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ABSTRACT 

The expanding complexity of database application 
worlds, and the accelerating pace of change of these worlds man
date data models which support some of the tasks of data 
interpretation which formerly were borne by the appli~ations pro
grams. Chief among these are the support for v1rtua_l data, 
definition of transactions, and enforcement of semantic con
straints. In the past, data models have typically been divided into 
a data definition component and a data manipulation component . 
The functions which semantic data models attempt to support 
however, require a closer in legration between these two com
ponents. In this paper, we show how one semantic data model, 
SIDUR incorporates data manipulation descriptions into a data 
definiti~n framework by means of a formal notation called sigma 
expressions . We also show how this framework forms the basis ~or 
defining higher semantic level manipulation operators, which 
incorporate query and transaction capabilities. 

I INTRODUCTION 

New technologies must be developed to aid database 
schema and applications design. Reasons for this need are the 
shortage of trained programmers and designers, the e~ansion of 
database technology into medium and small scale businesses, the 
rapid pace of change in business conditio~s and practi~es ._ Current 
practice usually separates the schema design an~ apphcatt~ns pro
gramming tasks, even to the point of havtng two d1ffere~t 
languages, the data definition language (DDL) and the data mani
pulation language (DML) . 

Typical of the tasks performed by applicati~n programs 
are supporting views of data not specifically defined m the data
base schema, defining transactions which change stored data , and 
enforcing constraints which preserve the data integrity. Examples 
of these tasks from a university application world are: 

virtual data -- the association between a teacher and a student 
is defined if the teacher teaches a course and the student is 
enrolled in the same course . 

transaction -- enrolling a student in a course involves adding 
that student to the students already taking the course . 

constraint -- No student may enroll in a course unless he has 
taken all prerequisites for the course and there is room in the 
course. 

Most application tasks involve the retrieval , and manipu
lation of stored data . Data models which support these tasks must 
incorporate such functions into the data model its~lf . ~e hi~tori
cal distinct ion of data definition and data mampulatton 1s no 
longer adequate . Even "".ith high level DM~'s su~h as r~lational 
calculus 4, the integration of data mampulallon with data 
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definition is not tight enough . Manipulations and updates can be 
defined, to be sure, but the transactions are left in a disembodied 
state -- it is not clear whether the defined transactions are 
sufficient, or redundant, or whether they are even motivated by 
the natural requirements of the data. A closer coupling is 
needed . In this paper we show how semantic data models can be 
developed to achieve a better integration of DDL and DML capa
bilities . We do this using a semantic data model, SIDUR, which 
incorporates manipulative information into the data model using 
a declarative notation called sigma expressions . These manipula
tive components are then combined to form high-level semanti
caly motivated operations. While using exampleJ from SIDUR, we 
intend to show that this method provides a general paradigm for 
constructing a wide class of semantic models. 

II A DATA DEFINITION FRAMEWORK 

Every data model starts with a set of basic constructs 
whose descriptions define the structure of the entire database. In 
data level and access level models 7, these are typically pictured as 
specific data structures . For example in the relational model4, 
there is one such construct, the relation . In the DBTG model6 

ther~ are two, the record type and the owner-coupled set. Seman
tic level models on the other hand, typically have constructs 
closer in nature to the application world than to the data storage 
structures. These go by different names but usually include 
objects (entities) of interest and their descriptive properties (attri
butes), connections between these objects (relationships, associa
tions), and important behavior (events, actions, transactions) . 

SIDUR comprises five basic constructs 

data ,·aliu classu •·- important classes of numbers and strings 
object classes --- entities meaningful to the application 
situations -·· associations between objects, properties of objects 
computations --- complex operations on numerical values 
actions --- behavior in the world which affects the database 

Each of the SIDUR constructs is defined by a set of slots 
which specify the form of the construct and its connections to 
other constructs . These slots can be divided into two classes: 
descriptive slots , which determine the inherent properties and 
constraints of a construct and inurpretive slots, which describe 
the connections between constructs of the same or different types. 
The descriptive slots of SIDUR are the following 

data value classes : 
form --- syntactic structure of member data values 
size -·· the storage required for each member data value 
minval -·- minimum range value for a numeric class 
maxval --- maximum range value for a numeric class 
precision --· number of significant digits for a real number class 



object classes : 
representative •.. name of a particular data valu7 class whose 

elements can serve to "stand in place tor• the objects 
superclasses ••. names of object classes which the class under 

definition is a specialization of 
names ... publically available names for objects of this type 

situazions: 
participants ••. the objects whose participation defines the situa

tion, and the role they play 
cardinalities •.. maximum occurrences of participants in situa-

tions 
extension ... whether the situation is expected to obey the 

open-world or closed-world assumption 11 

computations : 
participants ••. objects and values which serve as inputs or out

puts for the computation 

actions : 
participants .•. objects involved in the defined behavior 

The use of these descriptive slots, as well as the interpre 
tive slots to be described later, is illustrated by a sample schema 
at the end of this paper. Explanations of constructs will be made 
by reference to this sample schema. 

Data Value Classes 

There are only five data value classes which must be 
defined for the sample schema at the end of this paper . The rea
son for this is that classes need only be defined for publically 
available data . A special generic class , TOKEN, provides a J>?ol 
of data values for all other uses. The "form:" slot for string 
classes such as COURSE-NAME-V or PERSONAL-NAME-V per
mits a regular expression style of definition . Notice for instance 
that course names are composed of a two letter department code, 
a dash , and a three digit number. The "maxval :", "minval:", and 
"precision :" (number of significant digits) serve likewise to deter
mine the range of numeric classes, such as GPA-V . 

Object Classes 

SIDUR enforces a strict distinction between data values 
and obi'ects. Data values are purely syntactic ·•· they acquire 

8 f b' . meaning only when designated as representatives o o iects, 1.e. 
to have a one-to -one correspondence with the objects. Each 
object in a SIDUR database must have a represe~tative. How
ever, not all objects need be represented by pubhc data values . 
Objects of class PERSON, STUDENT, and COURSE, for 
instance are represented by a special type of data value, the 
TOKEN'. Tokens, also called surrogates 5·8, are unique , non-public 
data values which make it possible to separate the representation 
of an object from any of its properties, including its name . 

When members of an object class are represented by 
tokens the database must contain information linking the objects 
with their publically available names . The "names:" slot provides 
this •. it contains the names of two-way associations connecting 
the tokens and public names. The "names:" slot for the object 
c.lass PERSON, for instance, lists the situation HAS-NAME as 
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providing this connection. 

When object classes are generalizations 12 of others, the 
"superclass :" slot enables specialized classes to inherit representa
tive and name information from its superclass . The object classes 
STUDENT and INSTRUCTOR are examples. 

Situations 

While data value classes and object classes are important 
semantic concepts, they cannot alone define data storage struc
tures •·· meaningful structures can only come from associating 
more than one object. The situation provides a semantic structure 
which can be mapped onto physical storage . 

Several situations are defined in our sample application . 
Some especially interesting situations are TEACHES-COURSE, 
GRADE -FOR, and MAY-TAKE . As we shall see in section III , 
not all situations define data storage structures . Some of them 
turn out to define derived structures. 

The "participants:" slot is the most important of the 
descriptive slots for situations . The filler for this slot is a sequence 
of triples of the form 

< role name> / < variable> / < object class>. 

Each participant in any instance of a situations must play a partic
ular role . In general, the roles are chosen from the fixed set agenr, 
object, value, source , destinazion, time, and loca1ion. The variable 
exists for internal identification of the participant. Finally, the 
object class name provides a domain to which possible participants 
must belong. 

Each instance of a situation provides a connection 
between the representatives of the objects which participate . The 
representative of this connection itself is called a binding tuple, 
because it binds the participant names to actual data values. The 
binding tuple for one instances of the situation HAS-NAME, for 
example, would be 

< (agent ·> T-047) (value -> "JAMES MANGAN") > 

where T-047 stands for the unique token representing the indivi
dual whose name is James Mangan . It is these binding tuples 
which are constructed and manipulated by the manipulation 
operators of subsequent sections. 

The set of binding tuples which are valid for a situation 
. at any point in time are termed the extension of the situation . For 
purposes of intuition it is easiest to think of the extension of a 
situation as a (real or virtual) relation. Figure 1 shows sample 
extensions for HAS-NAME, HAS-TITLE, and TAKES-COURSE. 

Most extensions in current databases are assumed to obey 
the "closed world assumption" 11 that any instance which does not 
occur in the stored extension does not bold . SIDUR provides that 
certain extensions can be chosen to be "open world", that is, 
instances which do not hold must be explicitly declared not to 
bold . CAN-TEACH, for example, is such a situation . 

Cardinality restrictions form an important part of the 



HAS-NAME : 

HAS-TITLE : 

TAKES-COURSE: 

I agent I value 

I T-047 I JAMES MANGAN 
I T-062 I PAT PEARSE 
I T-133 I SEAN CAROLAN 

I agent value 
-----------------------

I T-455 
I T-368 
I T-219 

CS-101 
CS-102 
CS-211 

I agent I object 

I T-047 I T-455 
I T-047 I T-368 
I T-062 I T-455 

Figure 1 --- Sample Extensions for Situations 

semantic constraints on data . SIDUR provides a mechanism which 
limits unique combinations of participants . The cardinality restric
tion on GRADE -FOR provides an example. Any single combina 
tion of a student and course is limited to one occurence among all 
the student/course/time triples which make up the extension of 
GRADE-FOR . 

Computations 

In order to keep the number of different concepts to a 
minimum, computations have the same conceptual structure as 
situations, although its interpretation is different. The lone com
putation in our sample schema is GPA-OF, which produces a 
GPA value for each student. 

Notice that the "participants:" slot remains the same, 
except that the roles are different. SIDUR uses a separate set of 
role names for computations . Particularly important is the result 
role, which signifies the value produced by the computation . All 
other participants are considered to be arguments or parameters 
of the computation . 

Actions 

Actions share the same conceptual structure as situations 
and computations --- an association of participants. The only 
descriptive slot for actions is again the "participants :" slot, using 
the same roles as situations . 

151 

The relevant actions defined in our sample schema are 
ENROLLS-IN, when a student enrolls in a course, and COM
PLETES, which occurs when the student completes a course. 
The primary difference between situations and actions is their 
relationship to time. Situations may hold or not , but actions occur 
once, after which their effects will hold. The action construct 
provides SIDUR with a structure around which to build transac
tion definitions. 

How are transactions actually defined? How are inferred 
situations given a definition ? Performing these tasks .requires the 
incorporation of data manipulation capabilities in our descriptive 
framework . 

Ill IN CORPORA TING DAT A MANIPULATION 

To incorporate data manipulation capabilities into a 
model, a set of manipulation operators must be defined. There are 
three ways in which this can be done : 

procedural --- data manipulations are written as programs in a 
standard programming language 10• 

algebraic --- a specific set of data manipulation operators is 
defined. Expressions are constructed by nesting operators 
2.4,5 

declarative --- expressions describing desired data in terms simi
lar to predicate logic are assigned a manipulative interpreta
tion 4• 

SIDUR uses a declarative notation to which several different 
manipulative interpretations can be assigned. Instan ::es of th is 
notation are referred to as sigma expressions , because theg are a 
situational version of the well-known lambda expressions 3, • 

Construction of Sigma Expressions 

The starting point for building sigma expressions is the 
atomic sigma expression , which has the form 

( Cl ( Rl : Pl ) ( R2 : P2 ) ... ) 

where Cl may be a situation or computation name, the Ri are 
role names, and the Pi may be constants or variables. For exam
ple, 

( HAS-NAME (agent: x) (value : "JAMES MANGAN") ) 

is an atomic sigma expression . 

Open sigma expressions are built from atomic sigma 
expressions using the connectives 

(and Sl ... Sk) 
(or Sl ... Sk) 

For instance 

(not Sl) 
(empty Sl) 

(and (TAKES -COURSE (agent : x)(object : y)) 
(HAS -TITLE (agent: y) (value : "CS-211")) 
(HAS-NAME (agent : x) (value : "JAMES MANGAN")) 

'--n open sigma expression referring to the set of individuals who 



take CS-211 and have the name James Mangan. 

Finally, a cloud sigma e:xpussion is built from an open 
expression via the form 

(sigma (Vl V2 ... Vk) Sl ) 

where Sl is an open sigma expression and the Vi are variables 
which may or may not appear in the expression. An example 
closed sigma expression is 

(sigma (w z) 
(and (HAS-NAME (agent: x) (value: w)) 

(HAS-TITLE (agent: y) (value: z)) 
(TAKES-COURSE (agent: x) (object: y)))) 

The closed sigma expression delineates one or more variables as 
being the primary focus of the expression . 

The First_ Manipulative Interpretation 

Sigma expressions themselves form a set of purely syntac
tic structures. To incorporate them usefully into a semantic data 
model, some "semantics• must be assigned to the expressions. 
These semantics take the form of a manipulative interpretation -· 
an interpretation of the syntactic object in terms of the usual 
activities involved in data manipulation . There arc actually three 
different manipulative interpretations which can be assigned in 
SIDUR, which go by the names •enquire, •assert, and 0 deny, 
corresponding to query, addition of information, and removal of 
information respectively . We shall cover each of these interpreta
tions in turn . 

The first manipulative interpretation, •enquire , is purely 
query based, and assumes no change to the stored data . This 
interpretation retrieves for each sigma expression its associated 
extension, the set of binding tuples which "match" it. The rules 
become complex in their totality, but in general are simple: 

--- The extension of an atomic sigma expression is the exension of 
its underlying situation. 

--- The extension of two sigma expressions joined by "and" 
corresponds to the intersection (and sometimes the equijoin) of 
the extensions of the two sigma expressions . 

.•. The extension of two sigma expressions joined by "or• 
corresponds to the union of the extensions of the component 
sigma expressions. 

--- The extension of an atomic sigma expression enclosed in "not• 
corresponds to the negative extension if the indicated situation if 
open world. Otherwise "not• is interpreted to mean set subtrac
tion, and can only be used where this interpretation makes sense. 

-·· The extension of a sigma expression enclosed in "empty• is 
interpreted as being only a Boolean (true or false) value. 

... The extension of a closed sigma expression corresponds to the 
projection of the extension of the enclosed open sigma expression 
Oft.to the Yariablcs of interest. 
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To show just one example, the extension resulting from 
the •enquire interpretation of the following expression 

(sigma (w z) 
(and (HAS-NAME (agent: x) (value: w)) 

(HAS-TITLE (agent: y) (value: z)) 
(TAKES-COURSE (agent: x) (object: y)))) 

relative to the sample extensions of figure 1 is shown in figure 2. 

---------------------------
w 

JAMES MANGAN 
JAMES MANGAN 
PAT PEARSE 

I z 

CS-1011 
CS-1021 
CS-1011 

--------------------------
Figure 2 -·· Sample Extension from •enquire 

The Second And Third Interpretations 

Data manipulation operations concerned with retrieval 
are by themselves insufficient to fully define all the operations 
needed by a semantic data model --· interpretations which permit 
changes to the database must also be included. In SIDUR there 
are two, called •assert and •deny . As mentioned, the extension 
which •enquire associates with a sigma expression can sometimes 
be empty. The purpose of •assert is to insure that this exension of 
the sigma expression argument is not empty, while that of •deny is 
to insure that the extension is empty. For atomic sigma expres
sions this intent is quite clear. Consider the following operation. 

•assert 
[ (HAS-NAME (agent: "T-047") (value: "JAMES MANGAN"))] 

Since the sigma expression here contains no variables, there is a 
single binding tuple, namely 

< (agent ·> "T-047") (value -> "JAMES MANGAN") > 

whose presence can matter in determining whether the sigma 
expression has a full or empty expression. So the effect of the 
•assert operation would be to add this binding tuple to the exten
sion for HAS-NAME, (provided of course that no cardinality con
straints are violated). Similarly, this one tuple would be removed 
on interpretation of the same sigma expression via •deny. 

With a sigma expression that contains variables, such as 

(sigma (x) (TAKES-COURSE (agent: "T-047")(object: x))) 

the expression can match several possible binding tuples . 
Interpretation under •deny would result in the removal of all of 
them. Thus, starting from the extensions of figure 1, interpreta• 
ti.on of 



•deny [ (TAKES-COURSE (agent: "T-047") (object: x))] 

would result in the extension pictured in figure 3. 

I agent I object I 

I T-062 I T-455 I 

Figure 3 ••• Result Extension of TAKES-COURSE 

Figure 4 shows the result of then interpreting 

•assert [ (TAKES-COURSE (agent: "T-047")(object: x)) ] 

on the extension of figure 3. In order to create a new non-empty 
extension, some value for the unspecified "object• participant 
must be invented. As a result, the token T-992 is created to fill 
this role . This type of interpretation can only be performed when 
the indicated participant has a representative of type token. 

I agent I object I 

I T-047 I T-992 I 
I T-062 I T-455 I 

Figure 4 ·•• TAKES -COURSE after •assert 

In some cases, these interpretations of sigma expressions 
produce ambiguity. Consider the following operation. 

•deny [ (and (HAS-NAME (agent: x) (value : "PAT PEARSE")) 
(HAS-TITLE (agent: y) (value: "CS-101")) 

(TAKES-COURSE (agent: x) (object: y))))] 

The goal of making the extension for this entire expression empty 
could be achieved by removing a single instance from TAKES
COURSE, from HAS-NAME, or from HAS-TITLE. Though it is 
often possible to infer what choices are intended from the con
text, a data manipulation language alone cannot be expected to 
have such capabilities . SIDUR's answer is to invoke an extrane
ous arbitration function called CHOICE which is assumed to be 
capable of resolving these ambiguities. The CHOICE function 
could , for example, return to the user for more information, or 
infer the appropriate choice from context, or carry out other com
plex computations . The only requirement is that CHOICE com
pletely resolve ambiguities before updates are performed on the 
data . 

Integrating The Sigma Expressions 

In different contexts , then, the sigma expressions can be 
assigned different manipulative interpretations , and used to hold 
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manipulative definitions in a declarative framework. The exact 
means for integrating such definitions into the schema is the use 
of a set of "interpretive• slots in the schema itself. The value of 
each of these interpretive slots is a sigma expression, and serves to 
link SIDUR construct definitions. 

The most useful of these interpretive slots is the 
"definition:" slot. Earlier we alluded to the fact that some situa 
tions are actually stored, while others are inferred from stored 
situations. Situations which are actually stored have a "definition:" 
slot marked PRIMITIVE, while inferred situations fill the slot 
with a sigma expression . Examples from the sample schema 
include the situations TEACHES-STUDENT and FILLED. 

The interpretation assigned to this sigma expression 
depends on the mode in which the definition is accessed. If a 
query is in progress, •enquire mode is used. If an assertion or 
denial of this information is attempted, that same mode is 
transferred to the sigma expression. Thus an expression of the 
form 

•assert 
[(TEACHES-STUDENT 

(agent: "T-129") (object: "T-047"))] 

is translated into one like 

•assert 
[(and (TEACHES-COURSE (agent : "T-129') (object : x)) 

(TAKES-COURSE (agent : "T-047") (object : x)))) 

involving updates to the two primitive situations . 

Two other interpretive slots for situation definitions are 
"necessary:" and "required:". These slots contain prerequisite 
information and consistency criteria which must hold before a 
situation can be asserted. 

Object class definitions also contain a "definition:" slot. 
The value is a situation name, and is used to link the object class 
definition with a situation that defines the members of the class. 
This is appropriate only for object classes with token representa
tives, since other classes are assumed to include all representatives 
as representing valid members. Examples from the sample schema 
include PERSON, COURSE, STUDENT , and INSTRUCTOR. 

Computations have a "definition:" slot as well . Primitive 
computations are those which are implemented via special pro
grams . Those with sigma expression definitions utilize other, 
simpler computations . The "definition:" slot for the computation 
GPA-OF in our sample schema shows how the grade point aver
age can be defined based on a primitive computation AVERAGE, 
and a situation GRADE -VALUE which maps the letter values of 
grades to their numeric values . 

Instead of a definition slot, actions have two interpretive 
slots which are labeled "prerequisites:" and "results:• . Upon 
request for performance of an action, the "prerequisites:" sigma 
expression is handled via the •enquire interpretation. If this 
succeeds (i.e . produces a non-empty extension) the "results :• 
sigma expression is handled via •assert mode . The use of this pair 
al slots is illustrated in the action ENROLLS-IN which appears in 



the sample schema. 

The modes in which these interpretive ·links are handled 
depends on the nature of the semantic level operatior being used . 
The development of such a set of operators, of course, is inti
mately coupled with the interpretive slots which must exist to 
support each operator. In the next section some high level opera
tors will be defined, based on the slots presented here . 

IV BUILDING SEMANTIC MANIPULATION OPERATORS 

To provide an appropriate semantic data manipulation 
language, manipulation must be supported on the semantic con
structs themselves. Such operations are usually easy to give 
names to, for instance "create an object", or "retrieve a situation", 
or "perform an action", but often turn out to be prohibitively 
difficult to define clearly . Designers of semantic data models 
have usually chosen to ignore the problem altogether, or to pro
vide for the inclusion of arbitrary procedures to accomplish this 
task 1•10, a powerful approach, yet one with serious practical 
difficulties . 

In this section we provide examples of a few of the 
SIDUR semantic level manipulation constructs, and show how 
they are defined by using the interpretive slots we have already 
seen. These operators are a small subset of the actual SIDUR 
operators, and are meant primarily to illustrate the technique. 
SIDUR can be easily extended to meet other needs with addi 
tional slots and operators . 

The most fundamental of SIDUR's semantic level opera
tors is termed ENQUIRE, and is developed as a straightforward 
extrapolation of the *enquire mode of sigma expression interpre
tation mentioned earlier. ENQUIRE takes a sigma expression as 
argument, and returns its extenstion. Expressed _ in an algorithmic 
style, ENQUIRE acts as shown. 

ENQUIRE (S) : 

[l] Check that S is legal, i.e. that all constants are of the 
appropriate object class. 

[2] If S is atomic and the situation is primitive, perform a data
base retrieval to get the extension. 

[3] If S is atomic but not primitive, perform ENQUIRE recur
sively on the definition of S, substituting constants where 
appropriate . 

[4] If S is not atomic, perform ENQUIRE on the components of 
S, and merge the resulting extensions as required . 

For instance, when faced with the expression 

ENQUIRE 
[ (sigma (x) 

(and (TEACHES-STUDENT (agent: x)(object: y)) 
(HAS-NAME (agent : y) (value: "JAMES MANGAN")))] 

which translates as "Who teaches James Mangan?", ENQUIRE 
first expands the expression to 
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ENQUIRE 
[ (sigma (x) 

(and (TEACHES-COURSE (agent: x) (object: z)) 
(TAKES-COURSE (agent: y) (object: z))) 
(HAS-NAME (agent: y) (value: "JAMES MANGAN"))) ] 

The resulting sigma expression is processed by performing 
retrievals for the extenstions of TEACHES-COURSE and 
TAKES-COURSE, and merging these extensions so as to effect 
an equijoin on the participant labelled "y". 

After ENQUIRE is defined, a more specialized version 
called CHECK, which returns boolean values is defined. CHECK 
returns the empty extension if ENQUIRE does, otherwise 
CHECK return the full extension, which acts as Boolean "true". 

CHECK can be used in the definition of other opera
tions. A weak version of the •assert interpretation of sigma 
expressions, called REnLECT, will update a situation as long as 
its necessary and required conditions hold . Simplistically, this can 
be defined as shown. 

REFLECT (S) : 

[l] Check to see that S is valid . 
[2] If S is atomic, perform CHECK on the expressions in the 

"necessary :" and "required:" slots . 
[3] If the checks succeed, and S describes a primitive situation, 

perform a database update to reflect the new information . 
[4] If S is not primitive, recursively perform REFLECT on the 

sigma expression defining S. 
[SJ If S is (AND Sl ... Sk) , perform a REFLECT recursively on 

each of Sl through Sk 
[6] If S is (OR Sl ... Sk) , call the CHOICE operation to choose 

one sub-expression, and perform REFLECT on this sub
expression . 

A stronger form of ASSERT is also defined, which 
checks only the "necessary :" slot, and tries to recursively ASSERT 
missing conditions from the "required:" slot. This provides two 
levels of update, one of which has the power to make exceptions 
if necessary to achieve the goal. 

Other operations can be built up as well, such as the 
PERFORM operation, which simulates the occurrence of an 
action" 

PERFORM (A) : 

[l] perform CHECK on the "prerequisites:" slot of A. 
[2] If successful, perform REFLECT on the "results:" slot of A . 

Progressively more complex operations, which include 
defaults, multiple levels of protection, etc. can also be built up in 
this fashion. 

V CONCLUSIONS 



What we have demonstrated in this paper is a method 
for building data models which capture data semantics and sup
port high level, semantically motivated operations, without resort
ing to arbitrary procedural inclusion. The essential steps of this 
method are to: 

--- establish a descriptive framework for the data model 
which defines the basic constructs and their form. 

•·· produce a declarative language for representing interpre
tive links between semantically defined constructs. 

assign the necessary query and update semantics to these 
expressions. 
incorporate a set of interpretive links into the basic 
descriptive data model framework. 

define semantic level manipulations as combinations of 
varying interpretations of the links. 

While this scheme sacrifices the general power of procedural 
inclusion it has two compensating advantages. First, it is more 
tractable than arbitrary procedures for automatic schema design. 
Declarative expressions are much simpler to generate than arbi
trary programs. Second, the links defined by such a model pro
vide a theory of the necessary and important relationships 
between schema constructs, which can be exploited in the schema 
design process. Transactions are not defined in isolation from the 
schema, but have a semantic motivation. Missing information in a 
partially completed schema is also much easier to discover . 

The use of SIDUR to illustrate this method does not 
imply that SIDUR is the only model which could be generated in 
this fashion. Many variants are possible. What is important is that 
the method provides a tractible substitute for semantic modelling 
techniques which rely on inclusion of arbitrary procedures . Much 
work remains to be done in providing simple declarative forms 
which are at the same time amenable to a manipulative interpre
tation . 

SAMPLE SIDUR SCHEMA 

data valiu1 

data-value-ct ... COURSE·NAME.Y 
type: STRING 
size: 6 
form: {['A 0 -"Z 0 D2 •.• [1-S) ([0.91}2 

data-value-cl ... PERSONAL-NAME-V 
type: STRING 
size: 14 
form:([' A 0 -"Z 0 D< S •.• ([' A0 -·z0 D< 8 

data•value-cla.,s GPA-V 
type: REAL 
minval : 0.0 
muval : 4.0 
precision : 2 

data-value-claa COURSE-LIMIT-V 
type : IITTEGER 
minval : 10 
muval : 100 

data-value-clus GRADE-V 
type: STRING 
size: I 
form : [0 A 0 ,"B•:c·:D",'F'] 
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objcct-clau PERSON 
representative: TOKEN 
definition : IS-PERSON 

object-class NAME 

object classes 

representative: PERSONAL-NAME-V 

object-class COURSE-NAME 
representative: COURSE-NAME-V 

object-class GPA 
representative : GPA-V 

object-class GRADE 
representative: GRADE-V 

object-class COURSE-LIMIT 
representative : COURSE-LIMIT.Y 

object-class COURSE 
representative: TOKEN 
definition : IS-COURSE 

object-clau STUDENT 
superclus: PERSON 
definition: IS-STUDENT 

object-class INSTRUCTOR 
ruperclus: PERSON 
definition: IS-INSTRUCTOR 

situations de:finini object classts 

situation IS-COURSE 
participants : agent/x/COURSE 
definition: PRIMITIVE 
exteosioo : CLOSED -WORLD 

situation IS-PERSON 
participants : agent/x/PERSON 
definition : PRIMITIVE 

situation IS-STUDENT 
participants : agent/x/STUDENT 
deftnitioo: (and (IS-PERSON (agent: x)) 

(TAKES-COURSE (agent: 1) (object: y))) 

situation IS-INSTRUCTOR 
participants: agcnt/x/PERSON 
definition: (TEACHES-COURSE (agent: x)) 

other situations 

situation HAS-NAME 
participants: agent/x/PERSON , value/y/NAME 
cardinalities : I < 1> 
defloition: PRIMITIVE 
cllcosion: CLOSED-WORLD 

situation HAS-TITLE 
participants: agcnt/x/COURSE , object/y/COURSE-NAME 
cardinali _ties : I < x> 
definition: PRIMITIVE 
extension: CLOSED-WORLD 

situation CAN-TEACH 
participants: agent/x/lNSTRUCTOR , object/y/COURSE 
definition : PRIMITIVE 
exteosion : OPEN-WORLD 



situation TEACHES-COURSE 
participants: agent/Jt/INSTRUCTOR , object/y/COURSE 
cardinalities: l < y> 
necessary: (CAN-TEACH (agent: x) (object: z))) 
definition: PRIMITIVE 
extension : CLOSED-WORLD 

situation TAKES-COURSE 
participants: agent/x/STUDENT , object/y/COURSE 
definition: PRIMITIVE 
extension: CLOSED -WORLD 

situation TEACHES-STUDENT 
participants : agent/x/INSTRUCTOR , object/y/STUDENT 
definition: (and (TEACHES-COURSE (agent: x) (object : z)) 

(TAKES-COURSE (agent: y) (object: z)}) 

situation GRADE-FOR 
parti cipanu : 

agent/x/STUDENT . objcct/y/COURSE , value/z/GRADE 
cardinalities : l -< x y> 
definition : PRIMITIVE 
extension: CLOSED-WORLD 

situation GRADE-VALUES 
participants: agent/x/GRADE , object/y/INTEGER 
cardinalities : l < x> 
definition : PRIMITIVE 

situation PREREQUISITE-FOR 
participants : agent/x/COURSE , object/y/COURSE 
definition : PRIMITIVE 
extension: CLOSED-WORLD 

situation MAY-TAKE 
participants: agent/x/STUDENT , object/y/COURSE 
necessary : 

(empty 
(or (and (PREREQUISITE-FOR (agent : z) (object: y)) 

(FLUNKED (agent : x) (object: z)}) 
(and (PREREQUISITE-FOR (agent: z) (object : y)) 

. (empty (COURSE-GRADE (agent: x) (object : z))}))) 
required: 

(empty (FILLED (agent: y))) 
definition: 

PRIMITIVE 

situation LIMIT 
participants : agent/x/COURSE , \'Bluely/COURSE-LIMIT 
cardinalities : l < x> 
definition: PRIMITIVE 
extension : CLOSED-WORLD 

situation FILLED 
participants : agent/x/COURSE 
definition : 

(GREA TER-'fl-{AN -OR-EQUAL-TO 
(agent: 

(COUNT 
(domain : 
. (sigma (y) (TAKES-COURSE (agent: y) (object: x:}))) 

(obJect : 
(value-of (LIMIT (agent: x})))) 
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computation GPA-OF 
participants: agent/x/STUDENT , rcsult/y/GPA 
definition : 

(AVERAGE-OF 

action ENROLLS-IN 

(domain : 
(sigma (z) 

(GRADE-VALUES 
(agent : 

(sigma (w) 
(COURSE-GRADE (agent : x) (value : w)))) 

(value : z))))) 

anions 

participants: agent/x/STUDENT, object/y/COURSE 
prerequisites : 

(MAY-TAKE (agent : x) (object: z))) 
results : (TAKES-COURSE (agent: x:) (object : y)) 

action COMPLETES 
participants: agent/x/STUDENT , object/y/COURSE , valuc/z/GRADE 
prerequisites : (TAKES-COURSE (agent : x:) (object : y)) 
reNlts: (and (not (TAKES-COURSE (agent: x) (object : y)) 

(GRADE-FOR (agent: x) (object: z))) 
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