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Abstract

Optical trapping is a tool used throughout a wide variety of disciplines rang-

ing from precisely probing and manipulating sub-micron organisms in biol-

ogy to analyzing fundamental charge transfer in colloidal physics. This thesis

presents research involving optical tweezer force measurements of polystyrene

and silica microspheres. In addition, preliminary work in tweezer-based sur-

face charge measurements is developed to examine surface charge at the

solid-liquid interface of silica microspheres.

The main purpose of constructing, and testing the tweezer apparatus is to

utilize its trapping capability for experiments involving charge measurements.

The optical tweezer related research provides information pertaining to force

measurements of a single beam optical tweezer trap equipped with an inde-

pendent back focal-plane laser position detection system. Calibration meth-

ods and experimental power dependence for 1µm-diameter polystyrene and

silica microspheres provide proof-of-principle results that exhibit expected

linear power dependence to within an experimental error of 10.5%.

The research involving charge measurements provide preliminary the frame-

work for studying charging/discharging dynamics of 1µm-diameter colloidal

silica spheres. Studying (dis)charging dynamics on nano-scale levels is dif-

ficult, however, the methods presented in this thesis uses an ultrasensitive

technique adopted from Roberts et al.1 to measure the e↵ective surface

charge of particles dispersed in water. This is performed by conducting

1G Seth Roberts, Ti↵any A Wood, William J Frith, and Paul Bartlett. Direct measure-
ment of the e↵ective charge in nonpolar suspensions by optical tracking of single particles.
The Journal of chemical physics, 126(19):194503–194503, 2007.

iii



iv

electrophoresis experiments designed to track the movement of an optically

trapped particle in the presence of an applied (AC) electric-field. Experimen-

tal results demonstrate the ability to measure the e↵ective surface charge.

The proof-of-principle experiments show that for a 1µm silica microsphere

the surface charge is found to be in the range of 66qel � 113qel, as compared

to Roberts et al. nonpolar suspended PMMA particles 14qel, yet similar to

Behrens et al.2 measurements of silica in deionized water 471qel � 2200qel.

The preliminary work documented in this thesis sets forth the necessary

groundwork to examine charging dynamics of molecular-coated silica micro-

spheres, and further experiments are being designed to study ADT-TES-F

coatings at varying electric-field frequencies.

2S. H. Behrens and D. G. Grier. The charge of glass and silica surfaces. Journal of
chemical physics, 115(14):6716–6721, 2001.
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Chapter 1

Introduction

The interaction of light with matter is a fundamental method commonly

used in research as a tool to manipulate and analyze properties of materials.

Research exploring organic optical materials, as opposed to inorganic, is of

interest due to their low cost and the ability to tune particular properties by

synthetic modifications [1]. Slight alterations can change optical, structural,

and electrical properties. These modifications can provide enhancements

tailored for particular applications in solar cells, thin-film transistors, and

light-emitting diodes (LED) [2, 3]. This thesis consists of (1) the experimental

design, development, and testing of a single-beam optical tweezer trap that

utilizes a separate laser-based position detection scheme, and (2) preliminary

work in conducting optical tweezer-based surface charge measurements of

silica microspheres.

1.1 Optical Tweezer Overview

Optical tweezer traps provide the ability to manipulate and measure pi-

coNewton forces of sub-micron dielectric particles. Tweezer traps are pro-

duced by taking advantage of radiation pressure. Ashkin [4] first discovered

that a tightly focused laser beam could accelerate microparticles, and by ar-

ranging two counterpropagation lasers, focused at the same spot, had the

1



2 Introduction

ability to confine a particle in three dimensions. From this research he iden-

tified the radiation pressure to be the central criterion in the technique of

optical trapping and sub-micron particle manipulation.

Contemporary optical tweezers have been commonly used throughout the

experimental field of physics, chemistry, and biology due in part by their ca-

pability to confine, manipulate, and apply picoNewton forces on sub-micron

particles [5]. Having the ability to move particles in the realm of nanometers

and apply small force free from optical damage has been particularly useful

in the study of biological systems [6]. Recently, optically trapped charged

particles have been used as force probes to map electric fields generated by

microelectrodes and to measure e↵ective surface charge [7, 8, 9].

The work in optical trapping presented in this thesis is similar to the appli-

cations above, in that an optical tweezer apparatus is constructed, tested, and

used for experiments to explore charge carrier dynamics of organic molecules.

The optical trapping portion of this thesis is presented as follows: Chapter 2

presents and overview of optical trapping theory, including the Mie (2.1) and

Rayleigh (2.2) regime. Chapter 3 describes the optical tweezer setup (3.1)

and sample cell preparation (3.2). Chapter 4 describes the model (4.2), and

analysis (4.3) involved in particle trapping. Chapter 5 describes the calibra-

tion process and the factors involved. Chapter 6 presents optical trapping

experiments, including power dependence (6.2), sphere-to-sphere variation

(6.3), and sample depth dependence measurements (6.4).

1.2 Surface Charge Measurement Overview

Understanding how molecules donate and accept charge is an important as-

pect in (opto)electronic applications. The OPE group at Oregon State Uni-

versity have been utilizing single-molecule fluorescence spectroscopy to study-

ing intermolecular interactions of organic molecules. In particular, function-

alized anthradithiophene (ADT) with triethylsilylethynyl (TES) side-groups

and fluorinated (F) end-groups (ADT-TES-F). However, optical tweezer-
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based charge measurements may provide an alternative approach to analyze

charging dynamics of specific organic molecules. This type of application

involving tweezer trapping is relatively new, therein lies potential for im-

provement and sophistications that may provide detailed information about

mechanisms involved in (dis)charging dynamics at sub-micron scale.

Within recent years, highly sensitive techniques involving optical tweez-

ers have been developed to investigate the surface charge carried on isolated

dielectric microparticles in nonpolar liquid with elementary charge (qel) res-

olution [8, 9, 10]. Studying charge transfer on the nanometer scale requires

extremely precise measurements that are particularly challenging in prac-

tice. Surface charge measurements are most readily performed through elec-

trophoresis experiments, that is, measuring a particle’s position in the pres-

ence of an applied (AC) electric-field.

Preliminary research involving surface charge measurements presented in

this thesis is similar to the work of Roberts et al. [8]. In that, the methods

described in [8] will be used to measure the e↵ective surface charge carried

on 1µm-diameter silica microsphere suspended in water. The results are

compared to the known surface charge for silica microspheres and serve as a

control in further experiments.

Research involving optical tweezer-based electrophoresis experiments in

Chapter 7 are outlined as followed: Section 7.1 explores the model and ba-

sic principles governing electrophoresis experiments. Section 7.2 covers the

preliminary work in electrophoresis experiments, including sample cell prepa-

ration, modifications (7.2), and (AC) electric-filed frequency dependent mea-

surements on silica microspheres (7.2.1), followed by the results and discus-

sion(7.2.1).
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Chapter 2

Principles of Optical Trapping

Optical trapping and manipulation of dielectric particles has been achieved

throughout a vast range of particle size from nanometers to hundreds of

micrometers. As a consequence of di↵ering length scales there is no single

theory, or model, accurately describing this scale range. As a result, two

regimes are traditionally used to describe the optical forces of trapping for

conflicting particle length scales relative to the trapping laser wavelength

�. When the target particle diameter d is much larger than the trapping

wavelength (d ��) the conditions for Mie scattering are satisfied. In such

cases, a simple ray optics model can be used to within a good approximation

for most trapping applications. For particles much smaller than the trapping

wavelength (d ⌧�) the conditions for Rayleigh scattering are satisfied, and

electromagnetic theory can be used by treating the particle as a point dipole

[11, 12, 13].

2.1 Geometric (ray) Optics Model: Mie Regime

(d ��)

Particle trapping within the Mie regime originates from the transfer of mo-

mentum between the incident laser beam and the particle surface through a

5



6 Principles of Optical Trapping

scattering process [14]. When a transparent dielectric microsphere is near the

beam-focus it experiences forces due to constant bombardment of photons.

This process is denoted as radiation pressure [4, 11]. Impinging photons on

the surface of the particle are traditionally decomposed into two contributing

force components: (1) scattering forces (~Fscat), and (2) gradient forces

(~Fgrad). This traditional1 model is simply an intuitive approach to examine

the complete optical force contributions as a whole [12].

The scattering forces (~Fscat) can be thought of as an infinite stream (ray)

of photons striking the particle surface. Since photons have momentum, each

interaction exerts a force which tends to push the particle away from the beam

focus. As a result, the scattering force acts in the direction of light

propagation and is proportional to the incident laser intensity.

For most situations incident light intensity is distributed uniformly, in

which case the scattering force dominates. However, in the case of a steep

intensity gradient, such as one produced at the focal point, the gradient force

component (~Fgrad) contributes largely to the overall optical forces acting

on an object. The transmitted light is refracted, resulting in a change of

momentum as it enters and exits the particle. The gradient forces (~Fgrad)

arise from Newton’s three law, the refracted light momenta transfer between

particle surface and its surrounding medium. Thus, the gradient force

acts in the direction of the focal point and is proportional to the

gradient of the laser intensity hence the gradient force.

2.2 Rayleigh Regime (d ⌧�)

In general, the criteria for Rayleigh scattering theory is that the particle

is smaller than �/20 (d⌧�) [16]. Within the Rayleigh regime the incident

laser light cannot be represented by an infinite number of rays. Instead, the

spherical particle is considered a point dipole that scatters light [13, 14].

1The traditional approach is an approximation which neglects the contributions of
absorption forces (~Fabs), for further information regarding this force see Ref. [15, 12]
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The gradient force (~Fgrad) arise from the interaction between the inho-

mogeneous electric-field of the trapping laser and the dielectric particle ma-

terial2. Unlike conductors, dielectrics are composed of atoms with tightly

attached electrons to their respected nuclei, thus within the presence of

an external electric-field, electrons are unable to roam about the material,

as is true for electrons in conductors. However, the tightly attached elec-

trons (within their respective orbital cloud) can change orientation direction

(shift or rotate) within the bounds of their respected atom or molecule [17].

Dielectric Sphere

Trapping laser intensity profile

Electric-field
vector

Gradient
force

Figure 2.1: Induced dipole depiction of the
gradient force acting on a dielectric micro-
sphere near the trapping laser’s di↵raction-
limited focus. Illustration was generated
through Ref. [18].

When placed in an inhomogeneous

electric-field (the laser focus) the in-

dividual atoms can be thought of

as tiny dipoles that align to the di-

rection of the electric-field. The

polarization alignment, and fluctu-

ation imposed by the field yield a

force on each dipole in the direc-

tion of highest intensity (laser fo-

cus). Thus, for dielectric parti-

cles the gradient force is pro-

portional to the intensity gra-

dient at the focus and the par-

ticles polarization [12, 17]. It is

within this interaction between the

dipoles and the electric-field fluctu-

ations, near the focus, that creates

the gradient restoring force. A pic-

torial description of this interaction

is illustrated in Figure 2.1.

Figure 2.1 depicts the gradient force vector (~Fgrad) that arises from in-

2Laser light is usually linear-polarized in a particular orientation orthogonal to the
direction of propagation. The polarization (direction of E-field) alternates sinusoidally
thus changing from positive to negative, and back to positive in one wavelength-time



8 Principles of Optical Trapping

duced dipoles within a dielectric microsphere near the center of an optical

trap. For this particular snapshot in time the intensity gradient causes the

force pulling all the positive dipole ends towards the right to be greater than

the negative dipole ends pulling to the left. At a later time when the electric-

field switches direction each dipole will also shift slightly in orientation, as

above, resulting in a net force pointing toward the center of the laser focus.

To generate a stable three dimensional trap, the axial (ẑ) components of

the gradient force pulling the particle towards the focus must overcome the

scattering components pushing the particle away from the focus. In order to

satisfy this condition, the trapping laser must exhibit a steep intensity gra-

dient at the focus. This condition can be achieved by using a high numerical

aperture (NA) microscope objective that tightly focuses the trapping laser

down to a di↵raction-limited spot [12]. Oil immersed objectives (NA ⇡ 1.26)

are commonly used in particle trapping applications due to their ability to

gain a near di↵raction-limited focus without sacrificing trapping power at

increased depth.



Chapter 3

Optical Tweezer Design and

Construction

Optical tweezers are typically used to apply or measure small forces and

displacements of sub-micron dielectric particles. This type of instrument is

designed to be highly sensitive, allowing measurements on the order of pi-

coNewtons and nanometers. The basic components of any optical tweezer

instrument is merely a trapping laser, basic beam steering (mirrors), ex-

pansion (lenses), and filtration devices. A high numerical aperture (NA)

objective, condenser, and some sort of detection or monitoring system are

required to track the specimen’s movement.

The instrument constructed in this research thesis is a single-beam gradient-

force optical tweezer trap that utilizes a separate laser-based position de-

tection system (Figure 3.1). The optical trap is a reconstruction of Mark

Kendrick’s optical trap previously built in 20071 with slight modifications.

1See Ref. [13, 15] for alternative information involving the construction.

9



10 Optical Tweezer Design and Construction

3.1 Optical Tweezer Setup

The tweezer trap depicted in Figure 3.1 is constructed around a custom in-

verted microscope that is equipped with an oil immersed objective (Edmund

Optics, 100X, NA 1.26, 160 mm tube length), which collects and tightly fo-

cuses inbound laser light. A beam expansion lens pair (L2 & L4) is used to

overfill the objective’s back aperture, while mirrors (M1 & M2) are adjusted

to steer the beam over the aperture. A lower powered Helium-Neon (He-Ne)

detection laser (633nm) is also expanded to overfill the back aperture (L3

& L4). L3 is mounted on an adjustable x-y-z-plane stage, which is used to

adjust the detection laser focal plane.

Figure 3.1: Experimental setup, which includes an inverted microscope arrangement
(objective and condenser) to highly focus laser light within the trapping plane to trap
particles. Schematic taken from Ref. [13].

A quadrant photodiode (QPD) is used to measure the confined particle’s

displacement fluctuations (Brownian motion). The QPD collects the detec-

tion laser’s forward scattered light from the particle and produces a voltage

output signal that is proportional to the particles displacement relative to the

center of the trap (focus). A data acquisition card (DAQ) (NI-6221) collects

the voltage signal, which is then captured by a custom LabVIEW program
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(Mark Kendrick). A custom Mathematica program (Dr. David McIntyre) is

used to obtain the trap sti↵ness and a MATLAB program is further used to

analyze multiple data collection sets if necessary. An active picture of the

experimental setup is shown in Appendix A.1.

3.2 Sample Cell Preparation

For trap sti↵ness experiments there are two types of microspheres normally

used. Polystyrene (PS) microspheres of diameter d = 0.99µm ± 0.02µm

(Duke Scientific) and silica (Thermo Scientific 8100 series) of diameter d =

0.99µm± 0.02µm. Particles are dispersed separately in deionized-water (Di-

H2O) (✏=80 @20�C) 10% by weight.

The mixture is inserted into a custom-made sample cell shown schemat-

ically in Figure 3.2a. The sample cell is prepared by placing a double-sided

adhesive Secure-seal spacer (thickness ⇡ 120µm cut-out diameter = 20mm)

on a clean glass microsphere slide (thickness ⇡ 100µm). Approximately 37µL

of the mixture is placed within the circular cut-out spacer cell and a clean

glass microscope cover-slip (22x22mm) is placed over the spacer cell sealing

the mixture within the sample cell chamber.

(a) Sample slide (b) Sample Position

Figure 3.2: (a) Depiction of a sample slide consisting of a glass cover-slip, adhesive
spacer, and a glass sample slide, taken from Ref. [19]. The solution is placed within
the spacer, between the sample slide and cover-slip. (b) Sample orientation within the
optical trap. The sample is placed on a sample holder that places the sample between
the objective and condenser with the cover-slip facing the objective.
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The sample is then placed on a sample holder of the setup within the xy-

plane, which is located between the objective and condenser (Figure 3.2b).

The sample is positioned such that the cover-slip is facing the objective, and

the immersion oil (type HF) is placed on the points of contact between the

sample cover-slip and objective lens.

The use of immersion oil in optical trapping serves multiple purposes: (1)

it is desirable to use an immersion oil that matches the index of refraction

of the glass cover-slip. This property helps to minimize the loss of light,

and thus trapping power when laser light passes transmits through the glass,

(2) usually, immersion oil exhibits low fluorescence allowing the laser light

to pass through with relatively low absorption, and (3) aids in protecting

against optical damage, such as scratches, to the objective lens.



Chapter 4

Transverse Forces,

Measurements, and Analysis

This section describes the forces on an optically trapped particle and the

techniques used to model and calculate the optical trap strength, i.e spring

constant k. Topics include the forces acting on a trapped particle, Brow-

nian motion contributions, the mass-spring model, and the computational

methods used to analyze a trapped microsphere.

4.1 Thermal Fluctuations of a Free Particle

In order to understand the forces on a trapped particle we first must dis-

cuss its motion in the absence of a trapping laser. A particle suspended in

liquid undergoes random position fluctuations known as Brownian motion

[20]. In short, Brownian motion arises from random forces due to thermal

fluctuations of the surrounding medium, which can be envisioned as constant

bombardment of molecules striking the particle surface. The theory of Brow-

nian motion will not be discussed in this thesis, for further understanding on

this topic see [20, 21, 22].

In one-dimensional space x̂, the forces on a particle undergoing Brownian

13



14 Transverse Forces, Measurements, and Analysis

motion are described through Newton’s second law;

X

i

Fi = m
d2x

dt2
= FB(t)� �

dx

dt

) FB(t) = m
d2x

dt2
+ �

dx

dt
(4.1)

where � = 6⇡⌘a is the Stokes’ drag coe�cient for a submerged particle of

mass m and radius a in a liquid of viscosity ⌘, and FB(t) is the fluctuating

force due to Brownian motion. Eqn 4.1 is known as the Langevin Equation

[23] of a free particle in a liquid [21]. It is important to note that FB(t) is

random, and therefore its average1 value is zero hFB(t)i = 0, further details

regarding this property will be discussed in Section 4.3.

4.2 Force Model of a Trapped Particle

In the presence of an optical trap the Brownian motion of a particle is sup-

pressed, confining the particle to a region near the trapping laser focus. For

small positional fluctuations within this region, coupled forces between the

trapping laser and particle are (to a good approximation) linearly propor-

tional to the displacement from equilibrium (laser focus). Therefore, the

trapping laser applies a linear restoring force Ftrap in 3-dimensions. This

restoring force is comparable to a spring constant k in a mass-spring system,

which is governed by Hooke’s law F = �kx. Thus, the only adaptation to

the current model Eqn. (4.1) is inclusion of this restoring force;

FB(t) = m
d2x

dt2
+ �

dx

dt
+ ktrapx(t) (4.2)

where ktrap denotes the trapping spring constant. The Langevin equation

presented Eqn. (4.2) is known as the Brownian motion of a simple harmonic

oscillator [21]

1The mean value (or average) will be denoted with angle brackets hi.
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Typically, when modeling the motion of sub-micron particles in a viscous

fluid the Reynolds numbers are low (Re < 1), which implies that mẍ ⌧
(�ẋ+ kx). This condition suggest neglecting the inertial (acceleration) term

in Eqn. (4.2) resulting in

FB(t) = �
dx

dt
+ ktrapx. (4.3)

This model2 describing a thermally driven particle motion is commonly used

in optical trapping analysis. As one may notice, Eqn. (4.2) is only dependent

on three forces, the restoring force ktrap, the drag force � dx
dt
, and the

Brownian, or rather thermal forces FB(t) that are driving the harmonic

oscillator. A cartoon depiction of these forces and how they relate to a mass-

spring system is shown in Figure 4.1.

➞

⇥

➞

⇥x ⇥ ⇥x

FSpring= -kspringx

FSpring

kspring

FTrap

Beam Center

Bead Displacement

➞FDrag ➞FDrag

FTrap= -kTrapx

Equilibrium

G
aussian

Intensity Profile

Laser Light

Water

Figure 4.1: Depiction of the relation between a mass-spring system and a trapped
dielectric sphere in 1-dimension x̂.

2Note that gravitational e↵ects have been neglected in this model.
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4.3 Analysis of Trapping Force: Spring Con-

stant ktrap

There are two independent methods used to determine the trapping force

(spring constant) ktrap by acquiring the Brownian motion of a trapped par-

ticle. Employing multiple methods is particularly useful in cross-examining

spring constant values, which provide key details involving the accuracy and

reliability of the trapping apparatus.

The first method is through the equipartition theorem, from which the

spring constant can be determined by the positional variance of a trapped

particle’s Brownian motion. Techniques also includes applying the equipar-

tition theorem to a Gaussian fit of the position histogram and a quadratic

fit to a reconstructed optical potential well. This method is useful for deter-

mining the trapping spring constant because the analysis is independent of

the particle’s radius a and surrounding viscosity ⌘.

The second method, and usually considered the most reliable [24], is

through a one-sided power spectrum analysis of the particle’s position. The

trapping spring constant is determined by fitting a Lorentzian and relating

the corner frequency. Unlike the equipartition method, the power spectrum

analysis relies on the particle’s physical properties as well as its surrounding

medium.

4.3.1 Method 1: Equipartition Theorem Analysis

Positional Variance

The equipartition theorem states that at a temperature T the average

energy of any quadratic degree of freedom is kBT/2. This theorem applies

to all forms of energy (i.e. translational, rotational, vibrational, and elastic

energy) for which the formula is a quadratic function of a dependent coor-

dinate. This condition is met by our elastic potential energy model for the
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spring constant

E(x) = �
Z

Ftrapdx =
1

2
kxx

2

yielding a harmonic potential (up to an integration constant). By relating

positional variance and the equipartition theorem this becomes;

1

2
kx�

2
x =

1

2
kBT

) kx =
kBT

�2
x

(4.4)

where kB is Boltzmann’s constant. Thus, by measuring a particle’s Brownian

motion and computing the positional variance the trapping spring constant

is readily determined through Eqn. (4.4). Figure 4.2 displays the typical

positional variance of a 1µm trapped polystyrene sphere.

Figure 4.2: Positional variance of a trapped 1µm diameter transparent polystyrene
sphere. Data collection perform with trapping laser power ⇡37mW at a depth of ⇡16µm
from the sample cover slip (date: August 4, 2012).

Position Histogram

The spatial probability density function of a trapped particle over time

can be described by Boltzmann statistics [25];

p(x)dx = Ce
�E(x)

k

B

T . (4.5)

The quantity p(x)dx interpreted as the infinitesimal probability of finding a
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particle at a position x over a infinitesimal space dx [26] in a potential E(x),

and C is a normalization constant. Since the energy for a harmonic potential

is E(x) = kx�
2
x/2, Boltzmann statistics (Eqn. (4.5)) imply;

p(x)dx = Ce
�E(x)

k

B

T = Ce
� k

x

�

2
x

2k
B

T

) kH =
kBT

�2
x

, (4.6)

which is precisely the outcome (Eqn. (4.4)) of the previous positional variance

technique.

This positional histogram technique may seem counterproductive and

rather pointless based on the fact that the outcome Eqn. (4.6) is deter-

mined by implementing the equipartition theorem as was done in Eqn. (4.4).

However, by fitting the histogram with a Gaussian curve and extracting the

fitting parameters (constants) the spring constant kH can be determined.

Note that the spring constant is labeled with the subscript H, meaning

the x̂ directional spring constant deduced by the position histogram tech-

nique3. Figure 4.3 displays the positional histogram (red bins) and Gaussian

fit (black curve) of the Brownian particle from Figure 4.2.

Figure 4.3: Typical position histogram and Gaussian fit of a trapped 1µm diame-
ter transparent polystyrene sphere. Data collection perform with trapping laser power
⇡37mW at a depth of ⇡16µm from the sample cover slip (date: August 4, 2012).

3The position histogram technique is a form of data compression called windowing, see
Ref. [27] for more information involving data compression and optical tweezers.
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The height of each histogram bar p(x) corresponds to the number of oc-

currences the particle was detected at a particular distance from the center

of the optical trap. The spread (width) of the Gaussian distribution curve is

proportional to the trapping spring constant kH , assuming room temperature

T = 298K. Thus, by fitting the histogram with a Gaussian distribution the

kH can be determined.

Potential Well

The final technique used to obtain the trapping spring constant is by re-

construction of the potential well from the position histogram and fitting a

parabola. According to Florin [25] the potential E(x) experienced by the

particle is found by taking the logarithmic of Eqn. (4.5);

E(x) = �kBT ln(p(x)) + kBT ln(C), (4.7)

where the term kBT ln(C) is the well o↵set (average value, which in theory

is zero) and will be neglected.

Next, consider the potential energy of a particle in a harmonic potential

well modeled by a mass-spring system, which is proportional to the squared

displacement;

U = �
Z

Fs(x) dx =
1

2
ktrapx(t)

2

1

2
ktrapx(t)

2 = ax(t)2 (4.8)

Eqn. (4.8) states that it is possible to extract the spring constant by fitting

a parabola and extracting the fitting parameters. This expression is related

to the analytical solution of Eqn. (4.7),

E(x) =
1

2
ktrapx(t)

2 = �kBT ln(p(x))

) kw =
�2kBT

x (t)2
ln(p(x)). (4.9)
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For this reason the spring constant, denoted as kw, is obtained by fitting a

parabola to the logarithmic values of the positional histogram and extracting

the fitting parameters.

Figure 4.4 displays the potential well of the histogram occurrences (dots),

which is fitted to a parabola (black line). Notice that the histogram data

(dots) near the ends of the plot tends to have a larger spread from the fit. This

is due to the small sample size at large distances from the trapping center.

Meaning that the trapping forces cause the particle to spend more time in

the middle (i.e. lower potential energies) rather than at large distances from

the laser focus.

Figure 4.4: Typical potential well and fit of a trapped 1µm diameter transparent
polystyrene sphere. Data collection perform with trapping laser power ⇡37mW at a
depth of ⇡16µm from the sample cover slip (date: August 4, 2012).

4.3.2 Method 2: Power Spectrum Analysis

The power spectral density (power spectrum or PSD) of a trapped particle

is a method used to analyze its motion signal in the frequency domain x(f),

as opposed to the time domain x(t) in Figure 4.2. This analysis method is

considered the most reliable [24] and is particularly useful in cross-referencing

with the equipartition techniques outlined in Section 4.3.1 because it takes

into consideration the physical properties of the trapped specimen and its

surrounding liquid. Mapping to the frequency domain is achieved by taking

the Fourier transform of the Brownian motion FB(t) with respect to time of
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the particle’s trajectory x(t) represented in Figure 4.2. The central purpose

of this transformation is that the frequency response of the particle’s motion

reveals an attribute that is related to the trap sti↵ness.

Brownian motion is presented theoretically as the Langevin equation il-

lustrated in Eqn (4.3), which is once again;

FB(t) = �
dx

dt
+ ktrapx. (4.10)

The solution to this equation can be found by taking the Fourier transform,

FB(t) = �
dx

dt
+ ktrapx

F�! F̃B(f) = (i�2⇡f + ktrap)x̃(f). (4.11)

and taking the square of the complex norm;

|F̃ (f)|2 = (�24⇡2f 2 + k2)|x̃(f)|2. (4.12)

|F̃ (f)|2 holds physical value of the energy content per unit frequency interval,

namely power spectrum. Whereas, the power spectrum |F (t)|2 is proportional
to the total energy of the oscillatory system. Accordingly, both |F̃ (f)|2 and

|F (t)|2 are interprets of energy [28].

As mentioned in Section 4.1 the thermal fluctuations of a trapped particle

is considered random with zero mean hFB(t)i = 0. R. Kubo describes in a

report on the classical Langevin equation [29]; under the assumptions that

FB(t) is (1) a Gaussian process, and (2) its correlation time is infinitely short,

the power spectrum of FB(t) is equal to a constant. These characteristics

imply that the random Brownian force FB(t) has a white spectrum and is

considered white noise4. Thus, the constant5 denoting the one-sided thermal

power spectral density per unit time is [30, 21];

Go = |F̃ (f)|2 = 4�kBT. (4.13)

4White noise is a random signal with a flat (constant) power spectral density.
5For the relation of Eqn. (4.13) and further explanation see Appendix A.2.1.
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Relating Eqn. (4.12) and (4.13) gives,

4�kBT = (�24⇡2f 2 + k2)|x̃(f)|2

|x̃(f)|2 = Sxx(f) =
kBT

⇡2� (f 2
c + f 2)

. (4.14)

For a particle in a harmonic potential, Sxx(f) corresponds to the expected

one-sided power spectral density per unit time, which is that of a Lorentzian

curve with corner frequency fc that is proportional to the trap strength

fc = ktrap/2⇡�. Therefore, by expressing a trapped particle’s position x(t)

in terms of frequency components a Lorentzian fit to the power spectrum

Sxx(f) will yield the trap spring constant ks [31, 12, 30].

Figure 4.5 displays the power spectrum of a trapped 1µm polystyrene

sphere corresponding to the trajectory x(t) shown in Figure 4.2. From the

Lorentzian fit (black line) of the windowed data (dots) the corner frequency

can be easily determined.

Figure 4.5: Typical power spectrum (dots) and Lorentzian fit (solid line) of a trapped
1µm diameter transparent polystyrene sphere. Data collection perform with trapping
laser power ⇡37mW at a depth of ⇡16µm from the sample cover slip (date: August 4,
2012).

For details pertaining to the methods included in this section see [27, 32].



Chapter 5

Force Measurement

Calibrations

Techniques described in this section are designed to calibrate the quadrant

photodiode (QPD) detection signal in order to accurately track a trapped

particle’s movement. As Neuman and Block state in their 2004 overview

of optical trapping [12], “accurate position calibration lies at the heart of

quantitative optical trapping.” There are several position calibration meth-

ods, which are dependent upon the chosen position detection scheme and the

ability to move the trap and/or sample holder stage [12].

The main ideas behind the calibration procedure is to ensure proper

coalignment (overlap) between the trapping and detection laser at the trap-

ping plane and centering the back focal plane image onto the QPD detection

sensor. Detection laser calibrations consists of two calibration methods, one

preformed by imagining a particle attached to the cover-slip, and then imag-

ining a trapped particle at the intended trapping depth from the surface

of the microscope cover-slip. Depth calibration presented in the following

sections are all preformed at ⇡ 16µm from the cover-slip surface, into the

sample.

23
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5.1 Optical Tweezer Calibrations

The sample-slide is placed on an adjustable xy-plane sample holder. The

holder positions the sample-slide within the trapping plane of the inverted

microscope, which lies between the objective and the condenser. An encoder-

mike controller (Oriel 18011) is used to move the objective in the axial-

direction (ẑ). This therefore moves the trapping plane towards the cover-slip

and into the sample. The images produced by the inverted microscope are

projected into a CCD (charged-coupled device) camera and viewed on a

monitor shown in Figure 5.1. By moving the trapping plane into the sample

Figure 5.1: Picture taken of the viewing monitor from a depth of 16µm within a sample
of polystyrene spheres. The white circular rings are di↵raction fringes produced by the
detection laser. Three microspheres are shown.

we are able to identify when the trapping laser focal point passes the cover-

slip and enters into the sample by viewing the di↵raction pattern on the CCD

camera. At this point the objective is stopped and a sphere attached to the

cover-slip is found by manually moving the sample holder. Attached spheres

are those that do not undergo random Brownian motion and are physically

stuck to the cover-slip. Di↵erentiating the two is quite simple. Stuck spheres

do not move.
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5.1.1 Cover-slip Calibrations: Immobilized Particle

Cover-slip calibration is achieved by inducing particle movement and map-

ping the displacement of the sphere relative to the focus. The sample holder

is oscillated with a piezo-electric material, which changes lengths when a

electric potential is applied. By oscillating the stage with a sinusoidal poten-

tial while mapping the particles displacement with the detection laser we are

able to analyze its displacement in terms of output voltage from the QPD.

We expect the restoring force to be linear through the equilibrium position

of the trap, which coincides with the mass-spring model. In addition, the

particle position should be symmetric about the equilibrium point because

the stage is being driven by a symmetric (AC) electric-field.

Figure 5.2 displays the oscilloscope response of an attached bead to the

cover-slip when the piezo-electric stage is driven by a continuous 300mV sinu-

soidal waveform. The voltage response is produced by a quadrant photodiode

(QPD) detector, which produces voltage response proportional to the bead’s

displacement through the detection laser. Calibrations and measurements

are usually performed using a QPD gain setting of 100.
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Figure 5.2: Oscilloscope response of an immobilized sphere in continuous mode. Func-
tion generator settings: 300mVpp frequency: 61Hz QPD gain: 100

Figure 5.2 display typical QPD responses for the specified function gen-
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erator settings. As mentioned, the key features of these calibrations is to

gain a symmetric response about the zero axis, and linear response through

the axis. Both quantities correspond to the alignment and projection of the

detection laser into the QPD. In addition, these procedures also gain insight

into how well the trapping laser is aligned through the objective-condenser

pair.

5.1.2 Depth Calibration: Brownian Motion

The second procedure in the calibration process is analyzing the displacement

of a trapped sphere at a known depth within the sample. For reliable and

reproducible results, I have chosen to use a depth of 16µm for all of my depth

calibration. I chose this depth because trap strength measurements will be

conducted at this depth, for that reason a calibration at the same depth is

logical in producing the best possible consistent results. This calibration re-

sembles the cover-slip calibration process, in that, calibrations are performed

first with a continuous wave (cw) potential mode, and then a 2-cycle burst

mode.
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Figure 5.3: Depth calibration oscilloscope response for a trapped sphere in continuous
and burst mode

Methods using the cw mode is comparable to those used in the cover-

slip calibration. A sphere is trapped using at 10mW and the displacement

signal is viewed on the oscilloscope (Figure 5.3a). The signal produced by the
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oscilloscope is expected to resemble an amplitude response comparable to the

cover-slip calibration (Figure 5.2), except for a slightly minimized amplitude

response cause by the trapping laser forces.

The main goal of this calibration procedure is to ensure the detection laser

is properly overlapping the trapping laser at the intended trapping depth. At

this point it is easy to see whether or not the overlapping of the trapping and

detection laser is reasonable. Slight “tweaking” of L3, which controls the path

of the detection laser, may be needed to produce a symmetric oscilloscope

response. The 2-cycle burst mode calibration (Figure 5.3b) is one of the best

indication of the overlapping. This mode allows observation of the Brownian

motion response after the bust. It has been observed that for optimal trap

sti↵ness measurements the“tailing” noise (Brownian motion) exhibits rapid

decay after the bust that leads into symmetric noise, as seen in Figure 5.3b.
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Chapter 6

Trap Strength Experiments

Experiments performed in this chapter are designed to measure the trapping

force on colloidal microspheres suspended in water. Numerous experiments

were organize to investigate the reproducibility and accuracy of the mea-

sured trapping spring constant1 k and calibration factor 1/⇢ (Eqn. (6.1)).

Experiments and their results in this chapter include: Chapter 6.2 power

dependence, Chapter 6.3 sphere-to-sphere variation, and Chapter 6.4 depth

dependence.

6.1 Determining Trap Sti↵ness: An Example

Trap sti↵ness k and calibration 1/⇢ quantities are obtained by acquiring the

transverse x̂ time series displacement of a trapped particle undergoing Brow-

nian motion (Figure 6.1a). These experiments are essentially testing how well

the trapping laser is aligned through the inverted microscope while simulta-

neously testing the coalignment of the detection laser to the trapping laser,

as well as the detection subsystem accuracy. Details regarding these charac-

teristics will be further examined in each result discussion section proceeding

the experiment.

1The terms spring constant, trap strength, and trap sti↵ness are equivalent in meaning
and are used interchangeably throughout.

29
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All experimental spring constant values are determined by analyzing the

LabVIEW signal response through a custom Mathematica program. This

program applies the analysis methods outlined in Section 4.3 with slight

experimental adjustments that involve a calibration factor ⇢.

The calibration factor is, as it sounds, a constant value that calibrates the

QPD voltage signal into usable values of displacement, namely nanometers.

This is achieved by adjusting the PSD in Eqn (4.14) to the QPD signal

by adding a linear calibartion constant denoted2 as ⇢, which holds units of

voltage per unit of displacement [V/nm].

For example, the spring constant kx of a 1µm polystyrene sphere hav-

ing a measured displacement variance from equilibrium �2
x=(14.5nm)2 (Fig-

ure 6.1a) is first acquired through the equipartition theorem (Eqn. (4.4));

1

2
kBT =

1

2
kx�

2
x =) kx =

kBT

�2
x

,

yielding a value of kx=19.36 pN/µm.

2Note that the calibartion factor corresponding to cal within the Mathematica compu-
tations is equivalent to the inverse of ⇢, cal = 1/⇢
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Figure 6.1: Mathematica data analysis of the suppressed Brownian motion of a 1µm
polystyrene sphere at a sample depth of ⇡16µm and trapping laser power 37mW at
795nm wavelength. a) Time series of the suppressed Brownian motion from which kx is
computed through the equipartition theorem. b) Histogram (bin) of the particle’s dis-
placement from the mean, from which kH is computed through extracting fit parameters.
c) Power spectral density (PSD) from which ks is computed by obtaining the corner fre-
quency. d) Potential well analysis of the histogram from which kw is computed through
fitting parameters.

The ks spring constant is next obtained by analyzing the calibrated power

spectrum of the particle’s position fluctuations, which is related to the Fourier

transform of Figure 6.1a;

Svv(f) = ⇢2
kBT

⇡2� (f 2
0 + f 2)

. (6.1)

where �=6⇡⌘a is defined as the viscus drag coe�cient (Stokes) in water,

f is the frequency (Hz), and fc=ks/2⇡� is the corner frequency. The re-

sults shown in Figure 6.1c yields a corner frequency of fc=330 Hz with a

displacement-to-voltage calibration factor of 1/⇢=475 nm/V . Thus, by re-

lating the corner frequency and spring constant we obtain ks=19.5 pN/µm.

The trap sti↵ness is also obtained by fitting a Gaussian (normal distribu-
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tion) curve to the positional histogram in Figure 6.1b. A byproduct of this

method is the optical potential well, which is essentially fitting the histogram

distribution in units of energy, i.e. logarithmic scale Figure 6.1d.

p(x) / exp

✓
� U

kBT

◆
= exp

✓
khx

2

2kBT

◆
. (6.2)

The fitting parameters are then extracted yielding a trap strength for the

histogram fit of kH=19.2 pN/µm, and kw=19.3 pN/µm for the potential

well fit. The required specification for a reliable and accurate trap is that all

four methods yield a spring constant to within 10%.

6.2 Power Dependence Measurements

Experiments involving power dependence measurements were performed on

1µm (�=0.02µm) diameter transparent polystyrene (Duke Scientific) and

0.99µm (�=0.02) silica (Thermo Scientific) microspheres suspended deion-

ized water. Sample cells were prepared by the techniques outlined in Chap-

ter 3.2. Measurements were taken with a trapping wavelength near 800nm

and optical powers ranging from 10mW to 37mW (as measured before DM2

Figure 3.1) at a trapping-plane depth of ⇡16µm from the sample cell cover

slip.

Figure 6.2 displays the measured spring constant kx over a span of optical

powers ranging from 10-30mW. Each power dependence measurement was

conducted on the same microsphere as a control to eliminate uncertainties

involving sphere-to-sphere diameter deviations.

The plotted points in Figure 6.2 correspond to the average measured

spring constant computed via Mathematica. Each data collection set con-

tains four 30 second data runs, yielding four values for the spring constant

within a standard two minute testing time. The kx, kh, ks, kw, and calibra-

tion factor 1/⇢ values are imported into a custom MATLAB program. The

MATLAB program averages each spring constant method value over each
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30 second run, computes the standard deviation, fits a linear regression to

the average values for the range of optical powers, and plots the spring con-

stants and calibration factors with error bars corresponding to the standard

deviation from the mean.
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Figure 6.2: Trap strength power variance measurements for polystyrene and silica
microspheres suspended in deionized water. Inset: Linear fit parameters obtained from
the Mathematica trap sti↵ness methods kx, kh, ks, kw.

For example, a four data run set corresponding to an optical power of

10mW is circled in Figure 6.2. This particular dataset produced spring con-

stants kx = 5.34, 5.28, 5.12, and 5.14 (pN/µm). The MATLAB program

computes and plots the mean value kmean = 5.22 (pN/µm) and standard de-

viation kSDiv = 0.11 (pN/µm). Similarly, the calibration factors are averaged

and plotted in the same manner Figure 6.3.

Figure 6.3 displays the displacement-to-voltage calibration factor 1/⇢ cor-

responding to Figure 6.2 for each optical trapping power. The calibration

factor is the value needed to convert the QPD voltage signal to displacement

(nm), which is used within the Mathematica computations to resolve each

spring constant value via power spectrum. The calibration factors are first

approximated in the initial trap sti↵ness computation and later re-iterated

with a more accurate value.
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Figure 6.3: Averages of the displacement-to-voltage calibration factors used in the
Mathematica computations to resolve the trap sti↵ness.

To ensure reproducibility, power dependence measurements were per-

formed on multiple samples over an extended time period between exper-

iments. Figure 6.4 displays trap sti↵ness measurements conducted during

di↵erent trial days for polystyrene spheres. Each experiment was performed

under the condition of total realignment and calibration of the apparatus.
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Figure 6.4: Polystyrene power reproducibility.
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Figure 6.4 displays power reproducibility values of all polystyrene power

dependence experiments (circles) between August 2012 to February 2013.

Error bars are the standard deviation from the mean, which is fitted to a

linear best fit (solid line) using the least squares method. (Dashed lines) the

maximum and minimum slopes within the limits of the error bars. Note:

Measurements at power 37mW is not included in the fitting due to limited

data.

Discussion

The trap strength spring constants presented in Figure 6.2 exhibit a linear

dependence with optical trapping powers. This response is expected from

the assumptions and analysis outlined in Section 4, in the view of the fact

that trap sti↵ness is determined by modeling the trapped particle as a mass-

spring system. Thus, increasing the power of the trapping laser is analogous

to attaching a sti↵er spring to the system in Figure 4.1.

From Figure 6.2 it is easy to see a large di↵erentiation between the trap

sti↵ness of silica and polystyrene spheres. One important factor is that the

Mathematica program used to compute the trapping spring constant is de-

signed for polystyrene microspheres based on [27], which does not account

for the relative index of refraction between the particle and its surround-

ings. This discrepancy is not too worrisome, in that, further experiments

including silica spheres can be normalized to the trapping spring constants

of polystyrene, which are well known. Work on this relation has been mod-

eled and simulated in [13].

The calibration factor results shown in Figure 6.3 display a constant rela-

tion over the range of powers. This trend is expected because the calibration

factor 1/⇢ is the factor used in converting the QPD signal from a measure

of electric potential (Volts) to displacement (nm), which should not change

with increasing/decreasing powers. The main concern in calibration factor

is large ‘drifting’ to either higher or lower values between experiments.

Figure 6.4 exhibits some rather interesting e↵ects, in that, it shows how
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the trap sti↵ness deviation from the mean starts to increase at higher pow-

ers, which can be seen from the maximum and minimum fit lines. This

deviation is actually expected, because the expansion lens (L3 Figure 3.1)

is positioned/calibrated for trapping near 10mW. As the powers increase

the radiation pressure (incident photon force) increases, pushing the parti-

cle deeper into the sample. As a result, the detection laser focal plane isn’t

centered ‘on’ (or near) the center of the trapped particle, instead it is higher

(or deeper into the sample). Thus, the di↵raction-limited focal point of the

detection laser has begun to spread out, which not only changes the geometry

of the back-focal plane interferometer but it also begins to veer.

6.3 Sphere-to-Sphere Variation Measurements

Sphere-to-sphere variation measurements are performed in this section on

1µm-diameter polystyrene beads at a trapping depth ⇡ 16µm from the glass

cover-slip. These experiments serve to provide an experimental estimate on

the particle diameter uncertainties. The polystyrene spheres used in the

following experiment are known to have ±0.02µm diameter deviation.
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Figure 6.5: Polystyrene spring constant sphere and calibration factor (inset) variance.



Depth Dependence Measurements 37

Discussion

Figure 6.5 displays spring constant results for eight di↵erent polystyrene

microspheres in water. The plot displays spring constant values kx, kh, ks, kw
corresponding to the Mathematica calculation methods described in section

4.3. The error bars correspond to the standard deviation between the number

of data runs acquired during each trial. In this particular experiment there

were only two data runs per trial dataset. Because of the low number of data

runs the standard deviation is only a comparison between two values. For

more accurate results, increased data runs are needed.

6.4 Depth Dependence Measurements

Trapping spring constant kx depth dependence for 1µm polystyrene sphere

were also explored. Depth dependence measurements insure proper depth to

eliminate thermal contribution from the glass cover-slip. It is expected to see

large trap strength variations near the cover-slip and at large depths, due to

the limiting numerical aperture of the oil immersed objective. Measurements

were performed on the same sphere over a range of 2µm-22µm, results for kx
are shown in Figure 6.6.
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Figure 6.6: Trap spring constant kx and calibration factor (inset) sample depth depen-
dence, with standard deviation error bars.
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Discussion

As expected, near the cover-slip, there are large thermal contributions cou-

pled with the trapping forces, resulting in a lower trapping spring constant.

It is important to note that this type of experiment is much trickier than it

seems because it’s extremely di�cult to exactly co-align the detection and

trapping lasers during the alignment procedure. In consequence, as the trap-

ping plane goes to increased depths into the sample the detection laser tends

to veer. To compensate, at each depth measurement presented in Figure 6.6

a quick calibration was performed to roughly overlap both lasers.

6.5 Conclusion

From the discussion and results presented in section 6.2, it has been shown

that the optical tweezer apparatus exhibits, as expected, linear power de-

pendence for polystyrene and silica trap sti↵ness constant ktrap. We can

conclude from this that our procedures provide reproducible trap sti↵ness

value to within an experimental uncertainty of 10.5% for 1µm polystyrene

microspheres at trapping powers near 15mW. This confirms that these pro-

cedures can provide accurate trapping measurements in the transverse x̂ di-

rection near trapping powers of 15mW. However, large variations in spring

constant values have been observed at increasing powers due to underlying

e↵ects. These e↵ects have been hypothesized to be caused by increase radi-

ation pressure at powers > 20mW .

In addition, the findings presented in sections 6.3 show the expected con-

stant trend between multiple polystyrene microspheres. Similar results for

1µm-diameter silica spheres have also been observed (not shown). Section 6.4

confirms that at small trapping depths (< 4µm) thermal fluctuations con-

tribute greatly in measuring the trapping spring constant. At increased

depths (< 22µm) constant trap sti↵ness values are obtained as expected.

This confirms that at a trapping depth of ⇡ 16µm there are minimal to no

thermal contributions.



Chapter 7

Preliminary Surface Charge

Measurements

This chapter presents preliminary studies involving optical tweezer-based sur-

face charge measurements of colloidal silica microspheres dispersed in water.

Techniques developed by [8] are implemented to establish methods neces-

sary to preform, detect, and measure electrophoretic contribution. The elec-

trophoresis experiment in this section is designed to measure the e↵ective

surface charge Zeff response at relatively low (AC) electric-field frequencies

near the optical trap corner frequency.

7.1 Basic Principles and Model

Surface charge measurements are most readily preformed through electrophore-

sis experiments, that is, measuring a particle’s displacement in the presence

of an (AC) electric-field perturbation. The electric-field introduces Coulomb-

force interacts with charges near the particle surface creating an electrokinetic

force, which induces particle movement. As the particle moves through the

liquid, surrounding ions are continually binding to, and dissociating from, the

particle surface yielding a fluctuating e↵ective surface charge value. However,

the amount by which the particle is displaced is related to the electric-field

39
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perturbation amplitude EAC .

With the electric-field perturbation addition there are now three forces

acting on the optically trapped microsphere: (1) photonic restoring forces

Ftrap, (2) Stokes frictional forces Fdrag, and (3) a harmonic electric-field force

FAC = Asin(2⇡fEt + �). The equation of motion is the superposition of

these three forces, namely;

m
d2x

dt2
+ �

dx

dt
+ ktrapx(t) = Asin(2⇡fEt+ �) + FB(t). (7.1)

Where FB(t) represents the random thermal Brownian motion (Gaussian pro-

cess), and defining the e↵ective1 electrokinetic surface charge Zeff = A/EAC ,

which is holds units of fundamental charge qel [8].

The motion equation Eqn. (7.1) can be averaged together to get a corre-

lations function C(t) which then can be expressed as a normalized function in

terms of the parameter �2, a scaled ratio between the mean-square electric-

field force and the Brownian thermal forces;

�2 =
hF 2

Ei/hF 2
Ei

1 + (!E/!c)
2 (7.2)

where hF 2
Ei = Z2

effe
2E2/2 and hF 2

Ei = kBTktrap. This scaling ratio � is the

most common value extracted in practice [8], and solving for the e↵ective

surface change Zeff comes easily;

|Zeff |qel =
��

E

s
2kBT

ktrap
(!2

E + !2
c ) (7.3)

where � = 6⇡⌘d Stokes’ drag constant and E = V/d is the amplitude of the

applied (AC) electric-field measured in units of volts per meters. Taking the

1The e↵ective value of an alternating quantity is merely the expected value, or root-
mean-square.
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Fourier transform of Eqn. (7.3) yields;

) x̃(!) =
kBT

⇡�

1

(!2 + !2
c )

+
kBT�

2

2ktrap

h
�(! � !E) + �(! + !E)

i
. (7.4)

Eqn. (7.4) describes the power spectral density function of the trapped

particle within the presence of an applied (AC) electric-field2. Notice that the

first term exhibits Lorentzian properties comparable to a Brownian particle in

a harmonic potential well. As expected, this term is equivalent to the power

spectral density of a trapped panicle, that is, Eqn. (4.14). However, the

second term is a superposition of two delta functions, which arises from the

(AC) electric-field perturbation, where !E = 2⇡fE is the driving frequency.

The delta functions are defined as being equal to one if !E = !. Therefore, we

would expect the PSD to contain a peak-value at the electric-field frequency

that is proportional to �2, which can be found extracting the electric-field

PSD contribution and integrating over all frequencies [8].

In short, by tracking a trapped particle within the presence of an exter-

nal (AC) electric-field and expressing its motion in frequency components

(PSD), a peak at the driving voltage frequency will occur. The peak value

is proportional to the scale ratio �2, and thus, the e↵ective surface charge

Zeff Eqn. (7.3) carried by the particle. An estimate for the e↵ective surface

charge can be calculated by finding the area under the peak value of the

PSD.

Corollary

It is important to note that this method is only valid for small ion concentra-

tions where the zeta potential (electrokinetic potential) at the hydrodynamic

slipping plane boundary of the double layer is small. In which case the Huckel

limit is valid and the electrophoretic mobility is proportional to the surface

charge. Outside of this limiting case, increased ion concentrations form a

2Eqn. (7.4) describes the two-sided PSD, which is composed of real and imaginary
parts, in practice the one-sided PSD is normally used, yielding only one delta function.
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thickened cloud (double layer) around the particle, results in large screening

e↵ects. Upon particle movement, the thickened double layer is more sus-

ceptible to large deformation, in which case the relaxation e↵ects perturb

the electrophoretic mobility, consequently giving rise to disproportionality

between the mobility and zeta potential.

7.2 Preliminary Surface Charge Experiments

Modified Sample Cell Preparation

Samples are prepared in a custom sample cell holder similar to the proce-

dures outlined in section 3.2, with slight modifications. Modifications include

fastened electrodes and the ability to reuse the sample cell. Electrophoresis

sample cell are prepared dry by gluing two thin aluminum strips separated

by about 100µm to a microscope cover-slip. A small slit is cut through

the microscope slide using a DREMEL rotary diamond wheel (545), used to

load/reload and wash out the sample cell.

An adhesive spacer is placed on the microscope slide and a small channel

⇡ 1mm wide is cut out and removed to allow fluid flow while cleaning and

reloading the cell. The electrode/cover-slip is placed on the spacer and the

edges are glued to help prevent leakage through the spacer walls. Silica mi-

crospheres (Thermo Scientific 8100 series) of diameter d = 0.99µm± 0.02µm

dispersed in deionized-water (✏=80 @20�C) 10% by weight and is injected

into the sample cell through the slit in the microscope slide.

7.2.1 Silica Frequency Dependence

Electrophoresis experiments were performed on silica particles with a laser

trapping power of 10mW , 790nm wavelength, at a trapping depth of ⇡ 16µm

from the cover-slip. The electrode separation was measured to be ⇡ 106µm

along the x̂-direction of the sample. A trapped sphere was positioned at the

midpoint between the electrodes and a (AC) electric-field was applied across
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the electrode channel using a Tektronix function generator (AFG 3021).

Electrode
Sample

Function Generator
Connections

+x-dir

Figure 7.1: Electrode sample and position
for electrophoresis experiments.

The electric-field strength was calcu-

lated under the assumption of ideal

parallel-plate, E = V/d. A sinu-

soidal potential with zero DC o↵-

set 8.533Vpp was supplied to the

electrode connections by the func-

tion generator, resulting in EAC ⇡
40kV/m. Figure 7.1 shows the elec-

trode sample cell positioning within

the optical tweezer apparatus.

The particle displacement was

acquired by a quadrant photodi-

ode and trapping spring constant

measurements were analyzed by the

power spectrum method described in

section 4.3.2. Electrophoresis mea-

surements were taken as a function of the applied (AC) electric-field fre-

quency near the optical trapping corner frequency with trapping power

⇡ 10mW . Figure 7.2 displays the PSD response for electric-field frequen-

cies ranging from 18Hz to 118Hz in increments of 10Hz.

At each frequency increment, one dataset consisting of four data runs

was acquired at a sampling frequency of 10kHz (218 samples pre data run),

and one data run was acquired in the absence of the electric-field before and

after each electrophoresis dataset. Over the four data runs for each elec-

trophoretic frequency the displacement response was binned (windowed) to

eliminate noise, averaged, and plotted (colored lines) in Figure 7.2.



44 Preliminary Surface Charge Measurements

101 102 103
10−2

10−1

100

101

102

103

104 Silica Electrophoresis Frequency Response

Frequency [Hz]

PS
D

 [n
m

2 /H
z]

 

 

 

Collection Date:
May 19, 2013

fE = 18

fE = 28

fE = 38

fE = 48

fE = 58

fE = 68

fE = 78

fE = 88

fE = 98

fE = 108

fE = 118

Average Fit

Bead: silica

Depth: ~16µm

dgap ~106.67µm

fc(fit): ~36.47 Hz

Vgap  ~40kV/m

E-field
FAC [Hz] Fcorner  [Hz] Zeff  [qel]

Spring Constant
kPSD   [pN/nm]

Calibration Factor
[nm/V]

18 37.271 65.891 2.2071 1240.8
28 39.02 80.696 2.3107 1154.1
38 39.351 83.99 2.3302 1192.5
48 37.454 82.806 2.2179 1227.5
58 38.134 96.921 2.2582 1160.2
68 34.78 98.022 2.0596 1125.3
78 35.885 105.02 2.125 1059.8
88 35.781 113.28 2.1189 1004.1
98 35.957 103.43 2.1293 1133.2
108 33.09 104.54 1.9595 1155.1
118 34.465 105.46 2.041 1161

Figure 7.2: Power spectral density of the electric-field frequency (fAC) response for
silica microspheres dispersed in de-ionized water. Each electrophoretic responses (colored
lines) were averaged over four data runs, and a non-linear regression (Average fit) was
fit.

Results and Discussion

The PSD responses in Figure 7.2 exhibit peak-like trends corresponding

to the frequency of the applied electric-field, which is in agreement with

Eqn. (7.4), the expected response. For each frequency dependent electrophore-

sis experiment the PSD response was fit with a Lorentzian and the corner

frequency (trap sti↵ness) was extracted. The fit was subtracted from the

experimental data and the remaining contributions was integrated over all

frequencies. From the integration value, �2 was determined and the e↵ective

surface charge Zeff was calculated through Eqn. (7.3). The calculated ef-

fective surface charge value corresponding to each electric-field frequency is

presented in the table inset of Figure 7.2 and in Appendix A.3.
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For this particular experiment, values for the e↵ective surface charge Zeff

range from ⇡ 66qel � 113qel. These values are an order of magnitude larger

than experiments involving PMMAmicrospheres in low dielectric suspension,

dodecane (✏ = 2) [8, 9, 33]. However, similar electrophoretic experiments [34]

involving deionized water have measured the e↵ective surface charge of silica

within a range of ⇡ 471qel � 2200qel. Discrepancies between [34] and the

results presented in this section is most likely due to two assumption made

for determining the e↵ective surface charge. (1) The electric-field at the

particle surface is approximately E = V/d, which is not the case because

the dielectric constant of water (✏ = 80) was not taken into consideration.

(2) Each computation is based on a model that assumes the Huckel limiting

case, which does not account for nonlinear double layer relaxation e↵ects.

Summary

The preliminary work presented in this section has accomplished the goals

set-forth to instill supporting evidence that the experimental setup is capa-

ble of detecting and measuring electrophoretic e↵ects. From these results

we (OPE) now have a control to test the e↵ects of monolayer coated silica

spheres. Particularly, organic coating such as ADT-TES-F, an anthradithio-

phene (ADT) derivative functionalized with triethylsilylethynyl (TES) and

fluorinated (F) side groups. Pending on the results of coated spheres, fur-

ther electrophoretic experiments will be tweaked to investigate the charging

nature. Such as, the charge in nonpolar liquid and adopting similar methods

of [9] to analyze the discrete charging nature of each coating.

Experiments may include surface charge measurements and the depen-

dence on the surrounding environment. That is, creating a more/less viscus,

or polar liquid suspension and exploring how particular organic coatings re-

spond to these changes. This approach may hold potential to pioneer a

method for analyzing charge carrier dynamics of specific organic molecules

and mechanisms involved with sub-elementary charge qel resolution.
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A.1 Optical Tweezer Setup

Optical Tweezer Setup Picture

Figure A.1: Picture of the optical tweezer setup constructed including all active com-
ponents

Figure A.1 displays the optical tweezer setup constructed and used for the

work in this thesis. The following list of active components were used:

• Trapping laser IR (green): Mini ti:sapphire 800nm

• Detection laser He-Ne (red): Low powered 633nm

• M(x): Silver mirrors

• L1 and L2: Thor LA1608-B 75mm

• L3: 100nm doublet

• L4: Pcx1303 50mm

• DM1: 660DCLP
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• DM2: Thor 43955

• DM3: Newport 05B20UF.25

• ND: E640SP and Thor FES0650

• Objective: 100/1.25 oil 160/0.17

• Condenser: Edmund DIN 20 0.40

• DAQ: National Instruments NI-6221

• CCD: Marshall V-1050A

• Transcoder Mike and Controller: ORIEL 18011 Encoder mike con-

troller

• Function generator: Tektronix AFG 3021

• Custom build quadrant photodiode detector QPD (Mark Kendrick and

Mark Warner)

• Custom LabVIEW acquisition program (not shown, Mark Kendrick

2007)

• Custom Mathematica data analysis program (not shown, Dr. David

Mcintyre)
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A.2 Force Measurements

This sections contains some supporting material corresponding to Chapter 4.

A.2.1 One-sided PSD constant G
o

The relation shown in this section corresponds to Einstein’s di↵usion con-

stant and how it relate a Brownian particle’s random thermal fluctuations to

its mobility. This essentially relates fluctuation quantities and dissipation,

which is also known as fluctuating dissipation theory, refer to [29] for more

information on this topic.

The following relation is based from the writings of Thermal cantilever

calibration by W. Trevor King [35].

Prelude

This relation utilizes the following Fourier transform properties and theorems

[28].

Equipartition theorem:

1

2
kbT =

1

2
ktraphx(t)i2 (A.1)

where h i denotes the variance. Fourier transform normalization:

Ff{x(t)}(f) ⌘
Z 1

�1
x(t)e�i2⇡ ftdt (A.2)

Fourier property:

F
✓
dnx(t)

dtn

◆
= (i2⇡f)n x̃(f) (A.3)

Parseval’s theorem:
Z 1

�1
|f(x)|2dx = int1�1|f̃(k)|2dk (A.4)
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We can translate Eqn. (A.2) to the one-sided power spectral density per

unit time PSD:

PSDf (x, f) ⌘ lim
t
T

!1

1

tT
2|Ff{x(t)}(f)|2 (A.5)

where tT is the total time for the acquired data. This relates to the variance

of x(t) through Parseval’s theorem;

hx(t)2i =
Z 1

0

PSDf (x, f)df (A.6)

One-sided thermal PSD constant per unit time Go

For the highly damped case, mapping the Langevin equation of motion

into the frequency domain via Fourier transform yields;

FB(t) = �
dx

dt
+ ktrapx(t)

F�! F̃B(f) = (i�2⇡f + ktrap)x̃(f), (A.7)

and taking the square complex norm of Eqn (A.7) and solving for |x̃(f)|2;

|F̃B(f)|2 = (�24⇡2f 2 + k2)|x̃(f)|2 (A.8)

) |x̃(f)|2 = |F̃B(f)|2

(2⇡�f)2 + k2
trap

. (A.9)

Computing the PSD by inserting Eqn. (A.9) into Eqn. (A.5) gives the one-

sided thermal power spectral density constant Go per unit time;

PSDf (f̃B, f) = Go = lim
t
T

!1

1

tT
2|f̃B(t)|2 (A.10)

Inserting Eqn. (A.10) into Eqn. (A.9) gives;

PSD(x, f) =
Go

(2⇡�f)2 + k2
trap

. (A.11)

Integrating Eqn. (A.11) over all positive frequencies gives the total power per
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unit time;

Z 1

0

PSD(x, f)df =

Z 1

0

Go

�24⇡2f 2 + k2
trap)

=
Go

4�ktrap
(A.12)

Now inserting this into Parseval’s theorem relating the variance Eqn. (A.6)

gives;

hx(t)2i =
Z 1

0

PSDf (x, f)df =
Go

4�ktrap
(A.13)

) hx(t)2i = Go

4�ktrap
(A.14)

Relating the variance in Eqn. (A.14) with the equipartition theorem Eqn.

(A.1) gives;

hx(t)2i = kBT

ktrap
=

Go

4�ktrap
(A.15)

) Go = 4�kBT (A.16)
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A.3 Surface Charge Measurements

E↵ective Surface Charge of Silica

E-field
FAC [Hz] Fcorner  [Hz] Zeff  [qel]

Spring Constant
kPSD   [pN/nm]

Calibration Factor
[nm/V]

18 37.271 65.891 2.2071 1240.8
28 39.02 80.696 2.3107 1154.1
38 39.351 83.99 2.3302 1192.5
48 37.454 82.806 2.2179 1227.5
58 38.134 96.921 2.2582 1160.2
68 34.78 98.022 2.0596 1125.3
78 35.885 105.02 2.125 1059.8
88 35.781 113.28 2.1189 1004.1
98 35.957 103.43 2.1293 1133.2
108 33.09 104.54 1.9595 1155.1
118 34.465 105.46 2.041 1161

Table A.1: E↵ective surface charge of 1µm-diameter silica spheres dispersed in water.
Experiments were conducted at a trapping depth of ⇡ 16µm from the cover-slip with
laser trapping power ⇡ 10mW . The electrode separation was measured to be ⇡ 106.6µm
with an estimated electric-field strength of E = V/d ⇡ 40kV/m resulting in the listed
corner frequencies fc, trapping spring constants kPSD, calibration factor cal = 1/⇢, and
e↵ective surface charge Zeff holding units of elementary charge qel.

Comments

As mentioned at the end of chapter 7, there are other methods besides [8]

that have been developed and critique in more recent years. The work of

Semenov et al. [10] have been exploring the e↵ects of both electrophoresis

and electroosmosis in colloidal systems. Their method is similar to [8], in that

the maximal displacement amplitude induced by the electric-field is linearly

proportional to the electrophoretic mobility.

The collaborative work between Strubbe and Beunis et al. [9, 33, 36, 37]

have provided a particularly interesting method that is capable of measur-

ing the discrete dynamics of elementary charge. This method uses a data-

windowing technique with sub-sampling frequencies larger than the observed
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charging cycles. In turn, the discrete nature of single charging events qel near

the particle surface is measured.

These measurements are rather simple, based upon a high (AC) electric-

field frequency and utilizing a weighted sum of the two-sided PSD during

each sampling window. The main benefit of this method is (1) rapid sam-

pling frequency provide bare surface charge measurements (not e↵ective), (2)

analysis of the two-sided PSD preserves the sign of charge measurements,

and (3) measurements are capable of resolving discrete, elementary charging

events, that is, the error in each windowing measurement is smaller than the

magnitude of an electron charge qel. Preliminary experiments utilizing this

technique have been implemented involving non-coated silica spheres, which

yield promising results, and further experiments are being considered.

Further Interests

• Explore the techniques developed in [9] for silica in nonpolar liquid

• Begin analyzing coated silica spheres

• Explore the electric field dependence at high frequencies using [9]

• Explore the possibilities of adding a band-pass filter to eliminate ex-

ternal frequency noise

• Measure electroosmosis in di↵ering frequency regimes

• incorporate a modulated signal to sweep through certain regions of

frequencies

• Determine the trapping power need to minimize low frequency lag con-

tributions

• Add a DC filter to amplifier
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