
86-60-5

5C~Ei7CE.

A Preliminary Investigation of the Effects of FORTRAN
Data Declaration and Type Conversion Features

on Program Comprehension

Murthi Nanja and Curtis Cook
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

fl

..

•

O~l' f.fff~~i. '...- tr:"'.' r.0~r~, ITCR SCIENCE
OREGO;J r:· .. ;;\ i-r:: \i;/ 1\:""'.~'!?ffY
CORVALLIS, OR ·cmJ "733 1

A PRELIMINARY INVESTIGATION OF THE EFFECTS OF FORTRAN

DATA DECLARATION AND TYPE CONVERSION FEATURES

ON PROGRAM COMPREHENSION

Murthi NanJ·a

Curtis Cook

Computer Science Department

Oregon State University

Corvallis, OR-97331 .

ABSTRACT

FORTRAN permits both explicit and implicit options for both data declaration and type

conversion features. This study investigated the effects of explicit and implicit data declaration

and type conversion features on a program comprehension task performed by FORTRAN pro-

grammers in an introductory programming course. The results indicated that both factors had

significant effects on programmer performance and there was a significant interaction between

data declaration and type conversion. In addition, hand-simulation tasks performed by the sub-

jects provided insights on low-level errors made by the novices and misconceptions in the minds

of novices .

"

•

1. INTRODUCTION

Instructors teaching novices to program face the following problems:

• What difficulties do novices experience in learning to program?

• What are the sources of these difficulties?

• What features make a language suitable or unsuitable for novice programmers ?

There are no easy answers for these problems . This paper addresses some of these issues through a

preliminary investigation of novices' experience while learning FORTRAN.

Studying programming errors is necessary in order to learn their causes and to devise

preventive measures . A number of experiments have been performed to collect and analyze vari­

ous kinds of programming errors. For example , Youngs [9] studied the errors made in program­

ming by observing programmers working in high-level languages . Thirty beginning programmers

and 12 advanced programmers each coded one or two of nine problems . Youngs required the par­

ticipants to submit run logs and all the computer output from the problem. He studied program­

ming errors in terms of error frequency, error proneness, and error diagnosis and devised methods

of recording and analyzing errors. The interesting results of his research were: (a) eight language

constructs accounted for 75% of all errors, with assignment and 1/ 0 accounting for 29% and

14%, respectively . (b) 75% of the errors made by beginners were semantic and logical errors.

Boies and Gould [1] studied syntactic errors in FORTRAN programming and concluded that syn­

tactic errors were not a major bottleneck in programming because they are detected by the com­

piler and are easy to correct.

Moulton and Muller [8] studied errors found in three months of usage of a diagnostic FOR­

TRAN compiler by several hundred students in a introductory FORTRAN programming course .

The major conclusions of their study were: (a) syntactic errors occurred in 36% of the programs

analyzed by the compiler (b) arithmetic assignment statement comprised 26% of total number of

compiler errors (c) arithmetic assignment statement accounted for 45 .6% of all statements in a

total of 5158 programs. One major static analysis of FORTRAN programs by Knuth [7] looked

•

"

II

- 2 -

at syntactically correct programs, and compiled statistics about frequency of usage of different

constructs. He found that arithmetic assignment statement accounted for 51 % of all statements in

a sample of 440 professional programs .

Type declaration and type conversion are two programmmg language features common to

many conventional programming languages but appearing in different forms . Fo example a van­

able may be statically typed (assigned in a declaration), dynamically typed (assigned during pro­

gram execution), or typeless (assume type of the last value assigned to it) . Two variants of static

typing are implicit (done automatically) and explicit (done by programmer) typing . FORTRAN

allows both implicit and explicit typing of REAL and INTEGER variables . In FORTRAN a vari­

able may be explicitly assigned either type in a declaration or implicitly assigned a type according

to the first letter of the variable name.

Type conversion may be explicit or implicit. In explicit type conversion the programmer

must specify all type conversions while in implicit type conversion the type conversion 1s per­

formed automatically as needed such as when the variable is an operand in an expression. As a

sort of middle ground FORTRAN gives the programmer the option of explicitly converting a

numeric operand or letting an implicit conversion occur .

There is no common agreement as to which is the best method of type declaration or type

conversion. In one study Gannon [5] found that far fewer errors were made in a statically typed

language than a typeless language . However , there is considerable debate about which is best for

FORTRAN because it permits both explicit and implicit data declarations and type conver sions

for REAL and INTEGER variables.

Arguments in favor of implicit data declaration are programmers can remember the types of

variable names through clues in the name or comments and it is convenient and simpler to use

the implicit declaration convention throughout the program.

Many programmers favor implicit type conversions because the conversion rul es :irf' simple

and do not occur that often.

"

•

- 3 -

Some arguments supporting explicit typing of variables are:

• FORTRAN rules for determining type from the initial letter of the variable name do

not protect against misspelling and restricts the choice of integer variable names.

• Programmer has to use type statement for all the FORTRAN data types other than

INTEGERs and REALs.

• Explicitly naming the type ensures that the programmer 1s conscious of each vari­

able name, and its type.

Similarly , some arguments favoring explicit type conversion feature over implicit type conversion

feature are as follows:

• Programmer can minimize his or her "mental load" when understanding FORTRAN

expressions .

• Explicit type conversion ensures that the programmer is conscious of the data type of

each variable name.

Further, many FORTRAN textbooks advocate explicit type declaration and explicit type conver­

sion for obtaining better quality programs . For example:

"While the truncation resulting from integer or the assignment of a real value to an

integer variable can be useful in programming problems, it can have disastrous effects

when it occurs by accident (because of programmer error). We therefore suggest that

you always explicitly specify the conversions involved in a mixed expression or assign­

ment (integer to real or real to integer)."

----Friedman, F.L., and Koffman, E.B. [4, p.143]

"If you have mixed-mode operations for operations other than exponentiation, use the

functions INT and REAL so that operations use all integers or real values ."

"Explicit typing is an aid in program clarity as well as in error detection. Some pro­

grammers prefer to list all variables on specification statements, including those

correctly typed by the implicit rules."

- 4 -

----Etter, D .M. [2, p .64-65]

We considered the following two programmmg factors for our preliminary investigation :

FORTRAN type declaration and type conversion. We selected these factors for two reasons. First,

there seem to be no studies that either to justify or to reject the explicit type declaration and

conversion recommendations proposed in many FORTRAN textbooks. Therefore we were curious

as to whether the use of explicit type declaration and explicit type conversion aids program

comprehension. Second, since many studies identified FORTRAN arithmetic assignment state­

ment as a major source of programming errors, we investigated the kinds of arithmetic operator

and library function errors commonly made in assignment statements .

This paper presents the results of a controlled experiment that compared the effects of FOR­

TRAN type declaration and type conversion features on a program comprehension task performed

by novice programmers . In addition, we collected the low-level errors made by novices in

comprehending FORTRAN assignment statements. The subjects were presented one FORTRAN

program and were instructed to hand-simulate the program by drawing a tree-like structure form

for each executable statement. The tree-like structures illustrated the order in which subjects

hand-executed the arithmetic operators and showed the intermediate values resulting from par­

tial evaluation of all assignment statements. The tree-like structure provided a protocol analysis

of the step-by-step hand execution of each statement. Our results suggest that programs with

implicit type declaration and implicit type convers10n are less comprehensible to inexperienced

FORTRAN programmers . Also most low-level errors involved mixed mode division and the MOD

library function .

2. THE EXPERIMENT

The study had two primary goals:

1. To examine the effects of FORTRAN implicit and explicit type declaration and type conver­

sion features on program comprehension by novice programmers .

2. To identify common errors made by novice FORTRAN programmers m understanding

"

- 5 -

FORTRAN arithmetic operators and common library functions .

2.1 Subjects

Eighty four students enrolled in an introductory FORTRAN programming course at Or egon

State University served as subjects in the experiment. Most of the subjects had previous experi­

ence with one or more of other programming languages such as BASIC and Pascal. The subjects

were randomly divided into four groups each consisting of twenty one subjects. The subjects'

background information is shown in Table 1. A series of chi-square tests on the background infor­

mation variables showed no statistically significant differences among the four groups after the

random assignment of subjects. Hence the random assignment was successful in controlling for

programmer performance such as experience and knowledge of different languages, etc . All sub­

jects were unpaid volunteers.

2.2 Design and Material

The experiment was designed to study the effects of two independent variables: the type

declaration, and the type conversion. A 2 by 2 (Type Declaration by Type Conversion) factorial

design was employed. Each factor had two levels of treatment: explicit type declaration (ETD) ,

and implicit type declaration (ITD) ; explicit type conversion (ETC), and implicit type conversion

(ITC). There were two dependent variables: accuracy of correct response for each statement , and

number of low-level errors.

Four FORTRAN programs that implementing the same algorithm [6] for determining the

date of Easter Sunday for any year after 1582 were constructed. Two levels of type declaration

and type conversion were defined for each program. Programs were between 27 to 29 lines in

length, and consisted of 18 arithmetic assignment statements , two logical IF statements, and one

IF-THEN-ELSE construct. Two programs had explicit type declaration and two did not. No

iteration constructs were included in the programs. Four to five blank lines were provided below

each statement in the program so that subjects could draw the tree-like structure that show their

order of mental execution of that statement . No meaningful variable nam es were used in any of

"

- 6 -

the programs. Two sample programs along with instructions given are included in Appendix A .

In order to save space, the 4-5 blank lines inserted between program statements are shown only

for the first program listing in the Appendix. These four programs were functionally equivalent,

but they differed in nontrivial ways due to choices of type declaration and type conversion

features.

2.3 Procedure

The experiment was conducted as a 50 minute qmz three weeks prior to the sprmg term

final examination . The instructor of the course had described the purpose of the quiz in the previ­

ous lecture. Subjects were randomly assigned to each of the four experimental conditions. Pro­

grams were presented to the subjects in random order so that order would be balanced. The sub­

jects were first asked to provide their background information about computer programming

languages and then instructed to hand-simulate the program given on the following page of the

material by drawing tree-like structure in the space below each statement. As an example, a tree­

like structure is shown in Figure 1. The tree-like structures had been used extensively in regular

lectures to illustrate the evaluation of expressions . Although subjects were given 50 minutes to

perform the comprehension task, almost all of them finished in about 30 minutes .

3. RESULTS

Each statement in the program was graded on a statement by statement basis to compen­

sate for error propagation from one statement to another statement within the program. Twenty­

three statements were graded . Subjects made the following operation and conversion errors : (a)

misunderstood the function of MOD operator , (b) reversed the argument order for MOD, (c) exe­

cuted real division instead of integer division , (d) applied wrong arithm etic operation , and (e) did

not convert data types in a mixed mode assignment statement. A subject received one point only

if all of the low-level operations and conversions in the statement were performed correctly . Oth­

erwise the subject received a score of zero.

Tabl e 2 presents the means and standard deviations for corr ect response score. An analysi s

- 7 -

of variance was performed with type declaration and type conversion as the independent variables

and the correct response score and the number of errors for each of the four programs as the

dependent variables. The results indicate that explicit type declaration and explicit type conver­

sion groups supplied significantly more correct responses . Specifically, effects of both type declara­

tion and type conversion were statistically significant for correct response score, F(l,80) = 8.74,

4.59, p < 0.01, p < 0.05. A similar result was obtained for errors committed by subjects. i.e.

F{l ,80) = 10.13, 15.0, p < 0.01. However, the interaction effect was significant only for number

of errors, F{l,80) = 3.75, p < 0.05 .

The mean response score, and the mean error are plotted as functions of type declaration

and type conversion in Figure 2. It is evident from the curves that explicit type conversion {a)

improves program comprehension score, and (b) minimizes the number of procedural errors.

In addition to analysis of variance, a multiple comparison test using the studentized range

(Newman-Keuls method) [3] was conducted on the mean error data. The results indicated that,

the differences between ITD-ITO and ETD-ETC, between ITD-ITO and ETD-ITO, and between

ITD-ITO and ITD-ETO were significant, Q = 5.97, 4.29, 3.79, p < 0.05. No other comparisons

were significant.

Table 3 displays the percentage of subjects in each group who gave the correct solution

without making any error. Surprisingly, these figures are quite low.

From the tree-like structure, it was possible to gather further information about particular

types of low-level mistakes novices made m hand-executing the program. We identified five

categories of low-level errors and classified all errors into one of the following categories: mode

error, assignment operator error, library function error, computation error, and miscellaneous

error . Mode error occurred when a real expression was evaluated in integer mode or was evaluated

in real mode and an assignment operator error resulted from omitting type conversion across the

equal sign of an arithmetic assignment statement. A library function error resulted from

misunderstanding the function or incorrectly using its arguments. misuse of its arguments and

misunderstanding of its function. Computation error resulted from programmers' carelessness or

"'

- 8 -

ignorance m manipulating arithmetic operators. Miscellaneous errors included all other types of

errors such as clerical error, illegal application of operator error, operator precedence error , and

other unknown errors .

Table 4 shows the total number of errors and the proportion of errors in each error category .

As can be seen from this table, nearly one-half (0.42) the error occurred in implicit data declara­

tion and implicit type conversion group. As might be expected over 95% of all assignment opera­

tor errors occurred in the group with implicit type conversion and nearly two-third of the mode

and library function errors occurred in the group with implicit data type . The chi-squared test

revealed that four groups differed significantly with respect to the proportion of errors made in

each error category. i.e. X2 = 52.27, p < 0.001.

Table 5 shows the distribution of errors by statement for all versions of the program . The

table also displays the total number of errors that occurred in each program version as well as in

each statement across all programs. As can be seen from the table, a few program statements

contain a large percentage of the errors. For example, five statements had more than 30 errors,

three had more than 10 errors, and the remaining statements had less than 10 errors. A closer

examination of these high error frequency statements reveals that they all use either MOD opera­

tor or integer division operator. Moreover, most of these error occurred in program with the impli­

cit type conversion. We also observed that novices made these same errors at several places in the

program.

4. MISCONCEPTIONS AND RECOMMENDATIONS

Studying inexperienced programmers ' errors provides insight about errors they make and

misconceptions they have. The error categories reported in this paper reflect the novice program­

mers' confusion and lack of low-level knowledge about the FORTRAN division operator and

library functions. Following is a description of novices' misconceptions associated with three

important error categories in FORTRAN and possible hypotheses which could account for these

misconceptions.

..

..

- 9 -

4.1 Mode Error

A mixed-mode expression m FORTRAN contains operands with two or more data types.

Mode error results from incorrect evaluation of a mixed-mode arithmetic expression. The mode

error may be due to programmers' long time association with real arithmetic operations m

mathematics. Novices treat an integer expression as real value most of the time . Since most of the

mode errors involved integer division a possible explanation is the confusion over division operator

(/) because FORTRAN uses this same operator symbol for both integer and real division. Other

programming languages such as Pascal and C carefully avoid this problem by using two different

operator symbols, one for integer division and the other for real division. This appears to under­

score the difference between real and integer division and remind novices of the difference . Furth­

ermore, novices are not aware of the conversion rules that apply to various arithmetic operators.

Only a few FORTRAN text books explicitly show all conversion rules for arithmetic operators .

Since most novices' mode errors are due to not understanding the type of mixed mode results, we

strongly feel that the instructors teaching FORTRAN should place more emphasize on type

conversion rules for real and integer and in particular expression involving integer division opera­

tor . For example a simple rule such as the type of the result is integer only if both operands are of

type integer. Otherwise the result is real.

4.2 Assignment Operator Error

FORTRAN allows type conversion across the equal sign . Such convers10n 1s implicit m

FORTRAN; omitting such convers10n generates assignment operator error. It is interesting to

note that novices perceive FORTRAN statements such as IR=XY and IR=IXY where XY=191.0

and IXY =191 as equivalent statements. This probably shows novices lack knowledge of the inter­

nal data representation. It may also reflect a confusion about the equal sign in tr~rlitional algebra

with the assignment operator in programming. One possible way to avoid 1111- , rror is to teach

novices how to use explicit type conversion functions (INT and REAL) in assignme1,1 ., ,1,•ments

and to emphasize different representation for REAL and INTEGER.

- 10 -

4.3 Library Function Error

Every library function in FORTRAN takes a certain number of arguments in a particular

order; misusing these arguments creates library function error . Our data indicated that a few

novices interpreted the first argument of a MOD function as divisor and the second argument as

dividend, whereas many others misunderstood the function of MOD function . The unfamiliarity of

this library function seemed to account for majority of these errors.

5. CONCLUDING REMARKS

This paper has presented an initial study of explicit and implicit options associated with

type declaration and type conversion features in FORTRAN and analyzed the low-level errors

made by inexperienced FORTRAN programmers. In summary we believe that our experimental

results suggest the following:

•

•

When type declaration and type convers10n features of FORTRAN are specified

explicitly in a program, they improve novice programmers' comprehension.

When programs incorporate implicit options for type declaration and type conversion

features, novices tend to make more errors in comprehending the program .

• Mode error, assignment operator error, and library function error represent novices'

large percentage of arithmetic operator errors in FORTRAN.

However, our results cannot be generalized for the following reason: the task used in our study

required only one small program and the subjects were not professional programmers.

The empirical evidence gathered in this research helped in identifying programming

difficulties of novices in understanding FORTRAN arithmetic operators and their sources. Based

on the qualitative analysis of the magnitude and kind of errors we make the following teaching

recommendations for beginning students:

• Encourage novices to write programs with explicit options for data typing of vari­

ables and type conversion in arithmetic assignment statements .

- 11 -

• Give more emphasize to mixed mode arithmetic express10n s, esp ecially int eger divi­

sion operator .

• Provide complete simple to remember conversion rule tabl es for all arithmetic opera­

tors .

• Cover a few of common library functions such as MOD throughly .

REFERENCES

[1] Boies , S.J ., and Gould , J .D. Syntactic errors in computer programming . Human Factors, 16,

pp . 253-257 .

[2] Etter, D .M. Problem solving with structured FORTRAN 77. The Benjamin / Cummings Pub­

lishing Company, Inc .. 1984.

[3] Ferguson , G .A . Statisti"cal Analysis in Psychology f§ Education. McGraw-Hill Book Com­

pany , NewYork , 1971.

[4] Friedman , F.L ., and Koffman, E.B . Problem solvi"ng and structured programming in FOR­

TRAN. Addison-Wesley Publishing Company , 1981.

[5] Gannon , J .D . An experimental evaluation of data type conventions . Communi"cations of the

ACM , 20, August 1977 , pp. 584-595 .

[6] Knuth, D.E . Fundamental algorithms - The art of computer programming . Vol. 1, Addsion­

Wesley Publishing Company , 1973 .

[7] Knuth, D.E . An empirical study of FORTRAN programs . Software - Pract£c e and E xper i­

ence , Vol. 1, No . 2, 1971, pp . 105-133 .

[8] Moulton , P.G., and Muller , M .E. DITRAN -- a compiler emphasizing diagnostics. Communi­

cat ions of the ACM, 10, January 1967, pp . 45-52.

[9] Youngs, E .A. Human errors m programming . Int. J. Man-Machine Studies. Vol. 6, No . 3,

May 1974 , pp . 361-376 .

- 12 -

Table 1
Subjects ' background information

Background information Group 1 Group 2 Group 3 Group 4

Major
Computer science 4 3 4 2
Engineering 13 16 13 16
Others 4 2 4 3

Year in school
Freshman 12 11 10 11
Sophomore 4 6 4 4
Junior 1 2 2 2
Senior 3 2 3 3
Others 1 0 2 1

Programming languages
Pascal 16 17 15 13
Basic 12 15 14 14
Fortran 11 11 9 12
Others 6 3 4 5

- 13 -

1. A= 2 + 10.0 / 2 A= 7.0

~\Y
7.0

2. I= 5.0 I= 5

V
5

3. IZAP = 5 + A / I IZAP = 6
/ I I

s + 1.0 / s

\/!'
6.4

V
6

Figure 1. Tree-like structure

..

- 14 -

Table 2
Mean and standard deviation for four

versions of the program

ETD ITD
ETC

Overall response score
Mean 20.66 19.40
Std dev 2.37 2.48
N 21 21

Number of errors
Mean 2.33 3.05
Std dev 2.46 2.42
N 21 21

ITC

Overall response score
Mean 19.90 17.38
Std dev 2.93 2.85
N 21 21

Number of errors
Mean 3.43 6.24
Std dev 2.58 2.43
N 21 21

..

Mean
response
score

Mean

21

20

19

18

17

error
7

6

5

4

3

2

1

- 15 -

explicit type
20.66 conversion

._______ I
-- .._;_

19.90 ~ - -- . •

implici~ type-- ----~
conversion____

19 .40

----- • 17 . 38

+------------------+-------------------+----------->
exp 1 i c i t type

declaration

imp 1 i C i t type
conversion

implicit type
declaration

6.24

~ 3. 05
2.33 explicit type

conversion

+-------------------+-------------------+------------- >
explicit type
declaration

implicit type
declaration

Figure 2 . Type declaration and type conversion
(a) mean response score (b) mean error

Group

ETD-ETC

ETD-ITC

ITD-ETC

ITD-ITC

0

- 16 -

Table 3
Overall performance

Number of correct solutions

38 % (8/ 21)

33 % (7 / 21)

14.3 % (3/21)

9 .5 % (2/21)

J

Group
AOE

ETD-ETC 1

ETD-ITC 24

ITD-ETC 6

ITD-ITC 41

Total 72

Proportion 0.21

- 17 -

Table 4
Classification of /ow-level errors

Type of errors

NIDE LFE CPE MSE

13 13 12 10

17 14 14 3

27 28 11 7

22 25 22 22

79 80 59 42

0.22 0.24 0.19 0.13

Tot al Proportion

49 0.15

72 0.23

79 0.20

132 0.42

332 1.00

1.00

Legend : AOE ----> assignment operator error
mode error NIDE

LFE
CPE
MSE

---->
---->
---->
---->

library function error
computation error
misellaneous error

- 18 -

Table 5
Error distribution by statement

Statement number ETD-ETC ETD-ITC ITD-ITC ITD-ETC Total

1
2
3
4 7 12 19
5 9 8 13 12 42
6 8 8 15 13 44
7 6 3 9
8 1 4 1 6

9 3 2 8 5 18

10 2 4 3 1 10

11 8 10 15 12 45
12 4 1 5
13 3 6 7 2 18
14 2 2 1 5
15 6 9 16 14 45
16 3 3
17 1 4 2 7
18 2 2 4
19 1 3 2 6

20 3 3
21 7 7 12 13 39
22 1 3 4
23

Total 49 72 132 79 332

,.

:.,

APPENDIX A

- 19 -

NONCREDIT-QUIZ
Instructions

Read the following instructions carefully:

1. This quiz does not affect your course grade in any way .

2. If you have questions during the test, please raise your hand .

3. You are not permitted to refer to any textbooks and / or lecture notes during the test .

4. Please provide the information requested below :

Major :
Year in School
Programming Languages Known

5. On the following page you are given a FORTRAN program . Show the values of all variables
after this program is executed . You must explicitly show your mental calculations for each
statement in the program as shown in the following examples . You can assume implicit typ­
ing for undeclared variables. When you are done, write down the approximate time taken
to complete this task .

1. A= 7.0

2. IZAP = 6

6

- 20 -

Program for ETD-ETC group

Line#

1 PROGRAM KNUTH(INPUT,OUTPUT)
2 INTEGER GA,XB,AO,YD,DE,MN,DS,IT,NU ,CE,IA,JF,NY
3 REAL NX,CF ,IZ,JE
4 YD= 1991 YD

5 GA= MOD(YD,19) + 1 GA

6 OF= REAL(YD/ 100+1) OF

7 OE = INT(OF) OE

8 MN= INT(3 .0*CF) MN

9 XB = MN/4-12 XB

10 DS = 8*OE+5 DS

11 IZ = REAL(DS/25-5) IZ

12 IA = INT(IZ) IA

13 DE= 5*YD/4-XB-10 DE

•
14 IT= ll*GA+20+IA-XB IT

- 21 -

15 JE = REAL(MOD(IT,30)) JE

16 JF = INT(JE) JF

17 IF (JE.EQ.25.0.AND.GA.GT.11.OR.JE.EQ.24.0)JF=JF+l JF

18 NX = REAL(44-JF) NX

19 IF (NX.LT.21.0)NX=NX+30.0 NX

20 NY= INT(NX) NY

J

21 NU= NY+7-MOD(DE+NY,7) NU

22 IF (NU.GT.31) THEN

23 PRINT *,JF,NX JF
NX

24 PRINT *,(NU-31),'APRIL',YD

25 ELSE
26 PRINT *,JF,NX JF

NX
27 PRINT *,NU,'MARCH',YD

28 ENDIF
29 END

- 22 -

Program for ITD-ITC group

)

Line#

1 PROGRAM KNUTH(INPUT,OUTPUT)
2
3
4 IY = 1991.0 IY

I 5 IG = MOD(IY,19) + 1.0 IG
6 CF= IY/ 100+1.o CF ~ 7 IC= CF IC
8 MN= 3*CF MN
9 KX = MN/ 4-12.0 IC-X
10 LD = 8.0*IC+5 LD
11 ZI = LD/25-5 .0 ZI
12 IZ = ZI IZ
13 ID= 5*IY/4-KX-10.0 ID
14 IT= ll.0*IG+20.0+IZ-KX IT
15 EJ = MOD(IT,30) EJ
16 JE =EJ JE
17 IF (EJ.EQ.25.AND.IG.GT.ll .0.OR.EJ.EQ.24.0)JE=JE+l .0 JE
18 XN = 44.0-JE XN
19 IF (XN.LT.21.0)XN=XN+30 XN
20 NX=XN NX
21 NU = NX+7 .0-MOD(ID+NX,7) NU
22 IF (NU.GT.31) THEN
23 PRINT * ,JE,XN JE

XN
24 PRINT *,(NU-31),'APRIL',IY

25 ELSE
26 PRINT * ,JE,XN JE

XN
27 PRINT *,NU,'MARCH',IY

28 ENDIF
29 END

	Nanja_Cook_86_60_05_A
	Nanja_Cook_86_60_05_B

