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Abstract approved:

In many areas of engineering and applied mathematics, spectral methods pro-

vide very powerful tools for solving and analyzing problems. For instance, large to

extremely large sizes of numbers can efficiently be multiplied by using discrete Fourier

transform and convolution property. Such computations are needed when computing

7r to millions of digits of precision, factoring and also big prime search projects.

When it comes to the utilization of spectral techniques for modular operations

in public key cryptosystems two difficulties arise; the first one is the reduction needed

after the multiplication step and the second is the cryptographic sizes which are much

shorter than the optimal asymptotic crossovers of spectral methods.

In this dissertation, a new modular reduction technique is proposed. Moreover,

modular multiplication is given based on this reduction. These methods work fully

in the frequency domain with some exceptions such as the initial, final and partial

transformations steps. Fortunately, the new technique addresses the reduction problem

however, because of the extra complexity coming from the overhead of the forward and

backward transformation computations, the second goal is not easily achieved when

single operations such as modular multiplication or reduction are considered. On the
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contrary, if operations that need several modular multiplications with respect to the

same modulus are considered, this goal is more tractable.

An obvious example of such an operation is the modular exponentiation i.e., the

computation of c = me mod n where c, m, e, n are large integers. Therefore following

the spectral modular multiplication operation a new modular exponentiation method is

presented. Since forward and backward transformation calculations do not need to be

performed for every multiplication carried during the exponentiation, the asymptotic

crossover for modular exponentiation is decreased to cryptographic sizes. The method

yields an efficient and highly parallel architecture for hardware implementations of

public-key cryptosystems.
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Spectral Modular Arithmetic

1. INTRODUCTION

1.1. Background and Motivation

In the near future, security will be an innate feature of virtually every piece of

digital equipment. The performance metrics of space, time and power dissipation of

cryptographic algorithms will always remain amongst the most critical aspects in the

implementation of cryptographic services.

A major class of cryptographic algorithms comprises public-key schemes. These

enable the verification of message integrity and authentication check, key distribution,

and digital signature functions, among others. These schemes have become indispens-

able parts of present day secure communication. All public key cryptosystems require

resource intensive arithmetic operations in certain mathematical structures such as

finite fields, groups and rings. The most important operations in these structures,

modular multiplication, inversion, and eTponentiation, are at the center of very inten-

sive research activities since they are usually the most resource-consuming operations

in the many public key cryptosystems in use today.

In fact, Spectral techniques for integer multiplication have been known for over

a quarter of a century. By using the spectral integer multiplication of Schönhage and

Strassen [1], large to extremely large sizes of numbers can efficiently be multiplied.

Such computations are needed when computing r to millions of digits of precision,

factoring and also big prime search projects.



A naive way of utilizing the spectral techniques for modular multiplication is

first computing the multiplication by using possibly Schönhage and Strassen [1] and

then performing the reduction in the time domain. Such an approach is preferable

if the input length is large enough to meet the asymptotic crossovers (somewhere in

between 4 to 30 thousands bits) of Schönhage-Strassen assuming the reduction has a

constant cost But these figures are larger than the key sizes of most cryptosystems;

thus, in practice the naive way is never used.

Moreover, a modular exponentiation realization with the naive method needs

very expensive forward and backward transformation computations for every modular

multiplication delivered. Thus the asymptotic crossover of modular exponentiation

becomes the same as a single modular multiplication.

In this dissertation, new techniques of performing modular multiplication and

exponentiation based on a new reduction operation are proposed (Chapter 3). These

methods work fully in the frequency domain (spectrum) with some exceptions such as

the initial, final and partial transformations steps. In other words, this work studies

performing modular arithmetic operations with Fourier coefficients instead of the time

sequences. Such an action is extremely effective for operations involving several mod-

ular multiplications because the convolution is readily available with component-wise

multiplication when working with Fourier coefficients.

Obviously, the modular exponentiation has such a nature, it needs several mod-

ular multiplications with respect to the same modulus. Defining a reduction method

working in the spectrum keeps the data in the spectrum and decreases the forward and

backward transformation load which directly reduces the asymptotic crossover of the

exponentiation to the cryptographic sizes.
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1.2. Outline

In Chapter 2, after defining the convolutions and Discrete Fourier Transform

(DFT) we give the basic properties of DFT (Section 2.1.3), the major bridge between

time and frequency domain. Historically, the DFT is defined and found most of its

applications over the complex numbers. Operating in the spectrum of the field of com-

plex numbers causes some round-off errors unless an infinite precision for representing

the complex numbers is used. In general, for simple computations these errors are

controlled by increasing the precision used however, if one needs to perform massive

computations in the spectrum as in our case, this is not practical.

Transforms analogous to DFT over real or complex numbers that admit no

round-off errors are defined over some similar algebraic structures. A good candidate

for such structures, proposed by Pollard [2], is the ring ZZq (i.e. the ring of integers with

multiplication and addition modulo a positive integer q). Since the binary operations

in these structures are modular multiplication and addition, the arithmetic is always

exact. The DFT defined over ZZq is called the Number Theoretical Transforms (NTT).

In Section 2.2 we give a formal definition of the NTT.

For computational purposes, rings for which q is of the form T ± 1 are mostly

desirable since the modular reduction operations for such q are simplified. The rings

of the form T-' - 1 are called the Mersenne rings, while the rings of the form + 1 are

called the Fermat rings. Again in Section 2.2, we analyze the NTTs over these rings,

which are also called the Mersenne number transform (MNT) and the Fermat number

transform (FNT). Moreover, in Tables 2.1 and 2.2 we tabulated parameters of some

nice MNT and FNT that are practically useful for our needs.

The Mersenne and Fermat rings are not the only suitable rings for efficient

arithmetic. If p (not necessarily a prime) is a small divisor of q, the rings of the form



Zq/p are also quite useful. Since p divides q, the arithmetic modulo (q/p) is carried

in the ring Zq and by selecting Zq as a Mersenne or Fermat ring, it is posssible to

simplify the arithmetic. In Section 2.3, we present such rings which are also called

pseudo Mersenne or pseudo Fermat rings. Additionally, in APPENDIX A, Tables 6.1

and 6.2 tabulate some suitable pseudo Mersenne and Fermat rings.

We note that most of the material of Chapter 2 is adapted from [2], [3], and [4].

Since we tailored the subject to our purposes, our presentation is simpler, in particular,

we give a very clear explanation of the existence of pseudo transforms by Theorem 1.

Chapter 3 describes our main idea of spectral modular arithmetic. Primarily,

we propose to do modular arithmetic in the frequency domain (spectrum) rather than

in time domain. In general, if an operation is performed in the spectrum, the spectral

coefficients do not reveal much about what has been done in time. That is why we

construct the spectral modular algorithms as the image of some time algorithms that

are easily be transformed to spectrum by using the properties of the DFT. By this we

keep track of the activity of time sequences while working in the spectrum.

After covering some preliminaries in Sections 3.1 through 3.3, we define spectral

modular reduction (SMR) in Section 3.4. In Section 3.5 we give a time simulation

(Algorithm 4) that is translated into the complex spectrum in Section 3.6 and into

a finite ring spectrum in Section 3.7 by using the linearity and shifting property of

DFT. We present Spectral Modular Product (SMP) (Algorithm 8), which consists of

convolution and spectral reduction, as the basic building block of both spectral modular

multiplication (SMM) and spectral modular ex-ponentiation (SME). Finally, we describe

SMM and SME in Sections 3.8 and 3.9 respectively.

In Chapter 3 along with the presentation of algorithms, we find the minimal

domains (i.e. smallest rings) in which our spectral algorithms work. Although working

with a finite ring spectrum is free from round-off errors, if some parameters in time
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simulations go out of predefined bounds the spectral algorithms produce erroneous

outputs. These ill-favored effects are called overflows, which can be avoided by choosing

larger q. By Theorem 12 we characterize the minimal q such that SME (with an SMP

core) works without overflows. Lastly, we close the chapter with an illustrative example

in Section 3.10.

In Chapter 4, we describe methodologies for selecting the parameters for SME

in order to apply the algorithm to public key cryptography. Firstly, in Section 4.1 by

using the bound (3.11), we demonstrate some convenient parameters for realizations

in Table 4.2 for SME with SMP core. Secondly, in Section 4.2 with Algorithm 11 (i.e.

modified spectral modular product (MSMP) algorithm), we modify SMP and improve

the bound (3.11) by (4.3) at a cost of some extra memory. The improved parameter

selection is tabulated in Table 4.3.

Finally and more importantly, in Section 4.3 we describe and discuss the use of

the Chinese Remainder Theorem (CRT) for SME and SMM. CRT admits us to reach

very large modulus sizes while at the same time work in small size rings. We tabulated

possible implementation parameters in Tables 4.5 and 4.6 for both SMP and MSMP

respectively.

In Chapter 5, we turn our attention to the architectural and performance analy-

sis. The spectral algorithms yield efficient and highly parallel architectures for hardware

implementations of public-key cryptosystems. In our analysis, we use some generic and

specific architectures that lead us to have a general and a lower level unit-gate treat-

ment. In Section 5.1 we briefly describe specified low-level architectures for Fermat

and Mersenne ring arithmetic adapted from [5J, [6], [7], [8], [9], and [10].

Since the initial and final transformation steps of SME algorithm are straightfor-

ward and computationally negligible, in Section 5.2 we describe detailed architectures

along with performance analysis of individual steps of SMP and MSMP. Lastly, in



Section 5.3 we give the entire complexity by Tables 5.9 and 5.10 after combining the

individual pieces described.

We conclude our work with some final comments in Chapter 6.



2. CONVOLUTION AND DFT

2.1. Convolution and DFT: the basic definitions and properties

We would like to begin with the basic notions of the cyclic convolution and

discrete Fourier transform and their interrelationship.

2.1.1. Convolutions

A discrete-time signal {Xm} or x[m] is a sequence of real or complex numbers.

By a sequence we mean a function that assigns to each natural number a unique real

or complex number.

x N C or (]R)

n E4 X,y

If the range of the discrete-time signal is a finite subset of real or complex numbers,

the signal is called a digital signal, e.g. this is the case when representing numbers in

a digital computer. Likewise, if the domain of a sequence is a finite subset of natural

numbers, the signal is called a finite-length discrete-time signal. Typically, the finite

domain is chosen to be the first d non-negative integers {m E N : 0 s m d} and

the discrete-time signal is defined to be identically zero outside of this interval. Due to

obvious practical reasons, we shall concentrate on finite-length discrete-time signals.

Definition 1 Let {Xm} = (x0, x1,. . . , xj_1) and {y} = (yo, Yi, . . . , Yd-1) be two finite-

length sequences. The cyclic convolution of {m} and {Ym}, denoted by {zm}

{Xm} * {Ym}, is a sequence of d elements (i.e. length d), defined by

zi:=x((i_k))yk, i=0,1,...,d-1



where the double parenthesis denote modulo d.

An alternative and more compact way of representing cyclic convolutions is

by making use of formal polynomials. In polynomial notation, calculating the terms

of the cyclic convolution also called the convolution products is equivalent to

computing the coefficients of the polynomial

z(t) = x(t)y(t) mod (td 1) (2.1)

where x(t) = x0 + x1t + ... + xd_ltd_l and y(t) = y + yit +... + yd_ltd 1. Jf

deg(x(t)) + deg(y(t)) < d (2.2)

one would not need a t' 1 reduction. In this case Equation (2.1) defines a linear con-

volution of two sequences which is the most important computation for our purposes.

In general the linear convolution is introduced simply by z(t) = x(t)y(t). In order

to exhibit the connection between cyclic and linear convolution, we prefer to define

the linear convolution as a cyclic convolution satisfying Equation (2.2). Indeed this

connection describes a powerful method of linear convolution computation since cyclic

convolutions can efficiently be computed by using the fast Fourier transform and the

convolution property.

In many areas of engineering and applied mathematics, the effective computa-

tion of linear convolutions is essential. Integer multiplication can be given as an exam-

ple; if the coefficients of x(t) = x0+x1t+. .+Xdlt and y(t) = yo+y1t+. .+ydlt

are the base 2b representations of the integers x and y (i.e. x = x(2b) and y = y(2b)),

the computation of the linear convolution z(t) = x(t)y(t) gives to the integer product

z = xy after the evaluation z = z(2').

The direct computation of linear convolutions of two d-point sequences requires

0(d2) operations. With an appropriate usage of the fast Fourier transform and the



convolution theorem it is possible to decrease this complexity drastically. We refer the

reader to textbook presentations [3] and [4] for the computational aspects. In the next

section, we briefly introduce the discrete Fourier transform and related notions.

2.1.2. Discrete Fourier Transform

Definition 2 Let R be an arbitrary commutative rzng. An element w 1 of R is

called a principal dth root of unity if wTh = 1 and

wmj=O for1j<d.
772=0

Moreover, the elements w0, w1,. . . are called the dth roots of unity.

For example; e2/d, where i = /i is a principal dth root of unity in the ring of

complex numbers.

Definition 3 Let x[m] be a length-d discrete-time signal of complex numbers. The

Fourier transform of signal x[m] is defined as a length d' > 0 signal X[k] where

X[k] := x[m]e2', k = 0, 1,. . . , d' 1; i =
m=0

The signal X[k] is called the spectrum of the time signal x[m], and the coefficients of

X{k] are called the spectrum coefficients. Moreover, we say that X[k] and x[rn] are

transform pair and denote this relation by

X[k] DFT x[m]

Observe that like as the time signal x [m], the spectrum X [k] is also a sequence

of a finite length. If we restrict our attention to the special case in which both signals

have the same length (i.e. d = d') we obtain the d-point Discrete Fourier Transform

(DFT).
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Definition 4 Let x[m] be a length-d discrete-time signal of complex numbers. The

d-point (or length-d ) Discrete Fourier transform of signal x[m] is defined by

X[k] = DFTd(x[m]) := x[m]wr
m=O

where k = 0, 1, . . . , d 1 and wd = e_2i/d (complex principal dth root of unity).

The inverse transform is shown to be

x[m] = IDFTd(X[m]) d' . X[k]Wmk
m=O

Under some conditions, the Fourier transform preserves some properties of the

time sequences. Linearity, convolution and time-frequency shifting are some of these

invariants which are essential for a better understanding of the nature of the transform.

Moreover, because of these properties the Fourier transform becomes a powerful tool

for applied sciences.

2.1.3. Time-frequency dictionary

Most of the time, if some operation is performed in the frequency domain, the

spectrum coefficients do not tell much about what has been done in the time domain.

That is why we construct the spectral modular algorithms as the image of some time

simulations that are easily translated to spectrum. By this we keep track of the activity

of time sequences while working in the spectrum.

This translation of algorithms is done by using a dictionary of operations. We

like to approach these operations from a computer arithmetic point of view.

Let ({Xm}, {Xk}) and ({Ym}, {Yk}) be two transform pairs. If A E C then the

DFT has the following properties.
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(i) Linearity. From a computer architect's point of view, this property corre-

sponds to additions and subtractions. Literally, addition and subtraction in the time

domain correspond to addition and subtraction in the frequency domain,

DFT{Xm}±{ym} C {Xk}±{Yk}

DFT

(ii) Convolution The main reason of our interest in the Fourier transform is

the following convolution property. Let 0 denote the component-wise multiplication

of sequences then

{Xm}*{Ym}
DFT

> {Xk}0{Yk}

{Xm} 0 {ym}
DFT

> {Xk} * {Yk}

Because of this property, the costly convolutions of the sequences {Xm} and

{Ym} is calculated by transforming the sequences to {Xk} and {Yk}, doing a term-

by-term multiplication and obtaining the result by an inverse transformation. On

the other hand, convolutions in the frequency domain correspond to term-by-term

multiplications in the time domain.

Notation 1 Asumme that w is a principal d-th root of unity; we let {Fk} and {k}

denote the negative and positive power sequence of w as

{ 12} = (1, w1, W2,. . .

{ F} = (1, w1, W2,. . . W)

(iii) Time and frequency shifts. Time and frequency shifts correspond to

circular shifts when working with finite-length signals. Let {Xm} (x0, xi,. . . , xd_1)
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and {Xk} = (Xo, X1,. . . , Xd_1) be transform pair. The one-term right circular shift is

defined as

DFT
{Xm} 1 := (xd_1, X0,. . . , ' {X} 0 {Ilk}

The one-term left circular shift is similar, where multiplication of the coefficients

with negative power sequence of the principal d-th root of unity gives the left circular

shift:

DFT
{Xm} (5 1 : (x1, x2,. . . , xo) {Xm} 0 {Fm}

An arbitrary circular shift can be computed by applying the consecutive one-

term shifts or by using a proper w power sequence, for instance; an s (0 s d 1)

left shift is achieved by

{Xm} s := (x3, xs+i,. . . , x0,. . . ,

DFT {Xk}0{F}

s st swhere {F} = (1,w ,w , . . . ,w (d_1))

(iv) Sum of sequence and first value. The sum of a sequence in the time

domain is equal to the first value of its DFT; conversely the sum of the spectrum

coefficients equals d' times the first value of the time sequence (Figure 2.1).

and

(v) Left and right shifts. By using properties (iii) and (iv), it is possible to

achieve the regular left and right shifts. We begin with a one-term left shift operation

(this corresponds to division by the radix r if we assume that the terms of x are in

radix r and x0 is the least significant digit). Let {x0} = (x0, x0,. . . , x0) represent the

constant sequence of length-d then

DFT
{Xm}<< 1(xl,x2,...,xd_1,0) ( ({Xk}{xo})0{Fk}

The right shifts are similar, where one then uses the {k} sequence instead of {Fk}.
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sum equals X0

DFT(xoxi . . . _____________

sum times d1 equals x0

(X0X1... Xd_1)

FIGURE 2.1. Sum of sequence and first value.

2.2. Number Theoretical Transforms

Operating in the spectrum of the field of complex numbers causes some round-

off errors unless an infinite precision for representing the complex numbers is used. In

general, for simple computations these errors are controlled by increasing the precision

used; however, if one needs to perform massive computations in the spectrum as in

our case this is not practical.

Transforms analogous to DFT over real or complex numbers that admit no

round-off errors are defined over some similar algebraic structures. A good candidate

for such structures, proposed by Pollard [2], is the ring Zq (i.e. the ring of integers with

multiplication and addition modulo a positive integer q). Since the binary operations

in these structures are modular multiplication and addition, the arithmetic is always

exact.

Additionally, from a computational point of view, these transforms exploit the

special arithmetic of the underlying rings; hence, significant computational savings are

possible. For instance; rings for which q is of the form 2V ± 1 are mostly desirable

since the modular reduction operations for such q are simplified. Furthermore, if the
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principal root of unity is chosen as a power of 2, spectrum coefficients are computed

only using additions and circular shifts.

We begin with formal definitions of transforms over finite rings:

Definition 5 Let w be a principal d-th root of unity in ZZq and {Xm} be a length-d

sequence of elements of Zq. Suppose that the sequence {Xk} is defined as,

w modq, i =O,1,...,d 1 (2.3)

then the transform that sends {x} to {X} is called the d-point (or Iength-d) Num-

ber Theoretical Transform (NTT). Moreover, if q is a Mersenne number of the

form 2' 1, NTT is called the Mersenne Number Transform (MNT) whereas if

q is a Fermat number of the form 2' + 1, transform is named as a Fermat Number

Transform (F NT).

In a complex spectrum setting, for every d > 0 there exists a d-point DFT

because a complex principal d-th root of unity and the inverse transform always exist;

however, in a finite ring spectrum the existence of inverse transform and principal root

of unity depend on some conditions. Therefore, a NTT exists if these conditions are

satisfied.

Proposition 1 The inverse transform

x1:=d'.Xw modq, i0,1,...,d-1 (2.4)

exists if d is invertible, i.e. d d' = 1 mod q for some d' E ZZq

Proof: Clearly (2.4) gives the inverse transform. Since w is a principal d root of

unity, negative powers exist. Hence, the sum is well defined if the inverse of d exists in

Zq.
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Corollary 1 If q is prime in (2.4) then the inverse transform exists.

Proof: This is the case where Zq is a field, which means that every non-zero

element has a multiplicative inverse.

Proposition 2 There exist a d-point NTT over the ring Zq if and only if d divides

p 1 for every prime p divides q. Moreover the greatest common divisor of the set

{p 1: p dividing q} gives the maximum NTT length that can be defined over Zq.

Proof: see Theorem 6.1.1 in [3]. U

Example 1 Consider the Fermat ring Zq with q = 232 + 1. Since

232 + 1 = 641 6700417

by Proposition 2 the maximum transform length equals gcd(640, 6700416) = 128 and

NTTs with length powers of two up to 2 are possible.

Corollary 2 If q is a prime then for every factor d of q 1, there exists a d-point

NTT over Zq.

One should choose the underlying ring and the principal root of unity with

care. These two design criteria directly affect the transform lengths as well as the

complexity of the computations. In order to have the maximum simplicity, the obvious

selection for the principal root of unity is w = ±2 in Zq; multiplications with unity

then correspond to circular shifts. As Proposition 2 characterizes the relation between

the underlying rings and the transform lengths, the rings that admit longer transform

lengths for w = ±2 should to be used; however, the complexity of the arithmetic has

to be considered seriously.

Ruling out the trivial choice q 2' with the maximum NTT length 2, the

simplest choice is a Mersenne ring with q 2r 1. To demonstrate the arithmetic in
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a Mersenne ring suppose x = xo + 2x1 + 4x2 +. . . + 2rx, x E {O, 1} and let's compute

x2 in Z2r_1; for some yj E {O, 1}, i = 0, 1,2,. . . ,2r, one writes x2 as

= (x0 + 2x1 + 4x2 + ... + 2rXT)2

= Yo + 2yi + 4Y2 + ... + 2ry + 2T+lyr+i + 2r+2yr+2 + ... +

=YO+2Y1+4Y2+..+2°Yr+2Yr+1+2Yr+2+...+2"Y2r (since2r=1)

= (yo + yr+i) + 2(yi + Yr+2) + 4(y2 + Yr+3) + ... + 2( + Y2r)

This corresponds to the well known one's complement arithmetic which is fairly simple.

Furthermore, Mersenne rings admit reasonable transform lengths once the principal

root of unity is chosen to be w = +2.

Proposition 3 If q is a Mersenne prime of the form 2' 1 then there exist MNT of

length r and 2r whose principal roots of unity are w = 2 and w = 2 respectively.

Proof: Firstly, 2 2 = 0 mod r implies that r divides q 1; since w = 2 has

clearly order r, we have the r-point MNT. Similarly, in case of q 1 is even, 2r divides

q 1. Since w = 2 has order 2r, we have the 2r-point MNT.

ring

Zq
prime factors w

MNT

length
w

MNT

length

217 1 131071 2 17 2 34

2' 1 524287 2 19 2 38

223 1 47. 178481 2 23 2 46

229_i 23311032089 2 29 2 58

231 1 2147483647 2 31 2 62

1 223 616318177 2 37 2 74

241 1 i3367. 164511353 2 41 2 82
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1 431 9719 2099863 2 43 2 86

1 2351 . 4513 13264529 2 47 2 94

1 6361 69431 20394401 2 53 2 106

1 179951 3203431780337 2 59 2 118

261 1 2305843009213693951 2 61 2 122

267 1 193707721 . 761838257287 2 67 2 134

271 1 228479 48544121 . 212885833 2 71 2 142

1 439 2298041 9361973132609 2 73 2 146

1 2687. 202029703. 1113491139767 2 79 2 158

283_i 167.57912614113275649087721 2 83 2 166

289 1 618970019642690137449562111 2 89 2 178

1 11447. 13842607235828485645766393 2 97 2 196

2101 1 7432339208719 . 341117531003194129 2 101 2 202

2103 1 2550183799 . 3976656429941438590393 2 103 2 206

2107 1 162259276829213363391578010288127 2 107 2 214

2'° 1 745988807. 870035986098720987332873 2 109 2 218

2" 1 3391 . 23279. 65993. 1868569. 1066818132868207 2 113 2 226

2127 1 170141183460469231731687303715884105727 2 127 2 254

TABLE 2.1.: Parameters of MNT for 216 <q < 2128

In Table 2.1 we show some nice MNT parameters for 216 < q < 2128. The

table can easily be extended for larger rings by using the Proposition 2 and 3. Observe

especially that, the cases which q is not a prime are interesting. For instance; q = 271_i

is not a prime so do not satisfy the conditions of Proposition 3; however, the ring still

admits r-point and 2r-point MNTs by using Proposition 2.



Similarly constructions of FNT are possible for Fermat rings as the following

proposition states. But first, we like to note that the arithmetic in Fermat rings is as

simple as the one in Mersenne rings, see Section 5.1 for further details.

Proposition 4 If q is a Fermat number of the form 22 + 1 then there exist an FNT of

length 2 . 2 and 4 . 2 with the principal roots of unity w = 2 and w = respectively.

Proof: See Section §8.3 of [4]

ring

7Zq

prime factors w
FNT

length
w

FNT

length

216 + 1 65537 4 16 2 32

220+1 1761681 32 8 4100 16

224 + 1 97 257. 673 8 16 32

232 + 1 641 . 6700417 4 32 2 64

2° + 1 257 . 4278255361 32 16 n/ 32

264 + 1 274177 . 67280421310721 4 64 2 128

280 + 1 414721 . 44479210368001 32 32 '/ 64

296 + 1 641 . 6700417. 18446744069414584321 8 64 i

2112 + 1 449 . 2689 65537. 183076097 358429848460993 2 32 /i 64

2128 + 1 59649589127497217 5704689200685129054721 4 128 2 256

TABLE 2.2.: Parameters of FNT for 216 <q < 2129

U

FNT for various principal roots of unity and transform lengths are tabulated in

Table 2.2 by using Proposition 4 and 2. Observe that, one can attain larger FNT lengths

when w = (or let's say when w is not a power of 2); however, such a choice of the
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principal root of unity brings some further complexity (to be specific; multiplications

with roots of unity involve additions as well as cyclic shifts) in the computations. For

instance: in 220 + 1, w16 = 4100 is not a power of 2, so multiplications with roots of

unity become 20-bit by 20-bit multiplications. This is not tolerable for our purposes,

therefore we recommend the use of the powers of two for roots of unity even if it is at

the cost of shorter transform lengths.

In general, the transform lengths tabulated above are considered too short for

most of the digital signal processing applications. On the other hand, these lengths

seem reasonable for cryptographic applications and our purposes.

2.3. Pseudo Number Transforms

The Mersenne and Fermat rings are not the only suitable rings for efficient

arithmetic. If p (not necessarily a prime) is a small divisor of q. The rings of the form

Zq/p are also quite useful.

Definition 6 Let q and p be positive integers and p divides q. The NTT defined over

Zqp is called a pseudo number transform (PNT).

In general, arithmetic in Zqp is difficult; however, since p is a factor of q, the

arithmetic modulo (q/p) can be carried in the ring Zq. By selecting Zq as a Mersenne

or Fermat ring one simplifies the overall arithmetic. The next theorem makes the

importance of PNT more clear.

Theorem 1 Let

q=qiq2...qnp11p22...p, where q=pfori=1,2,...,n



for distinct primes j and positive integers e and n. Let R be a proper subset of the set

{qi,q,. . .
,q} andR' = {p1 : pti E R}. IfS = {pl1,p21, . . . ,pl} then gcd(S)

gcd(R') =: d' and a PNT of length-d' can be defined over Zq/p for p = fJj qi.

Proof: Firstly, R ç S = gcd(S) gcd(R'). For the second part, let R be a proper

subset of the set {qi, q2,. . .
,
q} such that q/p = JJqER qj . By using the Proposition 2

there exists a NTT with length d' = gcd({p, 1: p E R}) over Zq/p.

Example 2 In Z215_1, Proposition states that the maximum transform length is

gcd(6, 30, 150) = 6. This MNT length is very short if the size of the ring is considered.

On the other hand, if a PNT is employed in the ring Z(215_i)/7, we get the transform

lengths up to gcd(30, 150) = 30.

At first glance, the arithmetic in the ring Z(215_i)/7 seems difficult; however, it

is possible to perform the actual computation in the ring Z(2151) with a final reduction

to modulo (2's 1)/7.

Remark 1 Observe that PNT tailors the rings in a way that larger length transforms

are possible. But while doing that the size of the ring shrinks. The most interesting

PNTs are the ones which enlarge the lengths with minimal shrinkage. The effective

size of the decreased ring has to be concerned when PNTs are used.

In Appendix A, Tables 6.1 and 6.2 present parameters for some suitable pseudo

Mersenne and Fermat rings. If the Tables 2.1 & 6.1 and 2.2 & 6.2 are combined, it is

seen that for almost every v (recall that q 2' ± 1) in between 16 and 128 there exist

some set of parameters for a nice NTT. Therefore, PNTs enrich the possible design

choices which equip us to meet the marginal needs of a particular applications.



21

2.4. DFT and Convolution Algorithms

The DFT of a sequence {Xm} = (x0, x1,. . . , x_) is defined as the sequence

{Xk} = (Xo,X1,. . . ,Xd_1) given by Equation (2.3), where w is the principal d-th root

of unity.

The sum can also be written as a matrix-vector product as

Xo 1 1 1 ... 1 xo

Xi 1 w

X2 = 1 w2 w4 w2(d_1) (mod q)

Xd_1 1 wd_l w2(d_1) . . . w(d_i)(d_1) Xd_1

We denote this matrix-vector product by X = Tx, where 7- is the d x d transformation

matrix. The inverse DFT is defined as x = T1X. It turns out that the inverse of 7- is

obtained by replacing w with w1 in the matrix, and by placing a multiplicative factor

d1 in front of the matrix. The inverse matrix is given as

1 1 1 ... 1

1 W1 W2 w_(d_l)

7-_i = d' 1 w2 w4 w_2(d_1) (mod q)

1 w_(d) w_2(d_1) . . .

The matrix-vector product definition of the DFT implies an algorithm to compute the

DFT function, However, this requires d multiplications and d 1 additions to compute

an entry of the output sequence {Xk}. Thus, the total number of multiplications

is d2, and the total number of additions is d(d 1). This complexity is acceptable

for our primary purpose centered around a modular exponentiation as discussed in

Section 3.9 and specifically as illustrated in Figure 3.7. Although DFT calculations are
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negligible for our purposes the Fast Fourier Transform (FFT) algorithm can be used

which reduces the complexity from 0(d2) to 0(dlog d). We refer the reader to [3] and

[4] for excellent presentations of the subject.

2.5. Convolutions over the integer ring Zq

The computation of linear convolution is important in many fields of engineer-

ing. In practice, especially for long sequences, linear convolutions are computed by

using the DFT in conjunction with the convolution property. If the DFT is specified

in these computations, we say that DFT respects the convolution.

Earlier we defined the linear convolution as

z(t) = x(t)y(t) such that deg(x(t)) + deg(y(t)) <d (2.5)

Observe that "mod t' 1" is dropped from the Equation (2.1) since the condition

deg(x(t)) + deg(y(t)) < d guarantees that the degree of z(t) never exceeds d. In

fact, by this condition the linear convolution is turned into a cyclic one which can be

computed with a d-point DFT followed by a component-wise multiplication and an

inverse DFT. On the other hand, if deg(x(t))+ deg(y(t)) > d, d-point DFT produces

erroneous answers and DFT does not respect convolution of x(t) and y(t).

A similar situation occurs when using DFT over Zq spectrum. In order to

address this problem, Equation (2.5) has to be written as follows

z(t) = x(t)y(t)

such that deg(x(t))+deg(y(t)) <dandO z <q for alli=O,1,...,d 1.

Assume that deg(x(t)) + deg(y(t)) < d is satisfied, by the above aiialysis the

linear convolution computation by using DFT over Zq and convolution property do not

produce wrong answers; however, if any coefficient of z(t) (the convolution products)
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exceeds q, this procedure produces erroneous answers. The reason is simple, since DFT

works over Zq, the inverse DFT computes z(t) mod q, which is not equal to the actual

z(t). In the literature, such incidents are called overflows, in order to avoid overflows,

input signals or coefficients of x(t) and y(t) should be bounded properly.

In Chapter 3, we define and analyze these incidents in a formal way. We close

the section by an example which illustrates the above discussions.

Example 3 Consider the integer ring Z31; the element 2 is a principal 5th root of

unity and 5' exists since gcd(31, 5) = 1, thus there exists a 5-point NTT over ring

Z31. DFT can be achieved by a matrix multiplication where the transformation matrix

T is given by

11111 11111
12222324 124816
1 22 2 26 28 = 1 4 16 2 8

1 2 26 2 212 1 8 2 16 4

1 2 28 212 216 116 8 4 2

Now, consider the sequences x = (1, 2, 3, 0, 0) and y = (2, 3, 3, 0, 0), one finds

that the condition deg(x(t)) + deg(y(t)) = 2 + 2 < 5 is satisfied if the polynomial

representations of x and y are examined.

The transforms of x and y can be computed as

X = TxT (6, 17,26,23,26) mod 31 and Y = TyT (8,20,0, 1, 12) mod 31

At this point, we perform point-wise multiplication (i.e. convolution property), and

then take the inverse transform.

Z = X 0 Y (17, 30,0, 23,2) mod 31
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z = T1(17, 30,0,23, 2)T (2,7, 15, 15,9) mod 31

which is indeed the convolution of the signals x and y.

If x = (10, 5, 1, 0, 0) is taken, by the same procedure one gets z = (20, 9, 20, 24, 9)

which is equivalent to z = (20, 40,51, 24, 9) modulo 31; however, this is a wrong answer

caused by an overflow.
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3. SPECTRAL MODULAR ARITHMETIC

In this chapter we describe our main idea of spectral modular arithmetic. After

covering some preliminaries in Sections 3.1 through 3.3, we define spectral modular

reduction (SMR) in Section 3.4. In Section 3.5, we give a time simulation (Algorithm

4) that is translated into complex spectrum in Section 3.6 and into a finite ring spec-

trum in Section 3.7 by using the linearity and shifting property of DFT (see Section

2.1.3). We present Spectral Modular Product (SMP) (Algorithm 8), which consists of

convolution and spectral reduction, as the basic building block of both spectral modular

multiplication (SMM) and spectral modular exponentiation (SME). Finally, we describe

our main contribution SMM and SME in Sections 3.8 and 3.9 respectively.

Furthermore, along with the presentation of algorithms, we investigate the min-

imal domains (i.e. smallest rings) in which our spectral algorithms work. In particular,

Theorem 12 characterizes the size of a minimal ring that SME (with a SMP core) works

without overflows.

3.1. Evaluation Polynomials

So far, we have had a presentation mostly adopted from the theory of digital

signal processing. In such a theory, the signals are usually assumed to be statistically

independent. However in the setting of modular or integer arithmetic, the signals are

not really of such a nature. In fact, signals mostly correspond to representations of

numbers in a certain radix. Therefore, we develop a more clear notation that permit

us to explore this observation in a more convenient way.
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Definition 7 Let x and b > 0 be integers, if x(t) is a polynomial in Z[tJ such that

x(b) x then we say x(t) is an evaluation polynomial of x. For ease of notation

we denote evaluation polynomials by the pair (x, x(t)).

Remark 2 The positive integer b is called the base or radix. In order not to have

confusion with the frequent usage of word "radix" for another instance in FFT theory,

we use the base for b.

The set of all evaluation polynomials is a fairly big set if b is seen as a variable.

For our purposes, we rather prefer to work on a subset.

Notation 2 If the positive integer b is fixed, then the set of all evaluation polynomials

is denoted by B.

Remark 3 When b is fixed there exists a natural 1-1 correspondence between 13 and

Z[t] which is given by (x,x(t)) i-*

Remark 4 To be consistent with the previous notations, if

x(t) = xo + xit + ... + Xd_lt e Z[t]

is an evaluation polynomial of an integer x for a fixed positive integer b then the corre-

sponding length d sequence {Xm} = (x0, xi, .. . , x_) is called the evaluation sequence.

In this context, we like to specify the evaluation polynomials (or sequences) of

base (or radix) representation of numbers as follows:

Definition 8 Let

x(t) = xo + x1t +... + Xd_ltd_l e Z[t]

be an evaluation polynomial of an integer x for a fixed base b. If the coefficients of

x(t) satisfy 0 x < b for all i = 1, 2,. . . , d 1, x(t) is called the base evaluation

polynomial or simply the base polynomial.



Example 4 A base 2', k> 0 representation of an integer x ((x0x1 . . . xj) with 0 x <
21v for i = 1,2,. . . , d 1) has the base polynomial x(t) = xo + x1t + x2t2... + xd_ltd_l

where y(t) = (x0 + xib) + 0 t + x2t2 + ... + xd_ltd l is any one of its evaluation

polynomials.

As seen in Example 4; the evaluation polynomial (or sequence) of the integer x

is not unique, indeed the same integer has infinitely many different evaluation polyno-

mials. But note that the base polynomials (i.e. base representations) are unique.

Proposition 5 Let 13 denote the set of all evaluation polynomials then (13, , ®) is a

ring with the following operations;

(x, x(t)) (y, y(t)) = (x + y, x(t) + y(t))

(x, x(t)) ® (y, y(t)) = (xy, x(t)y(t))

where x(t), y(t) E Z[t and x, y E Z.

Proof: With fixed b, it is easily seen that (B, ) is surely an abelian group and

(13, ®) is a closed set since the structures on the components of pair come from Z and

Z[tJ. All we need to show is that the evaluation map is well defined on the components.

This is trivial because x+y = x(b)+y(b) , and the distribution property comes naturally

from this observation. Thus, (B, , 0) is a ring with identity (1, 1®) = (0, 1). U

Proposition 6 The map : B -* Z[t] sending (x, x(t)) '-p x(t) is a ring isomorphism.

Proof: Since b > 0 is fixed, the evaluation x = x(b) is also fixed which implies

that there exists a natural surjective map from B to Z[t] sending (x, x(t)) i-* x(t) with

a zero kernel.



Definition 9 If x(t) and y(t) are evaluation polynomials for the same integer x, then

we write x(t) - y(t) and say x(t) is related to y(t).

Proposition 7 x(t) -V-' y(t) is an equivalence relation

Proof: (i) x(t) x(t) since x(b) = x(b)

(ii) if x(t) y(t) then y(t) -' x(t) since x(b) y(b)

(iii) if x(t) y(t) and y(t) - z(t) then x(t) z(t) since x(b) = y(b) = z(b)

Proposition 8 Let 5 be the set of all evaluation polynomials then 13/ is isomorphic

to the ring of integers Z.

Proof: Let the base polynomials be the representative of the equivalence classes

of the set 8 with respect to the relation -. Since base polynomials are unique for all

integer x e Z. The map

x i-f [(x,x(b))]

gives the isomorphism.

U

Definition 10 The set of all evaluation polynomials of degree less than a positive

integer d is called a time frame and denoted by 13d

Observe that, 13d C 5; however, (8', ®) is not closed under the binary operation

® thus 13d is not a subring of S but (5d, ) is still an abelian group.

Fortunately, the ring of the evaluation polynomials is isomorphic to the standard

Z[t]. One might like to state the same relation between c1 and Z{t]/(td 1) which is

not a good practice for many reasons, let us give an example.



Example 5 Suppose x = 19 and y = 9. If the base b = 2 evaluation polynomials

x(t) = 1 + t + 2t3 and y(t) = 3 + t + t2 of x and y are considered, the product

x(t)y(t) = 3 + 4t + 2t2 + 7t3 + 2t4 + 2t5 (3.1)

gives an evaluation polynomial for 19 9 = 171. But since the product (3.1) does not

belong to the set the result becomes undefined or out of bounds. On the other

hand, if we work in the ring Z[t]/(t4 1) we are forced to reduce the product (3.1)

to 5 + 6t + 2t2 + 7t3. This clearly in Z[t]/(t4 1) but evaluation of it at b = 2 gives

81 rather than 171. Since we suppress evaluations, such a reduction is not acceptable

for our purposes, hence for the time we keep the result (3.1) as undefined rather than

reducing a wrong evaluation polynomial, but later we are going to define the spectral

modular reduction that respects the evaluations while reducing the degree.

As computer arithmeticians, we started to build a terminology in time domain

with a very simple observation that in some sense the sequences we deal with are not

statistically independent. We describe that this dependence can be revealed by a pair;

the polynomial and its evaluation. Actually with this notation, we put the emphasis

on the evaluation as well as the representation. At first glance, adding the evaluation

information to the representation seems redundant but such a convention leads us to a

better understanding of spectral techniques for arithmetic operations. Moreover such

a representation states the different nature of a number representing signals from a

classical signal processing analysis.

Remark 5 Note that the same theory can be built by taking sequences or vectors as

building blocks.

When the spectral sequences are considered our simple observation is not correct

any more hence most of the terminology created so far seems not to make any sense for
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spectral sequences. However, we like to use the polynomial representation for a unified

notation. Therefore, when we write

x(t) DFT X(t)

we mean the coefficients of x(t) and X(t) are transform pair as sequences. We call

x(t) the time polynomial where X(t) is called the spectral polynomial of x(t).

As before we reserve the capital letters for the spectrum variables.

Theorem 2 If F denotes the set of all spectral polynomials over C, then F forms a

ring with component-wise addition and multiplication. (F, +, 0) which is called the

complex Fourier ring.

Proof: Observe that, (F, +) is the same abelian group as the additive complex

polynomials. (F, 0) is closed since if X(t), Y(t) E F then component-wise multiplica-

tion X(t)GY(t) is definitely in F. The distribution property is inherited from complex

numbers C on the coefficients. Note that a multiplicative identity do not exist.

Theorem 3 If Fd is the set of spectral polynomials over C with degree less than a

positive integer d then F' is a subring of the Fourier ring F and it is isomorphic to

Cd (as a direct sum of rings).

Proof: All we need to show is Fd is closed under both binary operations. (F', +)

is closed because addition of any two polynomial does not increase the degree of the

result. The same reasoning is also correct for (Fd, ®), thus Fd is a subring of F.

MoreoverifX(t) =Xo+Xlt+...+XdtdthenthemapX(t) '-_* (Xo,Xl,...,Xd) ECd

surely defines an isomorphism.
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3.2. DFT and Convolution Revisited

In this section we establish an algebraic treatment for some concepts of Fourier

transforms and convolutions.

3.2.1. DFT and Convolution over the Complex Spectrum

The DFT is an invertible set map from 13d to Jd Moreover the properties of

DFT show that this map actually respects some structure as well. Definition 11 gives

the standard expression of the DFT for a polynomial representation.

Definition 11 The DFT is the invertible map

DFT: 13d where w E C is a principal dth root of unity

defined by

X = DFT(x(t)) := i = 0,1,. . . , d 1 (3.2)

with the inverse

IDF(x(t)) := = 0, i, . . . , d 1 (3.3)

Proposition 9 The DFT map DFT: (13d, ) (Fd, +) is a group homomorphism

Proof: Let (x, x(t)) and (y, y(t)) be in B', first of all the map (x, x(t)) '-+ x(t) is

well defined since x is fixed by evaluation at b.

DFT((x, x(t)) (y, y(t))) = DFT((x + y, x(t) + y(t)))

=x(t)+y(t)

= DFT((x, x(t))) + DFT((y, y(t)))
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In fact, this corresponds to the linearity property (i.e. property (i) of Section 2.1.3).

.

When it comes to multiplicative group, (8d, ®) is not closed; there exist elements

x(t), y(t) e 13d such that x(t) . y(t) 5d, thus the DFT map is not even well defined.

We conclude that DFT map is not a global group homomorphism on (8d1, ®) but locally

there are still cases which the following equation is satisfied

DFT((x, x(t)) ® (y, y(t))) = DFT((x, x(t)) 0 DFT(y, y(t)) (3.4)

=X(t)®Y(t)

Indeed, Equation 3.4 is an another way of stating the convolution property.

Fortunately, in the Section 2.5 we discussed whether a product is in the time frame 13d

or not, and concluded that if the condition deg(x(t)) + deg(y(t)) < d is satisfied, then

DFT respects the convolution.

In fact, next proposition shows that on a convex or a more regular subset of

(8d,®) the DFT map respects the convolution property.

Proposition 10 A length d DFT map DFT d respects the convolution

property on the subset 5$ c 5d where s = Id/21.

Proof: Let x(t) and y(t) be elements of the set 51(/21 then deg(x(t)) and deg(y(t))

has to be less than [d/21 which implies

{ (-1)+(-1)=d-1 ifdisodd
deg(x(t)y(t))

( 1)+( 1) =d-2 ifdis even

which is less than d for either case.
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3.2.2. DFT and Convolution over a Finite Ring Spectrum

In Sections 2.2 and 2.3 we have seen many suitable finite ring spectra for DFT.

Moreover, in Section 2.5 we literally stated when DFT respects the convolution prop-

erty in these finite structures. In this section, we formalize these findings in terms of

our new notation.

We begin with adapting the formal definition of DFT (i.e. Definition 11) to a

finite ring spectrum. We start with forming a suitable ring for the range followed by

the domain.

Theorem 4 If .F is the set of all polynomials over Zq of degree less than a positive

integer d, then .F forms a ring with standard polynomial addition and component-wise

multiplication. The ring .T is called the Fourier ring and it is isomorphic to Z (i.e.

the direct sum of rings).

Proof: All we need to show is that .7 is closed under both binary operations.

(, +) is closed because the degree of sum of two polynomials with degree less than

d do not exceed d 1 and the coefficients stay in Zq. Indeed (F, +) is the same

abelian group as additive group of the polynomial ring Zq[tJ. On the other hand, the

same reasoning is also correct for (.F, ®) since if X(t), Y(t) E then the degree

of X(t) 0 Y(t) do not exceed d so the result is in F. The distribution property

is inherited from Zq, the ring integers modulo q, on the coefficients. Note that a

multiplicative identity do not exist.

Additionally, if X(t) = Xo + Xit + . . . + Xdt' E then the map sending X(t)

to (X0, Xi,. . . , Xd) e Z surely defines an isomorphism. That is to say .2 Z.

U
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Definition 12 Let r and d be positive integers, we define a positive polynomial

frame as

7-1 = {y(t) E B: deg(y(t)) <d and 0 yj <r for all i = 0, 1, . . . , d 1}

Remark 6 Note that, the 7I is the set of base polynomials.

We mentioned earlier that it is not a good practice to visualize 13' as the poiy-

nomial ring Z[t]/(td 1). The same assertion can be made for N and 4[t]/(td 1).

We give an example to show this difference.

Example 6 Let x = 15, y = 12 and base b = 2. Consider the evaluation polynomials

of x(t) = 11 + 2t and y(t) = 6 + t + t2 of x andy. The product

x(t)y(t) = 66 + 23t + 13t2 + 2t3 (3.5)

sits in Z17[t]/(t4 1) without a degree reduction but since the underlying integer ring

is Z17 we have to reduce the coefficients of the product. This gives the polynomial

15 + 6t + 13t2 + 2t3 which is an evaluation polynomial for 95 rather than 180. On

the contrary if 7117 is considered, we would say that the result (3.5) is undefined or

out of bounds. Actually, this ill-favored situation corresponds to overflows discussed in

Section 2.5.

Example 6 shows that the positive polynomial frame fl does not form a group

with either usual addition or convolution. But as in the time frame case, we can speak

of some subsets of 7-1 such that DFT respects these two operations. Moreover, when

we define the spectral modular reduction, a reduction that respects evaluations, we

are going to speak of closed frames with respect to spectral modular addition and

multiplication and later we embed these structured frames into Fourier rings to apply

the DFT theory. Let us first give a formal definition of DFT in the finite ring setting.
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DFT ?-1 -* where w E Zq is a principal dth root of unity

defined by
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X = DFT(x(t)) := xw mod q, i = 0,1,. . . , d 1 (3.6)

with the inverse

= IDF(X(t))
d :

mod q, o, , . . . , d 1 (3.7)

Next we formally state when a DFT respects a convolution.

Definition 14 Suppose that (x(t), x) and (y(t), y) are evaluation polynomials in the

frame N with s = Id/2]. We say a DFT map DFT' respects the convolution if

the the product (z(t), z) = (x(t), x)®(y(t), y) sits in ?1. Moreover, we say an overflow

occurs for those cases in which this condition is not satisfied.

Lemma 1 Suppose that (x(t), x) and (y(t), y) are base b polynomials in the frame 1-I

with s = [d/21. The product (z(t), z) = (x(t), x) 0 (y(t), y) sits in where q > sb2.

Proof: Let x(t) = x0 + x1t + ... + Xd_1t' and y(t) = yo + y1t + ... + yd_ltd_l

be polynomials such that deg(x(t)) + deg(y(t)) <d and 0 x, y2 <b for some b> 0.

Without loss of generality, assume deg(x(t)) deg(y(t)). If z(t) = x(t)y(t) then the

coefficients of z(t) can be written as follows

Zk XjYj, k=0,1,2,...,d-1
k=i+j

For any k, Zk can be found by adding at most deg(y(t)) + 1 nonzero terms, but since

deg(y(t)) + 1 [d/21, letting s = [d/21 gives

Zk (deg(y(t))+1)bbs.b2

thus choosing q> s b2 gives the result. U



36

The following result gives the condition when the d-point DFT map respects

the convolution of two elements of a positive frame

Theorem 5 If DFTd"' : is a length d DFT map then DFT' respects the

convolution as well as the addition on the subset 7-t C fl where s = [d/21 and b2s < q

for an integer b> 0.

Proof: Let x(t) and y(t) be polynomials in N for some b> 0. By using Lemma

1, the product z(t) = x(t)y(t) is in where q > s b2. Therefore, the DFT map

DFT' respects the convolution, and the convolution can be computed by using the

combination of DFT and convolution property.

3.2.3. Time Simulations and Spectral Algorithms

In the previous two sections we stated the conditions when the convolution and

linearity property hold for either complex or finite ring spectra.

At this point, we state that our primary interest with spectral techniques is

the ability of replacing convolutions by component-wise multiplications. An algorithm

involving many convolutions benefits most from such a transformation. For instance;

the encryption algorithm RSA [11] over some integer ring has such a nature, it involves

significant number of multiplications. But since these multiplications are modular, one

has to deal with reductions. In general, reductions are performed as a combination or a

sequence of multiplications and additions/subtractions, hence by using the properties

of DFT it is possible to perform reduction in the spectrum. But this still needs an

analysis of conditions when a DFT map respects such sequences of operations. We

start by an example in order to illustrate our methodology.

Example 7 Consider an algorithm in time domain doing the following;
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Algorithm 1

input: x(t), y(t) e Z[t] polynomials of degree d

output: z(t) := x(t)(5y(t) + x(t)) 3x(t)

1: z(t) := x(t) + 5y(t)

2: z(t) :=x(t).z(t)

3: z(t) := z(t) 3x(t)

4: return z(t)

As long as all the intermediate results and the output in the above algorithm

belong to the domain of DFT map, DFT respects the algorithm and we have a dual

algorithm in the spectrum which is presented as follows.

Algorithm 2

input: X(t), Y(t) e Z{t] polynomials of degree d

output: Z(t) : X(t) ® (5Y(t) + X(t)) 3X(t)

1: Z(t) :=X(t)+5Y(t)

2: Z(t) := X(t) 0 Z(t)

3: Z(t) := Z(t) 3X(t)

4: return Z(t)

Observe that when the inputs of Algorithm 1 and 2 agree, a parallel run produces the

agreeing intermediate results as well as the actual output. By agreeing we mean that

there exists a DFT relation between the data in two domain at all times.

Algorithm 1 is called the time simulation of spectral algorithm. In fact,

Example 7 tells a lot about our methodology. In the following sections, we start with

describing some time simulations of modular reduction algorithm. The challenge is to
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FIGURE 3.1. A translation of a time simulation into the spectrum, two algorithms

agree as long as the intermediate results and the output belong to the domain B for

some positive integers e and r.

come up with some nice algorithm that has a simple translation. Then we translate

the time simulations to complex and finite ring spectrum. The majority of our work

is dedicated to find the minimal domains (i.e. smallest rings) in which our spectral

algorithms work.

3.3. Modular Reduction

Before introducing the notion of spectral reduction, we need to make a few

points clear about the modular arithmetic over the ring of integers;

In calculations of integers involving division it often happens that we are inter-

ested in remainder, but not the quotient. Those numbers having the same remainder

when divided by a fixed number n are called congruent, to be more formal:

Definition 15 Let n> 0 be a fixed integer. We say x is congruent to y modulo ii

and write
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y x mod n if n divides (y x). (3.8)

From the division algorithm we know that for each x e Z there is an equation

xrnq+r, forsomeqeZandOrn

This means that each x E Z can be assigned to one of the element of the set

{O, 1,2,. . . , n 1}. This set is called the least residues mod n and it is clear that

no two of the elements are congruent to each other mod n. We define the modular

reduction as follows.

Definition 16 Let n > 0 be a fixed integer. We say y is the modular reduction of x

modulo n and write

y = x mod n if y is a least residue mod n

Remark 7 The expressions "y = x mod n" and "y x mod n" have different mean-

ings. Observe that the first one with =r" states that y is in the range [0,n 1].

The equivalence on Z defined by the relation (3.8) partitions Z into n blocks,

called the residue classes of Z mod n. Indeed Z, := Z/nZ is the set of these residue

classes. If we denote the residue class mod n containing y by , then the Z can be

seen as the ring having the following n elements O, I, . .., (n 1). For instance, when

n = 2, the residue classes are the set of even and odd numbers.

The ring Z is mostly represented by the least residues mod n. But using

a different representation set is equally valid as long as the set contains a unique

representative of the disjoint residue classes of Z. Such representations require a

modified modular reduction.
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Definition 17 Let n > 0 be a fixed integer, and let the set R = {yi, Y2,. , Yn-i} be

a representation set of the residue classes of Z mod n such that no two of elements

are congruent to each other mod n. The modular reduction of x E Z with respect to

modulus n will be defined by

y = x mod n where y E R. is congruent to x,

We use " modR" notation in order to emphasize the representation set R.

Example 8 For n = 3, the three disjoint residue classes are {. , 8, 5, 2, 1,
4,7,10,...}, {...,-7,-4,-1,2,5,8,11,...} and {...,-9,-6,-3,0,3,6,9,...}. The

standard representation set is {0, 1, 2}. If the representation R. = {-3, 1, 5} is used

21 = 3 mod 3 where with the standard representation we have 21 0 mod 3.

We, now define a subset of B that corresponds to the least magnitude residue

representation

= {1n/21,...,-1,0,1,2,..., In/21}.

Definition 18 Let r and d be positive integers, the following subset ofB

= {y(t) e B: deg(y(t)) <d and [r/2] y, s [r/21 for alli = 0,1,...,d 1}

will be called a polynomial frame with radius r and degree d.

Remark 8 Note that, fl and L3 are related since the set [-r/21 yj [r/21 is a

shifted version of the set 0 y, <r.

While performing computations such as modular exponentiation, in order to

have some computational advantage sometimes exact modular reduction calculations

can be postponed for the intermediate values {12]. As long as these values belong
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to the correct residue classes such modifications do not tend to misleading modular

reductions. Now, we stretch the definition of the modular reduction for ease of our

construction.

Definition 19 Let E > 0 be an integer, we call the set

F(E) = {y Z: II <&}

the integer frame of radius .

Definition 20 Let x, n > 0 and E n be integers. Then the elements of the set

{y y E F(E) and y x mod n}

are called the almost modular reductions of x with respect to the modulus n.

Example 9 Let E = 6 then F(E) = (-6, 6) and the set of almost modular reductions

of x = 1 with respect to modulus n = 3 is {-5, 2, 1,4}.

The choice of the radius E completely depends on the nature or needs of the

problem. Most of the time the reductions followed by a squaring or a multiplication

therefore, as E gets larger the operand sizes of the follow up operations increase. Obvi-

ously = n is the optimal choice in that sense. But as we pointed out earlier, we are

after some approximations of the optimal solution for some obvious reasons. In other

words, we are looking for some small e such that after finding an element of almost

modular reduction set, deducing the exact modular reduction has to be simple. Indeed,

that is why it is appropriate to use the adjective "almost" to describe the elements of

this set.



3.4. Spectral Modular Reduction

In this section we give a formal definition for the spectral modular reduction

and build up the necessary terminology for a better understanding of the algorithms

in the spectrum. We return to our main objects: the set of evaluation polynomials, B,

and its subsets.

Proposition 11 The evaluations of the polynomials in B form an integer frame F(E)

in Z where = (Ir/21 1) + ([r/21 1)b+ (Ir/21 1)b2 + ... + ([r/21 - 1)bd_l

Proof: It is easily seen that the polynomial x(t) = ([r/21 1) + ([r/21 1)t +

(Ir/21 1)t2 +. . . + ([r/21 - 1)td_1 E B attains the maximum evaluation value at base

b which is the integer ([r/21 1) + ([r/21 1)b + ([r/2] 1)b2 +. . . + ([r/21 - 1)bd_l

(see Figure 3.2). Likewise x(t) takes the minimum value. Setting = ([r/21 1) +

([r/21 1)b+ (Ir/21 1)b2 + ... + ([r/21 - 1)bd_l gives the result.

Definition 21 Let n(t) be a base b polynomial of n with degree d 1. The elements

of the set

A ={(y,y(t)) :y x modn andy(t) E B for somer b}

are called almost spectral reductions of the evaluation polynomial (x, x(t))

with respect to (n,n(t)).

Lemma 2 Let A be the set of all almost spectral modular reductions of (x, x(t)) with

respect to (n, n(t)). If y(t) is the base polynomi al for y = x mod n then (y, y(t)) e A.

Proof: If y(t) = Yo + yit +... + Yd_lt'' is the base polynomial for y = x mod n

then jy <bforalli=O,1,...,d-1. Sincer d, y(t) E B C B= (y,y(t)) EA
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FIGURE 3.2. Evaluation map sends the polynomial frame L3 to an integer frame

F(e).

Definition 22 We call the base polynomial y(t) of y = x mod n as the spectral

(modular) reduction of (x, x(t)) with respect to (n, n(t)) and we simply write

Moreover the expression

y(t) = x(t) mods n(t).

y(t) x(t) mods n(t)

mean n divides the evaluation of (x(t) y(t)) at base b.

The spectral reduction can be viewed as a projection of the usual modular

operation in Z to the set of (evaluation) polynomials. Clearly, it is defined over the

polynomials but it is different from the standard modular reduction in Z[tJ. To indicate

this difference, in place of "mod" we choose to use "mods" where "s" stands for spectral.
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Similar objects can be defined for spectral polynomials; however, we note that

unlike time polynomials, evaluation of spectral polynomials do not have any special

meaning that serves our needs. To be specific for a spectral polynomial X(t), X(b) does

not have a special meaning, where x(b) mostly represents an input integer. Therefore,

our derivation for spectral polynomials is a canonical continuation of the notation that

is developed for time polynomials.

Definition 23 Let x(t) be a base polynomial for b > 0 of an integer x. We call the

spectral polynomial X(t), the transform pair ofx(t), the spectral base polynomial.

Definition 24 Let y(t) be an almost spectral reduction of x(t) with respect to n(t) in

some frame 8. The spectral polynomial Y(t), transform pair of y(t), is called the

almost spectral reduction of X(t) with respect to N(t) where (X(t), x(t)) and

(N(t), n(t)) are transform pairs.

Definition 25 We call the base polynomial Y(t) in the spectrum the spectral mod-

ular reduction of X(t) with respect to N(t) and we write

Moreover the expression

Y(t) = X(t) mods N(t).

Y(t) X(t) mods N(t)

means n divides the evaluation of IDFT((X(t) Y(t)) at base b.

In Figure 3.3, we present a visual description of the above definitions for signals

of length 6. We assume the line on the bottom is the Z line, the region [-i, ] represents

the frame F(e) and the shaded region shows 7/. The set of solid points gives an

almost modular reduction set of x with respect to n, hence any solid point y satisfies
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FIGURE 3.3. A description of definitions (21) through (25). (*) represents the spectral

modular reduction.

y x mod n. The four time signals represent the evaluation polynomials for these

solid points. Observe that all of the polynomials are elements of the polynomial frame

L3 and they all belong to the almost spectral reduction set. The above four spectral

signals are transform pairs of the time signals and specifically the signal labeled with

(*) represents the spectral modular reduction of an X(t) with respect to some N(t) of

degree 6.



3.5. Time Simulation of Spectral Modular Reduction

The spectral reduction can easily be achieved by deducing the base polynomial

of the usual modular reduction (y = x mod ri). But with such an approach one needs

to perform classical modular reduction routines, which do not have simple spectral

meanings. Our next step is to give a description of an algorithm that computes an

almost spectral reduction of an evaluation polynomial. But, before presenting the

algorithm we state the relation of the set A with time frame F(E).

Lemma 3 Let A be the set defined in Definition 21. Then A/ '- gives an almost

modular reduction set in the time frame F(E) for some e> 0.

Proof: Let n > 0 and d = deg(n(t)). The set A is defined to be the set of all

evaluation polynomials of y x mod n in the frame B, (A/ '-.) C Fr) by Lemma 2

and since all evaluations satisfy y x mod n, A is an almost modular reduction set of

ofn.

Algorithm 3 Time Simulation of Spectral Reduction Algorithm

Suppose that n and b are positive numbers with gcd(b, n) = 1, n(t) is the base evaluation

polynomial of n with degree d 1 and x(t) is an evaluation polynomial of x with degree

e d.

Input: x(t) and n(t).

Output: y(t), an almost spectral modular reduction of x(t) with respect to n(t).

1: Compute = pn such that 1d = 1 and 1j <b/2

2: Compute ii = 8n such that = 1 and <b/2

3: y(t) = x(t) . td

: for i = 0 to e (degree reduction)
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5: y(t) := y(t) Ye-i (t)

6: end for

7: a:=O

8: for i = 0 to d 1 (radius reduction)

9: /3 := (Yo + a) rem b

10: a := Yo div b

11. y(t) :=y(t) /3.n(t)

12: y(t) := (y(t) yo)/t

13: end for

14: y(t) := y(t) + a(t), where a(t) is the base polynomial for a.

15: return y(t)

In Figure 3.4 we illustrate the steps of the Algorithm 3. In Step 1 and 2;

we compute the multiples of the modulus n that is used in reduction steps. The

computation of 'i = pn can be performed as follows:

multiply n with a power of two such that b > 1d b/2,

. deduce the base polynomial (t) of ñ by breaking i into words of [log(b) bits.

encode the base polynomiai i(t) by the following procedure:

Procedure 1

1: fori=dltoO
2: ifi > b/2 then

3:

4: := 1i+1 + 1

5: return y(t)
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which gives the desired polynomial with 1j <b/2 for i = 0, 1, . . . , d 1.

The computation of n(t) is similar. Since gcd(b, n) 1, 6 = n1 mod b exists

and can be found by using the extended Euclidean algorithm. By employing a similar

encoding to the base polynomial of 5n, the desired polynomial n(t) is computed with

= land InI <b/2, i = l,2,...,d- 1.

At Step 3; we extend the input polynomial (this corresponds to a d-word shift

with computer arithmetic terms). The reason for this extension becomes clear once we

discuss the radius reduction steps. The first for loop implements a classical polynomial

degree reduction of x(t) . td with respect to i(t).
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Steps 7-15 play the most important role in the algorithm. Observe that radius

reduction is very similar to a Montgomery reduction for binary polynomials [13]. Thus

if y(t) is the input to this core, the core computes the reduction y(t) . t_d but since our

input was x(t) . td, the output of the whole algorithm becomes x(t) . . t. Moreover

the carry-save methodology brings the magnitudes of the coefficient of the signals to fit

into a polynomial frame. The boundaries of radius and degree of this frame are traced

in the following theorem;

Theorem 6 Algorithm 3 computes an almost spectral reduction y(t) x(t) mods n(t)

such that the output signal y(t) fits into the polynomial frame B where r = b2d + b.

Proof: First of all the algorithm computes an evaluation polynomial y(t) such

that y(t) x(t) mods n(t). This is seen as follows; at only Steps 5, 11 and 12 the value

of y(t) is accumulated either by adding a multiple of n(t) or a word shift. Since we

work in the ring 5 adding or subtracting a multiple of n(t) do not change the residue

class that y(t) belongs to. On the other hand, the word shift in Step 12 is performed

after eliminating the least significant b-bits of y (i.e. by adding a proper multiple of

n(t) to y(t) at Step 11) and passing the necessary carry information to the successive

digit. Such a trivial operation does not change the residue class that y(t) belongs to.

Therefore y(t) satisfies y(t) x(t) mods n(t).

When it comes to figure out which frame y(t) belongs to, let x(t) = x0 + x1t +

+ XeltC1 be an evaluation polynomial with lxii <u for all i = 0, 1,. . . , e 1 and

let n(t) = 1+ n1t +. . . + t4td and i(t) = o + it +. . . +1 . td be evaluation polynomials

of some multiples of n(t) (i.e. with <b/2 for all i = 0, 1,. . . , d). Observe that,

the degree reduction part of the algorithm implements a classical polynomial reduction

of x(t) . td with respect to i(t) and after the first for loop, the degree of the polynomial
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y(t) drops from d + e to d 1, on the contrary the magnitude of the coefficients can

possibly be large.

No matter how big these coefficients are, in the radius reduction loop, we de-

crease the radius by an add-shift methodology which is described as follows. At every

run of the loop we set Yo = 0 (i.e. by adding a proper multiple of n(t) to y(t) at Step 11

and passing the necessary carry information to the successive digit) and then divide by

t (which corresponds to log2(b)-bit shifts). At every next run of the loop, Yd satisfies

IYdI <3 Im <b2/2 because y(t) drops degree from d to d 1 whenever divided by

t in the radius reduction. Since e > d after d steps of reduction Yo has the maximum

accumulation which decides the following bound

b2d foralli=0,1,...,d-1

The only detail left is the last carry (i.e. ), c can significantly change the bound for

yo if it is large and is directly added to Yo (i.e. Yo Yo + c > b2d). But instead of

adding it straightaway if an encoded base polynomial of c is added to the y(t), this

bound is iterated to y < (b2d + b)/2. Thus, y(t) fits into B with r = b2d + b. Note

that, here we assume deg(a(t)) <d and cj <b/2.

Algorithm 3 presents a direct reduction method, instead it is possible to use

some indirect reduction methodology, such as make use of the Montgomery's trick

[14]. Montgomery trick is a method which allows efficient implementation of modular

arithmetic operations without explicitly carrying out the classical modular reductions.

Indeed, it replaces the modular reduction by a multiplication and some trivial shifts.

The trick is instead of attacking to compute the x mod n directly, it proposes to derive

it after performing a related computation

x r1 mod ii
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for r > n and gcd(n, r) = 1. At first glance this seems computationally pointless

because of inversion involved but The selection of T changes this first impression dras-

tically. After giving some related notation, with Algorithm 4 we employ such a method-

ology.

Notation 3 The polynomial product x(t) te is denoted by xe(t), so in this context

x_e(t) = x(t) t

Algorithm 4 Time Simulation of Spectral Reduction Algorithm (Montgomery type)

Suppose that n and b are positive numbers with gcd(b, n) = 1, n(t) is the base evaluation

polynomial of n with degree d 1 and x(t) is an evaluation polynomial of x with degree

(e-1) (d-1).

Input: x(t) and n(t).

Output: y(t), an almost spectral reduction of x_e(t) with respect to n(t).

1: Compute n = Sn such that = 1 and nj <b/2

2: y(t) x(t)

3: a:=O

4: for i=O to e-1

5: 3 := (Yo + a) rem b

6: a:=yodivb

7. y(t) :=y(t)j3.n(t)
8: y(t) (y(t) yo)/t

9: end for

10: y(t) := y(t) + a(t), where a(t) is the base polynomial for a.

11: return y(t)
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Algorithm 4 reduces the degree while reducing the radius since the core of the

Algorithm 4 and the radius reduction part of the Algorithm 3 are identical. An other

salient feature of Algorithm 4 is that it also bounds the coefficients of the intermediate

values quite desirably which literally described in Section 3.2.3. We present these

results in the next theorem.

Theorem 7 Algorithm 4 computes an almost spectral reduction y(t) x_e(t) mods

n(t) such that the output signal y(t) has the form

y(t) = yo + yit + y2t2 +... + Yd_ltdl, where
(d i)b2 + b

2

that fits into the polynomial frame B where r = b2d+b. Moreover, if lxii <u/2 for all

i = 1,2,. . . , e-1 then the coefficients of the intermediate values satisfy iii < (u+b2d)/2

fori=O,1,...,d-1.

Proof: The algorithm computes the almost spectral reduction of x_e(t) =

since the loop runs e times that implies we divide by t exactly e times. if ixi < u for

all i = 0, 1, . . . , e 1, at every step of the loop, Yd-i would satisfy IYd-ii < i Im(i +

1)1 + u/2 < (b2(i + 1) + u)/2 where i = 0, 1,. . . , d 1. A bound for iYdii is attained

when i = d 1 which is Iiii < (b2d+u)/2 for i= 0,1,...,d 1.

form

In particular, if the last d 1 steps of reduction is considered y(t) takes the

y(t) = Yo + y1t + y2t2 + ... + yd_ltdl, where
(d i)b2 + b

2

fori=0,1,...,d-1.
Note that both Algorithm 3 and 4 describe reduction routines of an arbitrary

evaluation polynomial (i.e. of degree larger than or equal to d 1) which do not really

address our targeted problems. To be specific, in general modular exponentiation is
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performed by a multiply-reduce methodology, so we practically deal with reducing

polynomials into single sizes frames from approximately doubled ones. In order to

cooperate with transform parameter related discussions, we give a corollary to Theorem

7 by fixing the degree of x(t) to d 1 and the degree of the n(t) to [] 1.

Corollary 3 Let n(t) be a base b polynomial with degree s 1 such that s = [d/21

and let x(t) E l3 where r = sb2. Algorithm 4 computes an almost spectral reduction,

y(t) x(t) . t° mods n(t) in the polynomial frame B, where r' b2s + b. Moreover,

coefficients of all the intermediate values do not exceed 2b2s.

Proof: Let n(t) be a base b polynomial with degree s 1 such that s = Id/21

and let x(t) e B where r = b2s then the coefficients of x(t) satisfy lxii <r/2 b2s/2

for all i = 0, 1,. . . , d 1 (note that we take x(t) with the maximum degree d 1

in order to find the upper bounds). First of all taking e 1 = d 1, the algorithm

drops the deg(x(t)) to deg(n(t) = s 1 and computes the almost spectral reduction of

x_d(t) = x(t) .t_d in the frame !3,. The radius r' = b2s+b can be deduced by applying

the Theorem 7, moreover since lxii <b2s/2 the intermediate values are bounded by

b2s r b2s+b2s

2
=b2s

3.6. Spectral Modular Reduction in a Complex Spectrum

Now, it is time to translate the spectral modular reduction algorithm into the

spectrum. Observe that the extension step in Algorithm 3 forces us to use larger

transform lengths. For convenience we only transform Algorithm 4 which do not require

any extensions, but with a little bit more work similar steps can be employed for

Algorithm 3 as well. Firstly, we translate the time simulation (i.e. Algorithm 4 into a
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complex spectrum followed by a translation to a finite ring spectrum. The translation

is performed line by line by using the dictionary, established earlier in Section 2.1.3.

We start by adapting some notation, in particular Notation 1, to our polynomial based

presentation;

Notation 4 Let w be a principal d-th root of unity, we denote the sequences {IZk} and

{Fk} by

= 1 + w't + w2t2 + ... + w)td_1 and

F(t) = 1 + w't + w2t2 + ... +

in polynomial notation respectively.

Notation 5 Additionally, recall that if a E Z is a constant then {a} = (a, a,. . . , a)

represents the constant sequence of length d. In polynomial notation we denote constant

sequences by

a(t) = a + at + at2 + ... + atd

Algorithm 5 Spectral Reduction Algorithm (in a complex spectrum)

Suppose that there exist a DFT of length e over C and

x(t) DFT X(t) n(t) DFT (t)

where x(t) is an evaluation polynomial of x with degree e 1 and n(t) is a degree

d e evaluation polynomial of a multiple of modulus n such that n0 = 1 (we assume

gcd(b, n) = 1 therefore such a multiple always exists).

Input: X(t) and N(t), spectral polynomials

Output: Y(t) X_e(t) mods N(t),
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1: Y(t) := X(t)

2: a:=O

3: fori=Otoe-1
4:

yo:=e1.(Yo+Yi+...+Y6)

5: j3 : (y + a) rem b

6: a := (Yo + a) div b

7. Y(t) :=Y(t)-13.N(t)

8: Y(t) Y(t) (Yo i3)(t)

9: Y(t) :=Y(t)®F(t)

10: end for

11: Y(t) : Y(t) + A(t), where A(t) is the DFT pair of the base polynomial of a.

12: return Y(t)

In Figure 3.5 we illustrate the relation between time and spectrum algorithms.

Notice that input and output of spectral polynomials do not show any correspondence,

once the time simulation considered the action of the spectral reduction algorithm

recognized.

Our next step is proving that Algorithm 4 and 5 agree; in other words there

exists a DFT relation between the intermediate and output data in two domains at all

times. In a complex spectrum it is simpler to show this relation since the transform

domain is the time frame 13d which admits no radius overflows. Now let's formalize

what we have said.

Theorem 8 Algorithm 5 computes the almost spectral reduction, Y(t) X(t) mods
N(t) such that the inverse of the output signal Y(t) gives y(t) x(t) mods n(t) (i.e.

the output of the Algorithm 4).
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FIGURE 3.5. The action of the spectral reduction algorithm on the time sequence

(a) A time sequence of length 8, possibly a result of a convolution. (b) DFT of {Xm}

(c) the signal after the spectral reduction algorithm applied (d) the inverse DFT of

spectral reduction which also shows the desired time simulation of spectral reduction.

Proof: We need to show that Algorithm 4 and 5 generate agreeing intermediate

and output values.

Let (x(t), X(t)) and (n(t), N(t)) are transform pairs. In Step 4 110 := e1 (Y0+

Yi + ... + Ye) computes the first coefficient of the time polynomial y(t) (by using the

property (iii) of Section 2.1.3). Note that in Algorithm 4, yo comes freely. Once Yo is

computed in Step 5 and 6 the parameters /3 which is the actual value of the constant

term and the next carry a are generated.
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In Step 7, /3 multiple of N(t) is subtracted from Y(t), this updates Y(t) such

that the new Yo = 0 mod b. By linearity this is equivalent to Step 6 of Algorithm 4.

Since carry is saved to be added to the consecutive digit in the next run of

the ioop, a division by t can be performed. Before this shift we need to eliminate the

contribution of yo to the spectral polynomial Y(t) completely. But as Step 7 changed

yo to Yo /3, the computation of (Y(t) (Yo /3)(t)) in Step 8 sets zeroth time term

of Y(t) to zero (observe that (Yo /3) E Z is a constant so (Yo /3)(t) is a constant

polynomial, see Notation 5. If this is followed by the component-wise multiplication

with F(t) polynomial, Step 8 and 9 implement a circular shift (property (iv) of Section

2.1.3).

Therefore Algorithm 4 and 5 generate transform pairs. As Algorithm 4 com-

putes y(t) x_e(t) mods n(t), Algorithm 5 computes Y(t) X_e(t) mods N(t).

U

Algorithm 5 presents a reduction in the complex spectrum. If an infinite pre-

cision for representing the complex numbers is used this algorithm works; however,

because of the obvious reasons we are limited to finite precisions. Hence every oper-

ation on the spectral polynomials comes with some additional round off errors. For

single convolutions, these errors are controlled by adjusting the precision. But when it

comes to work mostly in the spectrum one needs very large precisions. For the time

being we stop working in the complex spectrum and leave these analysis for a future

research.

As we discuss earlier, exact calculations are possible if one switches to work in a

finite ring spectrum. Next section raises the methods for an almost spectral reduction

calculation in these spectra in which the round off errors are not issues any longer but

overflows naturally stay in our center of attention.



3.7. Spectral Modular Reduction in a Finite Ring Spectrum

While exposing the convolutions over finite rings we urge to control the two

parameters namely transform lengths and overflows. We noted that if the radius or the

degree of the intermediate values go out of predefined bounds the spectral algorithms

produce erroneous outputs. Unlike convolution the spectral reduction does not extend

the degree (excluding Algorithm 3) thus, transform lengths do not have any ill-favored

effect on the contrary radius overflows can still be problematical.

We have already demonstrated some examples of overflows for convolutions.

A careless translation of the Algorithm 4 to the spectrum causes overflows of some

different kind namely generated by the subtraction step (i.e. Step 7) of the Algorithm

4. Let us give an example;

Example 10 Let b = 4, x = 777 and n = 55. If the evaluation polynomial x(t) =

3 + lit 2t t4 + t5 of x and the base b polynomial n(t) = 3 + t + 3t2 of n are

considered, Theorem 8 states that the Algorithm 4 outputs an almost spectral modular

reduction in the frame B where the radius r = b2d. Since Algorithm 4 works totally

in time, choosing the correct frame does not cause any overflow. But when a DFT

that respects the convolution is considered, the situation may become tricky because of

a carelessly chosen spectrum.

If we fix d = 6, we have r 42 . 6 = 116 and for q = 127 > r the range of

the DFT map becomes the Fourier ring 27 Recall that since .T Z, the operation

on spectral coefficients are performed in the integer ring Zq (i.e. the usual "mod q").

This implies working with

x(t) = 124 + lit + 125t2 + i26t4 + t5 (mod 127)
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which is an evaluation polynomial of 35448 but not for 777. Therefore any method

fails to work from that moment since the input evaluation polynomial x(t) has changed

during the initial embedding to F27

We suggest two methods to overcome such overflow propagations. The first one

advances a use of least magnitude representation for Zq where the second one proposes

to use the positive polynomial frame 71 (signals are positive at all times, see Definition

12) plus some related changes in the time simulation.

3.7.1. The Use of a Least Magnitude Representation for Zq

Algorithm 4 can be embedded to the finite ring spectrum ..T where ?Zq is

represented by a least magnitude representation.

Algorithm 6 Spectral Reduction Algorithm (in a finite ring spectrum)

Suppose that there exist a DFT map DFT: 5 -* .F and

x(t) DFT DFTX(t) n(t) N(t)

where (x(t),x) e L3 forr < qb2d and ((t),n) e 13 such that deg(n(t)) = d e

and is a multiple of modulus n with n0 = 1 (we assume gcd(b, n) = 1).

Input: X(t) and N(t), spectral polynomials

Output: Y(t) X(t) mods N(t),

1: Y(t) := X(t)

2: a:=O

3: for i=Otoe-1
4: Yo := e1 . (Y0 + + ... + Ye) mod q

5: (Yo + a) rem b



6: a := (Yo + a) div b

7: Y(t) := S(t) N(t) mod q

8: Y(t) := Y(t) (Yo 3)(t) mod q

9: Y(t) := Y(t) ® F(t) mod q

10: end for

11: Y(t) Y(t) + A(t), where A(t) is the DFT pair of the base polynomial of a.

12: return Y(t)

Algorithm 6 is a spectral equivalent procedure of the Algorithm 4. Theorem 8

gives the boundaries of the time simulation while carrying the spectral steps. If the

parameter q is chosen large enough that any coefficient of time signal fits completely

into the frame B, no overflows occur and Algorithm 6 and 4 produce the transform

pairs. Let us state this formally;

Theorem 9 Algorithm 6 computes the almost spectral reduction, Y(t) X(t) mods

N(t) such that the inverse of the output signal Y(t) gives y(t) x_e(t) mods n(t) (i.e.

the output of the Algorithm 4).

Proof: Notice the Algorithm 5 and 6 are similar except the modular arithmetic

carried in Steps 4, 7 and 8. Hence the analysis we did in Theorem 8 is valid. We

need to prove that no overflows occurs. First of all by using the least magnitude

residue representation for Zq the overflows of kind described in Example 10 do not

occur. When it comes to the ones which occur because of magnitude violations, the

Theorem 7 is applied. We assume deg(x(t)) = e for x(t) B which implies that

lxii <r/2 = (q b2d)/2 for i = 0, 1,. . . , e 1 and since m is a multiple of modulus n

with = 1. We conclude by Theorem 7 that the intermediate values and the output

y(t) of the time simulation are bounded by
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r+b2d qb2d+b2dq
2 2 2

which states that Algorithm 4 and 6 generate the transform pair y(t) and Y(t). As

Algorithm 4 computes y(t) x(t) mods n(t), Algorithm 6 performs Y(t) X(t)
mods N(t).

3.7.2. The Use of Positive Frames

An other method of by-passing the overflows of type illustrated in Example 10 is

to use the positive polynomial frame fl. This needs some some minor modifications in

the time simulation (i.e. Algorithm 4) without touching the Zq representation. These

overflows are caused mainly subtraction of Step 7 which is;

7: y(t) := y(t) n(t) mod q

once any coefficient of y(t) becomes negative, standard representation of Zq force us

to bring these negative coefficients to [0, q 1] range. Notice that, the role of Step 7

is setting the least significant [log(b)-bits of Yo to zero by subtracting 3 (t) from

y(t). But the same engagement can be done by adding a mod b multiple of n(t) to

y(t), with a slight change in carry to the next digit. This corresponds to the following

modification of the Steps 5-7 of the time simulation Algorithm 4;

5': /3 := (Yo + c) mod b

6': a := (Yo + a + /3) div b

7': y(t) :=y(t)+/3.n(t)modq

If we translate the time simulation with the above modification we get the

following spectral algorithm. Notice that unlike Algorithm 6 here the coefficients of
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the spectral polynomials are positive at all times and the usual "mod" operation is

used.

Algorithm 7 Spectral Reduction Algorithm (in a finite ring spectrum)

Suppose that there exist a DFT map DFT: 7-I -* and

x(t) DFT DFTX(t) n(t) N(t)

where (x(t),x) e ? forr < qb2d and ((t),.) E 71' such that deg(n(t)) = d e

and n is a multiple of modulus n with = 1 (we assume gcd(b, n) = 1).

Input: X(t) and N(t), spectral polynomials

Output: Y(t) X_e(t) mods N(t),

1: Y(t) X(t)

2: o:=O

3: fori=Otoe-1
: yo:=e1(Yo+Yl+...+Yd)modq

5: /3:=(yo+o)modb

6: c:=(yo+c+/3)divb
7: Y(t) := Y(t) + /3 (t) mod q

8: Y(t) Y(t) (Yo + /3)(t) modq

9: Y(t) := Y(t) GD F(t) modq

10: end for

11: Y(t) := Y(t) + A(t), where A(t) is the DFT pair of the base polynomial of a.

12: return Y(t)

Theorem 10 Algorithm 7 computes the almost spectral reduction, Y(t) X(t)
mods N(t) such that the inverse of the output signal Y(t) gives y(t) x(t) mods

n(t) (i.e. the output of the Algorithm 4).
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Proof By using the above analysis and the similarity of Algorithm 7 to 5, we

conlcude that 7 computes an almost spectral reduction; however, we still need to find

the optimal domain for the algorithm since we have changed the domain to 7-1. We

assume deg(x(t)) = e for x(t) e 'H which implies that 0 x, < r = (q b2d) for

i = 0, 1, . . . , e 1. Since n is a multiple of modulus it with n0 = 1, we conclude by

Theorem 7 that the intermediate values and the output y(t) of the time simulation

bounded by

0 yj <r+b2d=qb2d+b2d=q

Therefore, no overflows occur, Algorithm 4 and 7 generate the transform pair y(t)

and Y(t). As Algorithm 4 computes y(t) x(t) mods n(t), Algorithm 7 performs

Y(t) X_e(t) mods N(t).

With Algorithm 7 we have completed our primary discussion on spectral modu-

lar reduction. We leave the improvement related comments to Chapter 4. Notice that

our presentation so far targets the reduction of an arbitrary evaluation polynomial of

degree e with respect to a base polynomial of degree d < e. In the next section we

change this routine and target to reduce an evaluation polynomial which is a result of

a convolution. By this, we introduce the spectral modular multiplication.

3.8. Spectral Modular Multiplication (SMM)

Convolutions and the spectral reduction algorithms can easily be combined to

harvest a spectral modular multiplication algorithm in a finite ring spectrum. For

convenience we present SMM with the reduction Algorithm 7 but Algorithm 6 can also

be used instead. Note that we consider the SMM for only finite ring spectrum.

In order to have a clear presentation we divide the spectral multiplication al-

gorithm into 3 sub-procedures as seen in Figure 3.6. Note that the initial and final
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stages consist of some data arrangements where the procedure, spectral modular prod-

uct (SMP) consists of the actual multiplication and reduction steps (i.e. convolution

and spectral reduction). Later, while presenting the spectral exponentiation algorithm,

SMP is going to be the basic building block. SMP procedure and SMM are given as

follows:

x

y mit SMP Final z

n

FIGURE 3.6. Spectral modular multiplication.

Algorithm 8 Spectral Modular Product

Suppose that there exist a DFT map DFT' : 7-1 -* and X(t), Y(t) and N(t)

be transform pairs of x(t), y(t) and n(t) respectively where (x(t), x) and (y(t), y) are

evaluation polynomials in the frame N with r> 0 and s = [d/2], and (m(t), n) E

such that deg(n(t)) s and ! is a multiple of modulus n with = 1 (we assume

gcd(b,n) = 1).

Input: X(t), Y(t) and N(t); spectral polynomials

Output: Z(t) (X(t) 0 Y_d(t)) mods N(t),

procedure SMP(X(t), Y(t))

1: Z(t) :=X(t)®Y(t)

2: cx:=0
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3: fori=Otod-1
: zo:=d1.(Zo+Zl+...+Zd)modq

5: /3 := (z0 + a) mod b

6: a (zo + a + /3)/b

7: Z(t) := Z(t) + /3 N(t) mod q

8: Z(t) := Z(t) (zo + /3)(t) mod q

9: Z(t) :=Z(t)®F(t)modq

10: end for

11: Y(t) := Y(t) + a(t)

12: return Z(t)

Algorithm 9 (Spectral Modular Multiplication)

Suppose that there exist a DFT map DFT: 'H J. Let n(t) be a base b polyno-

mial for n where deg(n(t)) = s 1, s = [d/21 and gcd(b, n) = 1.

Input: A modulus n> 0 and x, y < n

Output: an almost modular reduction z xy mod n

1: Compute ii = 5 n such that the base polynomial n(t) has degree d and n0 = 1

2: N(t) := DFT(n(t))

3: Compute the base polynomial )(t) for.\ = bd mod n.

4: Compute the base polynomial xd(t) = x(t)td for x ) mod n.

5: X'(t) := DFT(xd(t))

6: Y(t) := DFT(y(t))

7: Z(t) := SMP(Xd(t),Y(t))

8: z(t) := IDFT(Z(t))

9: return z(b)



Remark 9 The Algorithm 9 outputs an almost modular reduction of xy mod n. If the

reduction is desired in the range [0, n 1] a final short reduction is needed.

Lemma 4 SMP(Xd(t), Y(t)) X(t) 0 Y(t) mods N(t)

Proof: Since SMP(Xd(t), Y(t)) computes the spectral coefficients of almost mod-

ular reduction, Z(t) (Xd(t) 0 Y'(t)) mods N(t) hence taking the inverse transform

gives

xd(t)y_d(t) = x(t) . tdy(t) t_d x(t) . y(t) mods n(t)

Lemma 5 The Procedure 8 computes the Z(t) (X(t) 0 Y_'(t)) mods N(t) if the

parameters b, q and s satisfies the following inequality

2sb2 <q (3.9)

Proof: The convolution and reduction are put together in SMP procedure. In

the previous sections, we described the action of convolution and how the steps of

reduction works. Here, we concentrate on driving the Inequality (3.9). Assume that

the conditions of SMP are satisfied, we investigate the time simulation of the algorithm

in order to trace the overflows. By using Theorem 7 we conclude that after convolution

at Step 1 the time polynomial z(t) doubles its degree to 2s 2 and at the same time

its coefficients increase upto sb2 since x(t) and y(t) are base b polynomials (in other

words z(t) E 7I where r = sb2). When it comes to analyze the reduction steps:

applying Corollary 3 assures us that the output z_d(t) fl, where r' = b2s + b and

coefficients of all the intermediate values do not exceed 2b2s. Therefore, if q chosen as

max(2b2s, b2s + b) = 2b2s <q, no overflows could be generated and SMP computes the
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desired result. Note here that the carry added in Step 12 is no longer large because of

working with a convolution output hence we take it as a constant rather than breaking

it into words.

Theorem 11 Algorithm 9 computes an almost modular reduction, z xy mod n, if

the parameters b, q and s satisfies 2sb2 <q.

Proof: If the steps of the algorithm are examined, it is seen that in initialization,

before computing the Fourier coefficients, we compute xbd mod n (i.e. xd(t) mod n(t)).

Hence by Lemma 4 step computes the product x(t)y(t) mods n(t) unless overflows

occur. Fortunately the initialization and finalization parts do not have anything to do

with the coefficient bounds, hence it sufficies to find the minimal domain for the core

SMP which is stated in Lemma 5 as 2sb2 <q. N

The most important feature of the spectrum algorithms is the use of convolution

theorem for multiplication operation. By some small arrangements, it is possible to

transform the Steps 3-5 of Algorithm 9 into the into the spectrum. Such an organi-

zation decreases the area by excluding the usual modular multiplication steps in the

initialization, the following fragments show such an arrangement:

3a: Compute the base polynomial )'(t) for )V = b2" mod n.

3b: A'(t) := DFT(A'(t))

4: X(t) := DFT(x(t))

5: X(t) := SMP(X(t), A'(t))

Observe that, the output of Step 5 of the above modification gives a spectral

evaluation t) = Xd(t) with a transform pair xd(t) E N with r = 2b2s as described

in Lemma 5 but if we consider the actual SMP (i.e. Algorithm 9), at Step 5 Xd(t) is

computed as the DFT of a base polynomial xd(t) e fl. Therefore, 2sb2 <q bound does
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use of SMP procedure when we deal with modular exponentiation so we leave this

analysis to the next section.

3.9. Spectral Modular Exponentiation

In general using a classical modular multiplication is superior for performing a

single modular multiplication; however, SMM is very effective when several modular

multiplications with respect to the same modulus are needed. In such a setup, if we

keep the data in the Fourier domain at all times, the backward and forward transforms

are by-passed as seen in Figure 3.7. An example is the case when one needs to compute

a modular exponentiation, i.e., the computation of me mod n, where in, e and 11 are

positive integers.

In fact, our motivation is centered around studying efficient algorithms and

architectures for modular exponentiation. Now it is time to harvest what we have

developed in the previous sections.

There are many methods for carrying general exponentiation. Most of the time

the efficiency comes from two resources one is to decrease the time to multiply two

operands; the other is to reduce the number of multiplications used to compute desired

result. Generally, one do both. Notice that, until now our objective was reducing

the modular multiplication which is categorized in the first group. For the rest of

this study we keep this goal and simply put the objective of reducing the number of

multiplications used out of scope, moreover, we consider using the binary method (see

[14]) for the rest of our presentation.

The binary method scans the bits of the exponent either from left to right or

from right to left. A squaring is performed at each step, and depending on the scanned
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FIGURE 3.7. Spectral modular exponentiation.
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bit value, a subsequent multiplication is performed. We describe the spectral modular

exponentiation algorithm by using a left-to-right binary method below.

Algorithm 10 (Spectral Modular Exponentiation)

Suppose that there exist a DFT map DFT: 74 .F. Let n(t) be a base b polyno-

mialforn where deg(n(t)) = s 1, s = [d/21 and gcd(b,n) = 1.

Input: A modulus n> 0 and m, e < n

Output: an almost modular reduction, c me mod n

1: Compute ii = 8 . n such that the base polynomial n(t) has degree d and = 1
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2: t) DFT(n(t))

3: Compute the base polynomial )'(t) for )' = b2' mod n.

4: A'(t) DFT)\'(t))

5. M(t) := DFTj'(m(t))

6: M(t) SMP(M(t),A'(t))

7. (t) := SMP(1(t),A'(t))

8: for i = j 2 downto 0

9. (t) := SMP(C(t),C(t))

10: if e 1 then (t) := SMP((t),M(t))

11:C(t) := SMP((t),1(t))

12:c(t) := IDFT(C(t))

13: return c(b)

Remark 10 Since the SME algorithm computes an almost modular reduction of c

me mod n, a final reduction is needed if the output is desired in the range [0, n 1].

Observe that SME is presented in such a way that even the initialization steps

carried in the spectrum but if doing the initialization in time domain brings some

advantage the Steps 3-7 can be arranged as follows

3: Compute the base polynomial )(t) for A = b" mod n.

4: Compute the base polynomial n(t) for rn = m A mod ri.

5: M(t) := DFT((t))

6: (t) := DFT(A(t))

We close the section by presenting the minimal domain bounds for SME al-

gorithm, we start with a lemma that states the how big the coefficients of a special
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polynomial get after a convolution, then by using this result we state how q has to be

chosen in order not to have some overflow effects.

Lemma 6 Lets >0 andx(t) be the special polynomial, x(t) = 1+2t+3t3+.

then the coefficients of z(t) = (x(t))2 are bounded by

2s3 2 s r1
B(s) = s + 2s2r1 + + 2sri (3.10)

where r1 = 2 + V/3+1882+188

Proof: Let x(t) = 1+ 2t + 3t3 +. . . + st' be a polynomial of degree s 1 observe

that if the convolution z(t) = (x(t))2 is computed the coefficients of z(t) satisfies the

following recurence:

zo = 1

zi = 22

Z2
32

+ z0

Z3
42

+ z1

Zs_2 = (s - 1)2 + z8_4

2 + Z3_3

z8 = (s 1)(s + 1) + z3_2

= 2(s 2)(s + 1) + z3_3

z2 = 3(s 3)(s + 1) + z8_4

zs+j_i = i(s i)(s + 1) + z__i

Z29_3 = (s 2)2(s + 1) + z1

= (s 1)(s + 1) + zo

If these coefficients examined carefully one realizes that maximum magnitude,

which also decides the bound we are interested, has to be located somewhere in between

coefficients s 1 and 2s 2 since the coefficients upto the (s 2)th are monotonously

increasing and z3 > Z8_2 for s > 1.

Our first observation is z is a telescoping sequence for r < s hence

r+2

Zr+l + Zr = 12 + 22 + ... + (r+2)2 =
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this sum can be found by

Zr+l + Zr
((B + (r + 2) + i) B3

3

where B stands for the ith Bernolli number (i.e. B° = B0 = 1, B1 = 1/2, B2 = 1/6

and B3 = 1/30, plugging these values to the equation gives

Zr+l + Zr = (2(r + 2) + 3(r + 2)2 + (r + 2))

= (2r3+l5r2+37r+30)

Here if r + 1 is even,Zr+1 and Zr can be found as

(B+1)3_B3)=(r3+6r2+llr+6)Zr = Zi+ Z3 + ... + Zr = 4(

Zr+l = (2r3+15r2+37r+30) - (r3+6r2+11r+6) = (r3+9r2+26r+24)

and in case of r + 1 is odd, one would get

(B+ +1)3B3) = (r3+9r2+26r+24)Zr+1Z1+Z3+...+Zr+14(
3

Zr = (2r3+15r2+37r+3O) - (r3+9r2+26r+24) = (r3+6r2+11r+6)

Therefore, in either case Zr is written as (r3 + 6r2 + 1 ir + 6). A general term of

the recurrence is found by plugging Zr into the system after replacing the index s + i 1

by r, if explicitly written;

{(r3+6r2+"r+6)

ifr<s
Zr = (s (r+1))(2s (T+1))(S+1)+Z23_r_2

=_+s2r+__1+s2+sr_r2_1) ifsr<2s-1
Since the explicit function for Zr is found, we simply use the usual arguments

of finding the maximum value of a function. In other words finding the roots of the

derivative and plugging the root into the equation of Zr. In this case the root
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r1 = 2 + \/3+i8+18s gives the local maximum in the range s r < 2s 1 and if r1.

if it is plugged into Zr we would get the bound B(s) as a function of s

S Ti
B(s)

2S 2 + 2s2ri + + 2sr,

which gives the desired result. E

Theorem 12 Algorithm 9 computes an almost modular reduction, c me mod n if

the parameters b, q and s satisfies the following inequality

(b2 + b)2B(s) + b2s < q (3.11)

where B(s) is given by Equation (3.10).

Proof: First of all since SME implements the binary exponentiation method in

the spectrum and by Lemma 4, SMP computes the DFT of x(t)td with the finalization

Step 11, residue form of spectral polynomials normalized hence the algorithm works

as long as a nice domain is chosen for all intermediate values and output causing no

overflows. By using Theorem 7 we realize that when the inputs of SMP are spectral

base b polynomials the output of SMP algorithm is a spectral polynomial with an

inverse image that fits into the frame fl where r = b2s + b. But if a consecutive

SMP is fed with this input, the output of the second SMP has larger time coefficients.

For instance in Steps 9, 10 and lithe input C(t) is a spectral polynomial with time

coefficients larger than b. If these steps examined further we understand that maximum

magnitudes are attained from the computation of SMP((t), C(t)) in Step 9 since for

both Steps 10 and ii M(t) and 1(t) are spectral base b polynomials.

Thus we investigate how big the coefficients of the time polynomial get after in

Step 9. Indeed this gives us the bounds for our domain of DFT. In order to have a

better analysis, we need to say more about the distribution of the coefficients of the
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time polynomial after applying an SMP. In Theorem 7 we showed that after a reduction

c(t) E -I has the form

c(t) = c0 + c1t + c2t2 + ... + c3_1t', where Cj < (s i)b2 + b

fori=O,1,...,s-1. Since Cj < (si)b2+b< (si)(b2+b) insteadwecanwrite

c(t) <(b2 + b)y(t), where y(t) = s + (s 1)t + (s 2)t2 + . .. + it1,

If (c(t)) is computed as seen in Step 9, it is seen that

(c(t))2 < (b + b)2(y(t))2

But by using Lemma 6 we guarantee that the coefficients of (y(t))2 are bounded by

B(s) 1 which implies that coefficients of (c(t))2 is bounded by (b2s + b)2B(s). And

finally since the reduction steps increase this bound slightly which is given by Theorem

7 as (b2 + b)2B(s) + b2s for intermediate values. Therefore if q is chosen larger than

this final bound no overflows is generated and SME works over the ring Z.

Fortunately, Inequality (3.11) gives the relation between the parameters b, s and

q in a consecutive use of SMP algorithm. In practice, these parameters are generated

in two different ways: the first one is picking s and b and then try to find a ring Zq

that admits a DFT of size d. The second one is picking a ring with q elements, decide

on s and then find out the base b.

We discuss the parameter selection related issues in the next chapter, but before

we like to demonstrate an illustrative example for better understanding of the presented

subject.

1c(t) of Lemma 6 is the mirror image of y(t)
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3.10. Illustrative Example

In this section, we give an example exponentiation computation using the SME

method with the input values as m = 2718, e = 53, and n = 3141. We will describe the

steps of the SME method performing this modular exponentiation operation, giving

the temporary results and the final result c me (mod n).

We select the length of a single word as b = 2 and s = 4, by using the Inequality

(3.11) we conclude that q > 131845.0 > 2'. Thus we need to search for a Fermat or

Mersenne ring with q 218 1 that admit a DFT with length d = 7 or d = 8 for w

equals to a power of two. It turns out that the ring Z22o1 satisfies these conditions

with w = 32. With these selections we compute d mod q and F(t) as

and

d1 = 8_i (mod 220 + 1) = 917505

F(t) = 1 + wit + w2t2 + w3t3 + w4t4 + w5t5 + w6t6 + w7t7

= 1 + 1015809t + 1047553t2 + 1048545t3 + 1048576t4 +

32768t5 + 1024t6 + 32t7

We start with writing m and n in polynomial representation

n(t)=5+0.t+1t2-t-6t3

m(t) = 6 + 3t + 2t2 + 5t3

note that degn(t) = s 1 = 3 and gcd(n, b) = 1.

The steps of the SME method computing this modular exponentiation are de-

scribed below.

1. Given n = 3141, we have n0 = 5. Finding the inverse of n0 modulo b gives S

which is mostly achieved by Extended Euclidean Algorithm:
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S=n'modb=5mod8.

Thus, n = Sn = 5 3141 = 15705 which equal to

n(t) = 1 + 3t + 5t2 + 6t3 + 3t4

in polynomial representation. Recall that deg((t)) = s = 4 and = 1

2. The computation of n(t) = DFT[n(t)] is accomplished using the DFT function.

In Section 2.4 , we simply gave the DFT computation as a matrix multiplication

but some FFT can be employed. We obtain the result of the DFT as

(t) = 18 + 201822t + 1045504t2 + 93374t3 + 856991t5 + 3071t6 + 944959t7

Recall that we work in the finite ring Zq with q = 220 + 1 = 1048577 represented

by the last residue set, thus, the coefficients of the polynomial N(t) are in the

range [0, 220)

3. after computing ,' 2' mod n = 816 mod 3141 = 415, the polynomial represen-

tation of )' is found

= 7 + 3t + 6t2

Furthermore, we obtain the spectral coefficients of A'(t) using the DFT as

A'(t) = 16 + 6247t + 3073t2 + 92167t3 + lOt4 + 6055t5 + 1045506t6 + 944136t7

4. Given m(t), we obtain its spectral representation M(t) using the DFT as

M(t) 16 + 165990t + 1046533t2 + 96422t3 + 886695t5 + 2052t6 + 948071t7
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5. The SMP algorithm is used to compute M(t) = SMP[M(t), A'(t)] with inputs

M(t) = 16 + 165990t + 1046533t2 + 96422t3 + 886695t5 + 2052t6 + 948071t7

A'(t) = 16 + 6247t + 3073t2 + 92167t3 + lOt4 + 6055t5 + 1045506t6 + 944136t7

We then use the SMP to find the resulting polynomial M(t) given the inputs

M(t) and A'(t). First we execute Step 1 in the SMP method, and obtain the

initial value of Z(t) using the rule Z2 = M A mod q for i = 0, 1,. . . , 7 as

Z(t) = 256 + 945454t + 10250t2 + 236399t3 + 223985t5 + 1038347t6 + 691376t7

In Step 2 of the SMP method, We assign the initial value of a 0, and start the

loop for i = 0, 1,. . . , 7. We illustrate the computation of the instance of the loop

for i 0 in Table 3.1. The for loop needs to execute for the remaining values of

i as i = 1,2,. . . , 7 in order to compute the resulting product M(t) given by

M(t) = 135 + 324054t + 36891t2 + 398677t3 + 27t4 +

779927t5 + 1011740t6 + 594712t7

Step Operation and Result

4: zo=d'.(Zo+Zi+Z2+Z3+Z4+Z5+Z6+Z7) (modq)

z0 = 9175O5 (256 + 945454 + 10250 + 236399 + 223985+

1038347 + 691376) (mod 1048567) = 42

5: /3= (zo+a) (modb)= (42+0) (mod 16)=6

6: a= (zo+0+/3)/b= (42-i- 6)/163

7: Z=Z+/3 (modq)

Z(t) = 364 + 59232t + 1040389t2 + 796643t3+

123046t5 + 8196t6 + 69668t7



8: Z=Z(zo+L3)=Z-48 (modq)
Z(t) = 316 + 59184t + 1040341t2 + 796595t3 + 1048529t4+

122998t5 + 8148t6 + 69620t7

9: = F (mod q)

Z(t) = 316 + 526138t + 45048t2 + 723385t3 + 48t4+

717053t5 + 1003513t6 + 130686t7

TABLE 3.1.: The SMP for ioop instance i 0.

6. In this step, the SMP method is used to compute (t) = SMP[1(t), A'(t)] with

inputs

1(t) = 1+t+t2+t3+t4+t5+t6+t7,

A'(t) = 16 + 6247t + 3073t2 + 92167t3 + lOt4 + 6055t5 + 1045506t6 + 944136t7

We will not give the details of this multiplication since it is similar to the previous

one. The result is obtained as

(t) = 106 + 13591t + 39979t2 + 217142t3 + 28t4 +

11095t5 + 1008684t6 + 806969t7

7. Exponentiation Loop: The loop starts with the values of M(t) and (t) corn-

puted above as

M(t) = 135 + 324054t + 36891t2 + 398677t3 + 27t4 +

779927t5 + 1011740t6 + 594712t7
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(t) = 106 + 13591t + 39979t2 + 217142t3 + 28t4 +

11095t5 + 1008684t6 + 806969t7

Given the exponent value e = (53)io = (110101)2, the exponentiation algorithm

performs squarings and multiplications using the SMP method. Since j = 6, the

value of i starts from i = 5 and moves down to zero, and computes the new value

of (t) using the binary method of exponentiation as described. The steps of the

exponentiation and intermediate values of (t) are tabulated in Table 3.2. The

final value is computed as

(t) = 174 + 327348t + 43062t2 + 592243t3 + 54t4 +

782837t5 + 1005623t6 + 395062t7

i ej Operation (t)

Start 106 + 13591t + 39979t2 + 217142t3H-

- _____________________ 28t4 + 11095t5 + 1008684t6 + 806969t7-
(t) =SMP[(t),(t)] 127 + 13519t + 36931t2 + 118862t3+

5 55t4 + 11215t5 + 1011780t6 + 905297t7

1 (t) =SMP[(t),M(t)] 135 + 324054t + 36891t2 + 398677t3+

- 27t4 + 779927t5 + 1011740t6 + 594712t7
-

(t) =SMP[(t), (t)] 127 + 118020t + 35890t2 + 178339t3-j--

4 45t4 + 967557t5 + 1012787t6 + 833510t7

1 (t) =SMP[(t),M(t)J 175 + 434919t + 42016t2 + 648646t3+

- 45t4 + 693672t5 + 1006625t6 + 320201t7
-

(t) =SMP[(t),(t)J 119 + 526344t + 16391t2 + 982536t3-i--

3 27t4 + 589897t5 + 1032200t6 + 10471 14t7

0 119 + 526344t + 16391t2 + 982536t3+

- 27t4 + 589897t5 + 1032200t6 + 10471 14t7



-
(t) =SMP[(t),(t)] 202 + 128046t + 60499t2 + 955597t3+

2 72t4 + 976047t5 + 988244t6 + 37904t7

1 (t) =SMP[(t),M(t)] 192 + 628407t + 33843t2 + 586390t3+

- 54t4 + 494072t5 + 1014836t6 + 388633t7
-

(t) =SMP[(t), (t)] 265 + 75530 it + 60454t2 + 460547t3+

1 63t4 + 422502t5 + 988199t6 + 459208t7

0 265 + 755301t + 60454t2 + 460547t3+

- 63t4 + 422502t5 + 988199t6 + 459208t7
-

(t) =SMP[(t),(t)] 296 + 546702t + 74843t2 + 734828t3-i--

0 90t4 + 606607t5 + 973916t6 + 209585t7

1 (t) =SMP[(t), M(t)] 174 + 327348t + 43062t2 + 592243t3+

- _______________________
54t4 + 782837t5 + 1005623t6 + 395062t7

TABLE 3.2.: The steps of the exponentiation loop.

8. After the exponentiation loop is completed, we have the final value (t). In this

step, we have an SMP execution followed by and inverse DFT calculation.

9. We obtain C(t) using C(t) = SMP{(t), 1(t)] using the inputs

(t) = 174 + 327348t + 43062t2 + 592243t3 + 54t4 +

782837t5 + 1005623t6 + 395062t7

1(t) = 1+t+t2+t3+t4+t5+t6+t7

This computation finds C(t) as

C(t) = 169 + 438168t + 48142t2 + 842167t3 + 27t4 +

696537t5 + 1000463t6 + 120506t7



10. We obtain c(t) using the inverse DFT function c(t) = IDFT[C(t)], which gives

e(t) = 56 + 59t + 42t12t2

Thus, we obtain the final value as c(b) = 9360 3078 mod 3141, which is equal

to

3078 = 22718 mod 3141

as required.



4. APPLICATIONS AND FURTHER IMPROVEMENTS

Modular exponentiation is one of the most important arithmetic operation for

modern cryptography. For example, the RSA requires exponentiation in Z for some

positive integer n, whereas Diffie-Heliman key agreement and the ElGamal scheme use

exponentiation in some large prime fields (see [15]).

The sizes of the modulus which also determines the key size are the main se-

durity measure for those systems. In this chapter, we describe the methodology for

selecting the parameters for Spectral Modular Exponentiation (SME) in order to use

the method in public-key cryptography. We like to mention that the description of any

cryptosystems is not with in the scope of this work, however we prefer to present our

SME parameters that match the popular RSA key sizes which also provides perspective

for similar cryptosystems.

Symbol Meaning Relationship

c, m, e, n Output and input integers c = me (mod n)

k Number of bits in c, m, ii usually k 512

u Length of a single word k is a multiple of u

s Number of words in c, m, n k = su

b Base representation b =

q # of elements of Zq q=2t'±l
v The word size of q q = 2V ± 1

d Length of the DFT s = [d/21

w Principal dth root of unity in Zq = 1 (mod q)

TABLE 4.1. The symbols used in the SME method.



We gave the hints of parameter selection in the previous chapter, in particular

the Inequality (3.11) presents a solid basis for the relation between the parameters b, q

and s. This bound can be improved in many ways which we investigate through out

this chapter. In order to have a friendly presentation we give a look up table (Table

4.1) for the symbols used with in this chapter.

4.1. Parameter Selection for RSA

The well known RSA algorithm mostly operate with key sizes ranges from 512

to 16,384, addressing different levels of security needs. In this section we tabulate some

example parameters for modular expOnentiations using the SME method, starting from

513 bits up to 4,260 bits. Our figures are centered around those sizes that are powers

of 2 which are popular for architectural reasons.

In Tables 2.1 and 2.2, we give suitable Mersenne and Fermat rings for the

SME algorithm, additionally in Tables 6.1 and 6.2 in the Appendix A we tabulate the

pseudo Mersenne and Fermat rings which are also suitable to use. These tables exhibit

principal roots of unity and the DFT lengths for each ring. Whenever possible, we

select the principal root of unity as w = 2 or w = 2 since multiplication with such

numbers are accomplished by shifting.

Once the underlying ring and the DFT length and the principal root of unity

are selected, the maximum modulus size in the SME method is computed by finding

the base b = 2u. The relation between these parameters is computed by finding the

maximum b satisfying the Inequality (3.11). In Table 4.2, we give some example rings

and their parameters. As an example, we first select a ring from this table such as

q = + 1. This comes with the principal root of unity w = 2, the length d = 73 and

s = [d/21 = 37. Plugging these values into the Inequality (3.11) gives



14564.0b4 + 29128.0b3 + 14601.0b2 < 2 1

by inspection b = 214 = u = 14 is found. Therefore, we compute the maximum bit

length of the exponentiation as k = s u = 37. 14 = 518 as given in Table 4.2.

Bits

k

Ring

ZLq

DFT

d

Root

W

Wordsize

U

Words

S

513 (2 1)/7 114 -2 9 57

518 2-1 73 2 14 37

518 (2 + 1)/3 73 4 14 37

704 264 + 1 128 2 11 64

1,185 1 158 -2 15 79

1,728 2128+ 1 128 4 27 64

2,060 (2103+1)/3 206 2 20 103

2,163 2103 1 206 -2 21 103

3,456 (2128 + 1) 256 2 27 128

4,260 (2142 + 1)/5 284 2 30 142

TABLE 4.2. Parameter selection for SME with SMP.

4.2. Modified Spectral Modular Product

If the SMP (i.e. Algorithm 8) is considered, one realizes that our bound analy-

sis depends heavily on . N(t) multiplication of Step 7. It is possible to replace this

multiplication by a multi-operand addition at a cost of some pre-computations and

extra memory. This approach is very beneficial since this replacement gives a reason-



able amount of radius shrinkage. Additionally, replacing the multiplication by an array

addition improves the computational complexity.

Let b = 2U and n.j (t) be the polynomial representation of an integer multiple of

n such that the zeroth coefficient of n(t) satisfies (nj)0 2i-1 for i = 1, 2, . . . , u (note

that n(t) ni(t)). We can now write /3. N(t) as

(4.1)

where I3 is a binary digit of /3 and N(t) = DFT(n(t)) for i = 1,2,... ,u. Note that

/3<band/3,=Oforiu.
Plugging the Equation (4.1) into the Algorithm 8 gives us the modified Spectral

modular product algorithm;

Algorithm 11 Modified Spectral Modular Product Algorithm (MSMP)

Assume that there exist a NTT of length d over Zq, and (X(t), x(t)) and (Y(t), y(t))

are transform pairs where x(t) and y(t) are evaluation polynomials for x and y in the

frame 5dh/'2i for some r. Let the basis set V= {N1(t), N2(t),. . . , N,(t)} is consist of

spectral polynomials as described above.

Input: X(t), Y(t) and a basis set A1{N1(t), N2(t),. . . , N,(t)}

Output: Z(t) X(t) ® Y'(t) mods N(t),

1: Z(t) := X(t) 0 Y(t)

2: a=O
3: fori=Otod-1
4: zo:=d1.(Zo+Zi+...+Z4modq
5: /3 := (zo + o) mod b

6: a:=(zo+a+/3)/b



7: Z(t) := Z(t) + N(t) mod q

8: Z(t) Z(t) (zo + /3)(t) mod q

9: Z(t) :=Z(t)OF(t)modq

10: end for

11: Y(t) := Y(t) + o(t)

12: return Z(t)

Observe that the basis set .Afr= {Ni(t), N2(t), . . . , N(t)} needs to be pre-

computed and stored. Therefore memory requirement is obviously

memory(f) = uvd. (4.2)

This can be seen as a handicap for certain platforms; however, in general the MSMP

delivers smaller realizations. While inserting MSMP into either SME or SMM the

pre-computation is done during Step 1 of Algorithm 9 or 10. After computing n1 (t)

the rest of the basis set is computed by multiplying n1 by powers of 2. We then apply

the DFT function to corresponding polynomials in order to get N(t) = DFT[n(t)] for

i=1,2,...,u.
With the adjustment (4.1), the time coefficients of . N(t) become less

than b log(b) which gives us a better inequality

(blog(b) + b)2B(s) + blog(b)s < q (4.3)

which is a pretty good improvement for a reasonable space cost. This bound gives us

the improved parameters which are tabulated in Table 4.3 below.

Additionally, whenever the memory requirement of the above method is exces-

sive, a hybrid stragedy that delights the usage of combination of multiplication and

addition array is also possible. This is summarized with the following equation



Bits

k

Ring

Zq

DFT

d

Root

W

Wordsize

U

Words

S

540 2-1 59 2 18 30

564 1 94 -2 12 47

589 261_i 61 2 19 31

640 264+1 64 4 20 32

1,098 261 1 122 -2 18 61

1,080 1 79 2 27 40

1,216 264+1 128 2 19 64

2,054 1 158 2 26 79

2,160 2107 1 107 2 40 54

3,200 2128 + 1 128 4 50 64

4,251 2109 1 218 -2 39 109

6,144 2128 + 1 256 2 48 128

TABLE 4.3. Improved parameter selection for SME with MSMP.

N(t) = N(t) + N(t), (4.4)
i=u,

where ,d' = mod b' and 13 stands for binary digits of 3/b' for some 0 b' b. We

leave the analysis of the hybrid method for future research and continue with some

further observations.

If Tables 4.3 and 4.2 are examined, one realizes that the maximum modulus size

is given by k = su. Therefore by scaling s and u one enjoys the same modulus sizes

for different parameters. Recall that the loop in the SMP or MSMP algorithm runs



d times so a decrease in d is desirable for some designs even if it is at a cost of using

larger rings (means larger b and u). In Table 4.4, we demonstrate parameters of this

nature.

Bits

k

Ring

Zq

DFT

d

Root

W

Wordsize

U

Words

S

528 (2115 1)/31 23 32 44 12

544 (2 + 1)/9 31 64 34 16

592 296 + 1 32 64 37 16

1,024 (2' + 1)/33 31 1024 64 16

1,122 (2129+1)/9 43 64 51 22

2,150 (2129+1)/9 86 64 50 43

TABLE 4.4. Parameter selection having smaller d for SME with MSMP.

4.3. The use of Chinese Remainder Theorem (CRT)

In many situations it is desirable to break a congruence mod n into a system

of small congruences mod factors of n. Once computations are performed in the small

factor rings, by using CRT, the resultant system of congruences is replaced by a single

congruence under certain conditions.

Theorem 13 Chinese Remainder Theorem. For i 2, let P1,P2,. . . ,p be non-

zero integers which are pairwise relatively prime: gcd(p,p3) = 1 for i j. Then, for

any integers a1, a2,. . . , a1, the system of congruences

x a1 mod p1, x a2 mod P2,..., x a1 mod p1,

has a solution, and this solution is uniquely determined modulo P1P2 p.



A formal proof of CRT can be found in many text books including [16], we rather

interested in computation (lift) of final congruence. Although there are more efficient

ways of lifting, throughout this chapter, we consider the single-radix conversion (SRC)

method. Going back to the general system, SRC algorithm computes x using the

following summation for given a1, a2,. . . , a1 and P1, P2, . . .
, p.

Ti
x = acn (mod n), where n = P1P2 PilPi+1 = (4.5)

j=1
Pi

and c, is the multiplicative inverse of n mod pj.

When the algorithms of Chapter 3 are considered CRT can be used in two

different ways. The first one is for degree where the second one is for radius. We start

with the first one.

4.3.1. CRT for Degree

When n is composite number such as the RSA modulus n, the CRT is very

beneficial if the prime factorization of n is known (e.g. RSA decryption). This use of

CRT was first proposed by Quisquater and Couvreur [17], and it is easily be adopted

to SME.

Suppose that n = P1P2 is a typically RSA modulus with two large distinct prime

factors Pi and P2 The computation me mod m can be put into the system of two small

congruences as follows:

m1 e mod P1

m2 := c6 mod P2

However, applying Fermat's theorem to the exponents, we only need to compute

m1 := CC1 mod Pi

m2 c62 mod P2



where e1 := e mod (P1 1) and e2 := e mod (P2 1).

Observe that the computation of m1 and m2 is performed by using the two

separate SME with inputs m1, e and m2, e2 respectively and when they are computed,

proceeding with the SRC algorithm, we achieve m by using the sum (4.5)

m = m1c1p2 + m2c2p1 mod n (4.6)

where c1 = p1 mod pi and c2 pj1 mod P2.

4.3.2. CRT for Radius

CRT is proposed to use for integer multiplication by J. M. Pollard [2] and inde-

pendently by A. Schönhage and V. Strassen [1] who further recommend to use FFT over

Fermat rings Zq with q = 22r + 1 and d = 2 for some r > 0 (see Proposition 4 for the

existence of such transforms), they proved the famous time bound O(n logn log log n)

for integer multiplication, with some care their ideas can be applied to spectral modular

algorithms defined in Chapter 3.

Let us go back to Example 3 of Chapter 2, we mention that if x (10,5, 1, 0,0)

is chosen we get

z = xOy = (10,5,1,0,0)0(2,3,3,0,0) = (20,9,20,24,9) mod 31

If the same computation is done modulo 2

z=x®y=(10,5,1,0,0)0(2,3,3,0,0)= (0, 1,0,0,1) mod2

is computed and this suffices to recover the real coefficients z = (20, 40, 51, 24, 9) from

the congruences z = (20, 9, 20, 24, 9) mod 31 and z = (0, 0, 1, 0, 1) mod 2 by using

CRT on the coefficients. For instance, the second term can be found by solving the

congruences
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z2 9 mod 31, and z2 0 mod 2 which gives z2 40 mod 62

by using the Equation (4.6).

Schonhage-Strassen multiplication picks some special rings and applies the CRT

to recover the actual coefficients of a convolution. As a second example we present their

algorithm by using our new notation.

Suppose that (x(t), x) and (y(t), y) are base b polynomials in the frame fl with

d = 2-', b = 22'' and s = [d/21 = 2'. Lemma 1 states that (z(t),z) = (x(t),x) ®

(y(t), y) e h is well defined if q > sb2 = 2T(22r_1)2 = 2r22r. If q 2r(22r + 1) > sb2 is

picked, CRT is applicable to compute the coefficients of z(t) = x(t)y(t) mod q.

In other words, if the following two polynomials are calculated

zi(t) = xi(t)yi(t) mod 2, (4.7)

z2(t) = x2(t)y2(t) mod (22r + 1) (4.8)

where xi(t) = x(t) mod 2, yi(t) = y(t) mod 2, x2(t) = x(t) mod (22r + 1) and y2(t) =

y(t) mod (22r + 1), the coefficients of z(t) = x(t)y(t) mod 2r(22r + 1) are deduce by

using CRT since gcd(2r, 22 + 1) = 1.

In general the computation of Equation (4.7) is done by using the usual poly-

nomial multiplication routines because 2r is small on the other hand the computation

of the Equation (4.8) is mostly performed by using FFT and convolution theorem in

the Fermat ring with q' 22'S + 1. Recall that by Proposition 4 there exists a length

d = 2. 2T = 21 DFT map with principal root of unity w = 2. Although we know that

overflows occur (since b2 > q'/s), exact coefficients of the convolution are recovered by

using the congruence (4.7).

When it comes to the spectral modular operations the methodology changes

slightly. One has to recover the actual least significant time digit at every step of the

reduction process.
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Suppose that (x(t), x) and (y(t), y) are evaluation polynomials in the frame

with q > 0 and s = [d/21. Let P1,P2,.. . ,p be positive, pairwise relatively prime

numbers such that P1P2 p > q. Moreover, assume that for all j = 1,2, . . . , 1 there

exists a length da DFT over Z such that d3 d. It is possible to break the computation

of the congruence

z(t) = x(t)y(t) mods n(t)

into the congruences in small rings Z. Let for j 1, 2,. . . , 1

x3(t) = xo + xit + ... + Xj(d_l)t 1 x(t) mod p

y3(t) = I/jo + yit + ... + Yj(i)t' y(t) mod pj

n(t) = njo + n1t + ... + Tlj(d_1)t n(t) mod pj

be the transform pairs of X(t), 1'(t), and N(t) respectively. If X(t) = (Xj(t),

X2(t), . . . , X1_(t)) and Y(t) = (Y1(t), Y2(t),. . . , _j(t)) stand for vectors of spectral

polynomials, the following procedure computes Z(t) = (Zi(t), Z2(t), . . . , Z1_1(t)) where

z(t) = x(t)y(t) mods n(t), forj = l,2,...,l

Algorithm 12 SMP by 'using CRT

Input: X(t) and Y(t) vector spectral polynomials

Output: Z(t),

1: Z(t) := X(t) 0 Y(t)

2: c := (0, 0,. . . , 0), vector zero of dimension 1

8: fori=Otod-1
4: forj=ltol
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5:

6: end for

7: z0 := ZjOCjP (mod q)

8: forj=ltol
9: ((z0 + aj) mod b) modp3

10: c1 := (zo + o + /3)/b mod p3

11: Z3(t) := Z(t) + /3 N(t) mod p3

12: Z(t) := Z3(t) (zo +i3)(t) mod p3

13: Z(t) := Z(t) 0 F(t) mod p

14: end for

15: end for

16: Z(t) := Z(t) + (t)

17: return Z(t)

Once Z(t) = (Z1(t), Z2(t),. .. , Z1i(t)) is computed, after applying the inverse

DFT, one recovers z(t) from small congruences or in case of an exponentiation keep

using the above core consequently as we described in Section 3.9. We give an example

to demonstrate the use of CRT in SME setting.

Example 11 In Section 3.10 we demonstrated the computation of 2718 mod 3141

by using the 8 point DFT over the Ferrnat ring Z22o1. Now, let's change the parameter

b from 2 to 2 and increase the inputs to m = 27182818 and n = 31415927 and try

to compute c = 27182818 mod 31415927 this time. It is obvious that the spectral

exponentiation algorithm does not work in Z22o1 because of the overflows. But if we

use the ring Zq with q = (220 + 1)(2b6 + 1), we are safe because

25.4b4 + 50.8b3 + 29.4b2 < q
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for b = 2.

If Algorithm 12 is used as a core for an exponentiatiori algorithm one can corn-

pute the spectral modular reduction in Z22o+l and Z219_1 and then combine these results

by using CRT to obtain the final value as c(t) = 13125+7039t+2831t2+520t3. Evalu-

ating c(t) at b = 2 gives c(27) = 1137816261 6842889 mod 31415927, which is same

as

6842889 = 27182818 mod 31415927

as required.

In Tables 4.5, 4.6, and 4.7, we tabulate some nice rings that CRT can be applied.

As before the popular RSA sizes are targeted.

Bits

k

Ring DFT

d

Root

W

Words

5

Wordsize

U

518q1 2-1 74 -2 37
14

q (2 + 1)/3 74 2 37

1,071
q1 (251 1)/7 102 -2 51

21
q2 2-1 106 -2 53

2,130
qi (2' 1) 141 -2 71

30
q2 (2' + 1)/3 141 2 71

4,171
q1 (2 1) 194 -2 97

43
q2 (2 + 1)/3 194 2 97

TABLE 4.5. Parameter selection by using CRT for SME with SMP.
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Bits

k

Ring

Zq

DFT

d

Root

W

Words

S

Wordsize

U

512

q1 216+1 32 2 16

32

q 217_i 34 -2 17

q3 (217 + i)/3 34 2 17

q4 2's 1 38 -2 19

q5 (220+1) 40 2 20

551q1 229_i 58 -2 29
19

q 2' 1 62 -2 31

560

qi 2'-1 32 2 16

35q (231+1)/3 32 -2 16

q3 232+1 32 4 16

1,054

qi 231_i 62 -2 31

34q2 (231 + 1)/3 62 2 31

q3 232+1 64 2 32

1,146
qi 2'' 1 82 -2 41

28
q2 (241 + 1)/3 82 2 41

2,015

qi 2' 1 62 -2 31

65
q2 (231 + 1)/3 31

q3 232+1 64 2 32

q4 264+1 64 2 32

2,052
q1 271_i 71 2 36

57
q (2' + i)/3 71 -2 36

2,067qi 2i 106 -2 53
39

q (2 + i)/3 106 2 53

TABLE 4.6. Parameter selection by using CRT for SME with MSMP.



Bits

k

Ring

Zq

DFT

dW
Root Words

S

Wordsize

U

qi (258+1)/5 116 2 58

4,118 q 1 118 -2 59 71

q3 (2+l)/3 118 2 59

q1 2-1 146 -2 73
4,161

q2 (2 + 1)/3 146 2 73
57

q1 2-1 158 -2 79

8,216 q2 (2 + 1)/5 158 2 79 104

q3 283_i 166 -2 83

qi 261_i 122 -2 61

q2 (261 + i)/3 122 2 61

8,357 q3 (262 + i)/5 124 2 62 137

q4 262+4 128 2 64

q5 (264 i)/31 130 -2 65

qi 2101 1 202 -2 101
8,484

q2 (2° + i)/3 202 2 101
84

16,428

q1 (2111 i)/7 222 -2 lii
148q (2111 + 1)/9 222 2 111

q3 2113 1 226 -2 113

q 2' 1 142 -2 71

q
2i 146 -2 73

q3 (2+1)/5 148 4 74

16,827 q4 (2 1)/217 150 -2 75 237

q5 (276 + 1)/17 152 4 76

q 2-1 158 -2 79

q7 (2+1)/3 158 2 79

TABLE 4.7. Parameter selection by using CRT for SME with MSMP.
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5. ARCHITECTURES AND PERFORMANCE ANALYSIS

In this chapter, we give architectures and performance analysis of spectral mod-

ular algorithms. While doing this we use some generic and specific architectures that

lead us to have a general and a lower level unit-gate analysis. We immediately men-

tion that because of a word level parallelism potential, spectral modular arithmetic is

notably suitable for hardware realizations. By word level parallelism we mean the ca-

pability of chopping the large numbers into small pieces, then carrying out a sequence

of independent calculations on these components and at the same is able to get a result

of the actual problem. To have this kind of parallelism is itself a big achievement for

computations, furthermore having word level parallelism make lower level parallelism

feasible. In other words, if the sizes of the pieces are small enough bit level parallelism

is beneficially emerged for the treatment of the basic operations (i.e. addition, multi-

plication, etc.) on small pieces. In general, applying the spectral techniques have this

action on the problems.

Favorably, word level parallelism in spectral modular arithmetic algorithms is

expressible with any kind of Application Specific Integrated Circuit (ASIC) includ-

ing full-custom, semi-custom (cell-based, gate-array-based) and programmable (PLD,

FPGA). When it comes to the bit level parallelism i.e. addition, multiplication and

division, ASIC technologies naturally differ (see Table 5.1). For instance; in FPGA

technology a CPA design is superior to a CSA design for multi-operand addition, even

though CSAs are known to be fastest parallel adders.

Our stragedy is to use some generic notation that permits us to exhibit the word

level parallelism in spectral arithmetic algorithms. We speak more about generic nota-

tion in Sections 5.2 and 5.3 . At the same time, we delightfully attempt to embed the



ASIC Category
bit level parallelism

(+/-,
, /)

Word level parallelism

spectral

full-custom good good

semi-custom fair good

programmable poor good

TABLE 5.1. ASIC Categories and Parallelism.

bit level parallelism into the spectral parallelism that melts graceful designs especially

suitable for full-custom and semi-custom ASIC'.

It is true that spectral modular algorithms are dominated by multi-operand

additions and multiplications over some special rings. These kind of operations are

efficiently realized by networks based on a Wallace tree structure (see [5] and [6]). But

when working with fairly large rings the delay of irregular interconnections in these

networks become expensive. Although a more regular compressor networks are well

suited for overcoming these issues, we follow the optimal Wallace tree network and

neglect these delays. we briefly review the architectures described in [5] and [6], in

particular multiplication and multi-operand addition for Fermat and Mersenne rings.

In Section 5.2 and 5.3 beside the generic analysis, we append this combined analysis

of word and bit level parallelism.

Remark 11 There are other efficient ways of carrying lower level operations espe-

cially multiplication and multi-operand addition. Cheek [19] and [20] for table-lookup

1see [18] for a FPGA discussion



methods. Further in /201 approaches based on regular integer multiplication followed by

modular reduction and treatments of Booth's recoding can be found.

5.1. Arithmetic for Fermat and Mersenne Rings

We mentioned earlier that carrying arithmetic in Mersenne rings is equivalent

to doing one's complement operations. Arithmetic in Fermat rings are slightly com-

plicated than one's complement arithmetic, when certain encoding techniques are per-

formed.

5.1.1. Designated Adders and Wallace Tree Structures

There are vast variety of adder architectures for different applications and pur-

poses. Carry save adders (CSA) seem to be the most useful adder for our applications.

It is simply a parallel assemble of full-adders without any horizontal connection with

a functionality of reducing an input of three operands to an output of two operands.

The main draw back is if a normal representation of the output is needed, a final carry

propagate adder (CPA) has to be employed in order to add the output of the CSA.

We do not want to go into the design details of CPAs (see [7] and for a textbook

treatment check [8]). Considering the sizes of targeted rings we indicate that we favor

the parallel-prefix adders in our analysis, to be more specific, we use the optimal

Sklansky parallel-prefix adders [9]. For a regular integer addition these adders perform

with a 2 log n + 3 delay and need (3/2)n log n + 4n area. When it comes to addition

in Fermat or Mersenne rings, these figures slightly change which we review in the next

section.

When multi-operand additions are examined, Wallace tree structure is known

for optimal delay time. The optimality is obtained at an expense of irregular inter-
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connection which causes the largest number of wiring tracks that directly increases

the wiring complexity. In Figure 5.1, a 27-operand Wallace tree is shown where GSA

indicates a carry-save adder having three multi-bit inputs and two multi-bit outputs.

FIGURE 5.1. 27 operand Wallace tree.

Since we are dealing with trees, there are two important parameters that gauge

both the time and area complexity of the resulting networks; namely height and number

of nodes. Let us declare the relation between number of operands and height as well

as the number of nodes of a Wallace tree structure.

Let 9(x) denotes the height function of the Wallace tree. 0(x) is a step function

incrementing at the following sequence (given recursively);
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30-i

= where °o 2

Obviously the height of a 3 input CSA is 1, additionally the following table shows the

height of a carry-save Wallace tree for operands up to 141;

x 3 4 5-6 7-9 10-13 14-19 20-28 29-42 43-63 64-94 95-141

0(x) 1 2 3 4 5 6 7 8 9 10 11

Observe that once the wiring delays are neglected, the height function 0(x)

depends only on the single variable x which stands for the number of operands. In other

words delay does not depend on the size of operands. Although such a convention does

not reflects the reality2 it makes the analysis easier at a common ground. Therefore

in such a model the delay of a Wallace tree of x operands becomes same either the

operands are integers or elements of Fermat or Mersenne rings. On the other hand

area is directly proportional with the number of nodes in a tree which in this case

corresponds to number of CSAs. With the following theorem we give the relation of

number of nodes and operands in a Wallace tree:

Theorem 14 Let x be the number of operands and v(x) denotes the number of nodes

in the Wallace tree. Then

z(x) = x 2

Proof: let cr x <oi then

v(x) = (x cr) + v(o) (5.1)

2especially as the transistors get smaller and smaller the wire delay dominates the gate delay

in the integrated circuits
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Observe that zi(a) = (aj cr_i) + (o_ a_2) + . . . + (oi ao) + v(o0). But o = 2

and v(ao) = 0 so the Equation (5.1) can be written as

v(x)=(xo)+(o-2)=x-2.

Indeed Theorem 14 describes a methodology to attain the minimal number of CSAs

in a Wallace tree design which is; first reduce the number of operands to the smaller

nearest element of the {o } sequence then follow the optimality of the sequence.

Unlike the height function, area depends on the sizes of the operands. Obviously,

as we keep adding numbers the size of result gets larger and the demand for more gates

increases but in Fermat or Mersenne rings the operand sizes can easily be kept constant

by an operate-reduce argument. Such an arrangement delights an easy computation

of the actual number of full adders needed for a Wallace tree network for Fermat and

Mersenne ring which we is addressed in Section 5.1.3 after briefly reviewing the nature

of addition in Fermat and Mersenne rings in the next section.

5.1.2. Addition

In this section we characterize the methodology of addition in Fermat and

Mersenne rings. We begin with two equations that can easily be traced

Lemma 7 Let r > 0 be an integer and 0 x (2V + 1)2 and 0 y (2V - 1)2

x mod (2V + 1) = (x mod 2' x div 2V) mod (2V + 1) (5.2)

y mod (2' 1) = (y mod 2V + y div 2V) mod (2' 1) (5.3)

Proof: Since = +1 the modular reduction corresponds to adding/subtracting

the most significant r bits to/from the least significant r bits. This procedure needs
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a correction in case of this addition/subtraction exceeds the modulus which is carried

by a final modular reduction.

Mersenne ring addition (Modulo 2V 1) Let x, y E Z21, by using the

Lemma 7 the addition in the Mersenne ring can be formulated as follows

x+ymod(2v_1)= {x+Y+lmod2v ifx+y2v
x + y otherwise

Therefore this is the regular addition unless there exists an overflow which is normally

handled by employing an end-around carry adder.

Fermat ring addition (Modulo 2' + 1) The binary representation of all the

elements of the ring Z21 need r + 1 bits. The additional bit is required only for the

number In order to alter this redundancy, a modified binary system diminished-i

can be employed, where the number x is represented by x' = x 1 and the value 0

is not used or handled separately [10].

Let x, y E Z21 with diminished-i representation x' and y' respectively. Ob-

serve that

(x+y)'=(x+y)i=(x'+l)+(y'+l)i=x'+y'+l

Hence by using Lemma 7, addition in the Fermat ring can be formulated as

{x,+y,mod2v

ifx'+y'+l 2V

x' + y' + 1 mod (2V + 1)
x' + y' + 1 otherwise

which leads us the following important identity

x' + y' + 1 mod 2' + 1 = x' + y' + cOat mod 2V (5.4)

Note that Equation (5.4) is also valid for normal representations of numbers. Therefore

it is possible to do arithmetic by using normal representations (see [6]).
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Remark 12 For those algorithms heavily use a normal number representation of num-

bers, a diminished-i representation suffer from the conversion from and to the normal

number representation. In our case we generally do not care about a presentation of a

number unless it is the final result.

Likewise Mersenne arithmetic, if the overflows of the regular addition are fed to

the adder after an inversion, a Fermat arithmetic is achieved. Observe that the above

methodology function well for CPAs and CSAs, moreover these adders are named as

modular CPAs and CSAs after above arrangements.

Notation 6 Through out this document, for a gate-unit analysis we assume each two

input monotonic gate (e.g., AND, NAND) counts as one gate (area or delay), an XOR

as two gates (area or delay), and a full adder has an area of seven gates and a delay

of four gates.

If Sklansky parallel-prefix adders are considered for a CPA implementation, the

area and time complexity of CPA becomes same for both Fermat and Mersenne rings

which is very similar to the standard integer propagate addition (see Table 5.2)

ring area delay

Mersenne or Fermat (M/F) n log n + 7n 2 log n + 5

TABLE 5.2. The cost of CPA (Sklansky parallel-prefix adder).

5.1.3. Multi-operand Addition with Modular Carry-save Adders

As we mention earlier, multi-operand binary addition are optimally imple-

mented by a Wallace tree network. In Section 5.1.1, we derived the relations between
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number of operands and the two decisive parameters; height and number of nodes in

case of regular integer additions. When it comes to Fermat or Mersenne rings, because

of the round around carry feature the complexity of multi-operand addition changes

slightly. We continue our analysis with a corollary to Theorem 14;

Corollary 4 Let x1, X2,. . . , Xm be k-bit numbers. The number of full adders in order

to realize a Wallace tree network for Fermat or Mersenne rings is given by

#FA=k(m-2)

Proof: Since we are working in finite rings, after every addition the result can

be reduced. This reduction is performed by complementing the carry outs and feeding

them to the LSB position of the adders in the successive stage. Therefore the size k

of the operands of the CSAs remain constant at all times but this means that at each

level the number of full adders needed is only k. By using Theorem 14 the number of

CSA is given by v(x) = x 2 thus # FA = k(m 2).

Remark 13 Observe that because of the increase in output size one needs more re-

sources for a multi-operand integer addition. On the other hand, for Mersenne and

Fermat arithmetic because of round around carry feature the size of output and inter-

mediate sums remain same which fortunately brings a smaller and more importantly a

more regular circuit layout.

In Table 5.3 area and time analysis of an k-bit in operand addition are pre-

sented, it can be seen that the delay of Mersenne arithmetic is same as regular integer

operations with a less area constrained. When Fermat arithmetic is considered, be-

cause of the correction logic one needs slightly larger area and an additional multiplexer

delay.
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Mersenne area delay

Wallace tree 7k(m 2) 40(m)

CPA klogk+7k 2logm+5

total 7km+ klogk 7k 40(m)+2logm+5

Fermat area delay

Wallace tree 8k(m 1) 40(m + 1)

corrections 12k 3

CPA klogk+7k 2logrn+5

total 8km+ klogk+ ilk 40(m+ l)+2logm+8

TABLE 5.3. The cost of a multi-operand addition in Fermat and Mersenne aritmetic.

5.1.4. Multiplication

A multiplier consists of three stages: Partial Product Generator (PPG), par-

tial product accumulator (PPA), and carry propagate adder (CPA). The PPG stage

generates the partial products from the multiplicand and multiplier. For our discus-

sions PPA corresponds to a Wallace tree network; a multi-operand addition for all the

generated partial products that produces the sum in a carry-save form. If a normal

form is needed the carry-save form is converted to a regular representation by using a

CPA. Since we have already introduced the second and third stages in Sections 5.1.3

and 5.1.2, we comment briefly on PPG.

A naive way of carrying partial products is simply deducing the logical AND of

the multiplicand with the multiplier. More advanced methods employ various encoding
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techniques aiming to reduce the number of partial products. Among these methods

Booth's encoding is the most effective method for many applications. For our immedi-

ate purposes an analysis of these encoding techniques are not examined but they are

readily available and surely improve the delay function. We simply leave this analysis

for further research and choose to use the naive way for our further discussions. With

these remarks, in Table 5.4 the delay and area complexity for a k x k multiplier is

given.

Mersenne area delay

PPG k2 1

Wallace tree 7k(k 2) 49(k)

CPA k1ogk+7k 2logk+5

total 8k2 + klogk 7k 40(k) + 2logk+ 6

Fermat area
]

delay

Wallace tree 8k(k 1) 40(k + 1)

corrections 12k 3

CPA klogk+7k 2logk+5

total 9k2+k1ogk+11k 49(k+1)+2logk+9

TABLE 5.4. The cost of k x k multiplication in Fermat and Mersenne arithmetic.



5.2. Software and Hardware Architectures for Spectral Modular Arithmetic

In the light of previous section, it is possible to give a unit-gate analysis of our

algorithms with the specified low level arithmetic architectures. In addition to this

analysis we also give a generic evaluation in order to have a platform independent

treatment. The following setup is our basis for this evaluation;

. A(k, 1); addition of k numbers of l bits modulo q

M(k, 1); k x l bit multiplication modulo q

Tf; the delay off function, i.e. TA(2,z) stands for delay of adding two i-bit numbers

modulo q.

Af; the area for f function, i.e. AA(2,1) represents the area needed for adding two

i-bit numbers modulo q.

Specifically, we describe architectures for SME which could immediately be re-

duced to outline designs for the SMP or MSMP core since initialization and finalization

stages are cost negligible. Recall that SMP and MSMP differ only in calculation of

N(t). The former one performs a direct multiplication where the second one achieve

this by a successive addition of some pre-computed values. At first glance the second

approach seem as an acceleration attempt of modular multiplication by using look-up

tables. But we have seen in the previous section that when the modulus is special i.e.

2V ± 1 the use of look up table is not promising. In reality the second approach is more

about increasing the size of b which immediately increases the bit size of the realizable

modular arithmetic for a fixed transform size d (or decreases the transform size for a

fixed modulus).

We make the following conventions in order to come up with the simplest design

as possible. We assume
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7Zq where q T ± 1 i.e. Mersenne or Fermat ring3

. there exist a d point DFT with w = 21 for some 1 > 0

base b is a power of two i.e. b = 2,

the parameters b, q and s = Id/21 satisfy Inequalities (3.11) and (4.3) for SMP

and MSPM respectively (as a core for SME).

In Figure 5.2 we exhibit a higher level architecture for SMP. Before zooming

into the boxes and discussing the possible design practices, we like to say a few words

about the data flow.

In this architecture, the outputs of the convolution (i.e. Step 1) feed the Z

MUXes. For the initial case, each MUX Z chooses the input from Step 1, and then

the reduction loop starts. The loop runs d times: at every run, the outputs of the

processing units are passed to the interpolation and also fed back to the unit itself.

The processing engine waits until the parameters z0 + T3 and /3 are generated from the

parameter generation logic. After d runs of the loop, the processing units from 0 to

d 1 outputs the coefficient of the resultant spectral polynomial Z(t). It is important

to realize that in this architecture:

All processing units work in parallel.

The cyclic shifts are different for each unit in other words the units are not

completely identical.

We do not need a cyclic shifter in unit d 1

The same z0 + /3 and /3 are passed to all of the processing units.

3this could easily be extended to pseudo Mersenne or Fermat rings
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FIGURE 5.2. The hardware architecture of the SMP algorithm.
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In Step 1, the convolution property is employed. Given the spectral polynomials

X(t) and Y(t), we compute Z(t) such that Z = XY (mod q) for i = 0, 1,. . . , d 1

as seen in Figure 5.3 These multiplications can be realized by employing v x v modulo

multipliers with a generic delay TM(,) and area TA(V,V).

17

zo zi Zd1

YBus

X Bus

FIGURE 5.3. The archictecture for Step 1 of SMP and MSMP.

If the specific architectures described in Section 5.1 are applied to Step 1 a

twofold (word+bit) level parallelism is achieved. We note that, we try to keep the

intermediate data in carry-save form at all times. Later, we see that during the reduc-

tion loop there is only one step that data need to be partially in normal form. That

is why the CPA after the component-wise multiplication is discarded in order to keep

the output of the convolution in a carry-save format.

In case of a Mersenne arithmetic, the critical path of the v x v multiplication

without a CPA needs; a simplified 2-to-i multiplexer for partial product generation

followed by a CSA Wallace tree network. When same calculation is considered for

Fermat rings we need some additional hardware and time for some corrections. Thus

by using Table 5.4, the cost of Step 1 is summarized in Table 5.5.
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step

1

Algorithm: SMP and MSMP

ring area delay

generic sequential F/M AM(,) d TM(,)

generic parallel F/M d AM(V,V) TM(,)

specific parallel
2 1 8v2 14v 40(v) + 1

2r+1 9v2+3v 40(v+1)+4

TABLE 5.5. The cost of Step 1.

Now it is time to consider the reduction steps; for simplicity we divide the ioop

with i into two parts;

. Parameter Generation: This corresponds to Steps 4, 5 and 6. Here, we com-

pute the parameters z0, c, and 3, and feed them to the main processing units.

Processing Engine: This corresponds to Steps 7, 8, and 9, in which we add a

multiple of the modulus to the partial sum and then divide it by the base.

In Parameter Generation, Step 4 corresponds to a partial interpolation in

which a d-input multi-operand addition followed by a multiplication by d1. This corn-

putes the zeroth coefficient of the time polynomial. Figure 5.4 shows the architecture

for these computations.

Observe that d1 is a constant v-bit number so the multiplication is indeed an-

other multi-operand addition. With some recoding techniques, it is possible to deliver

this multiplication by a v/2 operand addition, and since this addition has to wait for

the output of d operand addition, in total, Step 2 can be realized by d + v/2 operand

addition. On a sequential system we compute that much of additions as
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Z0 Zd_2 Zd_1

zo

FIGURE 5.4. Partial interpolation.

TA(d,) + TA(,) = (d 1)TA(2,) + ( 1)TA(2,V) (d + 2)TA(2,V)

and the area needed by the this system is simply TA(2,). On the contrary, the com-

plexity of a parallel system can be modeled by a complete binary tree network where

the nodes of the tree associated with two operand adders, A(2, v). Next lemma traces

the delay and area expansion.

Proposition 12 Let CBT be a complete binary tree network. If k is the number of

operands to be added then the tree has height h = log k and log(2k) nodes.

Proof: Let CBT be a complete binary tree network with k operands. Being a

binary tree CBT obviously has height log k. Additionally the number of nodes is given

as follows

2h_1_1+k_h=2b0_1+k_logk_1=_log(2k).
2

By using Prosition 12, one realizes a parallel system with delay;
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TA(d,) + TA(,) = log dTA(2,) + log()TA(2,V) = (log d + log v 1)TA(2,)

at an area cost

AA(d,) + AA(,) = ( log(2d))AA(2,) + ( log())AA(2,)

6d + 3v
= ( 4

log(2vd))AA(2,)

Tithe specifications of Section 5.1 are chosen, we have a simpler analysis of a

twofold (word+bit) parallelism. By using the figures in Table 5.3, we tabulate the cost

of d + v/2 operand addition without the final CPA in Table 5.6.

In a special Fermat ring with some other desirable condition it is possible to

replace d1 multiplication by circular shifts.

Proposition 13 Whenever d and w are both a power of 2, multiplication by d1 is

replaced by a circular shift.

Proof: Let w = 21, since we have wd 21d = 1 mod q and d' is written as

d1 21dIogd mod q

the multiplication by d1 modulo q can be achieved by a rid log d bit circular

shift.

Once d1 multiplication changed by circular shifts, the complexity shrinks for

both time and area. In Table 5.6, We summarize what have been said about Step 4.

Steps 5 and 6 as seen in the Figure 5.5.a are called the Parameter Generation

Logic (PGL) which computes the parameters zo + /3 and /3. The adders seen in

Figure 5.5.a are the usual v-bit adders and they do not need modular reductions since

a,(zo+a),(zo+c+/3) <q.

If the Steps 5 through 8 of SMP are examined carefully, it is seen that the

second adder can be discarded by making the following modifications:



step Algorithm: SMP and MSMP

4 ring area delay

F/M AA(2,) (d + 2)TA(2,)
generic

F/M
sequential AA(2,) (d l)TA(2,V)

d =

F/M (6d+3v log(2vd))AA(2,) (log d + log v l)TA(2,V)
generic

F/M
parallel

(
log(2d))AA(2,) log d TA(2,)

d = 2

M 7vd + v2 28v 40(d) + 40(v/2)

specific F 8vd + 4v2 + 4v 40(d + 1) + 40(v/2 + 1) + 6

parallel F/M
8vd+2v 40(d-F1)+3

d=

TABLE 5.6. The cost of Step 4.

5: /3 := (zo + c) mod b

6: c := (zo + + /3)/b

7: Z(t) := Z(t) + j3 N(t) mod q

8: Z(t) := Z(t) (zo + /3)(t) mod q

= Z(t) := Z(t) + /3. (N(t) 1(t)) mod q

= Z(t) := Z(t) zo(t) mod q
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Therefore pre-computing and storing N(t) 1(t) =: DFT(n(t) 1) instead of

N(t) eliminate the second adder as seen in Figure 5.5.b A similar analysis is achieved

for MSMP by pre-computing and storing

{Ni(t) 1(t), N2(t) 1(t),. . . , N(t) 1(t)}
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FIGURE 5.5. Parameter Generation Logic.

instead of {N1(t), N2(t),. . . , N,(t)}. With these adjustments the cost of PGL becomes

equal to the delay of the first adder which is a single two operand addition A(2, v)

when a generic notation considered.

For a specific analysis; first of all the output of the partial interpolation is in

carry save form. With the first adder the carry (initially 0) is added to the output of

the partial interpolation. Since /3 is the multiplicand for the multiplication in Step 7

we need /3 in a normal form rather than a carry-save format. Therefore, here we have

to engage with a u-bit CPA on the critical path. On the contrary the addition of most

significant v u bits are going to be the carry for the next run which is not in the

critical path.

Once the second adder has discarded the delay of PGL becomes equal to a u-bit

CPA delay which is 2 log u + 5. This is same in both Fermat and Mersenne arithmetic
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since u is small enough that addition do not produce any round around carry, hence

this adder is realized as an regular integer adder. In Table 5.7 we tabulated the cost

for Steps 5 and 6 this analysis along with generic one.

step

5 6

Algorithm: SMP and MSMP

ring area
J

delay

generic sequential F/M AA(2) TA(2,)

generic parallel F/M AA(2,) TA(2,))

specific parallel F/M u log u + 7u 2 log u + 5

TABLE 5.7. The cost of Step 5-6 after modification.

The Processing Engine is the most resource-consuming stage and it corre-

sponds to Steps 7, 8, and 9. In Figure 5.6 the architecture of a single processing unit

for SMP is seen if multiplier is changed with a multi-operand addition, a schematic for

MSMP can be achieved. The processing engine consists of d such units.

Note that both adders in Figure 5.6 are modulo q adders. The shift operation

at the bottom of the figure corresponds to Step 9 of the SMM core. As we pick w as a

power of 2, the multiplications with the coefficients of F(t) correspond to the constant

d 1i bit circular shifts for i 1,2,...,d 1.

For a generic evaluation the delay and area are readily available which is the

cost of a u x v multiplier plus 2 additions for SMP and u + 2 additions in total for

MSMP. If the binary tree is used for modeling the multi-operand additions one gets

the figures in Table 5.8.

On the other hand if the specific architectures of Section 5.1 are considered, Step

8 can be buried into the Wallace tree of the multiplication or multi-operand addition

of Step 7. Therefore, we simply need u +1 operand Wallace tree network which is valid



zo + 3

zi Ii

FIGURE 5.6. A Processing unit.

V

for both SMP and MSMP. The accurate costs are separately tabulated for SMP and

MSMP in Table 5.8.

We close the section with some further remarks on possible architectural im-

provements that can be employed. We believe that these remarks bringsome speed-up

and optimized hardware for the realizations but we leave the analysis of these remarks

for a future research.

Remark 14 A pipelining is possible for /3 computation (Step 3) and /3 (N(t) 1(t))

computation. The Wallace tree do not need to wait the whole computation of the /3,

instead it can go with the ready bits of /3 from the CPA. By this the delay for CPA can

be embedded into the Wallace tree delay of Step 7.

Remark 15 Speaking about the pipelining; the overall architecture is extremely suitable

for pipelining. For several modular exponentiation calculations with or without the

same modulus the throughoutput can be improved excessively.
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step

7-8 ring

Algorithm SMP

area j delay

generic sequential F/M (AM(,) + 2AA(2,V)) d(TM(,) + 2TA(2,V))

generic parallel F/M d(AM(,) + 2AA(2,U)) TM(,) + 2TA(2,V)

specific

parallel

M 8uv 40(u + 1) + 5

F 9uv + 20v 46(u + 2) + 8

step

7-8 ring

Algorithm MSMP

area
J

delay

generic sequential F/M AA(,) + 2AA(2,V) d(u + 2)TA(2,V)

generic parallel F/M d( log(2u + 2) + )AA(2,) (1 + log(u + 1))TA(2,V)

specific

parallel

M 7vu 4eeu + 1) + 4

F 9uv + 20v 40(u + 2) + 7

TABLE 5.8. The cost of Step 7-8 for SMP and MSMP.

Remark 16 The use of encoding techniques for multiplication (e.g. Booth recoding)

can be employed to shrink the size and delay of the Wallace tree.

Remark 17 Lastly, we like mention the area can be squeezed by using the convolution

step hardware for multiplications or multi-operand additions in the loop.

5.3. Performance Analysis; Adding everything up

In Tables 5.9 and 5.10 we give the entire complexity of SMP and MSMP by

combining the individual pieces described in the previous section.
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SMP ring area
[

delay

AM(,) + 4AA(2,V) d TM(,) + d(d TM(,)
F/M

generic +AM(,) +(3d + 1)TA(2,))

sequential F/M AM(,) + 4AA(2,V) d TM(,) + d(d TM(,)

d - 2' +AM(,) +3d TA(2,V))

d(AM(,) + AM(,,))+ TM(,) + d(TM(,)
F/M

generic (14d3v log(vd))AA(2,) + log(4dv)TA(2,))

parallel F/M d(AM(,) + AM(,v)) TM(,) + d(TM(,)

d = 2' +( log d)AA(2,v) +lOg(8d)TA(2,))

v2 + 7vd 42v 40(v) + 1 + 2d(lg(u) + 5)+
M

+8uv + ulogu + 7u 4d(0(d) + 0(v/2) + 0(u + 1))

specific 13v2 + 8vd + 27v 40(v + 1) + 4 + 2d(lg(u) + 19/2)+
F

parallel +9uv + u logu + 7u 4d(0(d + 1) + 0(v/2 + 1) + 0(u + 2))

F/M 9v2 + 8vd + 25v 40(v + 1) + 4 + 2d(lg(u) + 8)

d= 2 +9uv+ ulogu+7u +4d(0(d+ 1)H-0(u+2))

TABLE 5.9. The performance analysis of SMP algorithm.

Remark 18 Observe that remark 14 readily implies a 2d(log u + 3) reduction in delay

from the specific parallel implementation.

Remark 19 When MSMP algorithm is considered, we mentioned that the basis set

{N1(t), N2(t), . . . , N,(t)} has to be stored. Therefore one has to consider to allocate a

space given by Equation (4.2) in realizations.

Eventually, we are going to give an example for computing the complexities.

We pick our samples from Tables 4.2 as follows:
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MSMP_]_ ring area delay

AM(,) + 4AA(2,V) d TM(,) + d(du
F/M

generic +AM(,) +(3d + l))TA(2,)

sequential F/M AM(,) + 4AA(2,) d TM(,) + d(du

d = 2 +AM(,) +3d TA(2,))

dAM(,) + (16d+3)+6ud_ TM(,) + d(log(u + 1)
F/M

generic log(vd) dlog(2u + 2))AA(2,V) +log(2dv)TA(2,V))

parallel F/M d(AM(V,) + AM(,)) TM(,U) + d(log(u + 1)

d 2 +( log d)AA(2,) +1og(4d)TA(2,))

v2 + 7vd 42v 40(v) + 1 + 2d(lg(u) + 9/2)
M

+8uv + u1ogu + 7u +4d(0(d) + 0(f) + 0(u + 1))

specific 13v2 + 8vd + 27v 40(v + 1) + 4 + 2d(lg(u) + 9)+
F

parallel +9uv + u1ogu + 7u 4d(0(d+ 1) + 0( + 1) + O(u + 2))

F/M 9v2 + 8vd + 25v 40(v + 1) + 4 + 2d(Ig(u) + 15/2)

d = 2 +9uv + u1ogu + 7u +4d(0(d + 1) + 0(u + 2))

TABLE 5.10. The performance analysis of MSMP algorithm.

Example 12 Let's compute the complexity of SMP with a modulus 704-bits by using

the DFT in the ring Zq with q = 264 + 1, w = 2 and u = 11 as seen in Table 4.2. We

start with the area and delay of a generic sequential setting;

TSMP = d TM() + d(d. TM() + 3d TA(2,))

128 TM(64,64) + 1282 TM(1164) + 3 1282 TA(2,64)

ASMP = AM(,) + AM(,) + 4 AA,V

= AM(64,64) + AM(11,64) + 4 AA6
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when generic parallel setting is considered we get;

TSMP TM(,) + d(TM(U,) + log(8d) T,V)

= TM(64,64) + 128TM(11,64) + 1280 TA(2,64)

7v
ASMP = d(AM(,) + AM(,V)) + (-- log d)AA(2,V)

= 128AM(64,64) + 128AM(11,64) + 217AA(2,64)

With these figures we conclude that the the parallel algorithm is almost optimal in on

sequential algorithm.

Lastly, we consider the complexity of the specific implementation described in

Section 5.1 which is given for by a unit gate delay and area (i.e. two input mono tonic

gate such as AND or NAND).

TSMP = 40(v+ 1)+4+2d(lg(u) +8)+4d(0(d+ 1)+0(u+2))

= 40(64 + 1) + 4 + 2 128(log(1l) + 8) + 4 128(0(128 + 1) + 0(11 + 2))

=4 10 + 4+ 256(4 + 8) + 512(11+ 5) = 11308

ASMP = 9v2 + 8vd + 25v + 9uv + ulog u + 7u = 177871

In other words, a realization of SMP with the above parameters allocate 177871

gates and have 11308 gate delay for an output. If this SMP is used in a SME, with the

same area complexity one approximately has a 11308K gate delay.

Example 12 gives the performance analysis of for an instance SMP over a Fermat

ring. One similarly calculates the complexities of SMP and MSMP over Mersenne or

pseudo rings. Moreover, one can combine these in order to find the complexity of using

CRT.



123

6. CONCLUSION

In this dissertation new techniques of performing modular multiplication and

exponentiation are proposed. Especially, modular exponentiation is one of the most

important arithmetic operation for methods of modern cryptography, such as the RSA

and Diffie-Heliman algorithms. Proposed methods use the Discrete Fourier Transform

over finite rings, and relies on new techniques to perform the modular reduction oper-

ation.

Our initial motivation was obtaining modular arithmetic algorithms fully work-

ing in the spectrum in order to benefit the convolution property at a maximum extend.

For carrying modular arithmetic one has obviously need to deal with the concept of

modular reduction. After defining spectral reduction and related concepts we intro-

duce a spectral reduction algorithm by using the linearity and shifting property of DFT,

and than spectral modular multiplication (SMM) and spectral modular exponentiation

(SME) came quite naturally.

Most of the time, if some operation is performed in spectrum, the spectral

coefficients do not tell much about what has been done in the time. That is why we

construct the spectral modular algorithms as the image of some time simulations that

are easily be transformed to spectrum. By this we were able to keep track of the

activity of time sequences while working in the spectrum.

When it comes to the practicability of the proposed methods, there were many

directions to go because of the richness of the spectral theory. First we experiment

to apply the methods in a complex spectrum but because of massive computations in

the spectrum we understand that the round off errors are hard to control. Therefore

we eager to employ finite ring spectrums for not admitting the round off errors in the
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computations. Additionally, from a computational point of view, calculations in some

special rings such as Fermat and Mersenne can exploit the special arithmetic.

On the contrary, we realized that while running the spectral algorithms in finite

ring spectrums, if some parameters in time simulations go out of predefined bounds

the spectral algorithms produce erroneous outputs. These ill-favored effects are called

overflows and can be easily controlled by choosing larger domains. In Chapter 3 along

with the presentation of algorithms, we were dedicated to find the optimal domains for

our spectral modular algorithms.

Spectral Modular Product (SMP) which consists of convolution and spectral

reduction is presented as the basic building block of both SMM and SME. Indeed SMP

decides the optimal domain of SMM and SME, hence for the rest of the dissertation

we basically concentrated in analysis and improvements of SMP algorithm.

By using the Theorem 7 we proved the relation between the effective transform

length s, wordsize u and ring size q as 2sb2 <q for SMM and

(b2+b)2B(s)+b2s < q

for SME. Additionally, we demonstrated some convenient parameters for realizations

in Table 4.2 for SME. After that we modify SMP in order to improve the optimal

domain with a space trade off. We gave the relation

(blogb+b)2B(s) +sblogb < q

at a cost of some pre-computations and storage space when the Modified Spectral

Modular Product (MSMP) is used. Since with MSMP the effective word size almost

doubles therefore we managed to double the operational maximum modulus size for

SME.

More importantly we described the use of Chinese Remainder Theorem (CRT)

for SME and SMM which permits us to reach maximum modulus sizes by using smaller
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processing units. Indeed CRT admits us to reach very large modulus sizes at the same

time work in small size rings. We tabulated possible implementation parameters in

Tables 4.5 and 4.6 for both SMP and MSMP respectively.

Because of working in the spectrum there exists a vast amount of parallelism

potential in computations. Therefore we had the chance of yielding efficient and highly

parallel architectures for especially hardware implementations. In Chapter 5 we de-

scribe detailed architectures and unit-gate analysis of SMP and MSPM algorithms.

While doing this we use some generic and also specific architectures that leads us to

have a general and a lower level unit-gate performance analysis.
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APPENDIX A. Pseuodo Mersenne and Fermat Transform Tables

Ring Prime Factors Modulus w d w d

225 1 31 601 1801 (225 1)/31 2 25 2 50

226 1 3 . 2731 8191 (226 1)/3 2 26 2 52

227 1 7 . 73 . 262657 (227 1)/511 2 27 2 54

1 3 43691 . 131071 (2 1)73 2 34 2 68

1 31 . 71 127. 122921 (2 1)73937 2 35 2 70

238 1 3 174763 . 524287 (238_ 1)/3 2 38 2 76

1 7 79 . 8191 . 121369 (2 1)/7 2 39 2 78

246 1 3 . 47. 178481 . 2796203 (246 1)/3 2 46 4 23

1 127 . 4432676798593 (2 1)7127 2 49 2 98

1 7 103 . 2143 11119 131071 (251 1)/7 2 51 2 102

1 7 . 32377 . 524287 1212847 (2 1)/7 2 57 2 114

258 1 3 59 . 233 1103 . 2089 . 3033169 (258 1)/3 2 58 4 29

262 1 3 . 715827883 . 2147483647 (262 1)/3 2 62 2 124

264 1 3 . 5 17 . 257 641 65537 . 6700417 (264 1)/255 2 64 2 128

265_i 318191 145295143558111 (265_1)/31 2 65 2 130

1 3 . 223. 1777. 25781083 . 616318177 (2 i)/3 2 74 2 148

1 7 . 31 . 151 . 601 . 1801 . 100801 . 10567201 (2 1)/217 2 75 2 150

278 1
32

. 7. 79 . 2731 . 8191 . 121369 . 22366891 (278 1)/63 2 78 4 39

282 1 3 83 13367 164511353 . 8831418697 (282 1)/3 2 82 4 41

285 1 31 . 131071 . 9520972806333758431 (285 1)/31 2 85 2 170

286 1 3 . 431 . 9719 . 2099863 . 2932031007403 (286 1)/3 2 86 4 43

291 1 127 911 . 8191 . 112901153. 23140471537 (291 1)/127 2 91 2 182
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1 7 2147483647 . 658812288653553079 (2 1)/7 2 93 2 186

3 283 . 2351 4513
1 (2 1)/3 2 94 4 47

13264529 165768537521

3 . 107 6361 69431 . 20394401
2106 1 (2106 1)/3 2 106 4 53

28059810762433

7 . 223 321679 . 26295457 616318177
2111 1 (2111 1)/7 2 111 2 222

319020217

32
. 7. 571 . 32377 174763

2114 1 (2" 1)/63 2 114 4 57
524287 1212847 160465489

31 47 14951 . 178481 . 4036961
2" 1 (2" 1)/1457 2 115 2 230

2646507710984041

3 . 2833 . 37171 . 179951
2118 1 (2118 1)/3 2 118 4 59

1824726041 . 3203431780337

23 89 . 727
2121 1 (2121 1)/2047 2 121 2 242

1786393878363164227858270210279

3 . 768614336404564651
2122 1 (2122 1)/3 2 122 2 244

2305843009213693951

3 5 17 257 . 641 . 65537
2128 1 (2128 1)/255 2 128 4 64

2.74177 6700417 . 67280421310721

TABLE 6.1.: Suitable pseudo Mersenne rings with w and d values.



132

Ring Prime Factors Modulus w}cl w

217 + 1 3 . 43691 (217 + 1)/3 2,4 17 2 34

2' + 1 3 174763 (219 + 1)/3 2,4 19 2 38

220+1 1761681 (220+1)/17 4 20 2 40

221 + 1 32 43 . 5419 (221 + 1)/9 2,4 21 2 42

222 + 1 5 397 2113 (222 + 1)/5 4 22 2 44

223 + 1 3 2796203 (223 + 1)/3 2,4 23 2 46

228 + 1 17 15790321 (228 + 1)/17 4 28 2 56

229 + 1 3 59 . 3033169 (229 + 1)/3 2,4 29 2 58

231 + 1 3 715827883 (2 + 1)/3 2,4 31 2 62

+ 1 5. 137. 953 . 26317 (2 + 1)/5 4 34 2 68

+ 1 3 . 25781083. 1777 (2 + 1)/3 2,4 37 2 74

238 + 1 5 229 457 525313 (238 + 1)/S 4 38 2 76

2+1 32.22366891.2731 (2+1)/9 2,4 39 2 78

2° + 1 257 . 4278255361 (2° + 1)/257 4 40 2 80

241 + 1 3 83 . 8831418697 (241 + 1)/3 2,4 41 2 82

+ 1 3 2932031007403 (2 + 1)/3 2,4 43 2 86

+ 1 17 353 2931542417 (2 + 1)/17 4 44 2 88

246 + 1 5 . 277 1013 1657 30269 (246 + 1)/S 4 46 2 92

+ 1 3 . 283 165768537521 (2 + 1)/3 2,4 47 2 94

252 + 1 17 . 308761441 . 858001 (252 + 1)/17 4 52 2 102

+ 1 3. 107 28059810762433 (2 + 1)/3 2,4 53 2 106

256+1 257544109728975153 (256+1)1257 4 56 2 112

+ 1
32

571 . 160465489. 174763 (2 + 1)/9 2,4 57 2 114

258 + 1 5. 107367629 536903681 (258 + 1)/5 4 58 2 116
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+ 1 3 1824726041 . 37171 2833 (2 + 1)/3 -2,4 59 2 118

2° + 1 17 . 241 . 4562284561 . 61681 (260 + 1)/17 4 60 2 120

261 + 1 3 768614336404564651 (261 + 1)/3 -2,4 61 2 122

262 + 1 5 . 384773 . 49477 8681 . 5581 (262 + 1)/5 4 62 2 124

265+1 31113140989176238512731 (265+1)/3 -2,4 65 2 130

266+1 51339743274893127092113 (266 +1)15 4 66 2 132

267 + 1 3 . 6713103182899 . 7327657 (267 + 1)/3 -2,4 67 2 134

268 + 1 172 . 2879347902817 354689 (268 + 1)/172 4 68 2 136

271 + 1 3 . 56409643 13952598148481 (271 + 1)/3 -2,4 71 2 142

2+1 317959180387410706271753 (2+1)/3 -2,4 73 2 146

+ 1 5 149 593 184481113 . 231769777 (2 + 1)/5 4 74 2 148

276+1 17121724517014940753148961 (276+1)/17 4 76 2 152

+ 1 3 201487636602438195784363 (2 + 1)/3 -2,4 79 2 158

282+1 5181549121125494324958910169 (282+1)/S 4 82 2 164

283 + 1 3 . 499 1163 13455809771 155377 . 2657 (283 + 1)/3 -2,4 83 2 166

285+ 1 31126831423036065352611.43691 (285 +1)/33 -2,4 85 2 170

286 + 1 5 173. 1759217765581 . 500177 101653 (286 + 1)/S 4 86 2 172

287+ 1 32.59.96076791871613611.3033169 (287+1)/531 -2,4 87 2 174

288 +1 25743872038849 119782433229153 (288+1)1257 4 88 2 176

289+1 3179 1858477404602061762020897 (289+1)/3 -2,4 89 2 178

291+1 343258296917071210483.2731224771 (291+1)/129 -2,4 91 2 182

292+1 17291280009243618888211558641 (292+1)/17 4 92 2 184

+ 1 32 529510939 2903110321 . 715827883 (2 + 1)/9 -2,4 93 2 186

+ 1 5 7484047069 140737471578113 3761 (2 + 1)/S 4 94 2 188

296 + 1 641 18446744069414584321 6700417 (296 + 1)/641 4 96 2 192
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+ 1 3 - 971- 1553- 1100876018364883721 31817 (2 + 1)/3 -2,4 97 2 194

2101 + 1 3 - 845100400152152934331135470251 (2101 + 1)/3 -2,4 101 2 202

2103 + 1 3 - 8142767081771726171 - 415141630193 (2103 + 1)/3 -2,4 103 2 206

2104+1 257- 78919881726271091143763623681 (2'°+1)/257 4 104 2 208

2106 + 1 5- 15358129 - 586477649- 1801439824104653 (2106 + 1)/5 4 106 2 212

2107+ 1 3-643-84115747449047881488635567801 (2b07+1)/3 -2,4 107 2 214

2109+1 3-2077756847362348863128179-104124649 (2'°+1)/3 -2,4 109 2 218

32 1777- 3331 .17539

2111 + 1 (211 + 1)/9 -2,4 111 2 222

-25781083- 107775231312019

3 - 227 - 48817

2113 + 1 (2113 + 1)/3 -2,4 113 2 226

-636190001 491003369344660409

5. 13 - 229 457 131101

2114 + 1 (2114 + 1)/65 -2,4 114 2 228

-160969 - 525313 - 275415303169

17- 59393

2116 + 1 (2116 + 1)/17 4 116 2 232
-82280195167144119832390568177

5 1181 -3541 - 157649

2118 + 1 (2118 + 1)/S -2,4 118 2 236
-174877- 5521693- 104399276341

97- 257- 673 394783681

2120 + 1 (2120 + 1)/257 32 48 96
-46908728641 4278255361

3 683 117371
2121 + 1 (2121 + 1)/4098 -2,4 121 2 242

-11054184582797800455736061107

5- 733- 1709 - 3456749

2122 + 1 (2122 + 1)/S 4 122 2 244
-8831418697- 13194317913029593

32
- 83 739 - 165313

2123 + 1 (2123 + 1)/747 -2,4 123 2 146

-8831418697- 13194317913029593



135

17 290657 3770202641
2124 + 1 (2124 + 1)/17 4 124 2 248

1141629180401976895873

2127 + 1 3 56713727820156410577229101238628035243 (2127 + 1)/3 2,4 127 2 254

TABLE 6.2.: Suitable pseudo Fermat rings with w and d values.




