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NONUNIFORM SAMPLING PROBLEMS 
IN COMPUTED TOMOGRAPHY 

1 INTRODUCTION 

1.1 Overview 

Computed Tomography (CT) refers to the reconstruction of a function from 

its set of line integrals. The basic problem was solved in principle by J. Radon in 

1917. The idea gained new interest with the introduction of diagnostic radiology in 

the later part of the twentieth century. Here, line integrals model the attenuation 

of x-rays as they pass through the tissues of the body. In a typical CT scanner, a 

narrow beam of x-rays illuminate a patient or test object, and the intensity of the 

transmitted rays is measured by an array of detectors opposite of the x-ray source. 

Measurements are made for various source position, or views, about the patient or 

object. Reconstructing the attenuation function from these projection data allows a 

non-invasive view inside the body of the patient or test object. A three dimensional 

image may be reconstructed slice by slice from a series of two dimensional projection. 

The basic problem has been studied extensively and has been extended to integrals 

over planes, spheres, and arbitrary manifolds. The principles have been applied to a 

variety of imaging modalities such as MRI (magnetic resonance imaging), emission 

tomography, electrical impedance tomography, ultrasound, radar, and many others. 

Advances in technology and the development of new imaging modalities continue 

to drive the need for sophisticated analysis. The author suggests the text by Nat-
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terer [25] for a comprehensive mathematical description of CT. For a more practical 

treatment, see Kak and Slaney [15]. For a survey of applications of tomography in 

medical imaging, see Natterer and Wiibbeling [28]. 

Tomographic reconstruction presents many mathematical challenges. Like all 

inverse problems, CT is inherently ill-posed. Of paramount importance in obtain

ing a reliable reconstruction are stability and uniqueness. Radon's inversion formula 

did not lead directly to a stable and practical reconstruction algorithm. The well 

known filtered back-projection algorithm produces an approximate solution by com

puting the convolution of the attenuation function with a low-pass filter function. 

The filter is designed to suppress high frequency information in the data, like that 

corresponding to sharp boundaries and randomly oscillating noise, that may be am

plified during exact reconstruction. The choice of filter effects the resolution of the 

approximate solution. That is, it effects the ability to accurately reconstruct sharp 

boundaries and recover the true value of small features in the attenuation function. 

We do not measure integrals over all lines intersecting the support of the 

object. Given a finite set of lines, null functions exist which are not identically zero, 

but the integral of which is zero for every line in the set. (See e.g. Smith, Salmon, 

and Wagner [39]) Consequently, we can not uniquely determine the solution of the 

reconstruction problem from a finite number of measurements. These null functions, 

however, tend to be high frequency functions and therefore may be suppressed by 

the proper choice of filter in the filtered back-projection algorithm. Which line 

integrals should we measure to obtain a desired reconstruction i.e. one with the 

desired resolution? Sampling theory is a natural tool for answering this question. 

The scanning geometry refers to the parameterization of lines over which data 

are to be measured. The parallel beam scanning geometry is the standard example 
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in two dimensions. It consists of sets of equispaced parallel lines in a finite number of 

directions. The divergent beam geometry, or fan beam geometry in two dimensions, 

is more convenient in practice and involves sets of half lines, or rays, emanating 

from finitely many source points lying on a curve about the patient or object. A 

sampling scheme is a particular choice of lines in a given scanning geometry. Clas

sical sampling schemes involve measuring data on a regular grid in the coordinate 

domain, or uniform sampling. Cormack [2] and Rattey and Lindgren [33] applied 

the classical sampling theorem to determine sufficient sampling conditions in paral

lel beam CT and propose so called efficient sampling schemes which recover desired 

resolution from minimum amount of data. Faridani [6, 9], extended the analysis 

to generalize efficient schemes in 2D parallel beam geometry. Natterer [26] applied 

similar analysis in fan beam geometry. Desbat et al. [5] applied similar analysis to 

three dimensional parallel and fan beam geometries. 

In practice we do not often have such freedom in the choice of sampling scheme. 

Very often physical scanner design and practical constraints such as reduced scan

ning time and lower patient dosage determine which sets of data we may acquire. 

The sampling question then becomes, what information about the patient or object 

can we recover from a given set of data? We consider in this work two such sampling 

problems. In each problem we attempt to utilize all available information from the 

particular sampling scheme. This leads to irregular, or nonuniform, sampling sets in 

which case the classical sampling theorem does not apply. We must first character

ize the available sampling sets and then apply the appropriate nonuniform sampling 

theorem to obtain the most faithful reconstruction possible. 

The first problem arises from an attempt to utilize the reflection property of 

the 2D Radon transform in the fan beam scanning geometry. The integral over 
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the line L with direction 0 E S2 is numerically equal to the integral over L in the 

opposite direction, but the two measurements correspond to distinct points in the 

sampling domain. Thus, utilizing the reflection property may effectively double the 

number of sampling points. In parallel beam geometry this property is routinely 

used to reduce the amount of actual measurements by scanning only half the data 

and assuming the values on the remaining sampling points. Alternatively, it may 

also be used to produce an efficient, interlaced sampling scheme discussed by Rattey 

and Lindgren [33] and analyzed by Faridani and Ritman [10]. 

In the fan beam geometry, however, the union of the standard and reflected 

sampling sets do not form a uniform set, and the classical sampling theorem does 

not apply. How then do we utilize this information? Izen, Rohler and Sastry [13] 

introduce a new reconstruction method in which the sampling sets are viewed as a 

union of possibly many cosets, or shifted copies, of a single lattice. The new recon

struction algorithm is derived from a simplified version of a theorem for sampling 

on nonuniform but periodic sets. The simplification places further demands on the 

sampling conditions. Consequently, the application of this technique generally re

quires oversampling the number of views. Recent results by Mitchell [24] showed 

that the general periodic sampling theorem of Faridani [8] can be applied to accu

rately interpolate the data on a dense set suitable for the standard reconstruction 

algorithm with superior results. 

In this work we address the problem in the more natural framework of non

periodic sampling theory. We treat the sampling set as a union of two cosets of 

different lattices and apply the theorem of Behmard and Faridani [1] to accurately 

interpolate the values on a dense uniform set suitable for the standard reconstruc

tion algorithm. We propose a novel decomposition of the data function in Fourier 
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space and show that the interpolation process is stable by proving an estimate for 

the aliasing error committed in the case of non-bandlimited data. This is a new 

result and stands alone as a significant advance in the area of nonperiodic sampling 

theory. We present numerical results from real and mathematically generated data 

which demonstrate the increase in resolution of the reconstruction. 

The second problem we consider involves nonuniform sampling in 3D CT in 

the helical scanning geometry. A 3D image can be reconstructed slice-by-slice from 

a sequence of 2D cross sections or slices. Actually scanning slice-by-slice proves 

to be too time consuming for medical applications. Crawford and King [3] and 

Kalender et al. [16] introduced a scanning technique in which the patient or object 

is translated continuously through the scanning plane while the scanner rotates 

around the patient or object. The x-ray source then follows a helical path about 

a stationary object. The continuous translation decreases the scanning time, but 

projections from only one source position are measured at each position in the 

direction of the longitudinal axis of the helix. A complete set of projections is 

necessary to reconstruct the cross section. To obtain a complete set of projection 

data it is necessary to interpolate between corresponding data measured on either 

side of the reconstruction plane. 

In an effort to reduce scanning times further and increase volume coverage, 

multi-row detector arrays are used to simultaneously acquire multiple slices per pro

jection. Slices are not parallel, but the cone angle is ignored in practical situations. 

See Schaller et al. [36] for a description of scanning and reconstruction in multislice 

helical CT and see Hu [12] and Taguchi and Aradate [40] for analysis of reconstruc

tion techniques. Scanning multiple slices per view complicates the interpolation 

process by producing interlaced sampling patterns. Understanding these complex 
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sampling patterns is necessary for effective use of this technique. Studies by Yen 

et al. [44, 45] and Wang and Vannier [42] concluded that the performance of the 

interpolation process varies irregularly with helical pitch. Attempts to identify pre

ferred helical pitches were empirical in nature and focused primarily on performance 

only at the center of the scanning system. LaRiviere and Pan [19, 20, 21] expanded 

the performance analysis to the entire field of view and shed light on the complex 

nature of the problem. 

In this work we present a mathematical framework in which to analyze the 

theoretical and practical aspects of the problem of longitudinal interpolation in 

multislice helical CT. We present the interpolation problem as a collection of 1D 

nonuniform but periodic sampling problems. In this framework we analyze the in

terpolation problem over the entire field of view and shed considerable light on the 

role of helical pitch in the resolution of the reconstruction. Using an amplification 

factor in the estimate by Faridani [8] for the aliasing error committed in the case 

of non-bandlimited data, we identify choices of helical pitch which produce sets of 

stable interpolation across the scanner field of view. We also use the amplification 

factor to predict the performance of the interpolation scheme for a given choice of 

helical pitch, identifying where the interpolation may be unstable or unreliable. We 

identify the preferred helical pitch as that which permits uniformly stable interpola

tion across the scanner field of view. We present an accurate interpolation algorithm 

based on the periodic sampling theorem of Faridani [8] and present numerical results 

which demonstrate the performance of the interpolation process. 

In the remainder of Chapter 1, we introduce the necessary definitions and 

notation. We follow the method of Faridani and present the standard definitions and 

theorems for Fourier analysis on locally compact abelian groups. This generalization 
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permits the application of the resulting theorems in a variety of situations by first 

identifying the underlying topology. We introduce the classical sampling theorem 

as well as theorems for sampling on unions of cosets of lattices. We introduce the 

mathematics of computed tomography in a notation consistent with that used in 

the sampling theory. 

In Chapter 2 we solve the problem of utilizing the reflection property of the 

2D Radon transform in the fan-beam geometry. We describe the sampling set as 

a union of cosets of two different lattices. We prove a corollary of the theorem 

by Behmard and Faridani [1] for sampling on unions of shifted lattices in the case 

of sampling on two cosets of different lattices with a compatibility condition and 

prove an estimate for the aliasing error committed in the case of non-bandlimited 

functions. We present a novel decomposition of the fan beam CT data function 

in Fourier space and an algorithm for interpolating the data on a dense uniform 

grid. We present numerical results from simulated and real data which show the 

improvement in image resolution. 

In Chapter 3 we present the problem of longitudinal interpolation in multi

slice helical CT as a collection of 1D periodic sampling problems. We apply the 

theorem of Faridani [8] for periodic sampling and present an accurate interpolation 

algorithm. We identify a measure of suitability for the sampling scheme, i.e. choice 

of helical pitch, using an amplification factor in the estimate for the aliasing error 

given by Faridani. We identify candidates for the preferred helical pitch and present 

numerical results which demonstrate the performance of the interpolation process. 

In Chapter 4 we make some concluding comments. 
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1.2 Standard Definitions and Theorems 

Let Z, JR, and (C denote the integers, reals, and complex numbers respectively. 

For x, y E en denote the scalar product by x-y = Z::~=l XiYi· For a, b E JR, mod (a, b) 

is the real number satisfying O::; mod(a, b) < lbl, and a - mod(a, b) E bZ. Denote 

by [a] the fractional part of a E JR, i.e. [a] = mod(a, 1). We proceed in the manner 

of Faridani in [8] and of Behmard and Faridani in [1] and present Fourier analysis 

on locally compact abelian (LCA) groups. In this general framework we may apply 

the resulting theorems to a variety of problems by simply identifying the underlying 

topology. 

Let G denote an LCA group written additively. Define the indicator function 

Xs of Sc G by 

{ 

1, if x ES, 
xs(x) = 

0, otherwise. 
(1.1) 

The character group G consists of the continuous homomorphisms of G into the 

circle group 11' = JR/Z. The value of the character l E G at the point x E G is 

written (x, 0. G has a natural addition and a natural topology relative to which 

it is an LCA group. If G is compact then G is discrete. The Pontryagin duality 

theorem [35] states that 

(1.2) 

Standard examples include G = ]Rn, G = ]Rn and G = 'll'n, G = zn. In both examples, 

(x,0 = [x • l]-

On every LCA group there exists a nonnegative regular measure ma, the Haar 

measure, which is translation invariant and not identically zero. The Haar measure 

is uniquely determined up to multiplication by a constant. If G is compact then we 
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normalize the measure me so that me ( G) = 1. If G is discrete then me is a constant 

multiple of the counting measure. Let _LP( G) denote the space of all Borel functions 

on G such that llfllP = (f0 lf(x)IP dm 0 (x)) 1IP is finite. The Fourier transform of a 

function f E £ 1 ( G) is a continuous function j on G with 

](~) = 1 f(x)e-21ri(x,t;,) dme(x). (1.3) 

We say a function f is bandlimited with bandregion K, or simply bandlimited, if](~) 

vanishes for a.e. ~ outside a compact set K c G. We normalize the Haar measure 

on G such that the following inversion formula holds. 

Theorem 1. If f E £ 1 ( G) is continuous and J E £ 1 ( G), then 

(1.4) 

The Fourier transform can be uniquely extended to a linear isomorphism of 

£ 2 ( G) onto £ 2 
( G) by the Plancherel theorem. 

Theorem 2. The Fourier transform restricted to L1(G) n L2(G) is an isometry 

(with respect to the L 2 -norms) onto a dense linear subspace of L2 (G). Hence, it 

may me extended in a unique manner to an isometry of L2 (G) onto L2 (G). 

Proof. For a proof, see [35]. □ 

The convolution f * g of two functions f,g E L2 (G) is given by (f * g)(x) = 

fe f(y)g(x - y) dme(y). If f * g E L2(G), then (f * g) ~ (~) = ](~)§(~)- The 

inversion formula 

(f * g)(x) = k f(~)g(~)e21ri(x,1;,) dmc(~) (1.5) 

holds for all f, g E £ 2
( G). 



Let H be a closed subgroup of an LCA group G. The annihilator of His the 

set H _1_ C G given by H _1_ = { TJ E G : (y, TJ) = 0 for all y E H}. H _1_ is isomorphically 

homeomorphic to the character group of G / H, i.e. 

H_1_ = (G/H)---: 

Furthermore, 

H, H _1_, G / H, and G / H _1_ are themselves LCA groups on which there exist Haar 

measures mH,mH1-,mc;H, and mc;H1- respectively. 

A closed discrete subgroup H of G such that H _1_ is also discrete is called a 

lattice. A measurable subset R of G is a fundamental domain of H _1_ if for every 

l E G there exists a unique e E R such that l = e + TJ with T/ E HJ_. Throughout 

this paper, when H is a lattice we adopt the following: 

Convention 3. We assume the measure me to be given and normalize the Haar 

measure on G so that the Fourier inversion formula holds. For a lattice H we 

normalize the Haar measures on H, H_1_, and G/H_1_ according to the following: 

(i) mH is the counting measure, 

(ii} mH1- is m 0 (R) times the counting measure, and 

We always have O < m0(R) < oo. The above normalizations imply that 

the inversion formula holds for the Fourier transform on H, and that for every 



Multiplying F(~) in (1.6) by e 2rri(y/,) for y E H gives 

f(y) = k F(~)e2rri(y,f,) dmc(~) 

=mc(R) k e 2rri(y,f,) L F(~+rJ)dmG/H~(~+HJ_). 
G/H~ riEH~ 
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(1. 7) 

Taking the Fourier transform on H leads to the Poisson summation formula ( cf. 

[25]). 

Theorem 4. Let H be a lattice and R a fundamental domain of HJ_. Assume 

f E L1 ( G), that every function y f-r f ( x + y) belongs to L1 ( H), that RH f = 

L,yEH f(x + y) is a continuous function on G/H, and that (RH!)~ E L1(HJ_). 

Then 

(1.8) 

If Theorem 4 can be applied to the function x r--t f(x)e- 2rri(x,1;,), ~ E G, then 

we obtain 

L f(x + y)e-2rri(x+y,f,) = mc(R) L i(~ + rJ)e2rri(x,ri). (1.9) 
ryEH~ 

Poisson's formula is a key element in error analysis for interpolation and numerical 

methods. If we let G = 'll'n then HJ_ is a "multiple-integration lattice" as defined by 

Sloan and Kachoyan [38]. Recognizing that f(0) = fa F(~) dmO(~), we obtain the 

formula 

m0(R) L F(TJ) - £ F(~) dm0 (~) = L f(y) (1.10) 
riEH~ G yEH\{O} 

which describes the error committed by lattice rules for numerical integration. 

Suppose f E L1(G) is continuous, that the function y f-r f(x 0 + y) belongs 

to £ 1 ( H), and that j E £ 1 ( G). Then by applying Theorem 4 to the function 
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l c-+ f (Oe 27ri(xo,t;,) we obtain the formula 

L f(xo + y)e-21Ci(xo+y,t;,) = ma(R) (J(O + L J(l + rJ)e27ri(xo,ri)). 

yEH r,EH_1_\{0} 

(1.11) 

This formula, we shall see, is the basis for analyzing the aliasing error committed 

when reconstructing f from values sampled on a coset of the lattice H. We see 

directly that if J vanishes outside a compact set K c R, then we recover f (l) for 

l E K. An exact interpolation formula follows from the inverse Fourier transform. 

Assume G = 1['8 x ]R_n-s and let H c G be a lattice. The n-by-n nonsingular 

matrix W is said to genemte the lattice H if H = {Wz : z E zn}, where Wz 

is computed modulo 1 in the first s components. The generator matrix W is not 

uniquely determined by the lattice H but I det(W)I is independent of the choice of 

generator. We say W is feasible for sampling on G if ej E wzn for j = 1, ... , s, 

where ej are the canonical basis vectors of :IR.n ( cf. [7]). The annihilator of H is 

generated by HJ_= w-rzn where w-T = (w- 1f. 

1.3 Sampling Theorems 

The classical sampling theorem permits reconstruction of a bandlimited func

tion f with bandwidth O from its values on an equispaced set of points in R f is 

recovered by the formula 

f(x) = '°"' f(k/ 20)siwrr(20x - k). 
~ 7r(20x - k) 
kEZ 

(1.12) 

It has been extended in many directions. The multidimensional sampling theorem of 

Petersen and Middleton [32] states that a function f on an N-dimensional Euclidean 

space "whose spectrum is restricted to a finite region in wave-number space" may 
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be reconstructed from its samples on a suitably dense lattice. Let K = supp(!) 

be compact. The condition on the sampling lattice H is that translates of K by 

elements of H1- are mutually disjoint. Petersen and Middleton go on to propose 

the existence of efficient sampling lattices which exactly reconstruct a bandlimited 

function from a minimal number of samples. 

Kluvanek [17] introduced an important generalization by replacing JR with an 

arbitrary LCA group G. The sampling set H is a closed subgroup of G. Assume 

the normalizations previously established for lattices. The following lemma appears 

as Lemma 1 in [1] and is proved in [17]. It provides the form of the reconstruction 

kernel. 

Lemma 5. Let H be a lattice and R and fundamental domain of H 1-. The function 

¢R defined by 

<PR(x) = l r e2'11"i(x,{) dm~(O, XE G, 
mr;(R) JR c 

(1.13) 

is continuous on G and satisfies <l>R(O) = l, </>R(Y) = 0, 0 -=I=-y EH, 

II <PR ll2= 1/ Jm 0 (R) and 

L <PR(x)</>R(x - y) dmc(x) = 0 for Of y EH. 

Kluvanek's theorem as stated in Theorem 2 of [1] reads: 

Theorem 6. Let H be a lattice and R a fundamental domain of H1-. Suppose 

f E L2 (G) and f(l) = 0 for almost all l r:J. R. Then f is equal almost everywhere 

to a continuous function. If f itself is continuous then 

f(x) = L f(y)¢R(x - y) (1.14) 
yEH 
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uniformly on G and in the sense of the convergence on L2 (G). Furthermore 

(1.15) 

The above handles uniform sampling on a single lattice. We now consider re

construction from nonuniform sampling. The first approach, introduced by Kohlen

berg [18] and developed further by Yen [43] and Faridani [6, 8], involves periodic 

sampling on unions of finitely many cosets of a single lattice H. We use the term 

periodic because the sampling points occur in a repeating pattern. The second ap

proach introduced by Behmard and Faridani [1] from results by Walnut [41] involves 

nonperiodic sampling on unions of cosets of different lattices. In both cases we be

gin by considering the problem of reconstructing a function with Fourier transform 

supported on a set K that is larger than a fundamental domain R of H ..L. 

Let G be an LCA group, H c G a lattice, and R a fundamental domain of 

H ..L. Assume f E £ 1 ( G) is continuous, every function y f-r f ( x + y) belongs to 

£ 1 ( H), and J E £ 1 ( G) vanishes outside a compact set K C G. It follows that 

the Poisson summation formula holds with F = J. Suppose H is too sparse to 

satisfy the sampling condition that translates of K by elements of H ..L are mutually 

disjoint. Then for some f EK the set Mt;,'= (H.1 \ {O} )n(K -f) is nonempty. The 

value f (f) is then not recovered from samples off on a single coset of H. The set 

Me= {1Jj}j=ll is finite since H..L is discrete and K -e compact. Consider sampling 

f on a union of finitely many cosets of H and select { x0, ... , x N -1} c G such that 

there exist constants f3n EC for n = 0, ... , N - l for which 

N-1 

}(() = 1 ~ f3n ~ f(xn + y)e-27ri(xn+y,f,') 
m~(R) L- L-

G n=O yEH 

(1.16) 

where R is a fundamental domain of H.1. It follows that the weights f3n, n 



0, ... , N - l must satisfy 

with {1JJ}T=11 = Me. 

N-1 

L /Jn = l, 
n=O 

N-1 L /Jne2rri(xn,r/j) = 0, 
n=O 

15 

(1.17) 

j=l, ... ,m-1, 

We now consider the problem of recovering j on all of K C G. For ~ E K 

the set Me = (HJ_\ {O}) n (K - ~) is contained in HJ_ n (K - K), which is finite 

since HJ_ is discrete and (K - K) compact. Hence, as ~ runs through K, Me will 

assume only finitely many values M(l), ... , M(L). The relation ~ = ~' - Me = Me 

is an equivalence relation induced by the subgroup H. The equivalence classes are 

Ki = {~ E K : Me = M(1l}, l = l, ... , L. The sets K 1 are mutually disjoint and 

we have K = uf=1K1. The sets K 1 consist of the points~ for which ~ + 17 E Kif 

17 E M(l) U {0} and~+ 1J i Kif 1J E HJ_\ (M(l) U {0} ). 

With H a lattice and normalizing the Haar measures on H, HJ_, and G /HJ_ 

according to Convention 3 we obtain the following version of Theorem 3.5 in [8]. 

Theorem 7. Assume f E L1(G) is continuous, every function y f--t f(x + y) be

longs to L 1(H), and that j vanishes outside a compact set K C G. Let M(l) = 

{ 17i
1
), ••• , 17~~-l }, l = l, ... , L, be the values assumed by (HJ_ \ {O}) n (K - ~) as ~ 

runs through K. Let XK1 be the indicator function of K 1 = {~ E K : Me = M( 1l}. 

Assume (xo + H), ... , (xN-l + H) E G/ H are such that for l = l, ... , L the systems 

of equations 

n=O 
N-1 L (J~l)e2rri(xn,1/?)) = O, 
n=O 

j = l, ... , m1 - 1, 
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admit solutions /3~), n = 0, ... , N - l. Define (Sf)~ by 

](~)=(Sf)~(~) for ~ E G (1.20) 

and 
N-1 

f(x) = Sf(x) =LL f(xn + y)kn(x - Xn - y) (1.21) 
n=O yEH 

with 
L 

kn(z) = l Lf3~l) r e2rri(z,f,) dmc(~)-
mc(R) !=l }Ki 

(1.22) 

Proof Follow the proof in [8] for H a lattice and with the normalizations in Con-

vention 3. D 

Faridani also gives an estimate for the error committed when (1.21) is used to 

approximate fin the case when j does not vanish outside the set K. The following 

appears as Corollary 3.7 in [8]. 

Theorem 8. Assume that the hypotheses of Theorem 7 hold except the condition 

that j vanishes outside the set K. Assume instead that J E £ 1 ( G) and that the 

Poisson summation formula (1.8} holds for all x E {x 0, ... ,xN-1} and almost all 

~EK. Then 

l(Sf)(x) - f(x)I ::; (1 + 'Y) ( lf(~)I dm0 (~) 
la\K 

for all x E G, where 

m = max (mi). 
l=1, ... ,L 

(1.23) 

(1.24) 



Proof. Follow the proof in [8]. 

17 

□ 

The error estimate contains an amplification factor 1 , the value of which de

pends on the solutions of the systems (1.18). In Chapter 3 we will use this factor to 

determine whether a periodic sampling scheme, i.e. choice of {xn}~~l, is suitable 

for a stable interpolation purposes. A low value of I would indicate a good choice 

of sampling scheme. 

Let G be an LCA group, H C G a lattice and R a fundamental domain of H _1_. 

Consider the situation where j vanishes a.e. outside a set K which is contained in 

a union of finitely many translates of R by elements of H _1_. Behmard and Faridani 

present the following corollary to Kluvanek's theorem. It appears as Corollary 1 in 

Corollary 9. Let H be a lattice and R a fundamental domain of H _1_. Let f E L2
( G) 

be continuous and f (~) = 0 a.e. outside a measurable subset K of G. Assume that 

there is P < oo such that K ~ uf=1 (TJj + R) with TJi, ... , T/P distinct elements of 

H _1_. Let M = xo + H be a coset of H then the function SM f defined by 

(SMf)(x) = Lf(xo+Y)<PR(x-xo-y) 
yEH 

is continuous and square integrable on G, and satisfies (SM f) ( z) 

zEM. 

(1.25) 

f (z) for all 

Suppose the set K is contained in the union of Rand one of its translates by 

an element of H_1_. Behmard and Faridani [1] show that overcoming aliasing due 

to undersampling a function f on H amounts to reconstructing a function h with 

h(~) = 0 for a.e. ~EK' c R. The following appears as Lemma 2 in [1]. 
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Lemma 10. Let H be a lattice and R a fundamental domain of HJ_. Let K = 

RU ( r/ + K') with K' c R measurable and O f= r/ E HJ_. Assume that f E L2 
( G) is 

continuous, that f vanishes on the coset x 0 + H, and that j vanishes a.e. outside 

K. Then 

f(x) = h(x) ( 1 - e2'11"i(x-xo,17')) 

with h E L2 
( G) continuous and h vanishing a. e. outside K'. 

(1.26) 

The following nonperiodic sampling theorem appears as Theorem 3 in [1]. 

Theorem 11. Let H be a lattice and R a fundamental domain of HJ_. Let K = 

RU ( r/ + K') with K' c R measurable and O f= r/ E HJ_. Assume that f E L2 
( G) is 

continuous and that J vanishes almost everywhere outside K. Let M' C G be such 

that continuous functions h E L2 (G) whose Fourier transforms vanish a.e. outside 

K' can be reconstructed from their samples h(z'), z' EM'. Let xo be such that 

(z' - Xo, rl) f= 0 for all z' E M'. (1.27) 

Then f can be reconstructed from its samples f ( z), z E M U M', where M = Xo + H. 

A reconstruction algorithm presented in [1] follows from the proof of the the-

orem. 

Algorithm 12. 1. Compute SM f(x), x E G from the samples f(z), z EM ac-

cording to (1.25). 

2. Compute the samples h(z'), z' E M' according to 

h( ') = f(z') - SMf(z') 
Z l _ e2'11"i(z'-xo,ri') • 

(1.28) 

3. Reconstruct h(x), x E G, from these samples, which is possible by hypothesis. 
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4- Compute f(x), x E G according to 

(1.29) 

Applying Theorem 11 to the problem of reconstructing h leads to a recursive 

algorithm presented in [1] which permits reconstruction of a function f from samples 

measured on a union of cosets of a finite number of lattices. The algorithm is more 

complex than is needed for the present application, so it is not discussed here. 

Consider the problem of reconstruction of a function f from samples on just two 

lattices H1 and H2. We apply Theorem 11 with M = x2 + H2 and M' = x1 + H1. 

The following appears as Corollary 2 in [1 ]. 

Corollary 13. Let H1, H2 be lattices, and R1 c R2 fundamental domains of Hr 

and Hf, respectively. Let f E £ 2( G) be continuous and such that J vanishes a. e. 

outside the set K = R 2 U (r/ + R 1), where Of- r/ EH{ Let x1, x2 be such that 

(x1 - x2 + y,rl) -1-0 for all y E H1. (1.30) 

Then, 

(1.31) 

SMf(x) = L f(x2 + z)¢R 2 (x - X2 - z), (1.32) 
zEH2 

and ¢Rp j = 1,2 as defined in (1.13}. 
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1.4 Computed Tomography 

The mathematical problem in computed tomography (CT) is to accurately 

reconstruct a function from a finite number of its line integrals. We parameterize 

the line l( 0, x) in ]Rn by its direction 0 E sn-l and the point x where l intersects 

the hyperplane 9-1 through the origin and orthogonal to 0. The x-ray transform of 

f E C0 (JRn) is defined by 

Pf(0,x)=Pef(x)= 1f(x+t0)dt, xE8-1. (1.33) 

The set H = { t0 : t E JR} is a closed subgroup of G = ]Rn. We may identify both the 

coset group G / H and the annihilator H _1_ with the hyperplane 9-1. We let me be 

the Lebesgue measure on ]Rn and normalize the Haar measures on H and G / H so 

that mH and mc;H are the Lebesgue measures on JR1 and JRn-l respectively. Then 

the formula 

1 f(x) dmc(x) = j { f(x + y) dmH(y)dmc;H(x + H) (1.34) 
G G/HjH 

holds for all f E £ 1 ( G). Multiplying f ( x) by e- 21ri(x,11) with TJ E H _1_ and recognizing 

that Pef(x) = JH f (x + y) dmH(Y), we obtain the formula 

f (TJ) = (Pefr'(TJ ), TJ E H-1. (1.35) 

Note that the Fourier transform on the left is with respect to G while the Fourier 

transform on the right is with respect to G / H. This is the well known projection

slice theorem ( cf. [25]) and serves as an important link between the x-ray and 

Fourier transforms. This particular presentation is discussed in [8]. 

In two-dimensional CT, n = 2, we parameterize 0 E S1 by the angle O :S; ¢ < 

21r and x E 9-1 by the real number s such that 0 = (cos¢, sin¢ f and x = s0_1_ = 



21 

s(-sinq'>,cosq'>f. The inverse Fourier transform off on JR.2 in polar coordinates 

and the projection slice theorem (1.35) lead to an inversion formula 

(1.36) 

Exact inversion is considered numerically unstable since the factor a amplifies high 

frequency components of the data function, including noise or round-off errors. In

stead, we reconstruct an approximate solution (Wb * f)(x) where Wb is a low-pass 

filter with cut-off frequency b. That is, Wb approximates the Dirac O-distribution 

and wb is radially symmetric with Wb(O = 0 for Ill > b. The approximate inversion 

formula is 

(Wb * f)(x) = fo
2

rr i wb(x · 0J_ - s)Pf(q'>, s) dsdq'>, (1.37) 

where Wb(l) = 2lll- 1wb(lll) (cf. [25]). We use a low-pass filter attributed to Shepp 

and Logan [37]. 

In practice there is a trade-off between resolution and stability. If the cut

off frequency, b, is chosen to be relatively low, then the reconstruction is stable 

but lacking in detail. If b is chosen to be relatively high, the reconstruction will 

contain sharper details but may be obscured by large, highly oscillating errors. It is 

important to choose a cut-off frequency which produces the optimal reconstruction 

for a given set of data. 

In modern CT scanners, x-rays emanate from a point source which is then 

moved about, capturing different "views" of the object. It is convenient to consider 

a geometry in which we measure integrals over rays diverging from a single point. 

The divergent beam transform of f E C0 (JR.n) is defined by 

Df(a,0) = 100 

f(a+t0)dt, a E JR.n, 0 E sn-l_ (1.38) 
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Figure 1.1: Fan beam scanning geometry. 

We then consider source points lying on a curve in :IR.n. 

Assume that f vanishes outside the unit disc in :IR.2 and consider source points 

on a circle of radius r > l about the origin. Parameterize the source point a by the 

angle O :::; (3 < 27!" and each ray emanating from a by the angle -7r /2 :::; a < 7r /2 

measured counter clockwise from the line connecting the source point and the origin. 

See Figure l. l. This is referred to as the "fan beam" geometry. We abuse the 

notation and let Df(/3,a) = Df(a,0). The following identity holds: 

Df(/3, a)= Pf(/3 +a+ 7r, rsina), 0:::; (3 < 27r, -7!"/2:::; a< 7r/2. (1.39) 

We apply a change of variables to (1.37) and make an approximation for lxl « r 

([25] pp. 112-113) which reduces the dependency of Wb on the reconstruction point 
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x to obtain the approximate inversion formula 

(1.40) 

where 'Y is the angle made by the line connecting the source point and the recon

struction point x as measured from the central line connecting a and the origin. To 

remove the dependency of Wb on the reconstruction point x entirely, we compute 

Wrb(t) at select t and interpolate the values for each reconstruction angle 'Y· 

In practice, we measure only a finite number of integrals for finitely many 

views. It remains to determine what information about D f we can expect to recover 

from a finite sample set, and what sampling scheme to use in order to reconstruct 

a desired image. The standard sampling scheme in fan beam CT measures the 

samples D f(/3j, a1), with 

21rj . 1r(l + o) 
/3i = M , J = 0, ... , M - l, and a1 = N , l = -q, ... , q - l, (1.41) 

for integers Mand N with N(arcsin(l/r)/1r) ~ q ~ N/2, and detector offset o E 

{O, ±1/ 4}. Other, non rectangular, sampling schemes have been proposed that 

are more efficient in that they recover the same information about D f from fewer 

samples ( see e.g. [26] and [11]), but they are difficult to implement in practice. 

In order to determine an appropriate sampling scheme we must first consider the 

Fourier transform of D f. 

We view D fas a function on the two dimensional torus group G = 11'2
. Take 

as a model for 1r the set [O, 1) with addition modulo 1. Define for ( u, v) E 11'2 the 

function 

g(u, v) = D f(21ru, 1r(v - 1/2)). (1.42) 

The Haar measure on G is the Lebesgue measure on ~ 2 restricted to [O, 1)2
. Then 
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the Fourier transform of g is the continuous function g on G = 'll} given by 

g(k, m) = 1111 g( u, v)e-2rri(uk+vm) dudv 

= 1111 D f (21ru, 1r( V - 1/2) )e-i(2rrvk+rrv(2m)) dudv (1.43) 

( -l)m 12rr1rr/2 = --2- D f(/3, a)e-i(,Bk+a(2m)) dad/3. 
27r O -rr/2 

Estimates by Palamodov [30] imply that lfll decays exponentially in the region where 

lkl is larger than lk - 2ml/r. (See Theorem 2 in [30].) Let O < p < l be such that 

f(x) = 0 for lxl > p. Then Natterer [26, 28] states that if lf(OI is small for Ill> 0 

then l?JI issmalloutsidethesetK = {(k,m) E 'll}: lk-2ml < rO, lklr < lk-2mlp}. 

For computational purposes we consider a slightly larger set; one which includes a 

small region about the origin and wider boundaries to account for dense features of 

f located near !xi= p. We define the set Kr for O < T < l by 

Kr(r, p, 0) = {(k, m): lk - 2ml < rO, lklr < T-
1 max(lk - 2mlp, (1 - T)prO)}. 

(1.44) 

(See [11].) For convenience we may write Kr for Kr(r, p, 0) when the scanning and 

object parameters are understood. In practice we choose T close to one. See Figure 

1.2. 

The standard sampling scheme on 11.'2 measures values of g at the points 

Uj= ~' j=0, ... ,M-l, 

(l + 8) 
Vi=~' l = 0, ... , N - l. 

(1.45) 

Then the sampling set is a coset of the standard sampling lattice H s is generated 
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Figure 1.2: The set Kr(r, p, 0) with r = 2.868, p = l, and T = 0.9 . 

by the matrix 

Ws = ( 1/M O ) . 
0 l/N 

(1.46) 

and shifted by xs = (0, 8/N)T. The annihilator Hg of the standard sampling lattice 

is generated by the matrix 

(1.47) 

We wish to choose integers Mand N such that translates of the set K 7 by elements 

of Hg do not intersect. Then K7 is contained in a fundamental domain R of Hg 

and the function g is essentially recovered by Theorem 6. The minimum sampling 



conditions are 

M = rO (~) and N = rO, 
1 +'1.9 

26 

(1.48) 

where 7.9 = T-
1(p/r) (cf. [26]). Due to the shape of the set Kr, care must be taken 

when selecting M and N near the minimal values. If M = rO(2'1.9)/(1 + 7.9), and 

N is chosen slightly larger than the minimal value of rO, then translates of Kr 

by elements of Hg are no longer disjoint, and we do not recover the function g 

from samples on H8. This is similar to the counter-intuitive situation discussed in 

[7] where increasing the density of the interlaced sampling lattice actually leads to 

increased aliasing error. More comprehensive sampling conditions are given by the 

following: 

If rO ( 1 ~ 7.9) ::::; M '.S 2'1.9rO, 

then choose either (1.49) 

rO :SN '.SM (
1 ~ 19

) or N 2:: (2rO + M/2). 

If M > 2'19rO then we may simply choose N > rO to satisfy the sampling criterion 

(cf. [11]). 

With the sampling conditions satisfied, we can now discretize the integrals in 

the reconstruction formula (1.40) and reconstruct a filtered version of the function 

f from finitely samples of g. This is the commonly used filtered backprojection 

algorithm. If we measure g with the standard sampling scheme, then we simply 

use the same discretization in the reconstruction formula and reconstruct f directly 

from the measurements. Studies suggest that, with other sampling schemes, recon

structing directly from the measured data may not give optimal results. A better 

method is to first interpolate the values of g on a more dense lattice and then re

construct f from the interpolated data. Accurate interpolation of bandlimited data 
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is possible since the sampling conditions are satisfied. For a discussion of sampling 

errors and reconstruction properties in fan beam tomography see [11] and [14]. The 

following version of the filtered backprojection algorithm is adapted from Natterer 

and Wiibbeling [28]. It uses the Shepp-Logan filter with a modification involving 

the sine function and suggested by Kak and Slaney [15]. 

Algorithm 14. Let gJ,l = Df(21rj/M, 1r((l + o)/N - 1/2)). For j = 0, ... , M - l 

perform the following: 

1. Compute for k = 0, ... , N - l the discrete convolution 

(1.50) 

where sinc(0) = sin(0)/0. 

2. For each x in the reconstruction compute the interpolated backprojection 

where k = k(j,x) and w = w(j,x) are determined by 

"( = ± arccos ( aJ - x) • aj "+" +or x · a-!-< 0 
r/aJ - x/ ' J' 1 - ' 

t = N (; + ~) - o, w = [t], k = t - w. 

The approximation !FB(x) of f(x) is given by 

M-1 
21rr '°' 

fFB = M L..t k 
j=O 

"-" +or x · a-!-> 0 
J' J ' 

(1.51) 

(1.52) 

(1.53) 

We use the filtered back projection algorithm in both Chapters 2 and 3 to 

reconstruct filtered versions of f from measured and interpolated data. 
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2 EXPLOITING SYMMETRY IN FAN BEAM CT 

The x-ray transform possesses a symmetry in the sample domain. The integral 

of f E C0 (~n) over the line parameterized by direction 0 E sn-l and passing 

through the point a E ~n is equal to the integral off over the line through a with 

direction -0. In the 2-dimensional fan beam geometry this symmetry property 

reads: 

D f(/3, a)= D J(/3 + 20: + 1r, -a). (2.1) 

This means that each measurement of D f may be used twice, giving its value at a 

point in the regular sampling lattice and at a corresponding "reflected" point in the 

domain. The reflected points form a coset of a second sampling lattice. We present 

a technique which utilizes the reflected sampling set to improve the quality of the 

reconstruction from data acquired by the standard sampling scheme in fan beam 

CT. 

2.1 Sampling and Reconstruction 

The standard scheme for sampling a function g on 11'2 measures the values 

g(uj,vl), with Uj = [j/N 1] and v1 = [(l + 8)/N 2] for j,l E Z, with N1,N2 integers 

and 8 E {O, ±1/4}. The symmetry property (2.1) of D f and identity (1.42) imply 

g( u, v) = g( u + v, l - v). Then the reflected set associated with the standard 

sampling scheme is given by {( uJ,l, vf)}, where uj = [j / N1 + l / N2 + 8 / N2l, and 

vf = [(N2 -l -8)/N2] for j,l E Z. By a change of index, l' = N2 -l, we have that 
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the reflected sampling set is a coset of a lattice HR generated by the matrix 

(2.2) 

and shifted by XR = (8/N, -8/Nf. The annihilator Hii, of the reflected lattice HR 

is generated by the matrix 

(2.3) 

where a= mod (N1,N 2). Since det(Ws) = det(WR), the standard and reflected 

sampling lattices have the same density in 11'2 . Employing a quarter-detector offset, 

8 = ±1/4, insures that the standard sampling set (xs + H8) and the reflected 

sampling set (xR + HR) are disjoint and prohibits redundancy in the data. The 

union of the standard and reflected sampling sets is a set with twice the density 

of the standard sampling scheme alone. The combined sampling set, however, is 

generally nonuniform. That is to say, it is not a coset of a single lattice, H. The 

classical sampling theorem then does not apply, and we can not perform the standard 

reconstruction Algorithm 14 with this more dense set of data. 

Izen, Rohler, and Sastry [13] discovered that one may decompose the combined 

sampling set into a union of 2N' cosets of a single rectangular lattice Lp, where N' 

is the denominator of the ratio Ni/ N2 when in reduced form. Izen et al. use this 

decomposition to propose a new discretization of the integrals in the reconstruction 

formula (1.40). Alternatively, Theorem 7 may be applied to interpolate the values 

of g on a sufficiently dense uniform set, then the standard FBP algorithm may 

be used. Recent results by Mitchell [24] suggest that this approach gives optimal 

results. The decomposition of the sampling set depends on the values of the scanning 
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parameters N1 and N2 . The simplest case occurs when N1 = kN 2 fork E Z. Then 

N' = l and the original and reflected sampling sets are both cosets of the lattice 

Hs. In many cases, however, N' is large. Viewed in this manner, the sampling 

set is a union of many cosets of a sparse lattice Lp. The fact that Lp is sparse 

means that translates of KT by elements of L~ overlap in many regions. Also, 

since KT is non-convex, the overlapping regions partition the set KT into a union 

of subsets K1, l = l, ... , L with L large and involving many elements of L~ that 

may be nonzero in either component. The reconstruction method proposed by Izen 

et al. requires that the a 'shift convexity' condition be met by the set KT with 

respect to the sampling lattice Lp (see [13], Section 3.2.3). It requires that all 

overlapping regions of KT correspond to shifts by elements of L~ that are nonzero 

only in the second coordinate. Satisfying this condition amounts to oversampling 

in the number of views per rotation. A naive application of Theorem 7 to overcome 

the undersampling on a sparse lattice Lp and interpolate the values of G on a dense 

uniform lattice leads to a complex interpolation process involving the solution for 

l = l, ... , L large, the systems (1.18) with m1 large. It is more natural to treat 

the sampling set as a union of cosets of just two different lattices, Hs and HR, and 

apply the nonperiodic sampling Theorem 11. This is the approach taken here. 

We begin by developing the mathematical tools necessary to recover the scan

ning data function on a suitably dense set and to analyze the results. We present a 

version of Corollary 13 of Chapter 1 in the case that the bandregion K = R2 U (r/ + 

K'), where K' ~ R1 n R2 and r/ E Hr n H{ Then (x1 - x2 + y, r/) = (x1 - x2, r/) 

for all y E Hf and a simpler reconstruction formula results. 

Corollary 15. Let H1,H 2 be lattices and R1,R 2 fundamental domains of H{,Hf 

respectively. Let f E L2 ( G) be continuous and such that j vanishes a. e. outside the 
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set K = R2 U (r/ + K') with K' ~ R1 n R2 measurable and Of- r/ E Hr n H;f. Let 

x1, X2 be such that (x1 - x2, r/) -1-0. Then 

f(x) = SM f(x) + (3 ( 1 - e21ri(x-x2,11')) 

x L (f - SM f)(x1 + y)¢R1 (x - X1 - y), 
(2.4) 

yEH1 

SM f(x) = L f(x2 + z)¢R2(x - X2 - z), (2.5) 
zEH2 

with M = X2 + H2 and ¢Rjl j = 1, 2 defined in (1.13}. 

Proof We follow the proof of Corollary 2 in [1] and apply Theorem 11 with M = 

X2 + H2 and M' = x1 + H1. It follows from (1.13) and Corollary 9 that the function 

(!- SM f) is continuous, square integrable on G, vanishes on the coset M, and that 

(f - SM!)~ vanishes a.e. outside the set K. Then by Lemma 10, 

(2.6) 

where h E L2(G) is continuous and such that h vanishes a.e. outside K'. For ally E 

Hi, (x1-x2+y, r/) = (x1-x 2, r/) f- 0 by hypothesis. Letting (3 = (1-e 21ri(xi-x 2 ,11'))- 1, 

we compute the samples 

(2.7) 

Since h vanishes a.e. outside K' ~ R1, it follows that h vanishes a.e. outside R1. 

Then by Theorem 6, 

h(x) = L h(x1 + y)¢R 1 (x- x1 -y). (2.8) 
yEH1 

Substituting (2. 7) into (2.8) and applying the result to (2.6) completes the proof. □ 
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To this point we have assumed that the sampled function is bandlimited with 

bandregion K c G. The following lemma describes the function SM f with ban

dregion R computed from sampled values of a function f that is not necessarily 

bandlimited with bandregion K t:;;; R but for which the Poisson summation formula 

holds. 

Lemma 16. Let H be a lattice and R a compact fundamental domain of H 1.. As

sume f E L 1 ( G) continuous, that the function y f--t f ( x0 + y) belongs to L 1 ( H), and 

the Poisson summation formula (1.9} holds for a.e. ~ER. Then the function 

SMf(x) = L f(xo + y)<faR(x - xo - y), x E G (2.9) 
yEH 

with <p R defined in ( 1.13) is continuous, square integrable, and satisfies SM f ( w) = 

f(w) for all w EM= x0 + H. Furthermore, 

(SM f)~(x) = XR(~) L }(~ + TJ)e2rri(xo,ri) 

ryEH-1 

for a. e. ~ E R, where XR is the indicator function of R. 

Proof Define for ~ E G the function 

h(~) = 1 XR(~) ~ f(xo + y)e-2rri(xo+y,f,). 
m~(R) L-

G yEH 

Then h converges uniformly on G since for arbitrary H* c H 

= I 1 XR(~) ~ f(xo + y)e-21ri(xo+y,f,) I 

m~(R) L-
G yEH\H* 

~ m~l(R) L lf(xo + Y)I, 
G yEH\H* 

(2.10) 

(2.11) 

(2.12) 
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and the sum can be made arbitrarily small by the appropriate choice of H*. The 

hypothesis that the samples f(x 0 + y), y E H are absolutely summable, and the 

facts m0(R) < oo and e- 2.,,.i(xo+y,{) bounded imply that h E L2 (R) c L 1(R). It 

follows that h E L1(G) n L2(G). Let SMf be the inverse Fourier transform of h. 

Then, 

SMf(x) = r l XR(~) L f(xo + y)e-27ri(xo+y,{)e27ri(x,{) dm~(~) 
le mc(R) yEH G 

= 1 r L f(xo + y)e27ri(x-xo-y,{) dmc(~) 
mc(R) JR H yE 

= L f (xo + y) m~l R r e27ri(x-xo-y,{) dmc(~) 
yEH a( ) JR 

(2.13) 

= L f(xo + y)¢>R(x - x0 - y), 
yEH 

where the change in the order of summation and integration is due to uniform 

convergence of h and the fact that multiplication by a bounded function does not 

effect the convergence. Then SM f is continuous by construction, and the Plancherel 

theorem implies SM f is square integrable on G and (SM!)~(~) = h(~) for a.e. ~ E R. 

The fact that SMf(w) = f(w) for w EM= (x0 +H) follows from the property that 

<PR(O) = 1 and ¢>R(Y) = 0 for Of- y E H. Finally, (2.10) is obtained by applying the 

Poisson summation formula to (2.11) and using (SM!)~(~) = h(~)- □ 

If the function f is not bandlimited with bandregion K then the reconstruction 

formula in Corollary 15 can be used as an approximate reconstruction formula. We 

present the following estimate for the aliasing error committed when J does not 

vanish a.e. outside a bounded set K c G. 

Theorem 17. Let H1, H2 be lattices and R1 ~ R2 fundamental domains of H{, Hf, 

respectively. Assume R2 is contained in a finite number of translates of R1 by 
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elements of Hf- and define K = R2 U (r/ + R1) with r/ E Hf- n H{ Let x1, x2 E G 

be such that (x1 - x2, r/) -1-0. Assume f E L1(G) is continuous and such that 

J E L1 
( G), the function y f-r J ( x1 +y) belongs to L1 ( H 1) 1 the Junction z f-t J ( x2 + z) 

belongs to L1(H2), and the Poisson summation formula (1.9} holds for a.e. ~ E R1 

with H = H1 and x = x1 as well as for a.e. ~ E R2 with H = H2 and x = X2-

Define for x E G, 

SJ(x) = SMJ(x) + /3 (1 _ e21ri(x--x2,11')) 

x L (J - SM J)(x1 +- Y)<PRi (x - X1 - y), 
yEH1 

with /3, SMJ, defined in Corollary 15. Then 

for all x E G. 

ISJ(x) - J(x)I::; (2 + 41/31) ( lf(~)I dm0 (~)
lc\K 

Proof Compute the Fourier transform of Sf. Let g1(x) = S,'vd(x), 

(2.14) 

(2.15) 

g2(x) = /3 (1 - e21ri(x-x2,11')) L J(x1 +-y)¢R1 (x -xi -y), (2.16) 
yEH1 

and 

g3(x) = -/3 ( 1 - e21ri(x-x2,11')) L SM J(x 1 +- y)<PRi (x - X1 - y). (2.17) 
yEH1 

Then (SJ)~ = 9 1 +9 2+9 3. Applying Lemma 16 with H = H1 or H = H2 accordingly, 

we obtain 

and 

91(~) = XR2(~) L }(~ +- ()e21ri(x2l), 

(EH,r 

92(~) = f3XR1 (~) L }(~ +- rJ)e 21ri(xi,1J) 

11EHf-

- (3e-21ri(x2,11')XRi (~ _ TJ') L }(~ _ TJ' + rJ)e21ri(x1,11). 

11EHf-

(2.18) 

(2.19) 
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Absorbing the -r/ into the summation over Ht and using -/3e 2rri(xi-x 2,ri') = (1-/3), 

we obtain 

fh(l) = f3XR1 (l) L f(l + 17)e2rri(xi,ri) 

ryEH{ 

+ (1 - f3)XR1+ri 1 (l) L f(l + 17)e2rri(xi,ri) · 

ryEH{ 

(2.20) 

Since (SM f)~ vanishes outside R2 c:;;; uf= 1 (17J + R1) with 17J E Ht, j = l ... P < oo, 

Corollary 9 and Lemma 16 imply that g3 E £ 2 ( G). Then 

fh(l) = -f3XRi (l) L XR 2(l + 17) L }(l + 17 + ()e2rri(x1,ri)e2rri(x2,() 

ryEHf (EH} 
(2.21) 

- (1 - /3)XR1+ri'(l) L XR2(l + 17) L f(l + 17 + ()e2rri(x1,ri)e2rri(x2,()_ 

ryEH{ (EH} 

We wish to separate terms involving values }(w) for w EK= R1 U (17
1 + R1) U 

(R2 \ R1) from the remaining terms in each summation. This is possible since K is 

contained in only two translates of R2 by elements of Ht, and R2 is contained in 

only finitely many translates of R1 by elements of Ht by hypothesis. It is necessary 

to identify for each l E R 1 the elements of {17J}J=l C Ht for which (l + 17J) E R2-

This leads to a partitioning of R1. 

We follow the method used in the discussion prior to Theorem 7 to identify 

the elements of HJ_ producing the overlapping translates of Kin periodic sampling. 

For each l E R 1 define the set dt;, = Ht n (R 2 - l)- The fact R 1 c R 2 implies 

0 E dt;, f- 0 for all l E R1. It follows, since 171 E Ht n Ht, that 17
1 

(/. dt;, for all 

l E R1. Since R2 <:;;; uf= 1(17J + R 1) with P < oo, dt;, <:;;; {17Jb=1, ... ,P is finite and, as 

l runs through R2 , can assume only finitely many different values di, ... , d£. Let 

m1 = ld1I and d1 = {17Yl}T~0
1

, l = l, ... , L. Without loss of generality, we take 

17~!) = 0, l = l, ... , L. The relation l = f - dt;, = dt;,, defines an equivalence relation 
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on R1 induced by H1, where the equivalence classes are Ril) = {l E R 1 : d1;, = di}

The sets Rill, l = 1, ... , Lare mutually disjoint and R1 = ut 1Ri!)• Moreover, we 

have 

R = uL ui:n1-1 (')')(1J + R(1J) 
2 !=1 J=O 'IJ 1 • (2.22) 

We now decompose the summations in (2.18), (2.20), and (2.21) and separate 

terms involving f (l) with l E K from those with l outside of K. Then (2.18) is 

written 

91 (l) = (XR2\R1 (l)) + XR 1 (l)) L f (l + ()e 21ri(x2,() 

(EH.j-

= XR2\R1 (l) (f (l) + L f(l + ()e
2
1ri(x2,()) (2.23) 

(EH1-\{0} 

+ XR1 (l) (f(l) + f(l + r/)e 21ri(x2,ry') + L f(l + 17)e21ri(x2,()) . 

(EH.j-\ {0,ry'} 

Using the partitioning R1 = ut 1Ri1
) described previously, (2.20) is written 

92(l) = f3XR1(l) (f(l) + f(l + T/1)e 21ri(xi,TJ')) 

L m 1-1 

+ /3 L XRil) (e) L l(l + T/Y))e21ri(x1,TJ)')) 

l=l j=l 

L 

+/3I::xRi'l(l) L i(l+TJ)e
2
1ri(xi,TJ) 

l=l ryEHt\(d1U{ry'}) 

+ (l -/3)Xry'+R 1(l) (f(l) + f(l- TJ1)e- 21ri(xi,ry')) 

(2.24) 

L m1-l 

+ (l - /3) L Xry'+Rfl (l) L f (l + T/t - 17')e21ri(xi,T/jl)_TJ,) 

!=1 j=l 

L 

+ (1 - /3) L Xry'+Ri'l (0 L f (l + T/ - 17')e21ri(x1,ry-ry'). 

!=1 ryEH{\(d1U{ry'}) 
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The third and sixth terms involve values ](w) for which w falls outside of K. In 

(2.21), we again use the partitioning R1 = uf=1R~1
) but the inner characteristic 

function, XR2 ( ~ + TJ), is nonzero for only finitely many elements ryjll E Hr. We then 

separate the relevant terms from the sum over H;f and obtain 

93(~) = -f3XR1 (~) (J(~) + j(~ + ry')e21ri(x2,ri')) 

- f3XR1 (~) L ](~ + ()e21ri(x2,() 

(EHt-\ {O,r,'} 

L m1-l 

-f3LXRfl(~) L J(~+TJjll)e21ri(x1,riY)) 

!=1 j=l 

L m1-l 

_ /3 L XRil) (~) L L J(~ + ryjll + ()e21ri(x1,riYl)e2rri(x2,() 

!=1 j=l (EH{\{O} 

- (1- f3)Xr,'+Ri (~) (J(~ _ ry')e-21ri(x1,ri') + i(~)e-21ri(x1-x2,ri')) 

- (1 - f3)Xr,'+Ri (~) L ](~ _ ry' + ()e-21ri(x1,ri')e21ri(x2,() 

(EH{\{0,r,'} 

L mz-1 

- (1 - /3) L Xr,'+Rfl (~) L ](~ + ryjll - ry')e21ri(x1,riYl-r,') 

!=1 j=l 

L m1-l 

- (1- /3) LXri'+Rfl(~) L L ](~ + TJ;1) _ ry' + ()e21ri(x1,ri;1l-r,')e21ri(x2,()_ 

!=1 j=l (EH{\{O} 

(2.25) 

Next, using (2.23),(2.24), and (2.25), we compute (Sf)~= 91 + 92 + 93. We 

collect terms involving Jon R 1, (ry' + R 1), and (R2 \R 1) and observe the cancellation 

on these sets. We use the facts that (l-/3)e- 2rri(xi-x 2,ri') = -/3 and that /3( e 2rri(xi,ri') -

e 21ri(x2,ri')) = -e 21ri(x2,ri'). and collect the remaining terms involving J on translates 
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of R1, (r/ + R1), and (R 2 \ R 1) outside of K. Then (Sf)~ may now be written 

(Sf)~(~)= XK(~)j(~) + (1 - f3)XR1 (~) L ](~ + ()e21ri(x2,() 

(EHf \ {O,ry'} 

- (1- f3)Xry'+Ri (~) L ](~ _ r/ + ()e-21ri(x1d)e21ri(x2,() 

(EHf \{0,ry'} 

+ XR2\R1 (~) L ](~ + ()e 21ri(x2,() 

(EHf\{O} 

L 

+ (3 L XRil) (~) L ](~ + TJ)e21ri(x1,ry) 

l=l 'l)EHf\(d 1U{ry'}) 

L 

+ (1 - (3) L Xry'+Ri'l (~) L ](~ + TJ - TJ')e21ri(x1,ry-ry') 

!=1 ryEHf\(d1U{ry'}) 

L m1-l 

- (3 L XRin(~) L L ](~ + TJY) + ()e21ri(x1,ry3'l)e21ri(x2,() 

l=l J=l (EHf \{O} 

L m1-l 

- (1 - (3) L Xry'+Rfl (~) L L ](~ + TJY) - TJ' + ()e21rt(x1,1J3l)-ry')e21ri(x2,(). 

!=1 j=l (EHf \{O} 

(2.26) 

Notice that (S !)~ vanishes outside K. To compute the aliasing error we use the 

fact 

ISJ(x) - f(x)I ~ II (Sf)~ - J Iii 

= k l(Sf)~(~) - ](~)I dma(~) (2.27) 

= { l(Sf)~(~) - ](~)I dm0(~) + ( lf(~)I dma(~) JK la\K 
for all x E G. Substituting (2.26) in the integral over Kand using 11- /31 = l/31, we 
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obtain 

1 l(Sf)~(~) - !(~)I dm0(~) ~ 21,61 L J lf(~)I dm0(~) 
K (EHf \{0,11'} (+R1 

+ L j lf(~)I dm0(0 
(EHf\{O} (+(R2\R1) 

L 

+ 21/31 L L 1 (l) lf(~)I dm0(~) 
l=l 11EHf \(d1U{11'}) 1J+Ri 

L m1-l 

+ 21,61 LL L 1 Ul Cll lf(~)I dmc(~)-
l=l j=l (EHf \{O} (+11i +R1 

(2.28) 

The change in the order of summation and integration is due to the convergence of 

(Sf)~ shown in Lemma 16. Finally, notice that the sets ( ( + R 1) for ( E Ht \ { 0, 171} 

and the sets uf= 1 u 1~11 
( ( +17)!) + Rl1)) for ( E Ht\ {O} interlace to form one complete 

covering of G \ K. The sets uf=l ( 17 + Rll)) for 17 E Hf\ ( d1 U { 17'}) form a second cover 

of G \ K. The remaining set, (( + R2 \ R1) for ( E Ht\ {O} does not completely 

cover G \ K. Thus 

Substituting (2.29) into (2.27) completes the proof. □ 

The result of Theorem 17 implies that l,6I acts as an amplification factor of 

the aliasing error committed by (2.4) when j does not vanish a.e outside the set 

K. If x1, X2 are such that (x1 - x 2 , 17') is close to zero, then 1,61 is large, and the 

interpolation process based on (2.14) may then be unreliable. 

We may compare the results of Theorem 17 with the results of Theorem 7 and 

Theorem 8 in the case H 1 = H2 = H, or periodic sampling. The condition R1 <;:;;; R2 
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implies that R1 = R 2 = R, thus R 2 \ R 1 = 0 and the partitioning of R 1 used in 

(2.22) is trivial. Then (2.14) may be written 

Sf (x) = SM J(x) + /3 ( 1 - e 2rri(x-x 2,1J')) L J(x1 + y)¢R(x - X1 - y) 
yEH 

- (3 ( 1 - e2rri(x-x2,1J')) L SM f (x1 + y)¢R(X - X1 - y). 
(2.30) 

YEH 

By Lemma 16 and Kluvanek's Theorem 6 we have L,yEH SM f(x1 +y)¢R(x-x1-y) = 

SM f(x). Thus 

S f(x) = (3 L f(x1 + y)¢R(x - X1 - y) 
yEH 

- (3e2rri(x-x2,1J') L f (x1 + y)¢R(x - X1 - y) 
yEH 

+ (1 - /3) L J(x2 + y)¢R(x - x2 - y) 
YEH 

+ (3e2rri(x-x2,1J') L f (x2 + y)¢R(x - X2 - y). 
yEH 

(2.31) 

Using the facts r/ E H.l and -(3e 2rri(x-x 2,1J') = (1- (3)e 2rri(x-xi,?J') we may rewrite the 

summations in the form 

Sf(x) = L f(x1 + Y) (f3¢R(x - X1 -y) + (1- /3)¢R(x - X1 -y)e 2rri(x-xi-y,ry')) 

YEH 

+ L f(x2 + y) ((1- (3)¢R(x - X2 -y) + f3¢R(x - X2 -y)e2rri(x-x2-Y,1J')). 
YEH 

(2.32) 

Letting 
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and 

we obtain the reconstruction formula 

2 

Sf(x) =LL J(xn + y)kn(X - Xn - y) (2.35) 
n=lyEH 

given in Theorem 7 with the index n shifted by one. The weights ,3pl = .B?) = ,B 

and .8i2) = ,8~1) = (1 - ,8) satisfy the systems in (1.18) with m1 = m2 = m = 2 and 

17p) = 17' and 17i
2
) = -171

• It follows that 'Y = m(max1=1, ... ,L ~;= 1 l,B~)I) = 41.81-Since 

R2 \ R1 = 0 the corresponding integral in (2.28) vanishes and we obtain 

Substituting (2.36) into (2.27) yields the result of Theorem 8. 

2.2 Implementation 

We now apply the nonperiodic sampling theorem to obtain an interpolation 

algorithm which exploits the symmetry property in fan beam CT and accurately 

determines the values of the data function on a single lattice with twice the den

sity of the standard sampling lattice H8 . The filtered back-projection algorithm is 

then used to reconstruct the object with higher resolution than the standard recon

struction. The interpolation algorithm involves a novel decomposition of the set KT 

defined in (1.44) such that KT is contained in the union of a fundamental domain 

R of Hg and a set (171 + K') with K' c Rand 171 E Hg. 
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m 

k 

Figure 2.1: Some translates of KT by elements of Hg. 

Consider the standard sampling scheme on 1'2 which undersamples the func

tion g(u, v) with bandregion KT by a factor of 1/2 in the second coordinate, i.e. 

N2 = r0/2. Then translates of KT by elements of Hg intersect. We may choose 

N1 such that intersections involve only translates of KT by elements of Hg which 

are zero in the first coordinate. The minimum value of N1 is obtained by observing 

the coincidence of the boundaries of translates of KT and depends on the scanning 

geometry according to 

N2 (i~19) , 0 < {) :S 1/3, 

N1 ~ N2 (i~19), 1/3 < {) :S 1/2, 

N2(/: 19), 1/2<rJ<l, 

(2.37) 

with{) = T-
1(p/r) [13]. Then translates of KT by elements of (Hg\ {O}) overlap 
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KT in only two regions. They are KT n ((0, N2f + KT) and KT n ((0, -N2f + KT). 

See figure 2.1. We will use the values of g on the reflected sampling set, obtained 

using the symmetry property, and nonperiodic sampling theory to recover g on these 

overlapping regions. 

We choose to consider undersampling of g in the direction of the second coor

dinate for several reasons. In modern CT scanners, the detector consists of a fixed 

array of cells of finite width. Sampling schemes which involve increasing the number 

or changing the positions of these cells are difficult, if not impossible, in practice. It 

is more reasonable to select the number of views taken as the source rotates about 

the object. Also, with finite detector width, measurements of g consist of averages 

of integrals over all rays striking a detector. This averaging effectively bandlimits 

the data function. It can be reasonably argued, however, that the bandwidth is 

twice that which can be recovered from a set of measurements by adjacent detec

tors. This is the so-called third generation undersampling problem. By overcoming 

undersampling of g in the second coordinate, i.e. detector direction, we solve this 

problem. In addition, due to the interlocking, bow-tie shape of the set KT, un

dersampling g in the first coordinate and allowing only intersections of translates 

of KT by elements of Hg which are zero in the second coordinate would require 

oversampling g in the second coordinate. Since the detector array is fixed, over

sampling in the detector direction means we must assume a smaller bandregion of 

g and reduce the resolution of the reconstruction. Since the goal is to reconstruct 

the object with the highest resolution possible, we do not consider undersampling 

in the first coordinate. Finally, notice that the annihilators Hg and Hk, of Hs and 

HR, respectively, coincide for all T/ E Hg zero on the first coordinate. This allows 

us to use the simplified version of the nonperiodic sampling theorem presented in 
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Corollary 15. This is generally not the case for T/ nonzero in the first coordinate. 

Let TJ1 = (0, -N 2)1'. We may construct fundamental domains Ri and R2 of Hi 

and Hg, respectively, such that Kr ~ R2 U ( TJ1 + K') with K' ~ R2 n Ri. The exact 

shapes of R2 and Ri are determined by the sampling parameters (Ni, N2) which, 

in turn, depend on the parameters r, p, n, and T. Before we construct the sets Ri 

and R2, we prove the following claim regarding the canonical fundamental domain 

of both Hi and Hg. 

Claim 18. Let Ni, N2 be integers and let a= mod (Ni, N2) be the unique integer 

such that 0 ~a< Ni and Ni - a E N2Z. The set D = [0, ... , Ni -1] x [0, ... , N2 -

1] c 2 2 is a fundamental domain of both Hf = {(jNi, lN2)1' : j, l E Z} and 

Hf= {(jNi,ja + lN2)1': j, l E Z}. 

Proof. Given (ni, n2)1' E 22, let ni mod (ni, Ni) be the unique integer such 

that 0 ~ ni < Ni and ni - ni E NiZ. Then there exists a unique integer j 

such that ni ni + jNi. Now let n; = mod (n2, N2) be the unique integer 

such that 0 ~ n; < N2 and n2 - n; E N2Z and let n; = mod (n2 - ja, N2) 

be the unique integer such that 0 ~ n; < N2 and n2 - ja - n; E N2Z. Then 

there exist unique integers l, l' such that (ni, n2)T = (ni, n;)1' + (jNi, lN2)1' and 

(ni, n2)1' = (ni, n;)1' + (jNi,ja + l'N 2)1'. Thus Dis a fundamental domain of both 

Hf and Hr- □ 

We call D the canonical fundamental domain of Hf and Hr. We may now 

construct fundamental domains R2 and Ri of Hf and Hr, respectively, buy defining 

one-to-one mappings of D onto R2 and Ri. 

Proposition 19. Let r, p, 0, and T be such that T is close to 1 and 0 < {} < 1/2 

where{}= T-
1p/r and let Kr(r, p, 0) be defined as in {1.44). Let N2 = r0/2 and 
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choose N1 such that (2.37} is satisfied and N1 is near the minimum value. Then 

there exist fundamental domains R2 and R1 of H;f = {(jN1,lN2f: j,l E Z} and 

Hr= {(jN1,ja+lN2f: j, l E Z}, respectively, such that KT(r, P, D) ~ R2U(r/+K') 

with rJ' = (0, N2f E H;f n Hr and K' ~ R2 n R1. 

We do not mean to suggest that that the result is not true for 1/2 :S rJ < 1, 

but that in this case the construction of the sets R1 and R2 differs somewhat from 

the construction of R1 and R2 in the case O < rJ :S 1/2. In many, if not all, practical 

situations, rJ < 1/2. For this reason, we omit the discussion of the case 1/2 < rJ < 1. 

Proof. We construct sets R1 and R2 by defining one-to-one mappings P1 and P2 

from the canonical fundamental domain D of both Hr and H;f onto the sets R1 

and R2, respectively. The mappings p1 and p2 involve only translations of the 

elements of D by elements of Hr and H;}, respectively. It follows that R1 and R2 

are fundamental domains of Hr and H;f, respectively. We then show that the set 

KT in (1.44) is contained in both (R2 U (r/ + R2)) and (R2 U (r/ + R2)). It follows 

that KT ~ (R2 u (r/ + K')) with K' ~ R1 n R2. 

Define for each (n1, n2f E D the mapping p2(n1, n2) 

where: T/n1 ,n2 = (-N1, Of if (n2 - N2) < (1/2)(n1 - N1) and 

0 :S n2 < N2/3 and (n2 + N2) :S n 1(2N2/N1), or 

N2/3 :S n2 < 2N2/3 and (n2 - N2) 2". n 1(-N2/N1), or (2.38) 

2N2/3 :S n2 < N2 and n2 :S n1(2N2/N1); 

and T/n1 ,n2 = (-Ni, -N2f if (n2 - N2) 2". (1/2)(n1 - N1) and 

0 :S n2 < N2/3 and (n2 + N2) :S n 1(2N2/N1), or 

N2/3 :S n2 < 2N2/3 and (n2 - N2) 2". n 1(-N2/N 1), or (2.39) 

2N2/3 :S n2 < N2 and n2 :S n1(2N2/N1); 
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0 ~ n2 < N2/3 and (n2 + N2) > n 1(2N2/N1), or 

N2/3 ~ n2 < 2N2/3 and (n2 - N2) < n 1(-N2/N1), or (2.40) 

2N2/3 ~ n2 < N2 and n2 > n1(2N2/N1); 

and T/n1 ,n2 = (0, Of, otherwise. Then the set R2 = {p2(n1, n2) : (n1, n2) E D} is a 

fundamental domain of R2 . 

If O < rJ < 1/3, then by (2.37), a = mod (N1, N2) = N1. Let m1 = (a+ 

N2)/N1 and m2 = (a - 2N2)/N 1 and let c1 = (2a - N2)/3 and c2 = (a+ N2)/3. 

Define for each (n1, n2f E D the mapping p1 (n 1, n2) = (n1, n2f + (n 1 ,n2 where: 

(n 1 ,n2 = (-Ni, -a+ N2f if (n2 - a) < (l/2)(n1 - N1) and 

0 ~ n2 < c1 and (n2 + N2) ~ m1n1, or 

c1 ~ n2 < c2 and (n2 - N2) 2: m2n1, or 

c2 ~ n2 < N2 and n2 ~ m 1n1; 

0 ~ n2 < c1 and (n2 + N2) ~ m1n1, or 

c1 ~ n2 < c2 and (n2 - N2) 2: m2n1, or 

c2 ~ n2 < N2 and n2 ~ m 1n1; 

0 ~ n2 < c1 and (n2 + N2) > m1n1, or 

c1 ~ n2 < c2 and (n2 - N2) < m2n1, or 

c2 ~ n2 < N2 and n2 > m1n1; 

(2.41) 

(2.42) 

(2.43) 

and (n 1 ,n2 = (0, Of, otherwise. Then the set R1 = {p1(n 1, n2) : (n1, n2) E D} is a 

fundamental domain of R1. 
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If 1/3 :S rJ < 1/2, then by (2.37), a= mod (N1, N2) = N1 - N2. Let m1 = 

(a+2N2)/N1 and m2 = (a-N 2)/N 1 and let c1 = (2a+N 2)/3 and c2 = (a+2N 2)/3. 

Define for each (n1, n2f E D the mapping p1(n 1, n2) = (n1, n2f + (n 1,n2 where: 

(n 1 ,n2 = (-Ni, -af if (n2 - a) 2: (1/2)(n1 - N1) and 

0 :S n2 < c1 and (n2 + N2) :S m1n1, or 

c1 :S n2 < C2 and (n2 - N2) 2: m2n1, or 

c2 :S n2 < N2 and n2 :S m1n1; 

0 :S n2 < c1 and (n2 + N2) :S m1n1, or 

c1 :S n2 < c2 and (n2 - N2) 2: m2n1, or 

c2 :S n2 < N2 and n2 :S m1n1; 

0 :S n2 < c1 and (n2 + N2) > m1n1, or 

c1 :S n2 < c2 and (n2 - N2) < m2n1, or 

c2 :S n2 < N2 and n2 > m1n1; 

(2.44) 

(2.45) 

(2.46) 

and (n 1 ,n2 = (0, Of, otherwise. Then the set R 1 = {p1(n 1, n2) : (n1, n2) E D} is a 

fundamental domain of R 1. 

To show that KT ~ R 2 U (r/ + R2 ) and KT ~ R 2 U (r/ + R 1) and, hence, 

KT ~ R2 + (r/ + K') with K' ~ R2 n R 1, it suffices to show that the boundaries of 

the set KT are contain the boundaries of the sets R2 U (r/ + R2) and R1 U (r/ + R1) 

and that the sets R2 and r/ + R 1 are disjoint. 

For O < rJ < 1/2, we may express the boundaries of the bowtie shaped set 

KT by the lines m = k(rJ - 1)/(2rJ), m = k(rJ + 1)/(2rJ), m = N2 + (1/2)k, and 
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m = -N2 + (1/2)k. With T chosen close to 1 we need not consider the boundaries 

lkl = (1 - r)pO. 

If O < rJ < 1/3 then by (2.37), N1 2: N2(4rJ)/(1 +rJ). The set R2 has a boundary 

with slope 2N2/N 1 :S 2N2/(N 2(4rJ)/(1 + rJ)) = (rJ + 1)/(2rJ). The corresponding 

boundaries of R2 U ( r/ + R2) then contain the boundaries of KT with slope ( rJ + 

1)/(2rJ). The set R2 has a boundary with slope -N 2/N 1 2: -N 2/(N 2(4rJ)/(l+rJ)) = 

(-rJ11)/(2rJ) = (2rJ - 2)/(4rJ) + (1 - 3rJ)/(4rJ) > (rJ - 1)/(2rJ), since rJ < 1/3. The 

corresponding boundaries of R2 U (r/ + R2) then contain the boundaries of KT with 

slope (rJ- 1)/(2rJ). By construction, the set R2 U (r/ + R2) also has boundaries with 

slope 1/2 which coincide exactly with those of KT. 

The set R1 has a boundary with slope (a+ N2)/N1 = (N1 + N2)/N 1 = 1 + 

N2/N1 :S (5rJ + 1)/(4rJ) = (2rJ + 2)/(4rJ) - (1 - 3rJ)/(4rJ) :S (rJ + 1)/(2rJ). The 

corresponding boundaries of R 1 U (r/ + R 1) then contain the boundaries of KT with 

slope (rJ + 1)/(W) since rJ < 1/3. The set R1 has a boundary with slope (a -

2N2)/N1 = 1 - 2N2/N 1 2: 1 - (1 + rJ)/(2rJ) = (rJ - 1)/(2rJ). The corresponding 

boundaries of R1U(r/+R 1) then contain the boundaries of KT with slope (rJ-1)/(2rJ). 

By construction, the set R 1 U (r/ + R 1) also has boundaries with slope 1/2 which 

coincide exactly with those of KT. 

Also by construction, both sets are bounded by the the lines m = (1/2)k and 

m = N2 + (1/2)k. Since r/ = (0, -N 2f, the sets R2 and (r/ + R 1) are disjoint. 

Therefore, there exists K' ~ R1 n R2 such that KT~ (R2 U (r/ + K')). 

The argument is similar for the case 1/3 :S rJ < 1/2 using the fact that 

satisfying (2.37) implies a= (N1 -N 2) and the slopes (a+2N 2)/N 1 and (a-N 2)/N 1 

of the boundaries of R 1. D 
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(a) (b) 

Figure 2.2: Fundamental domains (a) R2 of Hg and (b) R1 of Hk and translates 
for 1/3 < {) '.S 1/2. 

The set R2 U (r/ + K') is larger then Kr, containing a large region about the 

origin. See figure 2.2. According to (1.44), 1§1 is negligible on most of this region, 

so there is no advantage in recovering g here. However, since the lattices Hg and 

H-Ji, have the same density, m8(R2) = ma(R 1) and there is no reason to construct 

R2 and R1 such that K' ~ R2 n R1 is smaller. Also, notice R1 <l: R2 so the results 

of Theorem 17 do not strictly apply. Since 1§1 is negligible outside K' U (r]' + K'), 

we do not expect to observe a significant increase in the aliasing error. 

We now compute the values of g on a dense uniform set suitable for use in 

the (FBP) Algorithm 14. For convenience we compute only the "missing" data in 

the standard sampling scheme with twice the density in the direction of the second 

coordinate as the original standard sampling scheme. The missing data lie on a 

second coset of the standard sampling lattice Hs shifted by an additional 1/(2N2) 
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in the second coordinate. Let x8 = (0, (8 + 1/2)/N 2f and choose 8 = 1/4. Then 

for all X E Xs + Hs, (1 - e2'11"i(x-xs,rl')) = 2 and (3 = (1 - e2'11"i(XR-Xs4))- 1 = 1/2. An 

interpolation formula follows from Corollary 15 applied to g(u, v) with x2 , H2 , x1, H1 

equal to xs, Hs, XR, HR, respectively, and with R2 and R1 defined above. 

Sg(x~+z) = SMg(x~+z)+ L (g(xR+y)-SMg(xR+y))<l>Ri (x~+z-xR-Y) (2.47) 
yEHR 

with 

(2.48) 
yEHs 

for z E Hs, where M = x8 + H8 . The interpolation process can be viewed as 

first computing an approximation SMg with bandregion R2 from samples of g on 

(xs + Hs) then adding a correction function with bandregion R1 computed from 

samples of (g - SMg) on (xR + HR)- If g is bandlimited with bandregion R2 then 

g = SMg and the correction function is identically zero. 

It is not practical to compute Sg in (2.47) directly by evaluating the interpo

lating functions ¢R 2 and ¢Ri· Instead, we compute (Sg)~ by Lemma 16 and the 

Poisson summation formula. Then we may recover Sg by the inverse Fourier trans

form. In this way, we may take advantage of MATLAB's fast Fourier techniques. 

Though this method proves to be computationally less expensive, it is challenging 

to implement in two dimensions. The difficulty is in adapting MATLAB's built-in 

algorithms to produce the correct Fourier transforms which vanish outside the fun

damental domains R2 and R1 of Hg and H -Ji,, respectively, that are not the canonical 

fundamental domains, i.e. [O, N1 - 1] x [O, N2 - 1], and computed from values on 

the sets (xs + Hs) and (xR + HR), where HR is generally not rectangular. 

We follow the methods in [8, Section 4] and present an algorithm for evaluating 

the function SM fin Lemma 16 with bandregion Ron the set (x2+H2) from samples 
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2 x 2, nonsingular, upper-triangular matrices. This approach is less general than the 

approach in ([8, Section 4]) in that we do not attempt to characterize the sampling 

lattices and their generating matrices. Since both Ws and WR are upper triangular, 

we devise a method suitable for this case. This algorithm is then used to evaluate 

SMg with bandregion R2 from samples of g on (x2 + Hs) as well as the correction 

function with bandregion R 1 from samples of (g - SMg) on (x1 + HR)-

where W1 and W2 are 2 x 2, nonsingular, upper-triangular matrices with diagonals 

(l/N1, l/N2) and (l/N~, l/N~), respectively with N 1, N 2, N~, N~ integers and choose 

x1, x2 E 11'2 . Assume the hypotheses of Lemma 16 hold for f with G = 11'2 and H = 

H1 and let fJ,l be the values f([x 1 + W1(j -1, l - lf]), j = 1, ... , N 1, l = l, ... , N2, 

and define 
N1 

DFT(f· ) = '°' f· e-27ri(j-l)(n1-l)/N1 J,l n1,l L...t J,l , 
j=l 

and 
N1 

I DFT(gn
1
,1)J.1 = (l/N1) L gn 1,ie 27l"i(j-l)(ni-l)/Ni, j = 1, ... , Ni, l = l, ... , N2. 

Perform the following: 

E2 = e- 27ri(n1 -l)(!-l)(Wih, 2 for l = l ... N 2 and compute 

(2.49) 

2. Identify for each (n 1, n2) the unique element TJn1,n2 E Hf- such that ( (n1 -

1, n2 - 1) + TJn1,n2 ) ER and compute 

(2.50) 
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3. For each n~ = 1, ... , N{, and n; = 1, ... , N~, identify all ((n1,n2)p E H;f and all 

pairs (ni, n2)p such that (n~ -1, n; -1) = ( (ni -1, n2 -1 )p+1J(n1,n2 )p - ((n1,n2)p) 

and compute 

(2.51) 

4- For each n~ = 1, ... , N{, and n; = 1, ... , N~, Let E3 = e2'11"i(x2 ,(n'i-i,n2-i)) and 

E4 = e2'11"i(n'i-i)(!'-i)(W2 )1,2 for l' = 1 ... N~ and compute for each j' = 1, ... , N{ 

and l' = 1, ... , N~ 

Then the function SM f evaluated on the set ([x2 + W2 (j' - 1, l' - lf]) is given by 

the values (g4)i',l'· 

The interpolation algorithm above and the reconstruction formula (2.47) lead 

to an algorithm for exploiting the symmetry property in fan beam CT to accurately 

compute the values of g on (x8 + Hs) from samples of g on (xs + Hs). 

Algorithm 21. Let 9i,l = D f((j - 1)21r / Ni, (l - 1 + 8)1r /N2 - 1r /2) for j = 1 ... Ni 

and l = 1 ... N2. 

1. Evaluate (SMgi)j',l' = SMg([xs+Ws(j'-1, l'-lf]), j' = l. .. Ni, l' = l. .. N2 

and (SMg2)3,r = SMg([xR + WR(3 - 1, l - lf]) for J = 1 ... Ni, f = 1 ... N2 

from the samples 9i,l· 

2. Let §3,r = 9J,N
2
-f+u 3 = 1 ... Ni, l = 1 ... N2 and evaluate the correction 

function hj',l' = h([x8 + Ws(j' - 1, l' - lf]), j' = 1 ... Ni, l' = 1 ... N2 from 

samples(§],[- (SMg2)11), 3 = 1 ... Ni, l = 1 ... N2. 
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Then the values of g on the standard sampling scheme with twice the density in 

the second coordinate as the original is given by 9( 2j-1),(2!-1) = g1,i, j = 1 ... N1, 

l = 1 ... N2 and 9(2J'),(2l') = ((Sg 1)J',l' + hJ',l'), j' = 1 ... N1, l' = 1 ... N2. 

2.3 Numerical Results 

We present numerical experiments to illustrate the performance of Algorithm 

21 with both simulated and real CT data. The images are reconstructed using the 

FBP Algorithm 14 at the highest reasonable cut-off frequency b. All algorithms are 

implemented in Matlab version 6. 

The simulated CT data is computed using a common mathematical phantom 

attributed to Shepp and Logan [37] and modified by Rowland [34]. It consists of 

a superposition of ellipses of various sizes, shapes, and densities and simulates CT 

data of a head section. We assume an object radius of p = 1 and choose a scanning 

radius of r = 2.868. We choose T = 0.99 and note 1/3 < rJ < 1/2. We choose 

N1 = 392 equispaced views per rotation and N 2 = 360 rays per fan, satisfying 

condition (2.37). A quarter-detector offset, 8 = 1/4, is employed. The images are 

reconstructed on a 512 x 512 grid and displayed in gray scale which sets values below 

1.0 to black and values above 1.05 to white. 

In the first experiment, we compare the reconstruction from the interpolated 

data set with those from the standard data set with the same data and a standard 

reconstruction from twice as much measured data. Figure 2.3(a) shows the recon

struction with cut-off frequency b = 360 from the standard data set measured with 

N2 = 360. Figure 2.3(b) shows the reconstruction with cut-off frequency b = 720 

from the interpolated data set. The boundaries of the ellipses are sharper and fine 
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Table 2.1: Shepp-Logan head phantom. 

I ellipse I density I center el I e2 I rotation I 

1. 2.0 (0,0) 0.69 0.92 0 

2. -0.98 (0,-0.184) 0.6624 0.874 0 

3. -0.02 (0.22,0) 0.11 0.31 -18° 

4. -0.02 (-0.22,0) 0.16 0.41 18° 

5. 0.01 (0,0.35) 0.21 0.25 0 

6. 0.01 (0,0.1) 0.046 0.046 0 

7. 0.01 (0,-0.1) 0.046 0.046 0 

8. 0.01 (-0.08,-0.605) 0.046 0.023 0 

9. 0.01 (0,-0.605) 0.023 0.023 0 

10. 0.01 (0.06,-0.605) 0.023 0.046 0 

11. 0.03 (0.5538,0.3858) 0.0333 0.206 -18° 

details, such as the spaces between the small ellipses, appear better resolved. Figure 

2.3( c) shows the reconstruction with cut-off frequency b = 720 from a standard data 

set measured with N2 = 720 rays per fan. The image in figure 2.3 (b) is comparable 

in quality and uses only half the measured data. Figure 2.3( d) shows cross sections 

of the reconstructions from the standard and interpolated data through the centers 

of the small ellipses. The reconstruction from the interpolated data more accurately 

recovers the true value of the density over the width of the objects. 

In the second experiment, we model some physical properties of real CT scan

ners. A finite detector width is modeled by averaging the integrals over 5 rays 
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equispaced over the width of the detector. The value is considered to be sampled 

at the center of the detector. We model signal noise by adding to each measure

ment a normally distributed pseudo-random number with mean zero and standard 

deviation 1/3000. This is intended to simulate a noise level of at most 0.1% of 

the maximum measured value. We repeat the first experiment with the noisy data. 

Figure 2.4(a) shows the reconstruction with cut-off frequency b = 360 from the stan

dard data set measured with N2 = 360. Figure 2.4(b) shows the reconstruction with 

cut-off frequency b = 720 from the interpolated data set. Again, the boundaries of 

the ellipses are sharper but not as sharp as in figure 2.4(b) due to the finite de

tector width. Reconstruction artifacts are diminished but the image in (b) is more 

"grainy", suggesting noise amplification predicted by Theorem 17. Figure 2.4( c) 

shows the reconstruction with cut-off frequency b = 720 from a standard data set 

measured with N2 = 720 rays per fan. This image is sharper than the image in 

figure 2.4(b) due to averaging rays over smaller detectors. It also less grainy. Figure 

2.4( d) shows a crossection of the reconstructions from the standard and interpolated 

data through the centers of the small ellipses. Again, the reconstruction from the 

interpolated data more accurately recovers the true value of the density over the 

width of the objects but fails to fully recover the small gap between the ellipses. 

The final experiment uses real data acquired by a Siemens CT scanner. The 

data set consists of N1 = 720 views per rotation with 2q = 512 beams per view 

crossing the unit disc. The scanning radius is r = 2.868 and the object is essentially 

contained in a disc of radius p = .28 centered at the origin. By trial it is determined 

that a detector offset of o = +1/4 gives the best reconstruction from the standard 

data, and it is therefore assumed to have been scanned with positive quarter-detector 

offset. Beyond this, not much is known about the data. In particular, we do not 
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know to what extent the data has been pre-filtered or otherwise manipulated, and 

we do not know the noise level in the data. 

We approximate the scanning parameter N2 by N2 ~ q1r/ arcsin(l/r) for q = 

256 and r = 2.868 and obtain N = 2258. To satisfy condition (2.37) with rJ < 1/3 

requires a minimum of N1 = 804 views per rotation. It is not possible to reduce 

the object size p any further without suffering severe artifacts. Instead, assume 0 

is such that rO/2 < N2 and translates of the set K 7 (r, p, 0) by elements of Hg, 

nonzero in the first component, do not intersect and reduce the cut-off frequency b 

of the reconstruction from the interpolated data. We interpolate the missing values 

in a data set with N1 = 720 views per rotation and 2q = 1024 rays per view crossing 

the unit disc. The images are reconstructed on a 512 x 512 grid and displayed in 

gray scale with values below 1 x 104 set to black and values above 1.6 x 104 set to 

white. Figure 2.5(a) shows the reconstruction with cut-off frequency b = 2258 from 

the standard data set. Figure 2.5(b) shows the reconstruction with cut-off frequency 

b = (1.75)2258 from the interpolated data set. Again, the interpolated data appears 

to produce a sharper image but suffers from possible noise amplification. Over all, 

there is at least a qualitative improvement over the standard reconstruction. Having 

little information about the actual data, the results are encouraging. Figures 2.5( c) 

and 2.5( d) show reconstructions of the small hole in the light rectangle from standard 

and interpolated data sets, respectively. The images are reconstructed on a 128 x 128 

grid with the same gray scale as before. The reconstruction from interpolated data 

shows a darker, more defined object but the graininess distorts the shape which 

is assumed to be a circle. Figure 2.5( e) shows crossections through the center of 

the small hole in (c) and (d). The edges of the hole in the reconstruction from 

interpolated data are clearly steeper then those in the standard reconstruction and 
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the the minimum value at the center of the hole, assumed to be the density of the 

medium ~ 1.31 x 104, is better achieved. This has proved to be the case with all 

the details observed in the reconstruction. However, the ill effects possibly due to 

amplified noise in the interpolated data make it difficult to resolve the true value of 

the density in the small, low-contrast holes in the dark rectangle. 
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Figure 2.3: Reconstruction of the Shepp-Logan phantom. 
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Figure 2.5: Reconstruction of Siemens phantom. 
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The x-ray transform, Pf, (1.33) of a function f on JR.3 is a function on 8 2 x JR.2
. 

We then expect the problem of reconstructing f on JR.3 from its set of line integrals 

to be overdetermined. It is reasonable to expect that we may reconstruct f from 

measurements of Pf on a suitably chosen subset of 8 2 x JR.2 . For practical reasons 

we consider a geometry in which rays emanate from source points on a path in JR.3 . 

Assume f E Co'°(lR.3
) and define a coordinate system in JR.3 such that f is 

contained in the unit cylinder about the z-axis. Consider a scanning geometry 

in which two-dimensional fan beam projections, or slices, are measured in planes 

orthogonal to the z-axis. We extend the divergent beam transform (1.39) to three 

dimensions by 

Df(/3,a,z) = 100 

f(a+t0)dt (3.1) 

where 

a= (rcos/3, rsin/3, zf, and 0 = - (cos(/3 + a), sin(/3 + a), of, (3.2) 

with r > 1, 0 :::; f3 < 27!", -7r /2 :::; a < 7r /2, and z E R 

In practice, x-ray projection data are measured by a detector array composed 

of cells of finite width. The data measured by an individual cell is the net effect of 

all rays incident to the cell. Let Lia be the width of a detector cell within the slice 

and let D be the slice thickness measured in the direction of the z-axis. Since rays 

emanate from a point source, all rays within a slice are not orthogonal to the z-axis, 

and the actual thickness of the slice is not constant. Since it is assumed that the 

scanning radius r » D, it is reasonable to neglect the small cone angle. In practice, 



62 

the slice thickness is measured at the point where the slice intersects the z-axis. We 

model the data function g(/3, a, z) by the convolutions 

j

D/2 jt:.a/2 
g(/3,a,z) = a1(z-t) a2(a-w)Df(/3,w,t)dwdt 

-D/2 -t:.a/2 
(3.3) 

where the functions a1 and a2 describe the response of the detector to the incident 

rays in the z and a directions, respectively. (See e.g. [29].) We assume uniform 

response functions, that is 

and 

- D /2 < z < D /2, 
a 1 ( z) = { 01 / D for 

otherwise, 

{ 

(1/ ~a) for - ~a/2 <a< ~a/2, 
a2(a) = 

0 otherwise. 

(3.4) 

(3.5) 

The two-dimensional fan beam version of the FBP Algorithm 14 may be used to 

reconstruct f on the plane z = z' from measurements of g(/3, a, z'). A three

dimensional reconstruction of f is obtained, slice-by-slice, by repeating the two

dimensional reconstruction process on a sequence of equispaced parallel planes. 

3.1 Sampling and Reconstruction 

In the standard sampling scheme the object is positioned so that the fan of 

x-rays illuminates a portion of the object, then the source and detector array make 

a complete revolution about the object capturing M equispaced views. The object 

is then translated a distance ~z in the direction of the z-axis, orthogonal to the 

projection plane, and the process is repeated. It is convenient to use a coordinate 
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z-axis 

Figure 3.1: Helical CT geometry. 

system in which the object is at rest. Then the standard sampling scheme measures 

the values g(/3µ, a11, zk) where 

a _ 2n-µ 
/Jµ - M , µ = 0, ... , M - 1, V = -q, ... , q - 1, and 

zk = k6.z, k = 0, ... , k, 

(3.6) 

with M, N, k integers, 6.z E ~, 0 ~ o < 1, and q E Z such that N arcsin(l/r)/7r ~ 

q ~ N /2. This is referred to as the "step-and-shoot" sampling method. 

In practice, it is desirable to translate the object continuously while the source 

and detector array are rotating about the z-axis. See [16] and [3]. In a coordinate 

system in which the object is at rest, the source points lie on a helical path about 

the z-axis. See figure 3.1. We call the z-axis the longitudinal axis of the helix. In 
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this helical sampling scheme we measure g(/3µ, a11, zµ,k) where 

/3 = 2n-µ 
µ M , µ = 0, ... , M - I, V = -q, ... 'q - I, and 

zµ,k = ~z ( k + ; ) , k = 0, ... , k, 

(3.7) 

with M, N, k integers, ~z E ~, 0 :So< I, and q E Z such that N arcsin(l/r)/7r :'.S 

q :'.S N /2. Here ~z is the longitudinal distance traveled by the source and detector 

array with respect to a stationary object during one complete revolution. In this 

scheme we measure only one view per longitudinal position. To reconstruct f on the 

plane z = z' using the two-dimensional FBP algorithm, it is necessary to interpolate 

the values of g on a complete set of M fan beam projections, each in the plane z = 

z'. We consider only those helical sampling schemes that permit one-dimensional 

interpolation between corresponding rays in the longitudinal direction. It is then 

convenient to write 9µ,v(z) = g(/3µ, a11, z). For an analysis of more general three

dimensional sampling schemes, see [5]. 

An important parameter in helical CT is the helical pitch. It is defined as 

the ratio of the longitudinal distance traveled by the source and detector array per 

rotation to the slice thickness [36]. We can then express the distance ~z traveled 

per rotation by the source and detector array in terms of the helical pitch P and 

slice thickness D by ~z = PD. For fixed /3µ and a11 we measure the data function 

9µ,v(z) once per rotation. Therefore, we sample gµ,v(z) on a coset (x0 + H) of the 

lattice H = (PD)Z shifted by x0 = PD(µ/M). 

By the convolution theorem, the one-dimensional Fourier transform of the data 

function gµ,v(z) in (3.3) may be written 

(3.8) 
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where the Fourier transform on the right hand side is with respect to the third 

variable z. The averaging of integrals over the thickness of the slice effectively 

bandlimits the data function. It is reasonable to assume as the bandwidth of 9µ,v(z) 

the first zero of a1 [15, p. 187]. The Fourier transform of (3.4) yields ih(O = 

sin(7rDl))/(7rDl) for l # 0 and ih(O) = 1. It follows that the essential bandwidth 

of gµ,v is b = l/D. That is, we assume for allµ= 0, ... , M -1 and v = -q, ... , q-l 

that 1§µ,v(l)I is small for a.e. l outside the interval 

K = [-b, b) with b = l/D. (3.9) 

The interval R = [-1/(2PD), 1/(2PD)) is a fundamental domain of the an

nihilator HJ_= (1/(PD))Z of the sampling lattice H = (PD)Z. According to the 

classical sampling theorem, Theorem 6, given z' E ~ we can accurately reconstruct 

each gµ,v(z') forµ= 0, ... , M -1 and v = -q, ... , q- l from samples of each gµ,v(z) 

on a coset of H if K = [-b, b) ~ R. This implies a helical pitch of P ~ 1/2. This 

means that the source and detector must make a least two complete revolutions 

while the object is translated the distance of only a single slice thickness. 

For a choice of helical pitch P > 1/2, translates of the set K by elements 

HJ_ intersect, and sampling 9µ,v(z) on H = (PD)Z leads to undersampling. For 

each l E K let Mt;, = HJ_ n (K - l)- Since HJ_ is discrete and the set (K - K) 

is bounded, the sets Mt;, are finite and assume only finitely many values as l runs 

through the set K. Let m be the smallest integer larger than or equal to 2P, that is 

m - 1 < 2P ~ m, and let L = 2m - 1. Then the sets Mt;, assume L distinct values 
-(1) -(L) - -
M , ... , M as l runs through all of K. The relation l = t - Mt;,= Me is an 

equivalence relation induced by the subgroup H. The intersections of the set K with 

its translates by elements of HJ_ then partition K into a union of disjoint subsets 
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- -(l) 
l = 1, ... , L, where K1 = { l E K : M 1;, = M } . The subsets K 1, l = 1, ... , L 

can be expressed explicitly by 

{ 

[-b + i!.::.!.2 b- (m-l)) 
K PD' PD ' 

l = [b - (2m-l) -b + (l-m)) 
PD ' PD ' 

l = 1, ... ,m, 
(3.10) 

l = m + 1, ... , 2m - 1. 

For integral and half-integral values of helical pitch, the sets Kz for l = m + 

1, ... , 2m - 1 have zero measure in JR and so do not contribute to the aliasing 

error. In these cases we may assume only m subsets of K. 
-(l) . 

Let mz = jM j, l = 1, ... , L. Then, with the subsets Kz, l = 1, ... , L 

expressed as above, we have m1 = m for l = 1, ... , m and mz = m - 1 for l = 

m + 1, ... , 2m - l. We may express the sets M(l), l = 1, ... , L explicitly by 

{ 

{ 
(j-l)}m 

M(l) = {r/l)}m1 = PD j=l~ 

J j=l { (j+m-l) }m-l 

PD j=l ' 

l = 1, . .. ,m, 

l = m + 1, ... , 2m - 1. 

For example, if we let P = 4/3 then m = 3 and the sets Kz, l = 1, ... , 5 are 

K1 = [-1/D, -1/2D), K2 = [-1/4D, 1/4D), 

K3 = [1/2D, 1/ D), 

K4 = [-1/2D,-1/4D), K5 = [1/4D, 1/2D). 

-(l) 
The sets M , l = 1, ... , 5 are 

M(l) = (1/(PD)){0,1,2}, M(
2

) = (1/(PD)){-1,0,1}, 

M(
3

) = (l/(PD)){-2, -1, O}, 

= (1/(P D)){-1, O}. 

(3.11) 

Additional samples of 9µ,v(z) are necessary to overcome the undersampling on H 

and accurately recover 9µ,v(l) for l EK. 

_I 
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We extend the symmetry property (2.1) of the two-dimensional divergent beam 

transform to three dimensions by 

D f(/3, a, z) = D f(/3 + 2a + 1r, -a, z). (3.12) 

It follows from (3.3) that g(/3, a, z) ~ g(/3 + 2a + 1r, -a, z), where the approximate 

equality is due to the fact that the rays emanate from source points, and the rays 

involved in the convolution over the small fan angle Lia= 1r /N for source angle /3 

do not diverge from a point corresponding to angle (/3 + 2a + 1r). Nevertheless, if 

the scanning radius r is sufficiently large, we may use the symmetry property to 

assume the values of the data function g(/3, a, z) on an additional set of points in 

the sampling domain. 

If the sampling parameters M and N are chosen such that for every µ 

0, ... , M - 1 and v = 0, ... , N - l the source angle (,8µ + 2o:v + 1r) = /3µ' and the fan 

angle -av = av' for some integers 0 ~ µ' ~ M - l and 0 ~ v' ~ N - l, then the 

set of directly sampled rays and the set of reflected rays obtained by the symmetry 

property are redundant with respect to the first two coordinates. That is, the direct 

sampling scheme and the reflected sampling scheme involve the same set of source 

and fan angles (/3µ, av) forµ= 0, ... , M - land v = 0, ... , N - l. This redundancy 

will occur if and only if one of the following holds: 

(i) <5= 0, M even, and a= M/N integer, 

( ii) 8 = 1/2, M even, and a= M/N even, or (3.13) 

(iii) 8 = 1/2, M odd, and a= M/N odd. 

(cf. [27].) If the parameters rand Tare such that rJ = T- 1(1/r) = 1/3, then we may 

choose M = N and satisfy both the above condition with 8 = 0 as well as the two 

dimensional sampling conditions in (1.49) with N = rD. Unless otherwise stated, 
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we will assume condition (i) in (3.13) holds for the reminder of the chapter. 

The direct rays and the reflected rays may be redundant with respect to the 

first two coordinates, but with source points on a helical path, the reflected rays are 

shifted with respect to the corresponding direct rays in the direction of the z-axis 

by a distance of nearly PD /2. In particular, if for fixed (/3µ, O:v) we sample the data 

function gµ,v(z) on a coset (x0 + H) of H = (PD)'ll with x0 = PD(µ/M) then by 

symmetry and satisfying (3.13) we may assume the values of 9µ,v(z) on a second 

coset of H shifted by PD(µ/M + v/N + 1/2) = PD(µ+ av+ M/2)/M with respect 

to (xo + H). 

Multislice CT scanners use a two dimensional detector array consisting of a 

limited number of rows of cells. This allows for the simultaneous measurement of 

multiple adjacent slices per view. Again, since the rays emanate from a point source, 

slices are not parallel and normal to the z-axis. If the scanning radius is sufficiently 

large, and the number of slices is relatively few, then we may neglect the cone angle 

and assume the slices are parallel [36]. Each slice is shifted with respect to its 

neighbor by a distance D in the direction of the z-axis. In addition, the symmetry 

property (3.12) may be used to assume values of additional samples for each slice. 

Therefore, if the redundancy condition (3.13) is satisfied, a multislice helical CT 

scanner with S slices measures for each fixed (/3µ, O:v) for µ = 0, ... , M - 1 and 

v = -q, ... , q - 1, the function 9µ,v(z) on the set u;!c;1(xn + H) with 

Xn = ( nD + PD c~)) , and 

Xn+S = ( nD +PD ( ')) , n = 0, ... , S - 1, 

(3.14) 

where µ' = (µ+av + M/2) with a = M/N integer. This sampling set is gen

erally nonuniform but periodic. That is, the sample points occur in a repeating 
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pattern. The period of the sampling pattern depends on the helical pitch P and 

the distribution of points within one cycle varies with fan angle O:v. Thus, interpo

lating the values of gµ,v(z) in the direction of the z-axis for each µ = 0, ... , M - 1 

and v = -q, ... , q - 1 amounts to solving a collection of one-dimensional nonuni

form but periodic sampling problems. A one-dimensional version of Theorem 7 

may be applied to compute a sampled versions of gµ,v(z') = g(/3µ, av, z') for each 

µ = 0, ... , M - 1, v = -q, ... , q - 1 from the samples of 9µ,v(z) on u;;~ci1(xn + H). 

Then the two-dimensional FBP algorithm is used to reconstruct f on the plane 

z = z'. 

Suppose M, N are chosen such that the redundancy condition (i) in (3.13) is 

satisfied. Using the shifts { Xn}, n = 0, ... , 2S - 1, given in (3.14) and the sets 

M(l), l = 1, ... , m, given in (3.11), the systems in (1.18) become for l = 1, ... , m, 

S-l 

L (/3~
1
) + /J~

1
ls) = 1, 

n=O 

S-l L (!3~l)e27ri(j-l)(n/P+µ/M) + /3~llse21Ci(j-l)(n/P+1,'/M)) = 0, j = 1, ... , m, j -=I z, 
n=O 

(3.15) 

where µ' = (µ+av + M/2) with a = M/N integer. We see from (3.11) that 
-(m+l) -(l) -(m+l) -(!) -(1+1) 
M c M for l = 1, ... , m - 1. In fact, we have that M = M n M 

for l = 1, ... , m - 1. Therefore, the systems (1.18) using shifts (3.14) and sets 

(3.11) for l = m + 1, ... , 2m - 1, are identical to those for l = 1, ... , m - 1, with 

the exception of one less row. Solutions of the systems (3.15) for l = 1, ... , m - 1 

will then also be solutions of the corresponding systems for l = m + 1, ... , 2m - 1. 

Thus, it suffices to consider only solutions of (3.15) for l = 1, ... , m and assume the 

solutions for l = m + 1, ... , 2m - 1. 

I 

J 
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If for eachµ= 0, ... ,M - land v = 0, ... ,N - l, the systems (3.15) admit 

solutions /3~), n = 0, ... , 2S - l for each l = l, ... , 2m - 1 then, by Theorem 7, we 

compute the sampled version Sgµ,v(z) of 9µ,v(z) by 

2S-1 

Sgµ,v(z) = L L 9µ,v(Xn + y)kn(Z - Xn - y), (3.16) 
n=O yEH 

with 
2m-l 

kn(z) = (PD) L /3~) r e2rri(z/,) dl, 
l=l }Ki 

where K 1, l = l, ... , 2m - 1 given in (3.10). 

Notice that the systems in (3.15) consist of m rows and 2S columns. Recall 

that m = max1 IM(l) I is such that m - 1 < 2P ~ m. This means that, theoretically, 

we may choose helical pitch P ~ S and obtain solutions /3~l), l = l, ... , 2m - 1 to 

compute Sgµ,v for each µ = 0, ... , M - l and v = 0, ... , N - l by (3.16). That 

is, we may now, in principle, translate the object up to S times the slice thickness 

in a single revolution of the scanner. This is the advantage that multislice helical 

scanning offers over the step-and-shoot method. However, all periodic sets are not 

equal. In particular, the distribution of sample points in the scheme u;:~-;;1(xn + H) 

with Xn given by (3.14) depends on the fan angle O'.v-Given a choice of helical pitch 

P there may exist av such that the systems (3.15) do not admit solutions, or admit 

undesirable solutions. An S-slice helical scanner may have a so-called preferred 

helical pitch for which the systems (3.lS) admit desirable solutions for all O'.v-We 

now describe what is meant by "desirable" solutions and discuss preferred helical 

pitch further. 
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3.2 Preferred Helical Pitch 

To accurately reconstruct the function f slice-by-slice, we must stably inter

polate the values of 9µ,v(z') for each /3µ, av in the 2D fan beam projections in the 

plane z = z'. The estimate for the aliasing error given in Theorem 8 gives a mea

sure I of the stability of the interpolation process. If the shifts, {xn} in (3.14) are 

such that the sampling points are bunched closely together, the systems (3.15) will 

tend to admit solutions for which 1 = m(max:1 ~n 1/3~!) I) is large. Then values of 

§µ,v ( 0 for l outside of K = [-b, b) are amplified in the reconstruction, and the 

interpolation process based on the reconstruction formula (3.16) is unreliable. We 

consider the slice thickness D to be a fixed parameter. The choice of helical pitch P 

and the particular fan angle av determine the distribution of points in the sampling 

set according to (3.14). The challenge is to choose a helical pitch P such that the 

systems (3.15) admit solutions for which the corresponding value of I is uniformly 

low for all av. We call the largest of these the preferred helical pitch of the system. 

In S-slice CT we always sample 2S cosets of H regardless of the value of helical 

pitch. For all but the largest allowed values of pitch them x 2S systems (3.15) are 

generally underdetermined. We may then choose a suitable solution. Selecting a low 

helical pitch is advantageous in that it permits greater flexibility in the solutions of 

the systems in (3.15). For some choice of pitch P and at some fan angle av, it may 

be that at least two cosets ( Xn + H) and ( Xn' + H) of H are identical and the samples 

on (xn + H) and (xn, + H) are redundant. Then the resulting system (3.15) contains 

duplicate columns. Since the systems are generally underdetermined, however, they 

may still admit solutions for which the amplification factor I is low. This may be 

achieved by either letting /3~! = 0 and disregarding the samples on ( Xn' + H), or by 
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letting (3~) = ,6~) and effectively averaging the two sets of samples. If, however, we 

select a large pitch and too many of the sets of data are redundant, then the systems 

(3.15) may become overdetermined and not admit solutions. Near these situations, 

when many cosets of H nearly coincide, the systems tend to admit solutions with 

large positive and negative values. The corresponding value of 'Y can be quite large, 

and the helical pitch is not preferred. 

We consider some circumstances under which the cosets (xn + H) of H for 

N = 0, ... , 2S - 1 may not be well distributed in R First, for integer values 

of pitch P < S we see from (3.14) that as sets (xn + H) = (xn+P + H) and 

(xn+S + H) = (xn+P+s + H) for n = 0, ... , S - P - 1 and for each (µ, v). That 

is, all of the rays measured by slice n, after one rotation of the helix will coincide 

with the rays measured by slice n + P on the previous rotation and when the rays 

measured by slices n and n + P coincide, so do the corresponding reflected rays. 

The resulting systems (3.15) have, at best, 2P independent columns. Since Pis an 

integer, m = 2P and the systems (3.15) may still be consistent, provided no other 

coincidences occur. 

Now suppose, at helical pitch P, there exist shifts Xn1 , Xn2 such that as sets 

(Xn2 +H) = (Xn1+s+H) for some a 11. Then (n2D+PD(µ/M)) = (n1D +PD(µ+ 

av+ M/2)/M), and for each l = 1, ... ,2m - 1 

e2rri(j-!) (nif P+(µ+o-v+ M /2)/ M) = e2rri(j-l)( n2/ P+µ/ M) (3.17) 

for all j = 1, ... , m. Thus the corresponding columns of the systems (3.15) are 

identical. Given the helical pitch P we can identify the fan angles a(P) for which 

this coincidence will occur by 

p = 1, ... ,s -1. (3.18) 
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Then the resulting system will have at most S + p independent columns. A choice 

of P for which a(P) is near a measured fan angle and S + p < m would not be a 

good choice of helical pitch. Furthermore, any integral pitch P for which a(P) is near 

a measured fan angle would not be suitable. With this in mind, a choice of P for 

which S + p 2='. m for all a(Pl near measured fan angles, or an integral choice of P 

for which no a(P) is near a measured fan angle would be a candidate for preferred 

helical pitch. 

We assume a scanning geometry suitable for medical applications. The object 

is contained in a cylinder with unit radius, and the source points lie on a circle of 

radius r = 3 about the z-axis. We need only measure rays for fan angles !al ~ 
arcsin(l/3) and may acquire S = 4 slices without regard for the cone angle. To 

identify candidates for preferred pitch, we compute solutions of the systems in (3.15) 

and corresponding "f's for equally spaced O ~ a11 ~ arcsin(l/3) and for choices of 

1 ~ P ~ 4 at increments of 0.1. 

MATLAB provides two options for solving a system Ax= y. The "\" com

mand, x = A\y, returns a least squares solution with at most m nonzero entries. 

This method would perform the interpolation using only data from select cosets and 

ignoring others. For each problem in the collection, however, data from different 

cosets may be selected. While all of the acquired data may not be used in the 

interpolation for a particular fan angle a11, over the entire fan it may be that data 

on each coset of H is utilized at least once. 

Alternatively, the "pinv" command, x = pinv(A) * y computes the pseudoin

verse and returns the minimal 2-norm solution which potentially utilizes all mea

sured data for each interpolation problem. The definition of the stability factor in 

(1.24) suggests that we choose the minimal 1-norm solution. By the triangle and 
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Schwarz inequalities for x E JR2N we have llxll2 S llxll1 S v'2Nllxll2, so for small 

N, minimizing the 2-norm will suffice. We choose to use the "pinv" solution. In 

numerical tests, the two methods produce similar results but the "pinv" solution 

reduces effects that the "\" command produces by sudden changes in the selected 

data set. 

Each curve in Figure 3.2 gives the amplification factor 'Y as a function of 

helical pitch P for 32 equispaced fan angles Os lavl S arcsin(l/3) in the collection 

of sampling problems. Values of P for which the curves are low and close together 

produce sets of stable interpolation and uniform aliasing error over all sampled 

rays. Sharp peaks and a wide range in the value of 'Y indicate a choice of P resulting 

in unstable interpolation for some ak and a varying aliasing error. The results, 

particularly the range in values of 'Y for each choice of helical pitch P, remain the 

same for more fan angles OS lavl S arcsin(l/3). 
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We see that a helical pitch of just less than 2.5 should produce excellent 

results while helical pitch just less than 3.0 should produce good results. The choice 

P ~ 3.15 may produce good results if 1§µ,v(~)I is small outside of K. In addition we 

see that a helical pitch near P = 2 is a poor choice of helical pitch, as is any choice 

P > 3.15. 

3.3 Numerical Results 

To test the performance of the interpolation formula (3.16), multislice helical 

CT data was simulated for a radially uniform cylindrical square wave phantom. The 

object is composed of a sequences of adjacent discs of alternating density. Each disc 

has radius 0.95 and width 0.05 in the z-direction. The high and low densities are 

1.0 and 0.3 respectively. This is similar to the object used to study longitudinal 

aliasing in [44] and [20]. 

We choose a scanning radius of r = 3 and compute line integrals for M = 180 

views per rotation with S = 4 parallel slices per view. With the object contained in 

the unit cylinder and satisfying the conditions in [26] we compute 54 equally spaced 

rays with -77!" /64 :S ak < 77!" /64. We use a slice thickness D = 0.0537. The partial 

volume effect in the z-direction is modeled by computing, for each ray, the average 

of 11 line integrals over the span of the slice. Due to this partial volume effect we 

do not expect to recover the true magnitude of the densities but should be able to 

identify the positions of the individual discs. In addition we add 1 % relative random 

noise to the computed data. The helical scan covers the entire length of the object. 

The reconstruction algorithm is as follows: For each view, 0 :S /3µ < 27!" 
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1. Use (3.16) to interpolate the values g(/3µ, av, Zk), k = 0, ... , k, for each 

av, v = -q, ... , q - l, and obtain one complete fan-beam projection in each 

reconstruction plane z = zk, k = 0, ... , k. 

2. Compute the contribution to the image made by the data g(/3µ, av, Zk), v = 

-q, ... , q - l, k = 0, ... , k, using the fan-beam version of the FBP algorithm. 

The longitudinal interpolation is performed using reconstruction formula given 

in (3.16). We refer to this as the PSTI method. For comparison, we also perform 

a simple linear interpolation (LI) method. Helical scan and reconstruction were 

performed for helical pitches P = 2.50, 3.00, 3.15, and 3.50. The results are 

displayed in Figures (3.3)-(3.6). For reference we compare the reconstructions from 

interpolated data to those from measured data using the step and shoot method. 

As predicted, the data obtained with pitches P = 2.50, 3.00, and 3.15 each produce 

comparably good results in the reconstruction, while the images produced from data 

obtained with pitch P = 3.5 how increased aliasing error. 

In the first experiment, we reconstruct the disc phantom from data obtained 

with helical pitch P = 2.50. Figure 3.3(a) shows the sagittal slice through the 

reconstruction from the data obtained by the PSTI method. Figure 3.3(b) shows the 

sagittal slice through the reconstruction from the data obtained by the LI method. 

Figure 3.3c shows the magnitude of the reconstructed function at the center, p = 0 

and figure 3.3d shows the magnitude of the reconstructed function near the edge, p ~ 

0.9. The solid lines correspond to the reconstruction from data obtained using PSTI 

method and the dotted lines correspond to the reconstruction from data obtained 

using the LI method. The results from each method are comparably good over the 

width of the object. Figure 3.3e gives the value of 'Y for each interpolation problem 
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over the radius of the object. The low and uniform value indicates that stable 

interpolation is possible over the scanner field of view. Figure 3.3f gives the l1-type 

error in the longitudinal direction in the reconstructions from interpolated data as 

compared to the step-and-shoot method for both the PSTI and LI methods. Again, 

the solid line corresponds to the reconstruction from data obtained using PSTI 

method and the dotted line corresponds to the reconstruction from data obtained 

using the LI method. As predicted by the value of 1 , the error remains nearly 

uniform over the width of the object. 

In the second experiment, we reconstruct the disc phantom from data obtained 

with helical pitch P = 3.00. Figure 3.4(a) shows the sagittal slice through the 

reconstruction from the data obtained by the PSTI method. Figure 3.4(b) shows the 

sagittal slice through the reconstruction from the data obtained by the LI method. 

Figure 3.4c shows the magnitude of the reconstructed function at the center, p = 0 

and figure 3.4d shows the magnitude of the reconstructed function near the edge, p ~ 

0.9. The solid lines correspond to the reconstruction from data obtained using PSTI 

method and the dotted lines correspond to the reconstruction from data obtained 

using the LI method. The results from each method are comparably good at the 

center of the object, while the PSTI method produces superior results near the 

edge of the object. Figure 3.4e gives the value of 'Y for each interpolation problem 

over the radius of the object. The value is low but grows toward the edge of the 

object, indicating growing instability of the interpolation process nearer the outer 

edge of the object. Figure 3.4f gives the l1-type error in the longitudinal direction 

in the reconstructions from interpolated data as compared to the step-and-shoot 

method for both the PSTI and LI methods. Again, the solid line corresponds 

to the reconstruction from data obtained using PSTI method and the dotted line 

__J 
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corresponds to the reconstruction from data obtained using the LI method. The 

error in the reconstruction using the LI method grows toward the edge of the object 

while the error in the reconstruction using the PSTI method remains nearly uniform 

over the width of the object. The increased value of 1 does significantly amplify the 

aliasing error in the PSTI method. 

In the third experiment, we reconstruct the disc phantom from data obtained 

with helical pitch P = 3.15. Figure 3.5(a) shows the sagittal slice through the 

reconstruction from the data obtained by the PSTI method. Figure 3.5(b) shows the 

sagittal slice through the reconstruction from the data obtained by the LI method. 

Figure 3.5c shows the magnitude of the reconstructed function at the center, p = 0 

and figure 3.5d shows the magnitude of the reconstructed function near the edge, p ~ 

0.9. The solid lines correspond to the reconstruction from data obtained using PSTI 

method and the dotted lines correspond to the reconstruction from data obtained 

using the LI method. The results from each method are comparably good at the 

center of the object, while the PSTI method produces superior results near the edge 

of the object. Figure 3.5e gives the value of"/ for each interpolation problem over 

the radius of the object. The value is higher than in this case than for P = 3.00 and 

grows significantly toward the edge of the object, indicating possible instability of the 

interpolation process nearer the outer edge of the object. Figure 3.5f gives the l1-type 

error in the longitudinal direction in the reconstructions from interpolated data as 

compared to the step-and-shoot method for both the PSTI and LI methods. Again, 

the solid line corresponds to the reconstruction from data obtained using PSTI 

method and the dotted line corresponds to the reconstruction from data obtained 

using the LI method. The error in the reconstruction using the LI method grows 

sharply toward the edge of the object while the error in the reconstruction using the 
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PSTI method remains nearly uniform over most of the width of the object, growing 

larger only at the edge. The value of 'Y seems to reach a threshold where it begins 

to significantly amplify the aliasing error in the PSTI method. 

In the final experiment, we reconstruct the disc phantom from data obtained 

with helical pitch P = 3.50. This choice of helical pitch is expected to produce poor 

results. Figure 3.6(a) shows the sagittal slice through the reconstruction from the 

data obtained by the PSTI method. Figure 3.6(b) shows the sagittal slice through 

the reconstruction from the data obtained by the LI method. Figure 3.6c shows 

the magnitude of the reconstructed function at the center, p = 0 and figure 3.6d 

shows the magnitude of the reconstructed function near the edge, p R:1 0.9. The 

solid lines correspond to the reconstruction from data obtained using PSTI method 

and the dotted lines correspond to the reconstruction from data obtained using the 

LI method. The results from each method are comparably good at the center of 

the object. At the the edge the object, however, the LI method results in reduced 

resolution while the PSTI method results in catastrophic errors. Figure 3.6e gives 

the value of 'Y for each interpolation problem over the radius of the object. The 

value is higher than in this case than for P = 3.00 and grows to a sharp peak 

near p = 0.67 before falling again. This indicates an unstable interpolation process 

in the sampling problems corresponding to a 11 such that Ir sin a 11 I R:1 0.67. Figure 

3.6f gives the l1-type error in the longitudinal direction in the reconstructions from 

interpolated data as compared to the step-and-shoot method for both the PSTI 

and LI methods. Again, the solid line corresponds to the reconstruction from data 

obtained using PSTI method and the dotted line corresponds to the reconstruction 

from data obtained using the LI method. The error in the reconstruction using 

the LI method grows until p R:1 0.67 then levels off or decreases. The error in the 
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reconstruction using the PSTI method grows extremely large near p = 0.67 and does 

not decrease. The catastrophic error in the PSTI method caused by the significantly 

amplified aliasing error in the interpolation process corresponding to a11 such that 

Ir sin O'.v I ~ 0.67 corrupts the reconstruction at all points near or outside the radius 

p = 0.67. 
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Figure 3.3: Reconstruction of the Disc phantom with P = 2.50. 
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Figure 3.4: Reconstruction of the Disc phantom with P = 3.00. 
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Figure 3.5: Reconstruction of the Disc phantom with P = 3.15. 
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4 CONCLUSIONS 

We have considered two problems in x-ray computed tomography that involve 

reconstructing images from nonuniformly sampled data. In each case, the problem 

arose from an effort to exploit all available information obtained by a sampling 

scheme devised to satisfy certain physical and practical constraints. We have shown 

that an appropriate mathematical treatment of the problem allows for the develop

ment and application of sampling theorems which permit accurate interpolation as 

well as theoretical analysis of the outcome. 

We showed that, in two-dimensional fan beam computed tomography, the 

union of the standard sampling set and the reflected sampling set obtained by ex

ploiting the symmetry property forms a nonuniform and generally nonperiodic set. 

Treating the sampling set as a union of two cosets of different lattices, and applying 

the theorem of Behmard and Faridani [1], we presented an interpolation algorithm 

to accurately evaluate the data function on a dense uniform set suitable for the 

standard reconstruction algorithm. We proved an estimate for the aliasing error 

committed in the case of non-bandlimited data and showed that the interpolation 

process is stable for practical applications. We presented numerical evidence of the 

performance of the interpolation algorithm by reconstructing images with increased 

resolution from real and simulated data. 

We presented the problem of longitudinal interpolation in multislice helical 

CT as a collection of one-dimensional, nonuniform, but periodic sampling problems. 

In this framework we shed considerable light on the role of helical pitch in the 

resolution of the reconstruction and presented an accurate interpolation algorithm 
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based on the periodic sampling theorem. Using an estimate by Faridani for the 

aliasing error committed by the interpolation process in the case of nonbandlimited 

data, we identified the choices of helical pitch P = 2.50, P = 3.00, and P = 3.15 

as large values of helical pitch which produce sets of stable interpolation across the 

scanner field of view, and thus candidates for the preferred helical pitch of a four-slice 

scanner. Numerical results from simulated data verified the theoretical predictions 

and supported the commonly accepted value 3.00 as the preferred helical pitch but 

suggested that a helical pitch of 3.15 may produce comparable results when using 

the accurate interpolation scheme with data containing a low level of noise. 



87 

BIBLIOGRAPHY 

1. Behmard H. and Faridani A. (2002) Sampling of Bandlimited Functions on 
Unions of Shifted Lattices J. Fourier Anal. Appl. 8 43-58 

2. Cormack A.M. (1978) Sampling the Radon transform with beams of finite 
width Phys. Med. Biol. 23 1141-1148 

3. Crawford C.R. and King K.F. (1990) Computed tomography scanning with 
simultaneous patient translation Med. Phys. 17 967-982 

4. Desbat L. (1993) Efficient sampling on course grids in tomography Inverse 
Problems 9 251-269 

5. Desbat L., Roux S., Grangeat P. and Koenig A. (2004) Sampling conditions 
of 3D parallel and fan-beam x-ray CT with applications to helical tomography 
Phys. Med. Biol 49 2377-2390 

6. Faridani A. (1990) An Application of a Multidimensional Sampling Theorem 
to Computed Tomography Contemp. Math. 113 65-80 

7. Faridani A. (1991) Reconstruction from efficiently sampled data in parallel
beam computed tomography Inverse Problems and Imaging (Pitman Res. 
Notes Math. Ser. 245 G.F. Roach (ed.) Longman, London 68-102 

8. Faridani A. (1994) A Generalized Sampling Theorem for Locally Compact 
Abelian Groups Math. of Comp. 63 307-327 

9. Faridani A. (1998) Sampling in parallel beam tomography Inverse Problems, 
Tomogmphy, and Image Processing A.G. Ramm (ed.) Plenum, New York 33-53 

10. Faridani A. and Ritman E. (2000) High-resolution computed tomography from 
efficient sampling Inverse Problems 16 635-6.S0 

11. Faridani A. (2005) Fan-beam tomography and sampling theory. To appear in 
Proc. Symp. in Appl. Math. 

12. Hu H. (1999) Multi-slice Helical CT: Scan and Reconstruction Med. Phys. 26 
5-18 

13. Izen S.H., Rohler D.P. and Sastry K.L.A. (2005) Exploiting symmetry in fan 
beam CT: Overcoming third generation undersampling SIAM J. Appl. Math. 
65 1027-1052 



88 

14. Izen S.H. (2005) An analysis of the fan beam CT reconstruction kernel, talk 
presented at the Special Session on Radon Transform and Inverse Problems, 
AMS National Meeting, Atlanta, January 2005 

15. Kak A.C. and Slaney M. (1988) Principles of Computerized Tomographic Imag
ing (New York: IEEE Press) 

16. Kalender W.A., Seissler W., Klotz E. and Vock P. (1990) Spiral volumetric 
CT with single-breath-hold technique, continuous transport, and continuous 
scanner rotation Radiology 176 181-183 

17. Kluvanek I. (1965) Sampling theorem in abstract harmonic analysis Mat. Ca
sopis Sloven. Akad. Vied 15 43-48 

18. Kohlenberg A. (1953) Exact interpolation of bandlimited functions J. Appl. 
Phys. 24 1432-1436 

19. La Riviere P.J. and Pan X. (2000) Longitudinal Sampling and Aliasing in 
Multi-slice Helical CT Proc. IEEE Nuc. Sci. Symp. Med. !mag. Conj. 2 15-79-
15_83 

20. La Riviere P.J. and Pan X. (2002) Pitch Dependence of Longitudinal Sampling 
and Aliasing Effects in Multi-slice Helical Computed Tomography (CT) Med. 
Phys. Biol. 47 2797-2810 

21. La Riviere P.J. and Pan X. (2002) Longitudinal aliasing in multislice helical 
computed tomography: sampling and cone-beam effects in IEEE Trans. Med. 
!mag. 21 1366-1373 

22. Marks II R.J. (1991) Introduction to Shannon Sampling and Interpolation The
ory Springer, New York 

23. Marks II R.J. (ed.) (1993) Advanced Topics in Shannon Sampling and Inter
polation Theory Springer, New York 

24. Mitchell N.E. (2005) Multi-dimensional sampling in fan beam tomography 
M.A. Thesis, Dept. of Mathematics, Oregon State University, Corvallis, OR 
97331 

25. Natterer F. (1986) The Mathematics of Computerized Tomography Wiley, New 
York 

26. Natterer F. (1993) Sampling in fan-beam tomography SIAM J. Appl. Math. 
53 358-380 



89 

27. Natterer F. (1998) Sampling of Functions with Symmetries (preprint) 
http://wwwmath1.uni-muenster.de/num/Preprints/1999/natterer_1 

28. Natterer F. and Wiibbeling F. (2001) Mathematical Methods in Image Recon
struction SIAM, Philadelphia 

29. Natterer F., Cheney M. and Borden B. (2003) Resolution for radar and x-ray 
tomography Inverse Problems 19 S55-S63 

30. Palamodov V.P. (1995) Localization of harmonic decomposition of the Radon 
transform Inverse Problems 11 1025-1030 

31. Papoulis A. (1977) Generalized sampling expansion IEEE Trans. Circuits Syst. 
CAS-24 652-654 

32. Petersen D.P. and Middleton D. (1962) Sampling an Reconstruction of Wave
Number-Limited Functions in N-Dimensional Euclidean Spaces Inform Control 
5 279-323 

33. Rattey P.A. and Lindgren A.G. (1981) Sampling the 2-D Radon transform 
IEEE Trans. Acoust. Speech Signal Process. 29 994-1002 

34. Rowland S.W. (1979) Computer Implementation of Image Reconstruction For
mulas Image Reconstructions from Projections G.T. Herman (ed.) Springer, 
New York 

35. Rudin W. (1962) Fourier analysis on groups Wiley, New York 

36. Schaller S., Flohr T., Klingenbeck K., Krause K., Fuchs T. and Kalender W.A. 
(2000) Spiral Interpolation Algorithm for Multislice Spiral CT - Part I: Theory 
IEEE Trans. Med. !mag. 19 822-834 

37. Shepp L.A. and Logan B.F. (1974) The Fourier reconstruction of a head section 
IEEE Trans. Nucl. Sci. NS-21 21-43 

38. Sloan I. and Kachoyan P. (1987) Lattice methods for multiple integration: 
theory, error analysis and examples SIAM J. Numer. Anal. 24 116-128 

39. Smith KT., Solman D.C., and Wagner S.L. (1977) Practicle and mathematical 
aspects of the problem of reconstructing a function from radiographs Bull. 
AMS,83 1227-1270 

40. Taguchi K. and Aradate H. (1998) Algorithm for Image Reconstruction in 
Multi-slice Helical CT Med. Phys. 25 550-561 



90 

41. Walnut D. (1996) Nonperiodic sampling of bandlimited functions on unions of 
rectangular lattices J. Fourier Anal. Appl. 2 435-452 

42. Wang G. and Vannier M.W. (1999) The Effect of Pitch in Multislice Spi
ral/Helical CT Med. Phys. 26 2648-2653 

43. Yen J.L. (1956) On nonuniform sampling of bandwidth-limited signals IRE 
Trans. Circuit Theory CT-3 251-257 

44. Yen S.Y., Yan C.H., Rubin G.D. and Napel S. (1999) Longitudinal Sampling 
and Aliasing in Spiral CT IEEE Trans. Med. !mag. 18 43-58 

45. Yen S.Y., Rubin G.D. and Napel S. (1999) Spatially Varying Longitudinal 
Aliasing and Resolution in Spiral Computed Tomography Med. Phys. 26 2617-
2625 



91 

APPENDIX 



92 

The following MATLAB programs were used to generate the numerical results 
in Chapters 2 and 3. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This programs uses a method based on nonperiodic sampling % 
% theorem to exploit the symmetry property in fan beam CT. % 
% Simulated data for the Shepp-Logan phantom is used. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 

(1) Setup' 
% 
% scanning parameters 
% 
r = 2.868; 
rho = 1; 
N = 360; 
d = 1/4; 
tau= 0.99; 
theta= rho/(r*tau); 
q = ceil(N*asin(1/r)/pi); 
alphamax = (pi/N)*q; 
Omega= 2*N/r; 
% 
if theta<== 1/3 

M = ceil(N*4*theta/(1+theta)); 
elseif (theta>1/3)*(theta<=1/2) 

M = ceil(N*2*theta/(1-theta)); 
else 

M = ceil(N*6*theta/(1+theta)); 
end 
a = mod(M,N); 
% 
% sampling lattices 
% 
W1 = [[1/M OJ; [0 1/N]]; 
W1p = [[M OJ; [0 NJ]; 
W2 = [[1/M -1/N]; [0 1/N]]; 
W2p = [[M OJ; [a NJ]; 
x1 = [O d/N]; 
x2 = [d/N -d/N]; 
x3 = x1 + [0 1/(2*N)]; 



j = [1: M] '*ones (1, N) ; j = j (:) ; 
k = ones(M,1)*[1:N]; k = k(:); 
% 

(2) Measure Data' 
% 
Df1 = zeros(M,N); 
Df8 = zeros(M,2*N); 
index1 = N/2+[-q:q-1]+1; 
index2 = N+[-2*q:2*q-1]+1; 
% Compute Shepp-Logan phantom 
p = 5; noise= 0.001; 
Df1(: ,index1) = SLphantom(M,q,alphamax,r,d,p,noise); 
Df8(: ,N+[-2*q:2*q-1]+1)=SLphantom(M,2*q,alphamax,r,2*d,p,noise); 
% 

(3) Extract Reflected Rays' 
% 
Df2 = zeros(M,N); 
kp = mod(N-k+1,N); 
Df2(:) = Df1(j+M*(kp)); 
% 

(4) Interpolate Missing Data' 
% 
% define the bandregion K \subset R2 \cup (\eta'+ R1) 
% 
k = [-M:M-1]'*ones(1,4*N); 
m = ones(2*M,1)*[-2*N:2*N-1]; 
% 
% define R1 
% 
c1 = (-N+a)/M; c2 = (2*N+a)/M; 
chiR1 = (m >= C1*k).*(m > C2*k); 
chiR1 = chiR1 + (m <= N + c2*k).*(m < N + c1*k); 
chiR1 = chiR1.*(m < N + k/2).*(m >= k/2); 
chiR1 chiR1.*(m <= 2*N + c1*k).*(m < 2*N + c2*k); 
chiR1 = chiR1.*(m >= -N + C1*k).*(m > -N + C2*k); 
chiR1 = (chiR1 > 0); 
% 
% define R2 
% 
c1 = -N/M; c2 = 2*N/M; 
chiR2 = (m >= C1*k).*(m > C2*k); 
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chiR2 = chiR2 + (m <= N + C2*k).*(m < N + C1*k); 
chiR2 = chiR2.*(m < N + k/2).*(m >= k/2); 
chiR2 = chiR2.*(m <= 2*N + c1*k).*(m < 2*N + c2*k); 
chiR2 = chiR2.*(m >= -N + C1*k).*(m > -N + C2*k); 
chiR2 = (chiR2 > O); 
% 

(4.1) Compute sampled versions from direct rays' 
% 
g1 = Sg(Df1,M,N,x1,W1,W1p,x3,W1,W1p,chiR2); 
g2 = Sg(Df1,M,N,x1,W1,W1p,x2,W2,W2p,chiR2); 
% 

(4.2) Compute correction function' 
% 
h = Sg((Df2-g2),M,N,x2,W2,W2p,x3,W1,W1p,chiR1); 
% 

(4.3) Compute interpolated data' 
% 
beta= 1/(1-exp(4*pi*i*d)); 
Df3 = real(g1 + 2*beta*h); 
% 

(5) Combine Measured and Interpolated Data' 
% 
Of= zeros(M,2*N); 
Of(: ,2*[1:N]-1) = Df1; 
Df(:,2*[1:N]) = Df3; 
% 

(6) reconstruct images' 
% 
P1 = fanFBP3(M,q,alphamax,r,d,Df1(:,index1),N,512,512); 
P2 = fanFBP3(M,2*q,alphamax,r,2*d,Df(:,index2),2*N,512,512); 
P3 = fanFBP3(M,2*q,alphamax,r,2*d,Df8(:,index2),2*N,512,512); 
% 

(7) Display Output' 
% 
X = 2*[0:511]/511-1; 
figure(!), colormap gray, 
imagesc(x,-x,P1, [1 1.05]), axis image 
figure(2), colormap gray, 
imagesc(x,-x,P2, [1 1.05]), axis image 
figure(3), colormap gray, 
imagesc(x,-x,P3, [1 1.05]), axis image 
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figure(4) 
plot(x,P1(412, :) , 'k: ',x,P2(412, :) , 'k') 
axis([-.25 .25 1.015 1.035]) 

The End' 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This programs uses a method based on nonperiodic sampling % 
% theorem to exploit the symmetry property in fan beam CT. % 
% Real data from SEIMENS test phantom is used. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 

(1) Setup' 
% 
% scanning parameters 
% 
M = 720; 
q = 256; 
N = 2258; 
r = 2.868; 
d = 1/4; 
alphamax = asin(1/r); 
rho= 0.28; 
theta= rho/r; 
Omega= min(2*N/r,M*(1+theta)/(2*rho)); 
% 
a= M; 

% 
% sampling lattices 
% 
W1 = [[1/M OJ; [0 1/N]]; 
W1p = [[M OJ; [0 N]]; 
W2 = [[1/M -1/N]; [0 1/N]]; 
W2p = [[M OJ; [a NJ]; 
x1 = [0 d/N]; 
x2 = [d/N -d/N]; 
x3 = x1 + [0 1/(2*N)]; 
j = [1:M] '*ones(1,N); j = j(:); 
k = ones(M,1)*[1:N]; k = k(:); 
% 

(2) Measure Data' 
% 
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Df1 = zeros(M,N); 
index1 = N/2+[-q:q-1]+1; 
index2 = N+[-2*q:2*q-1]+1; 
% 
% read CT data 
% 
fid = fopen('phantom2.ctd' ,'r'); 
G = fread(fid, [512,720],'integer*2'); 
fclose(fid); 
Df1(: ,index1) = G'; 
% 

(3) Extract Reflected Rays' 
% 
Df2 = zeros(M,N); 
kp = mod(N-k+1,N); 
Df2(:) = Df1(j+M*(kp)); 
% 

(4) Interpolate Missing Data' 
% 
% define the bandregion K \subset R2 \cup (\eta'+ R1) 
% 
k = [-M:M-1]'*ones(1,4*N); 
m = ones(2*M,1)*[-2*N:2*N-1]; 
% 
% define R1 = R2 = R 
% 
chiR = (m < N + k/2).*(m >= k/2); 
chiR = chiR.*(k >= -M/2).*(k < M/2); 
% 

(4.1) Compute sampled versions from direct rays' 
% 
g1 = Sg(Df1,M,N,x1,W1,W1p,x3,W1,W1p,chiR); 
g2 = Sg(Df1,M,N,x1,W1,W1p,x2,W2,W2p,chiR); 
% 

(4.2) Compute correction function' 
% 
h = Sg((Df2-g2),M,N,x2,W2,W2p,x3,W1,W1p,chiR); 
% 

(4.3) Compute interpolated data' 
% 
beta= 1/(1-exp(4*pi*i*d)); 
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Df3 = real(g1 + 2*beta*h); 
% 

(5) Combine Measured and Interpolated Data' 
% 
Df = zeros(M,2*N); 
Df(:,2*[1:N]-1) = Df1; 
Df(:,2*[1:N]) = Df3; 
% 

(6) reconstruct images' 
% 
P1 = fanFBP3(M,q,alphamax,r,d,Df1(:,index1),N, 

512,512, [-.5 .5 -.5 . 5] '1); 

% remove CR 

P2 = fanFBP3(M,2*q,alphamax,r,2*d,Df(:,index2),(1.75)*N, 
512,512, [-.5 .5 -.5 . 5], 1); 

P3 = fanFBP3(M,q,alphamax,r,d,Df1(:,index1),N, 
128,128, [0.04 0.08 -.075 -.035],0); 

P4 = fanFBP3(M,2*q,alphamax,r,2*d,Df(:,index2),(1.75)*N, 
128,128,[0.04 0.08 -.075 -.035],0); 

% 
(7) Display Output' 

% 
X = [0:511]/511-.5; 
figure(!), colormap gray, 
imagesc(x,x,P1,[1e4 1.6e4]), axis image 
figure(2), colormap gray, 
imagesc(x,x,P2, [1e4 1.6e4]), axis image 
X = 0.04*[0:127]/127+0.04; 
y = 0.04*[0:127]/127-0.075; 
figure(3), colormap gray, 
imagesc(x,y,P3, [1e4 1.6e4]), axis image 
figure(4), colormap gray, 
imagesc(x,y,P4, [1e4 1.6e4]), axis image 
figure(5) 
plot(x,P3(64, :) , 'k: ',x,P4(64, :) , 'k') 
axis([0.04 0.08 1.3e4 1.6e4]) 
% 

The End' 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Computes projection data for Shepp-Logan phantom % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% 
function Df = SLphantom(M,q,alphamax,r,d,p,noise) 
% 
w = 1; % ratio of detector width to spacing 
% 
% 
% Specify parameters of ellipses for mathematical phantom. 
% x = vector of x-coordinates of centers 
% y = vector of y-coordinates of centers 
% a= vector of first half axes 
% b = vector of second half axes 
% psi= vector of rotation angles (degrees) 
% rho= vector of densities 
% 
% Shepp-Logan phantom 
% 
x=[0 0 0.22 -0.22 0 0 0 -0.08 0 0.06 0.5538]; 
y=[0 -0.0184 0 0 0.35 0.1 -0.1 -0.605 -0.605 -0.605 -0.3858]; 
e1=[0.69 0.6624 0.11 0.16 0.21 0.046 0.046 0.046 0.023 0.023 

0.0333]; 
e2=[0.92 0.874 0.31 0.41 0.25 0.046 0.046 0.023 0.023 0.046 

0.206]; 
psi=[0 0 -18 18 0 0 0 0 0 0 -18]; 
rho=[2 -0.98 -0.02 -0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.03]; 
psi= pi*psi/180; 
% 
h = alphamax/q; 
alpha= h*([-q:q-1]+d); 
% 
Df = zeros(M,2*q); 
% 
c = w*(h/p)*([0:p-1]-(p-1)/2); % detectorlets 
a= ones(1,p)/p; % detector response function 
% 
for j = 1:M 

j 
beta= 2*pi*(j-1)/M; 
fork= 1:2*q 

t = (j-1)*M + k; 
for 1 = 1:p 

phi= beta+ alpha(k) + c(l) - pi/2; 
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Theta= [cos(phi);sin(phi)]; 
s = r*sin(alpha(k) + c(l)); 
Df(j,k)=Df(j,k)+a(l)*Rad(Theta,phi,s,x,y, 

e1,e2,psi,rho); 
end % 1-loop 
Df(j,k) = max(O,Df(j,k)+noise*randn/3); % add noise 

end % k-loop 
end % j-loop 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Computes the values of SMf on (x_2 + H_2) % 
% where SMf is the version off sampled on (x_1 + H_1). % 
% f(j,k) = f(x_1 + W1*[j-1,k-1] ') % 
% SMf(j' ,k') = SMf(x_2 + W2*[j'-1,k'-1]') % 
% R is the selected fundamental domain of H_1~\perp, and % 
% chiR is the indicator function of R. % 
% The algorithm is as follows: % 
% (1) Use fft to compute SMfhat on standard F.D. % 
% (2) Map standard F.D. of H_1~\perp into R % 
% and scale SMfhat. % 
% (3) Map R into standard F.D. of H_2~\perp % 
% applying Poisson summation formula. % 
% (4) Use ifft to compute SMf on H_2. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function SMf = Sg(f,M,N,x1,W1,W1p,x2,W2,W2p,chiR) 
% 
% Compute the Fourier transform on the standard F.D. 
% of H_1~\perp from samples off on (x1 + H1). 
% 
m = [0:M-1] '*ones(1,N); % standard F.D. of H_1~\perp 
n = ones(M,1)*[0:N-1]; 
E1 = exp(-2*pi*i*(x1(1)*m + x1(2)*n)); 
E2 = exp(-2*pi*i*W1(1,2)*(m.*n)); % n = k 
SMfhat = E1.*fft((E2.*fft(f, [],1)), [],2); 
% 
% Map the standard F.D. into R by elements of H_1~\perp 
% and scale the Fourier transform. Note that if R does not 
% fill F.D. then some information is lost. 
% 
ghat= zeros(size(chiR)); 
eta= W1p*[[-1 -1 -1 O O OJ; [-1 O 1 -1 O 1]]; 
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t1 = [0:M-1]+M+1; 
t2 = [0:N-1]+2*N+1; 
for j = 1 :6 
E3=exp(-2*pi*i*dot(x1,eta(:,j)))*chiR(t1+eta(1,j),t2+eta(2,j)); 
ghat(t1+eta(1,j),t2+eta(2,j)) = E3.*SMfhat; 
end 
% 
% Map R into standard F.D. by elements of H_2~\perp. 
% Perform Poisson summation as if sampling g on H_2. 
% (redefine m, n, t1, t2, eta and SMfhat) 
% 
m = [O:M-1] '*ones(1,N); % standard F.D. of H_2~\perp 
n = ones(M,1)*[0:N-1]; 
SMfhat = zeros(M,N); 
eta= W2p*[[-1 -1 -1 O O OJ; [-1 O 1 -1 O 1]]; 
t1 = [0:M-1]+M+1; 
t2 = [0:N-1]+2*N+1; 
for j = 1:6 

E3 = exp(2*pi*i*dot(x2,eta(:,j))); 
SMfhat = SMfhat + E3*ghat(t1+eta(1,j),t2+eta(2,j)); 

end 
% 
% Finally, compute inverse Fourier transform of SMfhat 
% 
E1 = exp(2*pi*i*(x2(1)*m + x2(2)*n)); 
E2 = exp(2*pi*i*W2(1,2)*(m.*n)); % n = k 
SMf = ifft(E2.*ifft(E1.*SMfhat, [] ,2), [] ,1); 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Computes the reconstruction from fan-beam data % 
% for MX by MY points in roi. % 
% Uses factor (alpha/sin(alpha))~2 in filter step % 
% 2pi/M = source position increment. % 
% alphamax/q = fan angle increment. % 
% R = scanning radius (object radius assumed to be 1). % 
% OF= data, size(DF) = M by 2q. % 
% b = bandwidth of filter (standard: b = N). % 
% MX by MY= reconstruction grid. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
function P = fanFBP3(M,q,alphamax,r,d,DF,b,MX,MY,roi,circle) 
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% 
if nargin==9 

roi=[-1 1 -1 1]; %roi=[xmin xmax ymin ymax] 
%region of interest where 
%reconstruction is computed 

circle 

end 
% 
ifMX>1 

= 1; % If circle= 1 image computed only 
% circle inscribed in roi. 

hx = (roi(2)-roi(1))/(MX-1); 
xrange = roi(1) + hx*[O:MX-1]; 

else 
hx = O; xrange = roi(1); 

end 
% 
if MY > 1 
hy = (roi(4)-roi(3))/(MY-1); 
yrange = flipud((roi(3) + hy*[O:MY-1])'); 

else 
hx = O; yrange = roi(3); 

end 
% 
center= [(roi(1)+roi(2)), (roi(3)+roi(4))]/2; 
x1 = ones(MY,1)*xrange; %x-coordinate matrix 
x2 = yrange*ones(1,MX); %y-coordinate matrix 
if circle == 1 

re= min([roi(2)-roi(1),roi(4)-roi(3)])/2; 

inside 

chi ((x1-center(1)).~2 + (x2-center(2)).~2 <= re~2); 
else 

chi= isfinite(x1); 
end 
x1 = x1(chi); x2 = x2(chi); 
P = zeros(MY,MX);Pchi = P(chi); 
% 
rps=1/b; 
h = alphamax/q; 
alpha= h*([-q:q-1]+d); 
%bs = b*sin(h*([-2*q:2*q-1])); 
bs = b*h*([-2*q:2*q-1]); 
wb = slkernel(bs)/(rps~2); %discrete convolution kernel. 
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wb = wb./(sinc(h*([-2*q:2*q-1])/pi).~2); 
for j = 1:M 

if (j==2 I mod(j,100)==1) 
j 

end 
beta= 2*pi*(j-1)/M; 
theta= [cos(beta),sin(beta)]; 
T=DF(j,:); 
% 
% convolution 
% 
T = T.*COS(alpha); 
C = conv(T,wb); 
Q = h*C(2*q+1:4*q); Q(2*q+1)=0; 
% 
% interpolation and backprojection 
% 
Q = [real (Q) '; O]; 
a= r*theta; % source position vector 
d1 = a(1)-x1; d2 = a(2)-x2; % (d1,d2) = a-x 
t = real(acos((d1*a(1)+d2*a(2))./ % remove CR 

(r*abs(sqrt(d1. ~2+d2.~2))))); 
t = t.*(ones(size(x1))-2*((x2*a(1)-x1*a(2))>0));% sign conv. 
% 
k1 = floor(t/h-d); 
u = (t/h-d-k1); 
k = max(1,k1+q+1); k = min(k,2*q); 
Pupdate = ((1-u) .*Q(k)+u.*Q(k+1))./(d1.~2+d2.~2); 
Pchi = Pchi + Pupdate; 
% 

end % j-loop 
% 
P(chi) = Pchi*r*(2*pi/M); 
P = real(P); 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This function computes the Radon transform of ellipses % 
% centered at (x,y) with major axis u, minor axis v, % 
% rotated through angle alpha, with weight rho. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
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function [RF]= Rad(theta,phi,s,x,y,u,v,psi,rho) 
% 
RF= zeros(size(s)); 
for mu= 1:max(size(x)) 

a= (u(mu)*cos(phi-psi(mu)))~2+(v(mu)*sin(phi-psi(mu)))~2; 
test= a-(s-[x(mu);y(mu)]'*theta) .~2; 
ind= test>O; 
RF(ind) = RF(ind)+rho(mu)*(2*u(mu)*v(mu)*sqrt(test(ind)))/a; 

end % mu-loop 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Shepp-Logan convolution kernel % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
function u = slkernel(t) 
% 
u = zeros(size(t)); 
i1 = abs(abs(t)-pi/2)<=1.e-6; 
u(i1) = ones(size(u(i1)))/pi; 
t1 = t(abs(abs(t)-pi/2)>1.e-6); 
v = (pi/2 - t1.*sin(t1))./((pi/2)~2 - t1.~2); 
u(abs(abs(t)-pi/2)>1.e-6) = v; 
u = u/(2*pi~3); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This program computes helical CT data for a DISC phantom, % 
% interpolates the data in the standard, step-and-shoot, % 
% sampling scheme, and reconstructs the image slice by slice % 
% using FBP Algorithm. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
N = 4· % # of slices ' M = 180; % # views per rotation 
p = 3.5; % helical pitch 
R = 3· % scanning radius ' % 
phi= 2*pi/M*[O:M-1]; % 
alphamax = asin(1/R); 
q = floor(M*alphamax/pi); 
D = R*alphamax/q; 
alpha= alphamax/q*[-q:q-1]; 
r = R*sin(alpha); 
% 

(object radius assumed 1) 

source angles 

% # of measured rays 
% slice thickness 

% measured rays 

MX = 256; % reconstruction grid MX by MY by MZ 
MY= 3; 
MZ = 128; 
roi = [-1 1 -1 1 -.5 .5]; % region of interest 
circle= 1; 
% 
Fsbs = zeros(MY,MX,MZ); 
Flin= zeros(MY,MX,MZ); 
Fpst = zeros(MY,MX,MZ); 
% 
b = 2*pi/D; 
d = P*D; 
h1 = floor(roi(5)/d); 
h2 = floor(roi(6)/d); 
H = d*[h1:h2]; 
zn = D*[O:N-1]; 
% 
t = d*length(H)/MZ; 
x3 = d*h1 + t*[O:MZ-1]; 
% 
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Gsbs = zeros(MZ,length(alpha)); 
Glin = zeros(MZ,length(alpha)); 
Gpst = zeros(MZ,length(alpha)); 
gamma= zeros(size(alpha)); 
% 
for j = O:M-1; 

j 
beta= j*2*pi/M; 
fork= 1:length(alpha) 

dz= d*(pi-2*alpha(k))/(2*pi); 
z = [zn,zn+dz] + d*j/M; 
z = mod(z,d); 
Z = ones(2*N,1)*H + (z')*ones(size(H)); 
% 
% Compute data 
% 
Gsbs(:,k) = DiscScan(x3',R,D,alpha(k)); %slice-by-slice 
% 
g = DiscScan(Z,R,D,alpha(k)); % helical 
% 
% Interpolate 
% 
Glin(:,k) = LINint(g,Z,x3); % LI 
% 
[Gpst(:,k),gamma(k)] = PST1Dint(g',d,z,1/D,x3');% PSTI 
% 

end % k-loop 
% 
Gpst = real(Gpst); 
% 
% Reconstruction Update 
% 
for 1 = 1 :MZ 

% 
P=DivFBPup(beta,q,alphamax,R,Gsbs(l,:),MX,MY,roi(1:4)); 
Fsbs(:,:,1) = Fsbs(:,: ,1) + P; 
P=DivFBPup(beta,q,alphamax,R,Glin(l,:),MX,MY,roi(1:4)); 
Flin(:, :,1) = Flin(:,:,l) + P; 
P=DivFBPup(beta,q,alphamax,R,Gpst(l,:),MX,MY,roi(1:4)); 
Fpst(:, :,1) = Fpst(:,: ,1) + P; 
% 
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-------

end % 1-loop 
% 

end % j-loop 
% 
Fsbs = real(Fsbs)*R*2*pi/M; 
Flin= real(Flin)*R*2*pi/M; 
Fpst = real(Fpst)*R*2*pi/M; 
% 
% Display output 
% 
hx = (roi(2)-roi(1))/(MX-1); 
x1 = roi(1) + hx*[O:MX-1]; 
C = find(x1>=0); 
% 
Tsbs = zeros(length(C),MZ); 
Tlin = zeros(length(C),MZ); 
Tpst = zeros(length(C),MZ); 
% 
Temp= Fsbs(2,C,:); 
Tsbs (:) = Temp (:) ; 
Tsbs = Tsbs'; 
Temp= Flin(2,C,:); 
Tlin(:) = Temp(:); 
Tlin = Tlin'; 
Temp= Fpst(2,C,:); 
Tpst(:) = Temp(:); 
Tpst = Tpst'; 
ERRlin = sum(abs(Tlin-Tsbs))/MZ; 
ERRpst = sum(abs(Tpst-Tsbs))/MZ; 
% 
figure(!) 
imagesc(x1(C),x3,Tpst, [O 1]) 
colormap gray 
axis image, %axis off 
% 
figure(2) 
imagesc(x1(C),x3,Tlin,[0 1]) 
colormap gray 
axis image, %axis off 
% 
figure(3) 
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plot (x3, Tpst ( : , 1) , 'k' , x3, Tlin (: , 1) , 'k: ') 
axis([-.25 .25 0.25 1.05]) 
xlabel (' (z) ') 
ylabel('density') 
axis square 
% 
t = find(x1(C)<=0.9); 
t = max(t); 
figure(4) 
plot(x3,Tpst(: ,t),'k',x3,Tlin(: ,t),'k: ') 
axis([-.25 .25 0.25 1.05]) 
xlabel (' (z) ') 

ylabel('density') 
axis square 
% 
t=find(r<=0); 
figure(5) 
semilogy(-r(t),gamma(t),'k') 
axis([0 1 1 110]) 
xlabel('radius (\rho)') 
ylabel('instability (\gamma)') 
axis square 
% 
figure(6) 
plot(x1(C),ERRpst,'k',x1(C),ERRlin,'k:') 
axis([0 1 0 .07]) 
xlabel('radius (\rho)') 
ylabel ('error') 
%legend('PSTI','LI') 
axis square 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Computes x-ray transform of disc phantom for rays % 
% with direction \alpha and positions Z. Rays are % 
% then averaged over slice thickness D. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
function g = DiscScan(Z,R,D,alpha) 
% 
r = .95; 
w = 0.05; 

% radius 
% width and separation 
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c = 2*w*[-3:3]; % centers 
d1 = 0.3; 
d2 = 0.7; % densities 
% 
g = 
s = 
t = 
T = 
G = 
G = 
for 

zeros(size(Z)); 
5; 
D/2*([-s:s-1]+.5)/s; 
Z(:)*ones(size(t)) + ones(size(Z(:)))*t; 
zeros(size(T)); 
d1*(T>=(min(c)-w/2)).*(T<(max(c)+w/2)); 
j = 1:length(c) 
G = G + d2*((T-c(j))>=(-w/2)).*((T-c(j))<(w/2)); 

end 
g(:) = sum(G,2)/(2*s+1); 
g = g*2*sqrt(r~2-(R*sin(alpha))~2)*(abs(sin(alpha))<=r/R); 
noise= 2*r*(d1+d2)*(1e-2)*randn(size(g)); 
g = g + noise; 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This program performs Liner Interpolation of data % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
function Sf= LINint(f,x,z) 
% 
X = x(:); f = f(:); 

Z = X*ones(size(z)) - ones(size(x))*z; 
% Locate nearest lower data pt. (may be more than one) 
M1 = -Z.*(Z<=O) + 100*(Z>O); 
v = min(M1); V = ones(size(x))*v; 
11 = (M1==V); 
s = sum(I1); S = ones(size(x))*(1./s); % Duplicity 
11 = 11. *S; 
% Locate nearest higher data pt. (may be more than one) 
M2 = Z.*(Z>O) + 100*(Z<=O); 
v = min(M2); V = ones(size(x))*v; 
12 = (M2==V); 
s = sum(I2); S = ones(size(x))*(1./s); % Duplicity 
I2 = 12.*S; 
% Calculate weights 
c = sum((M2.*I2)+(M1.*I1)); C = ones(size(x))*c; 
C1 = ones(size(I1)).*I1 - (M1.*I1)./C; 
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C2 = ones(size(I2)).*I2 - (M2.*I2) ./C; 
% Interpolate 
Sf= (C1'+C2')*f; 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 1-D interpolation based on periodic sampling theorem % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
function [g,gamma] = PST1Dint(f,h,x,b,z) 
% 
% f function values on (x+H). 
% h = lattice spacing H = hZ. 
% x = coset shifts. 
% b = assumed bandwidth off. 
% z = location of interpolated values f(z). 
% Must have length(z) > size(f,1). 
% 
N1 = size(f,1); 
N2 = length(z); 
M = ceil(2*b*h); 
K = [-N2/2:N2/2-1]'/(h*N1); 
w = 2*pi/(h*N1); 
mu= zeros(1,2*M-1); 
% 
ghat= zeros(size(K)); 
fhat = (1/N1)*fft(f, [],1); 
fhat = fftshift(fhat,1); 
% 
for 1 = 1:M 

d = zeros(M,1); d(l) = 1; 
eta= (1/h)*(l-1-[0:M-1]'); 
A= exp(-i*2*pi*eta*x); 
beta= pinv(A)*d; 
Kl= (K >= -b + (1-1)/h).*(K < b + (1-M)/h); 
index= find(Kl); 
if (1 - isempty(index)) 

c = mod(N1,2); 
t = (1-c)*floor((N2-N1)/2) + C*ceil((N2-N1)/2); 
temp= mod(index-1-t,N1)+1; 
T = exp(-i*2*pi*K(index)*x); 
ghat(index) = (fhat(temp,:).*T)*beta; 
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end % if 
mu(l) = sum(abs(beta)); 

end % 1-loop 
% 
for 1 = M+1:2*M-1; 

d = zeros(M-1,1); d(l-M) = 1; 
eta= (1/h)*(l-1-M-[0:M-2]'); 
A= exp(-i*2*pi*eta*x); 
beta= pinv(A)*d; 
Kl= (K >= b + (l-2*M)/h).*(K < -b + (1-M)/h); 
index= find(Kl); 
if (1-isempty(index)) 

c = mod(N1,2); 
t = (1-c)*floor((N2-N1)/2) + C*Ceil((N2-N1)/2); 
temp= mod(index-1-t,N1)+1; 
T = exp(-i*2*pi*K(index)*x); 
ghat(index) = (fhat(temp,:).*T)*beta; 

end % if 
mu(l) = sum(abs(beta)); 

end % 1-loop 
% 
ghat= fftshift(ghat,1); 
g = real(ifft(N2*ghat)); 
gamma= M*max(mu); 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Singe step of Divergent-Beam FBP Algorithm % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
function P = DivFBPup(phi,q,alphamax,R,Df,MX,MY,roi) 
% G = Divergent-Beam CT Data, 
% size(G) = [length(phi),length(alpha)], 
% = [p, 2q]' 
% phi= source positions, 
% alpha= fan angles, 
% R = scanning radius, 
% MX = number of columns in image, 
% MY= number of rows in image. 
% NOTE: It is assumed that the object is contained in 
% the unit circle and that alpha= asin(1/R)/q*[-q:q-1]. 
% roi=[-1 1 -1 1]; %roi=[xmin xmax ymin ymax] 
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% %region of interest where 
%reconstruction is computed % 

circle 
% 

1; % If circle= 1 image computed only inside 
% circle inscribed in roi. 

% 
if MX > 1 
hx = (roi(2)-roi(1))/(MX-1); 
xrange = roi(1) + hx*[O:MX-1]; 

else 
hx = O; xrange = roi(1); 

end 
% 
if MY> 1 
hy = (roi(4)-roi(3))/(MY-1); 
yrange = flipud((roi(3) + hy*[O:MY-1])'); 

else 
hx = O; yrange = roi(3); 

end 
% 
center= [(roi(1)+roi(2)), (roi(3)+roi(4))]/2; 
x1 = ones(MY,1)*xrange; %x-coordinate matrix 
x2 = yrange*ones(1,MX); %y-coordinate matrix 
if circle== 1 

re= min([roi(2)-roi(1),roi(4)-roi(3)])/2; 
chi= ((x1-center(1)).~2 + (x2-center(2)).~2 <= re~2); 

else 
chi= isfinite(x1); 

end 
x1 = x1(chi); x2 = x2(chi); 
% 
b = pi*q/asin(1/R); 
rps=1/b; 
h = alphamax/q; 
alpha= h*[-q:q-1]; 
%bs = b*sin(h*([-2*q:2*q-1])); 
bs = b*h*([-2*q:2*q-1]); 
wb = slkernel(bs)/(rps~2); %discrete convolution kernel. 
wb = wb./(sinc(h*([-2*q:2*q-1])/pi).~2); 
% 
P = zeros(MY,MX); Pchi = P(chi); 
theta= [cos(phi);sin(phi)]; 
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% 
% convolution 
% 
Of= Df.*COS(alpha); 
C = conv(Df,wb); 
Q = h*C(2*q+1:4*q); Q(2*q+1)=0; 
% 
% interpolation and backprojection 
% 
Q = [real(Q)'; OJ; 
a= R*theta; % source position vector 
d1 = a(1)-x1; d2 = a(2)-x2; % (d1,d2) = a-x 
t = acos((d1*a(1)+d2*a(2))./(R*abs(sqrt(d1.~2+d2.~2)))); 
t = t.*(ones(size(x1))-2*((x2*a(1)-x1*a(2))<0)); 
k1 = floor(t/h); 
u = (t/h-k1); 
k = max(1,k1+q+1); k = min(k,2*q); k = real(k); 
Pupdate = ((1-u).*Q(k)+u.*Q(k+1)) ./(d1.~2+d2.~2); 
Pchi = Pchi + Pupdate; 
% 
P(chi) = Pchi; 
P = real(P); 
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