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1. Introduction 

System architectures for interconnecting large numbers of processors 
are being widely studied [AG82,TH75,TR82]. Of particular interest in 
such architectures is the exploitation of concurrency among proces­
sors. This concurrency can be parallelism, in which different parts 
of a single data case are processed at the same time, or pipelining, 
in which different processes are carried out simultoneously on succes­
sive data cases. Many problems involving file and vector processing 
can be viewed as pipelining problems~ 

Both structured and arbitrarily interconnected networks of processors 
have been proposed. The asserted advantage of structured networks is 
that they are easier to comprehend, control, and so utilize effec­
tively (arguments analogous to those made for structured programming 
[DA72,KO74]). The arguments for arbitrary networks are that they al­
low greater flexibility of interconnection and so can be more effi­
cient in many cases. 

Also, network architectures are being studied incorporating processor 
activation through data flow [AC82,AG82,DA82,TR82,WA82] and through 
flow of control [AN75,GA82,TH75]. 

In all of these cases, attention must be given to developing languages 
for expressing procedure interconnections and rules for allocating 
procedures to processors so as to obtain maximum concurrency. 

This paper presents a particular approach to specifying procedure in­
terconnection and allocation. The major result is that, within stated 
assumptions: 

networks constructed using a small set of structured process con­
nectives can achieve at least as good throughput (pipelining per­
formance) as arbitrarily interconnected networks. 

2. Structured Networks of Processes 

In this paper we focus on the logical interconnection of processors in 
a network. For illustrative purposes we consider each processor to be 
allocated a process, and so speak interchangeably of networks of pro­
cessors or networks of processes. 

In structured networks of processors, we allow three patterns of in­
terconnection: serial (S), parallel (P), and alternative (X) (figure 
1). (Although we use two components in these examples, in general the 
connectives may join an arbitrary number of components.) 
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(Sa b) (Pa b) (X ab) 

~ 

serial parallel alternative 

Figure 1. 

In serial interconnection, process a is followed by (sends its outputs 
to) process b. In parallel interconnection, p~ocesses a and beach 
receive a copy of the input data, and an output data set is formed as 
a union of their individual outputs. The two processes may be carried 
out in either order, or in parallel if resources are available; their 
joint output is formed in a specified order. In alternative intercon­
nection, only one of the component processes is performed, as selectea 
by a predicate q on the input data set. These connectives are assumed 
order-preserving, in that successive output data sets are produced in 
the same order as the corresponding inputs. 

These structured connectives can also be viewed as a way of composing 
a process description from its component processes. The resulting 
(compound) process description can then be decomposed/mapped/allocated 
onto interconnected processors [C067,T076]. As shown above, the con­
nectives directly represent parallelism, and can be implemented to 
enhance pipelining. Although control-flow implementations are possi­
ble, it is natural to view such networks as data-driven, and we shall 
do so in the following. 

A complete system utilizing this approach would include a language of 
expressions in which atomic and compound processes are described, the 
set of inter-process connectives, and a policy for allocating pro­
cesses to a network of processors. All three of these would be im­
plemented as "machine language" on each processor, so that process 
descriptions could be realized as programs almost directly, subject 
only to the level of translation done in simple assemblers. In this 
paper we concentrate on the set of inter-process connnectives. 

Structured process description networks using these connectives are 
equivalent to Dijkstra's d-charts [DA72,K074] with the addition of 
parallelism and the omission of cycles. The equivalent of cycles is 
achieved through recursive use of process names and allocation of new 
copies of the process description as required. Since allocation is 
flow-driven (components are allocated with the first invocation of a 
process), recursion is limited by the particular sequence of data at 
hand. 

As an example, a process description network is given in figure 2 t·or 
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computing the square roots of a number n (assuming n>O) using t 
iterations of the Newton-Raphson approximation method. An informal 
pseudo-text is used to define atomic processes. 
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g: 
I -
I 
I 
I 
I 
i 
I b: 

q<--(t>O) 

I 

I 
L_ 

-c=------ -----, 
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d: 
t <-- t- 1 --

I 
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----- -- - ---' 
Figure 2. 

This network can also be described by a process expression (here using 
process labels in place of actual expressions). 

(Sa g:(S b (X (S (Pc d) f) e))) 

l· Arbitrary Networks 

We now consider networks constructed with greater freedom of intercon­
nection than imposed on structured networks. We introduce five primi­
tive interconnections from which arbitrary networks are formed. These 
are illsutrated in figure 3. 

1. sequential, a single output to input line. 

2. fork, a single line splitting to two lines. A data case ar­
riving at the fork is copied, and copies sent along both lines. 

3. join, with two output lines joining to form a single input 
line. Data cases from the two lines are combined into a single 
data case. 

4. branch, a single line selected 
upon some value of the data case. 
computed in an preceding process, 
itself need only examine a single 

to one of two lines depending 
(The value of the predicate is 

so that the selection switch 
value. 

5. merge, output from one of two lines switched to a single line. 
The merge acts as an arbiter to insure that data cases on the two 
lines are not intermixed. 
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),, ~ y ~ ~ 
sequential fork join branch merge 

Figure 3. 

Note that structured networks as previously defined are constructed 
from these primitive interconnections, with forks and joins (and bran­
ches and merges) occuring only in matching pairs. In arbitrary 
networks these interconnections can occur as desired, within the as­
sumptions for networks given in the next section. An example of an 
arbitrary network is given in figure 4. 

'-----1c1-------' 

Figure 4. 

4. Assumptions for Networks 

We make the following assumptions for both structured and arbitrary 
networks: 

1. As many processors as are needed are available to decompose a 
process description. 

2. Communication and switching times are negliable. Performance 
is determined by processing time and by time spent waiting for 
computation of preceding processes. 

3. The data values produced from one invocation of a process are 
transmitted as a single message, here called a data case. 

4. Networks are acyclic. 

5. Networks are "well-formed", in the sense that any data case 
entering a network will eventually complete processing, and no 
parts or copies of the data case will be left in the network 
[G072,LA77]. 

6. Networks are order-preserving, with output data cases produced 
in the same order that input data cases are accepted. For struc­
tured networks this is assured since the individual connectives 
are order-preserving. For arbitrary networks we assume (if 
needed) an instantaneous ordering process appended to the 
network. 
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5. Performance Measures 

The following deterministic measures of process characteristics are of 
interest: 

e(i): elapsed time of process i from acceptance of input to pro­
duction of corresponding output. For atomic processes, this is 
the actual processing time. 

c(i): capacity of process i (maximum number of input cases that 
can be accepted before production of an output and acceptance of 
more input) -- assumed to be 1 for atomic processes. 

r(i): average period of process i (time between successive out­
put cases at maximum pipelining) at steady state assuming suffi­
cient input. 

The concept of period (the inverse of throughput) is basic to this 
study of pipelining performance. The period of a process depends on 
its input as well as on -the process itself. If input arrives too 
slowly to keep the process active, the input period determines the 
process output period. Otherwise, process characteristics determine 
the output period. In either case, the process may alter the relative 
timing of data cases with a sequence of inputs. 

From the above definitions, performance measures for the structured 
connectives can be derived. 

atomic process: e(i) = atomic processing 
c(i) = 1 (by assumption) 
r(i) = e(i)/c(i) = e(i) 

serial (Sa b): e(S) = e{a)+e(b) 
c(S) = c(a)+c(b) 
r(S) = max(r(a),r(b)) 

parallel (Pa b): e(P) = max(e(a),e(b)) 
c(P) = min(c(a),c(b)) 

time 

r(P) = max(r(a),r(b),e(P)/c(P)) 

These performance measures are directly extendable to connectives with 
more than two components. 

Performance characteristics of the alternative interconnection depend 
on the sequence of branches selected by successive data cases, and so 
can be analyzed only for specific situations. For data sequences with 
a regular repeating pattern, a period for the repetition as a whole 
may be found through analysis of · the specific pattern. Those cases in 
which one value of the predicate occurs rarely (as in exception or er­
ror handling) may be approximated by considering the dominant value 
only. 
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For one specific case, discussed below, performance measures for the 
alternative can be defined across all input data sequences. We use 
this case in our comparative analysis of structured ana arbitrary 
networks. 

Define the 
processes 
branches, 
ches, a 
selecting 

path of a data case through a network to be the sequence ot · 
through which the data case moves. For networks without 

all data cases have the same path. For networks with bran­
path can be characterized by an expression of the values 
the branches. 

Define the load, w(i), on process i with respect to a particular regu­
lar data sequence to be: 

w(i): the fraction of data cases in one repetition of the regular 
data sequence whose paths include process i. 

Define the identity process iden to be an atomic process with 
e(iden):O and c(iden):1 (a one data case buffer). 

Then, for the alternative interconnection of process a and the identi­
ty process, the period may be defined as: 

alternative (X a iden): r(X) = r(a)*w(a) 

Since the period is an average over a sequence of data cases, the re­
lative timing of the input data cases within the sequence must be such 
as to provide inputs as needed. The general definition of period 
holds only when the input period does not determine throughput (that 
is, when there is sufficient input to keep the network active). 

6. Equivalent Networks 

We now consider what it means to say that two networks are equivalent. 
The atomic processes of a network can be divided into two sets--those 
which compute only the values of predicates used within the network 
and all others. We call the latter basic processes. 

A network k is equivalent to a network j if: 

for every data case, the basic processes in its path for network 
k are the basic processes in its path for network j; 

for every data case, the order of basic processes in its path for 
network k is consistant with (up to the partial ordering speci­
fied by parallel processes) the ordering of those processes in 
network j; 

the branching predicates of networks k and j are composed from 
the same set of logical variables; and 
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for every data case, the output for network k is exactly that for 
network j. 

For example, the two structured networks of figure 5 are equivalent to 
the arbitrary network of figure 4 and to each other • 

t<--(ql\r) 

..._____~ 

r 

q g 

Figure 5. 

l· Effect of Buffering.£!!_ Throughput 

The period of a structured network depends on both the elapsed times 
and, for the parallel case, the capacities of its components. For ex­
ample, in the following network of atomic processes (figure 6), the 
period of the upper branch is 3, the period of the lower branch is 3, 
and the period of the entire network is 4. (The number given above 
each process is its elapsed time.) 
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e(f)=l 
c(f)=l 
r(f):1/1=1 

e(g)=3 
c(g)=1 
r(g):3/1=3 
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e(Sfg):1+3=4 
c(Sfg):1+1=2 
r(Sfg)=max(1,3)=3 

h 

e(h)=3 
c(h):1 
r(h):3/1=3 

(f (Sfg)_!'.!) 

e(P(Sfg)h)=max(4,3)=4 
c(P(Sfg)h)=min(2,1)=1 
r(P(Sfg)h)=max(3,3,4/1)=4 

Figure 6. 

Buffering can be used to reduce the period of a network by increasing 
the capacity of a part of the network. In figure 7 we show the 
network of figure 6 augmented with a buffer of capacity one (an iden­
tity process). The capacity of the lower branch is now 2, and the 
period of the network is 3. 

3 
----- g i-----

0 

Figure 7. 

The period of any structured network without predicates can be reduced 
to that of the maximum of the periods of its atomic components using 
the following observation: 

For serial connectives, the period is already that of the maximum 
component. 

For parallel connectives, the period is the maximum of component 
periods unless that is exceeded by (larger component elapsed 
time)/(smaller component capacity). In the latter case, insert 
sufficient buffer capacity in series with the smaller capacity 
component to equalize the capacities of the two components. 

A straightforward procedure follows from the above for decreasing the 



page 9 

period of any structured network without predicates to the minimum at­
tainable. (The introduction of buffer processes to increase pipel­
ining throughput has been noted previously [PA76J.) 

More generally, in any network in which the outputs of several pro­
cesses must be coordinated (such as combining the output data cases of 
parallel components into a single output case), a delay could be in­
troduced into the flow of data cases, possibly resulting in forced 
idle (waiting) time for subsequent processes. Such forced idleness 
will increase the network period if the bottleneck process whose elap­
sed time determines overall throughput is forced to wait. In general, 
any process which alters the time pattern of input data cases in pro­
ducing output data cases may introduce idle time for its successors. 
And in general, buffers may be introduced to eliminate that idleness. 

While networks without predicates produce a regularly spaced output 
pattern, predicate networks can introduce irregular respacings into 
the time pattern of outputs. The following lemma is motivated by the 
desire to insure that respacings in a predicate network do not cause 
subsequent idleness of a bottleneck process. 

Decoupling Lemma: 

Any process X may be replaced by an equivalent process Y (with 
possibly greater capacity) which preserves both the period of 
the original process and the timing of its input sequence. 

Proof: 

(by construction) Process Y consists of the serial connection 
of process X and a buffer process of sufficient capacity. The 
buffer process collects (at most) all data cases in a repeti­
tion of the output sequence of X and then releases them with 
the time spacing of the input sequence. 

In practice it is sufficient to provide only enough buffering to 
guarantee that subsequent processes can operate at maximum throughput. 

One interpretation of the lemma is that, if all data cases in one re­
petition of the input sequence are available "at the same time", then 
all output can be made available "at the same time" without increasing 
the period. 

(The introduction of buffers suggested by the decoupling lemma is only 
one means of altering a network to achieve maximum throughput. The 
addition of buffers to increase the capacity of one of two parallel 
processes is another. Similarly, in some cases buffers can be added 
to one of two processes in alternation to decrease their overall 
period. (In order-preserving networks, the outputs of alternative 
processes must be coordinated in a way similar to those of parallel 
processes.) Also, the period of a bottleneck process may be reduced 
by alternating (duplexing) two copies of the original process. The 
relative desirability of these approaches to increasing throughput 
depends in part on physical characteristics of the processors on which 
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the network is implemented. If processors generally have large 
amounts of storage, then introducing buffers may have little real 
cost. If processors generally have small amounts of storage, then du­
plexing processes may be desirable.) 

8. Performance of Equivalent Networks 

We now consider the elapsed time and period (throughput) performance 
of equivalent arbitrary and structured networks. 

Well-known Result on Elapsed Time: 

There exist arbitrary networks for which no equivalent struc­
tured network has an equal or smaller elapsed time. 

Example: 

For the network of atomic processes given in Figure 6 there are 
twelve possible equivalent structured networks without addi­
tional processes, of which two are shown in figure 9. None of 
the twelve has an elapsed time less than 7, while the arbitrary 
network has an elapsed time of 6. 

e=6, r=3 

Figure 8. 

e=7, r:4 

Figure 9. 

Theorem on Pipelining: 

e=8, r:3 

For any arbitrary network, there exists for any regular input 
sequence an equivalent structured network with a period at 
least as small as that of the arbitrary network. 
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Proof: 

1. The period of a network must be at least as great as the 
maximum of the products of the periods of its atomic component 
processes multiplied by their loads in the regular sequence. 

p(arb)>=max(p(i)*w(i)li in arb) 

2. Since the network contains no cycles, component processes 
can be numbered with consecutive integers such that each pro­
cess is assigned a higher number than any of its predecessors. 
(This is a common technique in critical path algorithms, for 
example [KE61].) 

3. Since the network contains no cycles, there are only a fini­
te number of paths from the beginning to each process, and 
those paths can be traced. (Techniques for path tracing are 
common in path analysis [AL76,F076].) A predicate expression 
consisting of the intersection of those predicates in the arbi­
trary network which must be true for a given path can be asso­
ciated with that path. A predicate expression q(i) which is 
the union of the expressions for all paths leading to atomic 
process u(i) can be associated with that process. 

4. Each atomic process u(i) may be replaced by an equivalent 
process v(i) where 

v{i):{S z{i) (X u{i) iden)) 

and z{i) is a process for computing q(i). 

5. The processes (numbered, say, 1 through m) can be organized 
into an equivalent structured network of the form: 

(S v(1) (S v(2) ••• (S v(m-1) v(m)) )) 

The numbering procedure guarantees that the ordering of the 
structured network is consistant with that of the arbitrary 
network. The predicate of the alternative connection con­
taining process u(i) is that predicate q(i) derived from all 
paths to u(i) in the arbitrary network. 

6. By the decoupling lemma, su f ficient buffering can be added 
to each alternative, treated as a process, to insure that its 
outputs occur in a time pattern which will not force waiting in 
later processes. Then, the period of the structured network 
will be the larger of the periods of the first component or tne 
remaining network, or, recursively: 

p(str)=max(p(1)*w(1),max(p(2)*w(2), ••• )) 
=max(p(i)*w(i) li instr) 
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Figure 10 shows a m1n1mum period network equivalent to the network of 
figure 4 (with identity processes omitted for clarity). 

2 2 2 

q 

Figure 10. 

In most cases, equivalent structured networks exist with processes on 
both branches of many alternatives, and often requiring fewer buffers 
for maximum throughput. For example, the equivalent structured 
network as defined above can generally be simplified as follows: 

if q(i) is true than v(i)=u(i); 

if q(i) is a predicate of the original network or its negation, 
then z(i) can be omitted; 

any remaining z(i)'s need only be computed once. 

A simplified network for that of figure 10 is given in figure 11. 
(The two additional buffers are required to maintain throughput while 
preserving order.) 

2 
2 0 

~ 

3 0 
-------1 C i-----

Figure 11. 

From the standpoint of pipelining throughput, the only reduction in 
performance incurred by expressing predicate process descriptions in a 
structured manner need be that associated with computing additional 
compound predicates from already computed predicates. And only in 
those cases where the computation of one "and" or "or" exceeds that of 
the bottleneck process will throughput be affected. (These compouna 
p~edicates are associated with the occurrence in the arbitrary network 
of merges not paired with branches, and are reminiscent of the aadi­
tional control variables found necessary by Bohm and Jacopini LB066J.) 

(Note that while the organization of processes in the structured 
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network is independent of the input pattern, the number and placement 
of buffers so as to achieve maximum throughput varies with the parti­
cular input. Upper limits on buffer requirements for a network may be 
derived by worst case analysis for each alternative or, for a particu­
lar input pattern, by static analysis of the alternatives. In almost 
all cases, these limits will be too severe.) 

2· Concluding Remarks 

The conclusion drawn from this analysis is that the~e need be no 
reduction in throughput (pipelining performance) from interconnecting 
networks of processes (or, constructing compound process descriptions) 
using only a small set of structured inter-process connectives. In­
deed, in some cases improved throughput over arbitrary interconnection 
is achieved. 

While some of the assumptions underlying the analysis may seem distant 
from physical reality, they do not necessarily affect the conclusion. 
For example, for the assumption of no communication delays to alter 
the conclusion, one would have to argue that communication delays will 
be greater in structured than in arbitrary networks. Since the magni­
tude of communication delays is closely related to the scheme for al­
locating processes to processing elements (see, for example, [TH78J), 
this argument would imply that a mechanized allocation process can 
more efficiently allocate an arbitrarily interconnectea network than a 
structured one. This seems contrary both to intuition and to ex­
perience with the management of data structures. From a pipelining 
standpoint, interprocess communication channels are equivalent to buf­
fer processes. Only if their "period" is greater than that ot · the 
maximum process do they affect throughput. Communication dtlays ao 
affect performance, and various inter-processor connection schemes 
should be studied, but there is no reason to believe that structured 
networks would suffer disproportionately from those delays. 

Similar arguments can be made concerning the assumption of suffi­
ciently many processors. Again, an informal analysis suggests that 
whatever schemes are developed for reallocating limited numbers of 
processors are unlikely to be less efficient for structured networks. 

Another area of interest is dynamic introduction of buffers for per­
formance enhancement. A dynamic tuning process based on ongoing per­
formance seems both feasible and desirable. Although appropriate in­
troduction of buffers can also enhance the throughput of arbitrary 
networks, it would seem likely that the dynamic analysis of structured 
networks, like their static analysis, would be more straightforward. 

Finally, we have not spelled out the obvious algorithms for converting 
arbitrary process networks into structured ones. The implication of 
these results is that process descriptions can be thought about and 
constructed in a structured manner from the beginning. 



page 14 

10. Acknowledgements 

Work on structured process description has involved Robert Barton and 
Richard Cowan (then of the Burroughs Corporation) and Randell Flint of 
U. C. Irvine as well as the author, and all have contributed to 
developing the concepts presented here. This study was supported in 
part by the Burroughs Corporation and by National Science Foundation 
grant no. MCS77-02715. 

11. References 

[AC82] Ackerman, W.B., "Data Flow Languages", Computer (February 
1982). 

[AG82] Agerwala, T. and Arvind, "Data Flow Systems", Computer 
(February 1982). 

[AL76] Allen, F.E. and J. Cocke, "A Program Data Flow Analysis Pro­
cedu'"e", Communications of the ACM, 19 (March 1976). 

[AN75] Anderson, G.A. and E.D. Jensen, "Computer 
Structures: Taxonomy, Characteristics, 
Computing Surveys, 7 (December 1975). 

Interconnection 
and Examples", 

[AR77] Arvind and K.P. Gostelow, "A Computer Capable of Exchanging 
Processors for Time", Proceedings IFIP Congress '77, Toronto, 
Canada ( 1977). 

[B066] Bohm, C. and G. Jacopini, "Flow Diagrams, Turing Machines and 
Languages with Only Two Formation Rules", Communications of 
the ACM, 9 (1966). 

[C067] Cooper, D.C., "Some Transformations and St~ndard Forms of 
Graphs, with Applications lo Computer Programs", Machine 
Intelligence, 2 (1967). 

[DA72] Dahl, 0-J, E.W. Dijkstra and C.A.R. Hoare, 
Programming, Academic Press, New York (1972). 

Structured 

[DA82] Davis, A.L. and R.M. Keller, "Data Flow Program Graphs", 
Computer (February 1982). 

[F076] Fosdick, L.D. and L.J. Osterweil, "Data Flow Analysis in 
Software Reliability", Computing Surveys, 8 (September 1976). 

[GA82] Gajski, D.D., D.A. Padua, D.J. Kuck ana R.H. Kuhn, "A ~econd 
Opinion on Data Flow Machines and Languages", Computer 
(February 1982). 

[G072] Gostelow, K.P., V.G. Cerf, G. Estrin and S.A. Volansky, "Pro­
per Termination of Flow-of-control in Programs Involving Con­
current Processes", Proceedings of the ACM, 25th Anniversary 
Conference, Boston (August 1972)-.- -- --



page 15 

[KE61] Kelley, J.E., Jr., "Critical-path Planning and Scheauling: 
Mathematical Basis", Operations Research, 9 (1961). 

[K074] Kosaraju, S. Rao, "Analysis of Structured Programs", Journal 
of Computing and Systems Sciences, 9 (1974). 

[LA77] Larson, K.C., "A Token Flow 
Networks", Ph. D. dissertation, 
Science, U. C. Irvine (1977). 

Model Applied 
Information 

to 
and 

Computer 
Computer 

[PA76] Patel, J.H. and E.S. Davidson, "Improving the Throughput of a 
Pipeline by Insertion of Delays", Third Symposium on Computer 
Architecture, IEEE Computer Society (January 1976).-

[TH75J Thurber, K.J., "Associative and Parallel 
Computing Surveys, 7 (December 1975). 

Processors", 

[TH78] Thomas, R.E., "Performance Analysis of Two Classes of Dataflow 
Computing Systems", M. S. thesis, Information and Computer 
Science, U. C. Irvine (January 1978). 

[T076] Tonge, F.M., "Expressions for Time and Space in a Recursive 
Realization of Parallelism", TR#79, Information and Computer 
Science, U. C. Irvine (May 1976). 

[TR82] Treleaven, P.C., D.R. Brownbridge and 
Driven and Demand-Driven Computer 
Surveys, 14 (March 1982). 

R.P. Hopkins, "Data­
Architecture", Computing 


	Tonge1
	Tonge2

