
89-60-5

LifUUEAS~TY

TYPOGRAPHIC STYLE IS MORE THAN COSMETIC

Pau1 W. Oman
Computer Science Department

University of Idaho
Moscow, Idaho 83843

Curtis R. Cook
Computer Science Denartment

Oreaon State Univer sit y
Corvaliis, Oregon 9733i-3902

.,

TYPOGRAPHIC STYLE IS MORE THAN COSMETIC

Paul W. Oman
Computer Science Department

University of Idaho
Moscow, Idaho 83843

(208) 885-7219

Curtis R. Cook
Computer Science Department

Oregon State University
Corvallis, Oregon 97331-3902

(503) 754-3273

Abstract

There is disagreement about the role and importance of

typographic style (source code formatting and commenting) in

program comprehension. Results from experiments and opinions in

programming style books are mixed.

This paper presents principles of typographic style consistent

and compatible with the results of program comprehension studies.

It introduces the book format paradigm, an implementation of these

style principles. Results from four experiments demonstrate that

the typographic style principles embodied in the book format

significantly aid program comprehension and reduce maintenance

effort.

The typographic style principles presented in this paper have

direct application to code formatters, such as prettyprinters and

syntax-directed editors, programming language design, and

programming instruction practices.

CR Categories and Subject Descriptors: D.2.3 [Coding], D.2.2
[Tools and Techniques].

Keywords: Programming style, coding style, code formatting.

INTRODUCTION

Program comprehension plays an important role in many

programming tasks. For example, about one-half of a maintenance

programmer's time is spent studying the source code and related

documentation. Maintenance programmers cite u~derstanding the

intent and style of another programmer's code as the major

difficulty in making a change [4]. Unfortunately, in many

instances the only reliable description of a program is the source

code itself.

The contribution of typographic style (source code formatting)

to the understandability of the program is not clear. Ledgard and

Tauer [7] believe that code "should speak for itself" and that code

formatting is "not window dressing, but a visible display of the

meaning" of the program. On the other hand, in their classic book

on programming style, Kernighan and Plauger [5] state that "if the

code is clear and simple to begin with, formatting details are of

secondary importance." They illustrate each of their style rules

by describing the shortcomings of an example code segment,

rewriting the example in a better style, and drawing the general

rule from the specific case. It is interesting to note that

virtually all of their rewritten versions contain unmentioned

changes in typographic style.

Experimental studies of typographic factors have also been

inconclusive. For example, most programmers believe that programs

with indentation are easier to comprehend than programs without

indentation. However, Shneiderman and McKay [15] found no

significant differences between subjects who were asked to locate

and correct an error in the indented and unindented versions of

ty

..,

the same program. Also, Love (9] tested the impact of indentation

and control flow complexity on program comprehension and found no

significant differences between indented and unindented code.

However, a later experiment by Miara, et al, (10] did show

significant differences between indentation levels. Subjects were

tested with programs containing one of four different methods of

indentation: no indentation, two space indentation, four space

indentation, and six space indentation. They found that

i ndentation does aid program comprehension and that the optimal

level of indentation is between two and four spaces.

In light of these disagreements about the importance of

typographic style, Sheil (14] noted that "the existence of both

positive and negative results suggests a search for some set of

principles which indicate how and when formatting techniques will

be effective." In this direction, Baecker (2] has developed a

framework for "program visualization" based on principles of

effective graphics design. His approach is to enhance the source

code through the use of multiple fonts, variable character widths,

proportional character spacing, and gray-scale tints; the enhanced

source code is output on high resolution bit-mapped displays and

laser printeri. He found a 25 percent increase in the readability

of an enhanced source text of C programs as measured by

comprehension quiz scores.

In this paper we present a set of principles for program

formatting that are based in program comprehension theory. We then

introduce the book format, an implementation of these principles,

and show through a series of experiments that the book format

significantly improves program comprehension. The major difference

2

between our work and Baecker's is that our principles are based on

results from program comprehension studies and his are based on

principles of graphic design. He concentrates on improving the

appearance of the source code while we concentrate on providing the

clues and access mechanisms used by programmers in understanding a

program.

TYPOGRAPHIC STYLE PRINCIPLES

We define typographic style as the set of style

characteristics concerned with the formatting and commenting of

source code. By definition, typographic style does not impact the

execution of the program. We have found it convenient to divide
\

typographic style into macro and micro subclasses [12). Macro

typographic style factors include overall program formatting,

global and intermodule commenting, module separation conventions,

identifier naming conventions, and conventions for special case,

font or type styles. Micro-typographic style factors include

statement formatting, indentation and embedded spacing, use of

blank lines, and intramodule commenting.

Our typographic style principles for when and how to format

and comment source programs are based on results from programmer

comprehension studies. All programmer comprehension studies

support the existence of:

1. Mental schemata, or plans, that guide the programmer's
comprehension of code [l,16). Programmers acquire and
modify these plans through experience; they are an
integral part of long term memory.

2. Chunks, or meaningful units of information, that
programmers use to organize and remember code [l].

3. Beacons, or highlighted semantic clues, that are used to
direct the review and recognition of code [3]. Beacons

3

are used for searching, chunking and hypothesis checking.

4. Multiple strategies and access paths used by programmers
when working with non-trivial programs [8]. Strategies
are guided by a variety of plans and conjectures depending
upon individual differences, application domains, and the
implementation of the code and supporting system.

Using these results from comprehension studies, we identified

several principles of macro and micro-typographic style. Example

macro-typographic principles:

1. Make the components and organization of the program
obvious. This means that code areas for global
definitions, the main program, support routines, and
included code segments should be easily identifiable.
Module separation should also be obvious.

2. Identify the purpose and use of each component.

3. Make the execution control and information flow between
components readily apparent. Highlight beacons indicating
intermodule control flow and communication.

4. Make the program readable and easy to browse by providing
different access paths into the code. That is, clues
should be provided to enable non-linear code traces (e.g.
top-down, bottom-up, focused, and browsing).

Example micro-typographic principles:

1. Make the sections and organization of the module obvious.
This means dividing modules into easily recognizable parts
(e.g. constants, data declarations, and code body) by
highlighting beacons that delimit sections.

2. Identify the purpose and use of each section.

3. Make the underlying control and information flow within
the module obvious. This means control and information
constructs should be separated into easily recognizable
chunks. Highlight beacons indicating changes in control
flow.

4. Make statements readable and easy to scan by providing
spatial clues and "white space" to indicate statement
grouping and separation.

We emphasize that these are general principles of good

typographic style. We do not claim that this is a complete list;

4

rather, we provide these examples to demonstrate the separation of

principle and implementation. Without concern for implementation

techniques we have enumerated several principles of good

typographic style consistent with all models of program

comprehension. Note that all of the above principles may be

implemented via numerous typographic factors. For instance,

commenting, naming, blank lines, and embedded spacing can all serve

I •
to separate modules, sections, chunks, and statements.

In the next section we introduce the "book format" paradigm, a

mechanism of implementing the principles outlined above. We then

show through a series of experiments that our macro- and micro

typographic style principles, implemented in "book format," aid

program comprehension and reduce maintenance effort.

BOOK FORMAT PARADIGM

Programmers use multiple strategies and access paths when

working with programs. A book is a collection of information

organized to permit easy comprehension and a variety of access

methods. The components of a book (preface, table of contents,

indices and pagination, chapters, sections, paragraphs, sentences,

and punctuation, type style, and character case) are all designed

to facilitate rapid information access and transfer. There are

obvious parallels between the information contained in a book and

that of program source code. The major difference is that the

typographic style of a book provides simple and immediate clues to

aid the reader in locating and recognizing the parts of a book.

Traditional methods of program formatting do not always provide

these typographic clues. Hence, the book format is a more

5

..

appropriate form for representing program source code.

Selected pages from a "book format" program listing are shown

in Figure 1. The program is a portion of the X_Windows system,

originally from MIT, rewritten into book form. (For a more

complete description, see Experiment 4 in the next section.)

Implementation techniques for most of our typographic principles

can be seen in this example.

The book format paradigm of source code formatting

incorporates both macro- and micro-typographic style factors.

Macro-typographic factors used in the book format paradigm include

creation of a preface, table of contents, chapter divisions,

pagination, and indices. The preface is a block of comments

identifying author, system, dates, etc. The table of contents is a

high-level map to the structure of the program (or system). It can

be generated automatically by a cross reference utility that

recognizes chapter breakdowns. Chapters can be created for global

declarations, the main program module, support routines

accompanying the main program, and "included" code. Note that the

chapter division accommodates many "styles of programming" as

chapters can be defined in object-oriented units, by functional

breakdown, by implementation, or by any number of considerations.

Indices can also be generated automatically. Indices for module

definition and usage, global variables, and virtually all other

identifiers, could be created by a simple symbol table management

and cross referencing program.

Micro-typographic factors used in the book format paradigm

include identification and/or creation of code segments, code

paragraphs, sentence structures, and intramodule comments. To do

6

x_ Wlndows_lnlo Tlllo page & Tablo of Contonts page

r ---------------------------------- .,
r Co1•)·1igh1 1987, Ma.ssachusellS lnstilule of Technology '/

r 'I
r xwininfo.c · ~flT Project AtJ1cn:.i, X Window system window infomrntion utili1y. •/
r This program will rcpon all rclavenl inlormaiion aboul a specific window. •t
r Author: Mark Lillibridge, MIT Projcc1 All1enA, 16•lun-87. '/
r ~
r Table of ConltnlS page • /
r .,
r Tille page&. Table of conu:nts. '/
r ~
r Chapter I (Global dccllrations): '/
r Includes&. Defines 2 •t
r d.simple.h 3 •t
r ~
r Oiaptcr 2 (main) 4 • t
r .,
r OlOptcr 3 (mise . support routines): • t
r us;,ge -· ·····--···--···--······················· ··············--·········--························ 6 ., r Lookup •....••......•...•........•..•..............••...••............................•.......••..... 7 •t
r g<l_uror ··· .. ····· .. ·············........................... 7 ., r ~
r Q,aptcr 4 (Dispby mutincs): •t
r oi ~1,1~y_ V..'iillto _1J .. s .,
r Di, pl.ly_Suts_info ••........•.....................•.............•..•..•.......•.................• 9 •t
r Display_Bits_lnfo 10 •t
r Dispby_EYcnt_Mask •........•.....................•.....................•........ 11 •t
r Dc.play_Events_lnfo 12 •/
r Di,J1lay_Tre,:_lnfo 12 •t
r D, spby_l!ints !3 •/
r Disp!Jy_Si, .e_llints 14 •t
/' Display_ WM_lnfo 15 •t
r ~
r Os,ptcr 5 (dsimplc .c): •t
r lnclu clcs &. Defines•.....................•....••.....................•.•..•.................• 16 •t
r Fa1:i1_Ern>r .. 11 •t
r M,lloc .. 17 •t
r Rcalloc •................................•.....................•.....•.....•.......................... 17 •/
r Gct_Dispby_Name•.............. ..•.•...........•..........•.......••.........•......• 18 '/
r Opcn_Display .. 19 '/
r Scuip_Display_And_Scrcen. 19 '/
/' Opcn_Fon 1•.... 20 '/
r 1.;_,,, .. 20 ,,
r biu11ap_crmr 21 •t
r RcadlliunapFile 21 '/
/' W,iu:BiunapFilc•.............•............•......................... 21 '/
r Sclcct_Wind ow_Aigs •..•.......•........ 22 '/
r Rcsolve_Col or•...............•. ..•.............. . 24 •t
/' Ditmap_To_Pumap ...•......... 25 '/

r out! •·············•·············· ················ ···············•····•···················•········ 25 ., r blip .•.............. 25 '/
r Sclcct_Window •..••...................•.........•............. 26 '/
r Wrnclow_Will1_Namc 27 '/

r ~
r Module ~.Ju .. 28 '/

r -~

X_Wlndows_lnfo

main(argc, argv)
inl argc;
char .. :1rgv

re[!is1er in1 i;

Chapter 2: xwlnlnlo.e main

inl tree ; 0, SUllS ; 0, bits ; 0, events ; 0, wrn ; 0, size ; 0;

INIT_NAME;

t• Open dispby, handle command line arguments •f
Sc111p _Display_ And _Scrcc11(&argc, argv);

t• Get window selected on command line, if any •t
window= Sc/cc1_1Vi11dow _Args(&argc, argv);

t• Handle our command line arguments • /

for (i; I; i < argc; i++) (

if (!strcmp(argv(i], "-help")) usage();

if (lstrcmp(nrgv(i), "-int")) (window_id_fomiat •"%Id"; continue;)

if (!s1rc111p(argv[i], "-tree")) (tree= I; con1inue;)

if (!su-cmp(argv[i]. "-stats")) (stats; I; continue;)

if (!strcmp(argv(i), "-bits")) (bits; I; continue;)

if (!sucmp(argv(i], "-events")) (events; I; continue;)

if (lstrcmp(argv(i). "-wm 1')) (wm = I; continue;)

if (!s1rcmp(argv(i], "-size")) (size; I; continue;)

page

if (!strcmp(argv(i], "-nil")) (tree= stats"' bits; events• wrn •size; 1; continue;)

usage();

I t• end for •t

/" If nt• window selected on command line, let user pick one the hard way •t

if (!window)
I printf(''\nxwininfo ;;> Please select the v.indow about which you\n");

printf(" =;> would like infom1a1ion by clicking lhe\n");
printf(" ;;> mouse in that window .\n");
window; Sc/eel Window(dpy);

) t• end if•/ -

Figure l. Pages from a Book Format Listing.

4

X_Wlndows_lnlo Chapter 5: dslmple.e roullnos page 21

r
• Read!JiunapFile: same as XRead.DitmapFile except it returns the bitmap
• directly and handles errors using fatal_Error.
•1

static void hitrnap crror(status, filename)
int status; -
char •filenan1e;

if (s1a1us = ni1mapOpcnFailcd)
else if (status= Di1mapFilclnvalid)
ebc

Fatal_Error('"Can't open file %s!", filename);
Faral_Error('"filc 9Ls: Dad bitmap fonnat .", filename);
Fatal_ Errar('"Out of memory!");

) /' rnJ l,i1rnap_error •t

t· ---• ,

Pixm:ip llcadBiln~pFik(d, filename, width, height, x_hot, y_hot)
Drawai>lc d;
char •fih:narnc;
int •width, •height, •x_hot, •y_hot;

Pixm:ip bitmap;
int SL:ltus;

status= XR,·odllirm,rpFilt-(dpy, Rootll'iru/aw(Jpy, screen), filename, width,
height, &b11map, x_hot, y_hot);

if (mtus != IliompSuccess) bitmap _error(status, filename);

n·t11m(bitm:1p);

) /" rnd Rc:1dUitmapFilc •f

t• ---·1

;•
• Writcllian:ipFile : same as XWritdliun:1pfile except it handles errors
• using fa1al_Error.
·1

voirl \\'riltllilm:qifilc(filename, bitmap, width, height, x_hol, y_ho1)
cli:tr •1ik : .. u~.·.,
P1xm~1p b1un:1p;
int width, hcii;ht, x_hot, y_hot;

st:11u~= Xl\ 'ritcliitmapFih-(dpy, filename, bitmap, width, height, x_hot, y_hot);

if (~tallls != Biun:1pS11ccess) bitmap _crror(st.1tus, filename);

) rend WritcBiml:lpl'ile •t

X_ Wlndows_lnlo Modulo Index page

r ------------Module lndCA (oontinuc.d) ------------ •t
r ~
r Fatal_Error (in dsimple.c. p. 17) •t
r Callc<l from: biunap _crror. DisplJy_Bits_lnfo, Disploy_Evcnts_lnfo, Display_Stats_lnfo, •t
r D,splay_Trcc_lnb, Maline, Open_Font RcaJloc, Resolvc_Color, SclocLWindow, •t
r Sclcc1_ Winduw_Al&s. •J
r ~
r Ge1_Display_Namc (in dsi111ple.c, p. 18) •t
r Called from : Selup_Di splay_And_Scrccn. •f
t• Calls to: us;1gc. •f
r ~
/• gcLcnor (in xwininfo .c, p. 7) •t
/" Cnllctl lru111: Display_Window_ld. •t
r Calls 10: XGclErrurTc•l. •t
r •1
r Lookup (in ,wininfo.c, p. 7) · •t
r uulcd from: Display_Uit1_lnfo, DisplJy_Evcnts_lnfo, Display...Evcnts_M.lilr., '/
/' Display_S1ms_lnfo, Display_ WM_lnfo. •t
r .,
r main (in ,wininfo .c, p. 4) .,
r Gills 10: Disp~1y_Dit< .. lnfo, Display_Events_lnfo, Display_Siu:_llints, Display_Stats_lnfo, •t
r Display_Tr cc_lnfo, Display_ Window_ld, Display_ WM_lnfo , Sclcct_Window, •t
r Select_ Window_Algs, Se10p_Display_And_Scrccn, usage. '/
r .,
r Malloc (in dsimple.c, p. 17; NOT Culled) •t
r Calls 10: Futal_Error. • /

r ~
r Opcn_Di splay (in dsimplc.c, p . 19) •t
r Callc<l from: Sctup_Display_And_Scrccn. •t
r Calls 10: ""'&e , XDisplayNamc, XOpenDisplJy , •t
r ~
r Opc11_Fon1 (in dsimplc .c , p . 20; NOT Called) '/
r Culls 10: Futal_Error , XLoadQuayl'onL •t
r ~
/' out! (in dsimplc.c , p. 25) '/
r ullc,I from: blip. •t
r ~
r RcadUiunapFilc (in dsimplc.c, p . 21; NOT CaUcd) •t
r Calls 10: biunap_crror, RootWindow, XRt.'.ldDiunopFile . •t
r .,
r Rcalloc (in dsimplc.c, p. 17; NOT Called) •t
r Calls 10: Fatal_Enor, Malloc. '/
r ~
r Rcsolvc_Color (in dsimpk .c, p, 24; NOT Called) •t
r Calls 10: Futal_Error, XAllocColor, XGc1WindowA11ribu1cs, XP=Color. '/
r ~
/' Roo1Wim~1w (NOT dcfo1rd) '/
r Called from: Display_Wi11Jow_ld, Rc.,dDiunapl'ile, Selcc1_Window, Selcc1_Window_Args. '/

r ~
r Scroc11Count (NOT Dcrt11cd) • /
r Callc<l from: SelUp_Display_And_Scrccn. '/

r ~
r oon~nuc,J on nc,,t P"GC .,

Figure~. Pages from a Book Format Listing (continued)•

29

this, micro-typographic factors such as blank lines, embedded

spaces, type styles, and in-line comments, are used to achieve our

desired principles of good micro-typographic formatting. Code

sections can be separated into easily recognizable units by using

blanks, beacons, alignment, and in-line comments to show the begin

and end of the code sections. For example, the Pascal Const and

Var sections could be delimited by placing those reserved words in

boldface (or all capitalized letters) on separate lines preceded by

a blank line. This is exactly analogous to section headings in a

book.

Code paragraphs can be separated into easily recognizable

chunks by using the same typographic factors. Blank lines can

separate chunks; alignment and embedded spacing (which includes

indentation) can provide spatial clues about the content of the

chunks. Statements can be written as sentences (by this we are

suggesting a preference of horizontal statement formatting, e.g.

several statements per line, over vertical statement formatting)

and character case and type styles can be used to highlight

important constructs within sentences (in some languages).

All of these implementation techniques could be automated.

For example, a syntax directed editor could: (1) add in-line

comments indicating the end of control structures, (2) bold-face or

italicize procedure calls, (3) align conditional structures (e.g.

IF's and CASE's) into spatially tabular structures, (4) place blank

lines before and after programming constructs that span more than a

few lines, (5) highlight well-defined code segments like data

declaration areas, and (6) highlight globally defined identifiers.

Organizing program source code into book format provides

7

programmers with: (1) a familiar document paradigm, (2) high-level

organizational clues about the code, (3) low-level organizational

chunks and beacons, and (4) multiple access paths via the table of

contents and indices. In the next section we demonstrate, through

controlled experiments and empirical studies, the value of our

principles of good typographic style as encapsulated into the book

format paradigm.

EXPERIMENTS

This section presents four studies that demonstrate the

benefits of the book format paradigm of source code formatting.

These studies show that: (1) our principles of macro-typographic

style reduce maintenance effort and improve programmer performance,

(2) our principles of micro-typographic style aid comprehension of

both Pascal and C source code, and (3) the book format paradigm is

an easy and natural representation of source code that improves

programmer comprehension and performance.

Experiment 1: Testing Macro-Typographic Principles

This experiment tested our assertion about macro-typographic

principles. We measured students ability to perform a maintenance

task using two versions of a large Pascal program - one a

traditional listing and the other a book format listing

incorporating only macro-typographic features.

Materials: A line-oriented text editor program, written in

Pascal, was taken from [13]. The original 1543 line program was

modified by removing the Skip_Blanks procedure and the five calls

to it. The Skip_Blanks procedure skips over leading blanks when

the editor command input line is being parsed. The resulting

8

modified program still worked; it was just incapable of handling

free-form command inputs. The program was then reduced to 1011

lines by removing procedures unrelated to the command parsing.

This was done to reduce the program to a size that could be managed

by student programmers in one hour.

The modified program was then ported to Lightspeed Pascal and

printed with pagination . This listing was version 1, it represents

the traditional manner in which Pascal source code is formatted.

Version 2 was a macro-typographic rearrangement of version 1 as

defined by our book format paradigm. That is, the code was

separated into chapters and a table of contents and module index

were added. There were no other changes made to the code.

Subjects: Fifty-three senior and graduate level computer

science students volunteered to be subjects in the experiment.

They were randomly assigned into two treatment groups: subjects in

one group received version 1 (28 subjects), while subjects in the

other group received version 2 (25 subjects). All subjects

received the same instructions . No special instructions or

explanations were given to subjects receiving the book format

listing. This was deliberately done as a test to see if subjects

could "naturally" use the book format listing (i.e. without

training).

Task: Subjects were given one of the program versions, asked

to read the instructions, study the code, write a Skip_Blanks

procedure that would enable free-form command inputs, and indicate

where (on the listing) the procedure would be called. Thus, the

task was a maintenance exercise to implement free-form command

processing without having any knowledge of the original Skip_Blanks

9

procedure. In order to do this, subjects first had to understand

the command line record structure and then understand the execution

flow of the routines that manipulated the command line. Then, and

only then, could they begin to recreate the Skip_Blanks procedure

and its calls.

Dependent measures for each subject were: ability to write the

Skip_Blanks procedure, ability to identify where it was called (5

locations), and the time required to complete the maintenance task.

Subjects were given 55 minutes to complete the maintenance task.

Results: The code writing portion of the maintenance task was

scored by tallying subjects' responses into four categories: {l)

Skip_Blanks routines similar or identical to the one that was

removed, {2) functionally correct but dissimilar Skip_Blanks

routines, (3) incorrect Skip_Blanks routines, and (4) those who

could not complete the task (i.e. gave up or could not get

started). Results from the code writing portion (shown in Table 1)

show that the book format listing group outperformed the

traditional listing group by approximately two correct answers to

one. Further, by adding the first two categories together (exactly

correct plus functionally correct) the total correct is 52% for the

book format listing versus 25% for the traditional listing. Also

note that subjects in the traditional listing group were twice as

likely to quit or not even start writing code.

The procedure call portion of the maintenance task was scored

only for those subjects who wrote a correct Skip Blanks procedure.

Results are shown in Table 2. For the traditional listing group,

the 7 subjects who successfully completed the routine correctly

identified an average of 1.71 places where the procedure would be

10

Table 1.

Experiment 1: Code Writing Ability

Traditional listing
(n = 28)

Book listing
(n = 25)

Total correct

exactly functionally
correct correct

14 % 11%
(n=4) (n=3)

36% 16 %
(n=9) (n=4)

\

Traditional -- 25 %
Book listing -- 52 %

Percent difference between groups 27 %

Table 2.

wrong

36%
(n=lO)

32%
(n=8)

gave up or
not finished

39 %
(n=ll)

16 %
(n=4)

Experiment 1: Ability to Identify Procedure Calls

Traditional Book
Dependent measure listing listing

Number writing correct procedure 7 13
Total correct identifications 12 31
Average identifications per person 1.71 2.38
Percentage accuracy for the group 34.2% 47.6 %

Percent difference between groups 13.4 %

called. In contrast, the average for the 13 subjects in the book

format group was 2.38 correct identifications.

No significant differences in times were observed between the

two groups. The average time for the traditional group was 53.5

minutes and 52.2 minutes for the book format group.

Discussion: Results from this experiments show the benefit of

using the book format paradigm for macro-typographic style. We

emphasize that the only difference between version 1 (traditional

listing) and version 2 (book format listing) was that the code was

divided into chapters and indexed by a table of contents and a

module index. There were no micro-typographic differences between

the two versions. And, it should also be emphasized that subjects

using the book format listing performed better without any

explanation, description, or justification of the book format

listing.

Experiment 2: Testing Micro-Typographic Principles in Pascal

To demonstrate that our micro-typographic style is better than

traditional methods of Pascal code formatting, we conducted an

experiment comparing our book format style against traditionally

formatted industrial code.

Materials: Two procedures (94 lines of code) were extracted

from Borland's Turbo Pascal Toolbox. The original code from the

toolbox was formatted in the traditional manner of Lightspeed

Pascal. This was version 1. Version 2 was a typographic

rearrangement of that code using our book format principles of

micro-typographic style to guide the formatting. Specifically,

section headings were highlighted, sections and control constructs

11

were separated by blank lines, statements were written as sentences

when possible, procedure calls were highlighted, and related

clauses were aligned _and/or chunked together. Excerpts from the

two version are listed in Figure 2. We emphasize that the

difference between versions 1 and 2 is entirely micro-typographic

arrangement: indentation, embedded spacing, alignment, and the use

of character case and type style.

Subjects: Thirty-six intermediate computer science students

volunteered to be subjects in the experiment. They were randomly

assigned into two treatment groups of 18 subjects; subjects in each

group received one of the two code versions (traditional or book

format). Both groups received the same instructions.

Task: Subjects were given one of the two code versions and

asked to complete a short comprehension test using the code

listing. The ·test consisted of 10 multiple choice and short answer

questions. Some of the questions had several parts; consequently,

there were 14 answers for the 10 questions. Subjects were asked to

complete the test and then subjectively rate the readability of the

code. Subjects were given 10 minutes to answer the questions.

Dependent measures for each subject were: score (0 to 14

points), time required to answer the questions (1 to 10 minutes),

performance score (number of correct answers per minute), and a

subjective readability rating on a 5 point forced-choice scale (1-

very poor, 5-very good).

Results: Average scores, times, performance indexes, and

ratings for both groups are shown in Table 3 and Figure 3. In

support of our micro-typographic principles, all four measures

12

repeat
case L of

1 :
InputStr(FirslNm, 15, 12, 6, [Ctr!Z,Tab,Enler], EndChar);

2:
InpuLStr(LaslNm, 30, 39, 6, [Ctr!Z,Enler], EndChar);

end;
if (EndChar = Tab) or

(EndChar = Enler) then
L := 3 -L;

until (EndChar = Ctr!Z) or
((EndChar = Enler) and
(L = l));

2.(a) Traditional Micro-typographic Style

Repeal

CaseLof
1 : InputStr (FirslNm, 15, 12, 6, [Ctr!Z,Tab,Enler], EndChar);
2: InputStr (LaslNm, 30, 39, 6, [Ctr!Z,Enter], EndChar);

end;

If (EndChar = Tab) or (EndChar = Enter) then L := 3 - L;

until (EndChar = CtrlZ) or ((EndChar = Enler) and (L = 1));

2.(b) Book Micro-typographic Style

Figure 2. Experiment 2: Pascal Code Excerpts

Time

&

Score

Table 3.

Experiment 2: Results from Pascal Code Comparison

Version

Averages: Traditional
(n=l8)

test score 7.39

test time 9.31

performance(score/time) 0.81

readability rating 2.72

* significant (F=l0 .57, p<.005, d.f.=1,34)
** significant (F= 8.57, p<.01 , d.f.=1,34)
*** significant: (F= 4.45, p<.05, d.f.=1,34)

11.0

10.5

10.0

9.5 0

9.0

8.5

8.0

7.5 X

7.0

X

0

Traditional Book form

Book form
(n=l8)

10.39 *
8.90

1.23 **
3.28 ***

score

time

Figure 3. Scores and Times from Experiment 2.

scores, times, correct answers per minute, and ratings -- improve

with the book format listing. Univariate analysis of variance

showed significant differences for score (F=l0.57, p<0.005,

d.f.=1,34), performance (F=8.57, p<.01, d.f.=1,34), and readability

rating (F=3.28, p<.05, d.f.=1,34). Although the trend is for time

to improve with the book format, these differences are not strong

enough to report significance.

Group difference can also be seen in score and performance

r anges. Scores ranged from 3 to 12 in the traditional listing

group and from 6 to 14 in the book format group. Similarly, the

average correct answers per minute ranged from 0.3 to 1.40 for the

traditional group and from 0.6 to 2.33 for the book format group.

Discussion: Group differences can be seen by calculating the

percentage difference between them. An average score of 7.39 for

the traditional listing group represents an accuracy rate of 53%

while the average score of 10.39 for the book format group

represents an accuracy rate of 74%. The increase in accuracy is

21%. Similar ratios for the time measure show the traditional

listing group used 93% of the available time, while the book format

listing group used 89%; a 4% savings in time even though they were

more accurate. These comparisons demonstrate that the group

working with the book format listing were more accurate and faster

than the group with the traditional listing.

Experiment 3: Testing Micro-Typographic Principles inc

To further test our assertions, and to demonstrate language

independence, we repeated the micro-typographic experiment using

two different versions of C source code.

13

Materials: A reverse Polish desk calculator program written in

c was taken from Kernighan and Ritchie's book, The f Programming

Language [6]. Version 1 was the original code taken from the

textbook. It is formatted in the traditional method of writing C

source code, which is commonly used by professional programmers and

is frequently referred to as the "Kernighan and Ritchie style."

Version 2 was a typographic rearrangement of that code using our

book format principles of micro-typographic style to guide the

formatting. Excerpts from the two versions are listed in Figure 4.

Again, we emphasize that the difference between versions 1 and 2 is

entirely typographic: indentation, embedded spacing, alignment, and

the use of boldface font.

Subjects: Forty-four advanced computer science students

volunteered to be subjects in the experiment. They were randomly

assigned into the two treatment groups of 22 students; subjects in

each group received one of the two code versions (traditional or

book format). Both groups received the same instructionse

Task: Except for the materials, the procedures used in this

experiment were identical to those used in the previous experiment.

The comprehension test contained 9 questions, one of which had a

two part answer for a total of 10 answers.

Results: Average scores, times, performance indexes, and

ratings for both groups are shown in Table 4 and Figure 5. As

expected, scores, times, and number of correct answers per minute

are better for the book format listing. Analysis of the data

showed significant differences for score (F=9.40, p<0.005,

d.f.=1,42) and performance (F=ll.41, p<0.005, d.f.=1,42). Again,

the trend is for time to improve with the book format, but these

14

switch (type) (

case NUMBER:
push(atof(s));
break;

case'+':
push(pop() +pop());
break;

case'*':
push(pop() *pop());
break;

case'-':
op2 =pop();
push(pop() - op2);
break;

case'/:
op2 =pop();
if (op2 != 0.0)

push(pop() / op2);
else

printf("zero divisor popped\n ");
break;

4.(a) Traditional Micro-typographic Style

switch (Type) (

case Number: Push(AtoF(S)); break;

case'+':

case'*':

case'-':

case'/:

Push(Pop()+Pop()); break;

Push(Pop()*Pop()); break;

0p2= Pop();
Push(Pop()-Op2); break;

Op2 = Pop();
if (Op2 != 0.0) Push(Pop()/Op2);
else printf("zero divisor popped\n");
break;

4.(b) Book Micro-typographic Style

Figure 4. Experiment 3: C Code Excerpts.

Time

&

Score

Table 4.

Experiment 3: Results from C Code Comparison

Version

Averages: Traditional Book form
(n=22)

test score 6.73

test time 9.52

performance(score/time) 0.71

readability rating 3.45

* significant (F= 9.40, p<.005, d.f.=1,42)
** significant (F= 11.41, p<.005, d.f.=1,42)

10.0

9.5

9.0
0~

8.5

8.0

7.5

7.0
X

6.5

6.0

(n=22)

7.89 *
8.84

0.93 **
3.50

o time

x score

Traditional Book form

Figure 5. Scores and Times from Experiment 3.

differences are not significance.

Group differences can again be seen in score and performance

ranges. Scores ranged from 4 to 9 in the traditional listing group

and from 6 to 10 in the book format group. Average correct answers

per minute ranged from 0.4 to 1.0 for the traditional group and

from 0.6 to 1.54 in the book format group.

The very small difference between readability ratings of the

two groups is interesting. We speculate that this is because

s ubjects were informed that the code was taken from Kernighan and

Ritchie's book, which is considered the model of good C programming

style.

Discussion: The results from the two micro-typographic

experiments provide strong evidence that our principles are

compatible with programmer comprehension and, in fact, improve

comprehension of small code segments. We point out that both

traditional listings were formatted in well known and widely

accepted styles (Lightspeed Pascal formatting and Kernighan and

Ritchie's style of C). We emphasize the book format versions were

obtained from simple micro-typographic rearrangements of the

original code.

Experiment 4: Complete Book Format Listing

Thus far we have demonstrated the value of our book format

paradigm for macro- and micro-typographic style in separate

studies. In this experiment we test the complete book format

listing (both macro- and micro-typographic principles) with

professional programmers working on a large industrial program

written in C.

Materials: A portion of the X_Windows package was obtained

from an international computer firm. X Windows is a window and

mouse management system originally developed at M.I.T. and now

bundled with minicomputer Unix systems. The C code we obtained was

the X Windows Information program which consists of the xwininfo.c

main program file and two of its include files, dsimple.h and

dsimple.c. There were 1057 lines of commented C code in the three

files.

Two printed listings of the X_Windows Information program were

created. Version 1 was the original as received from the company

except that it was laser printed with pagination for readability.

Version 2 was our typographic rearrangement of the code using the

book format paradigm for both macro- and micro- typographic style

to guide the reformatting. No identifier renaming was used and no

comments were added other than the table of contents and the module

index. The resulting listing consisted of 1098 lines of commented

C code including the table of contents and index (see Figure 1).

Although the table of contents and index added 269 lines of

comments to the source file, the micro-typographic rearrangement

sufficiently compressed the original source code such that the

resulting listing was only 41 lines longer than the original code!

Subjects: Twelve professional programmers, each with at least

two years of C programming experience, volunteered to serve as

subjects. Each subject was paid $40.00 . The twelve programmers

were paired by experience and job function so each member of a pair

had approximately the same experience with Unix, c, and X_Windows.

For each of the six pairs, one member was assigned to work with

version 1 while the other worked with version 2. The version

16

assignment was determined by a coin flip. Subjects were tested one

at a time in a closed room with only the experimenter present.

Two of the subjects were deliberately chosen because they were

highly-experienced programmers responsible for portions of the

X_Windows system. Both were familiar with the xwininfo.c program

and had previously studied the dsimple files. These two subjects

represent experts already familiar with the code to be studied and

were used to establish top-line performance for the dependent

measures . None of the other subjects had prior experience with the

code to be studied, but they did have varying degrees of Unix

systems experience. Background characteristics for the subjects

appears in Table 5. The subject pairs are listed in decreasing

order of Unix and C experience. The first, labeled Xt and Xb' are

the two X Windows experts.

Task: Subjects were given one of the two code versions and

asked to complete a three part comprehension/maintenance exercise

consisting of: (1) a 30 minute study period with "Think aloud"

protocols, (2) a 7 question (10 point) oral comprehension test, and

(3) a pen and paper exercise to complete a call graph for the

program. The test took approximately two hours and was recorded on

audio tape .

As in our other experiments, the independent variable was the

typographic style of the code (traditional listing and book format

listing) . Dependent measures for each subject were: comprehension

test score (0 to 10 points), time required to answer the test

questions (1 to 30 minutes), call graph score (0 to 39 points, one

for each node and edge), and time to complete the call graph (1 to

17

Table 5.

Experiment 4: Professional Programmers' Experience

pair degree of X_ Windows & Unix subject yrs . prof. yrs . C
experience label experience experience

I X_ Windows maintenance experts Xl 9 4

Xb 7 4

2 Unix development programmers At 7 5

Ab 8 7

3 Unix & C systems programmers Bl 8 6

Bb 7 5
4 Unix & C applications programming Ct 9 3

Cb 7 2

5 C applications programming Dt 12 2

Db IO 2
6 C applications programming Et 13 2

Eb 6 2

Note: Subject label subscripts denote listing version.
l for traditional listing, and b for book format listing.

30 minutes). The think aloud protocols were used as data gathering

device to check for behavior patterns between and within groups.

We emphasize that all subjects received exactly the same

instructions; that is, subjects working with the book format

listing received no explanation or justification about it. All

subjects were given a test booklet containing written instructions

(and test questions) for each of the three parts.

Think aloud protocols: Subjects were given one of the program

listings and told to imagine a scenario where the person

responsible for maintaining this program had just quit the company

and the responsibility was transferred to them. It was their task

to become familiar with the program within 30 minutes because the

person who just quit would be coming around to answer questions.

Further, subjects were instructed to think out loud as they studied

the program, so their progress could be recorded on tape.

This scenario was first used by Pennington [11] as a means of

establishing the motivation to study programs in a non-goal

directed manner. That is, the programmers studying the code are

not addressing a specific maintenance task; rather they are trying

to get a "feel" for the program in a short amount of time.

Subjects then studied the code listing, "thinking out loud"

for 30 minutes. The experimenter' role was to remain unobtrusive,

so as not to guide or interfere with the subjects study. The

experimenter limited his interaction to answering questions about

the test procedure, asking for clarification on incomplete or

garbled verbalizations, and prompting the subjects about noticeable

behavior changes not accompanied by verbalizations.

18

Protocol Results: The 12 subjects showed a variety of study

patterns. All subjects:

1. Initially reported that the code seemed well structured
and consistent. Later they pointed out areas where the
overall organization was incorrect and the (detailed) code
could be improved.

2. Had a browsing phase where they quickly scanned through
the entire listing. However, this phase did not always
come at the beginning of the study period. There were no
recognizable group-specific browsing patterns.

3. Had distinct browsing behavior intermixed with detailed
code studying throughout the study period.

4. Directed and "pruned" their analysis of the code on the
basis of module name and/or location. All subjects
skipped certain modules on the basis of name (e.g.
"Get Error, I can ignore that.") or location (e.g. "Oh,
this-is the dsimple include file, I don't need to look at
these.") •

5. Studied the main program and its support routines prior to
studying the include files.

6. Scattered or separated the code listing into various
piles, stacks, and groups. The most common ordering was
distinct piles for the main program body, the support
routines, and the include code.

Differences between the version 1 group (traditional listing)

and version 2 group (book format listing) were that subjects

receiving the book format listing:

1. Noticed and commented on the "documentation" provided by
the table of contents and module index. All traditional
listing subjects expressed a desire to have a cross
reference map, while the book format listing subjects
commented that it was a "luxury" to have one included in
the code.

2. Made extensive use of the table of contents and module
index while browsing and studying detail.

3. Maintained separate piles of code pages with the index in
one pile and the table of contents face-up off to the
side.

4. Noticed and commented on the use of italics and bold-face
to highlight module names (e.g. "Gee, that's a great idea.
I wish I could do that."). Interestingly, four of the six
programmers receiving the traditional listing went through

19

and highlighted module names by underlining and/or
circling them.

5. Noticed and commented on the use of horizontal statement
spacing rather than vertical (e.g. "See here, it's not all
strung out the way Kerrigan [sic] and Ritchie do it.").

6. Commented that the code was better written than their own.
None of the traditional listing subjects made this claim.

oral comprehension Test: For this part of the experiment

subjects were given a written instruction page containing seven

questions. Three of the questions had two-part answers, so there

was a total of 10 points on the test. The questions ranged from

high-level general questions to low-level specific questions.

The questions were read out loud with the subjects verbally

answering each question before going on to the next. Subjects were

allowed to keep the written instruction sheet and could refer to it

as often as desired. The experimenter's role was limited to

reading the questions and prompting for more detail (if necessary)

to achieve either a clearly right answer or a clearly wrong answer.

When a definite right or wrong answer was obtained the experimenter

responded with "O.K." and moved to the next question. No feedback

was given on the correctness of answers. The oral comprehension

test was timed from the reading of the first question to the

answering of the last. Hence, the independent variable for the

task was the listing version and the dependent variables were score

(0 to 10 points) and time (1 to 30 minutes).

Comprehension Test Results: The comprehension test results are

presented in Figure 6. As can be seen, programmers working with

the book format listing scored higher, and did so faster, than the

programmers working with the traditional listing. There were no

20

Score

9.0

8.0

7.0

6.0

5.0

4.0
5 10 15

Time in minutes
20

Averages:

25

scorei = 6.33

scorcii = 7 .83

timel = 17.6

tim'1, = 12.0

Figure 6. Scores and Times from Experiment 4 Comprehension Test .

noticeable patterns in the ability to answer specific questions.

Note that there is little difference between the two experts

and that they represent the top-line performance. Also note that

all other subjects working with the book format listing performed

nearly as well as the two experts, but none of the subjects working

with the traditional listing did. The clear separation between the

groups reflects the improved comprehension afforded by the book

format listing.

Call Graph Exercise: For the third task, subjects were given a

written instruction page and an incomplete call graph and were

asked to complete the call graph. Prior to the task the

experimenter read the instructions out loud and traced through the

code for the main routine, pointing out the relationship between

the code and the incomplete call graph. All subjects reported that

they understood the exercise and the call graph before beginning

the task.

The incomplete call graph consisted of 12 nodes and 11 edges;

it represented the top-level calls from main to its support

routines. The completed call graph had 23 nodes and 39 edges, so

the task was to find and add the missing 11 nodes and 28 edges.

The experimenter's role was limited to reading the

instructions, tracing through the incomplete call graph, and

indicating when a node was a dead-end because its code was not

included in the listing. (The program makes a number of calls to

various X_Windows libraries.) The call graph exercise was timed

from when the subjects started looking at the code to when they

indicated that they were finished. Score for the exercise was the

total number of new nodes and edges they successfully added to the

21

call graph. Hence, the independent variable was the listing

version and the dependent variables were score (0 to 39) and time

{l to 30 minutes).

Before starting the exercise, five of the six subjects working

with the version 2 listing indicated that they could use the index

to complete the call graph without looking at the code. They were

told it was an exercise in code reading and they were to build the

call graph from the code, not the index. They were permitted to

use the index and table of contents only to find modules when

tracing the execution of the code they were reading.

Call Graph Results: The call graph exercise results are

presented in Figure 7. As can be seen, except for the two experts,

the programmers working with the book format listing scored higher,

and did so faster, than the programmers working with the

traditional listing. On the average, subjects working with the

traditional listing missed twice as many call graph connections and

took one minute longer, that those working with the book format

listing. There is little difference between the experts. Again

subjects working with the book format listing performed as well or

better than the experts and those working with the traditional

listing performed noticeably worse.

Discussion: As a group, the programmers working with the book

format listing outperformed those working with the traditional

listing. Further, all subjects in the book format group performed

as well as or better than the two expert programmers already

familiar with the code. This is in sharp contrast to the subjects

working with the traditional listing who performed noticeably worse

that the two experts. In every matched pair the subject working

22

Averages:

l
score,_ = 30 .2

scoreb = 3~.8

Limel = 17.2

Limeb = 13.5

38

36

34

32
Score

30

28 At

26

24
5 10 15 20 25 30

Time in minutes

Figure 7. Scores and Times from Experiment 4 Call Graph Exercise

with the book format listing scored better and worked faster than

those working with the standard listings.

CONCLUSIONS

This paper identifies principles of typographic style and

demonstrates through empirical studies that typographic

characteristics significantly impact program comprehension.

Typographic style can provide visual clues to the underlying

structure of the code and can support a variety of code access

strategies.

The book format, an implementation of these typographic style

principles, was introduced. Our four experiments with the book

format for source code formatting show that: (1) our macro

typographic implementation aids in maintenance tasks on large

programs, (2) our micro-typographic implementation aids in the

comprehension of Pascal and C code segments, and (3) professional

programmers can benefit from the book format model. Furthermore,

the book format model seems very natural and convenient to use

because it takes advantage of the subjects' familiarity with

structure and organization of a book. Also note that subjects

given the book format listings were not given any introduction or

instructions on how to use it.

Our research has direct application to code formatters such as

prettyprinters and syntax-directed editors. These code formatters

are designed to improve the readability of source code by

formatting it in a consistent manner. However, present-day code

formatting tools follow different sets of source code layout rules

which are selected by the developer. These rules reflect the

23

rl subjective judgement of the developer and are rarely (if ever)

supported by empirical evidence showing that they aid program

comprehension. Our research provides the principles and a

foundation for formatting rules that aid program comprehension.

our research also has application in programming language

design and programming teaching practices. In language design,

programming language constructs should be compatible with the way

programmers view code. (For instance, syntactic constructs can be

beacons or unnecessary distractions.) In programming instruction,

the teaching of specific style rules may be counterproductive.

While there may be no single best way to format a source program,

teaching beginning programmers language independent typographic

style principles (rather than specific layout rules) will make them

aware of the purpose of particular style rules. This will provide

them with a solid basis for the source program layout guidelines

they choose.

24

References

1. Adelson, B. Problem solving and the development of abstract
categories in programming languages. Memory and Cognition 9,
4 (1981), 422-433.

2. Baecker, R. Enhancing program readability and
comprehensibility with tools for program visualization.
Proceedings 10th International Conference on Software
Engineering, Singapore, 1988, 356-366.

3. Brooks, R.E. Towards a theory of the comprehension of
computer programs. Int.~ of Man-Machine Studies, 18
(1983) , 543-554.

4. Fjeldstad, R.K. and Hamlen, W.T. Applications program
maintenance study: Report to our respondents. Proceedings
GUIDE 48, Philadelphia, PA, 1979.

5. Kernighan, B.W. and Plauger, P.J. The Elements of
Programming Style. McGraw-Hill, New York, 1974.

6. Kernighan, B.W. and Ritchie, D.M. The~ Programming
Language. Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

7. Ledgard, H. and Tauer, J. Professional Software: Volume II
Programming Practice. Addison-Wesley, Reading, MA, 1987.

8. Littman, D., Pinto, J., Letovsky, S., and Soloway, E. Mental
models and software maintenance. Empirical Studies of
Programmers, (E. Soloway & s. Iyengar, editors), Ablex
Publishing, Norwood NJ, 1986, 80-98.

9. Love, T. An experimental investigation of the effect of
program structure on program understanding. Proc. ACM
Conference on Language Design for Reliable Software. March
1977, 105-113.

10. Miara, R.J., Musselman, J.A., Navarro, J.A. and Shneiderman,
B. Program indentation and comprehensibility, Comm. ACM 26,
11 (Nov. 1983), 861-867 .

11. Pennington, N. Stimulus structures and mental
representations in expert comprehension of computer programs,
Cognitive Psychology 19 (1987), 295-341.

12. Oman, P. and Cook, C.R. A programming style taxonomy.
Technical Report 88-60-20, Computer Science Department,
Oregon State University, Corvallis, Oregon 97331. (Submitted
for publication)

13. Schneider, G. and Buell, S. Advanced Proqramming and Problem
Solving With Pascal. John Wiley & Sons, New York, 1981.

25

1

T

•

14. Sheil, B.A. The psychological study of programming,
Computing Surveys 13, 1 (March, 1981), 101-120.

15. Shneiderrnan, B. and McKay, D. Experimental investigations of
computer program debugging and modification. Proc. 6th
International Congress of the International Ergonomics
Association. July 1976, College Park, MD.

16. Soloway, E. and Ehrlich, K. Empirical studies of programming
knowledge. IEEE Transactions on Software Engineering SE-10,
5 (Sept., 1984), 595-609.

26

	Oman_Cook1
	Oman_Cook2

