
5C~EflCE

Implementation of a Distributed ColIDilit/Termination Protocol
by Communicating Moore Machines

86-60-10

Toshimi Minoura
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331-4602

Q; ..

er 1i\ 1 , LL..1S, 0;-.i::GO

Implementation of a Distributed Commit/Termination Protocol
by Communicating Moore Machines

Toshimi Minoura

Department of Computer Science
Oregon State University

Corvallis, Oregon 97331-4602

ABSTRACT

In this short paper, we present an implementation method for a distributed

commit/ termination protocol for a distributed database system. The protocol,

which handles both commit and termination processing of distributed transactions,

is represented by communicating Moore machines. Several advantages of our

approach are discussed.

Key Words and Phrases: distributed database system, atomicity,

commit/termination protocol, communicating Moore machine.

1. Introduction

In a distributed database system, a transaction may create updates at multiple

sites. Then all of those updates must be applied to stored data, or all of them must

be discarded. This requirement is known as the atomicity requirement [LAMP-81].

The two-phase commit protocol (2PC) is the best known protocol that preserves

the atomicity of distributed transactions [LAMP-81, GRAY-78]. However, 2PC is a

centralized commit/termination protocol, and it possesses the following problem.

The coordinator of 2PC unilaterally makes a commit/termination decision for a dis

tributed transaction. Hence, when the coordinator becomes inaccessible from some

subtransactions because of site or communication failures in the system, the

commit/termination processing of those subtransactions may have to be blocked

until the communication with the coordinator is restored.

- 2 -

In order to reduce the likelihood of such blocking, a series of decentralized

commit/termination protocols were devised by Skeen [SKEE-81a, SKEE-81b,

SKEE-82, SKEE-83]. In this short paper, we present a simple implementation

method for a decentralized commit/termination protocol. Although the protocol is

in its essence an integration of Skeen's protocols, it incorporates several improve

ments.

1. The entire commit/termination protocol is represented by communicating

Moore machines. Each Moore machine needs to know only the current states

of other Moore machines, and messages are not part of the system state.

Further, late state messages do not do any harm in our protocol. Hence, each

Moore machine needs to broadcast only its current state whenever the system

is reconfigured. Thus, the implementation of the protocol is easy.

2. Since the entire protocol is represented in a precise formalism of communicat

ing Moore machines, correctness of the protocol can be checked mechanically.

3. We represent subtransactions and coordinators by different Moore machines.

Therefore, even if the number of subtransactions created by each ditributed

transaction varies, the number of coordinators used by each distributed tran

saction can be identical. Also, the separation of coordinators and subtransac

tions makes the protocol easy to comprehend.

4. We separate the basic protocol from policies. The basic protocol alone guaran

tees the atomicity of transactions. As long as the basic protocol is observed,

different policies can be implemented in order to meet different requirements for

system availability and ease of implementation.

5. Since commit processing and termination processing are handled by one proto

col, switching of protocols for those two purposes is not required. Actually, our

protocol does not require site failures or network partitioning to be detected in

order for it to work correctly. The only requirement is that possibly lost state

- 3 -

messages should be retransmitted. This requirement may be satisfied by a sim

ple timeout mechanism.

Skeen proposed to model a commit protocol by communicating sequential

machines [SKEE-83], and protocols modeled according to his formalism have been

extensively analyzed [CHEU-85, CHEU-86, CHIN-83]. Hammer and Shipman pro

posed a scheme in which coordinators are separated from subtransactions as backup

processes [HAlvfM-80]. However, their backup processes are different from our coor

dinators in several respects.

2. Communicating Moore Machines

In describing our protocol, we will use a system of communicating Moore

machines (CMMs). A key feature of CMMs is that messages exchanged among

them carry only information that can be reproduced from the state information of

the participating CMMs. This fact makes analysis and implementation of our pro

tocol easy.

Each C:MM consists of a set S of states, a set T of transitions (T C S X S),

and an enabling function e. One state in Sis the initial state s0 of the C:M1v1. Ena

bling function e associates with each transition t in T a set e(t) of m ul tisets of states

of CMMs. A multiset in e(t) is a submutiset of the multiset S' of the states of all

the CMMs in the system. Starting with the initial state s O and following enabled

transitions, a CMM is allowed to make state transitions. The current state of a

C:MM is its latest state reached. A transition t is enabled if all the states in some

mutiset in e(t) are current. A multiset in e(t) is called an enabling condition oft.

In the above definition of a system of C:M1vis, only the current states of the

C:MMs are used in deciding enabled transitions. However, if the current state of a

C:M1v1 M is propagated to other C:M1vis by messages, those messages may arrive at

other CMMs after M has changed its state and may cause an unintentional state

- 4 -

transition. We say that a system of CJ\.1Ms is impervious to obsolete state messages

if every state transition enabled by old state messages is enabled by the current

states of the CMMs. We will show in the Section 4 that our protocol is impervious

to obsolete state messages.

3. Protocol

We now show our protocol as a collection of CJ\.1Ms. A transaction creates a

subtransaction at each site where it accesses stored data. The coordinators of each

transaction T are responsible for making the effect of T atomic. We assume that

state information of each subtransaction or coordinator is reliably stored at a site in

the system, and that it will be left intact even if a site or communication failure

occurs.

It is desirable that even if some coordinators of a transaction become isolated,

others can make a consistent decision about the fate of the transaction. For this

purpose, we use a simple voting scheme. Assume that a transaction creates Nt sub

transactions that are managed by Ne coordinators. A transaction can be committed

if at least Ve coordinators agree to do so, and it can be aborted if at least Va coordi

nators agree to do so. Now, if Ve + Va > Ne , no conflicting decisions will be

made. Since it is desirable that a group of coordinators as small as possible can

make a decision, we let Ve+ Va= Ne+ 1.

Fig. 1 shows a CJ\.1M for each subtransaction, and Fig. 2 a CJ\.1M for each coor

dinator. The enabling conditions of each transition t are given next to the arrow

representing t. For example, in Fig. 2, e((w,u)) = { {p(Nt)}, { u}}, where p(Nt)

stands for Nt instances of p, indicating that transition (w,u) is enabled if Nt sub

transactions are in state p or if at least one coordinator is in state u.

Normal processing of a transaction proceeds as follows.

- 5 -

1. When a subtransaction is started, it stays in state s (start) until N coordina
c

tors are created.

2. The initial state of each coordinator is w (wait).

3. Once all of the N coordinators are created, each subtransaction changes its
C

state from s to r (running). While a subtransaction is in state r, it can read

stored data and create tentative updates.

4. Once a subtransaction completes its processing, it enters state p (prepared).

5. When all of the Nt subtransactions enter state p, a coordinator can enter state

u (vote to commit).

6. When at least Ve coordinators vote to commit, a coordinator can enter state c

(commit).

7. Once any coordinator enters state c, other coordinators and subtransactions

can enter state c.

8. When a subtransaction enters state c, it can make its updates permanent.

When normal processing of a transaction becomes impossible, the transaction

may be aborted.

1.

2.

3.

4.

A subtransaction in state s or r can unilaterally enter state a (abort).

A coordinator in state w can enter state v (vote to abort).

When at least V coordinators vote to abort, a coordinator can enter state a.
a

Once any sutransaction or coordinator enters state a, other coordinators and

subtransactions can enter state a,'

Our protocol represented as a collection of CMMs is nondeterministic, and it

does not tell how soon an enabled transition should be activated. However, it is

desirable to exercise certain discretion in selecting a transition to be activated, espe

cially one that leads to a transaction abortion. A policy is a rule stipulated for this

purpose.

- 6 -

We recommend the following set of policies.

1. Transitions other than those from s to a, from r to a, from w to u, and from w

to v should be activated as soon as they are enabled.

2. A subtransaction must move from s or r to a if it knows that the transaction to

which it belongs cannot be completed or if it is suspended in state s for an

unreasonably long time because some coordinators become inaccessible.

3. If the transition from w to u is enabled while a transaction is being processed

normally, a coordinator should make that transition immediately .

4. If a coordinator is found in state w after the system is reconfigured, the coordi

nator must try to establish the quorum of either state u or v, consulting with

other reachable coordinators. If neither of the quorums can be established, it

should stay in state w. Note that a state transition from w to v can be freely

made, but that one from w to u can be made only if it is enabled.

As we stated, the state information of C::tv:1Ms must be reliably stored at sites.

When a CMM moves to a new state, this state change is first recorded on main

memory, and then the information must be moved to reliable storage. When a pro

cessor failure occurs, the state information stored on main memory is likely to be

lost, and then it must be restored from reliable storage. When such restoration of

the state information occurs, the states of CMMs may be rolled back. If a state

change of a C::tv:1M is broadcast to other sites before the state change is recorded on

reliable storage, messages carrying that state change information may have to be

recalled. In order to avoid this difficulty, messages informing a state change should

be generated only after that state change is recorded on reliable storage.

4. Correctness

We now want to show that the CMMs given in Figs. 1 and 2 guarantee the

- 7 -

atomicity of a transaction. The effect of a transaction is atomic if all the coordina

tors and subtransactions terminate unanimously either in state c or in state a. It is

possible to show this fact by informal reasoning, which we leave to the reader as an

exercise. If the number of coordinators involved is few, the proof can be performed

by drawing a complete state transition diagram.

In drawing a state transition diagram, however, a care must be taken since we

allow old messages to cause state transitions. In order that all past states of each

coordinator can be considered in deciding enabled transitions, we show the state his

tory of each coordinator where we usually show only its current state.

Fig . 3 is the state transition diagram for a system consisting of three coordina

tors given in Fig. 2, where Ve = Va = 2. It is assumed that all subtransactions

have entered state p, and the diagram shows only the states of the coordinators.

Our protocol is impervious to old messages; i.e., all the transitions that may be

enabled by old state messages ((u,c) and (v,c) in Fig. 2) are enabled also by th~

current states of the CMMs. Consider the system state { wu, wuc, wuc }, which indi

cates the system state after one coordinator moved from state w to state u and the

other two coordinators moved from state w to state u and then to state c. At this

point the enabling condition u(V) for the transition from u to c of the coordinator
C

whose current state is u is not satisfied by the current states of the coordinators

since only one coordinator is in state u, but this enabling condition is satisfied by

old states . Nonetheless, this fact does not make any difference since the other ena

bling condition (c) assigned to the same transition is satisfied anyway.

According to the state transition diagram, all the coordinators terminate unan

imously either in state c or in state a. Hence, our protocol guarantees the atomicity

of a transaction.

A policy for selecting transitions to be activated can be implemented freely as

long as the basic protocol shown in Figs . 1 and 2 are observed. However , in order to

- 8 -

guarantee a proper termination of the protocol, the following rule must be observed

in such a policy. In any system state, if there exisits enabled transitions, at least

one of them must be activated eventually.

It is easy to show that all the coordinators and subtransactions will eventually

terminate when the above rule is observed. All the C:M11s involved are acyclic , and

they can proceed only towards state c or a. If at least one transition takes place

eventually in any non-terminal system state, every C:M11 eventaully reaches state c

or a.

The fact that old state messages do not cause any harm to our protocol has

another important implication. In the preceding section we stated that messages

informing a state change must be generated after that state change is recorded on

reliable storage. This requirement does not cause any adverse effect since state

change messages can be delayed arbitrarily.

5. Discussion

In this section we consider when a group of coordinators fail to reach an agree

ment about the fate of the transaction managed by them. The main results are the

following.

1. If the system is reconfigured only once while a transaction is being processed,

the coordinators in a large enough group can terminate the transaction.

2. If the system is reconfigured more than once while a transaction is being pro

cessed, there is no fixed minimum for the number of coordinators that can ter

minate the transaction.

In the following discussion, we assume that the policies given in Section 3 are

observed.

If the system is reconfigured only once while a transaction is being processed

- g -

normally. The possible states for the coordinators are w, u and c. Assume that a

group of coordinators is formed at this point. If at least one coordinator in the

group is in state c, all the coordinators in the group can be moved to state c. If at

least one coordinator in the group is in state u and if the size of the group is at least

Ve' all the coordinators in the group can be moved to state c after some coordina

tors are moved from state w to state u. If all the coordinators in the group are in

state w and if the size of the group is at least V , all the coordinators in the group a

can be moved to state v and then to state a. Thus, if a system reconfiguration

occurs only once, any group of coordinators with its size at least V or V , which-c a

ever is greater, can reach an agreement. A similar result has been obtained for a

Skeen's protocol by a complex analysis [CHEU-86].

A group of coordinators formed while the system is being reconfigured may not

be able to reach an agreement even if its size is at least max(V , V). Consider the
C a

following scenario. The system is being reconfigured after some coordinators have

entered state u, and a group of coordinators whose size is at least V is formed. All
a

the coordinators in this group happen to be still in state w and agree to abort the

transaction. However, after some of the coordinators in the group enter state v,

another system reconfiguration becomes necessary. Then, if a new group whose size

is at least max(V , V) is formed, some coordinators in it may be in state u, and oth-c a

ers may be in state v. If such a situation occurs, the decision must be postponed

until a larger group is formed where an enough number of state u's or v's can be

found. Even in the worst case the coordinators can reach an agreement when all of

them can communicate with each other again.

6. Conclusion

We presented an implementation method of a distributed commit/termination

protocol for a distributed database system. The protocol was design ed as communi-

- 10 -

eating Moore machines, and several advantages of our approach were discussed.

References

[CHEU-85]
Cheung, D., and Kameda, T. Site optimal termination protocols for a distri
buted database under network partitioning Proc. 4th ACM Symp. on Principles
of Distributed Computing, Aug. 1985, pp. 111-121.

[CHEU-86]
Cheung, D., and Kameda, T. Optimal decentralized termination protocols for
partition failures. TR. 86-1, Laboratory for Computer and Communications
Research, Simon Fraser Univ., Jan. 1986.

[CHIN-83]
Chin, F ., and Ramarao, K.V.S. Optimal termination protocols for network
partitioning. Proc. 2nd ACM Symp. on Principles of Database Systems, March
1983, pp. 25-35.

[GRAY-78]
Gray, J. Notes on data base operating systems. In Lecture Notes in Computer
Science 60, Springer-Verlag, 1978, pp. 393-481.

[HAMM-80]
Hammer, M. and Shipman, D. Reliability mechanisms for SDD-1: A system for
distributed databases. ACM Tr. on Database Systems 5, 4 (Dec. 1980), 431-
466.

[LAMP-81]
Lampson, B.W. Atomic transactions. In Distributed Systems -- Architecture
and implementation, Lecture Notes in Computer Science 105, Springer-Verlag,
1981, pp. 246-265.

[SKEE-81a]
Skeen, D. Nonblocking commit protocols. Proc. ACM-SIGMOD Intl. Conf. on
Management of Data, 1981, pp. 133-142.

[SKEE-81b]
Skeen, D. A decentralized termination protocol. Proc. IEEE Symp. on Relia
bility in Distributed Software and Database Systems, 1981, pp. 27-32.

[SKEE-82]
Skeen, D. A quorum-based commit protocol. Proc. 6th Berkeley Workshop on
Distributed Data Management and Computer Networks, 1982, pp. 69-80.

[SKEE-83]
Skeen, D., and Stonebraker, M. A formal model of crash recovery in a distri
buted system. IEEE Tr. on Software Engineering SE-9 , 3 (May 1983), 219-228.

11

w(N)
C

s: start

r : running

p : prepared

a: abort

a c : commit

C

Fig . 1. A CMM for a participant.

w: wait

u : propose to commit
a

v: propose to abort

C
c: commit

a: abort

Fig. 2. A CMM for a coordinator.

12

{w,w,w}

✓ ~
{w,w,wu} {w,w,wv}

✓ ~ ✓ \
{w,wu,wu} {w,wu,wv} {w,wv,wv}

{wu,Lu} \ \i{wu,w~ ~u,wv,wv}Jc"/{w~wv,wv}

l ;w,wu,wr l l ;w,wv,wt l
{wu,wu,wuc} \ {wu,wuc,wv} . {wu,wv,wva} 1 {wv,wv,wva)

{wv,wa,wva} l {w,wva,wva)

{wa,wvat9 \

{wva,wva,wu} {wv,wva,wva}

{wv,wvrua} J
{ wva,wva,wua}

I
{wva,wva,wva}

Fig. 3. State transition diagram.

	Minoura_Toshimi_86_60_10_A
	Minoura_Toshimi_86_60_10_B

