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Parallel Algorithms for 
Decomposed Linear Programs 

ahstract 

New parallel algorithms for solving the decomposed linear 
programs are developed . Direct parallelization of the sequential 
algorithm results in very limited performance improvement 
using multiple processors. By redesigning the algorithm, we 
achieved more than 2 *P times performance improvement over 
the sequential algorithm, where P is the number of processors 
used in parallel computation . Furthermore, a particular variation 
of the sequential algorithm runs more than 2 times faster than 
the original sequential algorithm. The new parallel algorithm 
linearly speedups the new sequential algorithm . 

1. Introduction 

People have been looking for fast Linear Program solvers for a 
long time because linear programs model many real world 
applications and solving linear programs is computationally intensive 
([DM"'TZIG-63], [BEN-68], [CHARl\TES-80], [GROTSCHL-81]). New 
sequential linear program solvers such as Karmarkar's algorithm 
([KARMARKAR-84]) reduce the worst-case time complexity to a 
polynomial bound. But results of recent computational study ([GILL-
85]) cast doubt on Karmark ar's claim that his algorithm will replace 
the simplex algorithm. 

An alternate approach to solving computationally difficult 
linear programs is to devise parallel solutions that run on fast 
parallel machines ([WYPIOR -77], [FINKEL-87], [THOMPSON-87], 
[P ANG -87] , [CHOI-88]) . 

In [WU-88a], we parallelized the revised two-phase simplex 
algorithm with linear performance improvement in terms of number 
of processors used. Here, we study parallel algorithms for solving 
decomposed linear progr ams. 

Direct parallelization of the sequential algorithm often results 
m very limited performance impro vement using multiple processors 
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because a sequential algorithm is designed without parallel 
consideration in mind. \Vhen we were parallelizing the decomposed 
simplex algorithm, we found that, without changing the algorithm 
itself, the sequential decomposed simplex algorithm can be improved 
by only half of the number of processors used. But by redesigning 
the algorithm, we achieved more · than 2

0
*P times performance 

improvement over the sequential algorithm, where P is the number 
of processors used in parallel computation. F1:_rthermore, a particular 
variation of the sequential algorithm runs more than 2 times faster 
than the original sequential algorithm. The new parallel algorithm 
linearly speedups the new sequential algorithm. 

2. Background 

A Linear Program (LP) is a system that finds vector x which 

m1n1m1zes 
subject to 

T 
z = C x, 
Ax = b, x;;;:::: 0, 

where A is an m by n matrix (n > m), c is an n element cost vector, b 
is a vector of length m, and x is an unknown vector of length n. The 

superscript T denotes vector transposition. The equation Ax = b 
stands for m constraints on the unknowns. An example of an LP is: 

Find 
m1mm1zes 
subject to 

(x 1, x2, x3) that 

Z = 2x 1 + X2 + X3 

2x 1 + x2 - 3x3 = 0 
Xl + X2 + X3 = 1 
Xl, X2, X3;;;:::: 0 

T T 
For this example, c = (2, 1, 1), b= (0, 1), m = 2, n = 3, and 

1 
1 

Geometrically, the constraints Ax = b and x ;;;:::: 0 define a 
convex polyhedron of dimension m in an n dimensional space. The 
polyhedron of the above LP is shown in Figure 1. 

r 
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Figure 1. Convex Polyhedron in 3-space Showing Region of 
Feasible Solutions to Sample Problem. 

The end points p1 and p2 in Figure I are the extreme points of 
the system. An extreme point is a solution that has no more than m 
non-zero components. It can be shown that if an LP has a minimal 
solution, then one of its extreme points must be a minimal solution. 
In the above example, p1 is the minimal solution. 

The simplex algorithm [DANTZIG-63] solves an LP by starting 
from an extreme point and repeatedly going to the next adjacent 
extreme point that decreases the z value, until it goes to an extreme 
point where the z value can not be further decreased. 

A1 A2 I I An b 

D1 bl 

D2 I b2 

Dn bn 

Figure 2. Pattern of a Decomposed Linear Program. 



The decomposed linear programs are a special class of LPs in 
\vhich the coefficient array A contains all zeros except in the first 
few rows and along diagonal blocks according to the pattern shown 
rn Figure 2, where for j=l..n, A j is an m by nj matrix; D j is an mj by 
n j matrix; b j is an mj vector; and b is an m vector. 

An example of a decomposed LP 1s: 

Find (Xl, X2, x3, x4) that 

m1n1m1zes 
subject to 

z = 2x1 + x2 + x3 + 5x4 
2 X 1 + X2 - 3 X3 + X4 = 0 

Xl + X2 = 1 
3x1 - X2 = 0 

X3 + 5x4 = 1 

In this example, 

A1 = (2, 1), A2 = (-3, 1) 

D2 = (1, 5) 

A ..,. 

The decomposition principle of Dantzig and Wolfe [DANTZIG-60, 
61] is an elegant method for solving decomposed LPs. According to 
this principle, an input decomposed linear program is treated as the 
central program, and the diagonal blocks are treated as the 
coefficient matrices of sublinear programs. Each central iteration 
first determines the solutions of the sublinear programs and then 
uses the solutions to determine its own pivot operation. Although 
there are many sequential implementations of the principle ([ADLER-
73], [BEALE-65], [KUTCHER-73], [HO-81]), there are very few 
discussions on the parallelization of the algorithm ([WYPIER-77]). 
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Performance Evaluati on Metrics 

There are two ways that a program can be parallelized: 1) 
implicit parallelization ([KUCK-72, 76, 81, 84]), in which the parallel 
algorithm is the same as the sequential algorithm except that certain 
statements of the sequential algorithm are allowed to be executed m 
parallel; 2) explicit parallelization, in which the parallel algorithm 
employs a different approach to the problem than the sequential 
algorithm. 

Implicit parallelization is limited because the original program 
was designed with sequential semantics in mind. Only very few 
programs can be implicitly parallelized with nearly linear speedup, 
and in most cases an efficiency of 10% is considered quite 
satisfactory ([LEE-85]), as stated in [WOLFE-87], "users rarely achieve 
the peak speed of the machine unless they are willing to rewrite 
their programs." 

Explicit parallelization requires that a programmer redesign the 
sequential algorithm to exploit parallelism in both the problem and 
the underlying parallel machine. However, explicit parallelization 1s 
a difficult job because the programmer has to think in terms of 
multiple threads of program execution and take care of many 
possible interactions among · the parallel processes. 

For a parallel algorithm (PA) obtained through implicit 
parallelization from a sequential algorithm (SA), the performance 
improvement of PA over SA can be measured by the speedup of PA 
over SA and the goodness of PA can be measured using the efficiency 
of PA. Formally, if SA takes Ts time units to execute and PA takes 
T p(i) time units to execute using i parallel processors, then the 
speedup of PA over SA is defined as: 

S p(i) = Ts/T p(i) 

and the efficiency of the parallel program usmg 1 processors 1s 
defined as: 

Ep(i) = Tp(l)/(i*Tp(i)). 
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\Ve note that Sp (i) ~ i in the implicit parallelization case. This 
may not be true in the case of explicit parallelization. Assume SA is 
parallelized explicitly through algorithm changes to PA. Then PA can 
be executed sequentially by using only one processor. Clearly, we 
can rewrite PA as another sequential program (SA') using sequential 
constructs as if the program is executed by only one processor. Now 
suppose PA is "obtained" from SA' through implicit parallelization, 
and we compute the speedup of PA over SA' using i processors. The 
speedup of PA over SA' will be ~ i. However, SA' can run many times 
faster than SA. If SA' runs F (> 1) times faster than SA, then the 
speedup of PA over SA can be as high as F*i. 

For both implicit and explicit parallelization, Ep(i) ~ 1. The 
efficiency of a parallel program is a variable of the number of 
processors used and is independent of which sequential program it 
corresponds to. 

3. Computational Procedure for Decomposed Simplex 
Algorithm 

Based on Dantzig-Wolfe's decomposition principle, a 
decomposed simplex algorithm for solving decomposed linear 
programs can be described as follows (see [WU-88c]): 

Input. Ai, m*Ili matrices and Di, mi*ni matrices, i = 1, ... n; bo, an m 
vectors; bi, mi vectors, i = 1, ... n; Ci, ni vectors, i = 1, ... n. 

Initialization. Assume e be a vector of all 1 's. 

The inverse of initial base 

U =(u1, u2, ... Um+n+2) = 8 -1 = l1m+n+1 07; 
L-e u 

the initial base feasible solution 
m 

s = (s1, s2, ... , Sm+n+2) = (bo, 1, ... 1, 0, n+ I,bo); 
i=l 

the central left hand side vector b = (b o, 1, ... 1, 0, 0); 

the initial subsolutions ex = (ex1, ex2, ... , exm+n) = (0, 0, ... ,0) 
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and the corresponding indices of the subproblems that lead to 
the subsolutions w = (w1, w2, ... , Wm+n) = (0, 0, ... ,0), meaning 
that the initial subsolutions are not solutions of any 
subproblems (sub-problems range from 1 to n); phase = 1; q = 
m+n+2. 

Iteration. 

Step 1. If Sq = 0 and phase = 1, then set phase = 2, q = m+n+ 1, and 
redo step 1. If sq < 0 or phase = 2, then 

a) calculate Cj = (uq,l..mAj + Uq,m+n+lCj), for j = 1, ... ,n. 

b) using the two-phase revised simplex algorithm to solve 
sublinear problems Sj, for j=l, ... , n, 

mm1m1ze 
subject to 

CjXj, 

AjXj=bj and Xj~O 

for optimal solutions or extreme homogeneous solutions (if Sj is 
unbound) Xj, j = 1, .. , n. If any of the subproblems is infeasible, 
the original problem is infeasible, stop. 

c) If Xj is an optimal solution of Sj, make aj = (AjXj,0, ... ,0, 
1,0, ... ,0,cjXj,O), otherwise, make aj = (Ajxj,0, ... ,0, 0,0, ... ,0,cjXj,O). 

d) For j = 1, ... , n, calculate . Oj = Uq * aj. If phase = 2 then for j = 

1, ... , n, calculate Aj = Um+n+2 * aj and if Aj ;e O then set Oj = 0. 

Step 2. Calculate Ok = min(8j I j = 1, ... , n). If Ok 2: 0 and phase = 1, 

then the original LP is infeasible, stop. If Ok 2: 0 and phase = 2, 
then sq is the optimal solution and -sq is the minimal value of 
the original LP, exit. Otherwise, ak is the new column to enter 
the base. 

Step 3. Compute Yi = Ui * ak, i = 1, ... , q. 

Step 4. If all Yi $ 0 and phase =1, then the original LP is infeasible, 



stop. If all Yi ~ 0 and phase =2, then the original LP is 
unbounded, stop. Otherwise, calculate 

and at is the column to be removed from the base. 

Step 5. Calculate the new values of the variables in the base 
solution: 

Wt= k, Sk = 8 
Si = Si-8Yi (i:;=k, i =1, .. ,m+n+2) 
eXk = Xk, 

and update U, the inverse of the base: 

Uij = Uij - yi*Utj/Yt (i:;=t, i =1, .. ,m+n+2,j=l, .. ,m+n+2) 

Utj = Utj/Yt. 

Output. The optimal objective value is -sq, and the optimal feasible 
solution (may not be basic) is x =(x1, ... , Xn), where Xj is 
obtained from: 

X = ~ S.*eX . 'L..i1 1 J n 
Vw .=j 
i=l 1 

4. Parallelizing Decomposed Simplex Algorithm 

The kernel of the procedure is the iteration of the steps 1 to 5. 
The data dependency graph of the iteration is shown in Figure 3, 
from which the parallelism can be easily seen as each iteration (the 
central iteration) requires the solutions from the subLPs, which can 
be solved independently. In addition, the calculation of y1, ... , yq and 
u 1, ... , Uq can be done in parallel. 

8 
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Figure 3. Data Dependency Graph of The Decomposed 
Simplex Algorithm. 
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A straightforward parallelization is to invoke the subLP solvers 
in parallel and continue the central iteration when all of the subLP 
solvers finish. In this algorithm (call it SF algorithm), n processes, pl, 
p2, ... pn, are used and pi is assigned to solve the subproblem i in 
step 1, as in Figure 4 (a). When all of the subproblems find their 
solutions, the subprocesses send oi's to one of the processes (say pn) 

and this process determines Ok=min(Oi). After k is determined, it 1s 
broadcasted to all of the other processes, and the process pi 

calculates Yi (i=l, ... m). Then, Yi1S are sent to pn. Pn determines 

0t=min(Si/Yi) and broadcasts t to all of the other processes. Finally, 
the process pi updates Ui (i=l , ... q), and the next iteration begins. 

A timing chart of the algorithm is sketched in Figure 4 (b ), 
where pi represents process i, i= 1, ... n, and the circle indicates the 
point in time when the optimal Xk is produced. 



p1... pi ... pn-1 p 1 p2 ......... pi ........ pn 

n( 6 1.. 6 n 

update Un s w 

(a) (b) 

Figure 4. Straightforward Parallelization Algorithm. 

step 1 

step 2 
step 3 
step 4 
step 5 

The straightforward algorithm seems to exploit the inherent 
parallelism fairly well. However, step 2 cannot proceed until all of 
the subproblems finish. As indicated by [KUNG-76], the efficiency of 
this kind of synchronous algorithm is heavily affected by the 
structures of the subproblems. A synchronous algorithm performs 
best when the subproblems are of equal size and take the same 
amount of time to finish. Even with the assumption that all 
subproblems have the same number of constraints and same number 
of variables, the subproblems will take a very different number of 
iterations to finish, depending on the starting bases and the cost 
functions. It is even possible for one subproblem to find its solution 
in one iteration, while another takes exponential number of 
iterations ([KLEE-76]). Each central iteration has to wait until the 
slowest subproblem finishes. 

The algorithm has been implemented on the Sequent/Balance 
shared memory machine. We ran the algorithm using 8 processors 
on randomly generated decomposed LPs of 3 to 20 subproblems. 
Figure 5. plots the speedup. 

f 
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Figure 5. Speedup of ·straightforward Algorithm. 
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From Figure 5, we see that the speedup is much less than the 
number of processors used. The speedups is at _,most 5 times using 8 
processors (with an efficiency of less than 65%). 

To elaborate on this inefficiency further, we cite the 
experimental data of [LINDBERG-84], which shows that, to solve the 
assignment problem of d dimensions (2d-1 constraints) using the 
standard Simplex algorithm, the number of simplex iterations follows 

the normal distribution with mean µct = 1.1 Odl .57, and standard 

derivation crct = 0.33dl.51. According to this distribution, an 
assignment problem of d dimensions needs in the average of 

1.1 Od 1.57 iterations to solve. Assume the number of iterations for N 
assignment problems of d dimensions are T1, T2, ... , TN, respectively. 
Solving them sequentially requires a total of Ts= T1 + T2 + ... +TN= 

N * µct iterations, and solving them in parallel using N proces sors needs 
T p = max (Tl, T2, ... , TN) iterations . The efficiency using N processors 
1s: 

T 
E(N) = s 

N*T p 

N *µ µ 
= d =-d 

N*T T p p 

To evaluate E(N), instead of determining the mean value of Tp 
analytically, we used simulation to estimate E(N). The expected 
efficiency for N = 10, d = 10 is 65.3%. This low efficiency matches 
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our experimental result well. 

Because the big variance (crct) on the number of simplex 
iterations does not allow all subproblems to find their minimal 
solutions at the same time, new approaches or algorithm changes are 
needed to achieve better performance. 

Para11elizing Subproblem Solvers. 

An alternative way to parallelize the decomposed simplex 
algorithm is to parallelize individual subproblem solvers (see [WU-
88a]). In this algorithm , step I) can be solved as follows: 

Perform step I a) in parallel; 
Solve the n subproblems in b) one after the other in sequence 
and each subproblem is solved by multiple processors m 
parallel ; 

. Execute step I c) and d) in . parallel. 

In this algorithm, no subproblem needs to wait for the other 
subproblems to finish. A timing char~ for the algorithm is shown in 
Figure 6 (a). Figure 6 (b) plots the speedup of . the algorithm using 8 
processors on randomly generated decomposed LPs of 3 to 20 
subproblems. 

pl p2 pl pn 

sub-prob 1 em 1 

sub-prob 1 em 2 

sub-problem 3 step I 

sub-prob 1 em n 

step 2 
step 3 
step 4 
step 5 

s 
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e 
e 
d 
u 
p 
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4.8 

4.0 

3.2 
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1.6 

0.8 

6 8 10 12 14 16 18 20 

# sub-problems 
□ SFPSiseqSF c l.i1ear Speed!p 

(a) (b) 

Figure 6. Subsolver Parallelizing Algorithm. 
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The performance of the algorithm is even worse than the 
straightforward algorithm. The reasons for the inefficiency are that 
I) the subproblems are usually of relatively small size compared to 
the original problem and we know from [WU-88a] the performance 
drops when the input data size decreases; 2) in this algorithm, each 
subiteration needs a fork-join of processes (an invocation of the PAR 
construct, which costs CPU time), while, the straightforward algorithm 
requires a fork-join only for each central iteration; 3) When the sizes 
of the subproblems are not the multiple ·of the number of processors, 
lots of last round effects are encountered, leaving several processors 
idle at the end of solving each subproblem. From these we conclude 
that parallelizing the subsolvers is not an appropriate approach to 
improve performance. 

These two parallelizing approaches , have one thing in common, 
that is, they both extract the parallelism in the sequential algorithm 
without modification to the algorithm itself. Better performance may 
result if we adapt the algorithm to parallel execution. 

5. Parallel Algorithms for Decomposed Linear Programs 

We note that in step 1, finding the best Xk among all of the 
solutions of the subproblems after . waiting for all subproblems to 
finish is equivalent to moving from the current extreme point to an 
adjacent extreme point such that the objective function is improved 
by the greatest amount. Statistics shows that moving to the best 
adjacent extreme point performs only moderately better than 
moving to any of the adjacent extreme points which improves the 
objective function ([DANTZIG-63]). Thus, we can use any solution Xk 

that makes Ok < 0. In this way, there is less chance that a fast 
subproblem waits for a slow subproblem. We have several ways to 
implement this strategy. 

5.1. First Finished First (FFF) Algorithm 

Instead of finding the best solution among the subsolutions of 
all of the subproblems that make 8j < 0, we use the solution of the 
first finished subproblem that satisfies the condition. 
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In this method, every time a subproblem Sj finds its optimal 
solution Xj, it checks to see whether or not this solution makes 8j = 

uqaj < 0. When its solution satisfies the condition, it proceeds to step 
2 and signals all other subprocesses to stop searching. When step 5 
finishes, a new cycle starts. The modified algorithm is illustrated in 
Figure 7 (a), and the timing chart of the algorithm is sketched is 
Figure 7 (b) (where the circle indicates when the qualified solution 
Xk 1s found). 

pi,k>j 
p 1 p2 ......... pi ........ pn 

get y1 i <> 

uodate LI· s w 

(a) (b) 

Figure 7. Parallel FFF Algorithm. 

5.2. Tightly Synchronous (TS) Algorithm 

step 1 

step 2 
step 3 
step 4 
step 5 

We further notice that the minimal solution of one subproblem 
may not be as good as the non-minimal solutions of the other 
subproblems. For example, it is possible that a subproblem that 
takes a very long time to find a minimal solution may have already 
found a non-minimal solution that is better than the minimal 
solutions of the other subproblems. When this happens , the FFF 
algorithm will ignore these good solutions. 

In the TS algorithm described here , instead of determining 
optimal solutions, each subproblem sends its current solution (not 
necessarily optimal) to the central process after some number of 
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iterations. The central process selects from the n solutions the one 
that makes Oj = uqaj negative if one exists, or el se repeatedly invokes 
the subproblems. If we assume that the subproblems are the same 
size, then all subproblems will take equal time fo finish a single 
iteration , and this algorithm can synchronize all subproblems after 
they perform an equal amount of computation . The TS algorithm is 
shown in Figure 8 (a). The timing of the algorithm can be sketched 
as in Figure 8 (b) (where the circle indicates when the qualified 
solution Xk is found). 

pi, k>j 

p 1 p2 ......... pi ........ pn 

• 9ety ,,i<>D 

uodate u, s w 

(a) (b) 

Figure 8. Parallel TS Algorithm. 

5.3. Lookahead First Finish First (FFFL) Algorithm 

step 1 
step 2 

step 3 
step 4 
step 5 

The consideration that leads to the lookahead algorithms is the 
observation that the optimal solution of a subproblem constantly 
changes as the objective vector of the subLPs changes. A non-
minimal solution for one objective vector may be optimal or very 
close to optimal for another objective vector. This suggests that, 
during steps 2 to 5 of the central iteration, the subproblems should 
not wait for the next iteration to start. Instead, the subprocesses can 
keep optimizing on the current objective functions, and when the 
next iteration starts, the solutions of some subproblems may already 
be good enough to satisfy the condition Oj < 0. So step 2 of the next 
iteration of the central problem can start immediately . 



The lookahead algorithms use n processes (the subprocesses) 
for the n subproblems. An n+ I 'th process (the central process) 
controls the central problem. These processes all share a global 

16 

value uq, and each subprocess Sj maintains the values Oj and Xj which 
can be are accessed by the central process . 

Each subprocess calculates its own objective vector from the 
global Uq that is updated by the central process. ~ When it finds a 

solution with 8j < 0, it recommends the solution (Xj and oj) to the 
central process. The central process periodically checks whether or 

not any of the Oj is negative, and once it finds such a Oj, it starts steps 
2 to 5. Meanwhile, the subproblems continue optimizing on the 
current objective vectors. When the central process finishes 
updating Uq, the subproblems update their objective vectors. 

I 

The Lookahead FFF algorithm is based on the FFF algorithm. 
When a subproblem finds its optimal solution that makes Oj < 0, it 
will not signal the other subproblems to stop, so the other 
subproblems continue running as the central problem proceeds. The 
algorithm is shown in Figure 9 (a). The timing of the algorithm 1s 
shown in Figure 9 (b ). 

p1...pL.pn p I p2 .... -... Pi ........ pnpA 

Iteration I 
step 1 

step 2 
step 3 

step 4 
step s·uq 

Iteration I+ I step S'ul..q-1 

(a) (b) 

Figure 9. Lookahead FFF Algorithm. 
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5.4. vVypior's Approach 

Wypior' s approach is a variation of the lookahead FFF 
algorithm. In this approach, n processes, p 1, p2 , ... , pn, are assigned 
to solve the n subproblems, and these processes continually perform 
steps 1 a) to c), send the result aj's to another process PA, and wait 
for the uq before performing the next iteration. Process PA 
continually collects aj's and performs steps 1 d) and 2, and if it finds 

an ak that makes Dk < 0, it sends _the ak to yet another process PB. 
Process PB continually asks for ak from PA and performs steps 3, 4, 
and 5. This situation can be described in Figure 10 (a) . The timing 
of the algorithm is shown in Figure 10 (b). 

p 1 p2 _____ pi-······ pnpApB 

Iteration I 

rmmrmmr,m,:'rmmrtmt-~ 

Iteration I+ 1 

(a) (b) 

Figure 10. Wypior's Algorithm. 

step I' 

step f' 61..n 
step 2 

step 3 

step 4 

step s·uq 

step S"ul..q-1 

The reason for using process PA is that passing the solutions 
from pi, i=l, ... ,n, to PB may take some non-trivial time, especially in a 
message passing system. Using PA, the collection of the solutions 
from pr , ... ,pn can be overlapped with the update of u done by PB. 

One drawback of this method is that PA can be the bottleneck 
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of the algorithm, as all of oj's are calculated in PA sequentially 

without overlapping with any other processes and each Oj needs an 
inner product operation. An improvement is to let each subproblem 
solver calculate Oj and send Oj and aj to PA. In this way, PA only 

needs to determine Ok= min(oj) and send ak to PB. Even with this 
modification, we see that among all of the vector aj's sent to PA, only 
ak is used in later computation. We can further modify the algorithm 

so that each process pj only sends o j to PA, and when PA finds Ok, it 
sends k to process pk, asking for the vector ak; and Pk directly sends 
ak to PB. With these two modifications, only very few data are 
shared among pj's and PA and PB. With the decreased data sharing, 
however, the consideration that leads to the necessity of PA is no 
longer valid, and we can merge PA to PB, thus resulting in the 
lookahead FFF algorithm. For this reason , we consider Wypior's 
algorithm less efficient than the lookahead FFF algorithm and will not 
evaluate Wypior's algorithm further. 

__, 

5.5. Lookahead Tightly Synchronous (TSL) Algorithm 

p1...pi...pn pA p 1 p2 ····-···Pi ........ pnpA 

Iler I 

Iler I+1 

(b) 

Figure 11. Lookahead TS Algorithm. 

step I 
step 2 

step 3 

step 4 
uq 

u I. .q-1 

Another lookahead algorithm is based on the tightly 
synchronized algorithm. In this algorithm, each subproblem checks 
to see whether or not its current solution makes Oj < 0 after a 
constant number of iterations . When one such solution is found, the 
subproblems continue running as the central problem proceeds. The 



algorithm is shown in Figure 11 (a). The timing of the algorithm 1s 
shown rn Figure 11 (b). 

5.7. Performance Comparison 

19 

Experiment is performd on the parallel algorithms and the 
sequential algorithm on the Sequent/Balance machine using 8 
processors. The input LPs consist of n=3 to 20 subproblems, each 
with m=2+2n/3 constraints and v=2m variables. For each fixed triple 
(n,m,v), 5 different cases are run and averaged. Figure 12. plots the 
speedup of the parallel algorithms over the sequential algorithm. 
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Figure 12. Speedup of Parallel Algorithms Over the Sequential 
Algorithm. 
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The parallel TS algorithm has a peak speedup of more than 
twice the number of processors used (see Figure 12). The parallel 
FFF algorithm has a speedup a little less than the linear speedup. 
The Lookahead algorithms (FFFL and TSL) have nearly linear 
speedup in the number of processors used. All of the algorithms 
here perform much better than the parallel SF algorithm, which has 
only half of linear speedup. 

5.8. Fast Sequential Algorithm 

In the above, we showed that the parallel TS algorithm 
achieves more than 2*P speedup over the sequential algorithm. This 
implies that the TS criterion can reduce the execution time of the 
sequential algorithm by half as well. In order to see whether or not 
this is the case, we implemented a particular version of the 
sequential algorithm which uses the TS criterion. Figure 13 (a) plots 
the execution times of the two sequential algorithms, and Figure 13 
(b) plots the speedup of the TS algorithm over the two sequential 
algorithms . 
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From Figure 13 (a), the sequential algorithm using TS criterion 
runs twice as fast as the normal sequential algorithm. Figure 13 (b) 
shows that the parallel TS algorithm has nearly linear speedup over 
the sequential TS algorithm and nearly twice the linear speedup over 
the sequential SF algorithm. 

5.9. Performance vs. Number of Processors 

In order to observe the behavior of the parallel TS algorithm 
when the number of processors changes, we run the TS parallel 
algorithm using 3 to 8 processors. The 5 input LPs are fixed to have 
16 subproblems, each with 12 constraints and 24 variables. Figure 
14 plots the corresponding speedup. 
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Figure 14. Speedup of Parallel TS Over Sequential TS and 
SF When Number of Processors Changes From 
Three to Eight. 

From · Figure 14, we see that, as the number of processors 
increases from 3 to 8, the parallel TS algorithm has nearly linear 
speedup over the sequential TS algorithm, and the parallel TS 
algorithm has improved the performance of the normal sequential 
algorithm by twice the linear speedup. 

• I 
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5.10. Removing Last Round Effects 

In Figure 13 (b), a drop-off in speedup occurs when the 
number of subproblems goes from P to P + 1, where P is the number 
of processors used . This because when the N /subproblems are 
executed by P processors in parallel, they are solved in 1N/Pl rounds, 
and in the last round only N MOD P subproblems are solved by N 
MOD P processors and the remaining processors are left idle . 

We also observe last round effects in Figure 14. For the input 
LPs of 16 subproblems, the parallel TS algorithm has the best 
performance when the number of processors used is a divisor of 16. 
For example, when 4 (a divisor of 16) processors are used, the 
parallel TS algorithm has a speedup of 3.72 over the sequential TS 
algorithm . But when the number of processors increases from 4 to 7, 
the speedup only increases from 3 .72 to 5.0. When the number of 
processors changes from 7 to 8 (a divisor of 16), the speedup jumps 
from 5 .0 to 7.28. 
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Figure 15. Balanced Performance of Parallel TS Algorithm. 

This is the typical processor load balance problem ([COFFMAN-
76]). The performance drop-off can be prevented using the Loop 



Spreading technique described in [\VU-88b]. Figure 15 shows the 
balanced speedup of the parallel TS algorithm over sequential TS 
algorithm and the efficiency of the parallel TS algorithm when loop 
spreading is used. 

Comparing the results in Figure 15 (a) to those in Figure 13 (b), 
we see that the performance of the parallel TS algorithm is quite 
stable, showing an efficiency of around 90%, without drop-off when 
the number of subproblems changes. 

Figure 16 shows the balanced speedup of the parallel TS 
algorithm with loop spreading over sequential SF and TS algorithms 
when the number of processors changes from 3 to 8. From Figure 16 
we see that the performance of the parallel TS algorithm is always 
more than two times the linear speedup when compared to the 
sequential algorithm and is very close to linear speedup over the fast 
sequential algorithm. 
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Figure 16. Speedup of Spread TS over sequential TS and SF 
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Eight. 

5.11. Why TS algorithm is Good 

The evolution from SF to FFF and then to the TS algorithm aims 
at speeding up the step 1 of the decomposed simplex algorithm. We 
call this optimization local optimization . The side effect of this 
optimization is that the time saving in step 1 might increase the 



execution time of the step 1 in the next central iteration. Also, it 
might increase the total number of central iterations (and also the 
total number of subiterations) required to solve the given LP. We 
call the minimization of the total number of sub/central iterations 
the global optimization. 
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To see the relative goodness of the three algorithms in local 
and global optimization, we collected the• number of subiterations in 
central iterations and the total number of central iterations for each 
of the algorithms, shown in Figure 17 (a) and Figure 17 (b ). 
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Figure 17. Numbers of Subiterations and Total Numbers 

of Central Iterations. 

From Figure 17 (a), we see that the TS algorithm has only about 
half of the total number subiterations used by the SF algorithm, and 
the SF and FFF algorithms have similar total numbers of 
subiterations. From Figure 17 (b ), we further see that all three 
algorithms have similar numbers of central iterations. It is clear 
that algorithm TS is not only the best in local optimization but also 
the best in global optimization. This conforms our experimental 
results. 



6. Conclusions 

Direct parallelization of the sequential algorithm yields very 
limited performance improvement using multiple processors. For 
example, without changing the algorithm itself, the performance of 
the sequential decomposed simplex algorithm can be improved by 
only half the number of processors used. , 

We discovered four new ways to parallelize the decomposed 
simplex algorithm. The parallel TS algorithm can achieve more than 
2*P times performance improvement over the sequential algorithm 
using P processors. Furthermore, sequential execution of the TS 
algorithm runs more than 2 times faster than the original sequential 
algorithm. 
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