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ABSTRACT 
Intelligent user interfaces, such as recommender systems 
and email classifiers, use machine learning algorithms to 
customize their behavior to the preferences of an end user. 
Although these learning systems are somewhat reliable, 
they are not perfectly accurate. Traditionally, end users who 
need to correct these learning systems can only provide 
more labeled training data. In this paper, we focus on 
incorporating new features suggested by the end user into 
machine learning systems. To investigate the effects of 
user-generated features on accuracy we developed an auto-
coding application that enables end users to assist a 
machine-learned program in coding a transcript by adding 
custom features. Our results show that adding user-
generated features to the machine learning algorithm can 
result in modest improvements to its F1 score. Further 
improvements are possible if the algorithm accounts for 
class imbalance in the training data and deals with low-
quality user-generated features that add noise to the 
learning algorithm. We show that addressing class 
imbalance improves performance to an extent but 
improving the quality of features brings about the most 
beneficial change. Finally, we discuss changes to the user 
interface that can help end users avoid the creation of low-
quality features. 

Author Keywords 
Feature engineering, class imbalance, end-user 
programming, machine learning. 

ACM Classification Keywords 
H5.2. Information interfaces and presentation (e.g., HCI): 
User Interfaces, I.2.6 Artificial Intelligence: Learning.  

INTRODUCTION 
Many intelligent user interfaces, such as recommender 
systems and email classifiers, use machine learning 
algorithms to customize their behavior to the preferences of 
an end user. We term this personalized system a learned 

program because it represents a set of decision-making 
behaviors for classification, generated by a probabilistic 
machine learning algorithm, for a specific end user. Each of 
these users has their own idiosyncrasies, so only they can 
provide the “gold standard” for the deployed learning 
system. These systems sometimes make mistakes; they 
recommend a movie the user dislikes, or judge mail from a 
family member to be SPAM. Improving the predictive 
accuracy of such learning systems poses the following 
challenge: how does an end user, who is typically not an 
expert in machine learning, improve a learned program’s 
predictions?  

End users possess far more knowledge about how to fix a 
learned program than the traditional method of simply 
labeling examples. In our past work [26] we found that the 
most common type of corrective feedback users wished to 
provide is the ability to create and delete features used by 
the machine learning algorithm. 

Feature engineering is the process of designing features for 
use by a machine learning algorithm. A feature is a 
characteristic of training data instances that is informative 
for predicting a class label. Good feature engineering is 
critical to a machine learning algorithm’s performance. 
Typically a machine learning expert, in conjunction with a 
domain expert, performs the feature engineering before the 
system is deployed to end users. Thus, by the time users see 
the system the features will have already been permanently 
set. In this paper we investigate how end users can 
contribute to the feature engineering effort, adding to and 
deleting from the features used by the machine learning 
algorithm after deployment.  

Our past work on using learned programs to classify email 
[17] demonstrated that class imbalance is a major problem. 
Class imbalance affects any domain where classes are 
unevenly distributed in the data. In a common case of class 
imbalance, the majority of the data points belong to one 
dominant class. Although class imbalance occurs frequently 
in many real-world data sets, machine learning researchers 
often overlook it even though standard learning algorithms 
typically perform poorly in the face of this problem. When 
one category of data is over-represented in the training set, 
this same over-representation cascades into the program’s 
predictions, and the learned program often just predicts the 
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most dominant class seen in the training data. In order to 
address this problem, we explored how the learned 
program, with features engineered by end users, can 
alleviate this problem using three methods for dealing with 
class imbalance. 

In order to explore these ideas we implemented a learning 
system to assist with coding, a familiar task in the fields of 
psychology, social science, and HCI. When coding, 
researchers categorize segmented portions of verbal 
transcripts of a research study into codes as part of an 
empirical analysis process. We developed a prototype 
known as AutoCoder that trains on previously coded 
segments of a transcript and predicts the codes the user 
would likely assign to future segments. 

The coding domain is especially interesting for two reasons. 
First, performing the coding task manually is extremely 
tedious and time consuming, which means the user has a 
strong incentive to improve the accuracy of the learned 
program. Second, coding tasks are often different for each 
study, meaning the user must engage in feature engineering. 
Since each study is so unique and tailored to the verbal data 
collected, machine learning experts do not have the 
information they would need to adequately complete 
feature engineering before deployment. 

The coding domain is also extremely challenging for 
machine learning. First, because coding is so time 
consuming, it is not viable for researchers to manually 
create a large training set of labeled segments for each 
study. Consequently, systems like the AutoCoder must 
learn from a limited amount of training data. Second, class 
imbalance in coding is the norm. Codes are seldom evenly 
distributed within a verbal transcript. Even worse, 
researchers interacting with the AutoCoder may generate a 
class imbalance by focusing on only one code at a time, 
searching out segments corresponding to just that code as a 
cognitive strategy. Finally, the auto-coding task is a 
complex learning problem because sequential relationships 
exist between segments and assigned codes, and these play 
a role in the user’s code selection. 

This paper explores the impact of incorporating user-
generated features into an auto-coder system. We present 
and evaluate three approaches for dealing with class 
imbalance. Finally, we identify two characteristics of 
detrimental user-defined features, and propose ways to 
leverage these characteristics to encourage end-user feature 
engineering that will improve the learning system. 

RELATED WORK 
A variety of methods, spanning the spectrum of formality 
and richness, have been proposed to obtain user feedback. 
These methods include interactions in natural language [2], 
editing feature-value pairs [6,21] and programming by 
demonstration [9,19]. Once the user feedback has been 
obtained, it needs to be incorporated into the machine 
learning algorithm. Traditional techniques for incorporating 
a user’s feedback allow the user to interactively create new 

training examples [12] or to label informative training 
examples as chosen by the learning algorithm [7]. These 
approaches interact with the user through labels on the 
training examples.  

A different way to incorporate feedback is to allow rich 
feedback, which involves incorporating more expressive 
forms of corrective feedback that can cause a deeper change 
in the underlying machine learning algorithm. Forms of rich 
feedback include constraint-based approaches [8,15,25], 
similarity metric learning from rich user feedback [13], 
clustering documents using a set of user-selected 
representative words for each class [20], and allowing the 
user to directly build a decision tree for the data set with the 
help of visualization techniques [30].  

Several methods have also allowed rich feedback in the 
form of allowing the user to modify features. Our past work 
[17,27,28] allows end users to re-weight features used by 
the learning algorithm. Raghavan and Allan [23] propose 
using a human expert to identify training instances and 
features that the machine learning algorithm then focuses 
on. Unlike our current work, their features are predefined 
and not created by the end user. Furthermore, they do not 
deal with class imbalance. Roth and Small [24] allow users 
to replace features corresponding to words or phrases with 
an abstraction called a Semantically Related Word Lists 
(SRWL). A SRWL consists of a list of words that are 
semantically related to each other. For instance, the words 
North, East, South and West can be replaced by a SRWL 
corresponding to “Compass Direction”. The user can also 
refine the SRWLs used in the application. In our work, we 
enable end users to create features formed by combinations 
of words and/or punctuation, rather than replacing words or 
phrases with their SRWL abstraction.  

Focusing on the particular domain of auto-coding, the 
TagHelper auto-coding system is highly accurate with 
extensive training data, but not for categories with few 
training examples [11]. Obtaining enough training data, 
however, is problematic in many cases because manual 
coding is so time-consuming. Our research addresses this 
issue by attempting to reduce the need for large training 
data by instead fine-tuning the features. 

METHODOLOGY  

The AutoCoder Prototype 
We developed an AutoCoder prototype that allows users to 
code segmented text transcripts (Figure 1 A) using a 

 
Figure 1: The basic AutoCoder prototype showing a series of 
segments (A), their corresponding codes (B), and an overview 

of the transcript’s codes (C). 



predefined code-set (Figure 1 B). Codes shown on the 
interface are colored to give users an overview of their 
coding activity. These colors are replicated in the 
navigation scrollbar to provide a summary of each code’s 
occurrence over the whole transcript (Figure 1 C). The user 
is able to manually assign a code to each segment; after a 
set number of segments have been coded, the program will 
attempt to predict the codes of the remaining unlabeled 
segments. The learned program updates its predictions as 
the user provides label corrections and suggests new 
features. To agree with a prediction, the user is able to 
approve it by placing a checkmark. Approved predictions 
are then added to the set of training data to improve the 
accuracy of future machine predictions. 

In addition to this basic ability to code a transcript, we 
devised widgets that explain the program's predictions and 
allow users to suggest features to the learned program. 

Explaining Predictions 
We designed the AutoCoder such that it could describe the 
most relevant pieces of information leading to its decisions. 
AutoCoder provides a list of Machine-generated 
Explanations (Figure 2 W2) for each prediction, informing 
users of the features that most influenced its decision. A 
computer icon reminds users that these explanations are 
based upon machine-selected features. 

End users can select any segment to view explanations 
about its current prediction, resulting in the Machine-
generated Explanation with the highest-weighted features 
appearing beneath the segment text. The AutoCoder sorts 
the explanations list according to the most influential 
features; interested users can click a button to progressively 
show more. If a user disagrees with the influence of a 
feature, she can delete the feature, thereby excluding it from 
the learned program’s future predictions. 

A Prediction Confidence (Figure 3 W3) widget displays a 
pie graph outlining the program’s probability of coding a 
given segment using any of the possible codes. A confident 
prediction is indicated by a predominantly solid color 
within the pie graph, while a graph containing an array of 
similarly sized colors signifies that the program cannot 
confidently determine which code to apply. If the program 
does not display a high confidence in its prediction, it is a 
cue to end users that they may want to implement measures 

to improve the program’s logic. 

The Popularity Bar (Figure 3 W6) specifically addresses 
the problem of class imbalance. It represents the 
proportions of each code amongst the user-coded and 
machine-predicted segments. The left bar represents code 
popularity among user-coded segments, i.e., the proportion 
of codes the user has manually selected. The right bar 
contrasts code popularity among machine-predicted 
segments, i.e., the proportion of codes the machine is 
predicting for remaining segments. 

End-User Feature Engineering 
We gave end users the ability to explain to the machine 
why a segment should be coded in a particular manner and, 
in doing so, add their own new features to the program. 
These User-generated Suggestions (Figure 2 W1) are 
integrated into the learned program’s logic as features for 
determining the codes of the remaining segments. They are 
distinguished from Machine-generated Explanations by a 
“human” icon. 

By selecting a sequence of text, users are able to create 
features spanning adjacent segments to model relationships 
between words and segments, as well as including non-
consecutive portions of text in a single segment. An 
example of a possible user-generated suggestion that 
incorporates such a relationship is: “‘?’ in the preceding 
segment followed by ‘OK’ in this segment often means this 
segment is coded as ‘Info Gained’”. We also allow users to 
add features consisting of single words or combinations of 
words and punctuation to the program. Figure 2, for 
example, shows a user creating a word combination feature 
by selecting a contiguous portion of text. 

To reflect how a user suggestion impacts the overall coding 
task, we designed an Impact Count Icon (Figure 3 W4) to 
reflect how many predictions are affected by each 
suggestion. For instance, a suggestion stating that “?” 
implies a particular code will impact each segment 
containing a “?”, likely resulting in a high impact count. A 
suggestion with a high impact count is important because it 
will affect many predictions. To indicate which predictions 
are affected by a suggestion, AutoCoder highlights the 
relevant segments and their corresponding sections in the 
scrollbar. 

 
Figure 2: An AutoCoder User-generated Suggestion (W1) and 

Machine-generated Explanation (W2). 

 
Figure 3: The Prediction Confidence widget (W3), Impact 

Count Icons (W4), Change History Markers (W5), and 
Popularity Bar (W6). 



 

To help users understand the specific implications of their 
recent actions, Change History Markers (Figure 3 W5) 
provide feedback on where changes in the program’s 
predictions have recently occurred. A black dot is displayed 
adjacent to the most recently altered predictions. A similar 
black mark is shown beside each segment’s respective 
section in the scrollbar, giving the user an overview of 
every change throughout the program. As the user makes 
changes that do not alter the machine’s prediction for a 
segment, these marks gradually fades away. 

Data Collection 
We collected data via a user study [16] that used the 
AutoCoder prototype to explore which types of information 
are thought helpful and understandable by end users 
attempting to debug machine-learned programs. This study 
also provided log data that we used off-line to investigate 
how to improve the underlying machine learning algorithm 
by incorporating user-defined features.  

We recruited 74 participants (40 males, 34 females) from 
the local student population and nearby residents for our 
study. None possessed experience with machine learning 
algorithms and only one had previous experience with a 
task similar to coding.  

All participants received a tutorial consisting of a 30-minute 
introduction to coding, the coding set itself, and the 
prototype’s functionalities. This was followed by two 20-
minute sessions where users coded a transcript with the 
prototype. A different transcript was used during each 
session. We assigned the transcript order randomly across 
our participants. 

In addition to a set of questionnaires to obtain subjective 
user responses to the prototype, we logged each 
participant's interactions with the software, including the 
features that they suggested to the program. 

Machine Learning Algorith 
Our auto-coding task is an example of a sequential 
supervised learning task [10] in which the order of the data 
plays an important role. Sequential supervised learning 
algorithms leverage the sequential relationships in data to 
improve prediction accuracy. To see these sequential 
relationships in our auto-coding domain, consider the 
screenshot in Figure 2. Our AutoCoder represents a 
transcript as a sequence of segments, shown on the left, and 
a corresponding sequence of codes, shown on the right. In 
order to predict the code for a segment, the machine 
learning algorithm needs to consider the text in that 
segment. However, the text in neighboring segments often 
influences the code for the current segment. For instance, 
the text in both segments 3 and 4 may influence the code 
assigned to segment 4. To deal with these neighboring 
relationships, we consider the text in a sliding window of 
segments that influence the current code, where in our 
implementation this sliding window includes the current 
segment and the previous segment. The underlying machine 
learning algorithm needs to convert the text in the sliding 

window into features. We take the union of the words in the 
current and previous segments and produce a bag-of-words 
representation from this union. This bag-of-words 
representation results in features corresponding to the 
presence/absence of individual words in the sliding 
window.  

In addition to neighboring segments, neighboring codes are 
also informative for predicting the code for the current 
segment. As an example, the “Seeking Info” code in 
segment 3 may make it more likely for segment 4 to be 
assigned a “Seeking Info” code. As a result, we incorporate 
the code assigned to the previous segment as a feature for 
the sequential supervised learning algorithm. 

Baseline Algorithm 
Sophisticated sequential supervised learning algorithms 
such as Hidden Markov Models (HMMs) [22] and 
Conditional Random Fields (CRFs) [18] are unsuitable in 
our situation for two reasons. First, predictions made by 
these approaches are difficult to explain to an end user, 
especially which features matter most, which is an 
important step in helping end users create predictive 
features. Second, sophisticated supervised learning 
approaches such as CRFs and HMMs involve 
computationally expensive learning and inference 
processes. 

We chose a much simpler approach by using the “recurrent 
sliding window” technique [10] that converts a sequential 
supervised learning problem into a standard supervised 
learning problem. This conversion takes the features 
derived from the sliding window, along with the code from 
the previous segment, and creates a training example for a 
standard supervised learning algorithm. This conversion 
makes the learning and inference process much more 
efficient and it allows the use of standard machine learning 
algorithms, such as naïve Bayes, that can easily generate 
explanations understandable to end users. In our 
experiments, we used a Recurrent Sliding Window Naïve 
Bayes classifier (abbreviated RSW-NB), which assumes 
that the features are conditionally independent given the 
class label. We use the RSW-NB classifier, without user-
defined features, as the baseline classifier in our 
experiments.  

Incorporating User-Defined Features 
The most straightforward way to incorporate user-defined 
features is to add them to the list of features used by the 
RSW-NB algorithm. This approach, however, does not 
cause the learning algorithm to pay special attention to the 
user-defined features since they are treated as equal to 
“regular” bag-of-words features. In order to make the 
algorithm heed the user, we implemented a variant of RSW-
NB called Weighted RSW-NB (WRSW-NB), which causes 
the underlying algorithm to put more emphasis on the user-
defined features for the specified class. We make the 
following assumption when a user adds a feature X for code 
y: the presence of feature X is important for predicting code 
y. This extra emphasis can be easily achieved with naïve 



Bayes by assigning maximal weight to the parameter P(X = 
present | Code = y).  

Class Imbalance Correction 
The most common approaches for dealing with class 
imbalance for machine learning algorithms involve 
oversampling and/or undersampling from the training data. 
These methods vary according to how data points are 
over/undersampled. We applied the three methods 
described below. All three class imbalance methods exhibit 
variability in the predictions due to randomness in the 
sampling of data points. In order to make the predictions 
less volatile, we run the machine learning algorithm with 
the class imbalance correction 100 times and take a 
majority vote among the runs for the class label. 

Over/Undersampling 
The first method of correcting for class imbalance consists 
of applying a mixture of both oversampling and 
undersampling [3]. This method works by computing the 
mean number of data points in the minority classes, where a 
minority class is any class whose number of data points is 
less than the class with the largest number of data points. 
Each class in the training data is then oversampled or 
undersampled until the number of data points in that class is 
equal to the me 

We chose to use a mixture of both undersampling and 
oversampling because of the amount of class imbalance that 
exists in our data. Some minority classes have so few data 
points that undersampling the majority classes to this 
extreme would produce insufficient training data for the 
classifier. We instead chose to compute the mean over all 
the minority classes and then oversample all classes that 
were smaller than the mean and undersample all classes that 
were larger than the mean. This prevented the majority 
classes from being undersampled too harshly while 
allowing us to still oversample the minority classes. 

SMOTE 
The SMOTE algorithm [3,4] has previously been shown to 
work effectively in dealing with class imbalance on 
continuous data sets from the UCI Repository [1]. SMOTE 
works by taking a target data point and using its k nearest 
neighbors to construct new synthetic data points. SMOTE 
was originally designed for continuous features, though a 
version for nominal features was proposed in [3,5], but their 
method only allows for the creation of a single distinct 
synthetic data point in terms of its features. In order to 
create synthetic data points with more diverse features, we 
modified the algorithm to randomly select, with 
replacement, a subset of the k nearest neighbors to create a 
panel of “voters” used to create the synthetic data point. 
The panel of “voting” neighbors votes on each feature to 
determine if it is present or absent in the synthetic data 
point. In a tie, the presence or absence of the feature is 
determined randomly.  

By randomly selecting the size of the panel to be between 1 
and k, we can then generate multiple synthetic data points. 

We also chose to use Hamming Distance [14] as our 
distance metric for the k nearest neighbor algorithm as we 
found it performed better on our data than the metric 
originally used by Chawla et al. [4]. 

Extreme SMOTE 
We created a variant of SMOTE called Extreme SMOTE 
that oversamples the minority classes by randomly selecting 
from data points the actual k nearest neighbors rather than 
creating synthetic data points. 

Off-line Evaluation of Classifiers 
We developed eight classifiers that incorporate user 
features (w/UF suffix). Six of the eight classifiers adopt 
class imbalance corrections. The eight classifiers are: 

• RSW-NB w/UF  

• RSW-NB w/UF + Over/undersampling 

• RSW-NB w/UF + SMOTE 

• RSW-NB w/UF + Extreme SMOTE 

• WRSW-NB w/UF  

• WRSW-NB w/UF + Over/undersampling 

• WRSW-NB w/UF+ SMOTE 

• WRSW-NB w/UF + Extreme SMOTE  

We evaluated each of these against the Baseline algorithm, 
a RSW-NB without user features or class imbalance 
correction.  

We used the data logs from our user study for training and 
testing the classifiers. The data of the first transcript that 
participants coded was used as a training set while the 
second transcript was used as a test set. Each classifier was 
trained on and tested against the data from a single 
participant. 

We pre-processed the training data so that only segments 
with explicit user labels, either assigned by users 
themselves or predictions by the classifier that were verified 
by the user, were used. Since the number of bag-of-words 
features (i.e. features based on individual words) in a 
transcript is very large, we applied feature selection using 
information gain to reduce the number of features. We 
chose to use the 75 most informative bag-of-words features, 
since an empirical evaluation of the average effect proved 
to be the highest at that value. We did not perform feature 
selection of the user-defined features; instead, we 
incorporated all the user-defined features into the classifier. 

Evaluation Metric 
Due to class imbalance, using a metric of prediction 
accuracy can be misleading. A “dummy” classifier that 
simply predicts the dominant class in the training data can 
appear to have very good accuracy. A better evaluation 
metric is precision and recall. We can summarize the 
tradeoff between precision and recall as a single number in 



 

the form of an F1 score, where F1 = 
(2*precision*recall)/(precision+recall).  

A further decision is how to compute overall precision and 
recall when there are more than two classes. Macro-
averaging is a process of averaging an evaluation metric by 
class [29]. For example, macro-averaged F1 is computed by 
calculating the F1 score for each class, then taking the 
average of those values across all classes. Another 
alternative is micro-averaging, which is skewed in favor of 
more dominant classes and is thus unsuitable in our class-
imbalanced data. For the evaluation of our classifiers, we 
calculated the difference in macro-averaged F1 scores 
between a classifier and the Baseline. We call this metric 
macro-F1 delta for brevity. To evaluate the classifiers' 
overall performance, we took the mean of the macro-F1 
deltas over all participants.  

RESULTS 

Adding User Features and Addressing Class Imbalance 
The simplest way to involve the user in feature engineering 
is to start paying attention to the user's suggestions. To 
measure the impact of adding user-defined features 
(without any class imbalance corrections), we compared the 
mean macro-F1 deltas for RSW-NB w/UF and WRSW-NB 
w/UF (Figure 4). RSW-NB w/UF shows a modest 
improvement (+0.9%) while WRSW-NB w/UF shows a 
decrease (-2.4%) from the Baseline algorithm. This result 
means that placing strong emphasis on user-defined 
features (as done in WRSW-NB w/UF) can cause incorrect 
predictions, if class imbalance resulting from users' tasks or 
behaviors is ignored.  

It is therefore vital to consider addressing class imbalance. 
Figure 5 illustrates the effects of user feature engineering 
when class imbalance corrections are performed. Any 
methods that we chose for RSW-NB w/UF to address class 
imbalance resulted in an increase in the mean macro-F1 
delta, where the simplest approach of over/undersampling 
resulted in a significant improvement against the Baseline 
(Wilcoxon: V=32, N=73, p=0.0245). In contrast, more 
complex approaches are needed to improve the mean 
macro-F1 delta score for WRSW-NB w/UF: only SMOTE 

and Extreme SMOTE resulted in increases in performance. 
Furthermore, just by addressing class imbalance a poor 
algorithm (such as WRSW-NB w/UF in Figure 4) can 
perform better. Thus, methods to address class imbalance 
problems need to be carefully chosen, but Extreme SMOTE 
appears to yield reliable improvements for both weighted 
and unweighted algorithms when taking user-defined 
features into account. 

Even though the mean macro-F1 increases or decreases 
appear modest, individual users may still benefit from large 
gains. For example, WRSW-NB w/UF+SMOTE could lead 
some individual users to benefit from gains as large as 30%, 
far outstripping the mean macro-F1 delta over all users of 
only 0.1% (Table 1). On the other hand, some users 
suffered macro-F1 decreases as low as -17%. In general, 
algorithms with class imbalance corrections tend to produce 
much bigger changes affecting individuals than if class 
imbalances corrections were not applied.  

Applying class imbalance corrections can address some 
problems, but not all. For example, if we compare one of 
the best performing classifiers, RSW-NB w/UF + 
over/undersampling with the related RSW-NB w/UF 
(without class imbalance corrections) only four more 
participants would have experienced macro-F1 increases 
due to class imbalance corrections. Taking this and the 
previous result together, we would like to make use of the 
more pronounced changes affecting individuals when class 
imbalance corrections are applied, while at the same time 
ensuring that more participants see more correct 
predictions. 

Influence of Individual User Features 
If we could remove noise such as irrelevant features from 
the data, this may lead to more correct predictions that are 
reflected in positive macro-F1 deltas. It is therefore 

 
Figure 4: Mean macro-F1 deltas for RSW-NB w/UF (left) and 

WRSW-NB w/UF (right). 

 
Figure 5: macro-F1 deltas for RSW-NB w/UF (left) and 

WRSW-NB w/UF (right) with the effects of different class 
imbalance adjustment methods shown in the different 
columns (Over/Undersampling is darkest, SMOTE is 

midrange, Extreme SMOTE is lightest).  
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important to consider how individual features that 
participants added contribute to the deltas. We conducted 
an offline, retrospective analysis which involved, for each 
user, training a classifier by adding individual user-defined 
features one-by-one and then calculating the resulting 
macro-F1 delta from the test set. Since our classifiers 
incorporate user-defined features in different ways, the 
impact of these features is classifier-dependent. 

For each feature we can determine whether it decreased or 
improved macro-F1 i.e. whether it was predictive or non-
predictive. Table 2 shows that end users are capable of 
coming up with predictive features and that on average, 
there are slightly more predictive features defined by users 
than non-predictive ones. A single predictive feature can 
contribute substantially to accuracy (17.8% for RSW-NB 
w/UF, 26.7% for WRSW-NB w/UF); a non-predictive 
feature can cancel out this positive effect. 

To illustrate the effects that only adding predictive features 
could have on performance, we greedily added a single 
user-defined feature to the WRSW-NB classifier for each 
user until no more improvement in the macro-F1 score was 
possible. In doing so, we can approximate the “best” 
classifier formed out of the set of user-defined features. 
From our data, this “best” classifier allows us to obtain a 
mean macro-F1 delta across all users of 19% for RSW-NB 
w/UF (Wilcoxon: V=2591, N=73, p<0.001) and 11% for 
WRSW-NB w/UF (Wilcoxon: V=2389, N=73, p<0.001).  

Determining predictive or non-predictive features based on 
their contribution to the macro-F1 score in an end-user 
situation is infeasible. First, it is time-consuming, as it 
requires adding user-defined features one at a time and then 
retraining the classifier each time. Most importantly, the 
macro-F1 score can only be calculated if all of the labels for 
the test data are available. Clearly, this requirement is 
unrealistic as it requires the coding task to be already 
completed and can only be conducted with hindsight. 

Identifying non-predictive user-defined features 
To aid the end user in identifying non-predictive features 
during feature engineering, the system could focus on traits 

of these features. In this section, we define two 
characteristics of features that have a negative effect on 
predictions. We investigate the usefulness of these 
characteristics by filtering out features based on these 
characteristics and measuring the impact on accuracy. 

We inspected the non-predictive user-defined features in 
our data and found that they had two main characteristics. 
To aid with the definitions of these characteristics, recall 
that when a user creates a feature, she indicates that the 
user-defined feature F is important for class C. 

Characteristic 1: Poor test data agreement 
In many cases in the test data, we noticed that the user-
defined feature F is not present in segments assigned to 
class C.  

We compute the test data agreement as: 

# of test segments with feature F and class label C 
# of test segments with feature F  

If this value falls below a threshold then the feature is 
considered to have poor test data agreement.  

 RSW-
NB 
w/UF 

WRSW-
NB 
w/UF 

Average no. of predictive user-
defined features 

13.16 10.83 

Highest macro-F1 increase after 
adding user-defined feature 

+17.8% +26.7% 

Average no. of non-predictive 
user-defined features 

10.64 9.61 

Highest macro-F1 decrease after 
adding user-defined feature 

-14.0% -29.5% 

Table 2: Number of predictive / non-predictive user features 
for the RSW-NB w/UF and WRSW-NB w/UF classifiers over 
all users and their effects on the macro-F1 score. On average, 

users added a total of 17.28 features. 

Algorithm 

Biggest 
macro-F1 

decrease for 
an individual 

Biggest 
macro-F1 

increase for 
an individual 

Average 
macro-F1 

delta over all 
users 

No. of 
macro-F1 
decreases 

No. of 
macro-F1 
increases 

RSW-NB w/UF -12% 13% 0.9% 28 38 
RSW-NB w/UF + over/undersampling -12% 29% 3.0% 31 42 
RSW-NB w/UF + SMOTE -22% 29% 0.4% 39 34 
RSW-NB w/UF + Extreme SMOTE -14% 27% 1.9% 35 38 
WRSW-NB w/UF -25% 20% -2.4% 42 31 
WRSW-NB w/UF + over/undersampling -25% 20% -2.3% 44 30 
WRSW-NB w/UF + SMOTE -17% 30% 0.1% 39 34 
WRSW-NB w/UF + Extreme Smote -16% 27% 2.4% 33 40 

Table 1: Summary of changes to the macro-F1 delta for individual users for the various classifiers. 



 

Characteristic 2: Under-representation of a user-defined 
feature in its assigned class in test data 
A user-defined feature F is considered to be under-
represented in the test set if it is absent from a large 
percentage of test data segments with class label C. For 
example, if a user defines the feature “I don’t know” to be 
important for the class “Info Lost”, it is considered to be 
under-represented if it is absent in most of the segments 
classified under “Info Lost” in the test data.  

We compute under-representation as: 

# of test segments with feature F and class label C 
# of test segments with class label C  

If this value falls below a threshold, then the feature is 
under-represented.  

These two characteristics indicate that non-predictive 
features are those in which the assumption that the presence 
of the user-defined feature is important for the specified 
class no longer holds in the test data. As a result, the 
absence of a user-defined feature biases the prediction away 
from the user-specified code for that feature. This change 
can be due to a variety of reasons. For instance, two 
transcripts may contain different words and phrases, 
resulting in a different set of salient features for the code 
set. Another possibility is that an individual’s interpretation 
of a code may be inconsistent during the entire coding 
process, resulting in a changing set of features being salient 
for a certain code over the entire transcript. 

We evaluated the usefulness of these characteristics by 
applying them to the non-predictive features in our data, 
and removing the ones that fell below the thresholds. (We 
use a threshold of 0.5 for test data agreement and a 
threshold of 0.1 for under-representation.) When combined, 
these two characteristics are able to filter out many of the 
non-predictive features. If we rank the top 100 worst user-
defined features added by all the users in our study, 7% fall 
under low test set agreement only, 9% fall under under-
representation only, 79% fall under both characteristics, and 
6% fall under neither. Thus, 94% of the 100 worst user-
defined features can be filtered out if either characteristic 1 
or 2 is met. However, while this filtering is successful at 
removing non-predictive user-defined features, it is 
somewhat indiscriminate as it removes predictive user-
defined features as well. Of the top 100 best user-defined 
features added by all users in our study, 64% are removed 
by both of these criteria.  

To assess the effects of removing user-defined features 
based on these characteristics on the macro-F1 deltas, we 
removed user-defined features that matched both 
characteristic 1 and 2 from the RSW-NB w/UF and 
WRSW-NB w/UF classifiers. This resulted in 52 out of 74 
participants having positive macro-F1 deltas for WRSW-
NB w/UF Filtered, as compared to only 31 before filtering 
them out. Using this approach also increased the largest 
macro-F1 delta to 32.2%, instead of 20% before filtering. 

Consequently, the mean macro-F1 delta over all users 
increased to 5% compared to the Baseline, which has no 
user features, (Wilcoxon: V=1934, N=73, p<0.001) and it 
also represents a significant improvement over the WRSW-
NB w/UF without filtering (Wilcoxon: V=2276, N=73, 
p<0.001). This approach also works for RSW-NB w/UF, 
which does not weight the user-defined features. RSW-NB 
w/UF Filtered had an average increase in macro-F1 of 5%, 
showing a significant improvement over the Baseline 
(Wilcoxon: V=1048, N=73, p=0.0062). 

Using this approach to improve the machine learning 
algorithm has several advantages. It is simple and can 
therefore be performed quickly in real time without 
retraining the classifier. Furthermore, although test set 
agreement and under-representation can only be exactly 
computed in hindsight, these two criteria are indicators of 
discrepancies between the classifier’s predicted class labels 
and the user’s class labels. We can approximately detect 
these discrepancies using the parts of the test transcript that 
have already been coded by the user rather than waiting for 
the entire test transcript to be coded. In addition, we can 
compute other surrogates for test data agreement and under-
representation that do not require hindsight. These 
indicators can be incorporated into the design of user 
interfaces that could help the end user avoid creating non-
predictive features. 
IMPLICATIONS FOR DESIGN 
In this work, we have taken the position that end users can 
have a hand in feature engineering. To support this 
possibility, just as one would not expect a machine learning 
expert to add features during feature engineering without 
first understanding how relevant the features are, it is 
unreasonable to expect end users to add features without 
understanding their impact. Our prototype’s user interface 
aims to help users understanding the impact of features they 
think should be considered by the machine. 

However, our results show that allowing the user to add 
features to a machine learning algorithm is not a silver 
bullet. Although some of our participants’ features were 
beneficial, many were detrimental to accurate classification. 
While addressing class imbalance alleviated this problem to 
an extent, it was improving the quality of features that 
brought about the most beneficial change. 

We were able to identify two quality characteristics that had 
a detrimental impact on predictions: 1) poor test agreement 
and 2) underrepresentation. Intelligent user interfaces can 
act upon both of these characteristics to improve the 
predictive accuracy of a learned program. 

Regarding the combination of both characteristics, a user 
interface could easily check whether a new user-defined 
feature appears anywhere in the test data. In our data, if the 
feature was completely absent from the test data, then the 
feature fell into both characteristics 1 and 2, and was very 
likely to hurt performance. 



A more robust approach to approximately detect both 
criteria would be for the system to track discrepancies 
between the current state of the classifier and the classes 
being assigned by the user. As the user provides feedback 
on segments, the system could check the user-defined 
features against the already-coded section of the transcript 
to see if the features met either criterion. If the number of 
these discrepancies passed a certain threshold, the system 
could alert the user of inconsistencies between the user’s 
perception of the feature’s importance and what actually 
existed in the test data. 

With either of these additions the user would be better 
equipped to provide genuinely useful features to the 
machine, increasing the machine’s performance and the 
user’s trust in the system. 

CONCLUSION 
Intelligent systems that customize themselves to an end 
user’s behavior are different from other machine learning 
situations: only one person knows the ground truth as to 
what is appropriate behavior, and that person is the end 
user. Thus, end users themselves must have the final say in 
feature engineering. 

Therefore, in this paper we investigated ways to enable end 
users to improve machine learning algorithms via feature 
engineering after the machine learning system has been 
deployed. Our results showed that adding user-defined 
features resulted in a minor improvement to the learning 
algorithm’s performance. However, this performance 
increased when the issues of class imbalance and low 
quality user features were addressed.  

Class imbalance corrections, such as in SMOTE and 
Extreme SMOTE, were particularly important given our 
assumptions about user intent. Specifically, we assumed 
that the presence of a user-defined feature was important 
for the user-specified class. We modified the learning 
algorithm to focus more attention on the user-defined 
features, but this resulted in a decrease in performance. We 
discovered that a solution to this problem was to also 
employ sophisticated methods for dealing with class 
imbalance. 

Our results also showed that end users were indeed capable 
of creating predictive features, but if our algorithm used 
these features indiscriminately, they degraded the learning 
algorithm because of the mix of non-predictive features 
with predictive ones. Nevertheless, end users created more 
predictive than non-predictive features, which could be 
leveraged to good effect. One approach is to identify and 
filter out non-predictive features. The majority of non-
predictive features can be identified by two characteristics: 
test set agreement, and under-representation. Identifying 
these two characteristics may seem to require hindsight in 
the form of actual test set labels. However, we propose two 
approximations to these characteristics: 1) monitoring test 
set occurrence to quickly remove detrimental features, and 

2) keeping track of the number of disagreements between 
the user and the current classifier. 

Our results provide specific steps for improving the design 
of intelligent user interfaces so that they can be feature-
engineered by end users after deployment. We believe such 
improvements are key to end users’ trust, usage, and 
realization of the full potential of user interfaces that 
support users by learning from their behavior. 
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