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ABSTRACT 

A typical database system maintains target ..d.a.t..a, which con

tain information useful for users, and access m.t,b .da.t_g, which 

facilitate faster accesses to target data. Further, most large 

database systems support concurrent processing of multiple tran

sactions. For a static database system model, where units of 

concurrency control are not dynamically created or deleted, vari

ous concurrency control methods are known. Also, many methods 

that allow concurrent accesses to indexing structures without 

invalidating their integrity are known. However, a straightfor

ward integration of these two kinds of concurrency control 

methods fails because of the phantom problem. In this paper, we 

introduce group locks in order to solve this problem and discuss 

their implementation. As one side benefit of introducing group 

locks, we show that if the lowest-level access path data as well 

as the target data are two-phase locked by transactions, con

sistency of the logical data will be preserved. 

~ Words .arui Phrases: database system, concurrency control, 

phantom problem, access path data, B-tree, multi-level structure, 

data abstraction, time abstraction 
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1. Introduction 

As well as storing information required by its users (target 

.d.a.t,g**), a database system usually stores information that 

enables quick accesses to these target data (access ~ ~) 

[ASTR-76, BACH-74, SCHE-74, STON-76, TSIC-75, WEDE-74, YAO-77]. 

Access path data are often organized into indexing structures 

like B-trees because of their flexibility and good performance 

[ALLC-80, BAYE-77b, COME-79, HAER-78, KEEH-74, MARU-76, MARU-77, 

NAKA-78, STON-80, WEDE-74]. 

The concurrency control problem for a database system has 

been attacked from the following two angles. 

1. For a database system modeled as a static*** collection of 

database entities (typically, pages), extensive serializa

bility theories have been developed, and various mechanisms 

for realizing serializable executions have been proposed 

[BAYE-75, BAYE-80, BERN-79, CHAM-74, ESWA-76, GRAY-76****, 

GRAY-78, HAWL-75, MURO-82, PAPA-79, RIES-77, RIES-79, ROSE-

78, SCHL-78, STEA-76]. 

** In this section the term "target data" is used in a little 
ambiguous way. It means either the logical .da.t,g or the~
sical .d.a.t,g that represent those logical data. 

*** A collection of database entities is static if database en
tities in the collection are not dynamically created or re
moved. 

**** The scheme discussed in [GRAY-761 uses a hierarchy of locks, 
where a higher level lock covers multiple database entities 
covered by its lower level locks. However, the scheme is 
not a multi-level concurrency control scheme in the sense as 
the term is used in this paper. 
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2. The problem of concurrent operations on indexing structures 

(typically, B-trees) has been studied by many researchers, 

and a variety of techniques to enhance concurrency on them 

have been devised [BAYE-77a, ELLI-80a, ELLI-80b, GUIB-78, 

KUNG-80, KWON-82, LEHM-81, MILL-78, SAMA-761. 

So far, these two approaches have been mostly isolated. A 

limitation of the first approach alone is that although it is 

possible to treat access path data in the same way as target 

data, access path data (especially, root nodes of indexing struc

tures) may become bottlenecks for efficient concurrent opera

tions. On the other hand, although the second approach provides 

consistency for accesses to indexing structures ("action-level 

consistency" [GRAY-811), it does not provide consistency at the 

transaction level. 

We refer to concurrency control that achieves transaction

level consistency as .l.Qng-.t.e.m concurrency control, and con

currency control that achieves action-level consistency as 

short-.t..e..un concurrency control. For expository convenience, only 

simple locking methods are considered in this paper. Locking 

used at the transaction level will be referred to as .l.o.ng-k.Dn 

locking. (typically, two-phase locking [ESWA-761) and that at the 

action level short-RUD locking. 

The main objective of this paper is to present a scheme that 

integrates the results of the above two approaches. Manber and 

Ladner have addressed essentially the same problem for the case 

where each logical data item can be explicitly identified by a 
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unique key value, by using a binary tree as the indexing struc-

ture [MANB-82]. The model in this paper allows multiple data 

items to be associated with each key value.** 

When a data item cannot be designated by a unique key value, 

the phantom problem [ESWA-76] becomes more complex to handle. In 

this paper, "group locks" are introduced in order to handle 

phantoms, and their implementation method is presented. As one 

important side benefit of introducing the concept of group locks, 

we can prove the following fact. Assume that access path data 

are organized as search trees. Then, as long as the lowest-level 

tree nodes as well as the target data are two-phase locked by 

transactions, consistency at the logical data level will be 

preserved. Other search tree nodes (including root nodes) need 

be locked only for a period shorter than the duration of each 

tree access. 

At the logical data level of the multi-level concurrency 

control scheme presented in this paper, transactions are assumed 

to operate on "logical objects", and access path data are com

pletely hidden. At the physical data level, access path data are 

introduced, and operations on access path data are considered 

correct as long as target data are correctly reached. One 

interesting consequence of this weaker requirement for the opera-

** The model in the first version of this paper (Aug. 1981) as
sumed that each logical data item can be explicitly identi
fied by a unique key value. According to the suggestion by 
referees, this restriction has been removed from the current 
paper. 

l 
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tions on access path data is that those operations need not be 

serializable in terms of the transactions to which they belong. 

Further, it is possible to enhance the level of concurrency for 

access path data by using various techniques, since organizations 

of access path data are usually restricted, and the kinds of 

operations that manipulate them are limited (see [KWON-82, LEHM-

811 ) • 

In [ASTR-761 two kinds of locks, i.e., "(relational) tuple 

locks" and "page locks" are briefly explained. Tuple locks are 

applied at the target data level, and page locks are used at the 

virtual memory level. However, system R treats acc ·ess path data 

in the same way as target data: "share locks must be maintained 

on all tuples and index values which are read, for the duration 

of the transaction" [ASTR-76, p. 1261. Cedar DBMS performs lock

ing uniformly over pages, and it employs various techniques to 

reduce unnecessary conflicts over pages [BROW-811. 

In the multi-level concurrency control scheme presented in 

this paper, separate concurrency control methods are used for the 

access path data and for the target data. The interaction of 

these concurrency control methods is the main subject of our 

analysis. In order to prove precisely that the multi-level con

currency control scheme works correctly, a technique that handles 

data abstraction in a concurrent system is used. The technique 

is called .t.i,me abstraction, since it allows us to pinpoint the 

execution timings of logical operations according to our need. 

When a multi-level concurrency control scheme is employed by 
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a distributed database system, identical physical structures are 

not required for replicating logical data** at different sites. 

On the other hand, when pages, for example, are used as units of 

concurrency control, most concurrency control schemes currently 

proposed require that pages themselves be replicated in order to 

support replicated logical data. Then, it is almost impossible 

to replicate logical data on different file systems. 

** When a data item is redundantly represented in a distributed 
database system, "logical data" at individual sites are 
"physical data" from the system's viewpoint. 
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2. Logical Database System Model 

In this section we state the database system model that we 

support at the logical level. Although the model itself does not 

allow dynamic creations and deletions of entities constituting a 

database system, the model can easily support this feature by not 

keeping entities with default or irrelevant values. A well-known 

problem that occurs when dynamic creations and deletions of data

base entities are allowed is the phantom problem [ESWA-761. A 

unique feature of our model is the concept of groups, which are 

introduced in order to handle the phantom problem within the 

framework of a serializability theory. 

A logical database system consists of a set of .da.t.a items, a 

set of groups, and a set of transactions. Data items and groups 

are collectively called logical objects. A data item can possess 

a .da.t.s value. The data value possessed by a data item is called 

useless if it will never be accessed. Otherwise, it is useful. 

The set of data items may be countably infinite, although the 

number of data items with useful data values must be finite at 

any given time. 

Further, a data item can belong to any finite number (possi

bly zero) of groups at each given time. When a data item X 

belongs to a group G, we say that Xis a member of G. Associa

tions of data items with groups can dynamically change. The set 

of groups may also be countably infinite, but the number of 

groups with at least one member must be finite at any given time . 
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A group can be defined in any conceivable way. A typical 

case is one where a set of data items possessing a common attri-

bute value form a group. An atypical case is one where a set of 

data items sharing a page for their physical representations form 

a group. Groups are not mathematical sets since two different 

groups may contain the same set of members. 

Transactions use the following operations in order to mani

pulate the data values possessed by data items. 

Read(X): The current data value of data item Xis returned to 

the transaction issuing this operation. 

Write(X): The data value of data item X is updated to the 

one** supplied by the transaction issuing this operation. 

Further, transactions can add and delete data items to and 

from groups by using the following operations. 

Insert(X, G): Logical object Xis made a member of group G. 

Remove(X, G): The membership of data item X with group G is 

resolved. 

Sometimes Insert(X, G) and Remove(X, G) operations 1are 

implicitly performed. For example, if data items sharing a page 

p for their physical representations form group Gp, then adding 

to page p a record that reresents a data item X must be inter-
' 

** Since the data value provided is not relevant for our dis
cussions, we do not show it explicitly by an argument. 
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preted as an execution of Insert(X, Gp). 

Although groups can be arbitrarily defined, groups are usu-

ally formed so that the members of each group possess some common 

property. Then, the set of data items possessing a certain pro

perty can be located only by locating the members of the groups 

associated with that property. The following operation is used 

for locating the members of a group. 

MemLocate(G): The names of the data items that are currently 

members of group Gare returned. 

Various operations like splitting and merging groups can be 

implemented by combining MemLocate(G), Remove(X, G) and 

Insert(X, G) operations. 

In Fig. l(a), data items Wand Y are members of group Gl, 

and data item z is a member of group G2. However, data item Xis 

not a member of any group. At this point, MemLocate(Gl) will 

return the names of Wand Y. Now, assume that Insert(X, Gl) is 

issued. The resultant database state is shown in Fig. l(b). 

Note that X has become a member of · group Gl. If MemmLocate(Gl) 

is issued at this point, the names of w, X and Y will be 

returned. 

Let us call the operations that manipulate data items and 

groups logical operations, and let GUpdate(~) represent either 

Insert(X, G) or Remove(X, G) for some X. Note that neither an 

Insert(X, G) operation nor a Remove(X, G) operation affects data 

item X itself. Then, define relation conflict over the set of 
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logical operations as shown in Fig. 2. We leave to the reader 

the proof that the effects seen by transactions will not change 

even if the execution order of any pair of non-conflicting opera

tions are changed. We can regard a GUpdate(G) operation as a 

write operation to logical object G and a MemLocate(G) operation 

as a read operation to logical object G. Further, a GUpdate(G) 

operation does not conflict with another GUpdate(G) operation 

since they are commutative. 

An execution of transactions in which the net effects of 

transactions are as if they were executed one at a time is called 

serializable [ESWA-76, PAPA-791. Let us call a database system 

that does not allow dynamic creations or deletions of database 

entities (in our model, data items and groups) a static database 

system. It is well known that two-phase locking [ESWA-761 can 

guarantee a serializable execution for a static database system. 

Although our model includes an unusual feature (i.e., groups), it 

still is a static database system, and hence two-phase locking 

can realize a serializable execution, if groups as well as data 

items are two-phase locked according to relation conflict. 

Locking consistent with relation conflict can be achieved 

with three lock modes <~, Share, and Exclusive) provided for 

each data item and with additional three lock modes (~, 

Locate, and Update) provided for each group. When a data item or 

a group is accessed, it must be locked in the mode as indicated 

in Fig. 2. Since GUpdate(G) operations are commutative, more 

than one transaction can simultaneously hold the "UPdate" lock of 
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a group. 

We assume that the following operations are used for logical 

locking. 

MemLock(X, m): Data itme Xis locked in mode m, which is 

either Share or Exclusive. 

MemUnlock(X): The lock set on data item X by the transaction 

issuing this operation is reset. 

GLock(G, m): Group G is locked in mode m, which is either 

Locate or Update. 

GUnlock(G): The lock set on group G by the transaction issuing 

this operation is reset. 

If data item X or group G is already locked in a conflicting 

mode when a MemLock(X, m) or GLock(G, m) operation is issued, the 

operation must be blocked, or the transaction issuing the opera

tion must be aborted. 

In a typical database system, data items to be accessed are 

often designated by specifying their key values or the ranges of 

their key values.** We now consider a method of defining groups 

in order to support such value-based accessing. For expository 

convenience, we consider only one key attribute whose values are 

totally ordered. The model that satisfies the following rules 

** In this paper, a key value is not required to identify a 
data item uniquely. It is simply a value of an attribute or 
a set of values of multiple attributes. 
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will be referred to as the single-m logical database model. 

Ml. The .key value of each data item Xis uniquely defined at any 

time as ~(X). The key value may vary according to time, 

and further it may be NUL.*** The set of all possible key 

values except for NUL form a domain D. The key values in 

domain Dare totally ordered by<. Further, -inf< K < +inf 

for any key value Kin D. 

M2. Group G[KJ is defined for every key value Kin D. A data 

item X such that Key(X) = K must be a member of group G[KJ. 

Now, we can locate the data items whose current key values 

are equal to K by locating the members of G[KJ. Further, we 

assume that we can locate by an operation RLocate(K,, K-> the 
i ~ 

members of the groups whose key values are between K. and K,. If 
1 J 

there is a countably infinite number of key values in this range, 

then we must theoretically check the countably infinite number of 

groups. In Section 3 we will discuss a method to handle this 

problem. 

*** An undefined key value must be regarded as NUL. 
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3. Physical Implementation 

In this section we present an implementation method for the 

single-key logical database model discussed in Section 2.** Since 

the model allows possibly countably infinite sets of data items 

and groups, we cannot permanently provide physical objects for 

all of those logical objects. Hence, we dynamically assign phy

sical objects to logical objects and maintain only those physical 

objects whose values are useful or are different from default*** 

values. More specifically, a physical object is not provided for 

a data item with a useless data value or for a group with no 

members. An important consequence of this rule is that the 

values of logical objects are always uniquely defined unless they 

are useless, even if their corresponding physical objects do not 

exist. Since we are assuming that the set of data items that 

contain useful data values and the set of groups that contain at 

least one member are both finite at any given time, the number of 

physical objects thus required is finite.**** 

In order to represent each data item, we use a target 

object. A target object is a physical object of the following 

** If we want to support multiple access paths, a separate in
dexing structure must be provided for each key attribute. 
Note that a data item can be a member of multiple groups. 

*** A default value may not be fixed. When a default value is 
not fixed, it must be computable from the values of existing 
physical objects. 

****Weare also assuming that the set of transactions executed 
simultaneously and the set of operations issued by each 
transaction are finite. 



format: 

record 
PLockMode 
PLockCount 
RefCount 
LLockMode 
LLockCount 
Value 

end. 
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(Free, Share, Exclusive); 
integer; 
integer; 
(Free, Share, Exclusive); 
integer; 
ValueType 

The data value of a data item Xis stored in the Value field 

of the target object x that represents X. The LLockMode field of 

x shows the current lock mode of X. The LLockCount field of x 

indicates the number of transactions that currently hold locks on 

X. When Xis locked in "Exclusive" mode, x.LLockCount must be 

one. The use of other fields will be explained later. 

On the other hand, in order to handle a group, a group 

descriptor is provided. A group descripto is a physical object 

of the following format: 

record 
PLockMode 
PLockCount 
RefCount 
Key 
GLockMode 
GLockCount 
ILockCount 
Members 

end. 

(Free, Share, Exclusive); 
integer; 
integer; 
KeyType; 
(Free, Locate, Update); 
integer; 
integer; 
set of TargetObjectPtr 

The ,m field of the group descriptor g for a group G[Kl 

contains the key value K. The identifiers of the target objects 

that represent the members of G[Kl are kept in the Members field 

of g. The GLockMode field of g indicates the current lock mode 

of G. The GLockCount field of g shows the number of locks being 

l 
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applied to G. 

According to rule M2, group G[Kl is defined for every key 

value Kin the domain D. Then, providing a group descriptor for 

every group is simply impossible since there can be a countably 

infinite number of key values. We handle this problem by not 

providing a group descriptor g such that g.RefCount = 0 and 

g.Members = NIL.** 

We now discuss an additional locking mechanism for groups. 

Assume that group descriptors gi and gj such that gi.Key = Ki, 

gj.Key = Kj, and Ki < K. are provided, and that no group descrip-
J 

tor g such that K, 
1 < g.Key < K , 

J 
is provided. When this assump-

tion holds, we say that interval I(Ki, K.) 
J 

exists. Assume 

further that a RLocate(Ki' Kj) request is issued. Then, every 

group G[Kl such that Ki< K < Kj must be locked in "Locate" mode. 

Let us now consider locking every group G[Kl such that K. < 
1 

K < K., 
J 

or interval I (Ki' Kj) , in "Locate" mode, which is the 

only lock mode possible for an interval. Instead of creating and 

locking possibly infinite number of group descriptors that should 

exist between gi and gj, we maintain in the ILockCount field of 

gi the number of locks being applied to these hypothetical group 

descriptors in interval I(Ki' Kj). When interval I (K. , K,) 
1 J 

is 

locked in "Locate" mode, a data item cannot be inserted or 

removed from any group G[Kl such that Ki< K < Kj. This locking 

** The precise condition will be given after "interval locks" 
are introduced. 

I 
r 



- 17 -

method will be called interval locking. 

We now precisely define the dafault value for a non-existing 

group descriptor. Assume that there exist two group descriptors 

K· 1 < K· 
J 

and 

that there exists no group descriptor g such that Ki< g.Key < 

Kj. Then, if the group descriptor g' associated with any group 

G[Kl such that K. < K < K· would exist, 
1 J 

g' .RefCount = O, 
g'.GLockMode = Free if gi.ILockCount = o, 

Locate if gi.ILockCount ~ O, 
g' .GLockCount = gi.ILockcount, 
g' .ILockCount = g,.ILockcount, and 
g' .Members= NIL. 1 

As we stated, we assume that data items to be accessed are 

designated by specifying their key values. A common method for 

supporting such an access method is to provide an indexing struc

true consisting of access M.t.h objects, which also are physical 

objects. We assume that access path objects are of the following 

format: 

record 
PLockMode 
PLockCount 
NumberOfSons 
Son 
Boundary 

end. 

(Free, Share, Exclusive); 
integer; 
1 •• MaxFanout; 
array[l •• MaxFanoutl of ObjectPtr; 
array[l .• MaxFanout-1] of KeyType 

Access path objects and group descriptors are organized as a 

multi-~ search~-

Al. The search tree is empty or possesses one ..t.QQt node. 
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A2. The root node, if it exists, is either an access path object 

or a group descriptor. 

A3. When an access path object is the root node, it possesses at 

least two and at most MaxFanout descendant nodes. Other

wise, it possesses at least MinFanout and at most MaxFanout 

descendant nodes. We assume that MinFanout ~ (MaxFanout div 

2). A descendant node is either an access path object or a 

group descriptor . 

A4. All leaf nodes of the search tree are group descriptors, and 

all group descriptors are away from the root node by the 

same number of intervening access path objects. 

AS If a group descriptor g can be reached by following Son[i] 

of an access path object p, then p.Boundary[i-11 < g.Key ~ 

p.Boundary[il for p.Boundary[i-11 and p.Boundary[il if they 

exist. 

The condition that MinFanout ~ (MaxFanout div 2) guarantees 

that an access path object with MaxFanout descendants can be 

split into two access path objects of legitimate sizes. This 

condition, which is slightly different from the one for an ordi

nary B-tree, is required by the "top-down algorithm" used for 

tracing the search tree. 

When a physical object (an access path object, a group 

descriptor, or a target object) is accessed, it must be physi

cally locked in either Share or Exclusive mode depending on the 

mode of the access. The following two operations are used for 
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physical locking. 

plock(x, m): The physical object designated by xis physically 

locked in lock modem. If it is already locked in a con

flicting mode, then the transaction issuing this operation 

is blocked. 

while ((x.PLockMode = Exclusive) or 
(x.PLockMode = Share) and (m = Exclusive)) do wait; 

x.PLockMode := m; 
x.PLockCount := x.PLockCount + 1. 

punlock(x): The physical lock set by the transaction issuing 

this operation on physical object xis reset. 

x.PLockCount := x.PLockCount - l; 
if x.PLockCount = 0 then x.PLockMode := Free. 

In principle, a physical lock applied to a physical object 

can be released as soon as the access to the physical object is 

completed. That is, transaction-based two-phase locking, for 

example, is not necessary. If a physical object is accessed more 

than once by the same transaction, the physical object can be 

locked each time when it is accessed. 

We are now ready to discuss implementations of various logi

cal operations. Fig. 3 shows the correspondence between logical 

operations and their correponding physical operations. 

In order to locate a target object for a data item X, we 

must first locate the group descriptor g such that g.Key = 

Key (X) • 
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glocate(K): If the group descriptor g such that g.Key = K 

already exists, its RefCount is incremented by one, and its 

identifier is returned. If the group descriptor g such that 

g.Key = K does not exist, it must be created. Let m1 and c 1 

be the lock mode and the lock count, respectively, of the 

interval where g falls. That is, if Ki is the largest key 

value such that K. <Kand for which a group descriptor g. 
1 1 

currently exists, then m1 = Free when gi.ILockCount = O, m1 

= Locate when gi.ILoclcount ¥ O, and c 1 = gi.ILockCount. 

Now, g can be created with the following field values. 

PLockMode = Free, 
PLockCount = 0, 
RefCount = 1, 
Key = K, 
GLockMode = mI, 
GLockCount = CI' 
!Lock Count = CI' Members = NL. 

After g is inserted into the search tree, the identifier of 

g is returned. 

Fuction glocate(K) must scan the search tree starting from 

the root node until a group descriptor is reached. The implemen

tation of glocate(K) shown in Fig. 4 uses the ..t.,QJ2-.dmm algorithm 

given in [GUIB-781 .** If an access path object with too many 

(= MaxFanout) descendants is encountered, the access path object 

must be split. If an access path object with too few (= Min-

Fanout) descendants is encountered, the access path object must 

** Obviously, any algorithm that guarantees consistency for 
search tree accesses can be used. See [KWON-82, LEHM-811 
for various algorithms that can be used for this purpose. 
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be merged with its neighbor or some descendant pointers in its 

neighbor must be moved to the access path object. (Although the 

root node must be treated differently, we do not discuss the 

details.) Further, we assume that physical locks on access path 

objects are seized and released according to the ntree protocol" 

of [SILB-80]. 

When group descripto+ g such that g.Key = K is reached, the 

set of target objects that represent the data items belonging to 

G[Kl can be located. 

a 

memlocate(g): The target object identifiers in g.Members are 

returned to the transaction issuing this operation. When 

the identifier of a target object xis returned to a tran

saction, x.RefCount must be incremented by one. 

Also, we assume that if a target object x does not exist for 

data item x, then X can be created as X . -. 
new(TargetObjectType) .** 

Once the target object x for a data item X is known, the 

data value of X can be accessed. 

read(x): x.Value is returned to the transaction issuing this 

operation. 

write(x): x.Value is updated to the data value provided by the 

transaction issuing this operation. 

** ":-" is the Simula notation for the assignment operator for 
a pointer value. 
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Assume that target object x represents a data item X, and 

group descriptor g represents a group G. Then, Insert CX, G) and 

Remove(X, G) operations can be implemented as follows. 

insert(x, g): 

g.Members 
x.RefCount 

remove(x, g): 

g.Members 
x.RefCount 

:= g.Members U {x}; 
:= x.RefCount + 1. 

:= g.Members - {x}; 
:= x.RefCount - 1. 

A target object and a group descriptor must be released 

after their use. A target object can be released as follows. 

memrelease(x): x.RefCount is decremented by one. 

resultant x.RefCount is zero, then xis deleted. 

If the 

If x.RefCount = O, then neither x belongs to any group, nor 

its identifier is held by any transaction. Therefore, x will 

never be accessed, and hence it can be deleted. Note that when 

x.RefCount = O, x.LLockCount must be zero. This requirement is 

natural since a lock on x cannot be released if x has been 

released. 

Our implementation does not allow transactions to delete 

target objects explicitly. However, a target object deletion 

requested by a transaction can be supported as follows. Assume 

that NUL is the data value to be returned when a read(x) opera-

tion is applied to a non-existing target object x. Then, x is 
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effectively deleted if NUL is assigned to x.Value. A target 

object containing such NUL value can be regarded as a "tombstone" 

[LOME-75]. 

A group descriptor g seized by a glocate(K) operation can be 

released by a grelease(g) operation. 

grelease(g): g.RefCount is decremented by one. Let gibe the 

group descriptor that immediately precedes g (i.e., gi.Key < 

g.Key, and gi.Key < g' .Key< g.Key for no existing group 

descriptor g'). 

can be deleted: 

g.RefCount 
g.GLockMode 

g.GLockCount 
g.ILockCount 
g.Members 

Now, if the following condition holds, g 

= o, 
= Free if gi.ILockCount = o, 

Locate if gi.ILockCount ~ o, 
= gi.ILockCount, 
= gi.ILockCount, and 
= NL. 

In order for the top-down algorithm to work correctly, each 

grelease(g) must be preceded by a glocate' (K) operation such that 

g.Key =Kif the deletion of g is expected. This operation must 

work like a gloccate(K) operation except that it does not incre

ment g.RefCount. A glocate' CK) operation prevents access path 

objects from possessing too few descendants, as well as it can 

locate the immediate ancestor node of g. 

Logical locking must be performed by regarding that each 

Read(X) or Write(X) operation occurs when its corresponding 

read(x) or write(x) operation occurs. The reason why this rule 

works correctly is discussed in Section 4. Let x be the target 
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object representing a data item x. Then, logical operations 

MemLock(X, m) and MemUnlock(X) can be performed by physical 

operations memlock(x, m) and memunlock(x), respectively. 

memlock(x, m): 

while ((x.LLockMode = Exclusive) or 
(x~LLockMode = Share) and (m = Exclusive)) do wait; 

x.LLockMode := m; 
x.LLockCount := x.LLockCount + 1. 

memunlock (x) : 

x.LLockCount := x.LLockCount - l; 
if x.LLockCount = 0 then x.LLockMode := Free. 

Group locking can be performed similarly. Let g be the 

group descriptor representing a group G[K]. Then, logical opera

tions GLock(G[K], m) and GUnlock(G[KJ) can be performed by physi

cal operations glock(g, m) and gunlock(g), respectively. 

glock (g, m) : 

while ((g.GLockMode = Share) and (m =Update) or 
(g.LGockMode = Update) and (m = Share)) do wait; 

g.GLockMode := m; 
g.GLockCount := g.GLockCount + 1. 

gunlock (g) : 

g.GLockCount := g.GLockCount - l; 
if g.GLockCount = O then g.GLockMode := Free. 

Assume that for a pair of group descriptors g. 
]. 

and gj, 

gi.Key = Ki' gj.Key = Kj' and K, < K., and further that there 
]. J 

exists no group descriptor g such that K. < g.Key <Kj. Then, 
]. 
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interval I(K., K-) can be locked and unlocked as follows. 
1 J 

An example of a logical transaction and its physical coun

terpart is given in Fig. 5. The transaction is interested in 

every data item X such that Key(X) = K, and there currently exist 

only one such data item. Note that logical locks are applied 

according to the two-phase locking rule. In Fig. 6, the periods 

of the logical locks and the physical locks applied by a transac

tion whose logical representation is Read(X); Read(Y); Write CZ) 

is shown, where Key(X) = K1 , Key(Y) = K2 , Key(Z) = K3 • Note that 

physical locks are applied for far shorter periods than logical 

locks. 
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4. Correctness 

In this section, we show that the implementation of the 

multi-level concurrency control scheme given in the preceding 

section is correct, following the ordinary approach [GUTT-78, 

HOAR-72, LISK-77, OWIC-771 for proving correctness of systems (or 

programs) with multi-level structures. First, it is proved that 

logical objects and logical operations are correctly implemented 

by physical objects and physical operations. Then, we show that 

logical operations are correctly scheduled. In our proof, execu

tion timings of logical operations are explicitly defined. We 

call this technique .t..im.e. abstraction. 

We first show that logical objects and logical operations 

applied to them are correctly implemented. For this purpose, we 

define the M.t.a abstraction functions as follows. 

Al. Each target object x represents a separate data item X.** 

If a target object x exists for a data item X, then the data 

value of Xis defined by x.Value, and the lock status of X 

is defined by x.LLockMode and x.LLockCount. If such x does 

not exist, then the data value of Xis undefined, 

locks are applied on X. 

and no 

A2. If a group descriptor g such that g.Key = K exists, then 

g.Members contains the identifiers of the target objects 

** If target object x2 is not a continuation of target object 
xJ, they represent different data items even if they contain 
tne same data value. 
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that represent the members of group G[KJ, and the lock 

status of G[KJ is shown by g.GLockMode and g.GLockCount. If 

such g does not exist, then G[KJ is empty. In this case, the 

lock status of G[KJ can be known from gi.ILockCount, where 

gi is the group descriptor that would immediately precede g 

if g existed. 

We now state the requirement for correct implementation of 

logical operations. 

Definition (Correct Implementation .Q.f Logical Operations>. An 

implementation of logical operations is correct if the following 

conditions are satisfied. 

Il. A logical write operation Write(X) correctly updates the 

data value of X as defined by Al, and a logical read opera

tion Read(X) returns the current data value of X as defined 

by Al. 

12. Each group G[KJ as defined by A2 is properly accessed by 

Insert(X, G[KJ), Remove(X, G[KJ) and MemLocate(G[KJ) opera

tions as discussed in Section 2. 

The following lemma is trivially true. 

Lemma i. Read(X) and Write(X) are properly implemented by 

read(x) and write(x), respectively, where xis the target object 

for data item X. 

Note that a data item with an undefined data value will 

never be accessed, since its target object cannot be reached. 



- 28 -

The following lemma is also trivial. 

Lemma 2. Insert(X, G), Remove(X, G) and MemLocate(G) are 

correctly implemented by insert(x, g), remove(x, g) and 

memlocate(g), respectively, where x and g are the target object 

and the group descriptor that respectively represent X and G. 

We say that glocate(K) and grelease(g) are correctly imple

mented, if they satisfy the following requirements. 

Gl. At any time at most one group descriptor exists in the sys

tem for each group G[K]. 

G2. For each pair of glocate(K) and grelease{g) issued by a 

transaction, group descriptor g returned by glocate{K) is 

the correct group descriptor for G[K] until the correspond

ing grelease(g) occurs. 

G3. The state of G[KJ is continuous when its group descriptor is 

created or deleted. 

Although we do not show the detailed implementations of pro

cedures glocate{K) and grelease(g), we assume that they satisfy 

the specifications given in Section 3. Then, we have the follow

ing lemma, which concerns correctness of sequential programs. 

Lemma~- Requirements Gl, G2 and G3 are satisfied if glocate(K) 

(and glocate' (K)) and grelease(g) operations ·are executed one at 

a time. 

Proof. Requirements Gl and G2 immediately follow from the 
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specifications for glocate(K) and grelease(g). Requirements G3 

follows from the fact that the value of a group descriptor 

created or deleted is identical to the default value defined for 

that group descriptor. Cl 

Further, requirements Gl, G2 and G3 are still satisfied even 

when glocate(K) and grelease(g) operations are executed con

currently. 

Lemma!. Even if procedures glocate(K) and grelease(g) are exe

cuted concurrently, they produce the same effects as when they 

are executed one at a time. 

Proof. The implementation of glocate(K) and grelease(g) follows 

the tree protocol of [SILB-80], and hence their execution is 

serializable .in terms .o.f these operations. Cl 

If logical operations are correctly implemented and if the 

execution sequence of logical operations is serializable .in terms 

.o.f transactions, then we can consider that the resultant system 

operation is correct. This condition is satisfied if a con

sistent locking scheme is employed .at .tM logical object level. 

The point here is that accesses to physical objects (in particu

lar, to access path objects) need not be serializable in terms of 

transactions. 

In order to define the execution sequence of logical opera

tions, execution timings must be specified for logical opera

tions. 
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Definition (Execution Timings ..o.f Logical Operations). The execu-

tion timing of a logical operation Read(X) or Write(X) is defined 

to be the timing when the target object x for logical object Xis 

accessed by the physical operation read(x) or write(x) that 

implements Read(X) or Write(X). Similarly, the execution timing 

of a logical operation MemLocate(G), Insert(X, G) or Remove(X, G) 

is defined to be the timing when the group descriptor g that 

represents G is accessed by the physical operation memlocate(g), 

insert(x, g) or remove(x, g) that implements the logical opera

tion. 

Note that if execution timings of logical operations are 

defined as above, then the values of logical objects as defined 

by Al and A2 are accessed exactly at the points when they are 

supposedly accessed. 

In Fig. 7, transactions T1 and T2 do not conflict at the 

logical object level, and hence their logical write operations 

may be interleaved in any way. Note that Write(B), for example, 

must be executed as 

g :- glocate('B'); 
~ :- New(TargetObjectType); 

write(b); 
insert(b, gB); 
grelease(gBJ . 

Also, target objects are not shown in the figure. 

The tree structure of Fig. 7(h), which results if T1 and T2 

are executed in the order of Write(B), Write(D), Write(!) and 

Write(G), cannot occur if T1 and T2 are executed one at a time; 
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either Fig. 7(e) or Fig. 7(1) must result. Note that the tree 

structure in Fig. 7(h) represents the same logical database state 

as the tree structure in Fig. 7(e) or Fig. 7(1), and that it must 

be considered correct. 

Another property that holds for the multi-level concurrency 

control algorithm given in Section 3 is that permanent blocking 

of transactions will not occur if logical locks will not cause 

deadlocks. This property follows from the following facts. 

1. A transaction can release any physical lock when its logical 

lock request is blocked. Then, logical locks will never 

block physical lock requests. 

2. Target objects need be physically locked only while they are 

accessed. Access path objects and group descriptors are 

physically locked according to the tree protocol [SILB-80]. 

Therefore, deadlocks that involve only physical locks will 

not occur. 

Note that the same physical object can be physically locked 

more than once by the same transaction during its execution. 

5. Discussions 

In this section we compare group locking with other locking 

mechanisms devised for handling the phantom problem. Among the 

locking mechanisms compared are predicate locking [ESWA-76], pre

cision locking [JORD-81], page locking, and "end-of-file marker" 

locking [BERN-81]. 
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Before we proceed, we want to make the following observa

tion. We usually say that when a data item Xis accessed, a lock 

on X must be set, and we usually associate a separate lock X for 

each data item X. Actually, the name of the lock associated with 

a data item Xis irrelevant, and an arbitrary lock f(X) can be 

associated with each data item X as long as it is consistently 

used in order to control accesses to X. Further, the lock f(X) 

and the lock g(Y) that are used to control accesses to data items 

X and Y, repectively, may coincide. In this case, the level of 

concurrency may be sacrificed, but correct system operation can 

still be realized. 

The best known mechanism for handling the phantom problem is 

predicate locking. A lock in predicate locking is a pair (P, m), 

where Pis a predicate over data item values, and m is a lock 

mode, either Share or Exclusive. Once a share predicate lock (P, 

Share) is set, the set of data items whose data values satisfy P 

are frozen. Data items whose current data values satisfy P can

not be updated. Further, the data values of other data items 

cannot be updated so that they will newly satisfy P. An 

exclusive predicate lock (P, Exclusive) also freezes the set of 

data items whose data values satisfy P except for the transaction 

that has set the exclusive predicate lock. Two predicate locks 

CP1 , m1 > and CP2 , m2 > conflict with each other if some conceiv-

.ahl.e data value satifiersboth P1 and P2 and if at least one of m1 

and m2 is Exclusive. 

Predicate locking can be simulated by group locking as fol-
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lows. Each predicate must be represented by a group or by a set 

of groups. In order to simplify our discussion, we assume that 

each predicate P can be represented by group Gp• Then, a share 

predicate lock (P, Share) can be set by locking group GP in mode 

Locate and by locking all members of group GP in mode Share. An 

exclusive predicate lock (P, Exclusive) can be set by locking 

group GP in mode Update and by locking all members of group Gp in 

mode Exclusive. 

One problem with predicate locking is that testing whether 

two predicates conflict or not is often computationally hard. 

Another problem is that a conflict of two predicate lock requests 

<P1 , m1> and (P2 , m2> is often caused by a data value that 

currently does not exist and is irrelevant to the transactions 

issuing these requests. 

For example**, consider a collection of records, each of 

which includes fields State and Product. That is, each record is 

of form <state-name, product-name, other-information>. 

Further, assume that transaction T1 is interested in modifying 

every record p such that p.State = Oregon, and that transaction 

T2 is interested in modifying every record q such that q.Product 

= Orange. If T1 and T2 uses predicate locking, they cannot be 

executed concurrently, since the predicates <Oregon, *, *> and 

<*, Orange, *> can both be satisfied by a hypothetical record 

that satisfies the predicate <Oregon, Orange, *>. However, if 

** This example was adapted from a referee's comment. 
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such a record does not actually occur while T1 and T2 are exe

cuted, and if the records satisfying <Oregon, *, *> and the 

records satisfying<*, Orange, *> do not share any page for their 

physical representations, T1 and T2 can be executed concurrently 

if page locking is used. 

Precision locking solves these problems by using exclusive 

locks on individual data items instead of exclusive predicate 

locks. Since read operations do not conflict with each other, 

there is no need to test whether two share predicate lock 

requests conflict or not. Further, when a data value is updated, 

we can know the old and the new data values, and hence we need to 

test at most a data value against a predicate. 

Precision locks are similar to group locks except for some 

minor differences. In group locking, for example, even if a 

group is locked in Locate mode, members of the group can be 

updated as long as their memberships with the group does not 

change. 

The simplest approach to prevent the phantom problem is to 

apply long-term locking on pages. Since the set of pages are 

usually fixed, the phantom problem does not occur. However, the 

long-term locking of pages poses the following problems. When a 

data item is accessed, the page that contains its physical 

representation must be locked, then all of the data items whose 

physical representations share that page are also effectively 

locked. Further, replication of logical data in a distributed 

database system becomes difficult if different sites use 
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different page sizes. 

We now state an interesting scheme that allows short-term 

locking for the pages that contain only access path data. Assume 

that access path data are organized as search trees, and let us 

call the pages that contain only access path data access~ 

pages. Then, the phantom problem can be prevented .a.s .l,QruJ il ..t.b.e 

lowest-level access ~ pages il ~ .a.e. ..t.b.e target .rui..t.a pages 

u_e ..t.KQ-phase locked~ transactions. Only short-term locking is 

required for the other access path pages. 

We now explain why the above scheme works. We can consider 

that each group descriptor is contained in a lowest-level access 

path page. When target data are located, lowest-level access 

path pages are locked in Share mode, which is equivalent to 

Locate mode. When records for target data are added or deleted, 

lowest-level access path pages are locked in Exclusive mode, 

which is stronger that Update mode. We now know that the page 

locking performed in this way properly covers the required group 

locking. 

Another kind of group locking, "end-of-file marker" locking, 

is discussed in [BERN-81]. In end-of-file marker locking, the 

records in each file form a group, and the end-of-file marker of 

that file effectively functions as the group descriptor. 
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6. Conclusion 

A multi-level concurrency control scheme was presented, and 

its correctness was discussed. In order to handle the phantom 

problem, groups locks were introduced. Accesses to access path 

data were regarded correct as long as they could reach correct 

target data. 

The scheme in this paper enables us to integrate the two 

major research results on concurrency control for database sys

tems: long-term and short-term concurrency control. As one 

important side benefit, we pointed out that transactions need not 

apply long-term locking to upper-level nodes of indexing struc

tures. 
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Fig. 1. Logical database states. 

Read(X) 
(Share) 

MemLocate (G) 
(Locate) 

n 
~<---➔ Write(X) 

(Exel usi ve) 

GUpdate (G) 
(Update) 

Fig. 2. Conflicting operations and locks used by them. 



var X 

{ X} :- MemLocate(G[Kl) 

(no counterpart) 

(no counterpart) 

Read(X) 

Write(X) 

Insert(X, G) 

Remove(X, G) 

MemLock(X, m) 

MemUnlock(X) 

GLock(G, m) 

GUnlock (G) 
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<-----> 

<-----> 

<-----> 

<-----> 

<-----> 

<-----> 

<-----> 

<-----> 

<-----> 

<-----> 

<-----> 

<-----> 

x :- new(TargetObjectType) 

g :- glocate(K); 

{ x} :- memlocate(g) 

grelease(g) 

memrelease(x) 

read(x) 

write(x) 

insert(x, g) 

remove(x, g) 

memlock(x, m) 

memunlock(x) 

glock (g, m) 

gunlock(g) 

Fig. 3. Logical operations and their corresponding physical operations. 
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function glocate(K: KeyType): GroupDescriptorType; 

begin 
LastNodePtr :- nil; 
plock(LastNodePtri); 
NodePtr :- RootNodePtr; 
plock(NodePtri); 

(* lock RootNodePtr *) 
(* start with the root node*) 
(* lock the root node*) 

while NodePtri is an access 
begin 

path object do 

case 
NodePtri is too big: 

begin 
split NodePtri; 
punlock(NodePtri); 
adjust NodePtr; (* put NodePtr on the right path*) 
plock(NodePtr1); 

end; 
NodePtri is too small: 

begin 
plock(neighbor of NodePtri); 
merge NodePtri with its neighbor or move 
some son pointers of the neighbor to NodePtri; 
punlock(neighbor of NodePtri); 
punlock(NodePtri); 
adjust NodePtr; (* put NodePtr on the right path*) 
plock(NodePtri); 

end; 
end; 
punlock(LastNodePtri); 
LastNodePtr :- NodePtr; 
NodePtr :- NodePtri.Son[RankJ where 

Boundary[Rank-11 < K < Boundary[RankJ for NodePtri; 
plock(NodePtri); 

end; 

(* group descriptor is reached*) 
if NodePtri.Key = K then 

begin (* group descriptor for K already exists*) 

end 
else 

punlock(LastNodePtri); 
NodePtri.RefCount := NodePtri.RefCount + l; 
glocate :- NodePtr; 

begin (* group descriptor for K does not exist*) 
create a group descriptor NewLeafi 

with Key= K, RefCount = 1, ••. ; 
insert the pointer to NewLeafi into LastNodePtri; 
punlock(LastNodePtri); 
glocate :- NewLeaf; 

end; 
punlock(NodePtri); 

end 

Fig. 4. Function glocate(K). 
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GLock(G[K], Locate); 

MemLock(X, Exclusive); 
GUnlock (G[K]); 

g := glocate{K); 
glock(g, Locate); 
{ x} :- memlocate(g); 
memlock(x, Exclusive); 
gunlock(g); 
grelease(g); 

Read(X); 

Write(X); 
MemUnlock(X); 

read(x); 

write{x); 
memunlock (x) ; 
memrelease(x); 

Fig. s. A logical transaction and its physical counterpart. 

Write ( Z) 
------*-

Read(Y) 
-*---

Read(X) -*------------

---*- ---*-
read(x) read Cy) 

logical (long-term) lock 
physical (short-term) lock 

---*-
write C z) 

Fig. 6. Long-term and short-term locking. 
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Fig. 7 . Physically non-serializable 
execution. 

(a) 

WRITE(B) 

WRITE{D)I 

(d) f 
WRITE(l)I 

(g) ' 

(el 

WRITE(l)i 
(h) 

WRITE(G~ 

45/E 
T1 : . WRITE(B); WRITE(G) 

T2 : . WRITE(D)1 WRITE(I) 

WRITE(D) 

WRITE(l)l 

WRITE(B)I 
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WRITE(G)I 
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