
88-60-11

un,uEASITY

5CIEnCE

Program comprehension differences in debugging

Murthi tlanja
Curtis Cook

Computer Science Department
Oregon State University
Corvallis, Oregon 97331

Program comprehension differences in debugging

MURTHI NANJA and CURTIS COOK
Department of Computer Science, Oregon State University, Corvallis, OR 97331

Many studies have shown that expert programmers are more effective at debugging programs
than novice programmers. These studies have suggested that the major reason for this difference
is due to the experts' superior comprehension of the program. This paper reports two experiments
which investigated expert and novice student programmers program understanding during the de
bugging process and the hypothesis that the degree of program comprehension is a good predic
tor of debugging performance. In both experiments subjects used a microcomputer to debug a
Pascal program with three logic errors. Subjects' understanding of the program was measured
early in the debugging process and again at the conclusion of the debugging session. The results
showed that program comprehension plays a vital role in the program debugging process.

1. Introduction

Debugging, the location and correction of program errors after their existence has been established, is a

very common programming task. It is estimated that debugging accounts for 25% to 50% of the time in the

development of a large computer system (Boehm, 1981; Glass, 1983). Students in programming courses

spend a considerable fraction of their programming time tracking down and fixing errors. It is therefore

surprising that relatively little is known about debugging and that debugging is only a small part of p~

gramming courses.

Almost all debugging studies have concentrated on performance differences between novice and

expert programmers. They have shown that experts locate and correct errors faster than novices, find more

errors, rarely introduce new errors, make more effective use of the information available, and are much

more likely to use an on-line debugger . Typically in these studies the subject task was to locate or locate

and correct a single error seeded in the program and the performance measures were whether or not the

error was correctly identified and fixed and the time to do so (Gould , 1975; Gould & Drongowski, 1974).

Since only the correctness score and time were recorded, these studies provided almost no information

about the subject's debugging process - what debugging strategies were employed, how, when, or where

they were applied.

However. several recent protocol analysis studies (Jeffries. 1982; V~ey. 1985; Gugerty & Olson.

1986; Nanja & Cook. 1987) have investigated the debugging process of expert and novice programmers.

Protocol analysis involves presenting a subject with a problem and asking him or her to "think aloud" while

solving the problem (Ericsson & Simon). This verbal protocol is then anaJyzed in an attempt to obtain a

"trace" of the problem solving steps taken by the subjecL Through careful analysis, it is often possible to

develop a coherent explanation of the problem solving steps by the subject

The debugging protocol studies showed that experts and novices do many of the same activities. but

the experts do them much more effectively. Experts obtained a hierarchical understanding of the program

because they read it in the order in which it would be executed while novices read the program like they

would read prose - from beginning to end in physical order (Jeffries. 1982; Nanja & Cook. 1987). Novices

nearly matched the experts in debugging errors for which there was an error message and a line number;

experts, however, were much more successful in correcting logic errors where the only infonnation about

the error was the discrepancy between the actual and correct output Almost all novices and a few experts

introduced new errors. The expertS immediately undid the errors they introduced while novices did not and

had to debug these errors as well (Gugerty & Olson, 1986; Nanja & Cook, 1987).

In these protocol studies subjects' program comprehension seemed to account for most of the

debugging perfonnance differences between experts and novices. However. in these studies the degree of

program understanding or when the subjects gained the understanding (from an initial study of the prer

gram) was not clear. The protocol study reported in this paper addresses these questions. The subject's

understanding of the program is measured early in the debugging process and again at the conclusion of the

debugging session. For the first measure of understanding a program reconstruction task was administered

immediately after the first program modification. The second measure of understanding was a comprehen

sion quiz administered at the conclusion of the debugging session that asked questions to test both low and

high understanding of the program. The results indicate that subjects who were the most effective

debuggers (located and corrected the errors faster) had a better understanding of the program both after

their initial reading of the program and at the conclusion of the debugging session than those who were

unsuccessful. Subjects who did not locate and correct all the bugs performed poorly on both the program

2

reconstruction task and the comprehension quiz.

2. Method

The two experiments investigate the hypothesis that the degree of initial program comprehension is a good

predictor of debugging performance. We measured the subjects' initial program comprehension by using

program reconstruction task (Shneiderman 1980). The subjects were presented listings of a defective pro

gram with three errors, input data file, incorrect output, desired (correct) output, and the program on a

micro diskette. The task was to correct the defective program using an Apple Macintosh computer. After

their initial program reading comprehension and immediately after their first modification to the program,

all program listings and other materials were taken away and they were asked to reconstruct the original

program. After the program reconstruction task subjects resumed debugging. Finally, at the conclusion of

the debugging session, the subjects were given a nine question comprehension quiz.

The program reca11/reconstruction task used in this experiment is different from other similar tasks

reported in the literature in four respects. First, subjects recalled a defective program. Second, subjects

were not told prior to the experiment that they were to recall a defective program during debugging ses

sion. Third, comments in the defective program described the overall function of the program. Fourth,

subjects wc::rc presented with a program template which contained the declaration part of the defective pro

gram.

3. Experiment 1

3.1. SUBJECTS ·

The subjects in this experiment were six novices and six expert Pascal programmers, all volunteers. The

novices were just finishing their second term of a Pascal programming course at Oregon State University.

The experts group was composed of graduate students in computer science at Oregon State University. All

experts were very experienced student programmers. All subjects had previous experience with MacPascal

programming environment on Macintosh computer .

3

3.2. MATERIALS

The program was a 50-linc Pascal program that read in 19 integer data from a file, soned them in ascending

order using bubble sort, and se.archcd for five key values in the soned list using a binary se.arch routine. It

was written in a structured fashion with indenting and meaningful names, contained three lines of com

ments describing the program, but had no in-line comments. It was identical to the one used in Nanja and

Cook (1987) except it was implemented as a monolithic program rather a modular program and se.eded

with only logic errors, not semantic errors. Since modular programming facilitates program comprehen

sion of subjects by allowing them to concentrate on a small portion of a program and to encode that portion

into higher level semantic concepts (chunks) (Shneidennan & Mayer, 1979), we felt that a monolithic pro

gram would provide a better test of comprehension. All subjects were familiar with the binary search rou

tine and the bubble sorting algorithm used in the program.

There were three logic errors in the program: (a) off-by-one error - the number of iterations through

a loop is counted incorrectly, (b) assignment statement error -- a variable is assigned incorrect value, and

(c) predicate error - incorrect conditional expression. These errors were selected because they are errors

commonly made by students and require thorough understanding of the problem domain . .

The listing of the deiea:ive program, with three emrs, is shown in Appendix Al. Each of these

errors could be correcte.d by modifying only one statement Correct versions of these statements are

shown in the defective program listing as in-line comments.

3.3. PROCEDURE

Subjects performed the debugging task individually. They were given a print-out of the defective table

lookup program and a printed copy of input data file, both of which were also available to them on a micro

diskette. They were also given a copy of the correct output and incorrect output (see Appendix A2). Sub

jects were not told how many or what type of errors the program contained or that each error could be

repaired by changing only one statement Further, subjects were informed that they could debug the pro

gram at their own pace and use any debugging techniques.

During the debugging session, an experimenter recorded what program objects the subjects were

examing and only asked about error hypotheses. For the purpose of this study, we considered the follow-

4

ing program objects: listing of input data file, printed copy of the expected output, listing of program, ~

cal program window, error message window, program output (text) window, and observe window. Activi

ties pcrf ormed by subjects were categorized as follows:

• examine listing of input data

• examine listing of expected output

• examine program listing on screen

• examine error window

• examine program output window

• examine observe window

• hand simulate program segment (in program listing)

• enter input data

• compare expected output and actual output

• use on-line debugging tool

• run program

• modify program segment

After program modification(s) and before they ran the program subjects were Bed to state their

hypotheses. The subject's debugging process was recorded as an episode outline his/her a:tivities on pro

gram objects. This data gathering procedure was identical to the procedure used in oor previous study

(Nanja & Cook, 1987).

To measure subjects program understanding, immediately after the first modification to the program,

the program and other materials were taken away and the subjects were given 20 minutes to create a pro

gram on-line that was as close as possible to the original one. Further, they were instructed not to change

the algorithm(s) used in the defective program. The subjects were not told beforehand that a reconstruction

task would be administered during the debugging session . For the reconstruction task the subjects began

with a program template that contained only the declaration pan of the program. The program template is

shown in Appendix A3. During their recall task, an experimenter recorded the order in which program

statements were recalled, the time spent in each of the three routines of the program, and the total number

of references to the declaration pan contained in the program template. After the program reconstruction

5

task subjects resumed their debugging session.

Finally, after the debugging session, subjects were given the correct version of the program and

as.lced to answer a nine question comprehension quiz about the program. The quiz is shown in Appendix

A4. The purpose of this test was to measure subjects' understanding of the program at the conclusion of

the debugging session.

3.4. RESULTS

Although the defective program was implemented as a monolithic program, it contained three distinct func

tions: read 19 integer data items from the input file (ReadData), sort all integer data items using bubble sort

(BubbleSort), and search for five key values in the sorted list (BinarySearch). The grade for the recalled

program was based on separate grading for each function. Two grading schemes, one based on functional

correctness of the program and the other based on verbatim recall of the program, were employed.

For functional correctness gradirig the three functions were broken into a number of parts (chunks),

·each consisting of one or more program statements and representing a familiar pattern in the specified alger

rithm. Program parts in each of these functions are:

ReadData function:

• initializ.e index or count variables

• iterate to read in a set of integer values

• read an integer value and assign its value to an array element

• increment the index variable by one

• count the total number of input values

BubbleSort function:

• iterate to count the number of passes

• iterate array comparison for each pass

• compare two successive array elements

• interchange two array elements

6

BinarySearch fwiction:

• search for five key values

eread in a key value

• initialize the beginning (low) and the end (high) of the array elements

• iterate search process

• compute the value of the middle index

• test for equality and set appropriate index values

• terminate search process

The functional recall score is the total number of program parts subjects recalled correctly. Table 1

shows for novices and experts the total number of parts recalled, the number of parts recalled correctly, and

the number of times the part was missing in the recall. If a subject recalled a different algorithm (e.g.

linear search instead of binary search) it was treated as missing all parts. The functional sccre for each

subject is also shown in Table 2

••••••••••••••••••••

insen Table 1 here

••••••••••••••••••••

insen Table 2 here

••••••••••••••••••••

As can be seen from Table 1 and Table 2, there were considerable differences between the expert

and novice programmers. Experts recalled more parts (mean = 15.5 for experts, and mean = 11.8 for

novices), more parts correctly (mean = 13.5 for experts, mean = 8.5 for novices), and had fewer missing

parts (mean = 0.5 for experts, and mean = 4.2 for novices) than novices. For each of the three functions

experts recalled more parts than novices and a higher percentage of the parts recalled were correct. Both

experts and novices performed better in recalling parts contained in ReadData and BubbleSort functions

7

than in BinarySearch function. Experts recalled nearly twice as many part.~ of BinarySearch as novices.

Furthermore, novices averaged nearly three missing parts in BinarySearch while on]y one expert missed

one part.

For verbatim recall grading, a statement was graded as correct if it was identical to the original

except for indentation, and spacing. If subjects used different variable names, changed the statement order,

or omitted one or more statements, it was counted as incorrect. All in-line comments in their recall were

ignored. In addition, if a subject recalled correctly a corrected version of an incorrect statement (e.g. count

:= index) of the defective program, it was considered as incorrect. One JX)int was awarded for each

correctly recalled statement. A subject's verbatim score was the sum of the points.

insert Table 3 here

Table 3 shows the total number of program statements recalled verbatim by subjects. As can be seen

from this table, expert programmers recalled more program statements verbatim than novice programmers

(mean percent = 40.9% for novices, mean percent = 50.9% for expens). Most of this difference was

reflected in their recall of the BinarySeach routine. It is interesting to note that both experts and novices

recalled the begin-end pairs (syntactic beacons) better than any other statements in the program.

The verbatim score of each subject is shown in Table 4. Surprisingly novices . had higher verbatim

score than experts in the ReadData function (mean= 4.3 for novices, and mean= 3.5 for experts), but they

scored less than experts in the BubbleSort and BinarySearch functions (mean = 3.3 for novices, and mean =

4.3 for experts in BubbleSort function, mean = 6.7 for novices, and mean = 10.0 for experts in Binar

ySearch function). Note that experts' score is substantially higher than that of novices in the BinarySearch

function.

insert Table 4 here

8

Both expens and novices began their recall task approximately 6 minutes into the debugging session

and, except for BinaryScarch function, recalled almost the same number of program statements. In addi

tion, there were little differences in the mean overall recall time between the expens and novices.

The purpose of the post session comprehension quiz was to test subjects' high and low level under

standing of the program. There were nine questions in the comprehension quiz, five of which had two

pans, and one point was awarded for each correct answer. This yielded a maximum comprehension quiz

score of 14 points. Subjects' post session program comprehension quiz score along with recall verbatim

score, functional score (total number parts recalled correctly), and number of errors corrected are shown in

Table 5. As can be seen from this table novices scored lower than expens (mean = 10.8 for novices, and

mean = 12.8 for expens) on the comprehension quiz. Note that the two novices (NI and N6) who

corrected all three errors had the two highest verbatim recall, functional recall, and post session quiz scores

among the novices. Notice also that the expen (E3), who failed to correct all three errors had the lowest

verbatim, functional, and post session quiz scores among the expens. Correlation coefficient were calcu

lated between the debugging performance of subjects (total number of errors corrected) and program recall

performance (functional score, verbatim score), and post comprehension score (r = 0.77, r = 0.82, and r =

0.86, respectively). These relatively high ccnelation coefficients seem to indicate that subjects' program

comprehension is related to their debugging pe.rf ormance.

••••••••••••••••••••
insen Table 5 here

••••••••••••••••••••

The error correction order of expens and novices are shown in Table 6. The four novices (N2, N3,

N4, and NS) and one expert (E3), who failed to correct all errors, all failed to find the error in the Binar

ySearch function. Note that all subjects except E2 immediately verified each modification. E2 modified

the ReadData and BubbleSort functions before verifying the modifications were correct.

••••••••••••••••••••
insert Table 6 here

9

4. Experiment 2

4.1. SUBJECTS

A different group of expert and novice programmers at Oregon State University participated in this experi

ment. There were six subjects in each group. As in the previous experiment, the novices were enrolled in

the second sequence of an introductory Pascal programming course, and the experts group was composed

of graduate students in computer science department.

4.2. MATERIALS

The program used in this experiment was identical LO the one used in the previous experiment (see Appen

dix Al).

4.3. PROCEDURE

The procedure was identical to the previous experiment. except the reconstruction task was administered

12 minutes into the debugging session and a cloze procedure comprehension quiz was employed at the end

of the debugging session. AfteT 12 minutes of program debugging all materials were taken away and a 20

minutes i:rogram reconstruction task was administered. After this program reconstruction task subjects

resumed their debugging session. Finally, after the debugging session, a cloze JX'()Cedure comprehension

test (Cook, et al, 1983) was given to subjects. The cloze procedure is a "fill-in-missing-parts" procedure.

Tokens in the program being tested are systematically deleted and replaced by a blank space . A subject's

ability to fill in the blanks is related to the extent to which the program is understood. The cloze procedure

version of the program is shown in Appendix A5.

4.4. RESULTS

Since this experiment is almost identical to the previous experiment, the programs recalled by subjects

were graded using the same verbatim and functional grading schemes described in the previous experi

ment. Even though the recall task was administered at end 12 minutes, almost all results were the same or

similar to those found in the previous experiment

insert Table 7 here

••••••••••••••••••••

••••••••••••••••••••

insert Table 8 here

••••••••••••••••••••

Functional recall scores for all subjects are shown in Tables 7 and 8. Again as in the previous experi

ment, experts recalled more parts of each of the three functions than novices (mean = 13.5 for novices, and

mean = 15.8 for experts) and more often they recalled them correctly (mean = 10.3 for novices, and mean

= 13.1 for experts). Furthermore, experts were much better than novices in recalling parts in the Binar

ySearch function. Also, note that all experts except El recalled all 16 parts of the program, while only two

novices (N4 and N6) recalled all parts. Subjects' recall performance was better than those in Experiment 2

because they had more time to study and work with the program .

••••••••••••••••••••

insert Table 9 here

••••••••••••••••••••

••••••••••••••••••••

insert Table 10 here

••••••••••••••••••••

Tables 9 and 10 show the total number of statements recalled verbatim by subjects. Expert program

mers recalled more program statements verbatim than novice programmers (mean percent = 48.5 for

novices, and mean percent= 59.0% for experts) . As in Experiment 1, both experts and novice program

mers recalled syntactic beacons better than other program statements and recalled almost the same number

of statements (mean= 32 for novices, and mean= 34 for experts).

11

Subjects' post session program comprehension score is shown in Table 11. One point was awarded

for a correct entry in each blank space in the cloze version of the program. This yielded a maximum of 11

points. Novices scored less in their comprehension taslc than experts (mean = 8.8 for novices, and mean =

9.2 for experts) and took more time to complete the post session comprehension taslc (i.e. cloze procedure)

than expcns (mean = 8.3 minutes for novices, and mean = 6.2 minutes for experts). Note that the two

novices (N4 and N6) who corrected all three errors had the two highest verbatim, functional, and post ses

sion quiz scores among the novices . The only expert (E6) who did not correct all three errors had the

lowest post session quiz score among the experts .

••••••••••••••••••••
insert Table 11 here

••••••••••••••••••••

Subjects' error correction order is shown in Table 12. All experts except E6 successfully located and

corrected all errors, while only two novices (N4 and N6) corrected all errors. Experts spent more time in

reading the program prior to their first modification to the program (mean= 4.8 minutes for novices, and

mean= 7.7 minutes for experts). 1be error correction order of subjects was similar to the one found in the

previous experiments .

••••••••••••••••••••

insert Table 12 here

••••••••••••••••••••

Experts were more efficient than novices in debugging the program (mean debug time = 35.0

minutes for novices, and mean debug time = 29.2 minutes for experts). Since other debugging perfor

mance measures, debugging strategies, and activities were similar to those found in Experiment 1, they are

12

oot discussed in this section.

5. Discussion

In Experiments 1 and 2 subjects' program comprehension was measured during and after the debugging

session. The results shows a strong connection between subjects' program comprehension scores and the

number of errors corrected . This corroborates the imponance of program comprehension implied in previ

ous debugging studies . The results also replicated many findings obtained in the protocol study reported by

Nanja and Cook (1987). For example, expert programmers were more efficient in locating and correcting

errors; experts corrected almost all errors and did so at a much faster rate than novices. However, experts'

multiple error correction strategy reported in our previous protocol study was not supported by these exper

imental data . One plausible explanation for this behavior may be due to the fact that only three logic errors

and no semantic errors were seeded in the program .

One surprising observation was that all subjects recalled the correct version of the incorrect assign

ment error in swap part of the BubbleSort routine. A few experts also recalled the off-by-one error in the

ReadData routine correctly. It is interesting to note that none of experts or novices included the correct

version of the predicate error in the BinarySearch routine in their recall. This seems to indicate that both

experts and novices chunk common related statements such as the swap routine and remember them as a

unit. rather than treating each statment as an independent unit to be remembered separately. Funhennore

they did not seem to realize these statements were incorrect in the program because almost all subjects

failed to locate and correct these error statements immediately after their recall task. We do not have a

good explanation for their behavior other than that subjects seemed to assume that relatively difficult sec

tions of the code contain the error. All subjects in both experiments initially thought that the BinarySearch

functic;m was entirely responsible for the anomalous behavior of the program and first modified one or more

statements in this particular function.

Both expert and novice programmers recalled almost the same number of statements in program

reconstruction task. This result is inconsistent with large difference reported by Wiedenbeck (Wiedenbeck,

1986), Shneiderman (Shneiderman, 1976), and Shneiderman and Mayer (Shneidennan & Mayer, 1979).

However, in the previous studies the program presented to subjects did not contain comments describing

13

the overall function of the program and for the recall task they were not provided a program template con

taining the declarations. Our experts were more successful than novices in recalling the entire JX'()gram.

Novices often recalled many redundant statements such begin-end pairs, incorrect statements, and state

ments that are not relevant to the algorithms used in the program. Furthermore, even though they were told

to reconstruct the program, two novices in the first experiment replaced the binary search with a linear

search routine in their recall.

As expected, in these experiments, expert programmers' verbatim recall score was superior to that of

novice programmers. In both experiments, subjects used a program template provided by the experimenter

to reconstruct the original defective program. It is interesting to note the following about their program

recall: (a) expert programmers used variable names included in the template more appropriately than

novice programmers. For example, almost all experts used variable name "index" as an index variable

while novices used it as a variable to store the number of data elements read from the input file. (b)

oovices frequently declared one new variable name (i.e. boolean : found;) in the program and attempted to

use this variable in the BinarySearch routine. Novices, who attempted to recall BinarySearch, recalled the

version of the BinarySearch routine given in the textbook prescribed for the class. As a result they recalled

a different version of the BinarySearch program. (c) none of the expert programmers attempted to recall a

different algorithm other than the ones used in the defective program, while several novice programmers

recalled a linear search algorithm instead of binary search algorithm. These observations may partly

explain why expert programmers were superior than oovice programmers in recalling program statements.

It seems reasonable to conclude that the higher recall scores by both expert and novice programmers

in the second experiment were attributable to the additional time spent studying and working with the pro

gram before the reconstruction task. On the average the subjects in Experiment 1 began their recall task

after their first modification (six minutes into the debugging session), while subjects in Experiment 2

recalled the program at 12 minutes into the program debugging session. This extra time allowed subjects

in Experiment 2 to modify, on the average, more program statements than subjects in Experiment 1.

insert Table 13 here

14

All subjects in both experiments initially attempted to comprehend the program by reading and

studying the program listing of the defective program, input data, expected output, and actual output. Typi

cally expert programmers spent more time in initial reading of the program than novice programmers . This

observation is consistent with the finding reported in our previous study . In the previous protocol study,

however, three novices, three intermediates, and one expert did not attempt to understand the program

through initial reading and immediately ran the program. This can be explained by the type of errors in the

program. Both semantic and logic errors were seeded in the program used in the previous study, whereas

only logic errors were studied in the experiments reponed in this paper. Hence it seemed that the semantic

error message along with the line number in the program where the error occurred prompted novices and

intermediates to run the program immediately without trying to understand the program.

In the 20-minutes reconstruction task in Experiments 1 and 2, the experimenter gathered information

about the order in which subjects recalled individual program statements. During recall all subjects fre

quently referred to the variable declaration part of the program template. In general experts' recall of the_

program was smoother as novices frequently modified previously recalled program statements. Typically,

all experts recalled a group of statements, paused for a few seconds, and then resumed recalling. This

seems to indicate that experts chunk a group of statements in the program and recall them as a single unit

Experts' program chunking was also quite evident from their in-line comments in the recalled Jrograill.

For example, experts (E2, ES, and E6 in Experiment 1, and E4 in Experiment 2) inserted either a blank line

or an in-line comment at the beginning of each function while recalling the program . During recall none of

the novices insened any blank lines or in-line comments between each function in the program. This

observation plus novices' modification of previously recalled statements seems to indicate that they do less

chunking than experts. ·

Various debugging measures such as initial reading time of the program, total debug time, and total

number of errors corrected were recorded for all experts and novices. Experts and novices spent almost

equal amounts of time reading the program prior to their first modification . None of the novices or experts

immediately ran the program without doing any initial program reading. Even though two novices (N2 and

NS) spent relatively more time than others in initial reading of the program, they failed to correct all errors

in the program. All other debugging performance measures (number of runs, number of modifications, and

15

number of errors introduced) of experts and novices were the same or similar to those reported by Nanja

and Cook (1987).

Our previous study found that only experts used on-line debugging aids to trace variables and

novices and intermediates inserted debug write statements. In this study novices inserted many debugging

write statements inside the loop constructs, while almost all experts used the on-line debugging aids.

In summary, experts and novices performed identical activities during debugging, but experts

seemed to carry them out more efficiently and successfully than novices.

6. Conclusions

Previous debugging studies that compared novices and experts inferred that better program comprehension

was the major reason for the superior performance of experts. The results of Experiments 1 and 2 demon

strate that experts do obtain a better understanding of the program.

Program understanding may not be that important for locating -and correcting semantic errors

because the error message with line number information often helps programmers easily identify the cause

of the error. But logic errors are more difficult to locate and correct because the only information available

about the error is the discrepancy between the actual output and the expected output. Hence for logic

errors, it is important that programmers understand not only the ovenill functioo of the Jrogram but also

very detailed statement-level understanding of the program. Hence for debugging logic errors it seems like

the level of program understanding clearly separates the expert programmers from novice programmers.

This study also indicated that the primary reasons for the expert programmers' superiority in locating

and correcting logic errors was their (a) greater understanding of every program segment, (b) ability to iso

late the error to the program segment where the error manifested itself, and (c) ability to select the correct

hypothesis. Novice programmers, on the other hand, had difficulty isolating the error to a program seg

ment. Hence they corrected only a few of the logic errors and spent more time debugging the program than

experts.

References

16

• Boehm, B. W. (1981) . Software engineering economics, Prentice-Hall, Inc ..

• Cook, C.R., Bregar, W. S., and Foote, D. (1983) . A preliminary investigation of the use of the cloze

procedure as a measure of program understanding. lnfonruuion Processing & Management, Vol. 20,

No. 1-2, 199-208.

• Ericsson, K. A., and Simon, H. A. (1980) . Verbal reports as data Psychological Review, Volume

87, 215-251.

• Glass, R. L. (1982). Modern programming practices -A report from industry, Prentice-Hall, Inc ..

• Gould, J. D. (1975). Some psychological evidence on how people debug computer programs . lnter

naJional Journal of Man-Machine Studies, 7, 151-182.

• Gould, J. D., and Drongowski, P. (1974). An exploratory study of computer program debugging.

Human Factors, 16, 258-277.

• Gugerty, L., and Olson, G. M. (1986). Comprehension differences in debugging by skilled and

novice programmers. Empirical Studies of Programmers, Soloway, E., and Iyengar, S. (Eds.). Ablex

Inc ., Norwood, New Jersey, 13-27.

• Jeffries, R. A. (1982). Comparison of debugging behavior of novice and expat programmers. Paper

presented at the 1982 meetings of the American Educational Research Association.

• Jeffries, R. A. (1982) . Computer program debugging by experts. Paper presented at the 1982 meet

ings of the Psychonomic Society.

• Vessey, I. (1985). Expertise in debugging computer programs: A process analysis. International

Journal of Man-Machine Studies, Volume 23, 459-494 .

17

TABLE 1
Functional score of novices and experts try program parts

Novices Expens

Program Number Number Number Number Number Number
pans of pans of pans of of pans of pans of

recalled recalled missing recalled recalled missing
correctly parts correctly parts

Read
Data

panl 5 4 1 6 6 0
part2 6 5 0 6 6 0
pan3 6 4 0 6 6 0
pan4 6 6 0 6 6 0
part5 2 1 4 4 3 2

Total 25 20 5 28 27 2
Percent 83% 80% 17% 93% 96% 7%

Bubble
Sort

partl 6 3 0 6 6 0
part2 5 2 1 6 5 0
part3 6 4 0 6 5 0
pan4 6 6 0 6 6 0

Total 23 15 1 24 22 0
Percent 96% 65% 4% 100% 92% 0%

Binary
Search

pant 2 2 4 5 5 1
part2 4 4 2 6 6 0
pan3 4 2 2 6 6 0
part4 4 3 2 6 4 0
part5 3 4 3 6 5 0
pan6 3 0 3 6 2 0
part? 3 1 3 6 4 0

Total 23 16 19 41 32 1
Percent 55% 70% 45% 98% 78% 2%

Overall
Total 71 51 25 93 81 3
Percent 74% 72% 26% 97% 87% 3%

18

TABLE 2
Functional score of novices and experts

Number Number Number
Subjects of parts of parts of

recalled recalled missing
correctly parts

Novices

Nl 16 12 0
N2 9 6 7
N3 16 10 0
N4 6 5 10
NS 9 5 7
N6 15 13 1

Total 71 51 25
Mean 11.8 8.5 4.2
Percent 74% 72% 26%

Experts

El 16 13 0
E2 15 15 1
E3 15 10 1
EA 16 14 0
E5 16 14 0
E6 15 15 1

Total 93 81 3
Mean 15.5 13.5 0.5
Percent 97% 87% 3%

19

TABLE 3
Total number of statements recalled verbatim by

novices and experts

Program Statement Novices

index:= 1; 3
while not eof(infile) do 3

begin 6
readln(infile, a[index]); 3
index := index + 1; 4

end; 6
count := index; 1
for i := 1 to count - 1 do 2

for j := 1 to count - 1 do 1
if a[j) > a[j + 1] then 2

begin 6
temp := aLi]; 3
a[j + 1] := a[j); 0
a[j] := temp; 0

end; 6
for i := 1 to numkey do 1

begin 3
writeCkey = '); 4
readln(key); 4
low:= l; 3
high:= count; 2
while low <> high do 1

begin 3
middle := (low+ high) div 2; 2
if key>= a[middle] then 1

high := middle 2
else 3

low := middle + 1; 2
end; 3

if key= a[low] then 0
arrayindex := low 0

else 1
arrayindex := O; 1

writeln('key =',key, 'value=', arrayindex); 1
end; 3

Total 86
Mean 14.3
Percent 40.9%

20

Expcns

0
4
6
2
2
6
1
2
2
4
6
6
0
0
6
2
5
2
6
6
2
2
6
5
3
1
5
2
6
1
0
1
0
0
5

107
17.8
50.9%

TABLE4
Verbatim score of novices and experts

Function name

Subjects ReadData BubbleSort Binary Search Total

Novices
NI 6 5 13 24
N2 5 3 2 10
N3 4 4 10 18
N4 3 3 2 8
N5 3 0 3 6
N6 5 5 10 20

Total 26 20 40 86
Mean 4.3 3.3 6.7 14.3

Experts
El 4 4 8 16
E2 3 4 11 18
E3 3 4 4 11
E4 6 5 12 23
E5 0 3 11 14
E6 5 6 14 25

Total 21 26 60 107
Mean 3.5 4.3 10.0 17.8

21

TABLES
Comprehension scores vs debugging performance

Subjects Verbatim Functional Post quiz Number of
score score score errors

corrected

Novices

Nl 24 12 14 3
N2 10 6 7 2
N3 18 10 10 1
N4 8 5 11 1
NS 6 5 8 1
N6 20 13 14 3

Total 86 51 64 11
Mean 14.3 8.5 10.7 1.8

Experts

El 16 13 14 3
E2 18 15 14 3
E3 11 10 10 2
E4 23 14 12 3
E5 14 14 13 3
E6 25 15 14 3

Total 107 81 77 17
Mean 17.8 13.5 12.8 2.8

22

TABLE 6
Error correction order

Subjects Logic error Logic error Logic error
in ReadData in BubbleSort in BinarySearch

Novices

Nl 1 2 3
N2 2 1 •
N3 • 1 •
N4 1 • •
N5 • 1 •
N6 3 2 1

Experts

El 2 3 1
E2 2 2 1
E3 2 1 •
E4 1 2 3
E5 2 1 3
E6 1 2 3

• --- did not correct error

23

TABLE?
Functional score of novices and experts l7y program parts

Novices Expcns

Program Number Number Number Number Number Number
pans ofpans ofpans of of pans of pans of

recalled recalled missing recalled recalled missing
correctly pans correctly parts

Read
Data

partl 6 6 0 6 6 0
part.2 6 5 0 6 6 0
part.3 6 5 0 6 5 0
part.4 6 5 0 6 6 0
part.5 4 2 2 5 3 1

Total 28 23 2 29 26 1
Percent 93% 82% 7% 97% 90% 3%

Bubble
Son

partl 5 5 1 6 6 0
part.2 6 2 0 6 4 0
part.3 6 3 0 6 6 0
part.4 6 6 0 6 6 0

Total 23 16 1 24 22 0
Percent 96% 70% 4% 100% 92% 0%

Binary
Search

part.I 5 5 1 6 6 0
part.2 5 5 1 6 6 0
part.3 4 3 2 6 5 0
part.4 3 2 3 6 2 0
part.5 5 4 1 ,6 6 0
part.6 4 2 2 6 4 0
part? 4 2 2 6 4 0

Total 30 23 12 42 31 0
Percent 71% 77% 29% 100% 74% 0%

Overall
Total 81 62 15 95 79 1
Percent 84% 77% 16% 99% 84% 1%

24

TABLE 8
Functional score of novices and experts

Number Number Number
Subjects of parts of parts of

recalled recalled missing
correctly parts

Novices

Nl 14 9 2
N2 14 9 2
N3 11 10 5
N4 16 14 0
NS 10 6 6
N6 16 14 0

Total 81 62 15
Mean 13.5 10.3 2.5
Percent 84% 77% 16%

Experts

El 15 11 1
E2 16 13 0
E3 16 15 0
E4 16 13 0
E5 16 15 0
E6 16 12 0

Total 95 79 1
Mean 15.8 13.2 0.2
Percent 99% 84% 1%

25

TABLE9
Total number of statements recalled verbatim by

novices and experts

Program Statement Novices

index:= l; 3
while not eof(infile) do 5

begin 6
readln(infile, a[index]); 4
index := index + 1; 4

end ; 6
count := index; 2
for i := 1 to count - 1 do 3

for j := 1 to count - 1 do 2
if a[j) > au + l] then 2

begin 6
temp := a[j]; 6
au+ 1) := a[j]; 0
a[j) := temp; 0

end; 6
for i := 1 to nurnkey do 2

begin 4
write('key = ') ; 4
readln(key); 3
low:= l; 4
high:= count; 4
while low <> high do 1

begin 3
middle := (low + high) div 2; 4
if key>= a[middle] then 2

high := middle 1
else 3

low := middle + 1; 1
end; 3

if key= a[low] then 2
arrayindex := low 0

else 2
arrayindex := O; 0

writeln('key = ', key, 'value= ', arrayindex); 0
end; 4

Total 102
Mean 17.0
Percent 48.5%

26

Expcns

1
5
6
4
4
6
1
4
4
4
6
6
0
0
6
2
6
1
6
6
3
3
6
6
2
3
3
3
6
2
0
3
0
0
6

124
20.7
59.0%

TABLE 10
Verbatim score of novices and experts

Function name
Subjects ReadData BubbleSort Binary Search Total

Novices
Nl 4 4 3 11
N2 5 4 7 16
N3 4 4 4 12
N4 7 6 15 28
NS 4 2 3 9
N6 6 5 15 26

Total 30 25 47 102
Mean 5.0 4.2 7.8 17.0

Expens
El 3 4 6 13
E2 7 4 14 25
E3 4 6 13 23
E4 7 6 14 27
E5 3 6 10 19
E6 3 4 10 17

Total 27 30 67 124
Mean 45 5.0 11.2 20.7

27

TABLE 11
Comprehension scores vs debugging performance

Subjects Verbatim Functional Post quiz Number of
score score score errors

corrected

Novices

Nl 11 9 8 1
N2 16 9 9 2
N3 12 10 8 0
N4 28 14 11 3
N5 9 6 7 1
N6 26 14 10 3

Total 102 62 53 ' 10
Mean 17.0 10.3 8.8 1.7

Experts

El 13 11 11 3
E2 25 13 9 3
E3 23 15 11 3
E4 27 13 8 3
E5 19 15 9 3
E6 17 12 7 2

Total 124 79 55 17
Mean 2D.7 13.2 9.2 2.8

28

TABLE12
Error Correction Order

Subjects Logic error Logic error Logic error
in ReadData in BubblcSon in BinarySearch

Novices

NI • • 1
N2 • 1 2
N3 • • •
N4 I 2 3
NS • 1 •
N6 3 I 2

Expens

El 3 1 2
E2 3 1 2
E3 3 1 2
E4 1 2 3
E5 I 1 2
E6 2 1 •

• -- did not correct error

29

TABLE13
Comparison of Experiment 1 and Experiment 2

Subjects' Experiment 2 Experiment 3
Perf onnance

(percent score)

Novices

Verbatim score 41% 49%
Functional score 72% 77%
Post quiz score 76% 80%
Number of errors 61% 56%

corrected

Experts

Verbatim score 51% 59%
Functional score 87% 84%
Post quiz score 92% 83%
Number of errors 94% 94%

corrected

30

Appendix Al

Defective program Ii.sting

[••···•) (The purpose of the program is to read in a set of }
(integer values, son them in ascending order, and }
(then search for certain key values in the sorted list }

(••···•)
program Debug (input, output);

const
size= 1000;
numkey = 5;

type
arraytype = array[l..size] of integer;

var
t: arraytype;
i,j, temp, count, index, key, low, high, middle, arrayindex: integer,
infile : text;

begin
showtext;
reset(infile, 'debug.protocol:data);
index:= I;
while not eof(infile) do

begin
readln(infile, a[index]);
index := index + I;

end;
count := index; { count := index - I; }
for i := I to count - I do

for j := I to count - l do
if a[Jl > a[j + l] then

begin
temp:= a[j]; temp := a[j + l);
a[j + 1) := a[j);
a[j) := temp;

end;
for i := 1 to numkey do

begin
write('key = ');
readln(key);
low:= I;
high := count;
while low <> high do
· begin

middle:= (low+ high) div 2;
if key>= a[middle] then { if key<= a[middle] then

high := middle
else

low := middle + 1;
end;
if key= a[low] then

31

end.

arrayindex := low
else

arrayindcx := O;
writ.cln('key = ', key, ' value= ', arrayindcx);

end;

32

Appendix Al

•

Expected output

key =4567
key =0
key= -5
key= 234
key= 77

value= 19
value= 3
value= 2
value= 0
value= 8

Incorrect output

key =4567
key=O
key= -5
key= 234
key= 77

33

value= 0
value= 0
value= 0
value= 0
value= 0

Appendix A3

program Debug (input, output);
const

size = I 000;
numkey = 5;

type
arraytype = array[l..size) or integer;

var
t: arraytype;

Program template

i, j, temp, count, index, key, low, high, middle, arrayindex: integer;
infile : text;

begin
showtext.;
reset(infile, 'debug.protocol :data);

end .

34

Appendix A4

Postsession quiz

• What type of sort and search routines are use.din this program? Circle appropriate responses.

Sort: 1. selection sort 2. bubble sort 3. insertion sort
Search: 1. linear search 2. binary search 3. quadratic search

• If the statement number 17 was changed to "read(infile, a[index]);", what would happen during pro

gram execution? (Be specific)

• If the statement number 23 was changed to "if aLi] < a[j+l] then", what values would the program

print out for each of these input key values?

key = 4567 value= ___ _
key= 77 value - ___ _

• If the statement number 22 was changed to •ror j := count-I downto i do", would the results of the

program be changed?

Yes or No. Briefly explain why or why not

• If the statement number 37 was changed to "middle := Oow+high) / 2;", what would happen during

program execution? (Be specific)

• If the statement number 38 was changed to "if key < a[middle] then", what values would the pro

gram print out for each of these input key values?

35

key = 4567 value= ___ _
key = 670 value = ___ _

• For each of these input key values, what values will be printed out?

key = 33 value = ___ _
key = 999 value = ___ _

• In order to get these output values, what input key values would you type in?

value= 12 key = ___ _
value= 0 key = ___ _

• How would you modify this program to search for 7 key values?

36

..

Appendix AS

Cloze procedure

01 program Debug (inpul, oulpul);
02 const
03 size = l 000;
04 numkey = 5;
05 type
06 arraytypc = array[l..si:re] or integer;
07 var
08 t: arraytype;
09 i, j, temp, count, index, key, low, high, middle, arrayindex : integer;
l O in.file : text;
11 begin
12 showtext;
13 reset(infile, 'debug.protocol:data);
14 index:= l;
15 while __________ do

16 begin
17 readln(infile, a[index]);
18 index:= _________ _
19 end;
20 count:= _________ _
21 for i := 1 to __________ do
22 for j := 1 to do
23 if __________ then
24 begin
25 temp := a[j + 1];
26 a[j + 1) := a[Jl;
Tl a[j] := temp;
28 end;
29 for i := 1 to numkey do
30 begin
31 write('key = ');
32 readln(key);
33 low:= 1;
34 high := count;
35 while __________ do

36 begin
37 middle:= (low+ high) _________ _
38 if __________ then
39 high := middle
40 else
41 low:= _________ _

42 end;
43 if __________ then

44
45
46
47
48
49 end .

arrayindex := low
else

arrayindex := O;
writeln('key = ',key, ' value= ', arrayindex);

end;

37

	Nanja_Cook1
	Nanja_Cook2

