
un~UEAS~TY

STYLE: An Automated Program Style Analyzer for Pascal

Al Lake
Curtis Cook

Computer Science Department
Oregon State University

88-60-21 Corvallis, Oregon 97331

STYLE: An Automated Program Style Analyzer for Pascal

Al Lake and Curtis Cook
Computer Science Department

Oregon State University
Corvallis, Oregon 97331

INTRODUCTION

Programming style plays an important role in program
understanding and maintenance. Studies [Par83] have shown that as
much as one-half of a maintenance programmer's time is spent in
activities related to understanding the program. Program
understanding is also important for testing and debugging.
Programming style embellishes the readability of a program and hence
improves its understandability.

Little time is spent on programming style in programming
textbooks and in introductory programming courses which
concentrate on teaching the syntax of a particular programming
language and the use that programming language in solving problems.
There is little space in the book and little class time for other than a
superficial treatment of programming style. Programming
assignments are graded on how well the program solves the problem;
that is, the cleverness or efficiency of the algorithm. A small part, if ·
any, of the program grade is based on style and readability.

Difficulty, consistency, subjectivity, and time are the major
reasons program style is not graded more. To assist in this task two
types of automated style grading programs have been developed. The
first type gives a style score between O and 100. Its score is based on
a set of style factors and is a weighted sum of the factors. The factors,
the computation of the value for each factor, and the weights of each
factor in the sum are set by the developer who based them on this
intuition and experience. The second type of style grading program
computes values for a battery of measures and leaves their
interpretation to the user. The measures in the battery are set by the
developer and no guidelines about the relative contribution of the
factors is given.

STYLE, the Pascal style analyzer described in this paper, does
not assign a style grade or score to a program. Instead it outputs
meaningful and nontechnical messages about the programming style
for each module . It is modeled after an writing teacher who writes
constructive comments on a student compositions. Hence the goal of
STYLE is to assist a student in developing an awareness of style and in
improving his or her programming style. STYLE analyzes a Pascal
program and outputs meaningful, non-technical messages about any
programming style deficiencies it finds in the program. Comments
from students who have used STYLE have been very positive.

In the next section we describe programming style analyzers
and the style principles on which STYLE was based. The user

interface and an example of how to use STYLE are given the sections
three and four. A description of the implementation of STYLE is given
in section five.

PROGRAMMING STYLE AND STYLE ANALYZERS

Programming style is an elusive yet intuitive quality of a program.
It is difficult to define programming style and defining 'good' style that
will produce more readable programs is even more difficult. A
common approach to programming style is to formulate a set of
principles or rules and use them as a yardstick to measure the style of
the program. However, the principles or rules are subjective and in
many instances difficult to quantify. A number of books and articles
present rules for good programming style [Ker74, Led75], as well as
rules for particular languages (Pascal [Ree82, Mee83], FORTRAN
[Red86], C [Ber85]).

Even though there is no clear definition of programming style,
the intent of programming style is to ''produce code that is clear and
easily understood without sacrificing performance" [Oma87].
Therefore, from a programmer's point-of-view, we define
programming style as the effective structuring and arrangement of
programs to increase readability and maintainability without degrading
performance.

Several automated programming style analyzers/graders have
been developed that attempt to measure style. They calculate a
single style score between O and 100 that is a weighted sum of the
counts of various program characteristics. Automated programming
style analyzers have been developed for Pascal [Ree82, Mee83],
FORTRAN [Red86], and C [Ber85]. Rees' Pascal source code grader
[Ree82] was based on ten factors: average line length, comments,
indentation, blank lines, embedded spaces, modularity, variety of
reserved words, identifier length, variety of identifier names, and the
use of labels and GOTOs. Each of the ten factors was quantified and
assigned a weight. A trigger-point scoring scheme was used to
quantify each factor. In this scheme an interval is established for each
factor. If the factor is within the interval a linear interpolation scheme
is used to calculate its value. Its value is zero if it is outside the
interval. The style factors were selected on an intuitive basis and
experience. The weights and trigger-points were selected by
adjusting them until the analyzer awarded 11A" grades to good
programs. Rosenthal [Ros83] and Meekings' [Mee83] Pascal published
style checkers based on the same style factors as Rees; however, the
way they calculated the factors was slightly different and they omitted
the "variety of identifiers" factor.

Berry and Meekings [Ber85] modified Meekings' style analyzer
for C. They added a count of the included files and the "percentage of
constant definitions" and slightly modified the manner in which the
other factors were calculated. Redish and Smyth [Red86] used 33
factors in their FORTRAN77 style analyzer. Their 33 factors can be
grouped into categories: commenting (4), indentation (1), block sizes
(2), statement labels and formats (7), counts of names and statements
(6), array declarations (2), control flow and nesting measures (7),
blank lines (1), operator count (1), operand count (1), and
parametrization (1). Their AUTOMARK program uses the trigger
point scheme of Rees for each factor. The style score is the weighted
sum of the factors.

All of the style graders compute a single style score based on a
weighted sum of subjectively (intuition and experience) selected set of
factors (e.g. program characteristics). factor weights and trigger
points for each factor. With one minor exception they provide no non
technical feedback, justification, or guidance to the user about the
style factors, weights, or trigger-points selected. The one exception is
the AUTOMARK and ASSESS programs [Red86] for FORTRAN.
AUTOMARK output include a brief semi-technical description of each
factor. The ASSESS program provides a Low-Average-High evaluation
for 10 factors and some specific comments on indentation,
commenting, and label usage. It is interesting to note that although
AUTOMARK uses 33 factors, their FORTRAN syntax checker actually
computes 376 measurements. The authors state that they expect this
set to evolve to about 100. They also hope to "validate" various sets of
factors in the future.

Our programming style analyzer, S7YLE , does not assign a grade
or give a battery of numerical metrics to the user. Instead it analyzes
.each module and outputs descriptive non-technical messages about
any style deficiencies it found or one of several positive congratulatory
messages if it found no deficiencies. The messages are provided to
the user in a non-threatening manner, much like an English teacher
writing comments on a student's paper. Hence running our style
analyzer is like having an expert evaluate the program code and
provide comments about the style.

Our approach to quantifying program style was to first formulate
widely accepted and general principles of style that include all of the
commonly accepted programming style guidelines. We adopted
principles based on six "desirable qualities" of style in Redish and
Smyth [Red86]. The six qualities are defined as:

1. Economy - the careful or thrifty measures taken to provide
the code in as concise a manner as is possible and
practical.

2. Modularity - to regulate the standard structural component as
a unit of measurement of program source code.

3. Simplicity - the state or quality of being simple, the absence
of complexity, intricacy, or artificiality.

4. Structure - the organization of elements, parts, or
constituents in a complex entity.

5. Documentation - supporting references explaining the
process of the program, the degree of self-descriptiveness
of an application.

6. Layout - the arrangement, plan or formatting of the program.
These principles form the framework for our programming style

rules. Rather than grouping all the program characteristics we could
compute or think of under the style principles, we listed all of the
applicable programming style rules from the most popular books on
programming style [Ker78, Led75] under each principle. These rules
provide more detailed information about the principles and the basis
for the meaningful comments output to the user.

The last step in our approach was to quantify each of the style
rules through measures of program characteristics. Because of the
nature of these rules our measurements were rated as either
accurately quantified, estimated, or unable to quantify. For example
one part of an accurate quantification of the rule "Avoid superfluous
actions or variables in the program" [Ker78] is to determine whether
every variable declared is used in the program. The rule "Use
meaningful variables names" [Ker78] can be estimated by average
length of variable names and the rule " Use a simple or straightforward
algorithm" [Ker78] cannot be quantified. Only those rules rated as
accurate or estimated were considered for implementation. A more
complete description of the principles, the rules , and the
quantification of the rules is given in Appendix A.

Through our approach we tried to be as objective as possible.
We did not want our selection of style factors to be overly influenced
by what program characteristic measurements were easily obtainable
from the program. Since our style analyzer was to output meaningful
messages, we wanted it to be based on a set of well established and
accepted principles of programming style which would form the basis
for our messages. In addition, our style analyzer would be based on
programming language independent concepts.

USER INTERFACE

The user interface for S7YLE is the desktop and uses the
Apple™ Macintosh™ menu bar. See Figure 1 below. This figure
shows all of the menus of the application extended.

,. File Analysis Help

About Analysis ...

DAs

Open

Close

%0 Style

%C Level

Figure 1 Style Desktop

%S

%L

Economy
Modularity
Simplicity
Structure
Documentation
Layout
Miscellaneous
General

The About Analysis provides the author's name and version number of
STYLE, and is shown below.

Welcome to the Style Analyzer

A Programmii:ig Style Tool

Uersion 1.0

by Al Lake

[___ o ____ K J

Figure 2. About Analysis ...

File provides all of the file handling operations:
Open - displays all files of types MacPascal™ and LightSpeed

Pascal™, so that one can be selected.
Close - closes the current work file.
Save as ... - saves the style analysis output to a text report file of

TeachText format.
Page Setup - performs page setup.
Print - prints the style analysis report on the selected printer.
Quit - quits operation of STYLE.

With the Analysis menu the user can set the skill level (beginner,
intermediate, or expert) for the analysis or invoke the analysis.

Style - Performs a style analysis of the selected program file .

Level - Sets the user expertise level: either beginning,
intermediate, or advanced. This level will determine the
acceptable range of values for measuring. The assumption
is that beginning programmers do not have programming
skills as developed as advanced programmers and as such
cannot manage the greater levels of nesting, complexity
and other problems associated with advanced
programming problems, so Beginning level will generate
more errors than Advanced level.

Select leuel of programming eHpertise

@ Beginning

O Intermediate

0 Aduanced

(OK ~ J (Cancel J

Figure 3. Level of Programming Expertise Dialog

Help provides a brief descriptions of the different principles and other
information. All Help information is displayed in a modal dialog. The
Economy Help dialog screen is shown as an example :

Economy Help

The careful or thrifty measures
taken to prouide the code in as
concise a manner as possible and
practical. Auoid superfluous
actions or uariables in the
program.

(_o_K J

Figure 4. Economy Help Dialog

These dialogs are meant to provide some additional information to the
user about the analysis process and the methods used in providing the
output.

· In all cases the options available to the user at any time are
limited to those which can logically be executed. For example, when
the user begins execution of the program only the Open, Quit, and
Help functions are available . When a file is opened the Open option is
disabled and the Close option is enabled , since only one file can be
open at a time. The Save As ... and Print options are not enabled until
the analysis is completed, since no analysis data can be saved or
printed prior to the input source program being analyzed. The Page
Setup option is always available.

To open a file for analysis, select from the File menu the Open option .
The following dialog will be displayed, filtering out all but the
MacPascal™ and LightSpeed Pascal™ files. No special file names are
necessary.

When the file is Opened the program is read into a memory buffer.
This allows the disk file to be closed and the program to operate more
efficiently.

r;::::::::::===================,,

I a Style Program I

D CLOCK_Style
D O I ALOG_Style
D EUENT_Style
D FILE_Style
D GLOBAL_Style
D HELP _style
D MAIN_Style

<=JMac HO

111111

:iii::

(I: j (~ (t]

(rlritie]

(Open]

(Cancel]

Figure 5. Open Input File Dialog

If the user selects Save As ... or tries to exit the program without
saving the style analysis, a save dialog will be displayed, like the
following:

lo Style Program I
t".) fl NHL Y'> l S '> tqlf~,pt~s
L) CLO[K '>tqh~,pos
D B I fl U) h S 1 ~J l (~, p <l ~
D [Ul:NT S1~Jl(1,P<l~
D r 11. L .. S 1 ~J l e, p <l ~
D GLD H Ht. '> tql f~ ,pt~ s

Save es ...

iii!ii

TEST-Stgle.pas. Deport "

Figure 6. Save Dialog

(g) Style

(Eject]
(Drive)

(Save ~J
[Cancel)

The program will automatically suffix the file name with ".Report" to
help keep track of the relationship between the program file name
and the style analysis report file (see figure 7, Sample Window, for an
example of a report file).

The information displayed in the analysis window begins with
the program name followed by style messages for each of the
subprograms in the physical order in which they occur in the
program. This is illustrated in the sample window displayed below.

□ TEST Style5.pas

,.....
File Neme: TEST _styl eS.pes Program Name: TEST _styl e5.pas I
;;;:;;;;;i;;;~:~:;:~;;;;~::es of code. Consider combining 11111

Commenting not consistent. Both i n-1 i ne end block comments should
be used in this module .

The re ere t o o few bl en k l i n es per comments i n the mod u l e. Use
bl enk lines to meke comments more vi si bl e.

There is no heeder comment in th i s module. Eech module should
contei n e heeder comment thet describes whet it does.

This module does not contei n e block comment. Eech module should t
!<;JI 1:::·::.l¢[2:]

Figure 7 . Sample Window

The Sample Window, above , displays a portion of a test file which has
been analyzed by the style tool. . The user can scroll horizontally or
vertically (the messages are defined by the width of the screen so no
horizontal scrolling is actually necessary). The information is
segmented by module, (procedure or function).

STYLE also includes safeguards so that the user cannot lose
work; such as, accidentally quitting without saving the work file. This
action causes a Save As .. . menu to be displayed so that the report file
can be saved . All menus have default file names and error checking to
reduce the number of operating system errors which might occur,
such as trying to save a file with no name.

CONCLUSION

S7YLE was implemented in LightSpeed Pascal™ for Apple
Macintosh™ computers. The program is a prototype since the goal of
this project was to test the feasibility of developing a user friendly
programming style analyzer that outputs meaningful non-technical
comments about the style of a program. In limited class testing
students gave STYLE high marks as they felt it gave them useful
comments about their programming style.

The style tool will run on any Macintosh™ computer with a
n1inimum of 128K. though this memory size will limit the user file to
less than SOK. For the best results, the style tool should be used on a
Macintosh Plus™ with 1 megabyte of memory.

When run on a Macintosh II™ the analysis window can be
resized to fit the larger screen, i.e. S7YLE will not limit to the user
to the smaller Macintosh™ screen size when a larger work space is
available. The printout procedure will work for any type of
LocalTalk™-compatible network.

For further information about STYLE write to the authors at the
address above.

REFERENCES

[Ber85] R. E. Berry and B. A. E. Meekings, "A Style Analysis of C
Programs", Communications of the ACM, vol. 28(1), Jan. 1986, pp. 80-
88.

[Ker78] B. W. Kernighan and P. J. Plauger. The Elements of
Programming Style. McGraw-Hill, New York, 1978.

[Led75] H.F. Ledgard. Programming Proverbs. Hayden Book Company,
·Rochelle Park, New Jersey, 1975.

[Mee83] B. A. E. Meekings, "Style analysis of Pascal programs", ACM
SIGPLAN Notices vol. 18(9), Sept. 1983, pp. 45-54.

[Oma87] P. W. Oman and C. R. Cook, "A Paradigm for Programming
Style Research". Technical Report 87-60-7. Computer Science
Department, Oregon State University, 1987 .

[Par83] G. N. Parikh and G. N. Zvegintzov, Tutorial on Software
Maintenance, IEEE Computer Society Press, 1983, p. 2.

[Ree82] M. J. Rees, Automatic Assessment Aids for Pascal Programs,
ACM SIGPLAN Notices, Vol 17 (10), Oct. 1982, pp. 33-42.

[Ros83] D. Rosenthal, in correspondence from the members, ACM
SIGPLAN Notices Vol. 18 (3). Mar. 1983, pp. 4-5.

APPENDIX A

WHATSTYLEISCHECKING

Listed below are the definitions of the qualities of style in the actual
values being quantified.

ECONOMY

Avoid superfluous variables - any variable that does not provide useful
results, such as an intermediate variable that does not enhance
the readability of the program. Superfluous variables are
estimated from the ratio of the total number of variables to the
number of executable lines of code.

Avoid overloading variables - the use of a variable name in more than
one context. Variable overloading is estimated by counting the
number of lines between uses of a variable . If the line count
exceeds some constant value , then the variable is 'estimated' as
being used for a different context.

Minimize the overall number of variables used - use the least number
of variables possible. TOTAL VAR describes the total number of
variables used in each module, if this value is greater than some
constant, a message is issued.

Avoid unused labels - check for unused labels.

Avoid unused variables - check for unused variables.

Avoid unreferenced procedures and functions - check for any
procedures or functions that have been defined, but not
referenced.

MODULARITY

Long modules - check for modules with more than n lines of code,say
50, and less than m, say 10, lines of source code.

Module size - using McCabe's Complexity Measure, V(G), check all
modules for a complexity measure greater than 10. Count the
number of conditional routines or functions, such as IF /DO
WHILE/REPEAT /CASE.

More than one logical function in a module - check for functions that
perform more than one logical function. This guideline is
estimated by checking for I/0 and arithmetic functions in the
same module or multiple I/0 in the same module.

Parameter passing - minimize the number of parameters passed.
Count the number of parameters being passed to determine if
the number of parameters passed is greater than n.

SIMPLICITY

Write clearly -- don't be too clever and don't sacrifice clarity for
efficiency - check for use of simple and straightforward
algorithms. One way to quantitatively estimate the clarity of a
program is to compare McCabe's Complexity Measure, V(G), to a
subjective value, such as 10, for the upper limit.

Parenthesize to avoid ambiguity - check extended lines of code for use
of parenthesis. Any line of source code, either an assignment
statement or logical function (IF statement). which contains
more than n words, or more than m operators should contain
parentheses.

Check for the number of operators in an expression to determine the
number of parenthesis - there should be one set of parenthesis
for every logical operator. Count the number of operators in
each logical expression to determine if the number of
parenthesis is sufficient .

Avoid unnecessary branches - an IF-THEN-ELSE statement with no
executable statement on one of the alternatives. This check will
look for empty IF-THEN-ELSE branches.

Avoid unnecessary GOTO's - check for the ratio of GOTO's to the rest
of the code. Check for the ratio of GOTO statements to all
source code (and total number of GOTO's. If the ratio is greater
than 5 percent or the number of GOTO's greater than four for
any module then print a message.

Check subprogram nesting - a deeply nested subprogram structure
complicates the structure of the module. Count the number of
embedded subprograms. There should be no more than four
levels of nesting.

Average nested level - the average level of nesting for each LOC should
not exceed a value, n. Count the nesting level of each line of
code and take a weighted average. Check for an average nesting
level greater than n.

Compute the maximum nesting level - find the maximum nesting level
of any line in each module. Count the nesting level of each line
of code to determine the maximum nesting level.

STRUCTURE

IF-THEN-ELSE statements with a null condition - do not allow null
conditions in an IF-THEN-ELSE. Check for a null condition in
IF-THEN-ELSE.

Check for ELSE GOTO and ELSE RETURN - control the use of a
branch from an else condition and a return from an else
condition. Check for a RETURN or GOTO condition in IF
THEN- ELSE .

The use of multiple GOTO's to replace a complex IF-THEN-ELSE - Use
IF ... ELSE IF ... ELSE IF ... ELSE... or a CASE statement to
implement multi-way branches rather than using GOTO's to
construct a logical path around. Check for complex IF-ELSE-IF
ELSE. .. conditions. Present a comment to the user about
replacing the IF-ELSE clauses with a CASE statement.

DOCUMENTATION

Thorough and consistent documentation. This guideline can be
estimated by checking for the consistent use of in-line versus
block comments between modules. A logical value is returned
depicting whether the module uses in-line or block and
compared.

Use of a header block of comments after the beginning of a function or
procedure - This guideline will only measure the existence of
comments at the beginning of the module, it cannot measure the
effectiveness of the comments.

Variables are described by comments - Ensure that all variables are
properly and thoroughly documented. This guideline can be
estimated by measuring the ratio of executable lines of code to
comments. If the ratio is less than a percentage n, say 10%, or
greater than a percentage m, say 80%, output a message .

Meaningful variable names - Check for meaningful variable names.
This guideline is not directly measurable, but an estimate can be
achieved by checking for variable names with a word length less
than n, say 3, characters or greater than m, say 12, characters.

Effective and adequate comments - Check the estimated ratio of the
number of words used in the comments to ensure adequate
comments. If the ratio is less than a percentage n, say 10%, or
greater than a percentage m, say 80%, output a message.

Don't use excessive comments - Overcommenting is a subjective
measurement depending on the expertise of the maintenance
programmer and the level of understanding of the program.
This guideline is estimated by computing the average number of
words in each comment.

LAYOUT

Effective use of programming space, both horizontal and vertical, to
assist with program comprehension - The compliance with this
guideline is estimated by the ratio of blank lines to comments on
the page. If the ratio exceeds 50% a message is displayed.

Compute the average number of comments as an estimate to enhance
clarity - This guideline is estimated by comparing the average
number of words in comments with the number of executable
lines of code.

Concise and effective use of space - Estimated by comparing the ratio
of blank lines to the number of total lines.

Header comment - a header comment must be provided directly after
the beginning of each program, procedure and function. This
guideline monitors the inclusion of comments after the
program, procedure or function verbs in the program.

Maximum number of blank lines - The maximum number of
consecutive blank lines should not exceed some value, say 10.
Check for any modules with more than 10 consecutive blank
lines.

	20221020131147816
	20221020131250947

