
I

l
83-60-1

LifUUEASlT'r

5ClEflCE

True-Copy Token Scheme for a
Distributed Database System

Toshimi Minoura
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331-4602

Susan S. Owicki
Computer Systems Laboratory

Department of Electrical Engineering
Stanford University

Stanford, California 94305

Gia Wiederhold
Computer Science Department

Stanfa-rd University
Stanford, California 94305

True-Copy Token Scheme
for a Distributed Database System

Toshimi Minoura

Department of Computer Science
Oregon State University

Corvallis, Oregon 97331-4602

Susan s. Owicki

Computer Systems Laboratory
Department of Electrical Engineering

Stanford University
~ Stanford, California 94305

Gio Wiederhold

Computer Science Department
Stanford University

Stanford, California 94305

This work was partially supported by the Air Force Office of
Scientific Research under Contract F49620-77-C-0045, by the
Joint Services Electronics Program under Contract DAAG29-79-
C-0047, and by the Defence Advanced Research Projects Agency
under Contract N00039-80-G-0132.

I ~

I
I

True-Copy Token Scheme
for a Distributed Database System

Abstract

A concurrency and resiliency control scheme for a distributed

database system with replicated data is discussed. The scheme,

~-m token scheme, uses true--™ tokens in order to designate

the physical data copies (~ copies) that can be identified with

the current logical data that are globally unique, and then it

realizes consistent execution of transactions by the locking over

these true copies. If subsystem failures occur and if · some true

copies are lost, the scheme regenerates lost true copies so that

their continuity is preserved.

In analyzing the true-copy token scheme, we establish a pre-

cise relationship between physical transactions and their

corresponding logical transactions by data and time abstraction.

Then we show that continuity of logical data is preserved if con

tinuity of true copies is preserved.

~ Words and Phrases: distributed database system, concurrency

control, resiliency control, replicated data, true-copy tokens,

data abstraction, time abstraction

In the final manuscript, unusual notations will be changed to
normal ones, subscripts will be properly marked, and figures
of better quality will be provided.

- 2 -

1. Introduction

Distributed database systems, where data are stored at multi

ple sites, are gaining importance because of the recent advances in

hardware and computer communications technologies. Among the

expected advantages of the decentralization of data, more specifi

cally, partitioning and replication of data, are more efficient

local processing and higher reliability. However, it is desirable

that data partitioning and replication are hidden from the users of

a distributed database system. Also, when multiple transactions

are processed concurrently, their effects on the users must be as

if they were processed one at a time. Further, the system must

provide logically continuous operation even if some subsystems

fail. Without reasonable concurrency and resiliency control,

application of distributed database systems will be limited.

This chapter presents a new concurrency and resiliency control

scheme that handles replicated data. The scheme first establishes

logical data by hiding replication of physical data. At the

highest level, a distributed database system is perceived as a col

lection of logical data that are not bound to particular sites.

These logical data are then represented by physical data that are

bound to sites. The main feature of the new scheme is the use of

~-m tokens which designate the physical data that can be

identified with the current logical data. (Physical data copies

that can be identified with the curent logical data are called true

copies.) The concept of logical data is crucial in making the new

scheme resilient, since resilient system operation can be realized

- 3 -

if the continuity of the logical data is preserved in the face of

subsystem failures.

One way of guaranteeing the uniqueness of a logical datum is

to let its single copy circulate in the system like the "control

token" in [LELA-781 or the "hopping permit" in [LEE-801. Another

way is to designate a primary site for each logical datum that is

represented by multiple physical copies [ALSB-76, STON-791. The

new concurrency control scheme extends these ideas and allows, for

each logical datum, either one exclusive m that can be accessed

for read-write purposes or multiple share copies that can be

accessed for read-only purposes (multiple share copies for the same

logical datum must possess the same content). An exclusive copy

can be split into multiple share copies, and these multiple share

copies can be revoked to create a single exclusive copy again.

Then, in order to realize consistent transaction processing, two

phase locking is applied on these exclusive or share copies (true

copies) after transferring them to the sites where they are

accessed.

One of the correctness proofs of the new concurrency control

scheme is performed by using a technique of data abstraction

analysis. The approach is basically the one developed for sequen

tial programs [GUTT-78, HOAR-72, WULF-761. First, that logical

data are correctly implemented by the true-copy token mechanism is

shown. Then, the correctness of the scheme is discussed solely at

the logical data level. One new aspect of our proof is that execu

tion timings of logical (abstract) operations are pinpointed on the

- 4 -

time axis. (This technique is called time abstraction.) Thus, we

establish a precise relationship between physical transactions and

their corresponding logical transactions.

Migration of exclusive copies may allow efficient local pro

cessing of transactions in a batch. Multiple share copies are use

ful for data that are occasionally updated but are mostly used for

read-only purposes by many users. However, the main benefit of

migrating true copies is that the resiliency problem can be dis

cussed within this framework. That is, logically continuous system

operation can be realized as long as continuity · of true copies are

preserved.

Based on the above principle, a simple resiliency scheme that

combines a reliable storage mechanism and a reliable message

transmission mechanism is designed. One unique feature of the

scheme is that once true copies are reliably transferred between

sites, each site can employ the same reliable storage subsystem as

one for a centralized database system in order to support the true

copies residing at that site, including those brought in from other

sites.

A model of a distributed database system is given in Section

2. The concurrency control part of the new scheme is discussed in

Section 3. Section 4 establishes the relationship between physical

transactions and their corresponding logical transactions. The

resiliency control part of the new scheme is discussed in Section

5. Section 6 concludes this chapter.

- 5 -

2. Distributed Database System Model

In this section we discuss the model of a distributed database

system used in this chapter. The key aspect of the model is the

notion of logical objects.

2.1 Logical Objects, Physical Objects and Sites

In our model a distributed database system consists of a set

of logical objects, a set of physical objects, a set of sites, and

a set of transactions.

Each logical object X, to which a~ independent value can be

assigned, is represented by multiple (replicate) physical objects

xl, ••• , xk for some k that assume the same value except during the

transitional periods while update operations on them are in pro

gress.

An object is a data container that can store a data value. An

object can be characterized by read and write operations applied to

it.

Definition (Object). The data value of an object can be changed

only by a write operation, and when a write operation is applied to

it, the data value specified by the write operation will become the

current data value of the object.

to an object, the current data

returned.

When a read operation is applied

value of the object will be

In other words, a read operation applied to an object returns

- 6 -

the data value written by the latest write operation applied to the

object. However, there are some subtle points about logical

objects, and they will be more precisely discussed in Section 4.

Each site of a distributed database system accommodates a sub

set of the set of physical objects in the system, and each physical

object belongs to exactly one site. An example of a distributed

database system is shown in Fig. 1. The system DDBS consists of

three logical objects X, Y and z. Xis fully replicated at all

sites H, I and J, Y is partially replicated at sites Hand I, and z

has a single physical representation at site H • .

Here, the terms "logical" and "physical" are used to indicate

only a relative degree of abstraction. "Physical" does not mean

direct implementation by hardware; a "physical object" may be a

"logical object" at another level of abstraction. The important

fact, however, is that in our model logical objects are globally

unique entities and they are not bound to any particular sites.

In this chapter sometimes we will denote a distributed data

base system by its set of logical objects, and a site by its set of

physical objects.

2.2 Transactions and Operations

A transaction is a set of operations. An operation is an

activity that manipulates data or that coordinates the execution of

other operations. We consider four types of operations, namely,

read operations, write operations, local computations, and ..§.Y.Il::

•

- 7 -

chronization operations.

Read and write operations, either logical or physical, are

used to access objects, either logical or physical.

tions of each transaction can transform the data

Local computa

read by read

operations and supply the transformed data to write operations.

Furthermore, data may be passed in the form of messages between two

physical operations that occur at different sites -.

A physical read operation read(x.i} returns the current data

value of physical object xi, and a physical write operation

write(xi) updates the current data value of physical object xi.

Further, we will show in Section 4 that a logical read operation

read(X) · returns the current data value of logical object X, and

that a logical write operation write(X) updates the current data

value of logical object X.

At this point we mention the following relationship between

logical operations and physical operations. A logical read opera

tion read(X) corresponds to a physical read operation read(xi),

some i, and a logical write operation write(X) corresponds to the

set of physical write operations {write(xl), write(x2), ••. }, each

of which writes the same data value as write(X). Now the reader is

cautioned that we are postponing a precise definition of the execu

tion timings of logical operations until we introduce the true-copy

token scheme in later sections.

A physical write operation applied to a physical object at a

site other than the one where it is created is called a remote

- 8 -

update. Usually a transaction creates physical write operations at

the site where most of its local computations are performed.

Execution of read and write operations may be delayed by the

system scheduler in order to avoid unacceptable intermixing of read

and write operations of different transactions. A concurrency con

.t..I..Ql scheme is the specification of the behavior of such a system

scheduler. Synchronization operations (e.g., lock-seize and lock

release operations) may be used to coordinate the execution of

other operations.

transactions when

Note that synchronization operations are used by

part of the responsibility of the system

scheduler is relegated to transactions.

In Fig. 2 we give an example of a transaction which runs on

the distributed database system shown in Fig. 1. The transaction

is described in two ways, as a logical transaction and as a physi

cal transaction.

Concurrency control problems can be discussed either

physical object level or at the logical object level.

at the

This dif-

ferentiation must be made in terms of operations. Treatment at the

logical object level gives direction to the handling of replicate

physical objects, especially in the presence of subsystem failures.

Data values created for logical (and hence physical) objects

can be identified as versions. Each logical object must initially

contain version zero, and each time a logical object value is

updated, its version number must be incremented by one. This ver

sion number can be assigned to each of the updates sent to the

- 9 -

replicate physical objects associated with the logical object.

A write operation (typically a remote update to a replicate

physical object) is redundant if the data value written by it is

overwritten by another write operation without being read by any

read operation. Redundant write operations may be omitted. By

properly ignoring redundant physical write operations, the inter

site traffic can be reduced, and efficiency of system operation can
o..r~

be enhanced. Redundant physical write operations 4-s- often automat-

ically eliminated if only the latest version of each logical object

is transferred between sites.

2.3 Execution Sequences and Consistency Condition

The execution of an operation A, either logical or physical,

is characterized by the occurrences of its initiation event "a" and

its termination event "A", which we call operation events. In

fact, defining these events for a logical operation is not trivial

as we discuss in Section 4; however, at this point we assume that

they are given a priori.

Definition (Execution Seguence <<). An execution seguence <<fora

set of transactions is a total ordering on the set of operation

events caused by the execution of these transactions: for two

operation events a and b, a<< b iff a precedes b according to glo

bal time.

Now we discuss a criterion for correct system operation. Sub

system failures are not considered until Sections. The defini-

- 10 -

tions in this section are applicable either at the physical or at

the logical object level. Informally, an execution sequence of

transactions is serializable if the effects on the users are as if

transactions were processed one at a time. Papadimitriou has given

a precise condition that characterizes the maximal set of serializ

able execution sequences for a set of transactions [PAPA-791. He

also has shown that the serializability test of an execution

sequence in general is NP-complete.

Other authors [ESWA-76, MINO-78, SCHL-78, STEA-76] have used a

stricter condition (class CPSR in [BERN-791 or class DSR in [PAPA-

791) that can be tested in polynomial time.

stricter condition in our proofs.

We will use this

Before we proceed, we need some definitions.

Definition (CONFLICT). The binary relation CONFLICT on a set of

operations, either logical or physical, is defined as

CONFLICT= { (A, B) I operations A and B belong to different

transactions and access the same object, and

furthermore one of them is a write operation}.

We say that operations A and B conflict over an object x,

either logical or physical, when (A, B) is in CONFLICT and xis

accessed by A and B. Further, we say that two transactions con-

flict when they contain conflicting operations.

tions will induce the following ordering on the

tions.

Conflicting opera

set of transac-

- 11 -

Definition (~-Precedence<<<>. Given an execution sequence<< for

a set of transactions, the D-precedence <<< on the set of transac

tions is defined as

<<< = { (R, S) (A, B) is in CONFLICT and a<< Q

for some operations A of transaction R

and B of transactions}.

We now define the consistency condition used in our proofs.

Definition (Consistency Condition~). Consistency condition ~ is

true if D-precedence <<< is acyclic.

Intuitively, this definition means that in an execution

sequence that satisfies consistency condition C, conflicting opera

tions must define a consistent (non-circular) ordering on the tran

sactions to which they belong. The condition that conflicting

operations cannot occur concurrently is implicit in the above

definition. In this chapter, a consistent execution seguence is

one that satisfies consistency condition C, and~ concurrency con

.tL.,Ql scheme is consistent if any execution sequence allowed by the

scheme is consistent.

In a consistent execution sequence, conflicting operations are

generally not allowed to occur concurrently. Therefore, in later

sections we use the following shorthand notation: we write A<< B

instead of~<< b for two conflicting operations A and B.

2.4 Subsystem Failures

- 12 -

We further assume that each site of a distributed database

system consists of a mainframe and a secondary storage subsystem.

Data at each site are held either on the main memory within the

mainframe or in the secondary storage subsystem. The exact loca

tions of site data are irrelevant while the site is operating nor

mally. If the mainframe fails, the data on the main memory will be

lost. The data .held by the secondary storage subsystem may be dam

aged when the secondary storage subsystem fails. Further, the data

held by the secondary storage subsystem may be damaged also when

the mainframe fails. The extent of tolerable damages to site data

is discussed in Section 5.

We assume that a message can be sent from one site to another

only when the message-link connecting them is normally functioning.

When message link failures occur to a distributed database system,

the system may be divided into multiple partitions. Each partition

is the largest group of sites such that bidirectional communication

is still possible between any pair of sites in it. That is,

bidirectional communication becomes impossible for two sites that

belong to different partitions.

- 13 -

3. Concurrency Control

In this section we describe without considering subsystem

failures the concurrency control part of the true-copy token

scheme, and then we prove that any execution sequence allowed by

the scheme satisfies consistency condition Cat the physical object

level.

3.1 General Description

We first give an intuitive description of the true-copy token

scheme. The new concurrency control scheme first establishes true

copies that can be identified with the logical objects, and then

performs locking over these true copies.

One way of guaranteeing the uniqueness of each logical object

is to designate a unique physical copy (true m> that can be

identified with the logical object. In the "primary site" scheme

[STON-79, ALSB-761, a physical copy at the primary site of each

logical object is the true copy of that logical object. In the

"hopping permit" scheme [LEE-801, the "hopping permit" designates

the current true copy of the single logical object in the system.

In [LELA-781 a "control token" which itself is a globally unique

entity is used to issue "tickets" that uniquely order transactions.

The true-copy token scheme extends these ideas.

Consider a particular logical object. When the logical object

is used for read-write purposes, consistency will be violated if

more than one physical copy is independently accessed at a dif-

ferent site. However, when the logical object is used for read-

- 14 -

only purposes, multiple physical copies can be allowed at different

sites as long as their contents are the same. Considering these

two cases, we can switch between a single read-write copy

(exclusive m> and multiple read-only copies (share copies)

according to the need.

Fig. 3 shows how an exclusive copy or multiple share copies

can occur for a logical object at each given time. At times tl, t3

and t4 only one exclusive copy exists in the system; however, at

time t2 two share copies and at time ts three share copies exist in

the system.

A physical object can contain either an exclusive m, share

m, or a void m- Exclusive copies and share copies are called

~ copies, and we will show in Section 4 that their data values

are identical to the current data values of their associated logi

cal objects. The content of a void copy may be obsolete. Read

write accesses are allowed to exclusive copies and read-only

accesses are allowed to share copies, but void copies are not

accessed for normal transaction processing. To visualize the

transfer of time-dependent access rights, we assume that a true

copy possesses a ~-m token, i.e., either an exclusive-m

token or a share-m token.

True-copy tokens handle replicate physical objects that cannot

be handled efficiently by a locking mechanism alone. We can con

ceive that exclusive-copy tokens and share-copy tokens are spatial

extensions of exclusive locks and share locks.

- 15 -

Two types of locks, namely share locks and exclusive locks,

are used over the true copies to realize consistent transaction

processing. A transaction accessing a logical object needs to lock

one of its replicate physical objects that contains a true copy.

An exclusive copy can be exclusively locked and a share copy can be

share locked; furthermore, locking must be two-phase. Although

two-phase locking is used, it is not a complete locking at the phy

sical object level. Write operations to physical objects at remote

sites are performed without locking.

A transaction issues a lock-seize request in order to set a

lock in a desired mode. A lock can be reset by a lock-release
01'1\,"'2.--

request. A lockAset is active until it is reset. Now two-phase

locking can be defined as follows [ESWA-76].

Definition (~-Phase Locking)·. A transaction is two-phase locked

if no lock-release requests are issued by the transaction before

all lock-seize requests of that transaction are issued.

Remote updates can be performed either

~ ~~
a) by carrying eaea current data value of -a- logical object with

its true-copy token(s), or

b) by letting the exclusive-copy token issue a series of version

numbers that are unique relative to each logical object and by

performing remote updates according to these version numbers.

Updates for a logical object originate only from its exclusive

copy, and they can be uniquely ordered by their version numbers.

- 16 -

Also, although a remote update to a replicate physical object for

mally beiongs to some transaction, it is more appropriate to con

sider that remote updates are carried out by the system when one of

the above two methods is employed. When remote updates are per

formed by the system, a transaction need to submit only one data

value in order to update the set of replicate physical objects

belonging to a logical object.

3.2 Concurrency Control Scheme

We now state the true-copy token scheme more precisely. The

new scheme allows several variations, so we state only the basic

rules that must be observed in any implementation. Note that we

are not giving an algorithm that describes every required pro

cedure, and that we are instead giving a set of constraints that

are necessary to prevent inconsistent system operation. A positive

aspect of this approach is ·that any implementation that satisfies

the basic rules given in this section will possess the properties

discussed in Subsection 3.3 and Section 4. Two different remote

update mechanisms and various true-copy token transfer methods are

discussed in [MINO-80].

We assume that if a deadlock occurs, one or more of the tran

sactions causing the deadlock are preempted in a way that the

preempted transactions do not leave any effect to the system. In

order to avoid the "domino effect" of transaction abortion, the

structure of each transaction may have to be restricted [BAYE-80,

MINO-80]. Further discussions concerning deadlocks in the true-

- 17 -

copy token scheme can be found in [MINO-80].

As we stated in the preceding section, a true copy is assumed

to possess a true-copy token that specifies the type of the true

copy, either an exclusive copy or a share copy. When a true-copy

token is "transferred" from a physical object xi to another physi

cal object xj, xi ceases to contain a true copy, and then xj starts

to contain a true copy specified by the true-copy token. (In an

actual implementation this time precedence can be established by

passing a descriptor representing the true-copy token between the

sites where those two physical objects reside.) A true copy is

said to be free if it is not locked by any transaction.

Now we state the basic rules of the true-copy token scheme.

Tl. Each physical object contains either an exclusive m or a

share m or a YQi,Q m of the logical object to which the

physical object belongs.

T2. At the point of system creation there exists exactly one free

exclusive copy for each logical object.

T3. At any given time, either one exclusive copy or only share

copies exist for each logical object.

T4. When a physical object obtains a true-copy token, all remote

updates created thus far for the physical object must have

been completed before the content of the physical object

becomes a true copy. Remote updates to each physical object

must follow the order of their creation.

- 18 -

TS. A transaction that wants to make read-write accesses to a log

ical object X must exclusively lock . the exclusive copy of X.

An exclusive lock can be set only on a free exclusive copy.

Once the exclusive copy is exclusively locked, the transaction

can read from or write to it. When the transaction write to

the exclusive copy of X, it must also create the remote

updates for other physical objects belonging to X; the same

data value must be supplied for all of the replicate physical

objects of X. An exclusive-copy token cannot be transferred

to another physical object or changed to a share-copy token

while an exclusive copy is exclusively locked.

T6. A transaction that wants to make read-only accesses to a logi

cal object X must share lock a share copy of X. A share lock

can be set only on a share copy, which may have already been

share locked. Once a share copy is share locked by a transac

tion, the content of the share copy can be read by the tran

saction. A share copy cannot be revoked until all share locks

on it are released.

T7. Locking on true copies by a transaction must be two-phase.

Rule T3 may be replaced by the following three rules.

T3a. An exclusive-copy token can be transferred to another physical

object belonging to the same logical object.

T3b. An exclusive-copy token can become a share-copy token. A

share-copy token can create other share-copy tokens, and the

newly created share-copy tokens can be granted to other

♦

- 19 -

physical objects belonging to the same logical object.

T3c. When an exclusive copy of a logical object for which there

currently exist multiple share copies is required, all of

these share copies must be revoked except the one that becomes

the exclusive copy.

Note that the invariant specified by rule T3 is not invali

dated by any of the operations specified in the above three rules.

Rules TS and T6 may be modified so that share locks can be

applied to an exclusive copy. Then, an exclusive copy can be

revoked only when it is neither exclusively nor share locked, and

an exclusive copy that is only share locked can be changed to a

share copy. This modification does not affect the set of transac

tions that can be executed concurrently.

Redundant remote updates may be discarded to reduce the

inter-site traffic as we mentioned in Subsection 2.2. If more than

one remote update occurs to the same physical object at some remote

site before the physical object obtains a true copy, remote updates

other than the last one are redundant, for the data values written

by them will never be accessed.

Fig. 5 shows which combination of transactions shown in Fig. 4

can be processed concurrently. A transaction is "active" if it is

being executed by using local data, and a transaction is "blocked"

if it cannot be executed by using local data.

In Fig. S(a), transaction P can proceed because xl contains an

- 20 -

exclusive copy, and yl contains a share copy. Note that P makes

read-write accesses to logical object X and a read-only access to

logical object Y. The remote update to x2 by P can be discarded

because it will be overwritten by the remote update by transaction

Q; it is redundant.

Also in Fig. S(a), transaction R tries to make read-write

accesses to logical object Y. However, physical object y2 contains

a share copy and not an exclusive copy, so R cannot exclusively

lock y2 and is blocked.

Once Pis completed at site Hand transaction Q starts its

execution using the exclusive copy in xl, the share-copy token of

yl can be released and the content of y2 can become an exclusive

copy; then R can proceed. In Fig. S(b), both Q and Rare running

concurrently. The remote update to x2 created by Q must be sent to

site I before the content of x2 becomes an exclusive copy and is

accessed by T.

In Fig. S(c) transaction S introduced at site H is blocked

because the content of yl is not a share copy. In Fig. S(d), how

ever, two share copies, those in yl and y2, exist for logical

object Y at the same time, and both transactions sand Tare

active.

Now we briefly state how to perform remote updates so that

they satisfy rule T4 given above. A straightforward method is to

transfer true copies themselves among physical objects, i.e., to

carry the latest data value created for each logical object within

- 21 -

its true-copy tokens and to update each physical object to the

value specified by the true-copy token when it is visited by a .

true-copy token. In this method, a remote update addressed to each

remote physical object is not created. Therefore, assume that

remote updates are carried by true copies and that a remote update

carried by a true copy is applied to its target physical object

when the true copy arrives at the physical object for the first

time after the remote update is created. Further assume that

remote updates carried by a true copy are overwritten before they

arrive at their target physical objects by their successive remote

updates when newer values are created for the true copy.

The obvious disadvantage of this method is that we have to

carry a lot of data when a logical object is large even when the

modified part is small. Another disadvantage is that replicate

physical objects are not kept up-to-date. Some advantages of this

method are that it is easy to understand, that remote updates need

not be addressed to individual physical objects, and that redundant

remote updates are automatically ignored.

Another method to perform remote updates, "sequenced update

mechanism", is described in [MINO-80]. This method can eliminate

the two disadvantages associated with the previous method.

3.3 Correctness Proof

In this subsection we prove that the true-copy token scheme

presented in the preceding section is consistent by directly show

ing that any execution sequence allowed by it satisfies consistency

- 22 -

condition Cat the physical object level.

An immediate consequence of the two-phase locking rule (rule

T7) is that all locks set by each transaction are active at some

point during the execution of the transaction. We define the lock

~ point Rp of a transaction Ras the first point in time at

which all locks set by transaction Rare active.

Definition (~-Peak-Point Ordering<<~). The binary relation <<p

on a set of transactions that use two-phase locking is defined as

follows: R <<p S iff Rp << Sp, where Rp and Sp are the lock peak

points of transactions Rand S, respectively.

As Rp and Sp are not operation events, we have extended the

execution sequence << to include lock peak points. Obviously,

R <<p s means that the lock peak point of R precedes that of s.

Note that <<pis acyclic because <<pis a total ordering.

We now prove that any execution sequence allowed by the true

copy token scheme satisfies consistency condition Cat the physical

object level. We will show that in any execution sequence D

precedence <<< defined on the set of transactions can be embedded

in the lock-peak-point ordering <<p, i.e., that if R <<< s for any

pair of transactions R and s, then R <<p S. In the following

proof, operations are physical ones, and the execution timings of

remote updates are those times when they are actually applied to

physical objects. Also, a true copy is either an exclusive copy or

a share copy, and an access is either a read operation or a write

operation.

- 23 -

Theorem l. The true-copy token scheme is consistent.

0
Proof. Assume that for a pair of transacti~s R and s, R <<< s.

Then, some operation A of transaction Rand some operation B of

transaction S conflict over some physical object xk, and A<< B.

Accesses made by A and B to xk are either local accesses performed

under locking while xk holds a true copy, or remote updates.

First, if xk is locally accessed by both A and B, R <<p S

because local accesses are made with xk being locked.

Second, if A is a local access and B is a remote up_date, then

the remote update B must be preceded in S by a local write opera

tion C that writes the same data value as B to some physical object

xi (i /= k) that contains an exclusive copy when C is applied to it

(Fig. 6(a)). Now if C << A, then B << A because B must be applied

to xk before xk obtains the true copy accessed by A (rule T4).

Therefore, A<< C, and hence R <<p S because xi can seize the

exclusive copy accessed by Conly after the true copy accessed by A

is released.

Third, if A is a remote update and Bis a local access, A must

be preceded in R by a local write operation C that accesses xi

writing the same value as A (Fig. 6(b)). As C precedes A and A

precedes B, C precedes B and hence R <<p s. Note that S dan

exclusively or share lock xk only after the exclusive lock on xi is

released by R.

Finally, if accesses by both operations A and B are remote

updates (Fig. 6(c)), the ordering rule of remote updates (rule T4)

- 24 -

guarantees that these remote updates are performed in their order

of creation. Hence, transaction R exclusively locks some physical

object xi and creates the remote update A before transaction S

exclusively locks some physical object xj and creates the remote

update B. Consequently, R <<p s.

We have shown that conflicting operations are performed

according to the lock-peak-point ordering <<p defined for the tran

sactions to which they belong, i.e., that if R <<< S for transac

tions Rands, then R <<p s. Since <<pis acyclic, <<< is acyclic,

and hence consistency condition C is satisfied. Q.E.D.

Numbers in Fig. 6 indicate the event ordering. In Fig. 6(a)

(Fig. 6(b)), the true-copy token that is transferred from xk (xi)

to xi Cxk) may be used at other sites after it leaves xk (xi) and

before it reaches xi (xk). In Fig. 6(c), that xi= xj is allowed.

- 25 -

4. Logical Objects and Logical Operations

In the preceding section we have shown that the true-copy

token scheme maintains consistency condition Cat the physical

object level. From the standpoint of system structuring, however,

it is desirable to assume that logical objects themselves hold data

values.

In this section we show that we can consider that in the

true-copy token scheme transactions access logical objects as if

they were real entities. Our discussion follows the standard

approach of handling abstract data in sequential programs [HOAR-72,

GUTT-78, WULF-76] except that our proof is informal.

First, a data abstraction function for the current data values

of logical objects is defined. Then, we show that logical opera

tions cause the expected effects on the logical object values. A

new aspect of our proof method is that logical operations are con

sidered instantaneous, and (abstract) execution timings are defined

for them. Once logical objects and logical operations are esta

blished, that the two-phase locking rule is observed by logical

operations is shown.

Before we proceed, we need a minor abstraction step. Assume

that an execution sequence at the physical object level realized by

the true-copy token scheme is given. In order to make our discus

sion simple, we reinterpret the given execution sequence in the

following wayt

- 26 -

1. Each physical operation takes place instantaneously at the

point when the actual physical operation is initiated.

2. Each true-copy token transfer occurs instantaneously at the

point when the new holder of the true-copy token receives it.

Note that these changes are applicable only to oui perception

of the system operation and not to the actual operation of the sys-

tern . The first interpr~tatioh is allowable because no

physical operations can occur concurrently, and

conflicting

the second

interpretation is allowable because no transactions can access true

copies while they are being transferred.

Now we can define the data abstraction function for logical

object values. The following definition states that in the true

copy token scheme, logical objects and true copies can be "identi

fied". Note that logical objects are (fictitious) entities at the

logical object level whereas true copies are entities at the physi

cal object level.

Definition (Logical Object Value). The current data value of each

logical object is specified by the current content of either an

exclusive copy or a share copy associated with the logical object.

Lemma 2. The current data value of each logical object is uniquely

defined at any time.

Proof. When there is a single exclusive copy for a logical object,

obviously its data value is uniquely defined. When a share copy

creates other share copies, these share copies reflect all past

- 27 -

updates created for them, and hence their contents are the same.

Furthermore, the contents of share copies will not change until

they are revoked and an exclusive copy is created. Hence, even

when there are multiple share copies, their contents are the same.

Q.E.D.

We now want to show that in the true-copy token scheme logical

read and write operations access logical objects as if they were

real entities. In order to make the definition of logical objects

meaningful (the definition of an object was given in Subsec~ion

2.1), an access ordering must be specified on the logical read and

write operations applied to each logical object.

We now define the execution timings of logical operations. In

the case of physical operations, we have conceived that they are

activities that actually take place on the hardware and that their

execution timings can be defined unambiguously. The definition of

the execution timings of logical operations, on the other hand,

requires discretion.

As we stated in Subsection 2.2, a logical read operation

read(X) is represented by a physical read operation read(xi) for

some xi. Therefore, it is natural to identify the execution timing

of read(X) with that of read(xi).

The problem is not so simple for a logical write operation

write(X) because in our model write(X) is represented by the set of

physical write operations {write(xl), write _(x2), •.. }. However,

the underlying concept of the true-copy token scheme is to identify

- 28 -

true copies with logical objects. Thus, it is natural to identify

the execution timing of a logical write operation write(X) with

that of the physical write operation write(xi) that is applied to

the physical object containing the exclusive copy of l~gical object

x. In the true-copy token scheme, only one operation in the set of

physical write operations representing write(X) is applied to an

exclusive copy. Therefore, the execution timing of write(X) is

also uniquely defined. The reader is cautioned that this defini

tion is applicable only when the true-copy token scheme is used.

That is, different definitions must be given for other schemes.

Definition (Execution Timings of Logical Operations). Given a phy

sical level execution sequence of transactions realized by the

true-copy token scheme, the execution timings of logical operations

are defined as follows.

Ll. Assume that logical read operation read(X) occurs when its

corresponding physical read operation read(xi), some i,

occurs.

L2. Assume that logical write operation write(X) occurs when one

of its corresponding physical write operations is applied to

the exclusive copy of X.

Ll. Assume that the execution timing of

release operation on a logical

a lock-seize or lock

object is that of its

corresponding lock-seize or lock-release operation applied to

a true copy associated with the logical object.

Now we show that the logical execution sequence thus defined

- 29 -

is a consistent way of viewing the physical one.

Lemma 1. When transactions are executed by using the true-copy

token scheme, transactions will not see any difference even if phy

sical objects and physical operations are replaced by their logical

counterparts, i.e., logical objects and logical operations.

Proof. First, the data value returned by the physical read opera

tion read(xi) representing a logical read operation read(X) is the

data value of a true copy for x, and is by definition the current

data value of logical object X. Hence, read(xi) can be replaced by

read (X) without affecting the transaction issuing it.

Second, when a logical write operation write(X) is assumed to

occur, one of its corresponding physical write operations is

applied to the exclusive copy of X, and consequently the current

data value of X changes as specified by write(X). Hence, write (X)

is correctly implemented.

Third, we show that the data values of the logical objects are

not changed by other physical operations. Remote updates have no
/

effects on the current data values of logical objects because they

are applied to void copies. Further, transfer of a true-copy token

has no effect on the current data value of the logical object asso

ciated with the true-copy token, since two physical objects between

which a true-copy token is tranferred possess the same content when

the true-copy token transfer occurrs. This is because all past

remote updates are applied to a physical object when it obtains a

true copy (rule T4).

- 30 -

Consequently, in the true-copy token scheme we can assume that

logical objects are accessed as if they were real objeqts.

Q.E.D.

Lemma!. In the true-copy token scheme, two-phase locking is real

ized over logical objects.

Proof. First, we show that conflicting lock instances are mutually

excluded at the logical object level. If a logical object is

exclusively locked by some transaction, the exclusive copy of the

logical object is exclusively locked at some site. Then no other

transactions can lock a true copy belonging to the same logical

object, for the exclusive copy that is exclusively locked is the

only true copy of· the logical object. On the other hand, if a log

ical object is share locked, a share copy of the logical object is

share locked at some site. Then, only share copies can exist for

that logical object, and no transaction can exclusively lock the

logical object because share copies cannot be exclusively locked.

Second, by definition the timing of the locking on logical

objects is identical to the timing of the two-phase locking applied

to true-copies (rule T7). Q.E.D.

It is well knoin that two-phase locking applied to a central

ized database system preserves consistency condition C [BERN-79,

ESWA-76, PAPA-79]. Hence, from Lemmas 3 and 4 we can conclude the

following theorem.

Theorem 2. Any execution sequence allowed by the true-copy token

scheme satisfies consistency condition C at the logical object

- 31 -

level.

- 32 -

5. Resiliency Control

In this section we fiist give a definition of resilient system

operation. Then, we show that the true-copy token scheme can be

made resilient by employing a reliable storage mechanism and a

reliable message transmission mechanism. Finally, system parti

tioning problem is discussed. The resiliency scheme discussed in

this section can handle site crashes and message link failures as

long as each ~ite can always restore its own data. However, the

scheme fails when some sites cannot restore their own data.

Resiliency schemes that can tolerate complete failures of some

sites in distributed database systems are described in [MIN0-82,

MIN0-83]. Since the resiliency scheme discussed in this section is

simpler and more efficient than those schemes, a sensible approach

would be to employ those schemes only when the scheme discussed in

this section fails.

5.1 Resilient System Operation

So far we have not considered site or message-link failures.

When such subsystem failures occur, continuity of data may be lost.

However, when the true-copy token scheme is employed, continuity of

logical object values can be preserved by preserving continuity of

true copies.

Lemma~- Logical operations will not be affected if true copies

are regenerated with the values possessed by lost true copies.

Proof. If a true copy is regenerated with the value possessed by

- 33 -

the lost true copy, then the proof of Lemma 3 is still valid. The

combined process of the loss and the regeneration of a true copy of

logical object X preserves the value of x. Note that logical

objects whose true copies are lost are not accessed until those

lost true copies are regenerated. Q.E.D.

When the mainframe at a site fails, some transactions being

executed at that site may not be completed. Then, these transac-

tions must be aborted, and their effects must be nullified. Tran-

sactions that are not aborted must be committed. The effect of a

committed transaction must be complete.

We now give the definition of resilient system operation.

Definition (Resilient System Operation). System operation is resi

lient if the following three conditions are satisfied:

Rl. Each transaction submitted to the system is either committed

or aborted. Each logical write operation issued by a commit

ted transaction updates the value of its target logical

object, and no logical write operations issued by aborted

transactions affect the logical object values.

R2. Each read operation issued by a committed transaction returns

the current value of its target logical object.

R3. The execution sequence defined for committed transactions is

serializable at the logical object level.

When condition Rl is satisfied, we say that atomicity of each

transaction is preserved. Condition R2 does not impose any

- 34 -

requirement on the values read by aborted transactions.

5.2 Reliable Storage Mechanism

In implementing a reliable distributed database system, we

assume that each site is equipped with a reliable storage subsys

tem. A site that is guarded by a reliable storage subsystem can

restore its own data even if its mainframe and part of its secon

dary storage fail. A site equipped with a reliable storage subsys

tem will be called a reliable site .

We assume that the reliable storage subsystem employed by each

site possesses the following properties.

Sl. Data written to the reliable storage will never be lost.

S2. A set of data can be atomically written to the reliable

storage at each site.

S3. An individual write operation to reliable storage is rela-

tively expensive. Therefore, it is impractical to move to

reliable storage every piece of data generated by the main

frame.

A conventional method for making a centralized database system

resilient against mainframe and disk failures is to use checkpoint

dumps** and .l.,Q_g records, which effectively provide reliable storage

** A checkpoint dump is a complete copy of a database state. In
[GRAY-81J', such a copy is called an archive, and the term
"checkpoint" is used for a different purpose.

- 35 -

[GRAY-78, GRAY-81, FOSS-74, LIND-80, STON-76, VERH-78, WIED-83]. A

reliable storage subsystem can also be implemented by duplicating a

storage subsystem that uses the "intentions-list" mechanism [LAMP-

79, LAMP-81, MENA-80] or the shadow mechanism [LORI-771. Various

methods for implementing reliable storage subsystems are compared

in [LIU-83 l .

5.3 Reliable Token Transfer

We now consider the problem of connecting reliable sites in

order to realize a reliable distributed database system. Since

reliable sites will never lose their data, a reliable distributed

database system can be constructed if true copies can be reliably

transferred between these sites.

However, if a message link fails, true-copy tokens being

transferred over the message link may be lost. When a site crash

occurs, there is a possibility of losing messages on the crashed

site; these messages may have been generated by the crashed site

itself, or they may have been sent from other sites. Further, as

we assume that true-copy tokens and locks are kept in main memory

while a site is operating normally, they may be lost or released if

a mainframe failure occurs.

We can realize reliable token transfer by retrasmitting possi

bly lost messages. (Message retransmission is widely practiced in

communication networks [EDGE-781 .) In implementing a reliable token

transfer mechanism, we make . the following assumptions.

- 36 -

Ml. A damaged message can be always detected as damaged.

M2. If the same message is sent repeatedly some finite number of

times, it will eventually reach its destination site.

M3. Duplicate messages can be detected.

Assumption Ml is based on the fact that the probability of an

occurrence of undetectable error is extremely small when an

appropriate error detection code is used. Assumption M2 implies

another assumption that a failed message link will eventually be

restored. Since relevant messages are associated with true-copy

tokens, version numbers can be used to detect duplicate messages.

In order to transfer a true-copy token from a sender site to a

receiver site both of which are operating normally, the following

procedures must be used by reliable sites.

Xl. Before the sender site releases the true-copy token, it must

write to its reliable storage a Token-Release record remember

ing to which site the true-copy token is being sent, and then

it must delete the Token-Seize record for the true-copy token.

Once these operations are complete at the sender site, the

true-copy token can be sent to the receiver site by a Token

Grant message.

X2. When the receiver site receives the Token-Grant message, it

must write to its stable storage a Token-Seize record before

the site begins to use the true copy associated with the

true-copy token. Then, the receiver site must send a Token-

- 37 -

~ message to the sender site acknowledging the receipt of

the true-copy token.

X3. When the sender site receives the Token-ACK message from the

receiver site, the Token-Release record at the sender site

must be deleted.

Fig. 7 shows the normal interaction of the sender site and the

receiver site.

In the procedures above, a true-copy token held by a site is

remembered by the Token-Seize record written on the stable storage

at that site, and a true-copy token being transferred is remembered

by the Token-Release record written on the stable storage at the

sender site. Step X2 can be modified so that the Token-ACK message

is effectively returned to the sender site by returning the true

copy token itself after its use. This modification can reduce the

number of required messages.

Now we state the additional procedures that are required when

the system is restored from subsystem failures.

X4. When a site is restored from a site failure, it must take the

following action. If a Token-Seize record is found at that

site and if no Token-Release record for the same true-copy

token is found, then the true-copy token indicated by the

Token-Seize record must be regenerated at that site.

XS. If a Token-Release record is found at some site and if the

true-copy token associated with the Token-Release record may

- 38 -

have been affected by the subsystem failures, then the Token

Grant message for the true-copy token indicated by the Token

Release record must be sent again to the receiver site. A

true-copy token sent over a message link may be affected if

any of the sender site, the message link, and the receiver

site fails.

X6. When a redundant Token-Grant message is received for the

true-copy token that has already been received, the message

must be ignored except that a Token-ACK message must be sent

back to the sender site even if it has already been sent.

X7. If a Token-ACK message whose matching Token-Release record

does not exist is received, the message must be ignored.

When a Token-Release record is found at a site, a true-copy

token has been sent to another site as indicated by the Token

Release record, but its acknowledgment has not been returned to the

sender site yet. The true-copy token may have been lost while it

was being transferred to the receiver site. Therefore, the true

copy token must be sent to the receiver site again. However, · if

the true-copy token has already reached the receiver site, the

Token-Grant message must be ignored. Also, note that if both

Token-Seize record and Token-Release record for the same true-copy

token are found at a site, then the Token-Release record prevails.

5.4 Transaction Processing

We showed that true copies can be reliably transferred between

- 39 -

sites. If every true copy required by a transaction is transferred

to the site where the transaction is executed, then the transaction

can be executed as if it is executed by a centralized database sys

tem, and each site can use the reliable storage subsystem in order

to support the true copies at that site.

As we have mentioned, a transaction is a collection of opera

tions, and a transaction as seen by its user is like an ordinary

program with write operations intermixed with other operations.

However, we restrict the transaction structure seen by the system

in order to support our resiliency scheme. The main feature of our

restricted transaction structure is a transaction buffer that sup

ports the abortion of a partially executed transaction without

causing any ill effect to the system.

A transaction buffer is provided for each transaction. Until

a transaction issues a Transaction-End command, updates created by

the transaction are kept in its transaction buffer, and they are

not applied to the reliable storage. This restriction allows tran

saction abortion at any time before the transaction issues the

Transaction-End command. A transaction can be aborted simply by

discarding its transaction buffer.

Once the Transaction-End command is issued, the updates in the

transaction buffer must be written into the reliable storage.

Therefore, all write operations of each transaction are effectively

collected at the end of the transaction. A transaction cannot be

aborted once the Transaction-End command is issued.

- 40 -

We now state how transactions can be executed by each site.

El. In order that a transaction can be executed at a site, all of

the true-copies accessed by the transaction must be available

at that site. Therefore, some true copies must be brought in

from other sites. If a physical object to accommodate a true

copy does not exist at a site, a tentative physical object can

be created in order to accommodate the true copy. Whenever a

true copy is obtained by a site, the content of the true copy

must be written to reliable storage before the true copy is

used by . the transactions at that site.

E2. Updates** created by each transaction must be atomically

applied to the reliable storage at the site where the transac

tion is executed.***

E3. If a site failure occurs, the reliable storage subsystem at

the failed site must restore a "transaction-consistent"

[GRAY-811 state.

As we discussed, continuity of true copies are preserved when

they are transferred between sites. If the reliable storage sub

system at each site works correctly, true copies at each site will

** The output of the transaction must be included in these up
dates. It can be released once the updates are moved to reli
able storage. On the other hand, the output must always be
produced if the updates are reflected on reliable storage.

*** Updates of transactions must be moved to reliable storage ac
cording to the "U-precedence" defined for those transactions
[LIU-83, MIN0-831'. This requirement can be automatically sa
tisfied when exclusive locks are held until reliable storage
is updated.

l

- 41 -

be effectively manipulated only by committed transactions (rules

Sl, S2, E2 and E3). Further, two-phase locking applied on true

copies guarantee that the resultant execution sequence is serializ

able if aborted transactions are excluded. Consequently, condi

tions Rl, R2 and R3 for resilient system operation are satisfied

even if subsystem failures occur.

5.5 System Partitioning

While the system is operating normally, all sites in the sys

tem belong to one partition, and a true-copy token of each logica.l

object can be transferred to any site where it is required.

· When the system is partitioned, each partition will possess a

subset of the true copies that exist in the system. System parti

tioning can be supported without any consistency problem by letting

each transaction access only those true copies that are available

within the partition where the transaction is executed. Note that

a transaction cannot be executed if some true copies required by

the transaction are not available within the partition where the

transaction is executed, and that the set of transactions that are

executable within each partition is partly decided by chance.

Remote updates to physical objects at the sites within other parti

tions must be delayed until message-links are restored.

- 42 -

6. Conclusion

A new concurrency and resiliency control scheme, true-copy

token scheme, was developed for a distributed database system with

replicated data. The scheme first establishes logical objects by

hiding replication of physical objects and then applies locking on

these logical objects in order to preserve consistency. The

behavior of the logical objects was precisely discussed by using

the concept of data abstraction. In doing so, execution timings of

logical operations were explicitly defined. This technique was

called time abstraction.

The new concurrency control scheme supports for each logical

object either one read-write copy or multiple read-only copies at

one time. Multiple read _-only copies that can be updated by revok

ing them will be useful because many files in real systems are used

in this way.

We also showed that the true - copy token scheme can be made

resilient by combining a reliable true-copy transfer mechanism and

a reliable storage mechanism; the latter has long been used by a

centralized database system . The resiliency scheme discussed in

this chapter cannot handle complete site failures. Resiliency

schemes that can restore a failed site by using redundatant data

stored at other sites are disucssed in [MIN0-82, MIN0-831. Even

when those schemes are employed, The scheme discussed in this

chapter can be used as the first level recovery scheme.

- 43 -

References

[ALSB-76] Alsberg, P.A., Belford, G.G., Day, J.D., and Grapa, E.
Multi-copy resiliency techniques. Center for Advanced Compu
tation, Univ. of Illinois, Urbana-Champaign, May 1976.

[BAYE-80] Bayer, R., Heller, H., and Reiser, A.
recovery in database systems. AC.M Tr • .Qil
2 (June 1980), 139-156.

Parallelism and
Database Systems~,

[BERN-79] Bernstein, P., Shipman, D., and Wong, w. Formal aspects
of serializability in database concurrency control. IEEE Tr •
.Qil Software Engineering~-~, 3 (May 1979), 203-216.

[EDGE-78] Edge, s.w. and Hinchley, A.J. A survey of end-to-end
retransmission techniques. ~ Computer Communication Review
.8., 4 (Oct. 1978), 1-16.

[ESWA-76] Eswaran, K., Gray, J., Lorie, R., and Traiger, I. The
notions of consistency and predicate locks in a database sys
tem • .cAQl li, 11 (Nov. 1976), 624-633.

[FOSS-74] Fossum,
ticular data
Klimbie, J.W.
pp. 271-288.

B.M. Data base integrity as provided by a par
base management system. ~ Base Management,

and Koffeman, K.L. (eds.), North-Holland, 1974,

[GRAY-78] Gray, J. Notes on data base operating systems. In Lec
..t..Y.li Notes .in Computer Science fill, Springer-Verlag, 1978, pp.
393-481.

[GRAY-81] Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lorie,
R., Price, T., Putzolu, F., and Traiger, I. The recovery
manager of the System R database manager. Computing surveys
ll, 2 (June 1981), 223-242.

[GUTT-78] Guttag, J.V., Horowitz, E., and Musser, D.R. Abstract
data types and software validation. ,CAC.M ll, 12 (Dec. 1978),
1048-1064.

[HOAR-72] Hoare, C.A.R. Proof of correctness of data representa
tions. Acta Informatica i (1972), 271-281.

[LAMP-79] Lampson, B.W. and Sturgis, H.E.
distributed data storage system.
Center, April 1979.

Crash recovery in a
Xerox Palo Alto Research

[LAMP-81] Lampson, B.W. Atomic transactions. In Distributed .,Sye
~ -- Architecture and implementation, Lecture Notes in Com
puter Science 105, Springer-Verlag, 1981, pp. 246-265.

- 44 -

[LEE-801 Lee, C.H. Queueing analysis of global locking synchron
ization schemes for multicopy databases. IEEE Tr. on Comput
~ ~-2.2., 5 (May 1980), 371-384.

[LELA-78] Le Lann, G. Algorithms
systems which use tickets.
Distributed Data Management and
pp. 259-27 2.

for distributed data-sharing
Proc. 3rd Berkeley Workshop on
Computer Networks, Aug. 1978,

[LIND-801 Lindsay, B.G. Single and multi-site recovery facili
ties. In Distributed Data Bases, Draffan, I.W. and Poole, F.
(eds.), Cambridge University Press, 1980, pp. 247-284.

[LIU-831 Liu, c. and Minoura, T. Reliable Storage Update. Sub
mitted for publication.

[LORI-77] Lorie, R.A.
tabase. ACM %I,.
104.

Physical integrity in a large segmented da
on Database Systems 2, 1 (March 1977), 91-

[MENA-801 Menasce, D.A. and Landes, O.E. On the design of a reli
able storage component for distributed database management
systems. Proc. 6th Int. Conf. on Very Large Data Bases, 1980,
pp . 3 6 5 - 3 7 5 •

[MINO-781 Minoura, T. Maximally concurrent transaction process
ing. Proc. 3rd Berkeley Workshop on Distributed Data Manage
ment and Computer Networks, Aug. 1978, pp. 206-214.

[MINO-801 Minoura, T. Resilient extended true-copy token algo
rithm for distributed database systems. Ph.D. Thesis, Stan
ford University, May 1980. (available from University Micro
films International, 300 N Zeeb Road, Ann Arbor, MI 48106)
Also TR-197, CSL, .. Stanford University (microfiche only).

[MINO-821 Minoura, T. and Wiederhold, G. Resilient extended
true-copy token scheme for a distributed database ~ystem.
IEEE l:.r,. Qil Software Engineering .s.g-a, 3 (May 1982), 173-189.

[MINO-831 Minoura, T., Owicki, s. and Wiederhold, G. Consistent
distributed database state maintenance. Submitted for publi
cation.

[PAPA-791 Papadimitriou, C.H. The serializability of concurrent
database updates. ~ ..2.2.., 4 (Oct. 1979), 631-653.

[SCHL-781 Schlageter, G. Process synchronization in database sys
tems. ACM %,t. on Database Systems l, 3 (Sept. 1978), 248-271.

[STEA-761 Stearns, R., Lewis, P., and Rosenkrantz, D. Concurrency
control for database systems. Proc. IEEE Symp. on Foundations
of Comp. Sci., Oct. 1976, pp. 19-32.

- 45 -

[STON-76] Stonebraker, M, Wong, E., and Kreps, P. The design and
implementation of INGRES. ~ ~- .Qil Database Systems l, 3
(Sept. 1976), 189-222.

[STON-79] Stonebraker, M. Concurrency control and consistency of
multiple copies of data in distributed INGRES. IEEE Tr. Q.D

Software Engineering~-~, 3 (May 1979), 188-194.

[VERH-78] Verhofstad, J.S.M. Recovery techniques for database
systems. ACM Computing Surveys ll, 2 (June 1978), 167-195.

[WIED-83] Wiederhold, G. Database Design, 2nd edition. McGraw-
Hill, 1983.

[WULF-76] Wulf, W.A., London, R.L., and Shaw, M. An introduction
to the construction and verification of Alphard programs.
IEEE Tr • .Qil Software .Eng. s.E.-Z, 4 (Dec. 1976), 253-265.

..

DDBS = {X, Y, Z}

logical components: s•i t es:

X = { X 1 , X 2, x3} H = { X 1 , y, ' z l}
y = . { y l , y2} I = { H 2, y2}

z = { z l} J = {x3}

A ·d-±-stributed database system.

logical:

site H

physical:

site I

read(X)
read(Y)
read(Z)

oca
com· utatton

writeCX)
writeCY)

Fig . 2.

read(z1)

writeCx1)
write(y1)

C

read(x2)
read(y2)

writeCx2)
write(y2)

Transaction.

site J

writeCx3)

site H:

site I:

site J:

t 1 t2 t3 t4 ts

E exclusive copy
S share copy

Fig. 3. True. copies,

r

logical components:

X = {x1, x2}
Y = {y1, y2}

p

read(X)
read(Y)

write(X)

Q

read(X)

write(X)

s

lread(Y)I

sites:

H = {Kl, yl}
I = {x2, y2}

R

read(Y)

write(Y)

T

read(X)
read(Y)

write(X)

Fig. 4. Sites and transactions.

(a)
'I .

Cb)

(C)

C d)

,.

**
*

p

Q

s
\

s

\
\

Fig. 5.

site H

** *
X 1 y1

site H

**
x1 yl

**
X 1 y1

site H

x1 y 1

exclusive copy
share copy

site I

x2 y2

site I

x2 y2

site I

x2 y2

site I

** *
x2 y2

R
. /
I

R

R

T

~active
-- ·~ blocked

Extended true-copy token algorithm .

ca)
s

"

R

(C)

R

•
s

R

/, B
4

B,- __ 2 _____ jxkj

token tr-ansfer-

2

□--- 3 __ fxkl w --------,r- LJ
token tr-ansfer-

3 (2) I token
I transfer

I
V B _____ s __

Fig . 6. ":<<<" and "<<p" .

E]

r

..

sender

Token-Seize

Token-Release

delete

Token-Release

receiver

Token-Grant

Token-ACK
Token-Seize

7. Reliable token transfer .

