
End-User Feature Engineering
in the Presence of Class Imbalance

Ian Oberst1, Travis Moore1, Weng-Keen Wong1, Todd Kulesza1, Simone Stumpf2, Yann Riche3, Margaret Burnett1
1School of EECS

Oregon State University
Corvallis, OR

{obersti, moortrav, wong, kuleszto,
burnett}@eecs.oregonstate.edu

2Centre For HCI Design
City University London

London, U.K.
Simone.Stumpf.1@city.ac.uk

3Riche Design
Seattle, WA

 yann@yannriche.net

ABSTRACT
Intelligent user interfaces, such as recommender systems
and email classifiers, use machine learning algorithms to
customize their behavior to the preferences of an end user.
Although these learning systems are somewhat reliable,
they are not perfectly accurate. Traditionally, end users who
need to correct these learning systems can only provide
more labeled training data. In this paper, we focus on
incorporating new features suggested by the end user into
machine learning systems. To investigate the effects of
user-generated features on accuracy we developed an auto-
coding application that enables end users to assist a
machine-learned program in coding a transcript by adding
custom features. Our results show that adding user-
generated features to the machine learning algorithm can
result in modest improvements to its F1 score. Further
improvements are possible if the algorithm accounts for
class imbalance in the training data and deals with low-
quality user-generated features that add noise to the
learning algorithm. We show that addressing class
imbalance improves performance to an extent but
improving the quality of features brings about the most
beneficial change. Finally, we discuss changes to the user
interface that can help end users avoid the creation of low-
quality features.

Author Keywords
Feature engineering, class imbalance, end-user
programming, machine learning.

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces, I.2.6 Artificial Intelligence: Learning.

INTRODUCTION
Many intelligent user interfaces, such as recommender
systems and email classifiers, use machine learning
algorithms to customize their behavior to the preferences of
an end user. We term this personalized system a learned

program because it represents a set of decision-making
behaviors for classification, generated by a probabilistic
machine learning algorithm, for a specific end user. Each of
these users has their own idiosyncrasies, so only they can
provide the “gold standard” for the deployed learning
system. These systems sometimes make mistakes; they
recommend a movie the user dislikes, or judge mail from a
family member to be SPAM. Improving the predictive
accuracy of such learning systems poses the following
challenge: how does an end user, who is typically not an
expert in machine learning, improve a learned program’s
predictions?

End users possess far more knowledge about how to fix a
learned program than the traditional method of simply
labeling examples. In our past work [26] we found that the
most common type of corrective feedback users wished to
provide is the ability to create and delete features used by
the machine learning algorithm.

Feature engineering is the process of designing features for
use by a machine learning algorithm. A feature is a
characteristic of training data instances that is informative
for predicting a class label. Good feature engineering is
critical to a machine learning algorithm’s performance.
Typically a machine learning expert, in conjunction with a
domain expert, performs the feature engineering before the
system is deployed to end users. Thus, by the time users see
the system the features will have already been permanently
set. In this paper we investigate how end users can
contribute to the feature engineering effort, adding to and
deleting from the features used by the machine learning
algorithm after deployment.

Our past work on using learned programs to classify email
[17] demonstrated that class imbalance is a major problem.
Class imbalance affects any domain where classes are
unevenly distributed in the data. In a common case of class
imbalance, the majority of the data points belong to one
dominant class. Although class imbalance occurs frequently
in many real-world data sets, machine learning researchers
often overlook it even though standard learning algorithms
typically perform poorly in the face of this problem. When
one category of data is over-represented in the training set,
this same over-representation cascades into the program’s
predictions, and the learned program often just predicts the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, MA, USA.
Copyright 2009 ACM 978-1-60558-246-7/08/04…$5.00

most dominant class seen in the training data. In order to
address this problem, we explored how the learned
program, with features engineered by end users, can
alleviate this problem using three methods for dealing with
class imbalance.

In order to explore these ideas we implemented a learning
system to assist with coding, a familiar task in the fields of
psychology, social science, and HCI. When coding,
researchers categorize segmented portions of verbal
transcripts of a research study into codes as part of an
empirical analysis process. We developed a prototype
known as AutoCoder that trains on previously coded
segments of a transcript and predicts the codes the user
would likely assign to future segments.

The coding domain is especially interesting for two reasons.
First, performing the coding task manually is extremely
tedious and time consuming, which means the user has a
strong incentive to improve the accuracy of the learned
program. Second, coding tasks are often different for each
study, meaning the user must engage in feature engineering.
Since each study is so unique and tailored to the verbal data
collected, machine learning experts do not have the
information they would need to adequately complete
feature engineering before deployment.

The coding domain is also extremely challenging for
machine learning. First, because coding is so time
consuming, it is not viable for researchers to manually
create a large training set of labeled segments for each
study. Consequently, systems like the AutoCoder must
learn from a limited amount of training data. Second, class
imbalance in coding is the norm. Codes are seldom evenly
distributed within a verbal transcript. Even worse,
researchers interacting with the AutoCoder may generate a
class imbalance by focusing on only one code at a time,
searching out segments corresponding to just that code as a
cognitive strategy. Finally, the auto-coding task is a
complex learning problem because sequential relationships
exist between segments and assigned codes, and these play
a role in the user’s code selection.

This paper explores the impact of incorporating user-
generated features into an auto-coder system. We present
and evaluate three approaches for dealing with class
imbalance. Finally, we identify two characteristics of
detrimental user-defined features, and propose ways to
leverage these characteristics to encourage end-user feature
engineering that will improve the learning system.

RELATED WORK
A variety of methods, spanning the spectrum of formality
and richness, have been proposed to obtain user feedback.
These methods include interactions in natural language [2],
editing feature-value pairs [6,21] and programming by
demonstration [9,19]. Once the user feedback has been
obtained, it needs to be incorporated into the machine
learning algorithm. Traditional techniques for incorporating
a user’s feedback allow the user to interactively create new

training examples [12] or to label informative training
examples as chosen by the learning algorithm [7]. These
approaches interact with the user through labels on the
training examples.

A different way to incorporate feedback is to allow rich
feedback, which involves incorporating more expressive
forms of corrective feedback that can cause a deeper change
in the underlying machine learning algorithm. Forms of rich
feedback include constraint-based approaches [8,15,25],
similarity metric learning from rich user feedback [13],
clustering documents using a set of user-selected
representative words for each class [20], and allowing the
user to directly build a decision tree for the data set with the
help of visualization techniques [30].

Several methods have also allowed rich feedback in the
form of allowing the user to modify features. Our past work
[17,27,28] allows end users to re-weight features used by
the learning algorithm. Raghavan and Allan [23] propose
using a human expert to identify training instances and
features that the machine learning algorithm then focuses
on. Unlike our current work, their features are predefined
and not created by the end user. Furthermore, they do not
deal with class imbalance. Roth and Small [24] allow users
to replace features corresponding to words or phrases with
an abstraction called a Semantically Related Word Lists
(SRWL). A SRWL consists of a list of words that are
semantically related to each other. For instance, the words
North, East, South and West can be replaced by a SRWL
corresponding to “Compass Direction”. The user can also
refine the SRWLs used in the application. In our work, we
enable end users to create features formed by combinations
of words and/or punctuation, rather than replacing words or
phrases with their SRWL abstraction.

Focusing on the particular domain of auto-coding, the
TagHelper auto-coding system is highly accurate with
extensive training data, but not for categories with few
training examples [11]. Obtaining enough training data,
however, is problematic in many cases because manual
coding is so time-consuming. Our research addresses this
issue by attempting to reduce the need for large training
data by instead fine-tuning the features.

METHODOLOGY

The AutoCoder Prototype
We developed an AutoCoder prototype that allows users to
code segmented text transcripts (Figure 1 A) using a

Figure 1: The basic AutoCoder prototype showing a series of
segments (A), their corresponding codes (B), and an overview

of the transcript’s codes (C).

predefined code-set (Figure 1 B). Codes shown on the
interface are colored to give users an overview of their
coding activity. These colors are replicated in the
navigation scrollbar to provide a summary of each code’s
occurrence over the whole transcript (Figure 1 C). The user
is able to manually assign a code to each segment; after a
set number of segments have been coded, the program will
attempt to predict the codes of the remaining unlabeled
segments. The learned program updates its predictions as
the user provides label corrections and suggests new
features. To agree with a prediction, the user is able to
approve it by placing a checkmark. Approved predictions
are then added to the set of training data to improve the
accuracy of future machine predictions.

In addition to this basic ability to code a transcript, we
devised widgets that explain the program's predictions and
allow users to suggest features to the learned program.

Explaining Predictions
We designed the AutoCoder such that it could describe the
most relevant pieces of information leading to its decisions.
AutoCoder provides a list of Machine-generated
Explanations (Figure 2 W2) for each prediction, informing
users of the features that most influenced its decision. A
computer icon reminds users that these explanations are
based upon machine-selected features.

End users can select any segment to view explanations
about its current prediction, resulting in the Machine-
generated Explanation with the highest-weighted features
appearing beneath the segment text. The AutoCoder sorts
the explanations list according to the most influential
features; interested users can click a button to progressively
show more. If a user disagrees with the influence of a
feature, she can delete the feature, thereby excluding it from
the learned program’s future predictions.

A Prediction Confidence (Figure 3 W3) widget displays a
pie graph outlining the program’s probability of coding a
given segment using any of the possible codes. A confident
prediction is indicated by a predominantly solid color
within the pie graph, while a graph containing an array of
similarly sized colors signifies that the program cannot
confidently determine which code to apply. If the program
does not display a high confidence in its prediction, it is a
cue to end users that they may want to implement measures

to improve the program’s logic.

The Popularity Bar (Figure 3 W6) specifically addresses
the problem of class imbalance. It represents the
proportions of each code amongst the user-coded and
machine-predicted segments. The left bar represents code
popularity among user-coded segments, i.e., the proportion
of codes the user has manually selected. The right bar
contrasts code popularity among machine-predicted
segments, i.e., the proportion of codes the machine is
predicting for remaining segments.

End-User Feature Engineering
We gave end users the ability to explain to the machine
why a segment should be coded in a particular manner and,
in doing so, add their own new features to the program.
These User-generated Suggestions (Figure 2 W1) are
integrated into the learned program’s logic as features for
determining the codes of the remaining segments. They are
distinguished from Machine-generated Explanations by a
“human” icon.

By selecting a sequence of text, users are able to create
features spanning adjacent segments to model relationships
between words and segments, as well as including non-
consecutive portions of text in a single segment. An
example of a possible user-generated suggestion that
incorporates such a relationship is: “‘?’ in the preceding
segment followed by ‘OK’ in this segment often means this
segment is coded as ‘Info Gained’”. We also allow users to
add features consisting of single words or combinations of
words and punctuation to the program. Figure 2, for
example, shows a user creating a word combination feature
by selecting a contiguous portion of text.

To reflect how a user suggestion impacts the overall coding
task, we designed an Impact Count Icon (Figure 3 W4) to
reflect how many predictions are affected by each
suggestion. For instance, a suggestion stating that “?”
implies a particular code will impact each segment
containing a “?”, likely resulting in a high impact count. A
suggestion with a high impact count is important because it
will affect many predictions. To indicate which predictions
are affected by a suggestion, AutoCoder highlights the
relevant segments and their corresponding sections in the
scrollbar.

Figure 2: An AutoCoder User-generated Suggestion (W1) and

Machine-generated Explanation (W2).

Figure 3: The Prediction Confidence widget (W3), Impact

Count Icons (W4), Change History Markers (W5), and
Popularity Bar (W6).

To help users understand the specific implications of their
recent actions, Change History Markers (Figure 3 W5)
provide feedback on where changes in the program’s
predictions have recently occurred. A black dot is displayed
adjacent to the most recently altered predictions. A similar
black mark is shown beside each segment’s respective
section in the scrollbar, giving the user an overview of
every change throughout the program. As the user makes
changes that do not alter the machine’s prediction for a
segment, these marks gradually fades away.

Data Collection
We collected data via a user study [16] that used the
AutoCoder prototype to explore which types of information
are thought helpful and understandable by end users
attempting to debug machine-learned programs. This study
also provided log data that we used off-line to investigate
how to improve the underlying machine learning algorithm
by incorporating user-defined features.

We recruited 74 participants (40 males, 34 females) from
the local student population and nearby residents for our
study. None possessed experience with machine learning
algorithms and only one had previous experience with a
task similar to coding.

All participants received a tutorial consisting of a 30-minute
introduction to coding, the coding set itself, and the
prototype’s functionalities. This was followed by two 20-
minute sessions where users coded a transcript with the
prototype. A different transcript was used during each
session. We assigned the transcript order randomly across
our participants.

In addition to a set of questionnaires to obtain subjective
user responses to the prototype, we logged each
participant's interactions with the software, including the
features that they suggested to the program.

Machine Learning Algorith
Our auto-coding task is an example of a sequential
supervised learning task [10] in which the order of the data
plays an important role. Sequential supervised learning
algorithms leverage the sequential relationships in data to
improve prediction accuracy. To see these sequential
relationships in our auto-coding domain, consider the
screenshot in Figure 2. Our AutoCoder represents a
transcript as a sequence of segments, shown on the left, and
a corresponding sequence of codes, shown on the right. In
order to predict the code for a segment, the machine
learning algorithm needs to consider the text in that
segment. However, the text in neighboring segments often
influences the code for the current segment. For instance,
the text in both segments 3 and 4 may influence the code
assigned to segment 4. To deal with these neighboring
relationships, we consider the text in a sliding window of
segments that influence the current code, where in our
implementation this sliding window includes the current
segment and the previous segment. The underlying machine
learning algorithm needs to convert the text in the sliding

window into features. We take the union of the words in the
current and previous segments and produce a bag-of-words
representation from this union. This bag-of-words
representation results in features corresponding to the
presence/absence of individual words in the sliding
window.

In addition to neighboring segments, neighboring codes are
also informative for predicting the code for the current
segment. As an example, the “Seeking Info” code in
segment 3 may make it more likely for segment 4 to be
assigned a “Seeking Info” code. As a result, we incorporate
the code assigned to the previous segment as a feature for
the sequential supervised learning algorithm.

Baseline Algorithm
Sophisticated sequential supervised learning algorithms
such as Hidden Markov Models (HMMs) [22] and
Conditional Random Fields (CRFs) [18] are unsuitable in
our situation for two reasons. First, predictions made by
these approaches are difficult to explain to an end user,
especially which features matter most, which is an
important step in helping end users create predictive
features. Second, sophisticated supervised learning
approaches such as CRFs and HMMs involve
computationally expensive learning and inference
processes.

We chose a much simpler approach by using the “recurrent
sliding window” technique [10] that converts a sequential
supervised learning problem into a standard supervised
learning problem. This conversion takes the features
derived from the sliding window, along with the code from
the previous segment, and creates a training example for a
standard supervised learning algorithm. This conversion
makes the learning and inference process much more
efficient and it allows the use of standard machine learning
algorithms, such as naïve Bayes, that can easily generate
explanations understandable to end users. In our
experiments, we used a Recurrent Sliding Window Naïve
Bayes classifier (abbreviated RSW-NB), which assumes
that the features are conditionally independent given the
class label. We use the RSW-NB classifier, without user-
defined features, as the baseline classifier in our
experiments.

Incorporating User-Defined Features
The most straightforward way to incorporate user-defined
features is to add them to the list of features used by the
RSW-NB algorithm. This approach, however, does not
cause the learning algorithm to pay special attention to the
user-defined features since they are treated as equal to
“regular” bag-of-words features. In order to make the
algorithm heed the user, we implemented a variant of RSW-
NB called Weighted RSW-NB (WRSW-NB), which causes
the underlying algorithm to put more emphasis on the user-
defined features for the specified class. We make the
following assumption when a user adds a feature X for code
y: the presence of feature X is important for predicting code
y. This extra emphasis can be easily achieved with naïve

Bayes by assigning maximal weight to the parameter P(X =
present | Code = y).

Class Imbalance Correction
The most common approaches for dealing with class
imbalance for machine learning algorithms involve
oversampling and/or undersampling from the training data.
These methods vary according to how data points are
over/undersampled. We applied the three methods
described below. All three class imbalance methods exhibit
variability in the predictions due to randomness in the
sampling of data points. In order to make the predictions
less volatile, we run the machine learning algorithm with
the class imbalance correction 100 times and take a
majority vote among the runs for the class label.

Over/Undersampling
The first method of correcting for class imbalance consists
of applying a mixture of both oversampling and
undersampling [3]. This method works by computing the
mean number of data points in the minority classes, where a
minority class is any class whose number of data points is
less than the class with the largest number of data points.
Each class in the training data is then oversampled or
undersampled until the number of data points in that class is
equal to the me

We chose to use a mixture of both undersampling and
oversampling because of the amount of class imbalance that
exists in our data. Some minority classes have so few data
points that undersampling the majority classes to this
extreme would produce insufficient training data for the
classifier. We instead chose to compute the mean over all
the minority classes and then oversample all classes that
were smaller than the mean and undersample all classes that
were larger than the mean. This prevented the majority
classes from being undersampled too harshly while
allowing us to still oversample the minority classes.

SMOTE
The SMOTE algorithm [3,4] has previously been shown to
work effectively in dealing with class imbalance on
continuous data sets from the UCI Repository [1]. SMOTE
works by taking a target data point and using its k nearest
neighbors to construct new synthetic data points. SMOTE
was originally designed for continuous features, though a
version for nominal features was proposed in [3,5], but their
method only allows for the creation of a single distinct
synthetic data point in terms of its features. In order to
create synthetic data points with more diverse features, we
modified the algorithm to randomly select, with
replacement, a subset of the k nearest neighbors to create a
panel of “voters” used to create the synthetic data point.
The panel of “voting” neighbors votes on each feature to
determine if it is present or absent in the synthetic data
point. In a tie, the presence or absence of the feature is
determined randomly.

By randomly selecting the size of the panel to be between 1
and k, we can then generate multiple synthetic data points.

We also chose to use Hamming Distance [14] as our
distance metric for the k nearest neighbor algorithm as we
found it performed better on our data than the metric
originally used by Chawla et al. [4].

Extreme SMOTE
We created a variant of SMOTE called Extreme SMOTE
that oversamples the minority classes by randomly selecting
from data points the actual k nearest neighbors rather than
creating synthetic data points.

Off-line Evaluation of Classifiers
We developed eight classifiers that incorporate user
features (w/UF suffix). Six of the eight classifiers adopt
class imbalance corrections. The eight classifiers are:

• RSW-NB w/UF

• RSW-NB w/UF + Over/undersampling

• RSW-NB w/UF + SMOTE

• RSW-NB w/UF + Extreme SMOTE

• WRSW-NB w/UF

• WRSW-NB w/UF + Over/undersampling

• WRSW-NB w/UF+ SMOTE

• WRSW-NB w/UF + Extreme SMOTE

We evaluated each of these against the Baseline algorithm,
a RSW-NB without user features or class imbalance
correction.

We used the data logs from our user study for training and
testing the classifiers. The data of the first transcript that
participants coded was used as a training set while the
second transcript was used as a test set. Each classifier was
trained on and tested against the data from a single
participant.

We pre-processed the training data so that only segments
with explicit user labels, either assigned by users
themselves or predictions by the classifier that were verified
by the user, were used. Since the number of bag-of-words
features (i.e. features based on individual words) in a
transcript is very large, we applied feature selection using
information gain to reduce the number of features. We
chose to use the 75 most informative bag-of-words features,
since an empirical evaluation of the average effect proved
to be the highest at that value. We did not perform feature
selection of the user-defined features; instead, we
incorporated all the user-defined features into the classifier.

Evaluation Metric
Due to class imbalance, using a metric of prediction
accuracy can be misleading. A “dummy” classifier that
simply predicts the dominant class in the training data can
appear to have very good accuracy. A better evaluation
metric is precision and recall. We can summarize the
tradeoff between precision and recall as a single number in

the form of an F1 score, where F1 =
(2*precision*recall)/(precision+recall).

A further decision is how to compute overall precision and
recall when there are more than two classes. Macro-
averaging is a process of averaging an evaluation metric by
class [29]. For example, macro-averaged F1 is computed by
calculating the F1 score for each class, then taking the
average of those values across all classes. Another
alternative is micro-averaging, which is skewed in favor of
more dominant classes and is thus unsuitable in our class-
imbalanced data. For the evaluation of our classifiers, we
calculated the difference in macro-averaged F1 scores
between a classifier and the Baseline. We call this metric
macro-F1 delta for brevity. To evaluate the classifiers'
overall performance, we took the mean of the macro-F1
deltas over all participants.

RESULTS

Adding User Features and Addressing Class Imbalance
The simplest way to involve the user in feature engineering
is to start paying attention to the user's suggestions. To
measure the impact of adding user-defined features
(without any class imbalance corrections), we compared the
mean macro-F1 deltas for RSW-NB w/UF and WRSW-NB
w/UF (Figure 4). RSW-NB w/UF shows a modest
improvement (+0.9%) while WRSW-NB w/UF shows a
decrease (-2.4%) from the Baseline algorithm. This result
means that placing strong emphasis on user-defined
features (as done in WRSW-NB w/UF) can cause incorrect
predictions, if class imbalance resulting from users' tasks or
behaviors is ignored.

It is therefore vital to consider addressing class imbalance.
Figure 5 illustrates the effects of user feature engineering
when class imbalance corrections are performed. Any
methods that we chose for RSW-NB w/UF to address class
imbalance resulted in an increase in the mean macro-F1
delta, where the simplest approach of over/undersampling
resulted in a significant improvement against the Baseline
(Wilcoxon: V=32, N=73, p=0.0245). In contrast, more
complex approaches are needed to improve the mean
macro-F1 delta score for WRSW-NB w/UF: only SMOTE

and Extreme SMOTE resulted in increases in performance.
Furthermore, just by addressing class imbalance a poor
algorithm (such as WRSW-NB w/UF in Figure 4) can
perform better. Thus, methods to address class imbalance
problems need to be carefully chosen, but Extreme SMOTE
appears to yield reliable improvements for both weighted
and unweighted algorithms when taking user-defined
features into account.

Even though the mean macro-F1 increases or decreases
appear modest, individual users may still benefit from large
gains. For example, WRSW-NB w/UF+SMOTE could lead
some individual users to benefit from gains as large as 30%,
far outstripping the mean macro-F1 delta over all users of
only 0.1% (Table 1). On the other hand, some users
suffered macro-F1 decreases as low as -17%. In general,
algorithms with class imbalance corrections tend to produce
much bigger changes affecting individuals than if class
imbalances corrections were not applied.

Applying class imbalance corrections can address some
problems, but not all. For example, if we compare one of
the best performing classifiers, RSW-NB w/UF +
over/undersampling with the related RSW-NB w/UF
(without class imbalance corrections) only four more
participants would have experienced macro-F1 increases
due to class imbalance corrections. Taking this and the
previous result together, we would like to make use of the
more pronounced changes affecting individuals when class
imbalance corrections are applied, while at the same time
ensuring that more participants see more correct
predictions.

Influence of Individual User Features
If we could remove noise such as irrelevant features from
the data, this may lead to more correct predictions that are
reflected in positive macro-F1 deltas. It is therefore

Figure 4: Mean macro-F1 deltas for RSW-NB w/UF (left) and

WRSW-NB w/UF (right).

Figure 5: macro-F1 deltas for RSW-NB w/UF (left) and

WRSW-NB w/UF (right) with the effects of different class
imbalance adjustment methods shown in the different
columns (Over/Undersampling is darkest, SMOTE is

midrange, Extreme SMOTE is lightest).

-2.5%

-1.5%

-0.5%

0.5%

1.5%

-3%

-2%

-1%

1%

2%

3%

4%

RSW-NB with User
Features

WRSW-NB with User
Features

important to consider how individual features that
participants added contribute to the deltas. We conducted
an offline, retrospective analysis which involved, for each
user, training a classifier by adding individual user-defined
features one-by-one and then calculating the resulting
macro-F1 delta from the test set. Since our classifiers
incorporate user-defined features in different ways, the
impact of these features is classifier-dependent.

For each feature we can determine whether it decreased or
improved macro-F1 i.e. whether it was predictive or non-
predictive. Table 2 shows that end users are capable of
coming up with predictive features and that on average,
there are slightly more predictive features defined by users
than non-predictive ones. A single predictive feature can
contribute substantially to accuracy (17.8% for RSW-NB
w/UF, 26.7% for WRSW-NB w/UF); a non-predictive
feature can cancel out this positive effect.

To illustrate the effects that only adding predictive features
could have on performance, we greedily added a single
user-defined feature to the WRSW-NB classifier for each
user until no more improvement in the macro-F1 score was
possible. In doing so, we can approximate the “best”
classifier formed out of the set of user-defined features.
From our data, this “best” classifier allows us to obtain a
mean macro-F1 delta across all users of 19% for RSW-NB
w/UF (Wilcoxon: V=2591, N=73, p<0.001) and 11% for
WRSW-NB w/UF (Wilcoxon: V=2389, N=73, p<0.001).

Determining predictive or non-predictive features based on
their contribution to the macro-F1 score in an end-user
situation is infeasible. First, it is time-consuming, as it
requires adding user-defined features one at a time and then
retraining the classifier each time. Most importantly, the
macro-F1 score can only be calculated if all of the labels for
the test data are available. Clearly, this requirement is
unrealistic as it requires the coding task to be already
completed and can only be conducted with hindsight.

Identifying non-predictive user-defined features
To aid the end user in identifying non-predictive features
during feature engineering, the system could focus on traits

of these features. In this section, we define two
characteristics of features that have a negative effect on
predictions. We investigate the usefulness of these
characteristics by filtering out features based on these
characteristics and measuring the impact on accuracy.

We inspected the non-predictive user-defined features in
our data and found that they had two main characteristics.
To aid with the definitions of these characteristics, recall
that when a user creates a feature, she indicates that the
user-defined feature F is important for class C.

Characteristic 1: Poor test data agreement
In many cases in the test data, we noticed that the user-
defined feature F is not present in segments assigned to
class C.

We compute the test data agreement as:

of test segments with feature F and class label C
of test segments with feature F

If this value falls below a threshold then the feature is
considered to have poor test data agreement.

 RSW-
NB
w/UF

WRSW-
NB
w/UF

Average no. of predictive user-
defined features

13.16 10.83

Highest macro-F1 increase after
adding user-defined feature

+17.8% +26.7%

Average no. of non-predictive
user-defined features

10.64 9.61

Highest macro-F1 decrease after
adding user-defined feature

-14.0% -29.5%

Table 2: Number of predictive / non-predictive user features
for the RSW-NB w/UF and WRSW-NB w/UF classifiers over
all users and their effects on the macro-F1 score. On average,

users added a total of 17.28 features.

Algorithm

Biggest
macro-F1

decrease for
an individual

Biggest
macro-F1

increase for
an individual

Average
macro-F1

delta over all
users

No. of
macro-F1
decreases

No. of
macro-F1
increases

RSW-NB w/UF -12% 13% 0.9% 28 38
RSW-NB w/UF + over/undersampling -12% 29% 3.0% 31 42
RSW-NB w/UF + SMOTE -22% 29% 0.4% 39 34
RSW-NB w/UF + Extreme SMOTE -14% 27% 1.9% 35 38
WRSW-NB w/UF -25% 20% -2.4% 42 31
WRSW-NB w/UF + over/undersampling -25% 20% -2.3% 44 30
WRSW-NB w/UF + SMOTE -17% 30% 0.1% 39 34
WRSW-NB w/UF + Extreme Smote -16% 27% 2.4% 33 40

Table 1: Summary of changes to the macro-F1 delta for individual users for the various classifiers.

Characteristic 2: Under-representation of a user-defined
feature in its assigned class in test data
A user-defined feature F is considered to be under-
represented in the test set if it is absent from a large
percentage of test data segments with class label C. For
example, if a user defines the feature “I don’t know” to be
important for the class “Info Lost”, it is considered to be
under-represented if it is absent in most of the segments
classified under “Info Lost” in the test data.

We compute under-representation as:

of test segments with feature F and class label C
of test segments with class label C

If this value falls below a threshold, then the feature is
under-represented.

These two characteristics indicate that non-predictive
features are those in which the assumption that the presence
of the user-defined feature is important for the specified
class no longer holds in the test data. As a result, the
absence of a user-defined feature biases the prediction away
from the user-specified code for that feature. This change
can be due to a variety of reasons. For instance, two
transcripts may contain different words and phrases,
resulting in a different set of salient features for the code
set. Another possibility is that an individual’s interpretation
of a code may be inconsistent during the entire coding
process, resulting in a changing set of features being salient
for a certain code over the entire transcript.

We evaluated the usefulness of these characteristics by
applying them to the non-predictive features in our data,
and removing the ones that fell below the thresholds. (We
use a threshold of 0.5 for test data agreement and a
threshold of 0.1 for under-representation.) When combined,
these two characteristics are able to filter out many of the
non-predictive features. If we rank the top 100 worst user-
defined features added by all the users in our study, 7% fall
under low test set agreement only, 9% fall under under-
representation only, 79% fall under both characteristics, and
6% fall under neither. Thus, 94% of the 100 worst user-
defined features can be filtered out if either characteristic 1
or 2 is met. However, while this filtering is successful at
removing non-predictive user-defined features, it is
somewhat indiscriminate as it removes predictive user-
defined features as well. Of the top 100 best user-defined
features added by all users in our study, 64% are removed
by both of these criteria.

To assess the effects of removing user-defined features
based on these characteristics on the macro-F1 deltas, we
removed user-defined features that matched both
characteristic 1 and 2 from the RSW-NB w/UF and
WRSW-NB w/UF classifiers. This resulted in 52 out of 74
participants having positive macro-F1 deltas for WRSW-
NB w/UF Filtered, as compared to only 31 before filtering
them out. Using this approach also increased the largest
macro-F1 delta to 32.2%, instead of 20% before filtering.

Consequently, the mean macro-F1 delta over all users
increased to 5% compared to the Baseline, which has no
user features, (Wilcoxon: V=1934, N=73, p<0.001) and it
also represents a significant improvement over the WRSW-
NB w/UF without filtering (Wilcoxon: V=2276, N=73,
p<0.001). This approach also works for RSW-NB w/UF,
which does not weight the user-defined features. RSW-NB
w/UF Filtered had an average increase in macro-F1 of 5%,
showing a significant improvement over the Baseline
(Wilcoxon: V=1048, N=73, p=0.0062).

Using this approach to improve the machine learning
algorithm has several advantages. It is simple and can
therefore be performed quickly in real time without
retraining the classifier. Furthermore, although test set
agreement and under-representation can only be exactly
computed in hindsight, these two criteria are indicators of
discrepancies between the classifier’s predicted class labels
and the user’s class labels. We can approximately detect
these discrepancies using the parts of the test transcript that
have already been coded by the user rather than waiting for
the entire test transcript to be coded. In addition, we can
compute other surrogates for test data agreement and under-
representation that do not require hindsight. These
indicators can be incorporated into the design of user
interfaces that could help the end user avoid creating non-
predictive features.
IMPLICATIONS FOR DESIGN
In this work, we have taken the position that end users can
have a hand in feature engineering. To support this
possibility, just as one would not expect a machine learning
expert to add features during feature engineering without
first understanding how relevant the features are, it is
unreasonable to expect end users to add features without
understanding their impact. Our prototype’s user interface
aims to help users understanding the impact of features they
think should be considered by the machine.

However, our results show that allowing the user to add
features to a machine learning algorithm is not a silver
bullet. Although some of our participants’ features were
beneficial, many were detrimental to accurate classification.
While addressing class imbalance alleviated this problem to
an extent, it was improving the quality of features that
brought about the most beneficial change.

We were able to identify two quality characteristics that had
a detrimental impact on predictions: 1) poor test agreement
and 2) underrepresentation. Intelligent user interfaces can
act upon both of these characteristics to improve the
predictive accuracy of a learned program.

Regarding the combination of both characteristics, a user
interface could easily check whether a new user-defined
feature appears anywhere in the test data. In our data, if the
feature was completely absent from the test data, then the
feature fell into both characteristics 1 and 2, and was very
likely to hurt performance.

A more robust approach to approximately detect both
criteria would be for the system to track discrepancies
between the current state of the classifier and the classes
being assigned by the user. As the user provides feedback
on segments, the system could check the user-defined
features against the already-coded section of the transcript
to see if the features met either criterion. If the number of
these discrepancies passed a certain threshold, the system
could alert the user of inconsistencies between the user’s
perception of the feature’s importance and what actually
existed in the test data.

With either of these additions the user would be better
equipped to provide genuinely useful features to the
machine, increasing the machine’s performance and the
user’s trust in the system.

CONCLUSION
Intelligent systems that customize themselves to an end
user’s behavior are different from other machine learning
situations: only one person knows the ground truth as to
what is appropriate behavior, and that person is the end
user. Thus, end users themselves must have the final say in
feature engineering.

Therefore, in this paper we investigated ways to enable end
users to improve machine learning algorithms via feature
engineering after the machine learning system has been
deployed. Our results showed that adding user-defined
features resulted in a minor improvement to the learning
algorithm’s performance. However, this performance
increased when the issues of class imbalance and low
quality user features were addressed.

Class imbalance corrections, such as in SMOTE and
Extreme SMOTE, were particularly important given our
assumptions about user intent. Specifically, we assumed
that the presence of a user-defined feature was important
for the user-specified class. We modified the learning
algorithm to focus more attention on the user-defined
features, but this resulted in a decrease in performance. We
discovered that a solution to this problem was to also
employ sophisticated methods for dealing with class
imbalance.

Our results also showed that end users were indeed capable
of creating predictive features, but if our algorithm used
these features indiscriminately, they degraded the learning
algorithm because of the mix of non-predictive features
with predictive ones. Nevertheless, end users created more
predictive than non-predictive features, which could be
leveraged to good effect. One approach is to identify and
filter out non-predictive features. The majority of non-
predictive features can be identified by two characteristics:
test set agreement, and under-representation. Identifying
these two characteristics may seem to require hindsight in
the form of actual test set labels. However, we propose two
approximations to these characteristics: 1) monitoring test
set occurrence to quickly remove detrimental features, and

2) keeping track of the number of disagreements between
the user and the current classifier.

Our results provide specific steps for improving the design
of intelligent user interfaces so that they can be feature-
engineered by end users after deployment. We believe such
improvements are key to end users’ trust, usage, and
realization of the full potential of user interfaces that
support users by learning from their behavior.

ACKNOWLEDGMENTS
We thank the participants of our study, along with Kevin
McIntosh and Forrest Bice for their assistance. This work
was supported by NSF IIS-0803487 and by the EUSES
Consortium via NSF CCR-0325273.

REFERENCES
1. Blake, C., Merz, C. UCI Repository of Machine

Learning Databases. http://www.ics.uci.edu/
~mlearn/~MLRepository.htm. Department of
Information and Computer Sciences, University of
California, Irvine. 1998.

2. Blythe, J. Task learning by instruction in Tailor. Proc.
IUI, ACM, (2005), 191-198.

3. Chawla, N.V., Bowyer K.W., Hall, L.O., Kegelmeyer,
W.P. SMOTE: Synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research 16
(2002), 321-357.

4. Chawla, N.V. C4.5 and imbalanced data sets:
Investigating the effect of sampling method,
probabilistic estimate, and decision tree structure. Proc.
ICML (2003).

5. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.
SMOTEBoost: Improving prediction of the minority
class in boosting. Proc. Principles of Knowledge
Discovery in Databases (2003), 107-119.

6. Chklovski, T., Ratnakar, V. and Gill, Y. User interfaces
with semi-formal representations: A study of designing
argumentation structures. Proc. IUI, ACM, (2005), 130-
136.

7. Cohn D. A., Ghahramani, Z., and Jordan, M. I. Active
learning with statistical models. J. Artificial Intelligence
Research 4, (1996), 129-145.

8. Culotta, A. Kristjansson, T. McCallum, A. and Viola, P.
Corrective feedback and persistent learning for
information extraction, Artificial Intelligence 170,
(2006), 1101-1122.

9. Cypher, A. (ed.) Watch What I Do: Programming by
Demonstration, MIT Press, Cambridge, MA, 1993.

10. Dietterich, T. Machine learning for sequential data: A
review. In T. Caelli (Ed.) Structural, Syntactic, and
Statistical Pattern Recognition; Lecture Notes in
Computer Science 2396 (2002), 15-30.

11. Dönmez, P., Rosé, C., Stegmann, K., Weinberger, A.
and Fischer, F. Supporting CSCL with automatic corpus

analysis technology. Proc. CSCL, ACM (2005), 125-
134.

12. Fails, J. A. and Olsen, D. R. Interactive machine
learning. Proc. IUI, ACM, (2003), 39-45.

13. Fogarty, J., Tan, D., Kapoor, A., and Winder, S.
CueFlik: Interactive concept learning in image search.
Proc CHI, ACM, (2008), 29-38.

14. Hamming, R.W. Error detecting and error correcting
codes. Bell System Technical Journal 29.2 (1950), 147-
160.

15. Huang, Y. and Mitchell, T. M. Text clustering with
extended user feedback. Proc. SIGIR, (2006), 413-420.

16. Kulesza, T., Wong, W.-K., Stumpf, S., Perona, S.,
White, S., Burnett, M., Oberst, I. and Ko, A. Fixing the
program my computer learned: Barriers for end users,
challenges for the machine. Proc. IUI, ACM (2009)
187-196.

17. Kulesza, T., Stumpf, S., Riche, Y., Burnett, M., Wong,
W-K., Oberst, I., Moore, T., McIntosh, K., and Bice, F.
End-user debugging of machine-learned programs:
Toward principles for baring the logic (Technical
Report). Oregon State University, School of EECS
(2009). http://hdl.handle.net/1957/12706

18. Lafferty, J., McCallum, A., Pereira, F. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. Proc. ICML, Morgan
Kaufmann, (2001) 282-289.

19. Lieberman, H., (ed.) Your Wish is My Command:
Programming By Example. 2001.

20. Liu, B. Li, X. Lee, W. and Yu, P. Text classification by
labeling words. Proc. AAAI (2004).

21. McCarthy, K., Reilly, J., McGinty, L. and Smyth, B.
Experiments in dynamic critiquing. Proc. IUI, ACM
(2005), 175-182.

22. Rabiner, L. A tutorial on Hidden Markov Models and
selected applications in speech recognition. Proceedings
of the IEEE 77(2) (1989), 257-286.

23. Raghavan, H. and Allan, J. An interactive algorithm for
asking and incorporating feature feedback into support
vector machines. Proc SIGIR, ACM, (2007), 79-86.

24. Roth, D. and Small, K. Interactive feature space
construction using semantic information. Proc. CoNLL,
(2009), 66-74.

25. Shilman, M., Tan, D., and Simard, P. CueTIP: A mixed-
initiative interface for correcting handwriting errors.
Proc UIST, ACM, (2006), 323-332.

26. Stumpf, S., Rajaram, V., Li, L., Burnett, M., Dietterich,
T., Sullivan, E., Drummond, R. and Her-locker, J.
Toward harnessing user feedback for machine learning.
Proc. IUI, ACM (2007), 82-91.

27. Stumpf, S., Sullivan, E., Fitzhenry, E., Oberst, I., Wong,
W.-K. and Burnett, M. Integrating rich user feedback
into intelligent user interfaces. Proc. IUI, ACM (2008),
50-59.

28. Stumpf, S. Rajaram, V., Li, L., Wong, W.-K., Burnett,
M., Dietterich, T., Sullivan, E. and Herlocker J.
Interacting meaningfully with machine learning
systems: Three experiments. Int. J. Human-Computer
Studies, 67,8, (2009), 639-662.

29. Tague, J. The pragmatics of information retrieval
experimentation. Information Retrieval Experiments,
(1981) 59-102.

30. Ware, M., Frank, E., Holmes, G., Hall, M., Witten, I. H.
Interactive machine learning: Letting users build
classifiers. Int. J. Human-Computer Studies, 55, (2001),
281-292.

	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	The AutoCoder Prototype
	Explaining Predictions
	End-User Feature Engineering

	Data Collection
	Machine Learning Algorith
	Baseline Algorithm
	Incorporating User-Defined Features

	Class Imbalance Correction
	Over/Undersampling
	SMOTE
	Extreme SMOTE

	Off-line Evaluation of Classifiers
	Evaluation Metric

	RESULTS
	Adding User Features and Addressing Class Imbalance
	Influence of Individual User Features
	Identifying non-predictive user-defined features
	Characteristic 1: Poor test data agreement
	Characteristic 2: Under-representation of a user-defined feature in its assigned class in test data

	IMPLICATIONS FOR DESIGN
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

