND node (s; �opt(s)).

n = number of training examples matching state s.

if (n < 2)

prune = yes.

else

for every training example tej matching state s

cost-realj = cost of tej when processed by �real(s).

compute a 1� �SP normal con�dence interval

for the costs cost-realj , called CI(V real(s)).

if (V opt(s) 2 CI(V real(s)))

prune = yes.

else

prune = no.

return prune.

realistic graph, so no realistic updates are necessary (�real stays the same). Indeed,

(s; a) was previously unexpanded, and after pruning it will be ignored.

If the SP-option is o�, or the AND node does not need to be pruned, the AO�

algorithm continues as before.

Table 4.7 presents the details of how an AND node can become pruned. Note

that the fringe node with state s may have other actions previously expanded, so

its realistic policy �real(s) may be di�erent from bestf and V real(s) can be less than

C(s; bestf). Because state s is reached by �opt, there must be at least one training

84

example matching it. If indeed there is a single training example matching state

s, we will prune the action. Otherwise, we compute a con�dence interval for the

costs of training examples traveling down �real(s). Let te be a training example

matching state s, then we can recursively de�ne cost(te; �real(s)) as the cost of this

training example (with class te:y) when processed according to the policy �real. If

�real measures an attribute a, and v is the value of the training example for that

attribute, te[a] = v, then te travels down to the state s0 = s [fa = vg, and so on,

until it reaches a leaf. cost(te; �real(s)) sums the costs of attributes measured along

the branch of �real(s) followed by the training example te, and the misclassi�cation

cost of predicting the class bestf in the leaf.

cost(te; �real(s))
def
=

8>>>>>><
>>>>>>:

MC(bestf ; te:y)

if �real(s) = bestf

C(s; a) + cost(te; �real(s0));

if �real(s) = a 6= bestf ; te[a] = v; s0 = s [fa = vg:

The con�dence interval for V real(s) is the normal con�dence interval (for a spec-

i�ed value of the con�dence level 1 � �SP) for the costs of n training examples

tej matching state s evaluated according to �real(s). The mean of cost-realj =

cost(tej ; �
real(s)) is � = V real(s) and the standard deviation is

� =

sP
j cost-real

2
j � (

P
j cost-realj)

2=n

n� 1
:

The con�dence interval is then de�ned as

CI(V real(s)) =

�
�� zSP � �p

n
; �+ zSP � �p

n

�
;

where zSP is the con�dence coe�cient corresponding to a 1��SP con�dence interval.

Because V opt(s) � V �(s) � V real(s), this implies that the optimistic value is

always less than the upper bound of the normal con�dence interval for V real(s),

V opt(s) � V real(s) + zSP � �p
n
. Therefore we only need to check where V opt(s) is

situated versus the lower bound of the con�dence interval.

85

It is interesting to note that if V opt(s) is inside the interval CI(V real(s)), it will

remain inside the interval even if further expansions increase V opt(s); this only holds

for the current V real.

At the current iteration i of the AO�+SP algorithm, V opt
i (s) = Qopt

i (s; a) �
V real
i (s). If Qopt

i (s; a) 2 CI(V real
i (s)), then action a will be pruned. From Theo-

rem 4.2.1, Qopt
i (s; a) � Q�(s; a), so Q�(s; a) is also in the con�dence interval for the

current V real
i (s) or exceeds the upper con�dence limit. This only says that the opti-

mal policy under AND node (s; a) is statistically indistinguishable or worse than the

current realistic policy. It does not rule out the possibility that the realistic policy

may improve in future iterations. If this happens, its realistic value will decrease and

it is possible that its con�dence interval will shrink as well. As a result, at some

future iteration l, we may have Qopt
i (s; a) < V real

l (s) � zSP � �lp
n
, and in retrospect,

action a should not have been pruned at iteration i.

If the Laplace option is on, then besides correcting all the probabilities, we modify

the statistical test to center the con�dence interval around V real computed with

Laplace corrections. The standard deviation � is still computed based on the n

real training examples traveling down �realL . Note that V real with Laplace corrections

is not the mean of cost(te; �realL (s)) anymore.

In [2] we described a version of the SP heuristic that employed a pair-di�erence

statistical test for the costs of training examples traveling down �real and �opt. On

synthetic problems, the two statistical tests proved to be similar. We prefer the

statistical test shown here, because we have a better theoretical understanding of it.

4.3.4 Pessimistic Post-Pruning (PPP) Based on Misclassi�cation Costs

PPP is a post-pruning heuristic, similar to C4.5's pessimistic post-pruning described

in Section 3.2. It is a pessimistic heuristic, because it exaggerates the expected

classi�cation cost as being the upper bound of a con�dence interval. This PPP is

applied to the �nal realistic policy computed by the learning algorithm.

In the following, we describe PPP for any complete policy �. In a complete policy

86

�, every internal node has �(s) expanded, and every leaf node has �(s) = bestf

(classi�cation action with minimum expected cost).

First we need to de�ne an upper bound for the value of policy � in state s, V �(s).

UB(s; �(s))
def
=

8>>>>>><
>>>>>>:

UpperBoundMC(s; bestf)

if �(s) = bestf

C(s; a) +
P

s0 Ptr(s
0js; a) � UB(s0)

if �(s) = a 6= bestf :

If the policy classi�es state s, �(s) = bestf , then UpperBoundMC(s; bestf) is

an upper bound for C(s; bestf). It is computed by constructing a normal con�dence

interval (for a speci�ed value of the con�dence level 1��PPP) for the misclassi�cation
costs of all n training examples matching state s, when classi�ed in bestf , and taking

the upper bound of this con�dence interval. Let costj = MC(bestf ; tej :y) be the

misclassi�cation cost of classifying training example j (matching state s) with class

y in bestf . We compute the 1 � �PPP normal con�dence interval for all costj, and

return

UpperBoundMC(s; bestf)
def
= �+ zPPP � �p

n
;

where the mean of costj is � = C(s; bestf), the standard deviation is

� =

sP
j cost

2
j � (

P
j costj)

2=n

n� 1
;

and zPPP is the con�dence coe�cient corresponding to a 1��PPP con�dence interval.

If there is a single training example matching s (i.e., n = 1), then we return a large

value, UpperBoundMC(s; bestf) = 1, so the policy in the parent node of s will be

pruned.

Table 4.8 describes an implementation of the PPP, which destructively modi�es

the structure of the policy �. The function returns the new upper bound for the value

of state s, UB(s)
def
= min(UpperBoundMC(s; bestf); UB(s; �(s))): The function �rst

computes UpperBoundMC(s; bestf) for a state s. If s belongs to an internal node, it

computes UB(s; �(s)) based on UB(s0) for its children s0 reached through �(s). Then

87

TABLE 4.8: Pessimistic Post-Pruning for a complete policy � (in our case, �real). In
case of pruning, the structure of the policy is modi�ed.

function PPP(state s) returns an upper bound UB(s).

bestf = best classi�cation action in state s.

compute UBMC = UpperBoundMC(s; bestf).

if (�(s) = bestf)

return UBMC.

else

let a = �(s):

initialize UB-policy = C(s; a).

for every value v of attribute a

if (P (a = vjs) > 0)

UB-policy += P (a = vjs)� PPP(s [fa = vg).
if (UBMC � UB-policy)

�(s) := bestf (action a was pruned).

return UBMC.

else

return UB-policy (called UB(s; �(s)) in text).

88

it decides if the action �(s) needs to be pruned. This happens when the upper bound

on the cost of classifying is less than the upper bound on the value of the policy �(s),

UpperBoundMC(s; bestf) � UB(s; �(s)): When pruning �(s), the e�ect is that we

reset �(s) to be bestf .

If the Laplace option is on, besides correcting all the probabilities we also add one

fake example in each class when computing UpperBoundMC(s; bestf). Basically,

we compute the normal con�dence interval for the misclassi�cation costs of n + K

training examples, where K is the number of classes, by adding one MC(bestf ; y) for

each class y.

Bradford et al. [8] present a simpler pruning method for decision trees, based

only on misclassi�cation costs. A decision tree is �rst grown for the 0/1 loss (using

a top-down induction method, based on information gain of attributes). All class

probabilities are then Laplace-corrected, and the best classi�cation action bestf is

the one with minimum expected misclassi�cation cost, CL(s; bestf). Starting from

the leaves of the decision tree, they prune a node's action when its children's ex-

pected misclassi�cation costs are larger than the node's expected misclassi�cation

cost. Mathematically, de�ne UB(s) = min(CL(s; bestf); UB(s; �(s))), where

UB(s; �(s))
def
=

8<
: CL(s; bestf) if �(s) = bestfP

s0 Ptr(s
0js; a) � UB(s0) if �(s) = a 6= bestf :

In their paper, there is no Laplace correction for transition probabilitiesPtr(s
0js; a).

The action �(s) in an internal node is pruned when CL(s; bestf) � UB(s; �(s)).

4.3.5 Early Stopping (ES)

Early stopping employs an internal validation set to decide when to halt AO�. The

training data is split in half. One half is used as the subtraining data, and the

other half as the holdout data. AO� is trained on the subtraining data, and after

every iteration, its policy is evaluated on the holdout data. The best realistic policy,

according to the holdout data, is returned at the end of AO� search.

Note that we are not reconstituting the full training set. That is, we do not rerun

89

AO� on the entire training data until the iteration at which the best policy on the

holdout data was found.

If the Laplace option is on, the transition and class probabilities computed from

the subtraining data are Laplace-corrected, but those on the holdout data are not.

4.3.6 Dynamic Method

This method decides internally if it should apply Laplace correction to its proba-

bilities or not. It �rst splits the training data in half (50% subtraining and 50%

holdout). It runs AO� on the subtraining data, then it runs AO�+Laplace on the

subtraining data (until convergence or the memory limit is reached), and then it

evaluates their �nal policies �real on the holdout data. The dynamic method chooses

the best con�guration (to apply Laplace or not) according to the holdout data

(argminLaplace�option=on=off V
�real(Laplace�option)
holdout). Then it runs AO� on the entire

training data with the chosen con�guration and returns the resulting policy.

The Dynamic method is not related to Early Stopping, though both make decisions

using an internal holdout data. Dynamic only uses the holdout data to evaluate the

last policy learned on the subtraining data, while Early Stopping evaluates the policy

learned at each iteration on the holdout data to �nd the best stopping point. Also,

Early Stopping does not rerun on the whole training set, while Dynamic does.

4.3.7 AND/OR Graph Initialized with a Known Policy

AO� does not need to start with an empty AND/OR graph. It can instead be ini-

tialized with an AND/OR graph corresponding to a known policy �0. For example,

we initialized the AO� search with one of the greedy policies MC+InfoGainCost de-

scribed in Section 3.3 (with modi�ed stopping conditions which use our optimistic

heuristic). If �0 is very good, this might allow AO� to run faster and obtain better

cuto�s from its admissible heuristic.

If AO� has enough resources to terminate, it will compute the same optimal policy

90

TABLE 4.9: Pseudocode for initializing the AO� algorithm with a policy �0.

function grow-initial-policy(state s, policy �0, OR node * parent, hash-table, int &

Memory) returns an OR node.

OR node * n = create-OR-node(s, parent, hash-table, Memory).

a0 = �0(s):

if (AND node (s; a0) is stored in n, i.e., Qopt(s; a0) < C(s; bestf))

expand AND node (s; a0) by calling grow-initial-policy()

recursively in the resulting states s0.

mark AND node (s; a0) as expanded (expanded = 1).

update A0(s) with the newly expanded action a0.

do optimistic updates for node n.

do realistic updates for node n.

return n.

�� with or without the initial policy �0.

Table 4.9 has the pseudocode for initializing the AND/OR graph. In Table 4.1,

replace step (1) with

OR node * root = grow-initial-policy(s0, �0, (OR Node *) 0, hash-table, Memory).

The initial policy is grown top-down, creating OR nodes as in Table 4.2, until

classifying is cheaper, C(s; bestf) � Qopt(s; a) for all attributes a not yet measured in

s. If that is not the case, we select attribute a0 = �0(s) and expand it if it is cheaper

than classifying, according to our heuristic function. If C(s; bestf) � Qopt(s; a0),

there is no point in expanding a0 (in fact, the AND node (s; a0) is not even stored in

its parent OR node).

In this function, expanding AND node (s; a0) involves calling the function grow-

initial-policy() recursively in each of the resulting states s0 if Ptr(s0js; a0) > 0; note

that it is not necessary to check if these states s0 are in the hash table, because they

91

were not generated before (the policy is a tree, so a state does not repeat).

As we return from the function's recursive calls, we update the optimistic values

and policy, and also the realistic values and policy. Recall that a0 is the only action

expanded in node n, so we only need to update its Qopt value and compute its Qreal

value (this computation is done for the �rst time, since a0 just became expanded):

Qopt(s; a0) := C(s; a0) +
P

s0 Ptr(s
0js; a0) � V opt(s0):

Qreal(s; a0) := C(s; a0) +
P

s0 Ptr(s
0js; a0) � V real(s0):

Next we update V opt(s) and �opt(s). Since only AND node (s; a0) is expanded in

n, all other actions are unexpanded and have not modi�ed their Qopt values. If a0 was

di�erent from the old �opt(s), we only need to compare the updated Qopt(s; a0) with

the old V opt(s); if they were equal, we need to check if after expansion, a0 remains

equal to �opt(s). After updating V opt(s), �opt(s),

if (�opt(s) = bestf)

mark OR node n as solved.

else

if (�opt(s) = a0)

mark connectors for n and its children OR nodes through a0 as part of �opt.

mark n as solved if all its children OR nodes through a0 are solved.

else

do nothing (�opt(s) is unexpanded, there is nothing to mark).

if (Qreal(s; a0) < C(s; bestf))

�real(s) := a0.

V real(s) := Qreal(s; a0).

4.3.8 Combining Regularizers

These regularizers can be combined in many ways. The memory limit Mem-limit is

always present, although it may be set too large to have any e�ect. We implemented

the following combinations of regularizers: AO�, AO�+L, AO�+SP, AO�+SP+L,

AO�+PPP, AO�+PPP+L, AO�+SP+PPP, AO�+SP+PPP+L, AO�+ES, AO�+ES+L,

Dynamic, AO�+(MC+InfoGainCost). The next chapter will discuss the best per-

forming regularizers.

92

4.4 Review of AO� Literature

We need to mention from the very beginning that none of the uses of AO� in literature,

to our knowledge, was applied to learning from data; instead, a model of the problem

(either an MDP, or a POMDP) was assumed; therefore these algorithms fall into the

planning, not learning, category. The AO� algorithm has been studied extensively

both in the Arti�cial Intelligence and the Operations Research communities. This

AO� literature review is organized from the most general to the more speci�c.

4.4.1 AO� Relation with A�

AO� is similar to A�, except that it is for AND/OR graphs, while A� is for graphs

with only one type of nodes (OR nodes). AO�'s expanding leaf AND nodes in �opt is

the analog of A�'s expanding nodes with minimum f(n) = g(n) + h(n): An optimal

policy in AO� corresponds to an optimal path in A�. Given admissible heuristics,

both algorithms terminate with optimal solutions. When AO� terminates, it �nds an

optimal policy with value V �(s0); when A� terminates, it �nds an optimal path with

value f�. In AO�, if the heuristic hopt is admissible, then the optimistic values of

states s stored in the OR nodes, V opt(s), will increase during the search (until they

become the optimal values, V �(s)); in A�, if the heuristic h is admissible, then the

f(n) values of the sequence of nodes expanded by A� will increase.

4.4.2 AO� Notations, Implementations, and Relation with Branch-and-
Bound

Our de�nitions of AND and OR nodes are similar to those of Martelli and Mon-

tanari [45], Chakrabarti et al. [11], Pattipati and Alexandridis [53], Qi [61] and

Hansen [24]. An OR node speci�es the choice of an action. It is called an OR

node because its solution involves the selection of only one of its children. An AND

node speci�es the outcomes of an action. It is called an AND node because in order to

solve it, all its children must be solved. These de�nitions are the reverse of Nilsson's

93

[50] in which the type of a node is determined by the relation to its parent.

There are several implementations of AO�: two by Martelli and Montanari [45, 46],

one by Nilsson [50], and one by Mahanti and Bagchi [42]. The �rst three implementa-

tions are practically identical. Martelli and Montanari are the �rst to recognize that

dynamic programming techniques that discover common subproblems can be applied

to search AND/OR graphs and to compute the optimal solution. Martelli and Mon-

tanari [45] show that the AO� algorithm with an admissible heuristic converges to

an optimal policy �� (if complete policies exist, reaching the terminal state from the

start state, which is always the case in our �nite CSL problem).

Our implementation follows the framework of Nilsson's, with speci�c additions for

the cost-sensitive learning problem. To implement AO� following his description, one

only needs an admissible heuristic that optimistically estimates (that is, it underes-

timates) the value of reaching the terminal state sf from any state s. Our analysis

is more complex than Nilsson's, because he does not explicitly di�erentiate between

AND nodes and OR nodes when describing the AO� algorithm for graphs, though

he makes the distinction between the two nodes when discussing AND/OR trees. He

calls AND/OR graphs hypergraphs, and their hyperarcs/hyperlinks connectors, so in-

stead of arcs/links connecting pairs of nodes in ordinary graphs, connectors connect

a parent node with a set of successor nodes. The complete solution (no longer a path,

but a hyperpath), is represented by an AND/OR subgraph, called a solution graph

(with our notation, this is a policy). These connectors require a new algorithm, AO�,

for the AND/OR graphs, instead of the A� algorithm for ordinary graphs.

Nilsson does not refer to the nodes of an AND/OR graph as being AND nodes or

OR nodes, because in general a node can be seen as both an OR node and an AND

node, plus his notation is the reverse of ours, calling the node type with respect to its

parent, not the node itself. Pearl [55] notes as well that an AND link and an OR link

can point to the same node. Nevertheless, in our CSL problem, with our de�nition

for AND nodes and OR nodes, we have a clear separation between the two types of

nodes (a node cannot belong to both types). Chakrabarti et al. [11] call them pure

94

AND and OR nodes (unlike the nodes of mixed type allowed by Nilsson [50]).

AND/OR graph search algorithms have been studied by many authors. At �rst,

the algorithms worked on an implicit graph (the entire graph that can be generated),

which was assumed to be acyclic [46, 50, 42, 11]. An explicit graph is the part of the

graph generated during the search process. Graphs with cycles were usually solved

by unfolding the cycles. For a recent review of AO� algorithms for searching both

explicit and implicit AND/OR graphs with cycles see [31].

Branch-and-bound algorithms use lower and upper bounds to prune non-optimal

branches, without generating and evaluating the entire AND/OR graph. Kumar and

Kanal [36] explain the relationship between branch-and-bound algorithms from Oper-

ations Research and heuristic search algorithms from Arti�cial Intelligence (including

alpha-beta [33], AO�, B� [3], and SSS� [65]). Other relevant articles, which outline

AO� as a branch-and-bound procedure are [49, 37, 38]. They show that AO� is a

special case of a general branch-and-bound formulation.

4.4.3 Theoretical Results on AO�

Memory-bounded AO�

AO� may require memory exponential in the size of the optimal policy. Chakrabarti

et al. [10] propose running AO� in restricted memory by pruning unmarked nodes

(that are not part of some �opt in the graph) when the available memory is reached.

This method still computes the optimal value function, trading-o� space for time (if

the pruned nodes are needed again, they must be generated again).

Inadmissible Heuristics

If the heuristic h is inadmissible, but within � of the optimal value function V �,

then it is straightforward to compute a bound on the value of the suboptimal policy

learned with h. Indeed, if h(s)� V �(s) � �;8s, then the maximal error of the policy

� computed by AO� with heuristic h is �, V � � V � � � (see [11] and [61], page 31).

Chakrabarti et al. [11] showed that the optimal policy can be computed with an

95

inadmissible heuristic if if its weight is shrunk. If the heuristic function can be de-

composed into f = g + h, where g is the cost incurred so far, and h is the heuristic

estimating the remaining cost, then AO� with the weighted heuristic (1�w) �g+w �h,
where 0 � w � 1, compute an optimal policy �� even for an overestimating (inadmissi-

ble) heuristic h. The weight w is such that w < 1
1+� ; where � is the maximum distance

between the inadmissible heuristic h and V �. Note that for node n, f(n) = g(n)+h(n)

is the estimated cost of the cheapest policy through the node n; since the policy is

a decision tree, node n occurs only once in it, therefore g(n) is the cost of the path

from the root to n.

In
uence of Heuristic on Nodes Expanded

Chakrabarti et al. [11] show that a more accurate admissible heuristic in AO� has

a smaller worst-case set of nodes expanded. That is, if hopt2 heuristic is closer to

the optimal value function than hopt1 , hopt1 � hopt2 � V �, then the largest set of

nodes expanded by AO� with the hopt2 heuristic is a subset of the largest set of nodes

expanded by AO� with the hopt1 heuristic.

4.4.4 POMDPs

Partially Observable MDPs (POMDPs) are MDPs in which the state of the world is

not known with certainty. Instead, observations reveal information about the state of

the world. The states of the POMDP are called belief or information states. Instead

of minimizing expected costs, usually POMDPs maximize expected values.

Heuristic search methods (either branch-and-bound or AO�) have been applied

to approximately solve in�nite-horizon POMDPs from a single initial belief state.

Satia and Lave [64] proposed a branch-and-bound algorithm for �nding optimal and

�-optimal POMDP policies; Larsen and Dyer [39] improve upon this work. Washing-

ton [73] used the value function of the underlying MDP to de�ne lower and upper

bounds in AO�. Hansen [24] developed a heuristic search algorithm that combines

AO� with policy iteration for approximately solving in�nite-horizon POMDPs (from

96

a given start state) by searching in the policy space of �nite-state controllers. For

a recent review of approximation methods for solving POMDPs, which also includes

a systematic presentation of lower and upper bounds for POMDPs, see Hauskrecht

[26].

Hansen's LAO� algorithm [25] is a generalization of AO� that solves MDPs with

cycles by using a dynamic programming method (either value iteration or policy

iteration) for the bottom-up update of the optimistic value function (and policy).

This is necessary because in the general case of an MDP with cycles, we can not

perform a single sweep of value iteration through the state space from the fringe

node to the root node to update the value function. Bonet and Ge�ner [7, 6] follow

up with heuristic search algorithms for solving MDPs with cycles, which converge

faster than value iteration, RTDP or Hansen's LAO�. RTDP [1] is a Real Time

Dynamic Programming Algorithm that bypasses full dynamic programming updates

in MDPs by only updating the values of states reached from an initial state during

repeated trials of executing a greedy policy; a heuristic is used to initialize the value

function. If the heuristic is admissible, then RTDP converges in the limit to the

optimal policy. RTDP extends Korf's Learning Real Time A� (LRTA�) algorithm [34]

to asynchronous dynamic programming with stochastic actions. LRTA� can be seen

as a real-time version of A�, and RTDP is the real-time version of AO� and LAO�.

In terms of how they represent solutions, A� outputs a simple path (a sequence of

actions), AO� outputs a directed acyclic graph, and LAO� outputs a cyclic graph (a

�nite-state controller).

In [2] we describe AO� for the cost-sensitive learning problem with both attribute

costs and misclassi�cation costs, formulating it as an acyclic MDP. A related paper

is Bonet and Ge�ner's [5] which learns decision trees from data by formulating this

problem as a POMDP and using the RTDP version for POMDPs algorithm to solve it.

Even though POMDPs can accommodate both attribute costs and misclassi�cation

costs, Bonet and Ge�ner only evaluated the learned decision trees in terms of accuracy

and compared them to ID3 and C4.5.

97

4.4.5 Decision-theoretic Analysis

Qi [61] showed how to represent �nite acyclic MDPs with a unique start state by

decision graphs (which are acyclic AND/OR graphs with an evaluation function).

His de�nitions for AND and OR nodes are similar to ours. An OR node represents

the choice of an action and is called a choice node in decision graphs. An AND node

represents a set of possible observations and is called a chance node.

Qi develops and extends decision graph search algorithms and applies them to

decision problems in various forms (decision trees, MDPs and in
uence diagrams) by

�rst transforming the problems into the decision graph representation. He describes

three algorithms for decision graph search, all of which compute the optimal value

function when admissible heuristics are used: depth-�rst search (DFS) for decision

trees, AO�, and iterative deepening search. His depth-�rst search algorithm uses

an admissible heuristic and a branch-and-bound pruning technique (an upper bound

�-value, similar to the �-� method [33]). He also describes an anytime version of it

outputting decision trees whose values improve monotonically. The AO� implementa-

tion follows Nilsson's [50]. Qi implemented two iterative deepening search algorithms:

DFS with increasing depth bounds as cuto�s (which is probably a better algorithm

than Greiner et al.'s [22]), and DFS with a lower and an upper bound on costs.

Qi's work is mostly theoretical, and he assumes the probability model is given.

His main contribution is to transform decision problems given in the form of in
u-

ence diagrams into decision graphs (this is an intermediate representation), and use

decision graph search algorithms to compute an optimal policy, therefore proposing

a new method for in
uence diagram evaluation [62].

4.4.6 Test Sequencing Problem

Pattipati and Alexandridis [53] solved the test sequencing problem of detecting faults

in electronic systems by applying AO�. Though this problem only uses test costs, and

no misclassi�cation costs, we discuss it in detail below, hoping that it will encourage

the machine learning community to explore this work, though it does not involve

98

learning from data. A recent review appears in [78].

The test sequencing problem is a simpler version of the cost-sensitive classi�cation

problem. The original test sequencing problem (also known as the test planning

problem) is de�ned by a set of system states (faulty states and a fault-free state),

their (a priori) probability distribution, a set of binary tests, the costs of these tests,

and a binary diagnostic matrix. The problem has three assumptions: (i) only one

of the system states occurs; (ii) the available tests can identify the system states

unambiguously (this is the reason for which misclassi�cation costs are not relevant

to this problem, since they assume a correct diagnosis is always possible, and this

incurs no cost); and (iii) tests do not a�ect the system states. The objective is

to deterministically identify the presence of any system state while minimizing the

expected test costs. Pattipati and Alexandridis [53] prove that the test sequencing

problem is NP-complete (by reducing the NP-complete exact cover by 3-sets problem

to it).

A solution to the test sequencing problem takes the form of a decision tree. The

root corresponds to the entire set of system states, and each leaf corresponds to a

single system state. Each test in a node separates the system states into two disjoint

subsets (such tests are called symmetrical). [78] extends the test sequencing problem

from binary to multiple-valued tests, and from symmetrical to asymmetrical tests

(after performing a test, the resulting sets can have system states in common). They

still assume perfect classi�cation is possible.

The expected test costs of such a decision tree has a simple computation, as the

sum of test costs in each branch of the decision tree, weighted by the probability of

the system state that appears in the leaf. The optimal solution to the test sequencing

problem is the decision tree with minimum expected test costs.

Pattipati and Alexandridis observe that the test sequencing problem is an MDP

whose solution is an optimal AND/OR binary decision tree. An MDP state is a set

of system states. They also note that dynamic programming methods can compute

the optimal solution, but since the implementation is O(3N), where N is the number

99

of tests, this is impractical for more than 12 tests.

Approximation (Greedy) Methods for the Test Sequencing Problem

Greedy heuristics have been employed on the test sequencing problem. One-step

lookahead algorithms were applied to select the test that maximizes the informa-

tion gain per unit cost of test or that maximizes a \separation" heuristic. In their

terminology, the information gain for a binary test t in an MDP state s is

IG(s; t) = �[P (t = 0js) � log2 P (t = 0js) + P (t = 1js) � log2 P (t = 1js)];

which, for symmetrical tests, can be shown to be equivalent to the information gain

formula commonly used in machine learning (see Section 3.2). The \separation"

heuristic saves time by replacing the above information gain computation with P (t =

0js) �P (t = 1js), which produces the same decision tree when the test costs are equal.
On realistic problems the cost of the diagnostic procedure generated by the one-step

lookahead algorithms is rarely twice the cost of the optimal solution.

Systematic Search Methods for the Test Sequencing Problem

To compute the optimal solution to the test sequencing problem, Pattipati and

Alexandridis employ AO� with two admissible heuristics, one derived from Hu�man

coding and the other being based on the entropy of system states. These two heuris-

tics require equal test costs in order to be admissible. For simplicity, unit test costs

are used, since their objective function is linear in test costs. For unit test costs, the

expected total test cost is exactly the expected number of tests required to reach pure

leaves. The admissible heuristic estimates this expected number of tests as the ex-

pected length of the Hu�man binary coding for the system states. The Hu�man code

is free to make up its own tests rather than use only the tests given in the diagnostic

matrix. Therefore, it may need fewer tests than will be needed when the tests in the

diagnostic matrix are used.

AO� with an admissible heuristic based on a modi�ed Hu�man code is also used

for a network troubleshooting problem [40]. The heuristic combines information about

100

component failure rates and test costs. The AO� algorithm is then applied to generate

a network troubleshooting expert system which minimizes the expected troubleshoot-

ing cost.

4.4.7 Relation of CSL with Reinforcement Learning

The reinforcement learning (RL) framework studies methods for learning how to

solve MDPs. RL algorithms can be either model-based (they learn the MDP model)

or model-free (they learn a policy or value function by direct interaction with the

environment). In reinforcement learning the training data is collected interactively,

online, as tuples of the form hst; at; ct+1; st+1i, while in CSL the training data has

been collected in advance.

It is common in RL to collect the training data using a policy (known as the ex-

ploration policy) which is di�erent from the policy being learned. Popular exploration

policies include �-greedy and Boltzmann exploration. These policies have the prop-

erty that they execute every action in every state in�nitely often. This is su�cient to

prove convergence of many RL algorithms to the optimal policy.

In our CSL formulation, we can imagine that the training data was collected and

labeled by an \observe-everything" exploration policy (see Section 2.5.4). This policy

is used to collect and label the training data. Because the exploration policy has

measured all available attributes, we can evaluate any policy on the collected training

data. In general, it is di�cult to evaluate a policy by observing data gathered by

another policy. The optimal policy (on the training data) can still be learned if the

policy that gathered the data has non-zero probability of visiting every state and

trying every action. This problem is known as the problem of \o�-policy" learning in

reinforcement learning (see [66]).

We tried solving synthetic CSL problems using model-free RL algorithms, includ-

ing Q-learning and Sarsa. We discovered that we needed a very small learning rate

to obtain convergence. The reason is that the one-step cost for a classi�cation action

is highly stochastic. Hence, the results of many trials must be averaged to get stable

101

results. This observation pointed us to the necessity of learning a model, and we

realized once we had the model that we could perform heuristic search using AO�

since our CSL problem has a unique start state and is acyclic. Our \model" consists

of the training data, and we use it to compute probabilities as needed.

AO� can be viewed as expanding the state space (through exploration) and then

updating the value function via local propagation. According to this view, it is an

e�cient implementation of prioritized sweeping [48, 57] for MDPs with a single start

state and no cycles.

Pednault et al. [56] and the work of Zadrozny [76] also discuss the relationship

between sequential cost-sensitive decision making processes and RL, though they only

consider misclassi�cation costs. Their application domain is targeted marketing.

4.5 Summary

This chapter showed how to solve the cost-sensitive problem using the AO� algorithm.

We introduced an admissible heuristic and a new policy (called the realistic policy)

whose quality improves with future iterations, therefore turning AO� into an anytime

algorithm. We presented several levels of abstraction of the algorithm, including

a detailed implementation. To reduce over�tting, we proposed several regularizers

for AO�. The next chapter describes experimental results of applying greedy and

systematic algorithms to the CSL problem.

102

CHAPTER 5

EXPERIMENTAL STUDIES

This chapter describes an extensive experimental study of the various greedy and

systematic CSL algorithms presented in Chapters 3 and 4. The goal is to identify one

or more practical, fast algorithms that learn good cost-sensitive learning policies on

real problems.

Here are the main questions this chapter addresses:

� Which algorithm is the best among all the CSL algorithms proposed in Chap-

ters 3 and 4? If there is no overall winner, which is the most robust algorithm,

and where does it fail?

These questions are not trivial. It is hard to say which one of several algorithms

is the best; the di�culty is enhanced by the fact that we have multiple criteria:

� quality of the learned policies,

� computational e�ciency, and

� ease of implementation.

We want e�cient algorithms (in terms of time and memory), and we also want

algorithms that produce good policies. An easy-to-implement algorithm is also desir-

able. But the most important thing is the quality of the learned policy.

This chapter is organized as follows: �rst we introduce the UCI domains, de�ne

the test costs and misclassi�cation costs, and explain how we divide the data into

training and test sets. To answer the question of which is the best overall algorithm,

we compare the performance of the algorithms on the test sets; several evaluation

103

methods are presented, with di�erent levels of abstraction. We illustrate over�tting in

anytime graphs, which con�rm the need for regularization in AO�. The Results section

compares the algorithms on several domains. The Discussion section answers the main

questions of the chapter. The chapter ends with insights on how the performance of

the algorithms is a�ected by di�erences in costs, regularizers, and the type of search.

5.1 Experimental Setup

5.1.1 UCI Domains

We performed experiments on �ve cost-sensitive learning problems based on real data

sets found at the University of California at Irvine (UCI) repository [4]. The �ve

problems are listed here along with a short name in parentheses that we will use to

refer to them: Pima Indians Diabetes (pima), Liver disorders (bupa), Cleveland Heart

Disease (heart), the original Wisconsin Breast Cancer (breast-cancer), and SPECT

(spect). The domains were chosen for two reasons. First, they are all real medical

diagnosis domains. Second, attribute costs have been provided for three of them

(pima, bupa, and heart) by Peter Turney [71].

Before describing the �ve domains in detail, we describe some pre-processing steps

that were applied to all of the domains. First, all training examples that contained

missing attribute values were removed from the data sets. Second, if a data set

contained more than two output classes, some of the classes were merged so that

only two classes (healthy and sick) remained. Third, any existing division of the

data into training and test sets was ignored, and the data were simply merged into a

single set. As we will describe later, we performed multiple random divisions of the

available data into training and testing sets instead. Each real-valued attribute xj

was discretized into 3 levels (as de�ned by two thresholds, �1 and �2) such that the

discretized variable takes on a value of 0 if xj � �1, a value of 1 if �1 < xj � �2 and a

value of 2 otherwise. The values of the thresholds are chosen to maximize the mutual

information (InfoGain) between the discretized variable and the class. The mutual

information was computed using the entire data set.

104

TABLE 5.1: BUPA Liver Disorders (bupa).

attrib name partitions infogain cost(attribute)

x1 mcv 3 0.0428408 7.27

x2 alkphos 3 0.0203466 7.27

x3 sgpt 3 0.0369976 7.27

x4 sgot 3 0.0557107 7.27

x5 gammagt 3 0.0599615 9.86

We now describe the �ve domains in details.

5.1.1.1 BUPA Liver Disorders Domain (bupa)

In this domain, the goal is to diagnose whether a patient has a liver disorder that

might arise from excessive alcohol consumption. The diagnosis is made based on �ve

blood tests. This data set also contains a \selector" attribute which was included to

record how the data had been divided into training and test sets in an earlier study.

We deleted this attribute.

There are 345 examples with no missing values, 5 numerical attributes and 2

classes (0 = healthy liver, 1 =sick). 169 of the examples (48:98%) are healthy. The

attribute costs, donated by Peter Turney, are 7.27 and 9.86 (see Table 5.1). The

attributes were discretized into 3 partitions.

5.1.1.2 Pima Indians Diabetes Domain (pima)

In this domain, the goal is to diagnose whether a patient has diabetes. The patients

are females of at least 21 years of age and of Pima Indian heritage. There are 768

examples with no missing values, 8 numerical attributes, and two classes (0 = healthy,

105

TABLE 5.2: Pima Indians Diabetes (pima).

attrib name partitions infogain cost(attribute)

x1 times pregnant 3 0.0460019 1

x2 glucose tol 3 0.173206 17.61

x3 diastolic bp 3 0.0204929 1

x4 triceps 3 0.0387898 1

x5 insulin 3 0.0613776 22.78

x6 mass index 3 0.0891406 1

x7 pedigree 3 0.0285451 1

x8 age 3 0.0818478 1

1 = tested positive for diabetes). 500 of the examples (65:10%) are healthy. The

attribute costs, donated by Peter Turney, are 1, 17.61 and 22.78 (see Table 5.2).

The attributes were discretized in 3 partitions (note that in [2] we used a binary

discretization).

5.1.1.3 Heart Disease Domain (heart)

In this domain, the goal is to diagnose whether a patient has a heart disease. From the

original data set called \processed.cleveland.data" we �rst eliminated the 6 examples

that had missing values. This left 297 examples. There are 4 di�erent types of heart

disease in the database. To create a 2-class problem, we grouped values 1, 2, 3, 4

together as class 1 (sick = presence of heart disease), and retained value 0 (absence

of heart disease). 160 of the examples (53:87%) are healthy. There are 13 numerical

attributes (3 are binary; we discretized the other 10 into 3 partitions). The attribute

costs, donated by Peter Turney, are 1, 5.20, 7.27, 15.50, 87.30, 100.90 and 102.90 (see

Table 5.3).

106

TABLE 5.3: Heart Disease (heart).

attrib name partitions infogain cost(attribute)

x1 age 3 0.0752612 1

x2 sex 2 0.057874 1

x3 cp 3 0.196691 1

x4 trestbps 3 0.0289602 1

x5 chol 3 0.0398084 7.27

x6 fbs 2 7.2228e-06 5.2

x7 restecg 3 0.0234737 15.5

x8 thalach 3 0.149107 102.9

x9 exang 2 0.132295 87.3

x10 oldpeak 3 0.155641 87.3

x11 slope 3 0.108775 87.3

x12 ca 3 0.18437 100.9

x13 thal 3 0.210234 102.9

107

TABLE 5.4: Breast Cancer (breast-cancer).

attrib name partitions infogain cost(attribute)

x1 clump thickness 3 0.434685 1

x2 uniformity of cell size 3 0.664429 1

x3 uniformity of cell shape 3 0.641162 1

x4 marginal adhesion 3 0.446273 1

x5 single epithelial cell size 3 0.524958 1

x6 bare nuclei 3 0.587182 1

x7 bland chromatin 3 0.537129 1

x8 normal nucleoli 3 0.479613 1

x9 mitoses 3 0.206436 1

5.1.1.4 Breast Cancer Domain (breast-cancer)

This is the original Wisconsin Breast Cancer Domain. The goal in this domain is to

diagnose a palpable breast mass as benign or malignant.

We �rst eliminated the 16 examples that had missing values, which left 683 ex-

amples. We also removed the �rst attribute (id number) because it is not useful for

diagnosis. The remaining 9 attributes (see Table 5.4) were discretized into 3 parti-

tions. There are two classes (healthy = benign tumor, sick = malignant tumor). 444

of the examples are healthy (65%).

Since there are no attribute costs, we set them all to be 1.0. Note that all the

n tests are actually the n observations of a single test (a �ne needle aspiration of a

palpable breast mass), but we treat them as n di�erent tests, in order to evaluate the

e�ectiveness of our cost-sensitive learning algorithms.

108

5.1.1.5 SPECT Heart Domain(spect)

The goal in this domain is to diagnose cardiac problems based on Single Proton

Emission Computed Tomography (SPECT) images. The data set of 267 images was

�rst processed to extract 44 continuous attributes, then further processed to obtain

22 binary attributes. Since the data is already in binary form, we did not need to

discretize it.

There are 267 examples with no missing values, 22 binary attributes (see Table 5.5)

and two classes (0 = normal, 1 = abnormal). 55 of the examples (20:6%) are labeled

as healthy (class 0). Since there are no attribute costs, we set them all to be 1.0.

As with breast-cancer, we treat these attributes as 22 separate tests for purposes of

evaluating cost-sensitive learning. In the real application, all 22 attributes would be

computed simultaneously from a SPECT image.

5.1.2 Setting the Misclassi�cation Costs (MC)

While attribute costs can usually be found, misclassi�cation costs are harder to assign.

In medical diagnosis, if the cost of incorrect diagnoses is set to incorporate costs for

being sued, the MC will be so high compared to attribute costs that most or all of

the tests will be performed in order to get as much knowledge about the disease as

possible.

For the UCI domains, we wanted a reasonable range of MC to attribute costs,

preferably such that we do not encounter the trivial cases of policies testing no at-

tributes or testing all attributes. We believe the question of how to set MC for realistic

synthetic domains is an interesting open problem, and one that deserves deeper anal-

ysis. Even when MC are known for a domain, it helps to vary them in order to see

how
exible the CSL methods are to changes in the relative costs of attributes and

misclassi�cations.

Let E[tc] be the expected test costs for a policy on a data set. This is the average

of the costs of attributes tested by the policy on each example in the data set. Our

idea for setting MC is the following:

109

TABLE 5.5: Spect (spect).

attrib name partitions infogain cost(attribute)

x1 F1 2 0.028932 1

x2 F2 2 0.037068 1

x3 F3 2 0.038135 1

x4 F4 2 0.0326777 1

x5 F5 2 0.0231747 1

x6 F6 2 0.0334025 1

x7 F7 2 0.040793 1

x8 F8 2 0.0672918 1

x9 F9 2 0.0207391 1

x10 F10 2 0.0334099 1

x11 F11 2 0.0358317 1

x12 F12 2 0.0362212 1

x13 F13 2 0.111126 1

x14 F14 2 0.024555 1

x15 F15 2 0.0327299 1

x16 F16 2 0.060274 1

x17 F17 2 0.051615 1

x18 F18 2 0.0471958 1

x19 F19 2 0.0161291 1

x20 F20 2 0.0450407 1

x21 F21 2 0.0708648 1

x22 F22 2 0.0610843 1

110

� grow a simple policy for some initial large MC and measure its expected test

costs, denoted maxE[tc]. Presumably this policy will test quite a few attributes,

so it will have a large E[tc].

� prune this policy for smaller MC values decreasing to zero. The pruned policies

test fewer and fewer attributes, therefore E[tc] decreases (all the way to zero

when the policy classi�es without measuring any attributes).

� several values of MC will be chosen such that the E[tc] of their policies are well

spaced. Our method dynamically samples MC in interesting regions where E[tc]

shows a rapid change (which presumably means di�erent policies).

Our algorithm applies to 2-class problems with zero-diagonal misclassi�cation

costs matrices. The misclassi�cation costs that will be produced depend on the

choice of the data set. In our experiments, we used each domain's entire data set

to set the misclassi�cation costs. This, of course, can be modi�ed to use any data

set (for example, the training data set). We used the entire data set because we

will have di�erent replicas of the data, with di�erent training and test sets, and we

wanted the same misclassi�cation costs for the entire domain (that implies the same

misclassi�cation costs for all replicas). We emphasize again that each domain has its

own misclassi�cation costs.

On each domain, we apply the following steps to set its misclassi�cation costs.

We assume that in the initial state s0, before any attributes were measured, both

classi�cation actions f0 (classify in class 0) and f1 (classify in class 1) have equal

expected cost C(s0; f0) = C(s0; f1). By de�nition (see 2.7), the expected cost of

classi�cation action fk in state s is C(s; fk) =
P

y P (yjs) �MC(fk; y). For a zero-

diagonal MC matrix there are no misclassi�cation costs for correct classi�cation, that

is, MC(fk; y) = 0 when fk = y, so the above equation becomes

P (y = 1js0) �MC(f0; y = 1) = P (y = 0js0) �MC(f1; y = 0);

111

or

MC(f0; y = 1)

MC(f1; y = 0)
=

P (y = 0js0)
P (y = 1js0) = r;

where we denote this ratio by r. The class probabilities P (yjs0) are computed

on the entire data set, so we know r. With the notations introduced in Chap-

ter 2, MC(f0; y = 1) are the misclassi�cation costs of false negatives, MC(fn),

and MC(f1; y = 0) are the misclassi�cation costs of false positives, MC(fp). We can

rewrite MC(fn)
MC(fp) = r, orMC(fn) = r �MC(fp). DenoteMC(fp) = m. We will choose

values for m. Then we will set the misclassi�cation matrix to

MC =

0
@ 0 r �m

m 0

1
A :

This adjustment in misclassi�cation costs re
ects realistic behavior where the rare

cases are usually more expensive to misclassify. Indeed, when r = P (y = 0)=P (y =

1) < 1, as is the case in bupa and spect, there are fewer negative than positive exam-

ples (i.e., there are fewer healthy patients). In this case, misclassifying the negatives

is more expensive, MC(fn) < MC(fp): Similarly, when r > 1, there are fewer posi-

tives than negatives (there are fewer sick patients). In such cases, misclassifying the

positives is more expensive, MC(fn) > MC(fp):

We initially set

MC =

0
@ 0 r � lm

lm 0

1
A ;

where m was assigned a large value lm. Using this MC matrix, we grow a greedy

policy �G top-down based on our optimistic heuristic hopt (Section 4.2.2), so

�G(s) = argmin
k;i

�
C(s; fk); Q

opt(s;unexpanded xi)
�
:

Attributes are tested until classifying becomes cheaper. To set lm, we try several

large values of m to determine a value beyond which E[tc] does not increase further.

This value is selected as lm. Let �G be the policy corresponding to lm. If no matter

how high lm is set, maxE[tc] = 0, then our method for setting MC cannot be applied,

112

and it also means that the optimal policy (on the entire data set of that domain) is

to classify directly.

After �G is grown, we decrease m from lm to zero, in unit steps. Each node s

in �G has a threshold value mt(s) such that m < mt(s) causes the policy under s

to be pruned from �G. In that case, we set �G(s) = bestf = argmink C(s; fk); note

that, because of the structure of the MC matrix, the best classi�cation action in a

state s, bestf , is the same for all values of m. Hence, as m decreases, �G will be

gradually pruned, bottom-up, as m becomes lower than the thresholds of some of the

nodes. Since �G has a �nite number of internal nodes, there will be a �nite number

of pruned policies. As m decreases and more nodes of �G are pruned, E[tc] and

the value of the pruned policies decrease monotonically with m. Nevertheless, the

expected misclassi�cation costs do not necessarily decrease as m decreases.

Once we have generated all of the possible pruned versions of �G, we choose (at

most) �ve values of m, as follows. The largest m is set to be the smallest value

with E[tc] = maxE[tc]. The smallest m is chosen to be the largest value that gave

E[tc] = 0. We then choose 3 values of m whose policies have their E[tc] closest in

Euclidian distance to 1/4, 1/2, and 3/4 of maxE[tc]. In case these desired E[tc] values

are close to a plateau of E[tc], we choose a value of m at the beginning of the plateau

(if the desired E[tc] is less than the plateau's E[tc]), a value of m in the middle of the

plateau (if the desired E[tc] is equal to the plateau's E[tc]), and a value of m at the

end of the plateau (if the desired E[tc] is greater than the plateau's E[tc]).

For example, in Figure 5.1 on spect, the selected m values are: m = 27 (largest

m whose pruned policy tests no attributes), m = 33 (m at the end of the second

plateau, closest to 1/4 �maxE[tc] = 2:02715), m = 34 (m at the beginning of the

third plateau, closest to 1/2 �maxE[tc] = 4:05431), m = 57 (m with closest E[tc]

to 3/4 �maxE[tc] = 6:08146) and m = 249 (m at the beginning of the plateau with

maxE[tc]). Note that the graph exhibits a staircase increase of E[tc] with m.

The 5 chosen values of m de�ne 5 di�erent MC matrices, though sometimes two of

the matrices may be very close in value. We denote them by MC1, MC2, MC3, MC4

113

0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000

E
[tc

],
th

e
ex

pe
ct

ed
 te

st
 c

os
ts

 o
f t

he
 p

ru
ne

d
gr

ee
dy

 p
ol

ic
y

m = MC(fp), the misclassification costs of false positives
m = 27

m = 57

m = 34

m = 33

m = 249

FIGURE 5.1: Spect domain, selecting �ve values for m = MC(fp), used to set the
misclassi�cation cost matrices. A greedy policy �G is grown �rst using a large value
of m. We decrease m from that large value to zero. Each m de�nes a misclassi�cation
costs matrix, which is used to post-prune the initial policy �G. As m decreases, more
nodes of �G are pruned, until the entire policy is pruned. The number of pruned
policies is �nite; for each of them we measure the expected test costs, E[tc]. The
selected values of m produce policies whose E[tc] are closest to �ve equally-spaced
target values for E[tc] in the interval from 0 to maxE[tc].

114

and MC5. The matrices with larger indexes (like MC5) have larger misclassi�cation

costs. These large costs reduce the ratio of test costs to misclassi�cation costs, and

therefore testing attributes will become cheaper in comparison to classifying. This

makes the problems more di�cult (at least for the systematic search algorithms). We

sometimes refer to the misclassi�cation costs as small, medium, and large.

The Appendix B lists the values for the �ve misclassi�cation costs used for each

domain, in Tables B.1, B.2, B.3, B.4 and B.5.

5.1.3 Training Data, Test Data, Memory Limit

Experimental comparisons of learning algorithms must take into account two sources

of random variation: variation due to the choice of the training data and variation

due to the choice of the test data [13]. This is especially true for cost-sensitive

learning, because di�erent training examples can have di�erent costs, so the addition

or subtraction of a single example from the training or test set can produce a big

change in the measured performance of a learning algorithm.

To measure variation due to the choice of the training data, we repeated our exper-

iments 20 times by generating 20 random training/test splits. To measure variation

due to the choice of the test data, we applied the BDeltaCost statistical test, which

applies bootstrap sampling to simulate (and thereby measure) test set variability.

BDeltaCost is described in Section 5.1.5.3.

For each UCI domain, the transformed data (2 classes, discretized attributes with

no missing values) is used to generate 20 random splits into training sets (two thirds

of data) and test sets (one third of data), with sampling strati�ed by class. Such a

split (training data, test data) is called a replica. On each domain, the same replicas

are used with the �ve misclassi�cation cost matrices.

These replicas have overlapping test sets (and training sets), so they are not

independent. Section 5.1.5.5 discusses the e�ect of having non-independent replicas

on our analysis.

115

Memory Limit

Given enough resources, AO� converges to an optimal policy on the training data.

Similarly, AO� with various regularizers converges to an optimal policy on the MDP

de�ned by the training data and the regularizer. For large domains (with large number

of attributes), the AND/OR graph grows very large, especially in the following cases:

� the attributes are not very informative,

� the attributes are cheap relative to the misclassi�cation costs, so the AO�'s

admissible heuristic will not perform its cuto�,

� the optimal policy is very deep,

� there are many policies tied to the optimal one and the systematic search algo-

rithm needs to expand them to prove to itself that there is no better alternative.

To make systematic search feasible, we need to prevent the AND/OR graph from

growing too large. We do this by imposing a limit of 100 MB on the amount of memory

that the AND/OR graph can use. Each time an AND or OR node is created, we

update a count of the amount of space required to store the new node(s). We actually

count the amount of space required by a \theoretical" optimized implementation,

since our actual implementation is not optimized and stores extra debugging and

measurement information in each node. As a result, the 100 MB \theoretical" limit

was in practice a 500 MB limit. The greedy algorithms always converged within

the memory limit. The systematic algorithms, based on AO�, converge within this

memory limit most of the time (spect is the exception, for large misclassi�cation

costs). If this memory limit is reached before the systematic algorithm converged,

the best realistic policy found so far is returned.

It is interesting to note that even on a domain with many attributes, a small

training set may severely limit the number of reachable states (that is, the possi-

ble combinations of attribute values), and thereby limit the AND/OR graph to a

manageable size.

116

5.1.4 Notations for the Cost-Sensitive Algorithms

The following algorithms will be compared in this chapter. In this chapter's text and

in the graphs, we chose an abbreviation of the full name of the algorithms introduced

before. A Laplace correction is indicated by an \L" su�x added to the name.

� Nor, Nor-L denote Norton with pessimistic post-pruning and Norton with pes-

simistic post-pruning and Laplace correction, from Section 3.2. The pessimistic

post-pruning is similar to C4.5; the Laplace correction is only done in the prun-

ing phase, not in computing InfoGain.

� MC-N, MC-N-L denote MC+Norton and its Laplace version from Section 3.3.

Both algorithms employ a pessimistic post-pruning based on test costs and

misclassi�cation costs. MC-N-L has Laplace correction for transition and class

probabilities. As the policy is grown, Laplace is applied for P (yjs) used in

computing C(s; f), but not for InfoGain; in the pruning phase, Laplace is also

used for P (xn = vjs), and it was used in C(s; f).

� VOI, VOI-L denote the one-step Value of Information and its Laplace version

from Section 3.4. In VOI-L, the Laplace correction is applied to transition and

class probabilities as the 1step VOI policy is grown; there is no need for pruning.

� AO�, AO�-L denote AO�, described in Section 4.2, and AO� with the Laplace

regularizer from Section 4.3.2.

� ES, ES-L denote AO� with our Early Stopping regularizer, and its Laplace ver-

sion from Section 4.3.5.

� SP, SP-L denote AO� with our Statistical Pruning regularizer, and its Laplace

version, from Section 4.3.3. In SP, we used a 95% con�dence interval.

� PPP, PPP-L denote AO� with our Pessimistic Post-Pruning regularizer, based

on misclassi�cation costs, and its Laplace version, from Section 4.3.4. In PPP,

117

we also used a 95% con�dence interval.

Other Considerations

We chose Norton as the representative of the InfoGainCost methods because the

others, Tan and Nunez, have performance very similar to Norton. Norton also

has the simplest, most intuitive mathematical formula for including test costs

(InfoGain

attribute cost
). The InfoGain method does not use test costs, and overall, its

performance was quite poor, even with Laplace corrections.

On spect and breast-cancer, because all attributes have the same cost (= 1), all

InfoGainCost methods are identical, and we could choose any of them (we choose

Norton). The same holds for MC+InfoGainCost, where we choose MC+Norton.

We do not describe the performance of the Dynamic algorithm, from Section 4.3.6,

because it is not any better than AO�-L.

We do not describe the performance of AO� with both the statistical pruning SP

and pessimistic post-pruning PPP regularizers, nor its Laplace version, because they

were not any better than SP or PPP or their Laplace versions.

Nor do we describe the performance of AO� initialized with one of the MC+InfoGainCost

methods, described in Section 4.3.7. According to BDeltaCost, these methods were

tied with, or worse than, AO�. Indeed, if AO� has enough resources to terminate, the

initialization phase has no e�ect on the quality of the learned policy. If AO� reached

the memory limit before convergence, which happens for spect, BDeltaCost shows

that AO� still terminates with a better policy; in that case no initialization of AO�

with any of the MC+InfoGainCost policies has provided enough memory savings to

obtain convergence within this memory limit, nor has it produced a better policy

when reaching the memory limit.

We performed experiments on synthetic problems for the setting of the con�-

dence levels 1 � �SP and 1 � �PPP used in Statistical Pruning and Pessimistic

Post-Pruning. We tried values corresponding to ten di�erent con�dence intervals:

50%; 60%; 70%; 80%; 90%; 95%; 99%; 99:99%; 99:9999% and 99:999999%, but no single

118

value was consistently good. Therefore we used a conventional value corresponding

to a 95% con�dence interval (so the con�dence coe�cients are zSP = zPPP = 1:96).

5.1.5 Evaluation Methods

The goal of this dissertation is to identify good CSL algorithms, taking into account

the variance in the data replicas, the in
uence of relative sizes of test costs and

misclassi�cation costs, and the nature of the domain. We manipulate the relative costs

of testing and misclassi�cation by varying the misclassi�cation costs while holding the

test costs �xed.

To evaluate each algorithm, we train it on the training set and then compute its

average total cost (measurement cost and misclassi�cation cost) on the test set. We

will denote the average test set cost by Vtest. We seek algorithms with low Vtest,

because these algorithms are producing the minimum cost diagnostic policies.

While the quality of the policy as measured by Vtest is the most important quan-

tity to measure, we also measured two other statistics. One is the error rate (i.e.,

the fraction of test examples misclassi�ed). The other is the average number of at-

tributes tested (denoted eatp). These two quantities allow us to observe the tradeo�

between misclassi�cation and measurements. They also help us determine whether

an algorithm is over�tting (e.g. if eatp is very high or error rate is very low).

We describe below the computation of Vtest, the other measurements, and the

BDeltaCost statistical test. BDeltaCost is a statistical test for deciding whether one

policy is better than another. It compares the Vtest for two policies and decides if

there is a statistically signi�cant di�erence between their values.

5.1.5.1 Measurements of Interest; The Most Important One is the Quality of

the Policy on the Test Set Vtest

We describe how to evaluate any complete policy � on some sample data (which could

be the training data, validation or holdout data, or the test data).

There are several measurements we are interested in. We de�ne these measure-

119

ments for a single example in the sample data. Then we average over all examples

to obtain the measurement value on the sample. For a given example and a given

policy, the measurements are: test costs, misclassi�cation cost, number of attributes

tested and error (if the example was misclassi�ed).

Let ex be any of the n examples in sample. Denote by m(ex; �; s0) the measure-

ment value of the example ex following policy � starting at the root with state s0.

The measurement value on the sample is m�
sample =

P
exm(ex;�;s0)

n .

The example travels down the decision tree of the policy to a leaf node, with

classi�cation action bestf . If �(s) measures attribute a, and v is the value of the

example for this attribute, ex[a] = v, then the example will travel to the next state

s0 = s [fa = vg.

test-costs(ex; �; s)
def
=

8<
: 0; if �(s) = bestf

C(s; a) + test-costs(ex; �; s0); if �(s) = a 6= bestf :

attrib-tested(ex; �; s)
def
=

8<
: 0; if �(s) = bestf

1 + attrib-tested(ex; �; s0); if �(s) = a 6= bestf :

The misclassi�cation cost and the error are de�ned when the example ex reaches

its corresponding leaf node in the policy. Let bestf be the classi�cation action in

the leaf node reached by example ex, and let ex:y be the class of this example. The

misclassi�cation cost is

mc(ex; �; s0) =MC(bestf ; ex:y);

and the error is

error(ex; �; s0)
def
=

8<
: 0; if bestf = ex:y

1; otherwise:

The total cost of an example ex down � is

cost(ex; �) = test-costs(ex; �; s0) +mc(ex; �; s0):

120

The value of the policy � on the sample data is

V �
sample =

P
ex test-costs(ex; �; s0) +mc(ex; �; s0)

n
:

The expected number of attributes tested by � on the sample data is

eatp�sample =

P
ex attrib-tested(ex; �; s0)

n

(this can be interpreted as the average depth of policy � on the sample), and the

error rate of � on the sample data is

error-rate�sample =

P
ex error(ex; �; s0)

n
:

We are interested in the algorithms' performance on the test data. To measure

this we replace sample by the test data in the above de�nitions. Thus we obtain Vtest,

eatptest and error-ratetest; test is an abbreviation for test data, and it is only used as

such in these measurement notations, in all other contexts \test" means measuring

the value of an attribute.

The policies produced by both greedy and systematic search algorithms are eval-

uated using these measurements. Note that in our CSL framework, a policy value is

always computed using both test costs and misclassi�cation costs, no matter how the

policy was learned (recall that some of the greedy methods only pay attention to test

costs).

5.1.5.2 Computational E�ciency

The policy quality is the main factor in deciding if an algorithm is good or not, but,

because we are interested in practical algorithms, we also compute the amount of

memory and CPU time used by each algorithm to learn its policy.

5.1.5.3 BDeltaCost { a Statistical Test Comparing the Expected Costs of Two

Diagnostic Policies

BDeltaCost analyzes the costs of individual test examples to try to decide if the Vtest

of one policy �1 is statistically di�erent from the Vtest of another policy �2. Given two

121

policies, we want to test the null hypothesis H0 that the two policies are tied (have

the same value) on the test data against the hypothesis that one policy is better than

the other.

Let ex1; : : : ; exn be our n test data points. To apply BDeltaCost, we must �rst

compute an array � whose i-th element is the di�erence in the cost of processing exi

(adding up both test costs and misclassi�cation costs) using two di�erent policies �1

and �2:

�[i] = cost(exi; �1)� cost(exi; �2):

Note that the average value of the elements in � is equal to the di�erence in the

Vtest of the two policies: V �1
test � V �2

test. The goal of BDeltaCost is to decide if this

average di�erence is less than zero, equal to zero, or greater than zero, which will tell

us whether �1 is better than, tied with, or worse than �2.

BDeltaCost is based on the idea of using bootstrap replicates [16] to estimate a

con�dence interval for a parameter from a random data sample. A bootstrap replicate

is a new data sample, constructed from the original data sample by drawing data

points at random, with replacement. Replacement means that after a data point is

drawn, it is put back into the sample (replaced) so that it can be drawn again. The

bootstrap replicate has the same size as the original data sample. The basic idea of a

bootstrap con�dence interval is to construct a large number Nb of bootstrap replicate

samples, compute the parameter separately for each sample, and then look at the

amount of variation in the computed parameter values.

For BDeltaCost, the sample is the array �. BDeltaCost constructs B = 1000

bootstrap replicates of � and computes the average value �[b] for each replica (b =

1; : : : ; 1000). It then sorts the array � and forms a con�dence interval whose lower

bound is �[26] and whose upper bound is �[975]. This interval contains 950 of the

1000 computed averages, so it provides a 95% con�dence interval for the expected

cost di�erence E[cost(ex; �1) � cost(ex; �2)]. If this con�dence interval contains 0,

then we cannot reject the null hypothesis that the expected cost di�erence between

the two policies is zero (i.e., the policies are tied). If the entire con�dence interval

122

lies below zero (i.e., �[975] < 0), then we reject the null hypothesis in favor of the

conclusion that �1 has lower expected cost. If the entire con�dence interval lies above

zero (i.e., �[26] > 0), then we reject the null hypothesis in favor of the conclusion

that �1 has higher expected cost. Table 5.6 gives the pseudo-code for the BDeltaCost

procedure.

Note that because we employ a 95% con�dence level, BDeltaCost has a 0.05

probability of making a Type I error (i.e., of rejecting the null hypothesis when in

fact it is true). This means that when we compare two algorithms on 20 data replicas

with BDeltaCost, one out of the 20 replica results showing a statistical di�erence may

be wrong.

BDeltaCost measures variability with respect to the random choice of the test

data. A small test set will result in wide bounds for the con�dence interval. A large

test set will give a much tighter con�dence interval. BDeltaCost does not measure

variability with respect to the random choice of the training data. It is for this reason

that we create 20 train/test replicas and apply BDeltaCost separately to policies

trained on each replica. The variation across the 20 replicas (even though they are

not truly independent data sets) gives some idea of the variability due to the random

choice of training set. If in the 20 replicas, one algorithm wins half the time and loses

half the time, this shows that there is a high degree of variability and no clear winner

can be identi�ed. But if one algorithm wins half the time and the other algorithm

never wins, this increases our con�dence that the �rst algorithm is superior to the

second.

Unfortunately, pairwise statistical tests only support pairwise conclusions|there

is no transitivity property. Hence, if policy �1 is tied with policy �2, and �2 is tied with

�3, according to BDeltaCost, we can not conclude anything about the relationship

between �1 and �3. For this reason, we apply BDeltaCost separately to each pair of

policies.

Finally, notice that BDeltaCost only tells us if one algorithm's policy is better

than another's. It does not give a measure of the magnitude of the di�erence. To

123

TABLE 5.6: The BDeltaCost statistical test compares the expected costs of two di-
agnostic policies �1 and �2 on the test data. The array � has n cost di�erences,
cost(exi; �1)� cost(exi; �2); i = 1; : : : ; n, one for each test example exi. A con�dence
interval CI based on B bootstrap replicates of � is constructed for a speci�ed con�-
dence level 1� �. The position of zero relative to the con�dence interval determines
the win/tie/loss for the two policies.

function BDeltaCost(sample � of size n, number of bootstrap replicates B) returns

the result of the statistical test.

for b from 1 to B

�[b] = 0;

for j from 1 to n

draw r, a random number between 1; n.

�[b] = �[b] + �[r];

�[b] = �[b]=n; mean of bootstrap replicate b.

sort the B means � in increasing order.

lb = b�2 �Bc+ 1; �[lb] is the lower bound of the CI.

ub = B � lb; �[ub] is the upper bound of the CI.

if (0 < �[lb])

res = �1; �1 is worse than �2 (loss for �1).

else

if (�[ub] < 0)

res = 1; �1 is better than �2 (win for �1).

else

res = 0; �1 is tied to �2 (tie).

return res.

124

understand this, we also need to look at the size of the di�erence in Vtest values.

5.1.5.4 Synthesis of Evaluation Methods

In our experiments, we run each algorithm on each combination of domain, misclas-

si�cation cost matrix MC, and train/test replica. We denote this by (domain, MC,

replica). For each pair of algorithms, we apply BDeltaCost, which reports a win, tie,

or loss for one of the algorithms over the other.

Once we obtain these results, we summarize them at several di�erent levels of

aggregation in order to gain an understanding of the general patterns of behavior of

the di�erent methods. There are three levels of aggregation: the replica level, the

MC level, and the domain level:

1. Replica level: for each (domain, MC), we present a graph showing the Vtest of

each pair of algorithms along with the results of the BDeltaCost test. This helps

visualize the variability across the di�erent train/test replicas.

2. MC level: for each (domain, MC), we present two summaries of performance

across the replicas:

� Graphs of average Vtest across all replicas (with normal con�dence inter-

vals) for each algorithm. Each graph displays these measurements for each

algorithm and allows us to compare them.

� Tables of cumulative BDeltaCost results for pairs of algorithms. These

tables sum the wins, ties, and losses for each pair of algorithms across the

replicas.

3. Domain level: for each (domain), we summarize the BDeltaCost results using a

chess metric that weighs the wins, ties, and losses of each algorithm against all

the others. This metric will be introduced in the Section 5.4.1.

125

All of these di�erent ways of summarizing the results hide some details. For

example, the average Vtest can be a�ected by one particularly easy replica (with small

Vtest), or by one particularly di�cult replica (with large Vtest).

Note that it does not make sense to summarize the performance of algorithms

summing over domains (or over misclassi�cation cost matrices), because the di�-

culty of each CSL problem is di�erent in each domain and the MC matrices are not

comparable across domains.

5.1.5.5 E�ect of Non-independent Replicas on Interpretation of the Results

Our data replicas have overlapping test sets (and training sets), so they are not

independent. We discuss the impact this has on our interpretation, when combining

results from di�erent replicas.

Average and normal con�dence intervals of Vtest over replicas

Each algorithm is run on the 20 replicas. For each replica, it learns a policy which we

evaluate on the test data and thus obtain 20 Vtest estimates. For each algorithm, we

average these Vtest estimates over the 20 replicas, and compute a normal con�dence

interval for them. We know the replicas are not independent, so the resulting con�-

dence intervals underestimate the true variability of the learned policies and the Vtest

values. Hence, the con�dence intervals will be too narrow. But the normal con�dence

interval still gives some idea of the variability of Vtest for an algorithm and if the

intervals of two methods overlap, this is evidence that there is no di�erence in their

Vtest values.

Cumulative BDeltaCost results over replicas

For each domain and MC matrix, we obtain 20 BDeltaCost results. We will sum

these wins, ties, losses over all 20 replicas. However, an overall winning score for one

algorithm does not prove that it is superior, because the replicas are not independent.

Nonetheless, if the accumulated BDeltaCost results show that the two policies are

126

160

165

170

175

180

185

190

195

200

205

210

215

0 2 4 6 8 10 12 14 16 18 20

V
_t

es
t

replica

FIGURE 5.2: Heart, MC3, Vtest of AO
� shows high variability across replicas.

mostly tied, then they are likely to be statistically indistinguishable. If we get mostly

wins for one policy, that is weak evidence in favor of the superiority of that policy. If

we get consistent weak evidence across multiple domains, then we can strengthen the

claim that one policy is better than another, since each domain is truly independent.

How variable are the replicas?

Figure 5.2 plots Vtest for AO
� on the heart problem, MC3. It shows that there is huge

variation (from 160 to 210) in the Vtest. Some replicas are harder and some are easier.

This high degree of variation reassures us that our replicas are doing a good job of

127

15

20

25

30

35

40

45

1 10 100 1000 10000

V
al

ue
 o

f r
ea

lis
tic

 p
ol

ic
y

iteration

AO* on training data
AO* on test data

FIGURE 5.3: Anytime graph of AO� on pima, MC3, one of the replicas. The best
realistic policy, according to the test data, was discovered after 350 iterations, after
which AO� over�ts.

simulating the variation due to the choice of training and test sets and reduces our

concern about the validity of combining results across replicas.

5.2 Over�tting

When an algorithm learns patterns speci�c to the training data and has low gen-

eralization power on new, unseen data, we say that it su�ers from over�tting. The

algorithm learned its training examples too well, including both the signal and the

128

noise, and it is not able to generalize well on di�erent samples drawn from the true

distribution.

CSL algorithms are prone to over�tting as are any algorithms learning from data.

Since our goal is to determine which algorithms produce good policies (as evaluated

on an independent test set), it is important to study how over�tting a�ects the quality

of the learned policy. We will address the following questions: How much of a problem

is over�tting? How important is over�tting reduction? How good are the regularizers

at reducing over�tting?

To answer these questions, we will discuss so-called anytime graphs and the e�ect

of the regularizers on the learning process. An anytime graph plots Vtrain and Vtest

as a function of the number of AND nodes expanded in the AND/OR graph (the

number of expanded AND nodes is also the number of iterations). Figure 5.3 shows an

anytime graph for AO� on the pima problem (MC3). Notice that AO�'s best realistic

policy (the policy with minimum Vtest) was discovered after only 350 iterations. After

this point, Vtest increases, which is the classic sign of over�tting. The quality of the

policies learned afterwards continues to improve monotonically on the training data,

but their performance on the test data gets worse. Upon convergence, AO� has

learned the optimal policy on the training data, but this policy performs badly on

the test data. This anytime graph demonstrates that over�tting is a problem for AO�

and con�rms the need for regularizers.

One of the regularizers described in Chapter 4 is Early Stopping. It uses a hold-

out data set to choose a stopping point. In this particular case (pima, MC3), the

performance of realistic policies on the holdout data tracks their performance on the

test data, so ES is able to �nd a good stopping point.

Another regularizer introduced in Chapter 4 is Laplace correction. Figure 5.4

shows that AO� with the Laplace regularizer gives worse performance on the training

data but a better performance on the test data than AO�. Despite this improvement

Figure 5.4 shows that AO� with Laplace still over�ts: a better policy that was learned

early on is discarded later for a worse one.

129

All of the regularizers we proposed, including Early Stopping, Laplace and Sta-

tistical Pruning, may expand di�erent parts of the search space, and this makes it

hard to analyze them. In general, ES and SP expand an AND/OR graph of roughly

the same size as AO�, while the Laplace regularizer (AO�-L, ES-L, SP-L) increases the

size of search space. Pessimistic Post-Pruning does not a�ect the search space since

it is a post-pruning method.

Figure 5.5 shows that the VOI policy is suboptimal on the training data, but out-

performs AO�'s last policy on the test data. Nevertheless, AO� has discovered several

policies that are better on the test set than the VOI policy. Over�tting hurts AO� to

the point where greedy simpler methods perform better on the test set. Regularizing

AO� will give it an edge over the greedy methods on several domains.

Notice that while we proposed regularizers primarily for systematic search, regu-

larization may also be helpful for greedy search. Therefore we will also measure the

e�ectiveness of the Laplace correction regularizer on the greedy algorithms. Never-

theless, over�tting is more of a problem for systematic algorithms, because they do

more thorough search in the policy space. In particular, if AO� has enough resources

to terminate, it will compute the optimal policy on the training data, but this policy

may be very bad when evaluated on the test set.

In conclusion, over�tting con�rms the need for regularizers. Over�tting can also

be indirectly hypothesized by noticing that policies have large values and large average

depths.

5.3 Results

In order to answer the main questions of this chapter: \Which algorithm is the best

one? If there is no overall winner, which is the most robust algorithm and where does it

fail?", we �rst describe the results on each domain. The main questions break down

in several others: Which algorithm is the best on each domain? Which algorithm

is the worst? How do the greedy algorithms compare with the systematic search

ones? How does Laplace correction in
uence Vtest? How does AO� perform, and

130

15

20

25

30

35

40

45

1 10 100 1000 10000

V
al

ue
 o

f r
ea

lis
tic

 p
ol

ic
y

iteration

AO* on training data
AO* on test data

AO*-L on training data
AO*-L on test data

FIGURE 5.4: Anytime graphs of AO� and AO�-L on pima, MC3. The Laplace
regularizer helps AO�, both in the anytime graph and in the value of the last policy
learned.

131

15

20

25

30

35

40

45

1 10 100 1000 10000

V
al

ue
 o

f r
ea

lis
tic

 p
ol

ic
y

iteration

AO* on training data
AO* on test data

VOI on training data
VOI on test data

FIGURE 5.5: In its anytime graph, AO� learns a better policy than VOI, measured
on the test data, but then forgets it. The optimal policy learned by AO� on the
training data (its last policy) has worst performance on the test data than VOI. Upon
convergence (at iteration 3990), AO� has found a better policy on the training data
than VOI, which con�rms that the VOI policy is suboptimal on the training data.

132

TABLE 5.7: Abbreviations.

CSL cost-sensitive learning

MC misclassi�cation cost level (MC1, MC2, MC3, MC4, MC5)

CI con�dence interval

Nor, Nor-L Norton, and Norton with Laplace

MC-N, MC-N-L MC+Norton, and MC+Norton with Laplace

VOI, VOI-L Value of Information, and with Laplace

AO�, AO�-L AO�, and AO� with Laplace

ES, ES-L AO� with Early Stopping, and with Laplace

SP, SP-L AO� with Statistical Pruning, and with Laplace

PPP, PPP-L AO� with Pessimistic Post-Pruning, and with Laplace

which regularizers help it the most? How do di�erent misclassi�cation cost matrices

in
uence the best and the worst algorithm in a domain?

Table 5.7 lists the abbreviations used in this chapter; for more information on

each algorithm, see Section 5.1.4.

5.3.1 Laplace Correction Improves All Algorithms

Before describing the experimental results in each of the domains, we �rst discuss the

most important overall pattern. Laplace regularization generally improves or leaves

una�ected every one of the seven search methods (VOI, MC-N, Nor, AO�, ES, SP, and

PPP).

Table 5.8 shows the total (wins, ties, losses) for each greedy search method with

Laplace correction compared against itself without Laplace correction. Notice that

for MC1, the Laplace-corrected method always either wins or ties the method without

Laplace. With a few exceptions, this is true for the other MC levels, except for MC5

133

where Laplace correction appears to hurt the performance of Nor on the spect data

set.

Table 5.9 shows the same information for the systematic search algorithms. Here

again, the Laplace regularizer almost always beats or ties against the unregularized

algorithm. There is no case where it clearly gives poor results.

For systematic algorithms, AO� bene�ts by far the most from the Laplace correc-

tion. This is to be expected, since ES, SP and PPP have already brought their own

regularization to AO�.

For greedy algorithms, Laplace helped Nor the most. Note that we extend the

term \Laplace-corrected algorithms" to all algorithms, even though Nor-L is not a

Laplace-corrected version of Nor, since Laplace is only used to correct the error rate

in the pessimistic post-pruning. This study shows that it is useful the apply a Laplace

correction during the post-pruning phase of Norton, and it answers the question raised

in Section 3.2.

Because Laplace regularization is clearly good, we decided to simplify the remain-

der of this chapter by using BDeltaCost to compare only the seven search algorithms

with Laplace correction. Hence, we will consider only the 21 pairs of Laplace-corrected

algorithms rather than the 91 pairs of all algorithms (with and without Laplace cor-

rection).

5.3.2 Results on the bupa Domain

Figure 5.6 and Tables 5.10, 5.11, 5.12, 5.13, 5.14, 5.15 and 5.16 present the test set

results for the bupa domain. Figure 5.6 shows the Vtest for each algorithm averaged

over the 20 replicas. The error bars show a 95% normal con�dence interval for the

mean. The tables report the (wins, ties, and losses) according to the BDeltaCost test

for each pair of algorithms, summed over the 20 replicas. From these results, we note

the following:

� The best algorithm is ES-L, although its con�dence interval overlaps the con�-

dence intervals for all the other systematic algorithms and the con�dence inter-

134

TABLE 5.8: The e�ect of Laplace correction on each greedy search algorithm, across
all domains. Each table entry has (wins, ties, losses) of algorithm 1 (alg1) over
algorithm 2 (alg2), summed over all replicas.

alg1 alg2 domain MC1 MC2 MC3 MC4 MC5

VOI-L VOI bupa 1, 19, 0 1, 19, 0 2, 18, 0 1, 19, 0 2, 18, 0

VOI-L VOI pima 0, 20, 0 1, 18, 1 2, 17, 1 1, 18, 1 3, 16, 1

VOI-L VOI heart 0, 20, 0 2, 18, 0 3, 17, 0 2, 18, 0 2, 18, 0

VOI-L VOI b-can 0, 20, 0 0, 20, 0 6, 14, 0 1, 19, 0 2, 17, 1

VOI-L VOI spect 1, 19, 0 3, 17, 0 3, 17, 0 0, 19, 1 0, 19, 1

MC-N-L MC-N bupa 1, 19, 0 1, 19, 0 2, 18, 0 2, 18, 0 0, 20, 0

MC-N-L MC-N pima 1, 19, 0 8, 12, 0 16, 4, 0 8, 12, 0 2, 18, 0

MC-N-L MC-N heart 0, 20, 0 8, 12, 0 7, 13, 0 1, 19, 0 1, 19, 0

MC-N-L MC-N b-can 0, 20, 0 0, 20, 0 2, 18, 0 3, 17, 0 12, 8, 0

MC-N-L MC-N spect 1, 19, 0 5, 15, 0 6, 14, 0 11, 8, 1 4, 16, 0

Nor-L Nor bupa 6, 14, 0 6, 14, 0 4, 16, 0 4, 16, 0 2, 18, 0

Nor-L Nor pima 20, 0, 0 19, 1, 0 15, 5, 0 10, 10, 0 2, 16, 2

Nor-L Nor heart 20, 0, 0 6, 14, 0 3, 17, 0 0, 20, 0 0, 20, 0

Nor-L Nor b-can 18, 2, 0 17, 3, 0 15, 5, 0 15, 5, 0 7, 13, 0

Nor-L Nor spect 6, 14, 0 2, 18, 0 1, 19, 0 0, 20, 0 0, 13, 7

135

TABLE 5.9: The e�ect of Laplace correction on each systematic search algorithm,
across all domains. Each table entry has (wins, ties, losses) of algorithm 1 (alg1) over
algorithm 2 (alg2), summed over all replicas.

alg1 alg2 domain MC1 MC2 MC3 MC4 MC5

AO�-L AO� bupa 4, 16, 0 4, 16, 0 4, 16, 0 4, 16, 0 5, 15, 0

AO�-L AO� pima 3, 17, 0 9, 11, 0 15, 5, 0 11, 9, 0 8, 12, 0

AO�-L AO� heart 0, 20, 0 11, 9, 0 13, 7, 0 2, 18, 0 2, 18, 0

AO�-L AO� b-can 0, 20, 0 0, 20, 0 3, 16, 1 2, 18, 0 12, 8, 0

AO�-L AO� spect 6, 14, 0 10, 10, 0 10, 10, 0 5, 15, 0 0, 19, 1

ES-L ES bupa 3, 17, 0 3, 17, 0 1, 19, 0 1, 19, 0 2, 18, 0

ES-L ES pima 0, 20, 0 0, 19, 1 3, 17, 0 1, 19, 0 10, 10, 0

ES-L ES heart 1, 19, 0 5, 15, 0 3, 17, 0 1, 19, 0 1, 19, 0

ES-L ES b-can 0, 20, 0 0, 20, 0 2, 17, 1 4, 12, 4 3, 15, 2

ES-L ES spect 0, 20, 0 0, 20, 0 0, 20, 0 0, 20, 0 1, 19, 0

SP-L SP bupa 0, 20, 0 0, 20, 0 3, 17, 0 3, 17, 0 3, 17, 0

SP-L SP pima 0, 20, 0 4, 16, 0 13, 7, 0 6, 14, 0 8, 12, 0

SP-L SP heart 0, 20, 0 7, 13, 0 5, 15, 0 2, 17, 1 2, 17, 1

SP-L SP b-can 0, 20, 0 0, 20, 0 0, 19, 1 0, 19, 1 4, 16, 0

SP-L SP spect 2, 18, 0 6, 14, 0 5, 15, 0 7, 13, 0 2, 18, 0

PPP-L PPP bupa 3, 17, 0 3, 17, 0 4, 16, 0 4, 16, 0 1, 19, 0

PPP-L PPP pima 0, 20, 0 1, 18, 1 1, 18, 1 1, 18, 1 7, 13, 0

PPP-L PPP heart 0, 19, 1 1, 19, 0 0, 20, 0 1, 18, 1 1, 18, 1

PPP-L PPP b-can 0, 20, 0 0, 20, 0 1, 18, 1 1, 19, 0 9, 11, 0

PPP-L PPP spect 7, 13, 0 9, 11, 0 7, 13, 0 7, 13, 0 0, 19, 1

136

vals for VOI and VOI-L. The BDeltaCost Table 5.14 con�rms the superiority of

ES-L. This is the only domain in the thesis where one algorithm never loses to

any other algorithm.

� The worst algorithm is Nor. In general, the con�dence intervals of the systematic

algorithms were below the con�dence intervals of greedy algorithms, with the

exception of VOI and VOI-L. Even with the Laplace correction, Nor-L and MC-

N-L fared badly (see Tables 5.12 and 5.11).

� The misclassi�cation costs do not change the best and the worst algorithm on

bupa.

� All other algorithms have similar performance. SP-L and PPP-L are slightly bet-

ter than the other algorithms according to BDeltaCost (Tables 5.15 and 5.16),

followed by VOI-L and AO�-L (Tables 5.10 and 5.13).

� The Laplace correction slightly improved average Vtest for most algorithms,

although the con�dence intervals for an algorithm and its Laplace correction

overlap.

5.3.3 Results on the pima Domain

Figure 5.7 and Tables 5.17, 5.18, 5.19, 5.20, 5.21, 5.22 and 5.23 present the test set

results for the pima domain. From these results, we note the following:

� The best algorithm changes depending on the misclassi�cation costs. VOI and

VOI-L are consistently good, and on the misclassi�cation cost level MC5 they

are by far the best algorithms. Several other algorithms are good. For example,

on MC2 Nor-L and MC-N-L are slightly better than VOI-L (see Table 5.17).

� The worst algorithm depends on misclassi�cation costs. On MC1 and MC2, it

is Nor; on medium and large MC, it is AO�.

137

54

56

58

60

62

64

66

68

70

72

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(a) MC1

54

56

58

60

62

64

66

68

70

72

74

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(b) MC2

68

70

72

74

76

78

80

82

84

86

88

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(c) MC3

70

72

74

76

78

80

82

84

86

88

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(d) MC4

104

106

108

110

112

114

116

118

120

122

124

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(e) MC5

FIGURE 5.6: Bupa domain. Graphs of average Vtest over replicas, and its 95% normal
con�dence interval (CI). Note that MC1 ' MC2, MC3 ' MC4.

138

TABLE 5.10: Bupa, BDeltaCost of VOI-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

VOI-L MC-N-L 2, 18, 0 2, 18, 0 3, 17, 0 3, 17, 0 5, 15, 0

VOI-L Nor-L 8, 12, 0 8, 12, 0 6, 14, 0 6, 14, 0 3, 17, 0

VOI-L AO�-L 0, 20, 0 0, 20, 0 0, 20, 0 0, 20, 0 2, 18, 0

VOI-L ES-L 0, 15, 5 0, 15, 5 0, 16, 4 0, 16, 4 0, 17, 3

VOI-L SP-L 0, 16, 4 0, 16, 4 0, 18, 2 0, 20, 0 1, 19, 0

VOI-L PPP-L 0, 17, 3 0, 17, 3 0, 17, 3 0, 17, 3 0, 19, 1

TABLE 5.11: Bupa, BDeltaCost of MC-N-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

MC-N-L VOI-L 0, 18, 2 0, 18, 2 0, 17, 3 0, 17, 3 0, 15, 5

MC-N-L Nor-L 2, 16, 2 2, 16, 2 1, 17, 2 1, 17, 2 0, 18, 2

MC-N-L AO�-L 0, 18, 2 0, 18, 2 0, 17, 3 0, 17, 3 0, 15, 5

MC-N-L ES-L 0, 16, 4 0, 16, 4 0, 14, 6 0, 14, 6 0, 15, 5

MC-N-L SP-L 0, 17, 3 0, 17, 3 0, 15, 5 0, 17, 3 0, 14, 6

MC-N-L PPP-L 0, 18, 2 0, 18, 2 0, 15, 5 0, 15, 5 0, 17, 3

139

TABLE 5.12: Bupa, BDeltaCost of Nor-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

Nor-L VOI-L 0, 12, 8 0, 12, 8 0, 14, 6 0, 14, 6 0, 17, 3

Nor-L MC-N-L 2, 16, 2 2, 16, 2 2, 17, 1 2, 17, 1 2, 18, 0

Nor-L AO�-L 0, 12, 8 0, 12, 8 0, 15, 5 0, 15, 5 0, 19, 1

Nor-L ES-L 0, 10, 10 0, 10, 10 0, 16, 4 0, 16, 4 0, 17, 3

Nor-L SP-L 0, 10, 10 0, 10, 10 0, 14, 6 0, 15, 5 0, 18, 2

Nor-L PPP-L 0, 14, 6 0, 14, 6 0, 14, 6 0, 14, 6 0, 16, 4

TABLE 5.13: Bupa, BDeltaCost of AO�-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

AO�-L VOI-L 0, 20, 0 0, 20, 0 0, 20, 0 0, 20, 0 0, 18, 2

AO�-L MC-N-L 2, 18, 0 2, 18, 0 3, 17, 0 3, 17, 0 5, 15, 0

AO�-L Nor-L 8, 12, 0 8, 12, 0 5, 15, 0 5, 15, 0 1, 19, 0

AO�-L ES-L 0, 15, 5 0, 15, 5 0, 16, 4 0, 16, 4 0, 18, 2

AO�-L SP-L 0, 16, 4 0, 16, 4 0, 18, 2 0, 20, 0 0, 19, 1

AO�-L PPP-L 0, 17, 3 0, 17, 3 0, 17, 3 0, 17, 3 0, 17, 3

140

TABLE 5.14: Bupa, BDeltaCost of ES-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

ES-L VOI-L 5, 15, 0 5, 15, 0 4, 16, 0 4, 16, 0 3, 17, 0

ES-L MC-N-L 4, 16, 0 4, 16, 0 6, 14, 0 6, 14, 0 5, 15, 0

ES-L Nor-L 10, 10, 0 10, 10, 0 4, 16, 0 4, 16, 0 3, 17, 0

ES-L AO�-L 5, 15, 0 5, 15, 0 4, 16, 0 4, 16, 0 2, 18, 0

ES-L SP-L 1, 19, 0 1, 19, 0 0, 20, 0 3, 17, 0 2, 18, 0

ES-L PPP-L 1, 19, 0 1, 19, 0 0, 20, 0 0, 20, 0 0, 20, 0

TABLE 5.15: Bupa, BDeltaCost of SP-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

SP-L VOI-L 4, 16, 0 4, 16, 0 2, 18, 0 0, 20, 0 0, 19, 1

SP-L MC-N-L 3, 17, 0 3, 17, 0 5, 15, 0 3, 17, 0 6, 14, 0

SP-L Nor-L 10, 10, 0 10, 10, 0 6, 14, 0 5, 15, 0 2, 18, 0

SP-L AO�-L 4, 16, 0 4, 16, 0 2, 18, 0 0, 20, 0 1, 19, 0

SP-L ES-L 0, 19, 1 0, 19, 1 0, 20, 0 0, 17, 3 0, 18, 2

SP-L PPP-L 0, 20, 0 0, 20, 0 0, 20, 0 0, 18, 2 0, 18, 2

141

TABLE 5.16: Bupa, BDeltaCost of PPP-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

PPP-L VOI-L 3, 17, 0 3, 17, 0 3, 17, 0 3, 17, 0 1, 19, 0

PPP-L MC-N-L 2, 18, 0 2, 18, 0 5, 15, 0 5, 15, 0 3, 17, 0

PPP-L Nor-L 6, 14, 0 6, 14, 0 6, 14, 0 6, 14, 0 4, 16, 0

PPP-L AO�-L 3, 17, 0 3, 17, 0 3, 17, 0 3, 17, 0 3, 17, 0

PPP-L ES-L 0, 19, 1 0, 19, 1 0, 20, 0 0, 20, 0 0, 20, 0

PPP-L SP-L 0, 20, 0 0, 20, 0 0, 20, 0 2, 18, 0 2, 18, 0

� AO� performed badly on pima. All the regularizers helped it, except on MC5,

where ES did not. These �ndings, according to the normal con�dence intervals,

are con�rmed by BDeltaCost results (Appendix Table B.7).

� Among the regularized AO� methods, SP-L and ES-L are the best (see Tables

5.22 and 5.21). SP-L has several wins over AO�-L, ES-L and PPP-L.

In [2] we presented experiments on a version of the pima problem, with a binary

discretization of the attributes and slightly di�erent misclassi�cation costs (100 for

false negatives and 80 for false positives), and we concluded that SP was slightly better

than AO�. On the current version of pima, we con�rm these results: BDeltaCost

produces 3, 6, 5, 3, and 4 wins of SP over AO�, with no losses, for each of the 5 MCs.

However, SP is no longer the best algorithm: BDeltaCost shows that VOI-L has 0, 2,

10, 8, and 11 wins over SP, with no losses, and the Laplace version SP-L wins over SP

on 0, 4, 13, 6, and 8 replicas with no losses. Table 5.17 comparing VOI-L and SP-L

shows VOI-L losing on 2 replicas on MC2 and winning on more replicas on large MCs.

In general, there is no single best algorithm across all MCs, but VOI-L is probably

142

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

Nor=9.9

(a) MC1

12

13

14

15

16

17

18

19

20

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(b) MC2

25

26

27

28

29

30

31

32

33

34

35

36

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(c) MC3

54

56

58

60

62

64

66

68

70

72

74

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(d) MC4

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(e) MC5

FIGURE 5.7: Pima domain. Graphs of average Vtest over replicas, and its 95% normal
con�dence interval (CI).

143

TABLE 5.17: Pima, BDeltaCost of VOI-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

VOI-L MC-N-L 0, 20, 0 0, 17, 3 0, 19, 1 2, 18, 0 5, 15, 0

VOI-L Nor-L 4, 16, 0 0, 18, 2 1, 18, 1 1, 19, 0 6, 14, 0

VOI-L AO�-L 0, 20, 0 1, 17, 2 1, 19, 0 3, 17, 0 8, 12, 0

VOI-L ES-L 1, 19, 0 1, 17, 2 2, 18, 0 3, 17, 0 5, 15, 0

VOI-L SP-L 0, 20, 0 0, 18, 2 0, 20, 0 3, 17, 0 4, 16, 0

VOI-L PPP-L 0, 20, 0 0, 20, 0 1, 19, 0 7, 13, 0 3, 16, 1

TABLE 5.18: Pima, BDeltaCost of MC-N-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

MC-N-L VOI-L 0, 20, 0 3, 17, 0 1, 19, 0 0, 18, 2 0, 15, 5

MC-N-L Nor-L 4, 16, 0 1, 19, 0 2, 16, 2 0, 18, 2 3, 16, 1

MC-N-L AO�-L 0, 20, 0 3, 16, 1 3, 17, 0 2, 18, 0 0, 19, 1

MC-N-L ES-L 1, 17, 2 1, 18, 1 2, 16, 2 1, 18, 1 1, 19, 0

MC-N-L SP-L 0, 20, 0 0, 19, 1 2, 17, 1 1, 19, 0 0, 19, 1

MC-N-L PPP-L 0, 20, 0 2, 18, 0 1, 19, 0 4, 16, 0 0, 19, 1

144

TABLE 5.19: Pima, BDeltaCost of Nor-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

Nor-L VOI-L 0, 16, 4 2, 18, 0 1, 18, 1 0, 19, 1 0, 14, 6

Nor-L MC-N-L 0, 16, 4 0, 19, 1 2, 16, 2 2, 18, 0 1, 16, 3

Nor-L AO�-L 0, 16, 4 1, 19, 0 4, 15, 1 3, 17, 0 1, 16, 3

Nor-L ES-L 0, 14, 6 4, 16, 0 1, 17, 2 1, 18, 1 0, 18, 2

Nor-L SP-L 0, 16, 4 0, 19, 1 0, 19, 1 2, 18, 0 0, 17, 3

Nor-L PPP-L 0, 19, 1 2, 18, 0 2, 18, 0 5, 15, 0 0, 15, 5

TABLE 5.20: Pima, BDeltaCost of AO�-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

AO�-L VOI-L 0, 20, 0 2, 17, 1 0, 19, 1 0, 17, 3 0, 12, 8

AO�-L MC-N-L 0, 20, 0 1, 16, 3 0, 17, 3 0, 18, 2 1, 19, 0

AO�-L Nor-L 4, 16, 0 0, 19, 1 1, 15, 4 0, 17, 3 3, 16, 1

AO�-L ES-L 1, 19, 0 2, 17, 1 1, 18, 1 0, 18, 2 1, 17, 2

AO�-L SP-L 0, 20, 0 1, 15, 4 0, 15, 5 1, 17, 2 1, 15, 4

AO�-L PPP-L 0, 20, 0 1, 19, 0 0, 20, 0 4, 16, 0 0, 18, 2

145

TABLE 5.21: Pima, BDeltaCost of ES-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

ES-L VOI-L 0, 19, 1 2, 17, 1 0, 18, 2 0, 17, 3 0, 15, 5

ES-L MC-N-L 2, 17, 1 1, 18, 1 2, 16, 2 1, 18, 1 0, 19, 1

ES-L Nor-L 6, 14, 0 0, 16, 4 2, 17, 1 1, 18, 1 2, 18, 0

ES-L AO�-L 0, 19, 1 1, 17, 2 1, 18, 1 2, 18, 0 2, 17, 1

ES-L SP-L 0, 19, 1 1, 18, 1 0, 18, 2 1, 19, 0 1, 18, 1

ES-L PPP-L 3, 16, 1 0, 20, 0 3, 16, 1 2, 17, 1 1, 17, 2

TABLE 5.22: Pima, BDeltaCost of SP-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

SP-L VOI-L 0, 20, 0 2, 18, 0 0, 20, 0 0, 17, 3 0, 16, 4

SP-L MC-N-L 0, 20, 0 1, 19, 0 1, 17, 2 0, 19, 1 1, 19, 0

SP-L Nor-L 4, 16, 0 1, 19, 0 1, 19, 0 0, 18, 2 3, 17, 0

SP-L AO�-L 0, 20, 0 4, 15, 1 5, 15, 0 2, 17, 1 4, 15, 1

SP-L ES-L 1, 19, 0 1, 18, 1 2, 18, 0 0, 19, 1 1, 18, 1

SP-L PPP-L 0, 20, 0 2, 18, 0 3, 17, 0 3, 17, 0 0, 19, 1

146

TABLE 5.23: Pima, BDeltaCost of PPP-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

PPP-L VOI-L 0, 20, 0 0, 20, 0 0, 19, 1 0, 13, 7 1, 16, 3

PPP-L MC-N-L 0, 20, 0 0, 18, 2 0, 19, 1 0, 16, 4 1, 19, 0

PPP-L Nor-L 1, 19, 0 0, 18, 2 0, 18, 2 0, 15, 5 5, 15, 0

PPP-L AO�-L 0, 20, 0 0, 19, 1 0, 20, 0 0, 16, 4 2, 18, 0

PPP-L ES-L 1, 16, 3 0, 20, 0 1, 16, 3 1, 17, 2 2, 17, 1

PPP-L SP-L 0, 20, 0 0, 18, 2 0, 17, 3 0, 17, 3 1, 19, 0

the most robust on this problem.

5.3.4 Results on the heart Domain

Figure 5.8 and Tables 5.24, 5.25, 5.26, 5.27, 5.28, 5.29 and 5.30 present the test set

results for the heart domain. From these results, we note the following:

� The best algorithm is SP-L (see Table 5.29). From the greedy algorithms, MC-

N-L comes next (see Table 5.25).

� The worst algorithm is Nor on small misclassi�cation costs, and VOI and VOI-

L on large misclassi�cation costs. AO� performed badly for every MC. All

the regularizers signi�cantly helped AO�, although AO�-L was not particularly

good on heart (Table 5.27). VOI-L also fared badly on heart, according to

Figure 5.8, although the BDeltaCost in Table 5.24 �nds it mostly tied with the

best algorithms on heart (SP-L and MC-N-L).

147

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

Nor=22.3

(a) MC1

70

75

80

85

90

95

100

105

110

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(b) MC2

110

120

130

140

150

160

170

180

190

200

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(c) MC3

380

400

420

440

460

480

500

520

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(d) MC4

380

400

420

440

460

480

500

520

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(e) MC5

FIGURE 5.8: Heart domain. Graphs of average Vtest over replicas, and its 95%
normal con�dence interval (CI). Note that MC4 ' MC5.

148

TABLE 5.24: Heart, BDeltaCost of VOI-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

VOI-L MC-N-L 0, 20, 0 0, 20, 0 0, 20, 0 0, 19, 1 0, 19, 1

VOI-L Nor-L 6, 14, 0 0, 17, 3 0, 15, 5 0, 17, 3 0, 17, 3

VOI-L AO�-L 0, 20, 0 0, 19, 1 0, 20, 0 0, 19, 1 0, 19, 1

VOI-L ES-L 2, 18, 0 0, 19, 1 1, 18, 1 0, 20, 0 0, 20, 0

VOI-L SP-L 0, 20, 0 0, 18, 2 0, 19, 1 0, 20, 0 0, 20, 0

VOI-L PPP-L 1, 19, 0 0, 17, 3 0, 17, 3 0, 17, 3 0, 17, 3

TABLE 5.25: Heart, BDeltaCost of MC-N-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

MC-N-L VOI-L 0, 20, 0 0, 20, 0 0, 20, 0 1, 19, 0 1, 19, 0

MC-N-L Nor-L 6, 14, 0 0, 20, 0 0, 20, 0 0, 20, 0 0, 20, 0

MC-N-L AO�-L 0, 20, 0 3, 16, 1 2, 18, 0 2, 17, 1 2, 17, 1

MC-N-L ES-L 2, 18, 0 2, 17, 1 2, 16, 2 0, 20, 0 0, 20, 0

MC-N-L SP-L 0, 20, 0 1, 17, 2 1, 17, 2 1, 19, 0 1, 19, 0

MC-N-L PPP-L 1, 19, 0 1, 19, 0 1, 19, 0 0, 20, 0 0, 20, 0

149

TABLE 5.26: Heart, BDeltaCost of Nor-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

Nor-L VOI-L 0, 14, 6 3, 17, 0 5, 15, 0 3, 17, 0 3, 17, 0

Nor-L MC-N-L 0, 14, 6 0, 20, 0 0, 20, 0 0, 20, 0 0, 20, 0

Nor-L AO�-L 0, 14, 6 0, 19, 1 0, 20, 0 0, 19, 1 0, 19, 1

Nor-L ES-L 1, 14, 5 0, 20, 0 1, 19, 0 0, 20, 0 0, 20, 0

Nor-L SP-L 0, 14, 6 0, 18, 2 0, 19, 1 0, 20, 0 0, 20, 0

Nor-L PPP-L 0, 15, 5 1, 19, 0 0, 20, 0 1, 19, 0 1, 19, 0

TABLE 5.27: Heart, BDeltaCost of AO�-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

AO�-L VOI-L 0, 20, 0 1, 19, 0 0, 20, 0 1, 19, 0 1, 19, 0

AO�-L MC-N-L 0, 20, 0 1, 16, 3 0, 18, 2 1, 17, 2 1, 17, 2

AO�-L Nor-L 6, 14, 0 1, 19, 0 0, 20, 0 1, 19, 0 1, 19, 0

AO�-L ES-L 2, 18, 0 2, 17, 1 2, 17, 1 1, 19, 0 1, 19, 0

AO�-L SP-L 0, 20, 0 1, 16, 3 1, 15, 4 1, 13, 6 1, 13, 6

AO�-L PPP-L 1, 19, 0 2, 18, 0 1, 19, 0 2, 18, 0 2, 18, 0

150

TABLE 5.28: Heart, BDeltaCost of ES-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

ES-L VOI-L 0, 18, 2 1, 19, 0 1, 18, 1 0, 20, 0 0, 20, 0

ES-L MC-N-L 0, 18, 2 1, 17, 2 2, 16, 2 0, 20, 0 0, 20, 0

ES-L Nor-L 5, 14, 1 0, 20, 0 0, 19, 1 0, 20, 0 0, 20, 0

ES-L AO�-L 0, 18, 2 1, 17, 2 1, 17, 2 0, 19, 1 0, 19, 1

ES-L SP-L 0, 18, 2 0, 16, 4 0, 16, 4 0, 18, 2 0, 18, 2

ES-L PPP-L 1, 17, 2 2, 18, 0 1, 19, 0 2, 17, 1 2, 17, 1

TABLE 5.29: Heart, BDeltaCost of SP-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

SP-L VOI-L 0, 20, 0 2, 18, 0 1, 19, 0 0, 20, 0 0, 20, 0

SP-L MC-N-L 0, 20, 0 2, 17, 1 2, 17, 1 0, 19, 1 0, 19, 1

SP-L Nor-L 6, 14, 0 2, 18, 0 1, 19, 0 0, 20, 0 0, 20, 0

SP-L AO�-L 0, 20, 0 3, 16, 1 4, 15, 1 6, 13, 1 6, 13, 1

SP-L ES-L 2, 18, 0 4, 16, 0 4, 16, 0 2, 18, 0 2, 18, 0

SP-L PPP-L 1, 19, 0 4, 16, 0 4, 16, 0 1, 18, 1 1, 18, 1

151

TABLE 5.30: Heart, BDeltaCost of PPP-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

PPP-L VOI-L 0, 19, 1 3, 17, 0 3, 17, 0 3, 17, 0 3, 17, 0

PPP-L MC-N-L 0, 19, 1 0, 19, 1 0, 19, 1 0, 20, 0 0, 20, 0

PPP-L Nor-L 5, 15, 0 0, 19, 1 0, 20, 0 0, 19, 1 0, 19, 1

PPP-L AO�-L 0, 19, 1 0, 18, 2 0, 19, 1 0, 18, 2 0, 18, 2

PPP-L ES-L 2, 17, 1 0, 18, 2 0, 19, 1 1, 17, 2 1, 17, 2

PPP-L SP-L 0, 19, 1 0, 16, 4 0, 16, 4 1, 18, 1 1, 18, 1

5.3.5 Results on the breast-cancer Domain

There are some discrepancies between the results of Figure 5.9 and the BDeltaCost

Tables 5.31, 5.32, 5.33, 5.34, 5.35, 5.36 and 5.37, therefore we need to look at both of

them to draw conclusions.

� The best algorithm changes depending on misclassi�cation costs. MC-N-L and

SP-L are consistently good according to the BDeltaCost Tables 5.32 and 5.36.

VOI-L is good for small misclassi�cation costs.

� The worst algorithm changes depending on misclassi�cation costs. On all mis-

classi�cation costs except MC5, Nor's con�dence interval is above the others.

AO� was signi�cantly bad on MC5. VOI-L and ES-L performed badly on larger

misclassi�cation costs (see Tables 5.31 and 5.35).

152

1.15

1.2

1.25

1.3

1.35

1.4

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

Nor=1.8

(a) MC1

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

Nor=1.9

(b) MC2

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(c) MC3

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(d) MC4

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(e) MC5

FIGURE 5.9: Breast-cancer domain. Graphs of average Vtest over replicas, and its
95% normal con�dence interval (CI). Note that MC1 ' MC2.

153

TABLE 5.31: Breast-cancer, BDeltaCost of VOI-L paired with each of the Laplace
corrected algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

VOI-L MC-N-L 1, 19, 0 1, 19, 0 0, 17, 3 0, 14, 6 0, 14, 6

VOI-L Nor-L 7, 13, 0 0, 20, 0 0, 18, 2 0, 16, 4 0, 14, 6

VOI-L AO�-L 0, 20, 0 0, 20, 0 0, 18, 2 0, 14, 6 0, 16, 4

VOI-L ES-L 0, 19, 1 0, 20, 0 1, 18, 1 0, 17, 3 0, 19, 1

VOI-L SP-L 1, 19, 0 1, 19, 0 0, 20, 0 0, 14, 6 0, 15, 5

VOI-L PPP-L 0, 20, 0 0, 20, 0 0, 20, 0 0, 17, 3 0, 17, 3

TABLE 5.32: Breast-cancer, BDeltaCost of MC-N-L paired with each of the Laplace
corrected algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

MC-N-L VOI-L 0, 19, 1 0, 19, 1 3, 17, 0 6, 14, 0 6, 14, 0

MC-N-L Nor-L 0, 20, 0 0, 20, 0 2, 18, 0 2, 17, 1 3, 15, 2

MC-N-L AO�-L 0, 19, 1 0, 19, 1 1, 19, 0 1, 19, 0 6, 14, 0

MC-N-L ES-L 0, 19, 1 1, 18, 1 2, 18, 0 4, 16, 0 4, 16, 0

MC-N-L SP-L 0, 20, 0 0, 20, 0 2, 18, 0 2, 17, 1 1, 18, 1

MC-N-L PPP-L 0, 19, 1 0, 19, 1 1, 19, 0 2, 18, 0 2, 16, 2

154

TABLE 5.33: Breast-cancer, BDeltaCost of Nor-L paired with each of the Laplace
corrected algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

Nor-L VOI-L 0, 13, 7 0, 20, 0 2, 18, 0 4, 16, 0 6, 14, 0

Nor-L MC-N-L 0, 20, 0 0, 20, 0 0, 18, 2 1, 17, 2 2, 15, 3

Nor-L AO�-L 0, 13, 7 0, 20, 0 0, 18, 2 2, 17, 1 4, 13, 3

Nor-L ES-L 0, 14, 6 1, 19, 0 2, 17, 1 3, 16, 1 3, 15, 2

Nor-L SP-L 0, 19, 1 1, 19, 0 0, 19, 1 1, 19, 0 2, 15, 3

Nor-L PPP-L 0, 13, 7 0, 20, 0 0, 19, 1 2, 17, 1 3, 13, 4

TABLE 5.34: Breast-cancer, BDeltaCost of AO�-L paired with each of the Laplace
corrected algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

AO�-L VOI-L 0, 20, 0 0, 20, 0 2, 18, 0 6, 14, 0 4, 16, 0

AO�-L MC-N-L 1, 19, 0 1, 19, 0 0, 19, 1 0, 19, 1 0, 14, 6

AO�-L Nor-L 7, 13, 0 0, 20, 0 2, 18, 0 1, 17, 2 3, 13, 4

AO�-L ES-L 0, 19, 1 0, 20, 0 1, 19, 0 4, 16, 0 4, 14, 2

AO�-L SP-L 1, 19, 0 1, 19, 0 1, 19, 0 1, 18, 1 0, 14, 6

AO�-L PPP-L 0, 20, 0 0, 20, 0 0, 20, 0 1, 19, 0 2, 13, 5

155

TABLE 5.35: Breast-cancer, BDeltaCost of ES-L paired with each of the Laplace
corrected algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

ES-L VOI-L 1, 19, 0 0, 20, 0 1, 18, 1 3, 17, 0 1, 19, 0

ES-L MC-N-L 1, 19, 0 1, 18, 1 0, 18, 2 0, 16, 4 0, 16, 4

ES-L Nor-L 6, 14, 0 0, 19, 1 1, 17, 2 1, 16, 3 2, 15, 3

ES-L AO�-L 1, 19, 0 0, 20, 0 0, 19, 1 0, 16, 4 2, 14, 4

ES-L SP-L 2, 18, 0 1, 19, 0 1, 18, 1 1, 15, 4 0, 14, 6

ES-L PPP-L 1, 19, 0 0, 20, 0 0, 19, 1 0, 17, 3 0, 17, 3

TABLE 5.36: Breast-cancer, BDeltaCost of SP-L paired with each of the Laplace
corrected algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

SP-L VOI-L 0, 19, 1 0, 19, 1 0, 20, 0 6, 14, 0 5, 15, 0

SP-L MC-N-L 0, 20, 0 0, 20, 0 0, 18, 2 1, 17, 2 1, 18, 1

SP-L Nor-L 1, 19, 0 0, 19, 1 1, 19, 0 0, 19, 1 3, 15, 2

SP-L AO�-L 0, 19, 1 0, 19, 1 0, 19, 1 1, 18, 1 6, 14, 0

SP-L ES-L 0, 18, 2 0, 19, 1 1, 18, 1 4, 15, 1 6, 14, 0

SP-L PPP-L 0, 19, 1 0, 19, 1 0, 19, 1 1, 18, 1 3, 16, 1

156

TABLE 5.37: Breast-cancer, BDeltaCost of PPP-L paired with each of the Laplace
corrected algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

PPP-L VOI-L 0, 20, 0 0, 20, 0 0, 20, 0 3, 17, 0 3, 17, 0

PPP-L MC-N-L 1, 19, 0 1, 19, 0 0, 19, 1 0, 18, 2 2, 16, 2

PPP-L Nor-L 7, 13, 0 0, 20, 0 1, 19, 0 1, 17, 2 4, 13, 3

PPP-L AO�-L 0, 20, 0 0, 20, 0 0, 20, 0 0, 19, 1 5, 13, 2

PPP-L ES-L 0, 19, 1 0, 20, 0 1, 19, 0 3, 17, 0 3, 17, 0

PPP-L SP-L 1, 19, 0 1, 19, 0 1, 19, 0 1, 18, 1 1, 16, 3

TABLE 5.38: Spect, BDeltaCost of VOI-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

VOI-L MC-N-L 2, 18, 0 2, 18, 0 2, 18, 0 3, 17, 0 5, 12, 3

VOI-L Nor-L 9, 11, 0 5, 15, 0 5, 15, 0 5, 15, 0 10, 10, 0

VOI-L AO�-L 0, 20, 0 1, 19, 0 1, 19, 0 3, 16, 1 4, 15, 1

VOI-L ES-L 2, 18, 0 2, 18, 0 1, 19, 0 3, 16, 1 1, 19, 0

VOI-L SP-L 0, 20, 0 1, 19, 0 1, 19, 0 3, 15, 2 4, 15, 1

VOI-L PPP-L 0, 19, 1 1, 18, 1 0, 19, 1 2, 16, 2 4, 16, 0

157

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(a) MC1

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(b) MC2

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(c) MC3

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(d) MC4

25

30

35

40

45

50

55

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

V
_t

es
t a

nd
 9

5%
 n

or
m

al
 C

I

(e) MC5

FIGURE 5.10: Spect domain. Graphs of average Vtest over replicas, and its 95%
normal con�dence interval (CI). Note that MC2 ' MC3.

158

TABLE 5.39: Spect, BDeltaCost ofMC-N-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

MC-N-L VOI-L 0, 18, 2 0, 18, 2 0, 18, 2 0, 17, 3 3, 12, 5

MC-N-L Nor-L 9, 11, 0 5, 15, 0 5, 15, 0 3, 17, 0 8, 12, 0

MC-N-L AO�-L 0, 18, 2 0, 19, 1 0, 19, 1 1, 16, 3 2, 17, 1

MC-N-L ES-L 1, 18, 1 0, 20, 0 1, 19, 0 0, 18, 2 2, 17, 1

MC-N-L SP-L 0, 18, 2 0, 19, 1 0, 19, 1 1, 16, 3 1, 18, 1

MC-N-L PPP-L 0, 18, 2 0, 18, 2 0, 18, 2 1, 15, 4 0, 20, 0

TABLE 5.40: Spect, BDeltaCost of Nor-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

Nor-L VOI-L 0, 11, 9 0, 15, 5 0, 15, 5 0, 15, 5 0, 10, 10

Nor-L MC-N-L 0, 11, 9 0, 15, 5 0, 15, 5 0, 17, 3 0, 12, 8

Nor-L AO�-L 0, 11, 9 0, 15, 5 0, 15, 5 0, 17, 3 0, 15, 5

Nor-L ES-L 0, 13, 7 0, 13, 7 0, 13, 7 0, 17, 3 0, 13, 7

Nor-L SP-L 0, 11, 9 0, 15, 5 0, 15, 5 0, 17, 3 0, 14, 6

Nor-L PPP-L 0, 11, 9 0, 11, 9 0, 11, 9 0, 16, 4 0, 16, 4

159

TABLE 5.41: Spect, BDeltaCost of AO�-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

AO�-L VOI-L 0, 20, 0 0, 19, 1 0, 19, 1 1, 16, 3 1, 15, 4

AO�-L MC-N-L 2, 18, 0 1, 19, 0 1, 19, 0 3, 16, 1 1, 17, 2

AO�-L Nor-L 9, 11, 0 5, 15, 0 5, 15, 0 3, 17, 0 5, 15, 0

AO�-L ES-L 2, 18, 0 1, 19, 0 1, 19, 0 1, 17, 2 1, 18, 1

AO�-L SP-L 0, 20, 0 0, 20, 0 0, 19, 1 0, 18, 2 0, 19, 1

AO�-L PPP-L 0, 19, 1 0, 19, 1 0, 19, 1 1, 17, 2 3, 15, 2

TABLE 5.42: Spect, BDeltaCost of ES-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

ES-L VOI-L 0, 18, 2 0, 18, 2 0, 19, 1 1, 16, 3 0, 19, 1

ES-L MC-N-L 1, 18, 1 0, 20, 0 0, 19, 1 2, 18, 0 1, 17, 2

ES-L Nor-L 7, 13, 0 7, 13, 0 7, 13, 0 3, 17, 0 7, 13, 0

ES-L AO�-L 0, 18, 2 0, 19, 1 0, 19, 1 2, 17, 1 1, 18, 1

ES-L SP-L 0, 18, 2 0, 19, 1 0, 19, 1 2, 17, 1 1, 18, 1

ES-L PPP-L 0, 17, 3 0, 18, 2 0, 18, 2 2, 17, 1 3, 16, 1

160

TABLE 5.43: Spect, BDeltaCost of SP-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

SP-L VOI-L 0, 20, 0 0, 19, 1 0, 19, 1 2, 15, 3 1, 15, 4

SP-L MC-N-L 2, 18, 0 1, 19, 0 1, 19, 0 3, 16, 1 1, 18, 1

SP-L Nor-L 9, 11, 0 5, 15, 0 5, 15, 0 3, 17, 0 6, 14, 0

SP-L AO�-L 0, 20, 0 0, 20, 0 1, 19, 0 2, 18, 0 1, 19, 0

SP-L ES-L 2, 18, 0 1, 19, 0 1, 19, 0 1, 17, 2 1, 18, 1

SP-L PPP-L 0, 19, 1 0, 19, 1 0, 19, 1 1, 18, 1 2, 16, 2

TABLE 5.44: Spect, BDeltaCost of PPP-L paired with each of the Laplace corrected
algorithms. Each table entry has (wins, ties, losses) of alg1 over alg2.

alg1 alg2 MC1 MC2 MC3 MC4 MC5

PPP-L VOI-L 1, 19, 0 1, 18, 1 1, 19, 0 2, 16, 2 0, 16, 4

PPP-L MC-N-L 2, 18, 0 2, 18, 0 2, 18, 0 4, 15, 1 0, 20, 0

PPP-L Nor-L 9, 11, 0 9, 11, 0 9, 11, 0 4, 16, 0 4, 16, 0

PPP-L AO�-L 1, 19, 0 1, 19, 0 1, 19, 0 2, 17, 1 2, 15, 3

PPP-L ES-L 3, 17, 0 2, 18, 0 2, 18, 0 1, 17, 2 1, 16, 3

PPP-L SP-L 1, 19, 0 1, 19, 0 1, 19, 0 1, 18, 1 2, 16, 2

161

5.3.6 Results on the spect Domain

Figure 5.10 and Tables 5.38, 5.39, 5.40, 5.41, 5.42, 5.43 and 5.44 present the test set

results for the spect domain. From these results, we note the following:

� The best algorithm is VOI-L (see Table 5.38).

� The worst algorithms are Nor and Nor-L. Pruning (with Laplace correction) hurt

Nor on MC5 (that is, Nor-L was signi�cantly worse).

� All the Laplace-corrected systematic algorithms have similar performance and

are all very good (see Tables 5.41, 5.42, 5.43 and 5.44). PPP-L is slightly better,

and ES-L is slightly worse. ES also performed well.

� AO� performs badly on spect. Of its regularizers, the Laplace-corrected ones

and ES helped the most.

5.3.7 Summary of Algorithms' Performance

After analyzing the average Vtest and normal con�dence intervals across replicas and

the cumulative BDeltaCost results, we formulated the following hypotheses in answer

to the questions at the beginning of this Results section:

1. Question: Which algorithm is the best on each domain? Which algorithm is

the worst?

Answer: Of the 14 algorithms we compared, there is no single overall best

algorithm. Nevertheless, systematic search algorithms are best or close to the

best algorithms. In particular, SP-L is robust across all domains. Table 5.45

summarizes our observations for the �ve domains.

Nor is consistently the worst algorithm, and sometimes AO� performs badly. Nor

is the \black sheep" in the greedy search family, and AO� is the \black sheep"

in the systematic search family.

162

TABLE 5.45: Best and worst algorithms on each domain, according to the normal
con�dence intervals and BDeltaCost results. All 14 algorithms are compared.

domain best algorithms worst algorithms

bupa ES-L Nor

pima VOI-L Nor, AO�

heart SP-L AO�, Nor, VOI

b-can MC-N-L, SP-L Nor

spect VOI-L Nor

2. Question: How do greedy algorithms compare with systematic search ones?

Answer: Depending on the problem, the greedy algorithms can be very com-

petitive, sometimes even the best (e.g., VOI-L on pima and spect; MC-N-L on

breast-cancer), but they can also be very bad (e.g., VOI-L, for large misclassi�-

cation costs, on heart and breast-cancer, and MC-N-L on bupa).

(a) Question: Is there a single best algorithm among the greedy ones?

Answer: Most of the time, VOI-L is the best greedy algorithm. The next

best choice is MC-N-L. Nor-L is inferior to both.

(b) Question: Is there a single best algorithm among the systematic ones?

Answer: There is no single best systematic algorithm. SP-L is the most

robust across domains, but it is inferior to ES-L on bupa, and for smaller

misclassi�cation costs it is slightly worse than PPP-L on breast-cancer and

spect. Most of the time, AO�-L, ES-L and PPP-L have similar performance,

and they are slightly worse than SP-L (according to BDeltaCost). Of the

systematic search algorithms, SP-L was never the worst.

163

3. Question: How does Laplace correction in
uence Vtest?

Answer: Laplace improves Vtest of all algorithms, both greedy and systematic.

4. Question: How does AO� perform, and which regularizers help it the most?

Answer: AO� by itself performs poorly, especially on pima, heart and spect.

AO� is still signi�cantly better than Nor (the worst algorithm, overall) on all

domains and misclassi�cation costs, except for pima and heart with medium

misclassi�cation costs.

The regularizers signi�cantly improve AO� performance. SP-L improves it the

most. In general, combining Laplace with statistical pruning or early stopping

helps AO� the most. Tables B.6 and B.7 in Appendix B list BDeltaCost results

of AO� with each algorithm.

5. Question: Are there trends in performance as misclassi�cation costs increase

relative to test costs?

Answer: The misclassi�cation costs do in
uence the best and the worst algo-

rithm on a domain, as seen on pima, heart and breast-cancer.

Nor is particularly bad for small misclassi�cation costs. This is probably due to

the fact that Nor grows the same policy for all misclassi�cation costs and this

policy tests too many attributes. Nor-L, which grows the same policy as Nor,

but then pessimistically prunes the policy using a Laplace correction, also grows

the same policy irrespective of misclassi�cation costs, but its pruned policy was

better than Nor (see Table 5.8). On pima, heart and breast-cancer, for small

misclassi�cation costs, Nor-L is signi�cantly better than Nor. Both algorithms

performed well on large misclassi�cation costs on heart and breast-cancer, but

were bad on bupa, pima and spect.

In the Appendix B we organize the BDeltaCost results by comparing each

Laplace-corrected algorithm with all the others, for each domain and misclassi�-

164

cation cost level. For details on how each algorithm fares, see Tables B.8, B.9, B.10,

B.11, B.12, B.13 and B.14 in the Appendix B. For example, Table B.13 shows that

SP-L has many wins over AO�-L and at most one loss.

5.4 Discussion

This section answers the main question posed at the beginning of the chapter by rec-

ommending a robust CSL algorithm. It also discusses the e�ect of di�erent parameters

on the measurements introduced in Section 5.1.5.1.

5.4.1 An Overall Score for Algorithms (Chess Metric)

To get an overall idea of where each algorithm wins or fails and to see how robust each

algorithm is across domains and misclassi�cation costs, we have developed a measure

we call the chess metric. This metric summarizes the BDeltaCost results in a single

score for each algorithm.

For a given pair of algorithms, alg1 and alg2, and a domain D and misclassi�cation

cost MC, let (wins; ties; losses) be the cumulative BDeltaCost results of alg1 over

alg2, across all replicas. The score of alg1 on (D, MC) is computed by counting each

win as one point, each tie as half a point, and each loss as zero points. Summing

these points over all the other algorithms gives the chess score:

Score(alg1;D;MC)
def
=

X
alg2 6=alg1

wins+ 0:5 � ties:

The score of alg1 on each domain D is obtained by summing across all MC levels:

Score(alg1;D)
def
=
X
MC

Score(alg1;D;MC):

5.4.2 The Most Robust Algorithms

Table 5.46 displays scores for each algorithm and domain, for each MC level and also

accumulated over all MCs. The �rst observation is that almost all algorithms are

165

TABLE 5.46: Chess score = wins+0:5�ties. The score of each algorithm accumulates
the wins and ties against all the other algorithms, for each domain, across all replicas.
A win is counted as one point, a tie is counted as half a point. Scores for each separate
MC in part are presented, as well as scores accumulated over all MCs.

alg1 bupa pima heart b-can spect

VOI-L 59 62:5 64:5 64 66

MC-N-L 53:5 61:5 64:5 58 60:5

Nor-L 39 48:5 43:5 46 34

AO�-L 59 62:5 64:5 64 66

ES-L 73 63 57:5 66 59

SP-L 70 62:5 64:5 58 66

PPP-L 66:5 59:5 61 64 68:5

(a) MC1

alg1 bupa pima heart b-can spect

VOI-L 59 55:5 55 61 65:5

MC-N-L 53:5 63:5 61:5 58:5 59:5

Nor-L 39 63:5 60:5 61 42

AO�-L 59 58:5 60:5 61 62:5

ES-L 73 58 58:5 60 60:5

SP-L 70 64:5 67:5 57:5 62:5

PPP-L 66:5 56:5 56:5 61 67:5

(b) MC2

alg1 bupa pima heart b-can spect

VOI-L 60 61:5 55:5 56:5 64:5

MC-N-L 48:5 63 61 65:5 60

Nor-L 47 61:5 62:5 58:5 42

AO�-L 59:5 54 58:5 62:5 62

ES-L 69 59:5 57:5 57:5 60:5

SP-L 67:5 65 67 58:5 63

PPP-L 68:5 55:5 58 61 68

(c) MC3

alg1 bupa pima heart b-can spect

VOI-L 61 69:5 56 46 66:5

MC-N-L 49:5 61:5 61:5 67:5 55:5

Nor-L 47:5 65:5 61:5 64 49:5

AO�-L 60:5 56:5 59:5 64:5 59:5

ES-L 70:5 60:5 59 53:5 63

SP-L 61:5 58:5 63 63:5 62:5

PPP-L 69:5 48 59:5 61 63:5

(d) MC4

alg1 bupa pima heart b-can spect

VOI-L 63:5 75 56 47:5 71:5

MC-N-L 47 57:5 61:5 68:5 64

Nor-L 54:5 50 61:5 62:5 40

AO�-L 59 54:5 59:5 55 60:5

ES-L 67:5 58 59 52:5 63:5

SP-L 62 61 63 70 62

PPP-L 66:5 64 59:5 64 58:5

(e) MC5

alg1 bupa pima heart b-can spect

VOI-L 302:5 324 287 275 334

MC-N-L 252 307 310 318 299:5

Nor-L 227 289 289:5 292 207:5

AO�-L 297 286 302:5 307 310:5

ES-L 353 299 291:5 289:5 306:5

SP-L 331 311:5 325 307:5 316

PPP-L 337:5 283:5 294:5 311 326

(f) Summed over all MCs.

166

TABLE 5.47: BDeltaCost wins, ties and losses of each algorithm on each domain,
summed over all other algorithms, MCs and replicas.

alg1 bupa pima heart b-can spect

VOI-L 49, 507, 44 62, 524, 14 10, 554, 36 12, 526, 62 82, 504, 14

MC-N-L 6, 492, 102 38, 538, 24 30, 560, 10 51, 534, 15 43, 513, 44

Nor-L 10, 434, 156 34, 510, 56 19, 541, 40 39, 506, 55 0, 415, 185

AO�-L 42, 510, 48 25, 522, 53 35, 535, 30 43, 528, 29 47, 527, 26

ES-L 106, 494, 0 37, 524, 39 20, 543, 37 27, 525, 48 47, 519, 34

SP-L 74, 514, 12 42, 539, 19 60, 530, 10 40, 535, 25 52, 528, 20

PPP-L 77, 521, 2 16, 535, 49 23, 543, 34 40, 542, 18 72, 508, 20

performing well, with the exception of Nor-L. We can de�ne a \relative zero" as the

score that each algorithm would get if it was tied (according to BDeltaCost) with

all the other algorithms on all replicas. If an algorithm's score is greater than the

\relative zero", then the algorithm has more wins than losses. For each MC, the value

of this \relative zero" is 60 (there are 6 other algorithms, and 20 replicas, for a total

of 120 ties, which gives a score of 60 points). Summed over all 5 MCs, the value of

\relative zero" is 300.

In Table 5.46 (f), the score of SP-L is the only one above 300 in all �ve domains.

All other algorithms fall under 300 for at least one domain. In the tables for each

MC, SP-L is under the relative zero value of 60 only on breast-cancer, MC � 3, and

pima, MC4. Table 5.46 (f) shows that the score of SP-L is greater than the score of

AO�-L and Nor-L on every domain. It also dominates ES-L (except on bupa), MC-N-L

(except on breast-cancer), and VOI-L (except on pima and spect; in fact, Table 5.46,

(a), (b) and (c) show SP-L to be the best on pima, MC � 3); SP-L lags behind PPP-L

on bupa, breast-cancer and spect, but not by much. On pima, AO�-L, PPP-L, and

167

Nor-L perform badly. Nor-L is the only algorithm whose score is always less than the

relative zero.

This suggests that there is no best overall algorithm but that SP-L performs well

on every domain and is never the worst algorithm. This proves that systematic search,

with proper regularizers, learns good policies on realistic CSL problems. VOI-L may

do even better in some domains and misclassi�cation costs, but it also does much

worse in other domains and misclassi�cation costs; in fact, VOI-L is best on pima and

spect, and worst on heart and breast-cancer.

According to the chess metric, SP-L is best on heart, second best on pima (after

VOI-L) and third best on bupa, breast-cancer and spect (on these domains, PPP-

L is the second best algorithm). These �ndings are consistent with the graphs of

average Vtest across replicas and the 95% con�dence intervals in the Results section

(Figures 5.6, 5.7, 5.8, 5.9 and 5.10). In the Appendix B we discuss how SP-L compares

with every other Laplace-corrected algorithm according to BDeltaCost (see discussion

of Table B.13).

Another way of analyzing the data is to look at cumulative BDeltaCost results

in Table 5.47. This displays the wins, ties and losses of each Laplace-corrected algo-

rithm on each domain, summed over all the other variables (all the other algorithms,

misclassi�cation costs and replicas). Table 5.47 is the detailed view of each algorithm

performance. Indeed, each entry in Table 5.46 (f) can be derived from the corre-

sponding entry in Table 5.47 using the chess score (summing all the wins and half of

the ties). For example, on heart SP-L has 60 wins and 530 ties overall, which produce

a chess score of 60 + 0:5 � 530 = 325:

If each algorithm was always tied with all the others, each cell in Table 5.47 will

record 600 ties (6 other algorithms, 5 MC, 20 replicas). Because BDeltaCost has a 5%

error in missing a tie (that is, it wrongly declares a tie as either a win or a loss), that

makes a cumulative error of 5% � 600 = 30 in each table entry. Therefore wins over 30

will be considered signi�cant, and also losses over 30. Wins (or losses) that are less

than 30 could have been ties. All SP-L losses, being less than 30, could be ties, but

168

SP-L has more than 30 wins on each domain; in fact, SP-L is the only algorithm with

more than 30 wins and less than 30 losses on each domain. This con�rms again that

that SP-L is the most robust algorithm.

One cannot help to notice though that Table 5.47 is dominated by ties. Nor-L

is still the worst, but recall that it does not use misclassi�cation costs at all dur-

ing learning. The systematic search algorithms appear quite similar according to

these cumulative BDeltaCost results. Inside the systematic search family, maybe it

is not surprising that algorithms performance appears to be similar, since all of them

share parts of the AND/OR search graph, despite the di�erences in regularizers. It

is nevertheless surprising that the best greedy algorithms are competitive with the

systematic search ones; one possible explanation is that the number of test examples

is very small so BDeltaCost does not have enough data points to detect di�erences.

The sizes of the test sets are as follows: 115 on bupa, 256 on pima, 100 on heart, 277

on breast-cancer and 89 on spect.

5.4.3 Comparing The Most Robust Algorithms Against the Best Algo-
rithm on Each Domain

Table 5.48 lists the best and worst algorithms on each domain, according to the chess

metric. Table 5.49 was built independently from the chess metric, by analyzing the

normal con�dence intervals and BDeltaCost tables in the Results section. Both tables

compare only the Laplace-corrected algorithms, and they mostly agree on the best

and worst algorithms.

We recommend SP-L as the safest choice of an algorithm. But if there are not

enough resources (memory or CPU time) to run the systematic search algorithms,

VOI-L becomes the second best choice. At the end of Appendix B, we included

several detailed paired-graphs, at replica level, comparing the best algorithm on each

domain with our top choices, SP-L and VOI-L.

We now summarize how SP-L and VOI-L compare with the best algorithm on each

domain (see Tables 5.48 and 5.49). In general, BDeltaCost results of the pair (best

169

TABLE 5.48: Best and worst Laplace-corrected algorithms on each domain, according
to the chess metric.

domain best algorithm worst algorithms

bupa ES-L Nor-L, MC-N-L

pima VOI-L PPP-L, AO�-L, Nor-L

heart SP-L VOI-L, Nor-L, ES-L

b-can MC-N-L VOI-L, ES-L, Nor-L

spect VOI-L Nor-L

TABLE 5.49: Best and worst Laplace-corrected algorithms on each domain, according
to the normal con�dence intervals and BDeltaCost results (Section 5.3).

domain best algorithms worst algorithms

bupa ES-L Nor-L, MC-N-L

pima VOI-L none (all others are similar, and good, except on MC5)

heart SP-L VOI-L, AO�-L

b-can MC-N-L, SP-L VOI-L, ES-L on larger MC

spect VOI-L Nor-L

algorithm on a domain, SP-L) agree with their paired-graphs of Vtest for each replica.

The same holds for the pair (best algorithm on a domain, VOI-L). These BDeltaCost

and paired-graphs results are also consistent with the graphs of average Vtest across

replicas and the 95% con�dence intervals (Figures 5.6, 5.7, 5.8, 5.9 and 5.10).

170

� On bupa, SP-L and VOI-L are quite bad, but so were all the other algorithms;

ES-L is the de�nite winner here. In Table 5.47, ES-L has zero losses over all

MC, replicas. This is consistent with Figure 5.6.

� On pima, SP-L is good on small misclassi�cation costs, and it is worse on larger

misclassi�cation costs than VOI-L. VOI-L is best. This is consistent with Fig-

ure 5.7.

� On heart, SP-L is the best algorithm; VOI-L is consistently worse according to

the Vtest of the paired-graphs, but BDeltaCost �nds them mostly tied. This is

consistent with Figure 5.8.

� On breast-cancer, SP-L is worse on small misclassi�cation costs than MC-N-L

according to the Vtest of the paired-graphs, but BDeltaCost �nds them tied.

VOI-L is better on small misclassi�cation costs than MC-N-L, but BDeltaCost

�nds them tied except for one win of VOI-L. Both SP-L and VOI-L (and espe-

cially VOI-L) are worse than MC-N-L for larger misclassi�cation costs. This is

consistent with Figure 5.9.

� On spect, SP-L is worse on large misclassi�cation costs than VOI-L (best on

spect). This is consistent with Figure 5.10.

5.4.4 Summary of Discussion

This completes the main part of Chapter 5. Our experimental results showed that

there is no overall best algorithm, but SP-L is robust across all domains, and is never

the worst. Hence, we recommend SP-L as the method to apply in cost-sensitive

learning problems. VOI-L could also be employed, though our experiments show that

it has more variance, being the best algorithm on two domains and the worst on two

domains. In terms of memory and CPU time used, VOI-L is very e�cient, as shown

next.

171

5.4.5 Insights Into the Algorithms' Performance

We discuss the e�ects of misclassi�cation costs, algorithm family (greedy versus sys-

tematic) and Laplace correction over our measurements: Vtest, Memory and CPU

time, expected number of attributes and error rates. These measurements were in-

troduced in Section 5.1.5.1. For each algorithm, the measurements are averaged over

all replicas, on the test set.

5.4.5.1 Vtest

E�ect of misclassi�cation costs

As misclassi�cation costs increase while the test costs are kept constant, the system-

atic algorithms, which are based on AO�, may become worse, because tests appear

cheaper compared with misclassi�cation costs. With increasing misclassi�cation costs,

the AO� heuristic prunes less, and the systematic algorithms' search space increases

in size. This in turn leads to increases in memory, CPU time, and potential for over�t-

ting. Consequently, for systematic algorithms, larger misclassi�cation costs compared

to test costs can make the CSL problem harder (the algorithms performance is bad,

they learn policies with larger Vtest).

On the other hand, as misclassi�cation costs increase and tests appear cheaper,

policies may test more attributes. Hence, for the greedy algorithms the CSL problem

can appear easier. We saw that on the largest misclassi�cation costs, MC5, VOI-L and

MC-N-L are the best algorithms or among the best. But on bupa, pima and spect,

Nor, Nor-L and MC-N performed badly on MC5. So not all greedy algorithms are

competitive on problems where test costs are cheap compared with misclassi�cation

costs.

Interestingly, VOI-L also performs well on smaller misclassi�cation costs, and this

can be because its built-in pruning mechanism prevents over�tting by pruning at-

tributes whose value of information is negative.

172

E�ect of algorithm family

In most cases, the Vtest of the systematic algorithms was better than of the greedy

algorithms. On three out of �ve domains, the best algorithm employed systematic

search. But VOI-L, the most robust greedy algorithm, was the best algorithm in the

other two domains. Another greedy algorithm, Nor, was consistently the worst.

E�ect of Laplace regularization

Laplace correction improves Vtest. For problems with large misclassi�cation costs, like

pima and heart, Laplace brings huge improvements in Vtest.

5.4.5.2 Memory and CPU Time

E�ect of misclassi�cation costs

As misclassi�cation costs increase, all the algorithms that use misclassi�cation costs

during learning (i.e., all but Nor and Nor-L) will use more Memory and CPU time,

because tests become relatively cheaper and therefore the policies will test more at-

tributes.

In the greedy algorithm family, Nor and Nor-L construct the same policy for all

MC, since they do not use misclassi�cation costs during learning. Therefore their

memory is constant as MC increases. The same is true for the CPU time (with small

variations due to the load on the machines at run time). The Memory used by MC-N

and MC-N-L is also constant as MC increases, because their policies' storage does

not depend on misclassi�cation costs. The misclassi�cation costs are only used in

computing the best classi�cation actions and in the post-pruning phase. Therefore

they do not in
uence the choice of the attributes in the internal nodes of the policies,

which are the same for all MCs.

E�ect of algorithm family

Systematic algorithms use more memory and CPU time than the greedy ones, as

expected (see Figures 5.11 and 5.12). Of the greedy algorithms, VOI and VOI-L use

173

the least memory (Figure 5.11).

E�ect of Laplace regularization

In general, Laplace correction increases memory used by all algorithms, but there are

exceptions. For example VOI-L uses less memory than VOI on heart and breast-cancer.

Laplace regularization also increases the amount of CPU time required, although there

are some exceptions for VOI and AO� on spect and pima.

5.4.5.3 Expected Number of Attributes Tested (eatp)

E�ect of misclassi�cation costs

As the misclassi�cation costs increase, the policies usually have greater expected

depth measured on the test set. That is, the expected number of attributes tested

(eatp) increases with MC (Figure 5.13). In theory, eatp can still decrease as MC

increases, if there is a very informative, but expensive, test. If such a test exists, it

will only be tested for large misclassi�cation costs, but then will be the only attribute

tested, so eatp is equal to 1. We have not observed such a case, where eatp decreases as

misclassi�cation costs increase. On the domains we have analyzed, most of the policies

test, on average, fewer than half the total number of attributes. Many policies are

quite shallow.

E�ect of algorithm family

There is no clear pattern for how greedy versus systematic search in
uences eatp.

In the greedy search family, Nor and Nor-L policies do not depend on misclassi�ca-

tion costs, so their eatp is constant. Nor's poor performance (its Vtest is consistently

the worst) is partly explained by the fact that its policy is in
exible to changes in

misclassi�cation costs. VOI-L's good performance on some domains may be explained

by its small eatp. But VOI-L is the worst algorithm on heart. A rough comparison of

its eatp with the eatp of the best algorithm there (SP-L) suggests that VOI-L stops

testing attributes too early.

174

10

100

1000

10000

100000

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

M
em

or
y

MC1
MC3
MC5

(a) Bupa

10

100

1000

10000

100000

1e+06

1e+07

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

M
em

or
y

MC1
MC3
MC5

(b) Pima

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

M
em

or
y

MC1
MC3
MC5

(c) Heart

10

100

1000

10000

100000

1e+06

1e+07

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

M
em

or
y

MC1
MC3
MC5

(d) Breast-cancer

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

M
em

or
y

MC1
MC3
MC5

(e) Spect

FIGURE 5.11: Graphs of Memory (measured in Bytes, and averaged over replicas),
for all algorithms, as the misclassi�cation costs increase. A memory limit of 100 MB
was imposed for all algorithms. All algorithms were able to terminate before reaching
this memory limit, except on spect, where the systematic algorithms reached the limit
for larger misclassi�cation costs.

175

0.001

0.01

0.1

1

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

C
P

U
 T

im
e

(in
 s

ec
on

ds
)

MC1
MC3
MC5

(a) Bupa

0.01

0.1

1

10

100

1000

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

C
P

U
 T

im
e

(in
 s

ec
on

ds
)

MC1
MC3
MC5

(b) Pima

0.001

0.01

0.1

1

10

100

1000

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

C
P

U
 T

im
e

(in
 s

ec
on

ds
)

MC1
MC3
MC5

(c) Heart

0.001

0.01

0.1

1

10

100

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

C
P

U
 T

im
e

(in
 s

ec
on

ds
)

MC1
MC3
MC5

(d) Breast-cancer

0.01

0.1

1

10

100

1000

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

C
P

U
 T

im
e

(in
 s

ec
on

ds
)

MC1
MC3
MC5

(e) Spect

FIGURE 5.12: Graphs of CPU time (measured in seconds, and averaged over repli-
cas), for all algorithms, as the misclassi�cation costs increase.

176

In the systematic search family, AO� has the largest eatp. Since its Vtest was bad,

this large eatp is a sign of over�tting.

Pruning reduces eatp, as expected, and we see this in the eatp for Nor-L versus

Nor, PPP versus AO�, and PPP-L versus AO�-L.

E�ect of Laplace regularization

Laplace correction reduces eatp for all algorithms, all domains, and all MC levels.

This may be one of the reasons why Laplace improves Vtest.

5.4.5.4 Error Rate

E�ect of misclassi�cation costs

As the misclassi�cation costs increase, we saw above that eatp increases. With more

attributes tested, the learned policies could be more accurate in diagnosis, though

that is not our objective. For all our algorithms that use misclassi�cation costs dur-

ing learning (i.e., all but Nor, Nor-L), we usually saw a decrease in the error rate as

misclassi�cation costs increase (Figure 5.14). There are some exceptions where error

rate increased as misclassi�cation costs increased: ES-L on bupa, larger misclassi�ca-

tion costs; MC-N-L on heart, larger misclassi�cation costs; and VOI-L on heart for all

misclassi�cation costs.

E�ect of algorithm family

There is no clear pattern of how greedy versus systematic search in
uences the error

rate.

Nor has a small error rate on all domains (after all, it uses InfoGain when growing

its policy), but not the smallest one on any domain. The smallest (average) error

rates found on each domain are the following:

� on bupa, 39:65% achieved by SP-L for MC5,

� on pima, 24:88% achieved by VOI-L for MC5,

177

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

E
xp

ec
te

d
nu

m
be

r
of

 a
ttr

ib
ut

es
 te

st
ed

MC1
MC3
MC5

(a) Bupa, N = 5.

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

E
xp

ec
te

d
nu

m
be

r
of

 a
ttr

ib
ut

es
 te

st
ed

MC1
MC3
MC5

(b) Pima, N = 8.

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

E
xp

ec
te

d
nu

m
be

r
of

 a
ttr

ib
ut

es
 te

st
ed

MC1
MC3
MC5

(c) Heart, N = 13.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

E
xp

ec
te

d
nu

m
be

r
of

 a
ttr

ib
ut

es
 te

st
ed

MC1
MC3
MC5

(d) Breast-cancer, N = 9.

1

1.5

2

2.5

3

3.5

4

4.5

5

Nor Nor-L MC-N MC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

E
xp

ec
te

d
nu

m
be

r
of

 a
ttr

ib
ut

es
 te

st
ed

MC1
MC3
MC5

(e) Spect, N = 22.

FIGURE 5.13: Graphs of expected number of attributes, abbreviated as eatp, aver-
aged over replicas, for all algorithms, as the misclassi�cation costs increase. eatp is
measured on the test set. For each domain, we specify N , the number of attributes.
Usually eatp increases as misclassi�cation costs increase.

178

� on heart, 21:11% achieved by SP-L for MC3,

� on breast-cancer, 3:46%, achieved byMC-N for MC3, followed closely byMC-N-L

and AO�, and

� on spect, 22:64% achieved by Nor-L for all misclassi�cation costs.

These error rates are within the range of error rates reported for 0/1 loss al-

gorithms on these domains. This may suggest using CSL algorithms with di�erent

misclassi�cation costs as a way to obtain good, small error rates.

E�ect of Laplace regularization

The e�ect of Laplace correction on the error rate is almost negligible; it can either

increase it or decrease it. The largest e�ect is for spect.

5.5 Summary

This chapter has evaluated the performance of the greedy and systematic search

algorithms on several realistic problems involving medical diagnosis. It introduced a

new method for de�ning realistic misclassi�cation costs. The algorithms performance

on test sets is evaluated at several di�erent levels of abstraction, including: graphs of

average Vtest, and normal con�dence intervals, across all replicas, for each algorithm;

pairwise comparison of algorithms using the statistical test BDeltaCost; a BDeltaCost

summary of each algorithm performance against all the others, using the chess metric.

An interesting pattern is that Laplace correction improved the performance of all

algorithms.

Di�erent ways of interpreting the results support the main �nding that, while

there is no best overall algorithm across all domains and costs ranges, the systematic

search algorithm AO� with Laplace corrections and Statistical Pruning was very ro-

bust across domains and never had the worst performance. The experimental results

179

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

E
rr

or
 r

at
e

MC1
MC3
MC5

(a) Bupa

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

E
rr

or
 r

at
e

MC1
MC3
MC5

(b) Pima

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

E
rr

or
 r

at
e

MC1
MC3
MC5

(c) Heart

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

E
rr

or
 r

at
e

MC1
MC3
MC5

(d) Breast-cancer

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Nor Nor-L MC-NMC-N-L VOI VOI-L AO* AO*-L ES ES-L SP SP-L PPP PPP-L

av
er

ag
e_

re
pl

ic
a

E
rr

or
 r

at
e

MC1
MC3
MC5

(e) Spect

FIGURE 5.14: Graphs of error rate (averaged over replicas), for all algorithms, as the
misclassi�cation costs increase. The error rate is measured on the test set. Usually
error rates decrease as misclassi�cation costs increase.

180

also show that AO� without regularization performs badly due to over�tting, and

that regularizers are needed to improve the quality of its policy on the test data.

181

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Contributions of This Dissertation

The problem addressed in this dissertation is the learning of cost-sensitive diagnostic

policies from a data set of labeled examples, paying attention to both test costs and

misclassi�cation costs. The tradeo� between these two types of costs is an important

issue that machine learning has omitted so far, with the exception of Turney [71] and

Greiner et al. [22].

1. We formulated this cost-sensitive learning problem as a Markov Decision Prob-

lem (MDP). The MDP notations enabled us to make concise and elegant proofs.

2. We showed how to apply the AO� algorithm to solve this MDP to �nd an

optimal policy (on the training data). We also turned the AO� algorithm into

an anytime algorithm by introducing the notion of a realistic policy, the best

complete policy in the graph expanded so far.

3. In order to address the statistical question of how to reduce over�tting, we

introduced several regularizers for the AO� algorithm: Laplace correction of

probabilities, statistical pruning, pessimistic post-pruning, and early stopping.

� Laplace correction improves the quality of the learned policy in almost all

cases.

� The statistical pruning heuristic prunes subtrees from the search space

when the estimated cost of their solutions is statistically indistinguishable

from the current realistic policy. When combined with Laplace correction

182

for probabilities, this regularizer turns systematic search based on AO�

into a robust method.

� Pessimistic post-pruning is a technique for pruning the �nal diagnostic

policy based on exaggerating the misclassi�cation costs using the upper

bound of a normal con�dence interval.

� The early stopping regularizer sets aside part of the training data as a

holdout set on which it evaluates the anytime realistic policy in order to

�nd the best stopping point.

Experimental evidence in Chapter 5 shows that regularizers added to AO� re-

duce the risk of over�tting and produce policies that are statistically better.

The statistical pruning combined with Laplace helps AO� the most. The AO�

algorithm and its regularizers form the family of systematic search algorithms.

4. We also implemented greedy search algorithms.

� A simple algorithm (InfoGainCost), similar to C4.5 but using test costs

in the selection of attributes, has poor performance (when evaluated with

both types of costs).

� A better algorithm (MC+InfoGainCost) is obtained by using test costs in

the selection of attributes, considering misclassi�cation costs when choos-

ing the classi�cation actions (instead of classifying into the majority class),

and post-pruning its policy based on both types of costs.

� The best algorithm in the family of greedy search algorithms grows a policy

using the one-step VOI (Value of Information) heuristic, which iteratively

selects a test assuming it is the last one to perform before classifying. This

heuristic incorporates both test costs and misclassi�cation costs. The VOI

policy also has a built-in pre-pruning step that works well in preventing

over�tting by limiting the depth of the policy.

183

The Laplace regularizer added to MC+InfoGainCost and VOI further improves

their performance.

5. We designed a method of computing interesting values for misclassi�cation costs

relative to test costs.

6. We compared algorithms from the systematic and greedy search families on

realistic UCI problems, and we recommend AO� with both the Laplace and the

statistical pruning regularizers (SP-L) as the cost-sensitive learning algorithm

most likely to produce a good policy. However, if computational resources are an

issue, the e�cient and easy-to-implement one-step VOI policy with the Laplace

regularizer often works well.

6.2 Future Work

This section is organized by chapter, as these questions are inspired by, or extend the

work in each of the thesis chapters.

Chapter 2

� What CSL problems are polynomial-time approximable?

� A central methodological question in CSL is how to allocate the available data

into training and test sets in order to get a good estimate of the quality of the

learned policy [23].

� Extensions of our cost-sensitive learning framework:

1. Complex actions: Our CSL framework assumes pure observational, non-

interfering tests, that do not a�ect other tests nor do they change the

examples' classes. In general, the actions can be complex. There could

be treatment actions which may have side e�ects (on the disease, on other

184

measurements and treatments). Tests may also be repeated, and they may

have delayed results. An important question is how to obtain training data

for these complex tests.

2. Missing attribute values: When watching a doctor's policy, learning

good policies is possible only if additional questions can be asked. This is

related to the issue of o�-policy learning in reinforcement learning [66].

3. Continuous attributes: In our studies, we discretized all continuous at-

tribute values prior to learning. An important direction for future research

would be to develop CSL methods that do not require pre-discretizing the

attributes. It is straightforward to extend all of the greedy methods to dis-

cretize each attribute by dynamically choosing a threshold for each node of

the decision tree. However, for the systematic search methods, this leads

to a combinatorial explosion in the size of the AND/OR graph. Is there

some way to integrate dynamic discretization with systematic search?

4. Other extensions are discussed in Section 2.5.

Chapter 3

� From the greedy algorithms proposed, one-step VOI is the easiest to analyze

theoretically, and it also has the best performance. It would be interesting to

theoretically characterize the CSL problems on which one-step VOI is close to

the optimal policy �� (either on the training data or on the true model, when

known) and to compute theoretical bounds on the di�erence between them. This

thesis shows that one-step VOI often learns good policies, compared to other

algorithms. However, this comparative approach does not provide bounds on

how far the VOI policies are from optimal.

� More work could be done in the design space of MC+InfoGainCost methods.

185

Chapter 4

� When trading-o� between policy quality and limited memory, is it better to do

depth-�rst, breadth-�rst or best-�rst (AO�) search?

� For what class of cost-sensitive problems is exhaustive search (or depth-�rst

search) over the space of all trees feasible? Some branch-and-bound methods

could be used to prune parts of the search space. A small training data set may

be enough to guarantee termination of exhaustive search, though the over�tting

issue remains.

� In our CSL framework, classi�cation decisions are based on minimizing the ex-

pected misclassi�cation costs, that is, bestf = argminfk
P

y P (yjs) �MC(fk; y).

We can learn a diagnostic policy by AO�, or by any of the CSL algorithms

introduced in this thesis, then replace the classi�cations in the leaves with an

ensemble of classi�ers using the undiscretized attributes of the examples in the

leaves, in order to compute the class probabilities P (yjs) more accurately. Those
ensembles should be sensitive to the misclassi�cation costs (for example, bagged

PETs [15], or cost-sensitive adaptations of Ada Boost [69]).

Chapter 5

� The CSL algorithms have obtained quite small error rates (Section 5.4.5.4),

though this was a by-product. This suggests a new approach to learning and

regularizing decision trees by applying AO� and the other CSL algorithms to

supervised learning with 0/1 loss, setting all attribute costs to be equal to a

parameter �, to be tuned.

� Are there inadmissible heuristics that give better overall performance than the

admissible heuristic that we employ? Are there ways of exploiting branch-and-

bound methods to attain additional pruning?

186

� Another interesting direction for future work would be to �rst learn a probabilis-

tic model from the data, then run the systematic search algorithms to construct

diagnostic policies. Incorporating causal knowledge into the model may reduce

the amount of training data needed.

6.3 Thesis Summary

There are many important problems where both test costs and misclassi�cation costs

matter. When learning cost-sensitive diagnostic policies, it is important to understand

all costs involved and choose appropriate methods. Otherwise, ignoring costs that

matter leads to policies that perform poorly when all costs are considered. This dis-

sertation has shown that AO�-based systematic search learns good diagnostic policies

from labeled examples when additional safeguards against over�tting are provided.

187

BIBLIOGRAPHY

[1] A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic
programming. Arti�cial Intelligence, 72(1):81{138, 1995.

[2] V. Bayer-Zubek and T. Dietterich. Pruning improves heuristic search for cost-
sensitive learning. In Proceedings of the Nineteenth International Conference of
Machine Learning, pages 27{35, Sydney, Australia, 2002. Morgan Kaufmann.

[3] H. Berliner. The B� tree search algorithm: a best-�rst proof procedure. Arti�cial
Intelligence, 12:23{40, 1979.

[4] C.L. Blake and C.J. Merz. UCI repository of machine learning databases.
http://www.ics.uci.edu/�mlearn/MLRepository.html, 1998.

[5] B. Bonet and H. Ge�ner. Learning sorting and decision trees with POMDPs.
In Proceedings of the Fifteenth International Conference of Machine Learning,
pages 73{81. Morgan Kaufmann, San Francisco, CA, 1998.

[6] B. Bonet and H. Ge�ner. Faster heuristic search algorithms for planning with un-
certainty and full feedback. In Proceedings of the Eighteenth International Joint
Conference on Arti�cial Intelligence, San Francisco, 2003. Morgan Kaufmann.

[7] B. Bonet and H. Ge�ner. Labeled RTDP: Improving the convergence of real-time
dynamic programming. In Proceedings of ICAPS-03, 2003.

[8] J. P. Bradford, C. Kunz, R. Kohavi, C. Brunk, and C. E. Brod-
ley. Pruning decision trees with misclassi�cation costs. In European
Conference on Machine Learning, pages 131{136. Longer version from
http://robotics.stanford.edu/users/ronnyk/ronnyk-bib.html, or as ECE TR 98-
3, Purdue University, 1998.

[9] L. Breiman, J.H. Friedman, R. A. Olshen, and C.J. Stone. Classi�cation and
Regression Trees. Wadsworth, Monterey, California, 1984.

[10] P.P. Chakrabarti, S. Ghose, A. Acharya, and S.C. DeSarkar. Heuristic search in
restricted memory. Arti�cial Intelligence, 41:197{221, 1989.

[11] P.P. Chakrabarti, S. Ghose, and S.C. DeSarkar. Admissibility of AO� when
heuristics overestimate. Arti�cial Intelligence, 34:97{113, 1988.

[12] T. Das, A. Gosavi, S. Mahadevan, and N. Marchalleck. Solving semi-Markov
decision problems using average reward reinforcement learning. Management
Science, 45(4):560{574, 1999.

188

[13] T. G. Dietterich. Approximate statistical tests for comparing supervised classi-
�cation learning algorithms. Neural Computation, 10(7):1895{1924, 1998.

[14] P. Domingos. MetaCost: A general method for making classi�ers cost-sensitive.
In Knowledge Discovery and Data Mining, pages 155{164, 1999.

[15] P. Domingos and F. Provost. Well-trained PETs: Improving probability esti-
mation trees. CDER Working Paper #00-04-IS, Stern School of Business, New
York University, New York, 2000.

[16] B. Efron and R. J. Tibshirani. An introduction to the bootstrap. New York:
Chapman and Hall, 1993.

[17] T. Fawcett and F. Provost. Adaptive fraud detection. Data Mining and Knowl-
edge Discovery, 1(3):1{28, 1997.

[18] T. Fountain, T.G. Dietterich, and B. Sudyka. Mining IC test data to optimize
VLSI testing. In Proceedings of the Sixth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 18{25. ACM Press, 2000.

[19] J. H. Friedman and W. Stuetzle. Projection pursuit regression. Journal of the
American Statistics Association, 76:817{823, 1981.

[20] J. Gama. A cost-sensitive iterative Bayes. InWorkshop on Cost-Sensitive Learn-
ing at ICML2000, pages 7{13, Stanford University, California, 2000.

[21] D. Gordon and D. Perlis. Explicitly biased generalization. Computational Intel-
ligence, 5(2):67{81, 1989.

[22] R. Greiner, A. J. Grove, and D. Roth. Learning cost-sensitive active classi�ers.
Arti�cial Intelligence, 139(2):137{174, 2002.

[23] I. Guyon, J. Makhoul, R. Schwartz, and V. Vapnik. What size test set gives
good error rate estimates? IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(1):52{64, 1998.

[24] E. Hansen. Solving POMDPs by searching in policy space. In Proceedings of the
Fourteenth International Conference on Uncertainty in Arti�cial Intelligence,
pages 211{219, San Francisco, 1998. Morgan Kaufmann.

[25] E. Hansen and S. Zilberstein. A heuristic search algorithm that �nds solutions
with loops. Arti�cial Intelligence, 129(1{2):35{62, 2001.

[26] M. Hauskrecht. Value-function approximations for partially observable Markov
decision processes. Journal of Arti�cial Intelligence Research, 12:33{94, 2000.

[27] D. Heckerman, J. Breese, and K. Rommelse. Troubleshooting under uncertainty.
Technical report, MSR-TR-94-07, Microsoft Research, 1994.

189

[28] H. Hermans, J.D.F. Habbema, and A.T Van der Burgt. Cases of doubt in allo-
cation problems, k populations. Bulletin of the International Statistics Institute,
45:523{529, 1974.

[29] L. Hya�l and R. L. Rivest. Constructing optimal binary decision trees is NP-
Complete. Information Processing Letters, 5(1):15{17, 1976.

[30] N. Ikizler. Bene�t maximizing classi�cation using feature intervals. M.S. Thesis,
Department of Computer Engineering, Bilkent University, Ankara, Turkey, 2002.

[31] P. Jimenez and C. Torras. An e�cient algorithm for searching implicit AND/OR
graphs with cycles. Arti�cial Intelligence, 124:1{30, 2000.

[32] U. Knoll, G. Nakhaeizadeh, and B. Tausend. Cost-sensitive pruning of decision
trees. In Proceedings of the Eighth European Conference of Machine Learning,
pages 383{386, Berlin, Germany, 1994. Springer-Verlag.

[33] D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning. Arti�cial
Intelligence, 6(4):293{326, 1975.

[34] R. Korf. Real-time heuristic search. Arti�cial Intelligence, 42:189{211, 1990.

[35] M. Kukar and I. Kononenko. Cost-sensitive learning with neural networks. In
Proceedings of the Thirteenth European Conference Arti�cial Intelligence, pages
445{449, Chichester, 1998. John Wiley & Sons, New York.

[36] V. Kumar and L. N. Kanal. A general branch and bound formulation for un-
derstanding and synthesizing AND/OR tree search procedures. Arti�cial Intel-
ligence, 21:179{198, 1983.

[37] V. Kumar and L. N. Kanal. The CDP: A unifying formulation for heuristic
search, dynamic programming, and branch-and-bound. In L. N. Kanal and
V. Kumar, editors, Search in Arti�cial Intelligence, pages 1{27. Springer-Verlag,
Berlin, 1988.

[38] V. Kumar and L. N. Kanal. A general branch-and-bound formulation for
AND/OR graph and game tree search. In L. N. Kanal and V. Kumar, editors,
Search in Arti�cial Intelligence, pages 91{130. Springer-Verlag, Berlin, 1988.

[39] J. B. Larsen and J. S. Dyer. Using extensive form analysis to solve partially
observable Markov decision problems. Technical report, 90/91-3-1, University of
Texas at Austin, 1990.

[40] Y. Lirov and O-C. Yue. Automated network troubleshooting knowledge acquisi-
tion. Journal of Applied Intelligence, 1:121{132, 1991.

190

[41] M. L. Littman, T. Nguyen, H. Hirsh, E. M. Fenson, and R. Howard. Cost-
sensitive fault remediation for autonomic computing. In Workshop on AI and
Autonomic Computing: Developing a Research Agenda for Self-Managing Com-
puter Systems, 2003.

[42] A. Mahanti and A. Bagchi. AND/OR graph heuristic search methods. Journal
of the ACM, 32(1):28{51, 1985.

[43] D. D. Margineantu. Methods for Cost-sensitive Learning. PhD thesis, Depart-
ment of Computer Science, Oregon State University, Corvallis, 2001.

[44] D. D. Margineantu and T. G. Dietterich. Improved class probability estimates
from decision tree models. In Nonlinear Estimation and Classi�cation; Lecture
Notes in Statistics, volume 171, pages 169{184, New York, 2002. Springer-Verlag.

[45] A. Martelli and U. Montanari. Additive AND/OR graphs. In Proceedings of the
Third International Joint Conference on Arti�cial Intelligence, pages 1{11, 1973.

[46] A. Martelli and U. Montanari. Optimizing decision trees through heuristically
guided search. Communications of the ACM, 21(12):1025{1039, 1978.

[47] T. M. Mitchell. Machine Learning. McGraw-Hill Companies, Inc., 1997.

[48] A. Moore and C. Atkeson. Prioritized sweeping: Reinforcement learning with
less data and less real time. Machine Learning, 13:103{130, 1993.

[49] D. S. Nau, V. Kumar, and L. N. Kanal. General branch and bound, and its
relation to A� and AO�. Arti�cial Intelligence, 23(1):29{58, 1984.

[50] N. Nilsson. Principles of Arti�cial Intelligence. Tioga Publishing Co., Palo Alto,
CA, 1980.

[51] S. W. Norton. Generating better decision trees. In Proceedings of the Eleventh In-
ternational Joint Conference on Arti�cial Intelligence, pages 800{805, San Fran-
cisco, 1989. Morgan Kaufmann.

[52] M. Nunez. The use of background knowledge in decision tree induction. Machine
Learning, 6(3):231{250, 1991.

[53] K. R. Pattipati and M. G. Alexandridis. Application of heuristic search and
information theory to sequential fault diagnosis. IEEE Transactions on Systems,
Man and Cybernetics, 20(4):872{887, 1990.

[54] M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and C. Brunk. Reducing
misclassi�cation costs. In Proceedings of the Eleventh International Conference
of Machine Learning, pages 217{225, New Brunswick, New Jersey, 1994. Morgan
Kaufmann.

191

[55] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Publishing Co., Massachusetts, 1984.

[56] E. Pednault, N. Abe, B. Zadrozny, et al. Sequential cost-sensitive decision-
making with reinforcement learning. In Proceedings of the Eighth International
Conference on Knowledge Discovery and Data Mining, pages 204{213, 2002.

[57] J. Peng and R. J. Williams. E�cient learning and planning within the Dyna
framework. Adaptive Behavior, 1(4):437{454, 1993.

[58] F. J. Provost and T. Fawcett. Analysis and visualization of classi�er performance:
Comparison under imprecise class and cost distributions. InKnowledge Discovery
and Data Mining, pages 43{48, 1997.

[59] F. J. Provost and T. Fawcett. Robust classi�cation for imprecise environments.
Machine Learning, 42(3):203{231, 2001.

[60] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, New York, 1994.

[61] R. Qi. Decision Graphs: Algorithms and Applications to In
uence Diagram Eval-
uation and High-Level Path Planning Under Uncertainty. PhD thesis, University
of British Columbia, 1994.

[62] R. Qi and D. Poole. A new method for in
uence diagram evaluation. Computa-
tional Intelligence, 11:498{528, 1995.

[63] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, California, 1993.

[64] J. K. Satia and R. E. Lave. Markovian decision processes with probabilistic
observation of states. Management Science, 20:1{13, 1973.

[65] G. C. Stockman. A minimax algorithm better than alpha-beta? Arti�cial Intel-
ligence, 12:179{196, 1979.

[66] R. S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambrdige, Massachusetts, 1999.

[67] M. Tan. Cost-sensitive learning of classi�cation knowledge and its applications
in robotics. Machine Learning, 13(1):1{33, 1993.

[68] M. Tan and J. C. Schlimmer. Two case studies in cost-sensitive concept acquisi-
tion. In Proceedings of the Eighth National Conference on Arti�cial Intelligence,
pages 854{860, Menlo Park, California, 1990. AAAI Press.

[69] K. M. Ting. A comparative study of cost-sensitive boosting algorithms. In
Proceedings of the Seventeenth International Conference of Machine Learning,
pages 983{990, San Francisco, CA, 2000. Morgan Kaufmann.

192

[70] P. Turney. Types of cost in inductive concept learning. In Workshop on Cost-
Sensitive Learning at ICML2000, pages 15{21, Stanford University, California,
2000.

[71] P. D. Turney. Cost-sensitive classi�cation: Empirical evaluation of a hybrid
genetic decision tree induction algorithm. Journal of Arti�cial Intelligence Re-
search, 2:369{409, 1995.

[72] L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134{
1142, 1984.

[73] R. Washington. BI-POMDP: Bounded, incremental partially-observable Markov-
model planning. In Proceedings of the Fourth European Conference on Planning,
1997.

[74] G. I. Webb. Cost-sensitive specialization. In Proceedings of the 1996 Paci�c Rim
International Conference on Arti�cial Intelligence, pages 23{34. Springer-Verlag,
1996.

[75] S. M. Weiss, R. S. Galen, and P. V. Tadepalli. Maximizing the predictive value
of production rules. Arti�cial Intelligence, 45(1-2):47{71.

[76] B. Zadrozny. Policy Mining: Learning decision policies from �xed sets of data.
PhD thesis, Department of Computer Science and Engineering, University of
California, San Diego, 2003.

[77] B. Zadrozny and C. Elkan. Learning and making decisions when costs and proba-
bilities are both unknown. In Proceedings of the Seventh International Conference
on Knowledge Discovery and Data Mining, pages 204{213. ACM Press, 2001.

[78] A. Zuzek, A. Biasizzo, and F. Novak. Sequential diagnosis tool. Microprocessors
and microsystems, 26:191{197, 2000.

193

APPENDICES

194

CHAPTER A

DETAILS ON OUR AO� IMPLEMENTATION

The following are detailed explanations related to our AO� implementation in

Section 4.2.

1. The notion of a parent OR node s for OR node s0 is with respect to an action

a (AND node (s; a)), not to a policy (�opt or �real).

2. Any OR node has a single action marked as �opt, �real, but since the graph is

a DAG, it may have more than one parent reaching it through their �opt, �real.

3. When we perform optimistic updates of the marked ancestors of a fringe OR

node, it is useful to think of a tree (not a DAG!) rooted at the fringe OR node,

whose links are reversed �opt connectors (computed in previous iterations of the

algorithm) in the entire graph expanded so far. So an OR node appears only

once on the optimistic queue. In other words, an OR node has a single successor

OR node through �opt, so there can not be more than one path following �opt

reaching it backwards from the fringe node.

4. An OR node will appear at most once on the optimistic queue, per AO� itera-

tion, but can appear more than once on the realistic queue (because we update

the V real of all ancestors of a fringe OR node, the reversed graph for the update

of V real is a DAG rooted at the fringe OR node).

195

5. From the fringe OR node, all its ancestors up to the root, along the branch

of �opt from the root to itself, may potentially be pushed onto the optimistic

queue, along with other ancestors in the graph which reach the fringe node

through their �opt. It is possible that the optimistic updates will not reach the

root node, if the last ancestors pushed onto the optimistic queue do not have

their V opt changed nor do they become solved OR nodes. In that case, these

OR nodes will not push their marked parents onto the optimistic queue and the

updates stop before reaching the root.

6. The root node may not appear on the optimistic queue, nor on the realistic

queue. This happens when V opt, respectively V real, of the last ancestors on

the queue did not change, so nothing else gets pushed onto the queue. For the

optimistic values, it is easy to imagine such a situation when all attributes have

the same costs and the generative model of the problem is symmetric. Example:

a problem with three attributes, in state s = fx1 = 0g we have two unexpanded

AND nodes (s; x2) and (s; x3) with equal Q values, which are cheaper than

classifying: Qopt
i (s; x2) = Qopt

i (s; x3) < C(s; bestf). We break ties in favor of

the attribute with the smallest index, so �opt(s) = x2 and we expand AND

node (s; x2). Assume that its children OR nodes s0 are not classi�ed, that is

in all of them �opt(s0) = x3. Therefore the Q value of (s; x2) increases after

expansion, Qopt
i (s; x2) < Qopt

i+1(s; x2), and because Qopt
i+1(s; x3) = Qopt

i (s; x3) =

Qopt
i (s; x2) < C(s; bestf), we have V

opt
i (s) = V opt

i+1(s), unchanged, and �opt(s) =

x3, with (s; x3) unexpanded. Since V
opt(s) stays the same, and s did not become

solved, nothing will be pushed onto the optimistic queue. For the realistic values,

after expanding the fringe node's (s; a) and calculating Qreal(s; a), this may be

strictly greater than the old value V real(s). Therefore V real(s) will not change,

196

and no ancestors of the fringe node will be pushed onto the realistic queue.

7. V opt(s) may stay the same, but the node can become solved. Imagine this

situation: in �opt, there is an OR node s measuring attribute xi, that only

has two values. For one of the values, the resulting state is already classi�ed.

For the other value, the resulting state s0 has only one unexpanded AND node

(s0; xj), measuring the last of all attributes. Therefore V opt(s0) = Qopt(s0; xj) =

Q�(s0; xj), because xj is the last attribute to be measured. Say we chose to

expand AND node (s0; xj); then after expansion, its Q value stays the same,

and since nothing changed, V opt(s0) does not change either, but the OR node

s0 has become solved, and this needs to be propagated to its marked parents.

8. A solved OR node will not be pushed onto the optimistic queue, because a

solved OR node's �opt is a complete policy, and therefore it can not reach a

fringe node with an unexpanded �opt. Still, the fringe node that is �rst pushed

onto the optimistic queue may become solved once it is popped o� the queue.

9. We keep the \solved" notion as marking an OR node whose �opt reaches \solved"

OR nodes, instead of marking an OR node \solved" when �opt(s) = �real(s),

because we need this \solved" notion for our e�cient optimistic updates. Note

that if s is solved, its optimistic policy is a complete policy; after updating its

realistic policy, it follows that �opt(s) = �real(s).

10. A solved OR node may be pushed onto the realistic queue, since we push all

the ancestors of the fringe node onto the queue (as long as there are changes in

V real).

197

11. We need to clarify more about the \solved" notion. An OR node will be

marked as solved when its �opt becomes a complete policy, therefore we will have

V opt(s) = V �(s) (the proof is similar to Theorem 4.2.7). We still need to up-

date its V real before having V opt(s) = V real(s) = V �(s) and �opt(s) = �real(s).

So it is possible that we pop an OR node from the realistic queue, and it is

marked as solved, but its V real was not yet updated. For example, say we

expand AND node (s; a) of fringe node s, and all its children s0 are classi�ed.

Assume that after expansion, this action still has the smallest Q value, there-

fore V opt(s) = Qopt(s; a) = Q�(s; a) = V �(s). Because �opt is a complete policy

(in fact, it became ��), the fringe node becomes solved. But we still need to

compute Qreal(s; a) and update its V real. After expanding (s; a), Qreal(s; a) =

Qopt(s; a) = V �(s). Since V real(s) = mina2A0(s)Q
real(s; a) � V �(s), it follows

that V real(s) = V �(s).

12. For any OR node s popped from the optimistic queue, all the Qopt values of

its expanded AND nodes (s; a), Qopt(s; a), need to be updated, because it is

possible that V opt(s0) of some of their children s0 may have changed (increased);

Qopt(s; �opti (s)) may increase, and we need to have the up-to-date siblings' Qopt

in order to compute �opti+1. Here is an example to illustrate this point: consider

a problem with four attributes, where the graph expanded so far has �opt(s0) =

x2; �
opt(fx1 = 0g) = x2; �

opt(fx2 = 0g) = x1, and �opt(fx1 = 0; x2 = 0g) = x3,

and this last action is expanded. Assume V opt(fx1 = 0; x2 = 0g) increases, so

we will push its marked parents fx1 = 0g and fx2 = 0g onto the optimistic

queue, and say their V opt increases too; nevertheless, the root will be pushed

only once onto the optimistic queue, as the marked parent of fx2 = 0g, but it

still needs to update its Qopt(s0; x1) because V
opt(fx1 = 0g) increased and x1

198

may become �opt(s0) if the new Q values in s0 satisfy Q
opt(s0; x1) < Qopt(s0; x2).

13. Suggested improvement for the realistic updates: for any OR node s0 we can

push onto the realistic queue pairs containing a parent OR node s and the action

a that relates the two OR nodes (note that action a is not necessarily �reali (s),

because a parent OR node s for OR node s0 is de�ned with respect to an action

a, not to a policy). Then we only recompute Qreal
i+1 (s; a) for V

real
i+1 (s), instead of

updating all Qreal values of expanded AND nodes in state s. This improvement

is correct because all ancestors of the fringe node get pushed onto the realistic

queue (if there are changes in V real).

14. During the bottom-up optimistic updates, for unexpanded AND nodes (s; a),

we simply use the Qopt(s; a) stored in the AND nodes (these were computed at

the creation of the AND nodes, based on hopt). Unexpanded AND nodes are

ignored during the realistic updates.

199

CHAPTER B

MORE INFORMATION ON THE EXPERIMENTAL STUDIES

This appendix contains additional information on Chapter 5. We refer the reader

to Table 5.7 for a list of abbreviations.

B.1 Misclassi�cation Costs Matrices for the UCI Domains

Tables B.1, B.2, B.3, B.4 and B.5 list the values for the �ve misclassi�cation costs

used in each domain. The method for de�ning the misclassi�cation costs values was

introduced in Section 5.1.2.

B.2 Comparing the Worst Algorithms in the Systematic and Greedy
Search Families

In the systematic search family, AO� was the worst. In the greedy search family, Nor

was the worst. We compared AO� with Nor. Based on our analysis of the average

Vtest over replicas (and the normal con�dence intervals), and the BDeltaCost results,

we found that:

� for smaller misclassi�cation costs, AO� beats Norton.

� for larger misclassi�cation costs, they become more alike.

If we Laplace-correct the probabilities during the pessimistic post-pruning of Nor,

that helps a lot, sometimes Nor-L beating AO�, for example on pima; and also on

200

MC1 =

0 120:989

126 0

!
MC2 =

0 121:949

127 0

!

MC3 =

0 154:597

161 0

!
MC4 =

0 155:557

162 0

!

MC5 =

0 239:097

249 0

!

TABLE B.1: BUPA Liver Disorders (bupa), misclassi�cation costs matrices. We

constrain the ratio of misclassi�cation costs of false negatives and false positives, r =

MC(fn)=MC(fp), to be equal to the ratio of class probabilities, P (y = 0)=P (y = 1),

computed on the entire data set. On bupa, r = 0:96.

MC1 =

0 13:0597

7 0

!
MC2 =

0 52:2388

28 0

!

MC3 =

0 117:537

63 0

!
MC4 =

0 259:328

139 0

!

MC5 =

0 10126:9

5428 0

!

TABLE B.2: Pima Indians Diabetes (pima), misclassi�cation costs matrices. r =

MC(fn)=MC(fp) = 1:86:

breast-cancer, MC5. These are cases where BDeltaCost results agree very nicely with

the average Vtest graphs. Still, for small misclassi�cation costs, AO� beats Nor-L.

201

MC1 =

0 5:8394

5 0

!
MC2 =

0 348:028

298 0

!

MC3 =

0 617:809

529 0

!
MC4 =

0 1869:78

1601 0

!

MC5 =

0 1870:94

1602 0

!

TABLE B.3: Heart Disease (heart), misclassi�cation costs matrices.

r = MC(fn)/MC(fp) = 1.16.

MC1 =

0 3:71548

2 0

!
MC2 =

0 5:57322

3 0

!

MC3 =

0 16:7197

9 0

!
MC4 =

0 27:8661

15 0

!

MC5 =

0 122:611

66 0

!

TABLE B.4: Breast Cancer (breast-cancer), misclassi�cation costs matrices. r =

MC(fn)=MC(fp) = 1:85:

B.3 Comparing AO� with All the Other Algorithms using BDeltaCost

Tables B.6 and B.7 compare AO� with all the other algorithms (except with AO�-

L, because this comparison appears in Table 5.9). The regularizers added to AO�

202

MC1 =

0 7:00472

27 0

!
MC2 =

0 8:56132

33 0

!

MC3 =

0 8:82076

34 0

!
MC4 =

0 14:7877

57 0

!

MC5 =

0 64:5991

249 0

!

TABLE B.5: SPECT (spect), misclassi�cation costs matrices.

r = MC(fn)/MC(fp) = 0.26.

improved its performance (Table B.7). As discussed above, AO� is mostly better

than Norton. From the greedy algorithms, VOI and VOI-L have the most wins over

AO�.

B.4 Results of Comparing Each Laplace-Corrected Algorithm with All
the Other Laplace-corrected Algorithms, on Each Domain and Mis-
classi�cation Cost Level (MC)

Tables B.8, B.9, B.10, B.11, B.12, B.13 and B.14 organize the BDeltaCost results by

algorithm. Each Laplace-corrected algorithm is pairwise compared with all the other

Laplace-corrected algorithms, for each domain and misclassi�cation cost level.

Table B.13 for SP-L and every algorithm con�rms that SP-L is a robust method.

According to it, SP-L has a good number of wins over all methods, and it loses on

at most 4 replicas on large misclassi�cation costs, as follows: SP-L loses to VOI-L on

pima and spect, MC4 and MC5 (on 3 and 4 replicas), to MC-N-L on breast-cancer on

MC3 and MC4 (on 2 replicas), and to Nor-L on pima, MC4 and breast-cancer, MC5

203

alg1 alg2 domain MC1 MC2 MC3 MC4 MC5

AO
�

VOI bupa 0, 17, 3 0, 17, 3 0, 16, 4 0, 16, 4 0, 15, 5

AO� VOI pima 0, 17, 3 0, 12, 8 0, 3, 17 0, 6, 14 0, 9, 11

AO� VOI heart 0, 20, 0 0, 18, 2 0, 16, 4 0, 20, 0 0, 20, 0

AO� VOI b-can 0, 20, 0 0, 20, 0 6, 14, 0 6, 13, 1 0, 15, 5

AO� VOI spect 0, 15, 5 0, 11, 9 0, 11, 9 0, 16, 4 0, 18, 2

AO� VOI-L bupa 0, 16, 4 0, 16, 4 0, 16, 4 0, 16, 4 0, 15, 5

AO� VOI-L pima 0, 17, 3 0, 15, 5 0, 3, 17 0, 5, 15 0, 5, 15

AO� VOI-L heart 0, 20, 0 0, 18, 2 0, 15, 5 0, 20, 0 0, 20, 0

AO� VOI-L b-can 0, 20, 0 0, 20, 0 2, 18, 0 2, 18, 0 0, 17, 3

AO� VOI-L spect 0, 14, 6 0, 10, 10 0, 9, 11 0, 15, 5 0, 16, 4

AO� MC-N bupa 4, 16, 0 4, 16, 0 3, 17, 0 4, 16, 0 5, 14, 1

AO� MC-N pima 0, 18, 2 0, 15, 5 0, 15, 5 0, 18, 2 0, 19, 1

AO� MC-N heart 0, 20, 0 0, 16, 4 0, 13, 7 0, 20, 0 0, 20, 0

AO� MC-N b-can 1, 19, 0 0, 20, 0 0, 17, 3 0, 17, 3 0, 14, 6

AO� MC-N spect 1, 15, 4 3, 13, 4 1, 14, 5 0, 20, 0 2, 17, 1

AO� MC-N-L bupa 2, 18, 0 2, 18, 0 1, 19, 0 1, 19, 0 4, 16, 0

AO� MC-N-L pima 0, 17, 3 0, 8, 12 0, 2, 18 0, 8, 12 0, 17, 3

AO� MC-N-L heart 0, 20, 0 0, 13, 7 0, 6, 14 0, 18, 2 0, 18, 2

AO� MC-N-L b-can 1, 19, 0 0, 20, 0 0, 15, 5 0, 15, 5 0, 8, 12

AO� MC-N-L spect 0, 14, 6 0, 11, 9 1, 9, 10 1, 15, 4 1, 17, 2

AO� Nor bupa 9, 11, 0 8, 12, 0 8, 12, 0 8, 12, 0 4, 15, 1

AO
�

Nor pima 19, 1, 0 14, 4, 2 0, 17, 3 0, 16, 4 0, 17, 3

AO� Nor heart 20, 0, 0 3, 15, 2 0, 14, 6 0, 20, 0 0, 20, 0

AO� Nor b-can 19, 1, 0 16, 4, 0 15, 4, 1 14, 5, 1 0, 14, 6

AO� Nor spect 16, 4, 0 11, 9, 0 10, 10, 0 1, 19, 0 2, 17, 1

AO� Nor-L bupa 7, 13, 0 7, 13, 0 3, 17, 0 3, 17, 0 1, 19, 0

AO� Nor-L pima 4, 16, 0 0, 10, 10 0, 2, 18 0, 7, 13 1, 16, 3

AO� Nor-L heart 6, 14, 0 0, 17, 3 0, 15, 5 0, 20, 0 0, 20, 0

AO� Nor-L b-can 7, 13, 0 0, 20, 0 2, 14, 4 2, 14, 4 0, 11, 9

AO� Nor-L spect 4, 16, 0 3, 17, 0 1, 19, 0 0, 20, 0 6, 13, 1

TABLE B.6: BDeltaCost of AO� paired with each greedy search algorithm, across all

domains. Each table entry has (wins, ties, losses) of alg1 over alg2.

(on 2 replicas). SP-L loses to ES-L on bupa, MC4 and MC5 (on 3 and 2 replicas).

SP-L has 2 losses to PPP-L (bupa and spect, large misclassi�cation costs), and has

only one loss to AO�-L (pima, heart and breast-cancer).

204

alg1 alg2 domain MC1 MC2 MC3 MC4 MC5

AO
�

ES bupa 1, 14, 5 1, 14, 5 0, 16, 4 0, 16, 4 1, 19, 0

AO� ES pima 1, 17, 2 0, 12, 8 0, 9, 11 0, 13, 7 3, 16, 1

AO� ES heart 3, 17, 0 0, 15, 5 0, 11, 9 0, 20, 0 0, 20, 0

AO� ES b-can 0, 19, 1 0, 20, 0 4, 14, 2 4, 12, 4 0, 15, 5

AO� ES spect 0, 14, 6 0, 11, 9 0, 10, 10 0, 13, 7 2, 16, 2

AO� ES-L bupa 0, 13, 7 0, 13, 7 0, 15, 5 0, 16, 4 0, 19, 1

AO� ES-L pima 1, 17, 2 0, 12, 8 0, 6, 14 0, 11, 9 0, 15, 5

AO� ES-L heart 2, 18, 0 0, 15, 5 0, 8, 12 0, 19, 1 0, 19, 1

AO� ES-L b-can 0, 19, 1 0, 20, 0 3, 15, 2 2, 16, 2 0, 17, 3

AO� ES-L spect 0, 14, 6 0, 13, 7 0, 12, 8 0, 16, 4 0, 18, 2

AO� SP bupa 0, 15, 5 0, 15, 5 0, 18, 2 0, 18, 2 2, 13, 5

AO� SP pima 0, 17, 3 0, 14, 6 0, 15, 5 0, 17, 3 0, 16, 4

AO� SP heart 0, 20, 0 0, 13, 7 0, 11, 9 0, 16, 4 0, 16, 4

AO� SP b-can 1, 19, 0 0, 20, 0 1, 11, 8 1, 13, 6 0, 18, 2

AO� SP spect 0, 13, 7 1, 14, 5 1, 12, 7 0, 17, 3 0, 19, 1

AO� SP-L bupa 0, 15, 5 0, 15, 5 0, 17, 3 0, 17, 3 0, 14, 6

AO� SP-L pima 0, 17, 3 0, 8, 12 0, 2, 18 0, 10, 10 0, 12, 8

AO� SP-L heart 0, 20, 0 0, 9, 11 0, 5, 15 0, 18, 2 0, 18, 2

AO� SP-L b-can 1, 19, 0 0, 20, 0 2, 15, 3 1, 16, 3 0, 9, 11

AO� SP-L spect 0, 14, 6 0, 10, 10 0, 9, 11 0, 14, 6 1, 19, 0

AO� PPP bupa 0, 17, 3 0, 17, 3 0, 17, 3 0, 17, 3 0, 18, 2

AO
�

PPP pima 0, 16, 4 0, 16, 4 0, 11, 9 0, 16, 4 1, 15, 4

AO� PPP heart 0, 20, 0 0, 15, 5 0, 13, 7 0, 18, 2 0, 18, 2

AO� PPP b-can 0, 20, 0 0, 20, 0 1, 14, 5 1, 14, 5 0, 18, 2

AO� PPP spect 0, 18, 2 1, 17, 2 1, 13, 6 1, 18, 1 0, 18, 2

AO� PPP-L bupa 0, 16, 4 0, 16, 4 0, 16, 4 0, 16, 4 0, 19, 1

AO� PPP-L pima 0, 18, 2 0, 17, 3 0, 15, 5 0, 19, 1 0, 13, 7

AO� PPP-L heart 1, 19, 0 0, 17, 3 0, 15, 5 0, 20, 0 0, 20, 0

AO� PPP-L b-can 0, 20, 0 0, 20, 0 1, 19, 0 0, 19, 1 0, 12, 8

AO� PPP-L spect 0, 12, 8 0, 9, 11 0, 8, 12 0, 14, 6 1, 19, 0

TABLE B.7: BDeltaCost of AO� paired with each systematic search algorithm (except

AO�-L), across all domains. Each table entry has (wins, ties, losses) of alg1 over alg2.

B.5 Paired-Graphs Comparing the Best Algorithm on Each Domain with
Our Recommended Algorithms

We present several detailed graphs comparing the best algorithm on each domain

with our top choices, SP-L and VOI-L (Figures B.1, B.2, B.3, B.4, B.5, B.6 and B.7).

205

alg1 alg2 domain MC1 MC2 MC3 MC4 MC5

VOI-L MC-N-L bupa 2, 18, 0 2, 18, 0 3, 17, 0 3, 17, 0 5, 15, 0

VOI-L MC-N-L pima 0, 20, 0 0, 17, 3 0, 19, 1 2, 18, 0 5, 15, 0

VOI-L MC-N-L heart 0, 20, 0 0, 20, 0 0, 20, 0 0, 19, 1 0, 19, 1

VOI-L MC-N-L b-can 1, 19, 0 1, 19, 0 0, 17, 3 0, 14, 6 0, 14, 6

VOI-L MC-N-L spect 2, 18, 0 2, 18, 0 2, 18, 0 3, 17, 0 5, 12, 3

VOI-L Nor-L bupa 8, 12, 0 8, 12, 0 6, 14, 0 6, 14, 0 3, 17, 0

VOI-L Nor-L pima 4, 16, 0 0, 18, 2 1, 18, 1 1, 19, 0 6, 14, 0

VOI-L Nor-L heart 6, 14, 0 0, 17, 3 0, 15, 5 0, 17, 3 0, 17, 3

VOI-L Nor-L b-can 7, 13, 0 0, 20, 0 0, 18, 2 0, 16, 4 0, 14, 6

VOI-L Nor-L spect 9, 11, 0 5, 15, 0 5, 15, 0 5, 15, 0 10, 10, 0

VOI-L AO�-L bupa 0, 20, 0 0, 20, 0 0, 20, 0 0, 20, 0 2, 18, 0

VOI-L AO�-L pima 0, 20, 0 1, 17, 2 1, 19, 0 3, 17, 0 8, 12, 0

VOI-L AO�-L heart 0, 20, 0 0, 19, 1 0, 20, 0 0, 19, 1 0, 19, 1

VOI-L AO�-L b-can 0, 20, 0 0, 20, 0 0, 18, 2 0, 14, 6 0, 16, 4

VOI-L AO�-L spect 0, 20, 0 1, 19, 0 1, 19, 0 3, 16, 1 4, 15, 1

VOI-L ES-L bupa 0, 15, 5 0, 15, 5 0, 16, 4 0, 16, 4 0, 17, 3

VOI-L ES-L pima 1, 19, 0 1, 17, 2 2, 18, 0 3, 17, 0 5, 15, 0

VOI-L ES-L heart 2, 18, 0 0, 19, 1 1, 18, 1 0, 20, 0 0, 20, 0

VOI-L ES-L b-can 0, 19, 1 0, 20, 0 1, 18, 1 0, 17, 3 0, 19, 1

VOI-L ES-L spect 2, 18, 0 2, 18, 0 1, 19, 0 3, 16, 1 1, 19, 0

VOI-L SP-L bupa 0, 16, 4 0, 16, 4 0, 18, 2 0, 20, 0 1, 19, 0

VOI-L SP-L pima 0, 20, 0 0, 18, 2 0, 20, 0 3, 17, 0 4, 16, 0

VOI-L SP-L heart 0, 20, 0 0, 18, 2 0, 19, 1 0, 20, 0 0, 20, 0

VOI-L SP-L b-can 1, 19, 0 1, 19, 0 0, 20, 0 0, 14, 6 0, 15, 5

VOI-L SP-L spect 0, 20, 0 1, 19, 0 1, 19, 0 3, 15, 2 4, 15, 1

VOI-L PPP-L bupa 0, 17, 3 0, 17, 3 0, 17, 3 0, 17, 3 0, 19, 1

VOI-L PPP-L pima 0, 20, 0 0, 20, 0 1, 19, 0 7, 13, 0 3, 16, 1

VOI-L PPP-L heart 1, 19, 0 0, 17, 3 0, 17, 3 0, 17, 3 0, 17, 3

VOI-L PPP-L b-can 0, 20, 0 0, 20, 0 0, 20, 0 0, 17, 3 0, 17, 3

VOI-L PPP-L spect 0, 19, 1 1, 18, 1 0, 19, 1 2, 16, 2 4, 16, 0

TABLE B.8: BDeltaCost of VOI-L paired with each Laplace corrected algorithm,

across all domains. Each table entry has (wins, ties, losses) of alg1 over alg2.

These paired-graphs of Vtest �rst sort the Vtest values for each replica in increasing

order of Vtest of alg1, and then display the Vtest of alg2 for the corresponding replica.

For alg1, we have selected the best algorithm on each domain according to the chess

metric (see Table 5.48). The alg2 is either SP-L, or VOI-L. The two Vtest values are

206

alg1 alg2 domain MC1 MC2 MC3 MC4 MC5

MC-N-L VOI-L bupa 0, 18, 2 0, 18, 2 0, 17, 3 0, 17, 3 0, 15, 5

MC-N-L VOI-L pima 0, 20, 0 3, 17, 0 1, 19, 0 0, 18, 2 0, 15, 5

MC-N-L VOI-L heart 0, 20, 0 0, 20, 0 0, 20, 0 1, 19, 0 1, 19, 0

MC-N-L VOI-L b-can 0, 19, 1 0, 19, 1 3, 17, 0 6, 14, 0 6, 14, 0

MC-N-L VOI-L spect 0, 18, 2 0, 18, 2 0, 18, 2 0, 17, 3 3, 12, 5

MC-N-L Nor-L bupa 2, 16, 2 2, 16, 2 1, 17, 2 1, 17, 2 0, 18, 2

MC-N-L Nor-L pima 4, 16, 0 1, 19, 0 2, 16, 2 0, 18, 2 3, 16, 1

MC-N-L Nor-L heart 6, 14, 0 0, 20, 0 0, 20, 0 0, 20, 0 0, 20, 0

MC-N-L Nor-L b-can 0, 20, 0 0, 20, 0 2, 18, 0 2, 17, 1 3, 15, 2

MC-N-L Nor-L spect 9, 11, 0 5, 15, 0 5, 15, 0 3, 17, 0 8, 12, 0

MC-N-L AO�-L bupa 0, 18, 2 0, 18, 2 0, 17, 3 0, 17, 3 0, 15, 5

MC-N-L AO�-L pima 0, 20, 0 3, 16, 1 3, 17, 0 2, 18, 0 0, 19, 1

MC-N-L AO�-L heart 0, 20, 0 3, 16, 1 2, 18, 0 2, 17, 1 2, 17, 1

MC-N-L AO�-L b-can 0, 19, 1 0, 19, 1 1, 19, 0 1, 19, 0 6, 14, 0

MC-N-L AO�-L spect 0, 18, 2 0, 19, 1 0, 19, 1 1, 16, 3 2, 17, 1

MC-N-L ES-L bupa 0, 16, 4 0, 16, 4 0, 14, 6 0, 14, 6 0, 15, 5

MC-N-L ES-L pima 1, 17, 2 1, 18, 1 2, 16, 2 1, 18, 1 1, 19, 0

MC-N-L ES-L heart 2, 18, 0 2, 17, 1 2, 16, 2 0, 20, 0 0, 20, 0

MC-N-L ES-L b-can 0, 19, 1 1, 18, 1 2, 18, 0 4, 16, 0 4, 16, 0

MC-N-L ES-L spect 1, 18, 1 0, 20, 0 1, 19, 0 0, 18, 2 2, 17, 1

MC-N-L SP-L bupa 0, 17, 3 0, 17, 3 0, 15, 5 0, 17, 3 0, 14, 6

MC-N-L SP-L pima 0, 20, 0 0, 19, 1 2, 17, 1 1, 19, 0 0, 19, 1

MC-N-L SP-L heart 0, 20, 0 1, 17, 2 1, 17, 2 1, 19, 0 1, 19, 0

MC-N-L SP-L b-can 0, 20, 0 0, 20, 0 2, 18, 0 2, 17, 1 1, 18, 1

MC-N-L SP-L spect 0, 18, 2 0, 19, 1 0, 19, 1 1, 16, 3 1, 18, 1

MC-N-L PPP-L bupa 0, 18, 2 0, 18, 2 0, 15, 5 0, 15, 5 0, 17, 3

MC-N-L PPP-L pima 0, 20, 0 2, 18, 0 1, 19, 0 4, 16, 0 0, 19, 1

MC-N-L PPP-L heart 1, 19, 0 1, 19, 0 1, 19, 0 0, 20, 0 0, 20, 0

MC-N-L PPP-L b-can 0, 19, 1 0, 19, 1 1, 19, 0 2, 18, 0 2, 16, 2

MC-N-L PPP-L spect 0, 18, 2 0, 18, 2 0, 18, 2 1, 15, 4 0, 20, 0

TABLE B.9: BDeltaCost of MC-N-L paired with each Laplace corrected algorithm,

across all domains. Each table entry has (wins, ties, losses) of alg1 over alg2.

connected by a vertical line in each replica where BDeltaCost could not reject the null

hypothesis that they are tied. On each domain, as misclassi�cation costs increase,

the replicas on the x axis are not in the same order, because on each misclassi�cation

cost level MC the order of the replicas depends on the Vtest of alg1.

207

alg1 alg2 domain MC1 MC2 MC3 MC4 MC5

Nor-L VOI-L bupa 0, 12, 8 0, 12, 8 0, 14, 6 0, 14, 6 0, 17, 3

Nor-L VOI-L pima 0, 16, 4 2, 18, 0 1, 18, 1 0, 19, 1 0, 14, 6

Nor-L VOI-L heart 0, 14, 6 3, 17, 0 5, 15, 0 3, 17, 0 3, 17, 0

Nor-L VOI-L b-can 0, 13, 7 0, 20, 0 2, 18, 0 4, 16, 0 6, 14, 0

Nor-L VOI-L spect 0, 11, 9 0, 15, 5 0, 15, 5 0, 15, 5 0, 10, 10

Nor-L MC-N-L bupa 2, 16, 2 2, 16, 2 2, 17, 1 2, 17, 1 2, 18, 0

Nor-L MC-N-L pima 0, 16, 4 0, 19, 1 2, 16, 2 2, 18, 0 1, 16, 3

Nor-L MC-N-L heart 0, 14, 6 0, 20, 0 0, 20, 0 0, 20, 0 0, 20, 0

Nor-L MC-N-L b-can 0, 20, 0 0, 20, 0 0, 18, 2 1, 17, 2 2, 15, 3

Nor-L MC-N-L spect 0, 11, 9 0, 15, 5 0, 15, 5 0, 17, 3 0, 12, 8

Nor-L AO�-L bupa 0, 12, 8 0, 12, 8 0, 15, 5 0, 15, 5 0, 19, 1

Nor-L AO�-L pima 0, 16, 4 1, 19, 0 4, 15, 1 3, 17, 0 1, 16, 3

Nor-L AO�-L heart 0, 14, 6 0, 19, 1 0, 20, 0 0, 19, 1 0, 19, 1

Nor-L AO
�
-L b-can 0, 13, 7 0, 20, 0 0, 18, 2 2, 17, 1 4, 13, 3

Nor-L AO�-L spect 0, 11, 9 0, 15, 5 0, 15, 5 0, 17, 3 0, 15, 5

Nor-L ES-L bupa 0, 10, 10 0, 10, 10 0, 16, 4 0, 16, 4 0, 17, 3

Nor-L ES-L pima 0, 14, 6 4, 16, 0 1, 17, 2 1, 18, 1 0, 18, 2

Nor-L ES-L heart 1, 14, 5 0, 20, 0 1, 19, 0 0, 20, 0 0, 20, 0

Nor-L ES-L b-can 0, 14, 6 1, 19, 0 2, 17, 1 3, 16, 1 3, 15, 2

Nor-L ES-L spect 0, 13, 7 0, 13, 7 0, 13, 7 0, 17, 3 0, 13, 7

Nor-L SP-L bupa 0, 10, 10 0, 10, 10 0, 14, 6 0, 15, 5 0, 18, 2

Nor-L SP-L pima 0, 16, 4 0, 19, 1 0, 19, 1 2, 18, 0 0, 17, 3

Nor-L SP-L heart 0, 14, 6 0, 18, 2 0, 19, 1 0, 20, 0 0, 20, 0

Nor-L SP-L b-can 0, 19, 1 1, 19, 0 0, 19, 1 1, 19, 0 2, 15, 3

Nor-L SP-L spect 0, 11, 9 0, 15, 5 0, 15, 5 0, 17, 3 0, 14, 6

Nor-L PPP-L bupa 0, 14, 6 0, 14, 6 0, 14, 6 0, 14, 6 0, 16, 4

Nor-L PPP-L pima 0, 19, 1 2, 18, 0 2, 18, 0 5, 15, 0 0, 15, 5

Nor-L PPP-L heart 0, 15, 5 1, 19, 0 0, 20, 0 1, 19, 0 1, 19, 0

Nor-L PPP-L b-can 0, 13, 7 0, 20, 0 0, 19, 1 2, 17, 1 3, 13, 4

Nor-L PPP-L spect 0, 11, 9 0, 11, 9 0, 11, 9 0, 16, 4 0, 16, 4

TABLE B.10: BDeltaCost of Nor-L paired with each Laplace corrected algorithm,

across all domains. Each table entry has (wins, ties, losses) of alg1 over alg2.

208

alg1 alg2 domain MC1 MC2 MC3 MC4 MC5

AO�-L VOI-L bupa 0, 20, 0 0, 20, 0 0, 20, 0 0, 20, 0 0, 18, 2

AO�-L VOI-L pima 0, 20, 0 2, 17, 1 0, 19, 1 0, 17, 3 0, 12, 8

AO�-L VOI-L heart 0, 20, 0 1, 19, 0 0, 20, 0 1, 19, 0 1, 19, 0

AO�-L VOI-L b-can 0, 20, 0 0, 20, 0 2, 18, 0 6, 14, 0 4, 16, 0

AO�-L VOI-L spect 0, 20, 0 0, 19, 1 0, 19, 1 1, 16, 3 1, 15, 4

AO�-L MC-N-L bupa 2, 18, 0 2, 18, 0 3, 17, 0 3, 17, 0 5, 15, 0

AO�-L MC-N-L pima 0, 20, 0 1, 16, 3 0, 17, 3 0, 18, 2 1, 19, 0

AO�-L MC-N-L heart 0, 20, 0 1, 16, 3 0, 18, 2 1, 17, 2 1, 17, 2

AO�-L MC-N-L b-can 1, 19, 0 1, 19, 0 0, 19, 1 0, 19, 1 0, 14, 6

AO�-L MC-N-L spect 2, 18, 0 1, 19, 0 1, 19, 0 3, 16, 1 1, 17, 2

AO
�
-L Nor-L bupa 8, 12, 0 8, 12, 0 5, 15, 0 5, 15, 0 1, 19, 0

AO�-L Nor-L pima 4, 16, 0 0, 19, 1 1, 15, 4 0, 17, 3 3, 16, 1

AO�-L Nor-L heart 6, 14, 0 1, 19, 0 0, 20, 0 1, 19, 0 1, 19, 0

AO�-L Nor-L b-can 7, 13, 0 0, 20, 0 2, 18, 0 1, 17, 2 3, 13, 4

AO�-L Nor-L spect 9, 11, 0 5, 15, 0 5, 15, 0 3, 17, 0 5, 15, 0

AO�-L ES-L bupa 0, 15, 5 0, 15, 5 0, 16, 4 0, 16, 4 0, 18, 2

AO�-L ES-L pima 1, 19, 0 2, 17, 1 1, 18, 1 0, 18, 2 1, 17, 2

AO�-L ES-L heart 2, 18, 0 2, 17, 1 2, 17, 1 1, 19, 0 1, 19, 0

AO�-L ES-L b-can 0, 19, 1 0, 20, 0 1, 19, 0 4, 16, 0 4, 14, 2

AO�-L ES-L spect 2, 18, 0 1, 19, 0 1, 19, 0 1, 17, 2 1, 18, 1

AO�-L SP-L bupa 0, 16, 4 0, 16, 4 0, 18, 2 0, 20, 0 0, 19, 1

AO�-L SP-L pima 0, 20, 0 1, 15, 4 0, 15, 5 1, 17, 2 1, 15, 4

AO�-L SP-L heart 0, 20, 0 1, 16, 3 1, 15, 4 1, 13, 6 1, 13, 6

AO�-L SP-L b-can 1, 19, 0 1, 19, 0 1, 19, 0 1, 18, 1 0, 14, 6

AO�-L SP-L spect 0, 20, 0 0, 20, 0 0, 19, 1 0, 18, 2 0, 19, 1

AO�-L PPP-L bupa 0, 17, 3 0, 17, 3 0, 17, 3 0, 17, 3 0, 17, 3

AO�-L PPP-L pima 0, 20, 0 1, 19, 0 0, 20, 0 4, 16, 0 0, 18, 2

AO�-L PPP-L heart 1, 19, 0 2, 18, 0 1, 19, 0 2, 18, 0 2, 18, 0

AO�-L PPP-L b-can 0, 20, 0 0, 20, 0 0, 20, 0 1, 19, 0 2, 13, 5

AO�-L PPP-L spect 0, 19, 1 0, 19, 1 0, 19, 1 1, 17, 2 3, 15, 2

TABLE B.11: BDeltaCost of AO�-L paired with each Laplace corrected algorithm,

across all domains. Each table entry has (wins, ties, losses) of alg1 over alg2.

209

alg1 alg2 domain MC1 MC2 MC3 MC4 MC5

ES-L VOI-L bupa 5, 15, 0 5, 15, 0 4, 16, 0 4, 16, 0 3, 17, 0

ES-L VOI-L pima 0, 19, 1 2, 17, 1 0, 18, 2 0, 17, 3 0, 15, 5

ES-L VOI-L heart 0, 18, 2 1, 19, 0 1, 18, 1 0, 20, 0 0, 20, 0

ES-L VOI-L b-can 1, 19, 0 0, 20, 0 1, 18, 1 3, 17, 0 1, 19, 0

ES-L VOI-L spect 0, 18, 2 0, 18, 2 0, 19, 1 1, 16, 3 0, 19, 1

ES-L MC-N-L bupa 4, 16, 0 4, 16, 0 6, 14, 0 6, 14, 0 5, 15, 0

ES-L MC-N-L pima 2, 17, 1 1, 18, 1 2, 16, 2 1, 18, 1 0, 19, 1

ES-L MC-N-L heart 0, 18, 2 1, 17, 2 2, 16, 2 0, 20, 0 0, 20, 0

ES-L MC-N-L b-can 1, 19, 0 1, 18, 1 0, 18, 2 0, 16, 4 0, 16, 4

ES-L MC-N-L spect 1, 18, 1 0, 20, 0 0, 19, 1 2, 18, 0 1, 17, 2

ES-L Nor-L bupa 10, 10, 0 10, 10, 0 4, 16, 0 4, 16, 0 3, 17, 0

ES-L Nor-L pima 6, 14, 0 0, 16, 4 2, 17, 1 1, 18, 1 2, 18, 0

ES-L Nor-L heart 5, 14, 1 0, 20, 0 0, 19, 1 0, 20, 0 0, 20, 0

ES-L Nor-L b-can 6, 14, 0 0, 19, 1 1, 17, 2 1, 16, 3 2, 15, 3

ES-L Nor-L spect 7, 13, 0 7, 13, 0 7, 13, 0 3, 17, 0 7, 13, 0

ES-L AO�-L bupa 5, 15, 0 5, 15, 0 4, 16, 0 4, 16, 0 2, 18, 0

ES-L AO�-L pima 0, 19, 1 1, 17, 2 1, 18, 1 2, 18, 0 2, 17, 1

ES-L AO�-L heart 0, 18, 2 1, 17, 2 1, 17, 2 0, 19, 1 0, 19, 1

ES-L AO�-L b-can 1, 19, 0 0, 20, 0 0, 19, 1 0, 16, 4 2, 14, 4

ES-L AO�-L spect 0, 18, 2 0, 19, 1 0, 19, 1 2, 17, 1 1, 18, 1

ES-L SP-L bupa 1, 19, 0 1, 19, 0 0, 20, 0 3, 17, 0 2, 18, 0

ES-L SP-L pima 0, 19, 1 1, 18, 1 0, 18, 2 1, 19, 0 1, 18, 1

ES-L SP-L heart 0, 18, 2 0, 16, 4 0, 16, 4 0, 18, 2 0, 18, 2

ES-L SP-L b-can 2, 18, 0 1, 19, 0 1, 18, 1 1, 15, 4 0, 14, 6

ES-L SP-L spect 0, 18, 2 0, 19, 1 0, 19, 1 2, 17, 1 1, 18, 1

ES-L PPP-L bupa 1, 19, 0 1, 19, 0 0, 20, 0 0, 20, 0 0, 20, 0

ES-L PPP-L pima 3, 16, 1 0, 20, 0 3, 16, 1 2, 17, 1 1, 17, 2

ES-L PPP-L heart 1, 17, 2 2, 18, 0 1, 19, 0 2, 17, 1 2, 17, 1

ES-L PPP-L b-can 1, 19, 0 0, 20, 0 0, 19, 1 0, 17, 3 0, 17, 3

ES-L PPP-L spect 0, 17, 3 0, 18, 2 0, 18, 2 2, 17, 1 3, 16, 1

TABLE B.12: BDeltaCost of ES-L paired with each Laplace corrected algorithm,

across all domains. Each table entry has (wins, ties, losses) of alg1 over alg2.

210

alg1 alg2 domain MC1 MC2 MC3 MC4 MC5

SP-L VOI-L bupa 4, 16, 0 4, 16, 0 2, 18, 0 0, 20, 0 0, 19, 1

SP-L VOI-L pima 0, 20, 0 2, 18, 0 0, 20, 0 0, 17, 3 0, 16, 4

SP-L VOI-L heart 0, 20, 0 2, 18, 0 1, 19, 0 0, 20, 0 0, 20, 0

SP-L VOI-L b-can 0, 19, 1 0, 19, 1 0, 20, 0 6, 14, 0 5, 15, 0

SP-L VOI-L spect 0, 20, 0 0, 19, 1 0, 19, 1 2, 15, 3 1, 15, 4

SP-L MC-N-L bupa 3, 17, 0 3, 17, 0 5, 15, 0 3, 17, 0 6, 14, 0

SP-L MC-N-L pima 0, 20, 0 1, 19, 0 1, 17, 2 0, 19, 1 1, 19, 0

SP-L MC-N-L heart 0, 20, 0 2, 17, 1 2, 17, 1 0, 19, 1 0, 19, 1

SP-L MC-N-L b-can 0, 20, 0 0, 20, 0 0, 18, 2 1, 17, 2 1, 18, 1

SP-L MC-N-L spect 2, 18, 0 1, 19, 0 1, 19, 0 3, 16, 1 1, 18, 1

SP-L Nor-L bupa 10, 10, 0 10, 10, 0 6, 14, 0 5, 15, 0 2, 18, 0

SP-L Nor-L pima 4, 16, 0 1, 19, 0 1, 19, 0 0, 18, 2 3, 17, 0

SP-L Nor-L heart 6, 14, 0 2, 18, 0 1, 19, 0 0, 20, 0 0, 20, 0

SP-L Nor-L b-can 1, 19, 0 0, 19, 1 1, 19, 0 0, 19, 1 3, 15, 2

SP-L Nor-L spect 9, 11, 0 5, 15, 0 5, 15, 0 3, 17, 0 6, 14, 0

SP-L AO�-L bupa 4, 16, 0 4, 16, 0 2, 18, 0 0, 20, 0 1, 19, 0

SP-L AO�-L pima 0, 20, 0 4, 15, 1 5, 15, 0 2, 17, 1 4, 15, 1

SP-L AO�-L heart 0, 20, 0 3, 16, 1 4, 15, 1 6, 13, 1 6, 13, 1

SP-L AO�-L b-can 0, 19, 1 0, 19, 1 0, 19, 1 1, 18, 1 6, 14, 0

SP-L AO�-L spect 0, 20, 0 0, 20, 0 1, 19, 0 2, 18, 0 1, 19, 0

SP-L ES-L bupa 0, 19, 1 0, 19, 1 0, 20, 0 0, 17, 3 0, 18, 2

SP-L ES-L pima 1, 19, 0 1, 18, 1 2, 18, 0 0, 19, 1 1, 18, 1

SP-L ES-L heart 2, 18, 0 4, 16, 0 4, 16, 0 2, 18, 0 2, 18, 0

SP-L ES-L b-can 0, 18, 2 0, 19, 1 1, 18, 1 4, 15, 1 6, 14, 0

SP-L ES-L spect 2, 18, 0 1, 19, 0 1, 19, 0 1, 17, 2 1, 18, 1

SP-L PPP-L bupa 0, 20, 0 0, 20, 0 0, 20, 0 0, 18, 2 0, 18, 2

SP-L PPP-L pima 0, 20, 0 2, 18, 0 3, 17, 0 3, 17, 0 0, 19, 1

SP-L PPP-L heart 1, 19, 0 4, 16, 0 4, 16, 0 1, 18, 1 1, 18, 1

SP-L PPP-L b-can 0, 19, 1 0, 19, 1 0, 19, 1 1, 18, 1 3, 16, 1

SP-L PPP-L spect 0, 19, 1 0, 19, 1 0, 19, 1 1, 18, 1 2, 16, 2

TABLE B.13: BDeltaCost of SP-L paired with each Laplace corrected algorithm,

across all domains. Each table entry has (wins, ties, losses) of alg1 over alg2.

211

alg1 alg2 domain MC1 MC2 MC3 MC4 MC5

PPP-L VOI-L bupa 3, 17, 0 3, 17, 0 3, 17, 0 3, 17, 0 1, 19, 0

PPP-L VOI-L pima 0, 20, 0 0, 20, 0 0, 19, 1 0, 13, 7 1, 16, 3

PPP-L VOI-L heart 0, 19, 1 3, 17, 0 3, 17, 0 3, 17, 0 3, 17, 0

PPP-L VOI-L b-can 0, 20, 0 0, 20, 0 0, 20, 0 3, 17, 0 3, 17, 0

PPP-L VOI-L spect 1, 19, 0 1, 18, 1 1, 19, 0 2, 16, 2 0, 16, 4

PPP-L MC-N-L bupa 2, 18, 0 2, 18, 0 5, 15, 0 5, 15, 0 3, 17, 0

PPP-L MC-N-L pima 0, 20, 0 0, 18, 2 0, 19, 1 0, 16, 4 1, 19, 0

PPP-L MC-N-L heart 0, 19, 1 0, 19, 1 0, 19, 1 0, 20, 0 0, 20, 0

PPP-L MC-N-L b-can 1, 19, 0 1, 19, 0 0, 19, 1 0, 18, 2 2, 16, 2

PPP-L MC-N-L spect 2, 18, 0 2, 18, 0 2, 18, 0 4, 15, 1 0, 20, 0

PPP-L Nor-L bupa 6, 14, 0 6, 14, 0 6, 14, 0 6, 14, 0 4, 16, 0

PPP-L Nor-L pima 1, 19, 0 0, 18, 2 0, 18, 2 0, 15, 5 5, 15, 0

PPP-L Nor-L heart 5, 15, 0 0, 19, 1 0, 20, 0 0, 19, 1 0, 19, 1

PPP-L Nor-L b-can 7, 13, 0 0, 20, 0 1, 19, 0 1, 17, 2 4, 13, 3

PPP-L Nor-L spect 9, 11, 0 9, 11, 0 9, 11, 0 4, 16, 0 4, 16, 0

PPP-L AO
�
-L bupa 3, 17, 0 3, 17, 0 3, 17, 0 3, 17, 0 3, 17, 0

PPP-L AO�-L pima 0, 20, 0 0, 19, 1 0, 20, 0 0, 16, 4 2, 18, 0

PPP-L AO�-L heart 0, 19, 1 0, 18, 2 0, 19, 1 0, 18, 2 0, 18, 2

PPP-L AO�-L b-can 0, 20, 0 0, 20, 0 0, 20, 0 0, 19, 1 5, 13, 2

PPP-L AO�-L spect 1, 19, 0 1, 19, 0 1, 19, 0 2, 17, 1 2, 15, 3

PPP-L ES-L bupa 0, 19, 1 0, 19, 1 0, 20, 0 0, 20, 0 0, 20, 0

PPP-L ES-L pima 1, 16, 3 0, 20, 0 1, 16, 3 1, 17, 2 2, 17, 1

PPP-L ES-L heart 2, 17, 1 0, 18, 2 0, 19, 1 1, 17, 2 1, 17, 2

PPP-L ES-L b-can 0, 19, 1 0, 20, 0 1, 19, 0 3, 17, 0 3, 17, 0

PPP-L ES-L spect 3, 17, 0 2, 18, 0 2, 18, 0 1, 17, 2 1, 16, 3

PPP-L SP-L bupa 0, 20, 0 0, 20, 0 0, 20, 0 2, 18, 0 2, 18, 0

PPP-L SP-L pima 0, 20, 0 0, 18, 2 0, 17, 3 0, 17, 3 1, 19, 0

PPP-L SP-L heart 0, 19, 1 0, 16, 4 0, 16, 4 1, 18, 1 1, 18, 1

PPP-L SP-L b-can 1, 19, 0 1, 19, 0 1, 19, 0 1, 18, 1 1, 16, 3

PPP-L SP-L spect 1, 19, 0 1, 19, 0 1, 19, 0 1, 18, 1 2, 16, 2

TABLE B.14: BDeltaCost of PPP-L paired with each Laplace corrected algorithm,

across all domains. Each table entry has (wins, ties, losses) of alg1 over alg2.

212

48

50

52

54

56

58

60

62

64

66

68

70

V
_t

es
t[r

ep
lic

a]

replica

ES-L
SP-L

(a) MC1 { 1 win of ES-L
48

50

52

54

56

58

60

62

64

66

68

70

V
_t

es
t[r

ep
lic

a]

replica

ES-L
SP-L

(b) MC2 { 1 win of ES-L

60

65

70

75

80

85

V
_t

es
t[r

ep
lic

a]

replica

ES-L
SP-L

(c) MC3
60

65

70

75

80

85

V
_t

es
t[r

ep
lic

a]

replica

ES-L
SP-L

(d) MC4 { 3 wins of ES-L

90

95

100

105

110

115

120

125

V
_t

es
t[r

ep
lic

a]

replica

ES-L
SP-L

(e) MC5 { 2 wins of ES-L

FIGURE B.1: Bupa, paired-graphs Vtest of ES-L and SP-L for every replica, ordered

by Vtest of ES-L (best algorithm on bupa). Vertical lines connect Vtest values that

are tied according to BDeltaCost. Though mostly BDeltaCost-tied, Vtest of ES-L is

smaller than SP-L's.

213

48

50

52

54

56

58

60

62

64

66

68

70

V
_t

es
t[r

ep
lic

a]

replica

ES-L
VOI-L

(a) MC1 { 5 wins of ES-L
48

50

52

54

56

58

60

62

64

66

68

70

V
_t

es
t[r

ep
lic

a]

replica

ES-L
VOI-L

(b) MC2 { 5 wins of ES-L

60

65

70

75

80

85

V
_t

es
t[r

ep
lic

a]

replica

ES-L
VOI-L

(c) MC3 { 4 wins of ES-L
60

65

70

75

80

85

V
_t

es
t[r

ep
lic

a]

replica

ES-L
VOI-L

(d) MC4 { 4 wins of ES-L

90

95

100

105

110

115

120

125

130

V
_t

es
t[r

ep
lic

a]

replica

ES-L
VOI-L

(e) MC5 { 3 wins of ES-L

FIGURE B.2: Bupa, paired-graphs Vtest of ES-L and VOI-L for every replica, ordered

by Vtest of ES-L (best algorithm on bupa). They con�rm the superiority of ES-L over

VOI-L. Vertical lines connect Vtest values that are tied according to BDeltaCost. ES-L

has wins over VOI-L and a smaller Vtest.

214

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

V
_t

es
t[r

ep
lic

a]

replica

VOI-L
SP-L

(a) MC1
11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

V
_t

es
t[r

ep
lic

a]

replica

VOI-L
SP-L

(b) MC2 { 2 losses of VOI-L

22

23

24

25

26

27

28

29

30

31

32

V
_t

es
t[r

ep
lic

a]

replica

VOI-L
SP-L

(c) MC3
45

50

55

60

65

70

V
_t

es
t[r

ep
lic

a]

replica

VOI-L
SP-L

(d) MC4 { 3 wins of VOI-L

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

V
_t

es
t[r

ep
lic

a]

replica

VOI-L
SP-L

(e) MC5 { 4 wins of VOI-L

FIGURE B.3: Pima, paired-graphs Vtest of VOI-L and SP-L for every replica, or-

dered by Vtest of VOI-L (best algorithm on pima). For MC1, the two algorithms

compute identical policies. Vertical lines connect Vtest values that are tied according

to BDeltaCost. For small misclassi�cation costs, Vtest of SP-L is mostly better than

Vtest of VOI-L, but this trend reverses for larger misclassi�cation costs; this agrees

with BDeltaCost, which picks several wins of VOI-L over SP-L.

215

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

V
_t

es
t[r

ep
lic

a]

replica

SP-L
VOI-L

(a) MC1
60

65

70

75

80

85

90

95

100

105

V
_t

es
t[r

ep
lic

a]

replica

SP-L
VOI-L

(b) MC2 { 2 wins of SP-L

100

110

120

130

140

150

160

170

180

V
_t

es
t[r

ep
lic

a]

replica

SP-L
VOI-L

(c) MC3 { 1 win of SP-L
300

350

400

450

500

550

V
_t

es
t[r

ep
lic

a]

replica

SP-L
VOI-L

(d) MC4

300

350

400

450

500

550

V
_t

es
t[r

ep
lic

a]

replica

SP-L
VOI-L

(e) MC5.

FIGURE B.4: Heart, paired-graphs Vtest of SP-L and VOI-L for every replica, ordered

by Vtest of SP-L (best algorithm on heart). For MC1, the two algorithms compute

identical policies. Vertical lines connect Vtest values that are tied according to BDelta-

Cost. Vtest of SP-L is less than Vtest of VOI-L, though they are mostly tied according

to BDeltaCost.

216

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

V
_t

es
t[r

ep
lic

a]

replica

MC-N-L
SP-L

(a) MC1
1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

V
_t

es
t[r

ep
lic

a]

replica

MC-N-L
SP-L

(b) MC2

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

V
_t

es
t[r

ep
lic

a]

replica

MC-N-L
SP-L

(c) MC3 { 2 wins of MC-N-L

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

V
_t

es
t[r

ep
lic

a]

replica

MC-N-L
SP-L

(d) MC4 { 2 wins/1 loss of MC-N-L

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

V
_t

es
t[r

ep
lic

a]

replica

MC-N-L
SP-L

(e) MC5 { 1 win/1 loss of MC-N-L

FIGURE B.5: Breast-cancer, paired-graphs Vtest of MC-N-L and SP-L for every

replica, ordered by Vtest of MC-N-L (best algorithm on breast-cancer). Vertical lines

connect Vtest values that are tied according to BDeltaCost. The algorithms are mostly

tied according to BDeltaCost. For small MC, Vtest of MC-N-L is better, and remains

mostly better for larger MCs, though the two graphs cross.

217

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

V
_t

es
t[r

ep
lic

a]

replica

MC-N-L
VOI-L

(a) MC1 { 1 loss of MC-N-L

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

V
_t

es
t[r

ep
lic

a]

replica

MC-N-L
VOI-L

(b) MC2 { 1 loss of MC-N-L

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

V
_t

es
t[r

ep
lic

a]

replica

MC-N-L
VOI-L

(c) MC3 { 3 wins of MC-N-L

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

V
_t

es
t[r

ep
lic

a]

replica

MC-N-L
VOI-L

(d) MC4 { 6 wins of MC-N-L

2

3

4

5

6

7

8

9

V
_t

es
t[r

ep
lic

a]

replica

MC-N-L
VOI-L

(e) MC5 { 6 wins of MC-N-L

FIGURE B.6: Breast-cancer, paired-graphs Vtest of MC-N-L and VOI-L for every

replica, ordered by Vtest of MC-N-L (best algorithm on breast-cancer). Vertical lines

connect Vtest values that are tied according to BDeltaCost. For larger MC, Vtest of

MC-N-L is better than Vtest of VOI-L, which is con�rmed by BDeltaCost; this trend

reverses for smaller MCs, where Vtest of MC-N-L is usually worse.

218

3

3.5

4

4.5

5

5.5

V
_t

es
t[r

ep
lic

a]

replica

VOI-L
SP-L

(a) MC1
4

4.5

5

5.5

6

6.5

7

V
_t

es
t[r

ep
lic

a]

replica

VOI-L
SP-L

(b) MC2 { 1 win of VOI-L

4

4.5

5

5.5

6

6.5

7

V
_t

es
t[r

ep
lic

a]

replica

VOI-L
SP-L

(c) MC3 { 1 win of VOI-L
7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

V
_t

es
t[r

ep
lic

a]

replica

VOI-L
SP-L

(d) MC4 { 3 wins/2 losses of VOI-L

20

25

30

35

40

45

V
_t

es
t[r

ep
lic

a]

replica

VOI-L
SP-L

(e) MC5 { 4 wins/1 loss of VOI-L

FIGURE B.7: Spect, paired-graphs Vtest of VOI-L and SP-L for every replica, ordered

by Vtest of VOI-L (best algorithm on spect). For MC1, the two algorithms compute

identical policies. Vertical lines connect Vtest values that are tied according to BDelta-

Cost. For larger misclassi�cation costs, the trend is that Vtest of VOI-L is better than

SP-L's, and BDeltaCost detects several wins of VOI-L.

