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Abstract 

Three different approaches to type checking have been taken in object-oriented programming 
languages. Smalltalk-80 uses run-time type checking. C++ uses subtypes. A third alternative 
is to use parameterized types. We examine the difficulties of programming in an object-oriented 
fashion with compile-time type checking and argue that parameterized types are better than 
subtypes in a language with compile-time type checking. 

1 Introduction 

Smalltalk-80[1] has become the prototypical object-oriented programming language. Smalltalk uses 
run-time type checking and run-time binding. Object-oriented techniques are hard to incorporate 
into conventional languages such as Ada and Modula-2[13], mainly because of the limitations of 
the compile-time type system used. Some recent languages like C++[ll], and Trellis/Owl[9] have 
extended the type system to include subtypes to overcome these limitations. In this paper, we show 
why object-oriented programming is difficult in conventional languages and how subtyping solves 
some of these problems. We then develop a parameterized type system that provides an alternative 
solution to this problem. 

Compile-time typing has several advantages. Many errors can be caught at compile time, 
and this produces more reliable code, and reduces development time. The code is easier to read 
because the types of variables are explicitly mentioned, which gives more information to the reader. 
More optimizations can be performed because more information is available at compile time. The 
language can be compiled into more efficient code because the type checking is · done at compile­
time instead delaying it to run-time. Programmers give up these advantages in a language typed 
at run-time in favor of added flexibility. 

2 A Programming Problem 

A Smalltalk-BO style windowing interface will be used to illustrate object-oriented programming 
techniques . In such a user interface, the screen is divided into regions called windows. This ar­
rangement can be viewed as modeling papers on a desk top, where the screen is the desk and the 
windows are the papers . The details of this basic model vary from system to system. Some imple­
mentations allow windows to overlap and some do not. Some direct input to one designated window 
while others direct the input to whichever window contains the cursor. Some implementations have 
the display change as the cursor is moved from pane to pane whereas in other implementations 
the display remains relatively unchanged. In this paper we are not concerned with these design 
decisions but with the impact of the programming language on the implementation of a windowing 
scheme. 

An important design criterion of a windowing system is that an application programmer be 
able to easily add his own types of windows to the existing window scheme without modifying 
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the system code . There is usually one segment of code that is responsible for implementing such 
operations as creating new windows, destroying windows, and relocating windows. We will call 
this segment of the code the window manager . The window manager is usually buried deep in the 
system code and is often difficult or impossible for the user to modify. On the other hand, this code 
must know some information about user-defined windows such as how to display them and how to 
deal with the keyboard input sent to them. This information varies from one type of window to 
another. Hence, the window manger must refer to code that is not yet written. 

Next we examine how this problem is solved in several languages. In Smalltalk-SO, where 
methods are bound to messages at run-time depending on the data type, the code for the window 
manager can refer to the message names and defer the binding of the messages to user-defined 
methods until run-time. For a robust system, care must be taken so that bugs in the user code do 
not cause the whole system to crash. 

In LISP, there is run-time binding of procedure names to procedures, but the binding does 
not depend upon the data type except for some primitive types. Some technique must be used to 
include the data dependences in the look-up. Three possible solutions are: 

• If an object-oriented extension to Lisp is available such as the Flavors package[6], then a 
solution similar to the Smalltalk-SO technique can be used. 

• An atom can be associated with each type of window. The user-defined procedures are put on 
the property list of this atom. The atom that represents the type of the window is included 
in the data structure for each window. The window manager can find the procedure to use 
by looking on the property list of this atom . 

• A structure can be defined that not only includes the data structure for the window but 
the functions that implement the operations on the window. The window manager can then 
call the functions in the structure to perform operations on the user-defined windows . When 
there are many windows of the same type, this scheme can be optimized to use less space by 
creating a structure that contains just the functions and share this record among all windows 
of the same type. 

This final solution can be modified to work in languages that are typed at compile time and allow 
procedures to be stored in structures, but the strong typing must still be avoided. Languages 
that fall into this category are Cedar Mesa[12], .Modula-2, and C. Consider how this would be 
implemented in Modula-2. 

window=POINTER TO RECORD END; (* Dummy type*) 
window_description=POINTER TO RECORD 

data_structure:window 
control: PROCEDURE(window,char); 
display: PROCEDURE(window,rectangle); 

END; 

PROCEDURE install(mywindow: ADDRESS;place:rectangle) 
(* Procedure to tell the window manager about a new window. *) 
VAR p: window_description; 
BEGIN 
p:=window; 
. .. (* code to install window*) 
p.display(p .data_structure,place); (* display the window*) 

END install; 
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The difficulty here is that a specific type for the window must be included, but the code should 
allow any type to be used in place of window. To allow this, the strong typing is broken by using the 
pre-defined type ADDRESS which matches any pointer type. The programmer is then responsible 
to declare a window description like the one above with the type window replaced by his own 
window type and pass it to the procedure install. The programmer would write code like: 

mywindow=POINTER TO RECORD ... END; 

my_description=POINTER TO RECORD 
data_structure: mywindow; 
control: PROCEDURE(mywindow,char); 
display: PROCEDURE(mywindow,rectangle); 

END; 

PROCEDURE mycontrol(w:mywindow; ch: char); 
BEGIN ... END mycontrol; 

PROCEDURE mydisplay(w:mywindow; r: rectangle); 
BEGIN . .. END mydisplay; 

PROCEDURE test; 
VAR w my_description; 

t my_window; 
r rectangle; 

BEGIN 
new(w); new(t); 
w.data_structure=t; 
w.control=mycontrol; 
w.display=mydislay 
... -- initialize t and r 
install(w,r); 

END test; 

c++, Eiffel[3,4], and Trellis/Owl solve the typing mismatch in the above Modula-2 example 
by introducing subtyping. All user-defined windows are made subtypes of window. A subtype of 
window can be assigned to the type window but a window can not be assigned to a subtype of 
window. This allows a user-defined window to be passed as a parameter to install without breaking 
the type system. 

The above techniques will not work for either Ada or Pascal because they do not allow proce­
dures to be stored in records. In such a language the window manager needs to know every type 
of window it will ever deal with. 

3 A Parameterized Type System 

Instead of subtyping, parameterization of types can be used to design an object-oriented program­
ming language. We will first describe a parameterized type system and then give several examples 
before we return to window managers. The term type will be used when the type system is being 
emphasized. The term class will be used in a broader sense to describe the type, the operations 
that are defined on the type, and the implementation. 
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Types will be represented by strings. Types without parameters are represent by the name, for 
example, real, int, and char. Types that have parameters are represented using the same notation 
as that of a function call; for example, array(int}, pair( array(int}, bool}, and array( array(int)). Only 
types will be allowed as parameters to types. Two types are equal if and only if the strings are the 
same. 

Two mechanisms are used to define sets of types. To represent an infinite set of types a 
parameter is declared to be free. A free parameter varies over all types. For example, the set of 
types described by array(/) where f is free is the set {array(f) If is a type}. 

Predicates are used to restrict the range of free parameters to types that have certain character­
istics. Predicates are boolean-valued functions whose parameters are types. The first letter of the 
name of a predicate will be capitalized. For example, let Collection be a predicate that is defined 
by 

Collection(g,f)= true 
= true 
= false 

when g=list(t) and f=t for some t 
when g=array(int) and f=int 
otherwise 

The expression proc(array(t),g) where t is free and Collection(t,g) is required then represents the 
union of {array(list(t),t) If is a type} and {proc(array(array(int}},int)}. 

Our first example of polymorphic code in a strongly typed language declares a data type pair 
with the types of the elements of the pair left unspecified. These types will be specified sometime 
before run-time. Each of the procedures below will work on an infinite set of types, yet the 
programmer declares the procedures only once, and the compiler maps all calls of a procedure to 
the same code. 

type 
pair(f,g)=class first:f; second:g; end; 
--In this declaration both f and g are free parameters. 
--A class declaration can be viewed as declaring a pointer to a record. 

procedure first(p:pair(f,g)) returns f; 
where f and g are free; 
begin return (p.first); end first; 

procedure second(p:pair(f,g)) returns g; 
where f and g are free; 
begin return (p.second); end second; 

procedure new_pair(a:f; b:g) returns pair(f,g); 
where f and g are free; 
var p: pair(f,g); 
begin new(p); p.first:=a; p.second:=b; return(p); end new_pair; 

When a procedure is compiled the free type parameters in the body are replaced by unique 
types not used elsewhere. This prevents b from being assigned to verb+p.first+ because the types 
will not be the same. 

The only operation possible on the objects that are passed as free parameters is to pass around 
references to them. Often some other operation is needed. For example, when a pair is printed, 
operations are needed to print the elements of the pair. The availability of such operations can 
be specified by the use of predicates. Three steps are needed to use predicates. First, the set of 
operations available when the predicate is true is defined. Second, the types for which the predicate 
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is true is defined and actual procedures are bound to the operations specified by the predicate. The 
predicate is assumed to be false everywhere else. Finally, procedures are written that use the 
predicate. The order in which the second and third steps are done is not important. 

Let us define a predicate Printable that represents the set of classes that have an operation to 
print its instances . 

Predicate Printable(f) is print:proc(f); end; 

procedure printpair(p:pair(f,g)); 
where f and g are free; 
Printabale(f) and Printable(g) are required; 
begin 

printstr("("); print(first(p)); printstr(","); print(second(p)); printstr(")"); 
end printpair; 

Integers are declared to be Printable by specifying the binding of procedures on integers to the 
operations needed for a class to be Printable. The following declaration also declares strings and 
pairs to be printable: 

define Printable(int) is print=printint end; 

define Printable(string) is print=printstr end; 

define Printable(pair(f,g)) 
where f and g are free; 
Printabale(f) and Printable(g) are required; 
is print=printpair end; 

This last declaration defines a relationship between types. It declares that if f and g are Printable 
then so is pair(f,g). Here is a procedure that uses the above procedures: 

procedure test 
var p:pair(int,pair(int,int)); 
begin 

p:=new_pair(3,new_pair(4,5)); 
printpair(p); --will print: (3,(4,5)) 
printpair(new_pair("a", "b")); --will print: (a, b) 

end test; 

The second printpair uses the type pair(string,string) which has never been explicitly declared. 
Furthermore there are no remaining free type parameters in this code. In this example, the identifier 
print could have been overloaded with printstr, printpair and printint but was not in order 
to make the code easier to understand. 

4 A Menu Example 

The following example uses procedures as first class objects to define a menu . Each item on the 
menu consists of a string to be displayed and an action to take when the item is selected. Operations 
are provided to create a new menu, add selections to the menu and to have the user select an item, 
and then perform the corresponding action. The type parameter allows the same code to be used 
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in many places. Without the parameter this approach to defining a menu abstract data type would 
not be very useful. 

menu(f)=class 
k:array(pair(string,proc(f))) 

end; 

procedure new_menu returns menu(f) 
free f; 
begin new(m); m.k:=new_array; end new_menu; 

procedure additemto(m:menu; text:string; action: proc(f)) 
free f; 
begin add(k,new_pair(text,action)); end additemto; 

procedure select_item(m:menu(f); data:f) 
begin 

... --display menu and set i to user selected item. 
m. k [i] (data) 

end select_item; 

Often it is useful to form a new procedure from an already existing procedure. To illustrate this, 
three examples are given that transform a procedure so that it can be used as an action in a menu. 
The first example replaces a parameter by a constant which reduces the number of parameters 
by one. This changes the type of the procedure from proc( data,int) to proc( data). The operation 
of fillparameter is to take the procedure accept and to fill in the second parameter with the 
contents of the variable i. 

procedure accept(d:data;i:int); 
(* procedure that is to be used as an action.*) 
begin ... end accept; 

procedure example(i:int); 
var menu: menu(data); 

p: proc(data); 
begin 

m:=new_menu; 
p:=fillparameter(accept,2,i); 
additemto(m,"accept",p); 

end example; 

The second example will add a parameter to the procedure accept . A helper function is used 
to do this: 

procedure accept(); begin .. . end accept; 

procedure add(p:proc();t :f) 
where f is free; 
begin p(); end add; 
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procedure example; 
var menu: menu(data); 

p: proc(data); 
begin 

m:=new_menu; 
p:=fillparameter(add,1,accept); 
additemto(m,"accept",p); 

end example; 

The final example changes the type of a parameter of a polymorphic procedure . The type of a 
procedure is changed from proc(f) to type proc(pair(int,J)). 

procedure fix(p:proc(f));a:pair(int,f)); 
where f is free; 
begin p(second(a)); end fix; 

procedure additem(m:menu(pair(int,f)); str:string; p:proc(f))); 
where f is free; 
var p2: proc(pair(int,f)) 
begin 

p2:=fillparameter(fix,1,p); 
additemto(m,str,p2); 

end additem; 

5 Representing L- Values 

Parameterized types also allow I-values to be represented easily. The I-value of a variable can be 
represented as Name(t) where tis the type of the variable . The r-value of the variable is represented 
as t . Procedures to perform assignments and to dereference a variable can then be written: 

procedure assign(left:Name(f),right:f) 
where f is free; 
begin left:=right; end assign; 

procedure dereference(left:Name(f) return f 
where f is free; 
begin return(left) end dereference; 

Read-only access or read-write access to a field of a class can be provided by returning the r-value 
or I-value of the field. This is very useful in defining abstract data types. 

class example is a:int; b:example end; 

procedure first(e:example) return int; 
$Only read access is provided. 
begin return(e.a); end first; 

procedure second(e:example) return name(example); 
$Both read and write access is provided. 
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begin return(e.b); end second; 

procedure test; 
var e: example; 
begin 

new(e); second(e):=e; --value is changed 
first(e):=1; -- type mismatch will be detected by the compiler. 
second(e):=second(e); --value is fetched and then stored. 

end test; 

6 The Window Manager Revisited 

Now we are ready to show how the window manager can be written. First a Predicate is declared 
to describe classes that can be used as windows: 

predicate Pane(f) is display: proc(f, rectangle); 
control: proc(f, char); 

end; 

procedure install(window:f; location:rectangle); 
where f is free; 
Pane(f) is required; 
-- Procedure that tells the window manager about a new window. 
begin 

display(window,location); --display the window. 
end install; 

When a user-defined class is to be treated as a window, two procedures are declared by the user 
to describe how to display the window and how the window should handle input. The class of the 
window is declared to be a Pane and a procedure written to create a new window: 

procedure my_display(w:my_window; loc:rectangle); 
begin ... end display; 

procedure my_control(w:my_window; ch:char); 
begin .. . end control; 

define Pane(my_window) is 
display=my_display; 
control=my_control 

end; 

procedure new_my_window; 
--procedure to create a new window. 
var 

w:my_window; r : rectangle; 
begin 

new(w); 
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install(w,r); 
end new_my_window; 

Anothe r problem arises in writing the install procedure that was not mentioned above. The 
window manager must keep a data structure that contains all the windows on the screen. This 
data structure stores instances of any class that is a Pane . Thus it must store instances of different 
types . One solution is to break the strong typing. This can be isolated in the system code for 
the window manger so that the application programmmer never needs to know that it was broken . 
In the Modula-2 window manager example, the application programmer was force to deal with 
breaking the strong typing . Another solution is to resort to run-time typing and binding. 

A better solution is to design the language so that an associated class is formed for each Predicate 
with a single argument. For example, the declaration Pane would create a class any Pane . The class 
any Pane itself would be a Pane . In addition, the system would create an operation convert that 
would take an instance of any class that is a Pane and make an instance of the class any Pane. The 
instances of any Pane would be represented as a vector of operations and the instance passed to 
convert. The window manager would store instances of anyPane in its data structures. Hence, 
the install procedure would become: 

var all _windows : list(any _Pane); --This is a global variable in 
-- which to store a list of all the windows . 

procedure install(w i ndow:f; location:rectangle); 
where f is free; 
Pane(f) is required; 
-- Procedure that tells the window manager about a new window . 
var any: any_Pane; 
begin 

any:=convert(window); - - convert the instance. 
addtolist(all_windows,any); --add window to list . 
display(window , location); --display the window. 

end install; 

7 Forming One Window Out of Two. 

A useful operation in building windows is to take two instance of Pane and combine them so that 
they behave as one window. The follow code describes how to treat a pair of panes as a single pane : 

procedure merge_display(p :pair(f , g);r :rectangle); 
where f and g are free; 
pane(f) and pane(g) are required; 

var 
r1,r2:rectangle; 

begin 
.. . - - divider into two rectangles rl and r2 
display(first(p),rl); display(second(p),r2); 

end merge _display 

procedure merge_control(p:pair(f,g);ch:char); 

where f and g are free; 
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Pane(f) and Pane(g) are required; 
var 

r1,r2:rectangle; 
begin 

... --divider into two rectangles rl and r2 
if cursor is in rl then 

control(first(p),ch) 
else 

control(second(p),ch); 
end; 

end merge_control; 

define Pane(pair(f,g)) 
where f and g are free; 
Pane(f) and Pane(g) are required; 
is 

display=merge_display; 
control=merge_control; 

end; 

Now if pl and p2 are instances of Pane, then install(new_pair(pl ,p2) ,rect) will install them 
as a single window. 

8 Discussion 

Many of the examples given for parameterized types do not have equivalent formulations using only 
subtypes. Subtyping loses type information about an object in parameter transmission when the 
type of the actual parameter is a subtype of the formal parameter. Type information is not lost 
for parameterized classes or if the typing is done at run-time. 

Other languages have used parameterized types. CLU[2] is one of the best examples. CLU 
does not have any notion of a predicate as given here, although CLU does contain a mechanism 
for specifying that a type parameter requires some operatio~s. The predicate notion fits better 
with Alphard[lO] form and the way it is used to write generic algorithms. The proof techniques 
developed for Alphard should carry over without much modification. Object-oriented techniques 
have been used in Mesa and Cedar-Mesa[l2], but without much assistance from the language. 

The parameterized type system described above has been incorporated into a programming 
language called X2[7,8]. Predicates are implementated as implicit parameters to procedures that 
use them . The implicit parameters are vectors of operations that describe the predicate. Our 
pratical experience with X2 has confirmed that parameterization does allow polymorphic code to 
be written easily in a language that is typed at compile time. 
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