
85-60-3

5C~EnCE

A Note on the Style Metric of Berry and Meekings

Warren Harrison
School of Business Administration

University of Portland
Portland, Oregon 97203

Curtis Cook
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

A NOTE ON THE STYLE METRIC

OF BERRY AND MEEKINGS

Warren Harrison

University of Portland

Portland, OR 97203

USA

Curtis Cook

Oregon State University

Corvallis, OR 97331

USA

ABSTRACT

0 ·r· , ... ,l (.. .,.,..

l • • ,,.. COMi=lUTER SCIEN(;f:
OR!::IJ()'-l S ··• ·.-~ lll\!IV.ERSITY
CO-. ;':LL'.J, Or ~COiJ 97331

The 11style metric" of Berry and Meekings is purported to

quantify the lucidity of software written in the C programming

language. We used a modification of this metric to try and

identify error-prone software. Our results indicate that this

metric seems to bear little relationship to the density of errors

found in programs.

CR Categories and Subject Descriptors:

D.2.8 [Software Engineering]: Metrics - complexity measures~

0.2.9 [Software Engineering]: Management - software quality

assurance

General Terms:

Languages, Measurement

Additional Key Words, Phrases:

C, style analysis

3

INTRODUCTION

Programming style is an elusive and intuitive quality of a

program. Schneider and Bue 11 [1, p 52] define programming style

as "the entire set of conventions, guidelines, aids and rules

that make computer programs easier for people to read, work with

and understand". Numerous books and articles such as [2 ,3]

suggest and l i .st style rules for various programming languages.

Programming style is difficult to quantify. Several

software complexity metrics (Hal stead's effort E [4], McCabe's

cyclomatic complexity [5], and the number of lines in a program

are the most popular) have-been used as measures of program

clarity in programming style studies. The results have been

mixed. Gordon [6] f.ound a corresponding decrease in E, while

Evangelist [7] found all the metrics insensitive to the

application of style rules and inconsistent in rewarding programs

written according to generally accepted style rules.

Barry and Meekings [8] defined a style metric based on how

closely a program conforms to a set of style rules. They defined

a style score ranging from Oto 100 as the weighted sum of 11

program characteristics. A score of zero is poor, and 100 is

excellent.

The characteristics (and their weights} comprising this

metric are: module length (15), identifier length (14),

percentage of comment lines (12), percentage of indentation

4

spaces to all characters (12), percentage of blank lines (11),

average number of nonblank characters per line (9), average

number of spaces per line (8), percentage of symbolic constants

used (8), number of reserved words used (6), the number of

#INCLUDE files used (5) and number of GOTOs used (-20). They

presented a table from which the percentage of the maximum score

could be computed for each characteristic.

The eleven characteristics, the contribution of each

characteristic, and the table for computing the score for each

characteristic was based on Rees [9]. Rees based his selection

of characteristics on intuition, experience, and ease of

implementation, and considered only the influence of layout and

identifiers on style.

Berry and Meekings feel their style score measures the

l uci di ty, or understandability of a program. When they applied

their style metric to a large collection of programs w_ritten by

experienced programmers (C programs for the UNIX [trademark of

Bell Labs] operating system), they discovered a great disparity

of style -scores. They attributed this disparity to sparse

commenting and blank lines, and the tendency of C to encourage

"concise programs".

Berry and Meekings analyzed a collection of C programs and

did not attempt to determine the relation between their

characteri st, cs or weightings, and program clarity. In this

5

paper, we consider the latter problem. We felt that if this

metric does indeed measure program understandability, then it

could be used to identify programs which may be potential trouble

spots in a system.

A piece of code could be a "trouble spot" due to error

proneness. We consider error proneness to be the number of

errors in the program, normalized in some manner by the program's

length. We refer to this as "error density", or the average

number of executable lines of code between error occurances. It

seems that the more error prone a program, the more likely some

errors will not be found until after it is delivered. It can be

argued that lack of understandability contributes to this

situation. Thus, by measuring the understandability of a piece

of software programs which are highly error prone may be

identified. We hoped to determine if programs that possess high

style scores were any less error prone than other programs which

did not.

THE DATA

To determine if the style metric could distinguish among

programs of differing error proneness, we analyzed 20 multi

function C modules. These modules were taken from a

language/environment project carried out by a large Fortune 500

corporation. The data analyzed represented over 35,000 lines of

C code. The data was made available to us in its Reduced Form

6

[10], so every aspect required for the Berry and Meekings metric

was not available.

The Reduced Form is a technique which facilitates the

distribution of software characteristic data for complexity

metric studies by industrial organizations. It provides

information on most of the "essential characteristics" (at least

in terms of complexity metrics) of a piece of software, while

barring unauthorized reproduction of the code. Since developing

this technique, we have had access to many software systems which

before were not available to us.

However, in return for almost total security, the Reduced,

Form does not provide information about some characteristics of

the software which might be useful (but which, at the same time,

may disclose certain information about the software which could

be proprietary). For example:

Variable names are aliased, so length of variable names

are not available.

All "textual characteristics" of the actual code are

hidden, so line length, indentation and embedded spaces

are not accessible.

The idea of number of blank lines and comment lines are

combined to arrive at a figure representing the number

of non-executable lines.

However, we felt that enough of the characteristics used in

Berry and Meekings' metric were available to investigate the

relationship between the programming style metric and error

proneness. The modified metric we used is shown in Table I.

7

As can be seen, this includes only four components. One of

these components {X2} combines two of the original metric's

components {percentage of comment lines and percentage of blank

lines). Identifier Length, Indentation, Characters Per Line, and

Spaces Per Line were not available. However, as Berry and

Meekings point out, three of these characteristics could easily

be affected by the use of a program formatter . No GOTO

statements were found in any of the code we analyzed, so we

deleted this factor from the caclulation for simplicity.

We felt that if the original metric were an accurate measure

of program "style", the use of a subset of the metric would also

be a useful gauge of style {albeit, a less refined one).

In addition to the Reduced Form data describing each module,

the number of errors encountered during system testing was also

made available to us. The characteristics and number of errors

for each module are shown in Table II.

RESULTS OF THE ANALYSIS

In order to determine the relationship {if any) that held

between the style metric and the error proneness of each module,

we performed a simple correlation analysis [11]. The results of

our correlation analysis were discouraging. It appears that a

8

correlation of only -.052 existed between the observed error

density and the style metric. This suggests that the style

metric bears no relationship to the error density encountered in

a group of programs (at least based on our data).

CONCLUSIONS

Two problems of any programming style metric based on

conformity to a set of style rules are:

(1) Adequacy and completeness of the style rules;

(2) Measuring the degree of conformity.

Berry and Meekings style metric was based on a weighted sum of

eleven prorgam characteristics. It certainly is not clear that

their eleven characteristics comprise an adequate, let alone

complete, set of style rules. Their weightings reflect their

intuition about the degree of conformity. Our results show that

although Berry and Meekings1 metric is a promising beginning, the

relation between style rules and program characteristics warrants

much additional study.

Since the goal of programming style is to aid comprehension,

a programming style metric should measure the effect of style

rules on comprehension. In particular, the contribution to

understanding of the individual style rules, such as header and

paragraph comments, mnemonic variable names, indenting and

formatting, should be investigated. Rather than just determining

whether an individual style rule affects comprehension, these

9

investigations should seek to answer the question how it does or

does not facilitate understanding.

.•

10

REFERENCES

[l] Schneider, G. and S. Buell, Advanced Programming and

Problem Solving With Pascal, John Wiley, New York, 1981.

[2] Kernighan, B. and P. Plauger, The Elements of Programming

Style {second edition), McGraw-Hill Book Company, New

York 1978.

[3] Marca, D., "Some Pascal Style Guidelines", ACM SIGPLAN

Notices, April 1981, pp 70-80.

[4] Halstead, M., Elements of Software Science, Elsevier

North-Holland, New York, 1977.

[5] McCabe, T., 11A Complexity Measure" IEEE Transactions on

Software Engineering

[6] Gordon, R., "Measuring Improvements in Program Clarity",

IEEE Transactions on Software Engineering, Vol SE-5, 2,

March 1979, pp 79-90.

[7] Evangelist, M., "Program Complexity and Programming Style",

Proceedings International Conference on Data Engineering

{1984), pp 534-541.

[8] Berry, R. and B. Meekings, 11A Style Analysis of C

Programs", Communications of the ACM, 28, 1 (January

1985), pp 80-88.

[9] Rees, M., "Automatic Assessment of Aids for Pascal

Programs", ACM SIGPLAN Notices 17, 10 {October 1982), pp

33-42.

[10] Harrison, W. and C. Cook, "A Method of Sharing Software

Complexity Data", to appear.

[11] SPSS, SPSSx User's Guide, McGraw-Hill Book Company, New

York, 1983.

11

12

Let Xl represent the average length, in executable lines, of
function definitions in a module

if 10 < Xl < 25, then Pl= 36.6
if 4 < Xl < 10, then Pl= Xl * 6.1 - 24.4
if 25 < Xl < 35, then Pl= Xl * -3.7 + 129.5

Let X2 represent the average percentage of nonexecutable
lines of the function definitions in a module

if 15 < X2 < 25, then P2 = 29.3
if 8 < X2 < 15, then P2 = X2 * 4.2 - 33.6
if 25 < X2 < 35, then P2 = X2 * -2.93 + 102.5

Let X3 represent the average percentage of symbolic constants
in the function definitions of a module

if 15 < X3 < 25, then P3 = 29.3
if 10 < X3 < 15, then P3 = X3 * 3.9 - 39
if 25 < X3 < 30, then P3 = X3 * -3.9 + 117

Let X4 represent the average number of reserved words per
function definition of a module

if 16 < X4 < 30, then P4 = 14.6
if 4 < X4 < 16~ then P4 = X4 * 1.2 - 4.8
if 30 < X4 < 36, then P4 = X4 * -2.4 + 86.4

SCORE= Pl+ P2 + P3 + P4

Table I. The alternative style metric. This metric was adapted
from the original metric of Berry and Meekings. Since the data
was provided in its Reduced Form, every component of the original
metric was not available to us. We determined the characteristics
which were available, and adjusted their contribution to the
total SCORE proportionally, so that they would total to 100.

' -

13

NCSL PRC Xl DSL X2 CON Op'rnd X3 X4 SCORE BUGSD

1 1137 31 37 1412 .19 68 718 .09 24 43.90 162 ·
2 2406 51 47 3299 .27 10 1053 .01 23 37.79 71
3 333 20 17 485 .31 6 147 .04 10 53. 93 333
4 879 26 34 1098 .20 27 397 .07 18 43.90 88
5 785 36 22 1083 .28 19 468 .04 16 72.81 131
6 1522 3 507 2805 . 46 0 63 .00 20 14. 60 127
7 1591 4 398 2569 .38 0 168 . 00 25 14. 60 76
8 639 1 639 1214 . 47 0 20 . 00 17 14.60 53
9 134 2 67 207 .35 0 51 .00 31 13. 20 134

10 1568 25 63 2318 .32 19 505 .04 24 22.30 523
11 1251 22 57 1772 .29 13 447 . 03 26 30.95 313
12 554 24 23 681 .19 3 311 .01 18 80.50 185
13 779 43 18 1263 .38 0 225 . 00 10 43.77 52
14 2927 87 34 4497 . 35 97 1069 .09 18 14.81 113
15 2605 76 34 3058 .15 69 1365 .05 20 43.22 69
16 816 29 28 1098 . 26 21 369 .06 19 41.85 91
17 851 20 43 1209 .30 42 328 .13 17 41. 28 284
18 747 31 24 992 .25 9 562 .02 16 80.50 57
19 2954 84 35 3725 . 21 40 1548 .03 22 43. 90 134
20 2716 103 26 3505 .23 41 1643 .02 23 43.90 160

•
Table II. Characteristics of modules, style score and error density.

	Harrison_Cook_85_60_03_A
	Harrison_Cook_85_60_03_B

