
5C~ErlCE

SIDUR - An Integrated Data Model

Michael J. Freiling
Computer Science Department

Oregon State University

. .,,.,

SIDUR .•• AN INTEGRATED DATA MODEL

Michael J . Freiling

Computer Science Department
Oregon State University

ABSTRACT

The expanding complexity of database application
worlds, and the accelerating pace of change of these worlds man
date data models which support some of the tasks of data
interpretation which formerly were borne by the appli~ations pro
grams. Chief among these are the support for v1rtua_l data,
definition of transactions, and enforcement of semantic con
straints. In the past, data models have typically been divided into
a data definition component and a data manipulation component .
The functions which semantic data models attempt to support
however, require a closer in legration between these two com
ponents. In this paper, we show how one semantic data model,
SIDUR incorporates data manipulation descriptions into a data
definiti~n framework by means of a formal notation called sigma
expressions . We also show how this framework forms the basis ~or
defining higher semantic level manipulation operators, which
incorporate query and transaction capabilities.

I INTRODUCTION

New technologies must be developed to aid database
schema and applications design. Reasons for this need are the
shortage of trained programmers and designers, the e~ansion of
database technology into medium and small scale businesses, the
rapid pace of change in business conditio~s and practi~es ._ Current
practice usually separates the schema design an~ apphcatt~ns pro
gramming tasks, even to the point of havtng two d1ffere~t
languages, the data definition language (DDL) and the data mani
pulation language (DML) .

Typical of the tasks performed by applicati~n programs
are supporting views of data not specifically defined m the data
base schema, defining transactions which change stored data , and
enforcing constraints which preserve the data integrity. Examples
of these tasks from a university application world are:

virtual data -- the association between a teacher and a student
is defined if the teacher teaches a course and the student is
enrolled in the same course .

transaction -- enrolling a student in a course involves adding
that student to the students already taking the course .

constraint -- No student may enroll in a course unless he has
taken all prerequisites for the course and there is room in the
course.

Most application tasks involve the retrieval , and manipu
lation of stored data . Data models which support these tasks must
incorporate such functions into the data model its~lf . ~e hi~tori
cal distinct ion of data definition and data mampulatton 1s no
longer adequate . Even "".ith high level DM~'s su~h as r~lational
calculus 4, the integration of data mampulallon with data

149

definition is not tight enough . Manipulations and updates can be
defined, to be sure, but the transactions are left in a disembodied
state -- it is not clear whether the defined transactions are
sufficient, or redundant, or whether they are even motivated by
the natural requirements of the data. A closer coupling is
needed . In this paper we show how semantic data models can be
developed to achieve a better integration of DDL and DML capa
bilities . We do this using a semantic data model, SIDUR, which
incorporates manipulative information into the data model using
a declarative notation called sigma expressions . These manipula
tive components are then combined to form high-level semanti
caly motivated operations. While using exampleJ from SIDUR, we
intend to show that this method provides a general paradigm for
constructing a wide class of semantic models.

II A DATA DEFINITION FRAMEWORK

Every data model starts with a set of basic constructs
whose descriptions define the structure of the entire database. In
data level and access level models 7, these are typically pictured as
specific data structures . For example in the relational model4,
there is one such construct, the relation . In the DBTG model6

ther~ are two, the record type and the owner-coupled set. Seman
tic level models on the other hand, typically have constructs
closer in nature to the application world than to the data storage
structures. These go by different names but usually include
objects (entities) of interest and their descriptive properties (attri
butes), connections between these objects (relationships, associa
tions), and important behavior (events, actions, transactions) .

SIDUR comprises five basic constructs

data ,·aliu classu •·- important classes of numbers and strings
object classes --- entities meaningful to the application
situations -·· associations between objects, properties of objects
computations --- complex operations on numerical values
actions --- behavior in the world which affects the database

Each of the SIDUR constructs is defined by a set of slots
which specify the form of the construct and its connections to
other constructs . These slots can be divided into two classes:
descriptive slots , which determine the inherent properties and
constraints of a construct and inurpretive slots, which describe
the connections between constructs of the same or different types.
The descriptive slots of SIDUR are the following

data value classes :
form --- syntactic structure of member data values
size -·· the storage required for each member data value
minval -·- minimum range value for a numeric class
maxval --- maximum range value for a numeric class
precision --· number of significant digits for a real number class

object classes :
representative •.. name of a particular data valu7 class whose

elements can serve to "stand in place tor• the objects
superclasses ••. names of object classes which the class under

definition is a specialization of
names ... publically available names for objects of this type

situazions:
participants ••. the objects whose participation defines the situa

tion, and the role they play
cardinalities •.. maximum occurrences of participants in situa-

tions
extension ... whether the situation is expected to obey the

open-world or closed-world assumption 11

computations :
participants ••. objects and values which serve as inputs or out

puts for the computation

actions :
participants .•. objects involved in the defined behavior

The use of these descriptive slots, as well as the interpre
tive slots to be described later, is illustrated by a sample schema
at the end of this paper. Explanations of constructs will be made
by reference to this sample schema.

Data Value Classes

There are only five data value classes which must be
defined for the sample schema at the end of this paper . The rea
son for this is that classes need only be defined for publically
available data . A special generic class , TOKEN, provides a J>?ol
of data values for all other uses. The "form:" slot for string
classes such as COURSE-NAME-V or PERSONAL-NAME-V per
mits a regular expression style of definition . Notice for instance
that course names are composed of a two letter department code,
a dash , and a three digit number. The "maxval :", "minval:", and
"precision :" (number of significant digits) serve likewise to deter
mine the range of numeric classes, such as GPA-V .

Object Classes

SIDUR enforces a strict distinction between data values
and obi'ects. Data values are purely syntactic ·•· they acquire

8 f b' . meaning only when designated as representatives o o iects, 1.e.
to have a one-to -one correspondence with the objects. Each
object in a SIDUR database must have a represe~tative. How
ever, not all objects need be represented by pubhc data values .
Objects of class PERSON, STUDENT, and COURSE, for
instance are represented by a special type of data value, the
TOKEN'. Tokens, also called surrogates 5·8, are unique , non-public
data values which make it possible to separate the representation
of an object from any of its properties, including its name .

When members of an object class are represented by
tokens the database must contain information linking the objects
with their publically available names . The "names:" slot provides
this •. it contains the names of two-way associations connecting
the tokens and public names. The "names:" slot for the object
c.lass PERSON, for instance, lists the situation HAS-NAME as

150

providing this connection.

When object classes are generalizations 12 of others, the
"superclass :" slot enables specialized classes to inherit representa
tive and name information from its superclass . The object classes
STUDENT and INSTRUCTOR are examples.

Situations

While data value classes and object classes are important
semantic concepts, they cannot alone define data storage struc
tures •·· meaningful structures can only come from associating
more than one object. The situation provides a semantic structure
which can be mapped onto physical storage .

Several situations are defined in our sample application .
Some especially interesting situations are TEACHES-COURSE,
GRADE -FOR, and MAY-TAKE . As we shall see in section III ,
not all situations define data storage structures . Some of them
turn out to define derived structures.

The "participants:" slot is the most important of the
descriptive slots for situations . The filler for this slot is a sequence
of triples of the form

< role name> / < variable> / < object class>.

Each participant in any instance of a situations must play a partic
ular role . In general, the roles are chosen from the fixed set agenr,
object, value, source , destinazion, time, and loca1ion. The variable
exists for internal identification of the participant. Finally, the
object class name provides a domain to which possible participants
must belong.

Each instance of a situation provides a connection
between the representatives of the objects which participate . The
representative of this connection itself is called a binding tuple,
because it binds the participant names to actual data values. The
binding tuple for one instances of the situation HAS-NAME, for
example, would be

< (agent ·> T-047) (value -> "JAMES MANGAN") >

where T-047 stands for the unique token representing the indivi
dual whose name is James Mangan . It is these binding tuples
which are constructed and manipulated by the manipulation
operators of subsequent sections.

The set of binding tuples which are valid for a situation
. at any point in time are termed the extension of the situation . For
purposes of intuition it is easiest to think of the extension of a
situation as a (real or virtual) relation. Figure 1 shows sample
extensions for HAS-NAME, HAS-TITLE, and TAKES-COURSE.

Most extensions in current databases are assumed to obey
the "closed world assumption" 11 that any instance which does not
occur in the stored extension does not bold . SIDUR provides that
certain extensions can be chosen to be "open world", that is,
instances which do not hold must be explicitly declared not to
bold . CAN-TEACH, for example, is such a situation .

Cardinality restrictions form an important part of the

HAS-NAME :

HAS-TITLE :

TAKES-COURSE:

I agent I value

I T-047 I JAMES MANGAN
I T-062 I PAT PEARSE
I T-133 I SEAN CAROLAN

I agent value

I T-455
I T-368
I T-219

CS-101
CS-102
CS-211

I agent I object

I T-047 I T-455
I T-047 I T-368
I T-062 I T-455

Figure 1 --- Sample Extensions for Situations

semantic constraints on data . SIDUR provides a mechanism which
limits unique combinations of participants . The cardinality restric
tion on GRADE -FOR provides an example. Any single combina
tion of a student and course is limited to one occurence among all
the student/course/time triples which make up the extension of
GRADE-FOR .

Computations

In order to keep the number of different concepts to a
minimum, computations have the same conceptual structure as
situations, although its interpretation is different. The lone com
putation in our sample schema is GPA-OF, which produces a
GPA value for each student.

Notice that the "participants:" slot remains the same,
except that the roles are different. SIDUR uses a separate set of
role names for computations . Particularly important is the result
role, which signifies the value produced by the computation . All
other participants are considered to be arguments or parameters
of the computation .

Actions

Actions share the same conceptual structure as situations
and computations --- an association of participants. The only
descriptive slot for actions is again the "participants :" slot, using
the same roles as situations .

151

The relevant actions defined in our sample schema are
ENROLLS-IN, when a student enrolls in a course, and COM
PLETES, which occurs when the student completes a course.
The primary difference between situations and actions is their
relationship to time. Situations may hold or not , but actions occur
once, after which their effects will hold. The action construct
provides SIDUR with a structure around which to build transac
tion definitions.

How are transactions actually defined? How are inferred
situations given a definition ? Performing these tasks .requires the
incorporation of data manipulation capabilities in our descriptive
framework .

Ill IN CORPORA TING DAT A MANIPULATION

To incorporate data manipulation capabilities into a
model, a set of manipulation operators must be defined. There are
three ways in which this can be done :

procedural --- data manipulations are written as programs in a
standard programming language 10•

algebraic --- a specific set of data manipulation operators is
defined. Expressions are constructed by nesting operators
2.4,5

declarative --- expressions describing desired data in terms simi
lar to predicate logic are assigned a manipulative interpreta
tion 4•

SIDUR uses a declarative notation to which several different
manipulative interpretations can be assigned. Instan ::es of th is
notation are referred to as sigma expressions , because theg are a
situational version of the well-known lambda expressions 3, •

Construction of Sigma Expressions

The starting point for building sigma expressions is the
atomic sigma expression , which has the form

(Cl (Rl : Pl) (R2 : P2) ...)

where Cl may be a situation or computation name, the Ri are
role names, and the Pi may be constants or variables. For exam
ple,

(HAS-NAME (agent: x) (value : "JAMES MANGAN"))

is an atomic sigma expression .

Open sigma expressions are built from atomic sigma
expressions using the connectives

(and Sl ... Sk)
(or Sl ... Sk)

For instance

(not Sl)
(empty Sl)

(and (TAKES -COURSE (agent : x)(object : y))
(HAS -TITLE (agent: y) (value : "CS-211"))
(HAS-NAME (agent : x) (value : "JAMES MANGAN"))

'--n open sigma expression referring to the set of individuals who

take CS-211 and have the name James Mangan.

Finally, a cloud sigma e:xpussion is built from an open
expression via the form

(sigma (Vl V2 ... Vk) Sl)

where Sl is an open sigma expression and the Vi are variables
which may or may not appear in the expression. An example
closed sigma expression is

(sigma (w z)
(and (HAS-NAME (agent: x) (value: w))

(HAS-TITLE (agent: y) (value: z))
(TAKES-COURSE (agent: x) (object: y))))

The closed sigma expression delineates one or more variables as
being the primary focus of the expression .

The First_ Manipulative Interpretation

Sigma expressions themselves form a set of purely syntac
tic structures. To incorporate them usefully into a semantic data
model, some "semantics• must be assigned to the expressions.
These semantics take the form of a manipulative interpretation -·
an interpretation of the syntactic object in terms of the usual
activities involved in data manipulation . There arc actually three
different manipulative interpretations which can be assigned in
SIDUR, which go by the names •enquire, •assert, and 0 deny,
corresponding to query, addition of information, and removal of
information respectively . We shall cover each of these interpreta
tions in turn .

The first manipulative interpretation, •enquire , is purely
query based, and assumes no change to the stored data . This
interpretation retrieves for each sigma expression its associated
extension, the set of binding tuples which "match" it. The rules
become complex in their totality, but in general are simple:

--- The extension of an atomic sigma expression is the exension of
its underlying situation.

--- The extension of two sigma expressions joined by "and"
corresponds to the intersection (and sometimes the equijoin) of
the extensions of the two sigma expressions .

.•. The extension of two sigma expressions joined by "or•
corresponds to the union of the extensions of the component
sigma expressions.

--- The extension of an atomic sigma expression enclosed in "not•
corresponds to the negative extension if the indicated situation if
open world. Otherwise "not• is interpreted to mean set subtrac
tion, and can only be used where this interpretation makes sense.

-·· The extension of a sigma expression enclosed in "empty• is
interpreted as being only a Boolean (true or false) value.

... The extension of a closed sigma expression corresponds to the
projection of the extension of the enclosed open sigma expression
Oft.to the Yariablcs of interest.

152

To show just one example, the extension resulting from
the •enquire interpretation of the following expression

(sigma (w z)
(and (HAS-NAME (agent: x) (value: w))

(HAS-TITLE (agent: y) (value: z))
(TAKES-COURSE (agent: x) (object: y))))

relative to the sample extensions of figure 1 is shown in figure 2.

w

JAMES MANGAN
JAMES MANGAN
PAT PEARSE

I z

CS-1011
CS-1021
CS-1011

Figure 2 -·· Sample Extension from •enquire

The Second And Third Interpretations

Data manipulation operations concerned with retrieval
are by themselves insufficient to fully define all the operations
needed by a semantic data model --· interpretations which permit
changes to the database must also be included. In SIDUR there
are two, called •assert and •deny . As mentioned, the extension
which •enquire associates with a sigma expression can sometimes
be empty. The purpose of •assert is to insure that this exension of
the sigma expression argument is not empty, while that of •deny is
to insure that the extension is empty. For atomic sigma expres
sions this intent is quite clear. Consider the following operation.

•assert
[(HAS-NAME (agent: "T-047") (value: "JAMES MANGAN"))]

Since the sigma expression here contains no variables, there is a
single binding tuple, namely

< (agent ·> "T-047") (value -> "JAMES MANGAN") >

whose presence can matter in determining whether the sigma
expression has a full or empty expression. So the effect of the
•assert operation would be to add this binding tuple to the exten
sion for HAS-NAME, (provided of course that no cardinality con
straints are violated). Similarly, this one tuple would be removed
on interpretation of the same sigma expression via •deny.

With a sigma expression that contains variables, such as

(sigma (x) (TAKES-COURSE (agent: "T-047")(object: x)))

the expression can match several possible binding tuples .
Interpretation under •deny would result in the removal of all of
them. Thus, starting from the extensions of figure 1, interpreta•
ti.on of

•deny [(TAKES-COURSE (agent: "T-047") (object: x))]

would result in the extension pictured in figure 3.

I agent I object I

I T-062 I T-455 I

Figure 3 ••• Result Extension of TAKES-COURSE

Figure 4 shows the result of then interpreting

•assert [(TAKES-COURSE (agent: "T-047")(object: x))]

on the extension of figure 3. In order to create a new non-empty
extension, some value for the unspecified "object• participant
must be invented. As a result, the token T-992 is created to fill
this role . This type of interpretation can only be performed when
the indicated participant has a representative of type token.

I agent I object I

I T-047 I T-992 I
I T-062 I T-455 I

Figure 4 ·•• TAKES -COURSE after •assert

In some cases, these interpretations of sigma expressions
produce ambiguity. Consider the following operation.

•deny [(and (HAS-NAME (agent: x) (value : "PAT PEARSE"))
(HAS-TITLE (agent: y) (value: "CS-101"))

(TAKES-COURSE (agent: x) (object: y))))]

The goal of making the extension for this entire expression empty
could be achieved by removing a single instance from TAKES
COURSE, from HAS-NAME, or from HAS-TITLE. Though it is
often possible to infer what choices are intended from the con
text, a data manipulation language alone cannot be expected to
have such capabilities . SIDUR's answer is to invoke an extrane
ous arbitration function called CHOICE which is assumed to be
capable of resolving these ambiguities. The CHOICE function
could , for example, return to the user for more information, or
infer the appropriate choice from context, or carry out other com
plex computations . The only requirement is that CHOICE com
pletely resolve ambiguities before updates are performed on the
data .

Integrating The Sigma Expressions

In different contexts , then, the sigma expressions can be
assigned different manipulative interpretations , and used to hold

153

manipulative definitions in a declarative framework. The exact
means for integrating such definitions into the schema is the use
of a set of "interpretive• slots in the schema itself. The value of
each of these interpretive slots is a sigma expression, and serves to
link SIDUR construct definitions.

The most useful of these interpretive slots is the
"definition:" slot. Earlier we alluded to the fact that some situa
tions are actually stored, while others are inferred from stored
situations. Situations which are actually stored have a "definition:"
slot marked PRIMITIVE, while inferred situations fill the slot
with a sigma expression . Examples from the sample schema
include the situations TEACHES-STUDENT and FILLED.

The interpretation assigned to this sigma expression
depends on the mode in which the definition is accessed. If a
query is in progress, •enquire mode is used. If an assertion or
denial of this information is attempted, that same mode is
transferred to the sigma expression. Thus an expression of the
form

•assert
[(TEACHES-STUDENT

(agent: "T-129") (object: "T-047"))]

is translated into one like

•assert
[(and (TEACHES-COURSE (agent : "T-129') (object : x))

(TAKES-COURSE (agent : "T-047") (object : x))))

involving updates to the two primitive situations .

Two other interpretive slots for situation definitions are
"necessary:" and "required:". These slots contain prerequisite
information and consistency criteria which must hold before a
situation can be asserted.

Object class definitions also contain a "definition:" slot.
The value is a situation name, and is used to link the object class
definition with a situation that defines the members of the class.
This is appropriate only for object classes with token representa
tives, since other classes are assumed to include all representatives
as representing valid members. Examples from the sample schema
include PERSON, COURSE, STUDENT , and INSTRUCTOR.

Computations have a "definition:" slot as well . Primitive
computations are those which are implemented via special pro
grams . Those with sigma expression definitions utilize other,
simpler computations . The "definition:" slot for the computation
GPA-OF in our sample schema shows how the grade point aver
age can be defined based on a primitive computation AVERAGE,
and a situation GRADE -VALUE which maps the letter values of
grades to their numeric values .

Instead of a definition slot, actions have two interpretive
slots which are labeled "prerequisites:" and "results:• . Upon
request for performance of an action, the "prerequisites:" sigma
expression is handled via the •enquire interpretation. If this
succeeds (i.e . produces a non-empty extension) the "results :•
sigma expression is handled via •assert mode . The use of this pair
al slots is illustrated in the action ENROLLS-IN which appears in

the sample schema.

The modes in which these interpretive ·links are handled
depends on the nature of the semantic level operatior being used .
The development of such a set of operators, of course, is inti
mately coupled with the interpretive slots which must exist to
support each operator. In the next section some high level opera
tors will be defined, based on the slots presented here .

IV BUILDING SEMANTIC MANIPULATION OPERATORS

To provide an appropriate semantic data manipulation
language, manipulation must be supported on the semantic con
structs themselves. Such operations are usually easy to give
names to, for instance "create an object", or "retrieve a situation",
or "perform an action", but often turn out to be prohibitively
difficult to define clearly . Designers of semantic data models
have usually chosen to ignore the problem altogether, or to pro
vide for the inclusion of arbitrary procedures to accomplish this
task 1•10, a powerful approach, yet one with serious practical
difficulties .

In this section we provide examples of a few of the
SIDUR semantic level manipulation constructs, and show how
they are defined by using the interpretive slots we have already
seen. These operators are a small subset of the actual SIDUR
operators, and are meant primarily to illustrate the technique.
SIDUR can be easily extended to meet other needs with addi
tional slots and operators .

The most fundamental of SIDUR's semantic level opera
tors is termed ENQUIRE, and is developed as a straightforward
extrapolation of the *enquire mode of sigma expression interpre
tation mentioned earlier. ENQUIRE takes a sigma expression as
argument, and returns its extenstion. Expressed _ in an algorithmic
style, ENQUIRE acts as shown.

ENQUIRE (S) :

[l] Check that S is legal, i.e. that all constants are of the
appropriate object class.

[2] If S is atomic and the situation is primitive, perform a data
base retrieval to get the extension.

[3] If S is atomic but not primitive, perform ENQUIRE recur
sively on the definition of S, substituting constants where
appropriate .

[4] If S is not atomic, perform ENQUIRE on the components of
S, and merge the resulting extensions as required .

For instance, when faced with the expression

ENQUIRE
[(sigma (x)

(and (TEACHES-STUDENT (agent: x)(object: y))
(HAS-NAME (agent : y) (value: "JAMES MANGAN")))]

which translates as "Who teaches James Mangan?", ENQUIRE
first expands the expression to

154

ENQUIRE
[(sigma (x)

(and (TEACHES-COURSE (agent: x) (object: z))
(TAKES-COURSE (agent: y) (object: z)))
(HAS-NAME (agent: y) (value: "JAMES MANGAN")))]

The resulting sigma expression is processed by performing
retrievals for the extenstions of TEACHES-COURSE and
TAKES-COURSE, and merging these extensions so as to effect
an equijoin on the participant labelled "y".

After ENQUIRE is defined, a more specialized version
called CHECK, which returns boolean values is defined. CHECK
returns the empty extension if ENQUIRE does, otherwise
CHECK return the full extension, which acts as Boolean "true".

CHECK can be used in the definition of other opera
tions. A weak version of the •assert interpretation of sigma
expressions, called REnLECT, will update a situation as long as
its necessary and required conditions hold . Simplistically, this can
be defined as shown.

REFLECT (S) :

[l] Check to see that S is valid .
[2] If S is atomic, perform CHECK on the expressions in the

"necessary :" and "required:" slots .
[3] If the checks succeed, and S describes a primitive situation,

perform a database update to reflect the new information .
[4] If S is not primitive, recursively perform REFLECT on the

sigma expression defining S.
[SJ If S is (AND Sl ... Sk) , perform a REFLECT recursively on

each of Sl through Sk
[6] If S is (OR Sl ... Sk) , call the CHOICE operation to choose

one sub-expression, and perform REFLECT on this sub
expression .

A stronger form of ASSERT is also defined, which
checks only the "necessary :" slot, and tries to recursively ASSERT
missing conditions from the "required:" slot. This provides two
levels of update, one of which has the power to make exceptions
if necessary to achieve the goal.

Other operations can be built up as well, such as the
PERFORM operation, which simulates the occurrence of an
action"

PERFORM (A) :

[l] perform CHECK on the "prerequisites:" slot of A.
[2] If successful, perform REFLECT on the "results:" slot of A .

Progressively more complex operations, which include
defaults, multiple levels of protection, etc. can also be built up in
this fashion.

V CONCLUSIONS

What we have demonstrated in this paper is a method
for building data models which capture data semantics and sup
port high level, semantically motivated operations, without resort
ing to arbitrary procedural inclusion. The essential steps of this
method are to:

--- establish a descriptive framework for the data model
which defines the basic constructs and their form.

•·· produce a declarative language for representing interpre
tive links between semantically defined constructs.

assign the necessary query and update semantics to these
expressions.
incorporate a set of interpretive links into the basic
descriptive data model framework.

define semantic level manipulations as combinations of
varying interpretations of the links.

While this scheme sacrifices the general power of procedural
inclusion it has two compensating advantages. First, it is more
tractable than arbitrary procedures for automatic schema design.
Declarative expressions are much simpler to generate than arbi
trary programs. Second, the links defined by such a model pro
vide a theory of the necessary and important relationships
between schema constructs, which can be exploited in the schema
design process. Transactions are not defined in isolation from the
schema, but have a semantic motivation. Missing information in a
partially completed schema is also much easier to discover .

The use of SIDUR to illustrate this method does not
imply that SIDUR is the only model which could be generated in
this fashion. Many variants are possible. What is important is that
the method provides a tractible substitute for semantic modelling
techniques which rely on inclusion of arbitrary procedures . Much
work remains to be done in providing simple declarative forms
which are at the same time amenable to a manipulative interpre
tation .

SAMPLE SIDUR SCHEMA

data valiu1

data-value-ct ... COURSE·NAME.Y
type: STRING
size: 6
form: {['A 0 -"Z 0 D2 •.• [1-S) ([0.91}2

data-value-cl ... PERSONAL-NAME-V
type: STRING
size: 14
form:([' A 0 -"Z 0 D< S •.• ([' A0 -·z0 D< 8

data•value-cla.,s GPA-V
type: REAL
minval : 0.0
muval : 4.0
precision : 2

data-value-claa COURSE-LIMIT-V
type : IITTEGER
minval : 10
muval : 100

data-value-clus GRADE-V
type: STRING
size: I
form : [0 A 0 ,"B•:c·:D",'F']

155

objcct-clau PERSON
representative: TOKEN
definition : IS-PERSON

object-class NAME

object classes

representative: PERSONAL-NAME-V

object-class COURSE-NAME
representative: COURSE-NAME-V

object-class GPA
representative : GPA-V

object-class GRADE
representative: GRADE-V

object-class COURSE-LIMIT
representative : COURSE-LIMIT.Y

object-class COURSE
representative: TOKEN
definition : IS-COURSE

object-clau STUDENT
superclus: PERSON
definition: IS-STUDENT

object-class INSTRUCTOR
ruperclus: PERSON
definition: IS-INSTRUCTOR

situations de:finini object classts

situation IS-COURSE
participants : agent/x/COURSE
definition: PRIMITIVE
exteosioo : CLOSED -WORLD

situation IS-PERSON
participants : agent/x/PERSON
definition : PRIMITIVE

situation IS-STUDENT
participants : agent/x/STUDENT
deftnitioo: (and (IS-PERSON (agent: x))

(TAKES-COURSE (agent: 1) (object: y)))

situation IS-INSTRUCTOR
participants: agcnt/x/PERSON
definition: (TEACHES-COURSE (agent: x))

other situations

situation HAS-NAME
participants: agent/x/PERSON , value/y/NAME
cardinalities : I < 1>
defloition: PRIMITIVE
cllcosion: CLOSED-WORLD

situation HAS-TITLE
participants: agcnt/x/COURSE , object/y/COURSE-NAME
cardinali _ties : I < x>
definition: PRIMITIVE
extension: CLOSED-WORLD

situation CAN-TEACH
participants: agent/x/lNSTRUCTOR , object/y/COURSE
definition : PRIMITIVE
exteosion : OPEN-WORLD

situation TEACHES-COURSE
participants: agent/Jt/INSTRUCTOR , object/y/COURSE
cardinalities: l < y>
necessary: (CAN-TEACH (agent: x) (object: z)))
definition: PRIMITIVE
extension : CLOSED-WORLD

situation TAKES-COURSE
participants: agent/x/STUDENT , object/y/COURSE
definition: PRIMITIVE
extension: CLOSED -WORLD

situation TEACHES-STUDENT
participants : agent/x/INSTRUCTOR , object/y/STUDENT
definition: (and (TEACHES-COURSE (agent: x) (object : z))

(TAKES-COURSE (agent: y) (object: z)})

situation GRADE-FOR
parti cipanu :

agent/x/STUDENT . objcct/y/COURSE , value/z/GRADE
cardinalities : l -< x y>
definition : PRIMITIVE
extension: CLOSED-WORLD

situation GRADE-VALUES
participants: agent/x/GRADE , object/y/INTEGER
cardinalities : l < x>
definition : PRIMITIVE

situation PREREQUISITE-FOR
participants : agent/x/COURSE , object/y/COURSE
definition : PRIMITIVE
extension: CLOSED-WORLD

situation MAY-TAKE
participants: agent/x/STUDENT , object/y/COURSE
necessary :

(empty
(or (and (PREREQUISITE-FOR (agent : z) (object: y))

(FLUNKED (agent : x) (object: z)})
(and (PREREQUISITE-FOR (agent: z) (object : y))

. (empty (COURSE-GRADE (agent: x) (object : z))})))
required:

(empty (FILLED (agent: y)))
definition:

PRIMITIVE

situation LIMIT
participants : agent/x/COURSE , \'Bluely/COURSE-LIMIT
cardinalities : l < x>
definition: PRIMITIVE
extension : CLOSED-WORLD

situation FILLED
participants : agent/x/COURSE
definition :

(GREA TER-'fl-{AN -OR-EQUAL-TO
(agent:

(COUNT
(domain :
. (sigma (y) (TAKES-COURSE (agent: y) (object: x:})))

(obJect :
(value-of (LIMIT (agent: x}))))

156

compiaation.r

computation GPA-OF
participants: agent/x/STUDENT , rcsult/y/GPA
definition :

(AVERAGE-OF

action ENROLLS-IN

(domain :
(sigma (z)

(GRADE-VALUES
(agent :

(sigma (w)
(COURSE-GRADE (agent : x) (value : w))))

(value : z)))))

anions

participants: agent/x/STUDENT, object/y/COURSE
prerequisites :

(MAY-TAKE (agent : x) (object: z)))
results : (TAKES-COURSE (agent: x:) (object : y))

action COMPLETES
participants: agent/x/STUDENT , object/y/COURSE , valuc/z/GRADE
prerequisites : (TAKES-COURSE (agent : x:) (object : y))
reNlts: (and (not (TAKES-COURSE (agent: x) (object : y))

(GRADE-FOR (agent: x) (object: z)))

REFERENCES

(l) Abrial, J.R. ; "Data Semantics" ; in Da1a Bast Management; J .W. K.limbie and
K.L. Koffeman, ed .; North Holland ; Amsterdam; 1974

(2) Buneman , P., Frankel, R., and Nithil, R.; "An Implementation Technique for
Database Query Languages•; in A .CM . Transactions on Database Systems;
Volume 7, No . 2; June 1982

(3) Church, Alonzo; "The Calculi of Lambda Conversion"; in .ul Annals of
Mathematical Studies ; Volume 6; Princeton University Press, Princeton, NJ;
(reprinted by Klaus Reprints, New York ,]965)

(4) Codd, E .F . ; "A Relational Model of Data for Large Shared Data Banks" ; in
Communications of tht ACM : Volume 6 ; June 1970

[SJ Codd, E.F .; "Extending the Database Relational Model to Capture More Mean
ing"; in ACM Transaction., on Database Systems Volume 4, No . 4; December,
]979

(6] CODASYL Data Base Task Group Report ; April l97J ; available from : ACM
; New York

(7] Freiling, MJ.; Undrrstanding Databast Management : Alfred Publishing Co .;
Sherman Oaks, CA;]982

(8] Kent , W .; Data and Ruilit_v North Holland; Amsterdam; 1978
(9) McCarthy, J .; "Recursive Functions of Symbolic Expressions and their Compu

tation by Machine•; in Communications of the A.CM . Volume 3, No . 4; April
]960

(JO] Mylopou.Ios, J ., Bernstein, P., and Wong , H .; "A Language Facility for
Designing Database-Intensive Applications"; in ACM Transactions on Datubast
S_vsttms Volume S, No. 2; June]980

(11] Reiter, R.; "On Closed World Data Bases"; in Logic and Databas,s ; H . Gail
laire and J. Minter, eds.; Plenum Press, New York, 1978

[12] Smith , J.M. & Smith, D.C.P .; "Database Abstractions: Aggregation and Gen
eralization• ; in ACM Transactions on Da1abast Systems Volume 2, No. 2; June
1977

