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Dramatic declines in many species of demersal fishes off the West Coast have
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overfished. While the causes of those declines are not clearly understood, the

fact remains that a paucity of life history and abundance data exists for many

demersal species, also known as groundfish. Due to this uncertainty, only 21
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has stimulated research that characterizes fish-habitat associations for use in
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Using a combination of remote sensing, in situ observations, and spatial
analytical techniques, four benthic habitat classes were mapped for a large
rocky bank off the central Oregon coast known as Heceta Bank.

Observational data from human-occupied submersible and remotely operated

vehicle dives in the late 1980s, 2000 and 2001 were used to establish habitat

classes with specific substrate characteristics that have been statistically
shown to correlate with demersal fish distributions. The observational habitat

data was then extrapolated over the extent of a multibeam sonar survey
conducted in 1998 using quantitative parameters derived from high-resolution

bathymetric and backscatter imagery of the seafloor. The resultant map
predicts the locations of four habitat classes: Ridge-Gully, High-Relief Rock

(boulders, cobbles), Unconsolidated Sediment 1 (muds), and Unconsolidated
Sediment 2 (sands).

The main utility of the habitat map developed as part of the current study is
that it provides a context for analyses of a variety of spatial data. For instance,

habitat data provides one additional spatial component besides depth and
latitude that can be used to stratify catch per unit effort data from surveys and

commercial logbooks. Also, essential fish habitat for many demersal species
can now be identified in more detail. Finally, habitat data like those presented

here can aid in the design of marine reserves and protected areas by
providing a context for spatial analyses of data of ecological importance.
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Using Remote Sensing, In situ Observations, and Geographic
Information Systems to Map Benthic Habitats at Heceta Bank, Oregon

INTRODUCTION

Submarine banks are common physiographic seafloor features of the
continental shelf off the coast of Oregon. Examples include Coquille,
Stonewall, Daisy, and the largest Heceta Bank. These banks support
diverse assemblages of invertebrates and fishes and have consequently been

target areas of fishery exploitation. Dramatic declines in several commercially

important populations of demersal fishes known as groundfish have occurred

along the U.S. West Coast during the last two to three decades (Ralston 1998;
Bloeser 1999). While the reasons for these declines are not entirely clear,
nine species of commercially important groundfish have declined sufticiently to

be listed as "overfished": Pacific Ocean perch, cowcod, bocaccio, canary
rockfish, widow rockfish, darkblotched rockfish, lingcod, yelloweye rockfish,
and Pacific whiting (PFMC 2001; Jim Hastie, pers. comm.). Because many of

the commercially important West Coast groundfish show close association
with often-rugged heterogeneous substrata, the fishery resources are difficult

to assess using conventional survey techniques (e.g. trawling). Also, the
broad spatial extent of these fisheries combined with the lack of habitat-
specific estimates of abundance generally have precluded careful examination

of the nature of the exploited habitats, the relationships among species and

habitats, and the degree to which fishing activities have affected these
habitats. Due to the paucity of data on relative abundance and life history
characteristics for many species, only 21 of the 82 species (25.6%) managed

under the Groundfish Fishery Management Plan (FMP) of the Pacific Fishery

Management Council have been fully assessed (PFMC 2001).
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Because of this uncertainty, scientists and managers have proposed that one

way to increase the precision in fish stock assessments involves using the
knowledge of important fish-habitat associations. In small specific geographic

areas, the relationships between groundfish assemblages and their habitats

have been delineated using in situ methodologies, and in some cases using

geophysical mapping techniques (O'Connell and Carlile 1993; O'Connell et al.

2002; Fox et al. (1999, 2000); McRea et al. 1999; Yoklavich et al. 2000;
Amend et al. 2001). Many of these studies were summarized by Reynolds et

al. (2001) and Nasby-Lucas et al. (2002), and a few are highlighted here.
Benthic habitat investigations combining observational data and sidescan
sonar mapping in the U.S. began off the East Coast in the late 1970s (Able et

al. 1987). Off the West Coast, habitat investigations using submersibles
began in 1987 at Heceta Bank (Pearcy et al. 1989). Pearcy et al. examined
fish distributions and habitat associations, and established six stations for
future submersible operations. In the late 1980s, a group of investigators from

Oregon State University and the Oregon Dept. of Fish & Wildlife used the
Delta submersible to conduct transects on three banks off the Oregon coast

including Heceta Bank (Hixon et al. 1991, Stein et al. 1992). They discovered

clear correlations between fish abundance and seafloor habitat characteristics

and established a 3-year time series of data on resident groundfish,
invertebrates, and their habitat associations. However, there existed no high-

resolution bathymetric map or detailed geologic map of any of the banks to

extrapolate transect data and characterize habitat areas beyond the
observational extent of the submersible. Although sidescan sonar has been

used since the 1960s to interpret seafloor texture (Clay et al. 1964),

acquisition of comparable resolution bathymetry had to await advances in
computer processing and positioning systems that enabled the use of
multibeam sonar for shallow water applications (Hughes-Clarke et al. 1996).

With multibeam sonar, high-resolution bathymetric and backscatter data can
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be collected simultaneously; thus the ability to survey the seafloor more
efficiently and at finer scales has greatly improved.

In order to spatially extrapolate the findings of historical Delta submersible

dives at Heceta Bank (Hixon et al. 1991; Stein et al. 1992), an ongoing
cooperative effort began in 1998 to conduct a more extensive habitat-based

fisheries investigation of the area. The Heceta Bank Project was conceived as

an interdisciplinary study of fish habitats involving experts in marine geology,

fisheries biology and oceanography, and invertebrate ecology. The major
research questions of this continuing project are:

1) At what scales are there quantifiable relationships between groundfish

populations and seafloor morphology/texture?

2) What are the factors that control these relationships?

3) What changes may have occurred in the fish populations after a
decade?

4) What are the characteristics and extent of natural ref ugia?

In order to answer these questions, the project was designed to integrate high-

resolution seafloor imagery with historical and newly collected data from direct

observations. For this reason, a high-resolution multibeam sonar survey was

conducted at Heceta Bank in 1998 (Nasby-Lucas 2002, MBARI 2001). Using

this newly acquired high-resolution seafloor imagery and the data set compiled

from numerous Delta submersible dives in the late 1980s, species

abundances were estimated in small selected homogeneous habitat areas
adjacent to historical submersible transects (Nasby-Lucas et al. 2002). This
new geographic information system (GIS) approach was an initial attempt at

estimating groundfish abundance based on strong analytical evidence relating

species to specific habitat characteristics. To differentiate from similar studies,

the next logical progression for Heceta Bank is to efficiently relate small-scale
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observations and assessments of fish-habitat associations to even larger
geographic areas. Large-scale seafloor habitat classification and mapping is

critical to the accurate assessment of groundfish populations on a spatial scale

pertinent to animal distributions, fisheries, and the physical, biological, and
chemical processes that influence them.

This paper describes a GIS-based method for classifying and mapping
habitats on Heceta Bank using a variety of geomorphologic parameters
derived from high-resolution multibeam bathymetric and backscatter imagery.

Using the fish-habitat associations determined from statistical analyses of both

historical data and those collected in 2000 and 2001, a prediction map of
demersal fish habitats was created for a large portion of Heceta Bank and the

adjacent continental slope. The habitat map presented in this study provides
the spatial context to estimate abundances of resident groundfish species over

the entire multibeam survey area and analyze other data of ecological
importance.
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MATERIALS AND METHODS

Study Area
Heceta Bank is the most seaward portion of the continental shelf off Oregon,

extending out to approximately 60 km off the central Oregon Coast (Figure 1).

The geology of Heceta Bank was extensively described by Embley et al.
(2002, in review) and is summarized here. Heceta Bank is a large rocky shoal

off the central Oregon coast. Most of the Bank was eroded above sea level
during low sea level stands. The wavecut platform is characterized by
extensive outcroppings of Late Miocene and Early Pliocene mudstones,
siltstones, and sandstones deposited in a forearc basin. The younger strata of

those outcroppings have been differentially eroded to form distinct asymmetric

'hogback' ridges that are steeper on the updip end. Seismic reflection data
(Muehlberg 1971) show that the younger sequences are well stratified and the

older sequences exhibit little stratification due to massive bedding. The

weathering of the jointed bedrock on top of the Bank resulted in extensive
cobble and boulder pavements in some areas. These joint sets are most
prominent within the outcroppings on the two topographic highs of the Bank

and in areas on the southwest and northwest portions of the Bank. It is these

boulder and cobble pavements that elicit the relatively high acoustic

reflectivities visible in the Simrad EM 300 backscatter imagery (Figure 2, left

panel). The outer edge of the Bank is marked by a sudden transition from
higher to lower acoustic backscatter. Direct observational evidence from

submersibles of wave-cut cliffs and intertidal boring clams has revealed that

this transition is a probable paleo-shoreline of Late Wisconsin age (Goldfinger

1997; Embley and Valdés, pers. comm.).

Rocky habitats also occur seaward of the Bank, including deeper water
outcrops of older rocks similar to those found on top of the Bank. Also

seaward of the Bank, several well-defined pockmarks formed by methane
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Figure 1: Heceta Bank.

Location of Heceta Bank and the adjacent continental margin in relation to the
Oregon Coast. The Simrad EM 300 multibeam sonar survey area is
highlighted by the bold rectangular box.

seeps are found in the mud zones between 200 and 450 meters water depth.

These pockmarks contain carbonates and support or have in the past
supported microbial mat and various mollusk and gastropod communities.

Due to its gross physiography, Heceta Bank greatly influences shelf transport,

both in the alongshore and across-shelf directions. Contours of temperature,

salinity, sigma-t, chlorophyll, and nutrients (nitrate and silicate) tend to align
roughly with local isobaths (Huyer 1983); suggesting the principal axis of
alongshore velocity is nearly parallel to local isobaths (Kundu and Allen 1976).

Furthermore, southward flow along the shelf appears to be diverted seaward
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by Stonewall and Heceta Banks; and eventually results in meandering
circulation immediately south of Heceta Bank. These eddies cause retention,

and patches of high chlorophyll concentrations (up to 15 mg/m3) at the surface

have been detected in the vicinity of Heceta Bank (Barth, pers. comm.).

One important aspect of Heceta Bank and the immediate vicinity is that it
includes both areas disturbed by intense and repeated bottom trawling and
areas of possible natural refugia for groundfish. The shallow portions of the
Bank are characterized by hogback ridges of varying relief and expansive
fields of boulders and cobbles. The Bank's rugosity appears to provide refuge

for many species of demersal fishes including numerous rockfishes and
lingcod, as well as large schools of unidentified juvenile rockfishes (Hixon et

al. 1991). On the other hand, mud and sand dominate the slopes of the Bank

where many flatfish and some rockfish species reside and these plains show

extensive disturbance from bottom trawl gear. The diversity in habitats makes

Heceta Bank an ideal location for studying groundfish distributions,

characterizing natural refugia, and assessing the effects of fishing impacts.

Multibeam Sonar
In May of 1998, a multibeam sonar survey of the Heceta Bank area was
conducted using a hull-mounted Simrad EM 300 multibeam echo sounder
(Nasby-Lucas 2002; MBARI 2001). The EM 300 is a medium-range, high-
resolution multibeam system engineered to conduct surveys in depth ranges

from 10-5,000 meters but is particularly effective in continental shelf and slope

applications (Table 1; Kongsberg Simrad 2001-2003). Its intermediate

frequency (30 kHz) makes it a good compromise between resolution and
survey efficiency in areas such as the continental margin where depths
change rapidly between the shelf (<100 m) and lower slope (<2,000 m). Using

the chartered vessel MN Ocean Alert, 47 overlapping north-south swaths of

up to 45 km long were made over a period of 80 hours, and resulted in
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approximately 725 km2 coverage of the seafloor (Nasby-Lucas et al. 2002).
The raw multibeam data were processed with SWATHED software (Ocean
Mapping Group, Univ. of New Brunswick Fredericton) the processing steps

are described in Nasby-Lucas et al. (2002). This processing produced high-

resolution maps (Figure 2) of bathymetry and acoustic backscatter.

Table 1: Simrad EM 300 multibeam echo sounder specifications.

ISystemuencyI# of bamjMirl/MaxD [ooverajIMax Swath Width

[EM 300[30kHz [135 [0/5000 metersj[UP to 1 5O >5000 meters



Figure 2: Simrad EM 300 multibeam sonar imagery.

The acoustic signal amplitude (backscatter) image of the left panel depicts the
relative acoustic ref lectivities of the seafloor substrata. The lighter the shading
the higher the reflectivity values. ROPOS remotely-operated vehicle dives are
represented with line segments (2000 dives are yellow; 2001 dives are green)
and the locations of historical dive stations (Pearcy et. al. 1989, Hixon et. al.
1991, Stein et. al. 1992) are represented with orange boxes. The topography
image of the right panel is artificially illuminated from the northwest, which
creates shadows to the southeast of relief. Depth contours are represented in
white at 25-meter intervals.
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Figure 2: Simrad EM 300 multibeam sonar imagery.
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Bathymetric Principles
Echo sounders determine depth by measuring the two-way travel time of a

transmitted acoustic wave time it takes the acoustic wave to travel from the

transducer transmit array to the seafloor and back to the transducer receive

array. The basic principle behind multibeam echo sounders as compared to

single beam echo sounders is that larger swath coverage can be achieved
using a transducer array of multiple beams (Figure 3). In echo sounders,

acoustic beams are formed via the excitation of quartz crystals on the
transducer array. The propagation of multiple acoustic waves from the
transducer creates a linear series of elliptical areas of ensonification (i.e.
footprints) on the seafloor (Figure 3, right image). The return signal from each

beam is used to measure the average depth of its corresponding footprint.
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Figure 3: Single-beam vs. multibeam sonar.

Schematic describing single beam (left panel) and multibeam (right panel)
sonar modes of operation (modified from Hughes Clarke, Ocean Mapping
Group, Univ. of New Brunswich Fredericton).
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The spatial resolution of multibeam sonar is dependent on the beam-forming
capabilities of the particular system. In high-resolution systems, beams are

narrowly focused, and can thus produce smaller footprints. Since depths are
averaged over a single footprint, the resolution of the system is inversely
proportional to the size of the footprint. In other words, the smaller the
footprint, the higher the spatial resolution of the multibeam system. As the
size of the footprint changes with changing depth, the multibeam system
electronically adjusts the beam angles to optimize the spatial coverage over
the entire swath width of the beams. Also, the period of each ping changes
with depth increasing as depth increases and vice versa. Therefore,

resolution is indirectly a function of depth since the footprint size of each beam

is electronically controlled by the multibeam system.

For this study, the multibeam data for the deeper areas (>500 m) along the
western flanks of Heceta Bank were gridded to 10 meters while the data for
the shallower portions (70-150 m) were gridded to approximately 5 meters.
Fortunately, it is in these shallow regions where it is thought the largest
diversity in habitats occurs.

One of the challenges of seafloor mapping in the past has been the geo-
referencing of the depth soundings collected by sonar systems. Over the last

two decades, civilian maritime navigation has become very accurate and
precise due to the utilization of the global positioning system (GPS), which has

a maximum positional accuracy of 1-2 meters (Hughes Clarke et al. 1996).
Navigation on the MN Ocean Alert consisted of a differential GPS system
using a local reference station. Since vessel attitude constantly changes,
corrections for roll, pitch, and heave of the vessel were also applied using a
shipboard attitude sensor; and local tidal variations were incorporated into the

depth calculations.
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Acoustic Backscatter Principles

Acoustic backscattering is defined as the total amount of acoustic energy
(signal amplitude) reflected from the seafloor and received by the echo
sounder transducer array. Two physical processes affect the interaction of
acoustic waves with the seafloor: acoustic scattering and specular reflection.
Acoustic scattering is a "functional relationship between the intensity of the
scattered energy with the angle of ensonification, the angle of the returning
acoustic wave, the roughness of the seafloor, and the material properties of
the seafloor" (Nishimura 1997). The highest acoustic amplitude returns are
caused by the densest substrate or areas of high topographic variation while

softer unconsolidated sediments and flat areas produce the lowest amplitude

returns. It is the knowledge of how various lithologic materials scatter acoustic

waves that facilitates many seabed textural classifications. Specular reflection

is dominant at near incident angles and results in a relatively strong amplitude

return from the water-sediment interface (Nishimura 1997). Unfortunately, it is

this strong amplitude return that causes a sonar image artifact known as nadir

noise (Blondel 1997), which appears in backscatter imagery as relatively high

reflective linear striping along the sonar swath and directly under the vessel

path (Figure 2, left panel).

Submersible Dives
Submersible dives using the remotely operated vehicle (ROPOS) and human

occupied vehicle (Delta) were conducted in summers of 2000 and 2001 to
groundtruth the imagery and collect information about benthic substrata and

fauna. A total of 5 Delta (in 2000 only) and 28 ROPOS dives (Figure 2) were

completed, including transects at six historical stations established during the

1988-1990 programs at Heceta Bank (Pearcy et al. 1989; Hixon et al. 1991;

Stein et al. 1992), as well as across boundaries defined on the sonar imagery

and across zones of particular biologic and/or geologic interest (e.g.

pockmarks). The resulting geographic coverage better represents the
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diversity in habitats on the Bank than did those of the 1988-1990 programs.

The purpose of the dives was to either conduct quantitative fish transects or to

explore areas of interest. The design of the fish transects simulates those
conducted during the 1988-1990 program and was described by Hixon et al.
(1991); Stein et al. (1992); and Nasby-Lucas et al. (2002); and a brief
description follows. Each fish dive included two 30-minute linear transects
with a 10-minute quiet period between transects to assess the effects of
submersible lighting and noise on fish behavior. Parallel lasers mounted on
the submersibles were used to approximate fish size and transect width.
Daytime fish transects were repeated during the night with ROPOS to evaluate

diel patterns of behavior. Exploratory dives with ROPOS were also used to
study new areas and collect biological and lithological samples.

Observational data were interpreted from high-resolution digital video to detail

information about benthic substrata, demersal fish species and abundances,

and benthic invertebrate fauna. The seabed was characterized by the same

7-class system used during the 1988-1990 program and represented the
diversity in texture and topographic relief observed in the submersible videos.

Those seven substratum classes (Figure 6) listed in order of increasing texture

and relief were mud (M), sand (5), pebble (P, diameter <6.5 cm), cobble (C,

diameter >6.5 cm and <25.5 cm), boulder (B, >25.5 cm), flat rock (F, low
vertical relief), and diagonal rock ridge (R, high vertical relief). The seabed
was classified using a 2-letter code the first letter denoting primary
substratum (>50% of field of view) and the second letter denoting secondary
substratum (>20% of field of view). If only one substratum was visible or the

secondary substratum covered less than 20% of the field of view, the primary
substratum was recorded twice (e.g. MM). Changes in substrata were
recorded only when the duration of the substratum patch was 10 seconds on

the videos. Fish densities were calculated using the length of the substratum
patch and transect width.
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Since the number of dives and bottom time by ROPOS far exceeded that of
Delta, only the ROV observational data were used in this classification.
Furthermore, compilation of substrate data was concurrently performed by two
individuals so as to minimize any subjectivity associated with video

interpretations.
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Figure 4: Observed substrata on Heceta Bank.

Seven classified substratum types observed from submersibles at Heceta
Bank. Water depths are listed in parentheses.
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Seafloor Substratum Classes
A- Mud (127 m)
B Sand/Boulder (76 m)
C - Mud/Pebble (127 m)
D Cobble (84 m)
E Boulder (109 m)
F - Flat Rock (81 m)
G Rock Ridge (130 m)

Figure 4: Observed substrata on Heceta Bank.
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Classification Approach
A variety of methods exist for classifying seafloor habitats, ranging from very

qualitative to entirely quantitative. One relatively qualitative approach involves

the visual interpretation of sidescan or backscatter imagery produced by
sidescan and multibeam sonars, respectively (e.g. Wakefield et al. 1998).
This approach is strongly dependent on the expertise of the interpreter and
his/her experience in pattern recognition, and thus is not very repeatable. At

the other end of the spectrum, published algorithms are used in a neural
network to quantitatively classify seafloor substrata. This can be achieved
either by characterizing returned acoustic signal amplitudes (e.g. Questar-
Tangent QTC View) or analyzing patterns in sidescan or multibeam
backscatter imagery (e.g. Triton-Elics SeaClass). This type of approach is
often applied in situations were little groundtruthing is available, and should
yield similar results regardless of the user. Yet another approach involves
using a combination of quantitative topographic and textural parameters
derived from bathymetric and acoustic backscatter data, respectively (e.g.
Dartnell 2000).

Before choosing a particular approach, it was necessary to evaluate the
objectives of the classification and potential limitations of available data. The

major objective of this study was to produce a map of seafloor habitats that will

provide a context for improved abundance estimates of resident groundfish

species. The ability to map habitats at a particular scale is dependent on the

resolution of the available seafloor imagery; which in this case corresponds to

a macroscale level of classification (on order of 1-10 m; Greene et al. 1999)

that includes seafloor features such as ridges and boulders. That is not to say

that smaller features cannot be identified using the multibeam data; smaller
scale substrata such as muds, sands, and cobbles exhibit discernable textural

patterns in acoustic backscatter imagery. However, differentiating between all

seven substrata classes (mud, sand, pebble, cobble, boulder, flat rock, and
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rock ridge) proved to be problematic. For instance, it was difficult to
distinguish boulders from cobbles because they exhibit similar patterns in
acoustic backscatter imagery and are not individually resolved by the available

bathymetric imagery. Consequently, it was necessary to group various closely

associated substrata in order to map them efficiently. From statistical

analyses conducted during the 1988-1990 program, it is known that boulders

and cobbles were strongly correlated as were ridges and sands; and these
substrata combinations showed correlations to various species of resident

groundfish (Hixon et al. 1991; Stein et al. 1992). According to these findings

and foreseeable limitations of the imagery, closely associated substratum
classes were grouped into four target habitat classes:

Ridge-Gully

High-Relief Rock (boulders, cobbles)

Unconsolidated Sediment 1 (muds)

Unconsolidated Sediment 2 (sands)

Considering the objectives of this study, the amount of available observational

data, and scale issues, a more quantitative approach to classifying seafloor
habitats was chosen. The approach used in this study is similar to one
described in Dartnell 2000, and will be described next.

Data Analyses
The basic method for this classification involved a hierarchical decision tree
with parameters derived from high-resolution multibeam bathymetric and
backscatter imagery. Before assigning parameter values in the decision tree,

it was necessary to determine which parameters were strongly correlated with

the seven substratum classes (and related target habitat classes). Therefore,

a multivariate analysis was performed on the seven substratum classes and

the image parameters. Once these strong correlations were known, it was
necessary to identify the ranges of values for each parameter that was specific
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to a particular target habitat class (e.g. High-Relief Rock). For that reason, the

observational data had to be compared to the relevant geomorphologic
parameters for that target habitat class. Once these steps were completed for

all four target habitat classes, the finished decision tree was applied to all the

gridded parameters to create a habitat prediction map for the Heceta Bank
survey area (Figure 17).

Dynamic Segmentation
To exploit the multitude of data available from direct observations, it was

necessary to translate it into a format favorable to spatial analysis. The

optimal format chosen was the dynamic segmentation data structure
developed by Environmental Systems Research Institute, Inc. (ESRI) because

it is ideal for modeling and analyzing linear features such as those
representing submersible dive transects. Dynamic segmentation was
previously applied to the substrata dataset interpreted from video data
collected during the three historical studies at Heceta Bank (Nasby-Lucas et

al. 2002). This facilitated an analysis of small homogeneous habitat patches

and subsequent estimation of fish abundance within those patches.

Dynamic segmentation allows for the representation of changing 'events'
along a linear feature; the 'events' in this case being the seven seafloor
substratum classes (Figure 4) used in historical studies at Heceta Bank. To

be consistent with the historical methods and substratum classification, videos

were interpreted by noting time and change in substratum with the same 2-

letter codes used during the 1988-1990 program. A translation of substrate
data into this data structure was necessary for relating groundtruthed data to

the multibeam imagery (Figure 5).
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Substratum Classes

bb rn-mud
bc- bm s-sand- bp- br- bs p-pebble
cb
cc c-cobble- cm
cp b-boulder
cs
fr
mb f-flat rock
mc
mm r-rock rèdge
mp
pb
pc
pm
pp
PS
rb
rc
rp
rr
rs
sb
sc

sr
ss
xx pause
zz end of transect

Scale (meters)

it
500 0

Figure 5: ESRI's dynamic segmentation data structure.

ROPOS dive R610 is formatted into the dynamic segmentation data structure
and overlain onto an inset of the EM 300 multibeam sonar illuminated
topography imagery. Seafloor substratum classes are color-coded according
to the above key.

Map Parameters Derived from Multibeam Data
Once target habitats were established and the observational data were
translated into a format favorable to spatial analysis, it was necessary to

derive parameters from the multibeam imagery that would facilitate the
creation of distinct signatures for each target habitat. The classification used
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in this study is essentially a two-fold approach a topographic component

comprised of parameters derived from the bathymetric data and a textural
component comprised of the parameters derived from the backscatter data
(Figure 8). Using a combination of parameters derived from these two main

data sets, conditions specific to each target habitat class were defined.



Processing of
EM300 Multibeam Data
Project to UTM-Zone 10

Topographic Component

Battiymetry
(5m/1 Om grids)

Depth Slope Roughness TPI
(5m/1 Om grids) (5m/1 Urn grids) (90m x 90m kernel) (50m-250m annulus)

englSo
Clustered Clustered Clustered

Slope Bathymetry Roughness TPI
(1Dm grid) (9Dm x 9Dm kernel) (50m-250m annulus)

Decision Tree
Erdas Imagine

Knowledge EngineerII 1

Ridge-Gully High-Relief Rock
(cobbles, boulders)

Unconsolidated Sediment 1
(muds)

Unconsolidated Sediment 2
(sands)

Textural Component

Backscatter
(5/1Urn grids)

Intensity Roughness
(1 Om grid) (1 5m x 1 5m kernel)-

ISODATA clustering ISODATAClustering
(5 classes) (5 classesl

I____________
Clustered Clustered

Signal Amplitude Backscatter Roughness
(1Dm grid) (l5mx 15m kernel)

Nadir Noise

Figure 6: Flow chart of habitat classification process.

Ovals represent processes; rectangles represent intermediate raster images. Adopted from Dartnell (2000).
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Signal Amplitude

The first parameter used to define specific seafloor habitats was acoustic
signal amplitude (backscatter). On one end of the backscatter spectrum, mud

is easily distinguished because it exhibits the lowest local acoustic ref lectivities

in the backscatter imagery. On the other end, boulders and cobbles exhibit
the highest acoustic ref lectivities (Embley et al. 2002, in review) and are easily

mapped using backscatter data alone. However, in areas where the coverage

of boulders or cobbles is less and mud pervades the interstices, the

backscattered acoustic energy might be less than in areas with complete
coverage of boulders and/or cobbles. Surprisingly, rocky ridges on Heceta

Bank yield only moderate backscatter values, because they are composed
primarily of semi-consolidated mudstones with a primary porosity that is further

enhanced by the boring of benthic organisms. In the acoustic backscatter

imagery, linear features of higher backscatter values are evident in areas of
ridges. These higher backscatter values are not caused by the ridges
themselves, but correspond to patches of boulders or cobbles that have
eroded from larger outcroppings and have settled between ridge features.
These and other phenomena preclude using backscatter alone as a means to

differentiate all target habitats.

Backscatter Roughness

In order to differentiate between homogeneous and heterogeneous

backscatter provinces, backscatter roughness was derived from the signal
amplitude data. Backscatter roughness is a measure of the total variance in

acoustic amplitude (backscatter) between all pixel values within a specified
neighborhood (e.g. rectangular kernel, circle, annulus). The function of this
roughness derivation is scale dependent. For instance, a roughness value for

a pixel within an area of 1 kilometer2 might be very different than the
roughness value for the same pixel in an area of 30 meter2. Low backscatter

roughness values represent neighborhoods where there is little variance
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among the incorporated pixels, whereas high backscatter roughness values

represent neighborhoods with larger variance. High backscatter roughness

might correspond to areas where softer substrata (i.e. mud) are interlaced with

harder substrata (i.e. boulders or cobbles) within a single neighborhood. On

the other hand, areas of low backscatter roughness correspond to

neighborhoods with homogeneous substrata - either all mud or all

boulder/cobble for instance. For this classification, backscatter roughness was

calculated for a 1 5-meter2 rectangular kernel.

Bathymetric Data

The primary data source for the topographic component of the classification

was the bathymetric data. Depth itself is a useful parameter in seafloor
classifications. However, out of the four target habitat classes only the Ridge-

Gully class is known to occur within a discrete depth stratum (67 to 205 meters

water depth). Boulder, cobbles, and unconsolidated sediments occur
throughout the entire depth range of the multibeam survey. In order to
differentiate between the other three target habitat classes, three additional
parameters were derived from the bathymetric data: slope, roughness, and

topographic position index (TPI).

Slope

The first parameter derived from the bathymetric data was local slope (first

derivative of depth). Slope is defined as the variance of depth in the
neighborhood of a target pixel. In this paper, it is termed local slope because

it is limited to the spatial resolution of the data, and in this study was
calculated from both the 5-meter and 10-meter bathymetric grid. Slope is

used to identify specific topographic features in bathymetric imagery. For

instance, ridges on Heceta Bank elicit medium slope values (4-30°) while
areas of boulders or cobbles or flat surfaces of unconsolidated sediments elicit

low slope values (<4°).
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Bathymetry Roughness

The second image derived from the bathymetric data was bathymetry
roughness. In the same way that backscatter roughness depicts the variance

in backscatter within a neighborhood, bathymetry roughness is a measure of

the total variance in depth. As with any 'roughness' derivation, bathymetry
roughness is scale dependent, and different values for a particular pixel may
result from varying neighborhood sizes. For instance, roughness calculated

for a 90-meter2 neighborhood revealed larger ridge features while roughness

calculated for a 30-meter2 neighborhood revealed smaller outcroppings. As

with slope, bathymetry roughness is useful in identifying topographic features

in the bathymetric grid, but is best at depicting specific size-class features.
For this classification, bathymetry roughness was calculated for 30-meter2 and

90 meter2 rectangular kernels.

Topographic Position Index

The third parameter derived from the bathymetric data was topographic
position index (TPI). As with roughness, TPI is another neighborhood
statistical algorithm. The TPI algorithm compares the elevation of each pixel

to that of the mean elevation value within a specified neighborhood. The

algorithm is defined as:

TPI<scale factor> = int((dem focalmean(dem, annulus, irad, orad)) + 0.5)

Where:

scale factor = outer radius in map units

irad = inner radius in cells

orad = outer radius in cells

The algorithm first calculates the mean value of all the pixels within a specified

neighborhood (e.g. rectangular kernel, circular ring, annulus) and then
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calculates the variance from that mean. These variance values are rounded to

the nearest integer value for ease of storage.

Positive TPI values represent topographic positions that are higher than the

mean elevation within the specified neighborhood, while negative values
denote positions lower than the mean elevation (Figure 7). As with the
roughness algorithm, TPI is scale-dependent. To determine which scale factor

might be appropriate for identifying macroscale ridge features in our study
area, numerous vertical dive profiles from the ROPOS transects were
consulted. After some simple calculations, it appeared evident that many
ridges on Heceta Bank occur at a 20-30 meter frequency. Consequently, TPI

at numerous annuli sizes was calculated, each being large enough to
encompass features of 20-30 meters in size.

For this classification, TPI<50>, TPI<75>, TPk125>, TPI<150>, and

TPI<250> were calculated. Classification of TPI into positive, negative, and

zero variance classes provided an automated method of depicting ridge and
gully features. Since ridges are resolved by both the 5-meter and 10-meter
bathymetric grids and are therefore visible on the illuminated topography
imagery, they served as a means to visually assess which scale factor of TPI

represented the most ridges and outcroppings. After repeated examination, it

was evident that TPI<125> was the optimal scale factor for this application.



Topographic Position Index

tpi<scale factor' = int((dem focalmean(dem, annulus, irad, orad)) + 0.5

scale factor = outer radius in map units
irad = inner radius of annulus in cells
orad = outer radius of annulus in cells

The index is converted to integer for storage efficiency and symbolization

orad * pt> u = tpi > 0 (ridge)
irad *j

7
1 Elevation at point pt
1 Mean Elevation neighborhood u

I
pt < u = tpi <0 (valley)

4 Mean Elevation u

Ii I i Elevation at point pt

pt - u = tpi - 0 (constant slope, flat area, or saddle)
Check slope of the point

Flat
Slope Mean Elevation in neighborhood u

Mean Elevation in
neighborhood u

Elevation at pointpt Elevation at point pt

Image source. Andrew D Weiss - Indus Corportation

Figure 7: TPI algorithm.

Algorithm and schematic describing topographic position index (Adopted from
Weiss 2000).
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Multi variate Statistics

Multivariate associations among groundtruthed substrata and various scales of

the six geomorphologic parameters (i.e. backscatter intensity, backscatter
roughness, slope, bathymetry roughness, TPI, and depth) were examined
using principal components analysis (PCA). PCA "reduces the dimensions of

a single group of data by producing a smaller number of abstract variables
(linear combinations of the original variables, principal components)" (James
and Mulloch 1990). The primary goal of the PCA was to extract strong
correlations between observed seafloor substratum classes and the derived

geomorphologic parameters, in order to establish a rules-based decision tree.

Strong correlations revealed in the first three principal component scores
helped determine which geomorphologic parameters could be used to define
each target habitat class in a decision tree.

Also, PCA of 2000-2001 ROPOS transect data and canonical correlation
analysis (CCA) of historical Delta transect data were used to group related
substratum classes. For instance, CCA of historical data revealed that 'hard'

substratum classes were strongly correlated as well as were 'soft' substratum
classes. In other words, 'hard' substrata like boulders and cobbles could be
grouped, as well as 'soft' substrata like muds and sands. PCA of ROPOS
data collected in 2000 and 2001 also revealed similar correlations, and will be

described in the Results section. These two statistical tools helped define the

four target habitat classes for a decision tree: Ridge-Gully, High-Relief Rock

(boulders, cobbles), Unconsolidated Sediment 1 (muds), and Unconsolidated
Sediment 2 (sands).

ISODA TA Clustering

To simplify their large 8-bit datasets, each gridded geomorphologic parameter

was statistically clustered using the Unsupervised Classification utility in Erdas
Imagine. Unsupervised classification, also know as ISODATA clustering,
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groups pixels based on their natural arrangement in the image data.
Specifically, this method uses minimum spectral distances to assign a cluster

to each pixel. The mean and covariance matrix of each cluster is calculated

and the program iteratively groups subsequent pixels based on shifting means

of each cluster. For all parameters, the gridded data were clustered into five

classes based on 1.0 standard deviation units; the exception being TPI<1 25>

which was clustered into three classes to represent positive, negative, and
zero variance values.

Once correlations between observed substratum classes and geomorphologic

parameters were known, it was next necessary to determine the values for
each rule in the decision tree. For this reason, the distributions of the
clustered parameter pixel values were examined for each substratum class.

Rules-Based Decision Tree
Using the results from the PCA and comparisons of clustered geomorphologic

parameter data with groundtruthed substratum classes, a rules-based decision

tree was established using the Knowledge Engineer utility in Erdas Imagine

(Figure 8). For this application, hypotheses represented the target habitat
classes; rules represented the substratum classes specific to each target
habitat class; and variables were the geomorphologic parameters used in the

rules to define the hypotheses. For example, High-Relief Rock is the
hypothesis; Boulder and Cobble are the substratum classes; and acoustic
signal amplitude (backscatter intensity) and backscatter roughness are the
variables used to define High-Relief Rock (Figure 8). The decision tree was
applied to the clustered backscatter intensity data and the four clustered
derivative parameters (i.e. backscatter roughness, slope, bathymetry

roughness (90m2), TPI.<125>) to create the output prediction map using
Imagine's Expert Classifier utility. In addition, depth was used as a rule for the
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"Ridge-Gully" target habitat because ridges (as defined for this study) are

known to locally occur only on the Bank (<205 m water depth).
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Rules-based decision tree created in Erdas Imagine Knowledge Engineer.
Hypotheses (left column of right window) represent the target habitat classes;
rules (middle column of right window) represent the classified substratum
classes observed from the submersibles; variables (right column of right
window) represent the parameters derived from the gridded multibeam
bathymetry and backscatter data.

Noise Removal

Nadir noise caused by specular reflection is common with multibeam sonar
systems, and shows up as a linear feature of higher backscatter along the
sonar swath directly under the vessel. This nadir noise is prevalent in Heceta

Bank backscatter imagery and appears as white lines traversing a north-south
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axis in the center of each sonar swath. The nadir noise also appears in all
images derived from the acoustic backscatter data and therefore is evident in

the final habitat map (Figure 17).

One noise removal technique was employed prior to the initiation of the
classification process. In Erdas Imagine, Fourier analysis was used in an

attempt to remove periodic noise, namely nadir noise, in acoustic backscatter

imagery. The premise behind Imagine's application of Fourier transformations

is to convert gridded imagery from the spatial domain into a frequency domain

by converting the image data into a series of two-dimensional sine waves of

various frequencies (Erdas 1997A). The resulting Fourier image is not easily

viewed but the magnitude of the image data can be displayed in Imagine,
where periodic noise caused by banding, spotting, or striping appears as
artifacts. Once identified, Fourier editing techniques can be used to filter out

periodic noise, and the cleaned frequency data can be inversely transformed

back into spatial image data.

Fourier transformations were performed for the acoustic backscatter imagery,

but only some minor artifacts were discovered. These frequency artifacts

were removed using a wedge filter, but the method did not significantly remove

the nadir noise and rather appeared to undesirably "smooth" the image data.

Furthermore, the original and Fourier-edited backscatter grids were not
strongly correlated in the PCA analysis (Table 2), which was expected since

the two should represent very similar data. Therefore, the Fourier-edited

backscatter grid was only used to compute backscatter roughness since nadir

noise significantly affects this calculation.

After the decision tree was applied to all the image grids, a second noise
removal process described by Dartnell (2000) was used to filter out nadir
noise, and is detailed here. In ArcINFO's GRID utility, a running filter
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FOCALMAJORITY reclassifies the center pixel of a specified neighborhood
as the same value of the majority pixels within the neighborhood. In other

words, if a pixel classified as noise was surrounded by a majority of pixels
classified as Unconsolidated Sediment within a specified neighborhood, the

noise pixel would be reclassified as Unconsolidated Sediment.
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RESULTS

Principal Components Analysis
The first three principal components described 48.5% of the total variance
among all 19 factors (Table 2). From PCi, ridges were highly correlated to
many topographic parameters including bathymetry roughness (all scales),
slope (both 5-rn and 10-rn), TPI<125>, and depth. Similar parameters are

strongly correlated to each other because they represent similar data, only at

varying scales. For example, all four bathymetry roughness parameters have

almost equal PC scores, as do the two slope grids (5-rn and 10-rn). PCi also

suggested that ridges are strongly correlated to one of the backscatter
roughness grids (15-rn2 kernel, wedge). This particular roughness grid was

derived from a backscatter grid that was srnoothed using a Fourier noise
removal utility (Erdas 1997B). PC2 and PC3 revealed that the 'harder'
substratum classes boulders and cobbles are highly correlated; and are in

turn strongly correlated to depth and the two backscatter grids (5-rn and 10-rn)

and backscatter roughness (15-rn2 kernel, wedge; PC2 only). Therefore,

backscatter amplitude and roughness were used as rules for defining the
High-Relief Rock habitat. PC3 showed strong correlations between ridges,

boulders, and cobbles. During submersible dives, boulders and cobbles were

often observed at the bases of many ridges and outcrops; so it is believed they

may have formed either in place or due to erosion of the ridges and outcrops.

PC3 also suggested that mud and pebbles are strongly correlated to depth.
However, muds (and sands) are known to occur over the entire depth strata of

the multibeam survey, so depth is not a useful factor for the two
Unconsolidated Sediment target habitat classes.
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Table 2: Principal Components Analysis results.

Variables listed in italics are the observed substratum classes; variables listed
in bold are the map parameters derived from the bathymetric and backscatter
data.

VARIABLE PCi PC2 PC3
Eigenvalue 4.4994 2.7965 1.9144
Proportion 0.237 0.147 0.101

Ridge -0.120 -0.458 -0.189
Boulder 0.056 0.351 -0.294
Cobble 0.037 0.248 -0.208
Pebble -0.016 0.018 0.251
Sand -0.006 -0.055 -0.043
Mud 0.095 0.110 0.605
Flat Rock 0.007 -0.070 0.044
Backscatter Amplitude (5 meter grid) 0.025 0.408 -0.279
Backscatter Amplitude (10 meter grid) 0.034 0.351 -0.321
Bathymetry Roughness (30 m2 kernel) -0.411 0.005 -0.019
Bathymetry Roughness (90 m2 kernel) -0.425 0.146 0.057
Bathymetry Roughness (35 m2 kernel) -0.428 -0.062 -0.049
Bathymetry Roughness (95 m2 kernel) -0.430 0.114 0.036
Backscatter Roughness (15 m2kernel, no wedge) 0.007 -0.180 -0.024
Backscatter Roughness (15 m2 kernel, wedge) -0.171 0.228 0.098
Slope (5 meter) -0.325 -0.089 -0.087
Slope (10 meter) -0.305 -0.018 0.062
TPI<125> -0.130 -0.074 -0.144
Depth -0.084 0.399 0.414

Comparison of Map Parameters with Observational Data
Rule determination for the Ridge-Gully hypothesis was a deviation from the

rule determination for the other target habitat classes. Since macroscale

ridges are resolved in the EM 300 topography imagery, aligning classification

runs with the imagery superseded using the cluster values that intersected a

majority of groundtruthed pixels. For example, comparison of groundtruthed

data with the clustered 10-meter slope data revealed that slope clusters 1 and

2 intersected the most groundtruthed RR pixels (Figure 9). However, upon

overlaying the clustered slope image onto the topography imagery, it appeared

that clusters 2 and 3 best represented the locations of ridges. Therefore,



36

slope cluster 2 and 3 were used as values in the decision tree. Also for the
Ridge-Gully hypothesis, bathymetry roughness (90-rn2 kernel) clusters 2, 3,
and 4 were shown to intersect many of the groundtruthed RR pixels (Figure

10), and also effectively represented macroscale ridges in the topography
imagery. Therefore, they were used as values in the decision tree. Although
TPk125> was shown to correlate strongly with groundtruthed ridge pixels in
the PCA, classification runs using TPI did not result in contiguous areas of
pixels classified as Ridge-Gully. Furthermore, slope and bathymetry
roughness were sufficient to represent the locations of macroscale ridges on

the Bank, so TPI was determined to be a superfluous factor and was therefore

not used as a rule for the Ridge-Gully habitat class. Since slope clusters 2

and 3 and bathymetry roughness clusters 2, 3, and 4 also represent non-ridge

areas off the Bank, a maximum water depth value of 205 meters was used to

define the Ridge-Gully hypothesis because macroscale ridges (as defined in

this study) are know to only occur on top of the Bank (<205 m water depth).

For the High-Relief Rock hypothesis, strong correlations between textural
parameters and boulder and cobble substratum classes were evident in the
PCA (Table 2) and therefore were used for rules. Comparison of boulder (BB)

and cobble (CC) groundtruthed pixels with those of the clustered acoustic
signal amplitude data (10-rn) revealed that clusters 4 and 5 had the most pixel

intersections (Figures 11 and 12, respectively). Clustered backscatter
roughness (15 m2 kernel, wedge) was also used as a rule and clusters 1, 2,
and 5 had the most pixel intersections with boulders (BB) and cobbles (CC)
(Figures 13 and 14, respectively).

Clustered acoustic signal amplitude (backscatter) was the only parameter
used as a rule to define both Unconsolidated Sediment target habitat classes.

Comparison of groundtruthed pixel values with the clustered backscatter data

(10-rn) revealed that SS pixels intersect with higher backscatter clusters
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(clusters 3 and 4; Figure 15) than do MM pixels (clusters 1 and 2; Figure 16).
For this reason, the predictions are that Unconsolidated Sediment 1

represents higher concentrations of mud while Unconsolidated Sediment 2
represents higher concentrations of sand.
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Seafloor Habitat Characteristics

Target habitat classes (i.e. hypotheses) were defined by the values of the
clustered map parameter data (i.e. variables). The values of the variables in

turn define the substratum types (Figure 4) used to characterize the bottom
during the 1988-1990 program and 2000-2001 ROPOS dives at Heceta Bank.

Hypotheses, rules, and variables (Table 3) were combined in the rules-based

decision tree (Figure 8) to output seafloor habitat predictions. The cluster #5

and associated pixel values for each variable are shown in Table 3 while the

resulting output classification results are shown in Figure 17.



Table 3: Target habitat class characteristics.

Hypotheses, rules, variables, cluster #s and corresponding values for the
rules-based decision tree.
Hypothesis Rule Variable Cluster(s) Cluster Values

Ridge-Gully Ridge Bathymetry Roughness 2,3,4 Variance = 3-16
(90x90m kernel)

Ridge-Gully Ridge Slope (lOm) 2,3 3-8 degrees
Ridge-Gully Ridge Depth N/A > -205m
High-Relief Boulder- Backscatter Intensity (lOm) 4,5 189-237
Rock Cobble
High-Relief Boulder- Backscatter Roughness 1 2 5 Variance = 1-12,30-
Rock Cobble (15x15m kernel, wedge) ' ' 64
Unconsolidated
Sediment1 Mud Backscatter Intensity (1 Om) 1,2 44-182

Unconsolidated
Sediment2 Sand Backscatter Intensity (lOm) 3,4 183-1 95

Noise Nadir
Noise Backscatter Intensity (lOm) 2,3,4,5 176-237

Noise Nadir Backscatter Roughness Variance = 11-63
Noise (15x15m kernel, no wedge)

Noise Removal Results
The FOCALMAJORITY noise removal technique was fairly effective in

removing nadir noise, but some is still evident in the final habitat prediction
map (Figure 17). The number of pixels classified as Nadir Noise was reduced

by -.76% (from 378,430 to 91,855) using a rectangular kernel size of 7x7
pixels.

Also, because the FOCALMAJORITY technique does not remove all noise,

some pixels were misclassified. For example, misclassified pixels in the
Unconsolidated Sediment 1 areas of the flanks of the Bank show up as linear

striping of pixels classified as either High-Relief Rock or Unconsolidated
Sediment 2 (Figure 17).



Figure 17: Heceta Bank habitat predictions.

The left panel map is the raw output of the decision tree created in Erdas
Imagine Knowledge Engineer. The right panel map is the result of a noise
removal algorithm employed on the left panel image data.
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Figure 17: Heceta Bank habitat predictions.



DISCUSSION

Specific Findings
A primary finding of this study is that seafloor habitats for groundfish can be
delineated by identifying specific seafloor characteristics observed from
submersibles and extrapolating them using parameters derived from high-
resolution seafloor imagery. Numerous studies have identified correlations

between demersal fish and seafloor substrata (O'Connell et al. 2002; Amend

et al. 2001; Fox et al. (1999, 2000); McRea et al. 1999; Yoklavich et al. 2000),

and others have even extrapolated their findings to small homogeneous
habitat areas (O'Connell and Carlile 1993; Nasby-Lucas et al. 2002).

However, this study is one of the first to characterize seafloor habitats over a

large area of varying topographic relief and seafloor texture (see also Dartnell

2000). Furthermore, these habitat maps afford a context for spatial analyses

of other data of ecological importance, which will be discussed later.

The confidence associated with any classification is dependent on the quality

of the available seafloor imagery and the extent of groundtruthing; and this
study was fortunate to have both precisely positioned bathymetric and
backscatter imagery and direct in situ observations along transects that
covered a large diversity of habitats. Both bathymetry and backscatter data

were necessary for a comprehensive topographic and textural classification of

seafloor habitats. Bathymetry alone resolves seafloor features at the spatial

resolution of the bathymetric imagery, but textural patterns observed in
backscatter imagery are indicative of smaller-scale structural variations.
These variations have been found to be influential to the composition of
benthic macroinvertebrates and the distribution of demersal fish species
(Nasby-Lucas et al. 2002). For example, boulders and cobbles offer vastly

different structures for benthic fauna than do muds and sands; and distinct
assemblages have been correlated to unique structures (Hixon et al. 1991).
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While topography and geology provide primary structure, many benthic
macroinvertebrates provide secondary biogenic substrate for many species of

groundfish and therefore influence their distributions.

The ability to classify and map habitats is scale-dependent, and therefore
dependent on the resolution of the available imagery. Acoustic waves from a

30 kHz sonar system penetrate softer sediments on the order of centimeters

and are accurate to approximately 10 meters at 500 meters water depth
(Kongsberg Simrad 2001-2003). Higher frequency sonar can yield higher
resolution but the attenuation of acoustic energy generally increases with
increasing depth. Since the multibeam survey in this study covered both the
shelf and adjacent slope, using a higher frequency in deeper areas may have

compromised data quality. On the other hand, lower frequency signals would

penetrate further into softer sediments, giving a better indication of the
underlying geologic structure, but at the cost of resolution. Besides, available

seismic reflection data (Muehlberg 1971) already provided insight on the
Bank's subsurface geology (see Study Area section). Regardless of the
optimum multibeam system, the acquisition of the sonar data for this study
was opportunistic, and future studies might benefit from a more

comprehensive survey design.

The method presented in this paper is a first attempt at efficiently classifying
and mapping demersal fish habitats at Heceta Bank. Despite the wealth of
transect data used in this classification, additional video surveys are
necessary to confirm habitat boundary predictions. Furthermore, there is
potential to classify and map additional macrohabitats and some habitats
apparently significant to groundfish distributions have since been discovered.

For example, on a recent submersible survey of Heceta Bank in September

2002, investigators observed large diverse schools of rockfish over isolated
pinnacles (Wakefield, pers. comm.). These macrohabitats were not apparent
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in historical or recent analyses of transect data, but the ability to map these

features can be accomplished using methods similar to those presented in this
paper.

One additional dataset that would have been beneficial in this classification is

precisely positioned surface sediment data. During ROPOS dives at Heceta

Bank in 2000 and 2001, numerous rock samples were collected, but no
systematic sampling of sediments on or off the Bank was initiated. For this

reason, sediment sample data from numerous historical cruises and studies

was acquired for the Heceta Bank area in an attempt to differentiate
predominantly sand sediments from mud. Since most of these cruises
occurred before the advent of GPS, and sample locations were recorded using

Loran A, Loran C, or some other navigation system, the poor precision of the

navigation precluded any meaningful analysis. For example, cruise reports
from these past cruises and a Loran-C handbook (Melton 1986) cite positional

accuracies of +1- 2 km and +1- 0.5 km for Loran A and C, respectively. Clearly

the precision of these data are not sufficient for groundtruthing at the scales
relevant to this study; thus future sediment sampling using GPS navigation
would provide the means to describe unconsolidated sediments in more detail.

From an ecological perspective, one limitation of this habitat classification is
that it is entirely based on lithologic substrate. Numerous factors describe fish

habitats including depth, temperature, salinity, nutrient availability, biogenic
structures, and social aggregation to name a few. Accordingly, this habitat

classification would be improved by the integration of a variety of ecological
indices. Although time precluded it for this study, future analyses of relevant

data would help increase the utility of the habitat map presented in this study.

Although Heceta Bank and the surrounding area have been the focus of
numerous oceanographic investigations, analyses of oceanographic data
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collected concurrently with submersible operations have not yet been
published. In order to create a more detailed map of local habitats in the
future, dynamic data on current velocities, temperature, salinity, and oxygen
should be integrated into a multivariate analysis of habitat parameters. For

Heceta Bank, preliminary data analyses suggest no significant variations of

bottom temperature and salinity. Nonetheless, such variations if evident could

significantly effect the distributions of benthic macroinvertebrates and resident
groundfish. The presence of two ongoing process-oriented oceanographic
programs off Oregon Global Ocean Ecosystems Dynamics, Northeast
Pacific (GLOBEC-NEP) and Coastal Ocean Advances in Shelf Transport
(COAST) presents a unique opportunity to analyze many high-resolution
data sets and construct a more detailed picture of seafloor habitats on Heceta
Bank.

Applications and Management Implications
The major utility of this habitat classification and map is that it provides a
spatial context for the integration of other data of ecological importance.
Encyclopedia Britannica (2003) defines habitat as the, "place where an
organism or community of organisms lives, including all living and nonliving
factors and conditions of the surrounding environment". Due to dynamic
environmental conditions and a variety of anthropogenic impacts, the

identification of 'all living and nonliving factors and conditions of the

surrounding environment' is problematic. Furthermore, with our growing
understanding of natural processes the notion of habitat has become
increasingly complex this is evidenced in the increasing complexity of marine

habitat classification schemes (e.g. Greene et al. 1999; Allee et al. 2000).

Despite our increasing understanding of natural processes, habitat loss is still

identified as among, "the greatest long-term threats to the future viability of
U.S. fisheries" (Mace 2000). For that reason, the National Marine Fisheries
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Service (NMFS) created a Habitat Research Plan whose goal is to "conserve,
protect, and restore valuable habitats needed to sustain marine and
anadromous communities" (Mace 2000) through numerous research focuses
including:

Characterization and relating of benthic habitats to the distributions and

abundances of fisheries species;

Identification of habitat properties that contribute most to survival,
growth, and productivity;

Determination of habitat properties important in recruitment; and

Testing of harvest refugia concept for selected areas and managed
species.

These are congruent with the research objectives of the habitat-based
fisheries investigation conducted at Heceta Bank; and the habitat map
presented in this study is an initial step to achieving some of the above
research focuses. Specifically, there are three major applications of this
habitat classification: demersal fish stock assessments, mapping of essential

fish habitats, and design of marine reserves.

One application of the habitat map presented in this study is to the regional
stock assessment process. Nasby-Lucas et al. (2002) discovered that GIS
could be used to integrate high-resolution seafloor imagery and observational

data from submersibles to estimate demersal fish abundances within small
selected homogeneous habitat patches. They also proposed that a similar
methodology would be useful in conducting assessments over the entire
geographic area of Heceta Bank, once there was a better understanding of
habitats throughout the multibeam sonar survey area (Nasby-Lucas et al.
2002). Now that a map of these macrohabitats has been created for Heceta

Bank, estimating abundances for resident groundfish species over the entire
survey area can be initiated.



53

In addition to abundance estimates, this habitat map provides the means to
perform spatial analyses of other relevant data. For example, abundance data

collected from trawl surveys are not currently assessed in the context of
habitat. Furthermore, the spatial coverage of trawl surveys is limited by
topography; many habitats (including High-Relief Rock on Heceta Bank) are

not accessible to bottom trawl gear and thus are not systematically sampled.

The utility of habitat maps are that "untrawlable" areas can be identified and

alternative survey techniques can be designed to target these areas. Also,

throughout the investigations at Heceta Bank it has become evident that many

factors influence groundfish distributions, including benthic macroinvertebrate

community composition, food availability, and social interaction to name a few.

The challenge is now to integrate specific habitat parameters into current
modeling approaches to assessing fish stocks.

A second application is the mapping of essential fish habitat (EFH), defined by

Congress as "those waters and substrate necessary to fish for spawning,
breeding, feeding, or growth to maturity" (Sustainable Fisheries Act, 16 U.S.C.
1802). In 1996, Congress mandated the "identification of essential fish
habitat, the adverse impacts on that habitat, and the actions that should be
considered to ensure the conservation and enhancement of that habitat"
(Sustainable Fisheries Act, 18 U.S.C. 1855). Again, the extensive

observational data sets collected at Heceta Bank from submersibles and
ROVs facilitated the identification of fish-habitat associations of individual
species of resident groundfish. These important findings increased our
understanding of groundfish habitat requirements off the U.S. West Coast and

can be used to identify and locate EFH.

A third application of this habitat classification is the design and siting of
marine protected areas (MPA5) and fully-protected, no-take marine reserves
(e.g. fishery reserves and ecological reserves). One integral part of the
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marine reserve design process is the identification of critical habitats that help
achieve the proposed management and/or conservation objectives.

Accordingly, this habitat map provides a catalog of four habitats for a major
portion of the continental shelf off Oregon. In addition, this habitat map can
serve as a base map for the spatial analyses of other data sets relevant to the

design process, such as oceanographic and fishery-dependent data (i.e. effort
data).

In light of the current groundfish crisis, marine reserves may soon serve as a
fishery management tool for the West Coast. Due to the urgency of the
situation and the need for more progressive management measures, mapping

of marine habitats in a systematic and efficient way is critical to providing the

spatial context necessary for reserve design. The approach and associated
habitat map presented in this study provides one example of how habitat
mapping will aid in this very timely process.
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CONCLUSIONS

This study has proven that benthic habitats can be systematically mapped
through an integration of remote sensing data, in situ observations, and GIS
techniques. Using data from high-resolution multibeam sonar, direct

observation, and spatial analytical tools, four habitat classes at Heceta Bank

were mapped that relate demersal fish species to benthic substrata at the
macroscale level (1-10 meters). While similar studies have effectively mapped

large areas via the qualitative interpretation of sidescan imagery (Wakefield et
al. 1998), this study extrapolated small-scale observations of fish-habitat
associations to larger geographic areas of varying relief and texture using
quantitative parameters derived from both topographic and acoustic

backscatter imagery. By using quantitative parameters, this approach is both
repeatable and easily modified with additional groundtruthing.

The major limitation of this study is that the habitat classes are based entirely
on lithologic substrate. In order to prove more beneficial for estimating fish
abundance, defining EFH, and assisting the design of marine reserves,
additional parameters of ecological importance must be integrated. Layers

describing benthic macroinvertebrate community structure and dynamic data

on temperature, salinity, nutrient availability, and current velocities would
strengthen the future utility of this habitat map.

The current utility of this map is that it affords a context for spatial analyses of
a variety of geo-referenced data. Considering the dearth of relative

abundance data for many groundfish species, habitat maps like the one
presented in this study provide an efficient means to estimate abundances of

demersal fish species residing in diverse habitats than currently afforded by
traditional survey techniques. This method is not intended to replace current
survey approaches; rather to compliment annual shelf and slope trawl surveys
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by facilitating abundance estimates of groundfish species that tend to
associate with substrata of rugged and varying relief. For the regional stock
assessment process, this map provides one additional spatial parameter
besides depth and latitude that can be used to stratify catch data. Also,

multivariate analysis of trawl survey data with abiotic data of ecological
importance such as temperature, salinity, and nutrient availability can be used
to define additional relationships between groundfish species and their
habitats. The improved knowledge of these relationships will not only aid in
the assessment process but will also provide more detailed descriptions of
essential fish habitats. Finally, the habitat map presented in this paper will
serve as a context for spatial analyses of data pertinent to the design of
marine reserves and protected areas.

This study presents one approach to classifying and mapping benthic habitats,
but is not ideal in all situations. Depending on the quality and availability of

high-resolution data, other approaches may prove more practicable for a
particular set of circumstances. Due to extensive groundtruthing and the
availability of high-resolution seafloor imagery for Heceta Bank, the

quantitative approach described here provided a good mix of quality and
efficiency. Regardless of what method is chosen, the continued acquisition of

high-resolution seafloor imagery is necessary to improve our understanding of

benthic habitats and our ability to map them at a scale pertinent to regional
fisheries management.
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