
88-70-5

5C~EflCE

Parallel Algorithms for Decomposed Linear Programs

Youfeng \•Ju
T.G. Lev1is

Department of Computer Science
Oregon State University
Corvallis, Oregon 97331

Parallel Algorithms for Decomposed Linear Programs

YoufengWu
Ted G. Lewis

Computer Science Dept.
Oregon State University

Corvalis, OR. 97331
(503)-754-3273

lewis@mist.cs.orst.edu

November 1988

Parallel Algorithms for
Decomposed Linear Programs

ahstract

New parallel algorithms for solving the decomposed linear
programs are developed . Direct parallelization of the sequential
algorithm results in very limited performance improvement
using multiple processors. By redesigning the algorithm, we
achieved more than 2 *P times performance improvement over
the sequential algorithm, where P is the number of processors
used in parallel computation . Furthermore, a particular variation
of the sequential algorithm runs more than 2 times faster than
the original sequential algorithm. The new parallel algorithm
linearly speedups the new sequential algorithm .

1. Introduction

People have been looking for fast Linear Program solvers for a
long time because linear programs model many real world
applications and solving linear programs is computationally intensive
([DM"'TZIG-63], [BEN-68], [CHARl\TES-80], [GROTSCHL-81]). New
sequential linear program solvers such as Karmarkar's algorithm
([KARMARKAR-84]) reduce the worst-case time complexity to a
polynomial bound. But results of recent computational study ([GILL-
85]) cast doubt on Karmark ar's claim that his algorithm will replace
the simplex algorithm.

An alternate approach to solving computationally difficult
linear programs is to devise parallel solutions that run on fast
parallel machines ([WYPIOR -77], [FINKEL-87], [THOMPSON-87],
[P ANG -87] , [CHOI-88]) .

In [WU-88a], we parallelized the revised two-phase simplex
algorithm with linear performance improvement in terms of number
of processors used. Here, we study parallel algorithms for solving
decomposed linear progr ams.

Direct parallelization of the sequential algorithm often results
m very limited performance impro vement using multiple processors

2

because a sequential algorithm is designed without parallel
consideration in mind. \Vhen we were parallelizing the decomposed
simplex algorithm, we found that, without changing the algorithm
itself, the sequential decomposed simplex algorithm can be improved
by only half of the number of processors used. But by redesigning
the algorithm, we achieved more · than 2

0
*P times performance

improvement over the sequential algorithm, where P is the number
of processors used in parallel computation. F1:_rthermore, a particular
variation of the sequential algorithm runs more than 2 times faster
than the original sequential algorithm. The new parallel algorithm
linearly speedups the new sequential algorithm.

2. Background

A Linear Program (LP) is a system that finds vector x which

m1n1m1zes
subject to

T
z = C x,
Ax = b, x;;;:::: 0,

where A is an m by n matrix (n > m), c is an n element cost vector, b
is a vector of length m, and x is an unknown vector of length n. The

superscript T denotes vector transposition. The equation Ax = b
stands for m constraints on the unknowns. An example of an LP is:

Find
m1mm1zes
subject to

(x 1, x2, x3) that

Z = 2x 1 + X2 + X3

2x 1 + x2 - 3x3 = 0
Xl + X2 + X3 = 1
Xl, X2, X3;;;:::: 0

T T
For this example, c = (2, 1, 1), b= (0, 1), m = 2, n = 3, and

1
1

Geometrically, the constraints Ax = b and x ;;;:::: 0 define a
convex polyhedron of dimension m in an n dimensional space. The
polyhedron of the above LP is shown in Figure 1.

r

3 1
p1(0, -, -)

4 4

x2

x3

Ax = b, x ~ 0

Figure 1. Convex Polyhedron in 3-space Showing Region of
Feasible Solutions to Sample Problem.

The end points p1 and p2 in Figure I are the extreme points of
the system. An extreme point is a solution that has no more than m
non-zero components. It can be shown that if an LP has a minimal
solution, then one of its extreme points must be a minimal solution.
In the above example, p1 is the minimal solution.

The simplex algorithm [DANTZIG-63] solves an LP by starting
from an extreme point and repeatedly going to the next adjacent
extreme point that decreases the z value, until it goes to an extreme
point where the z value can not be further decreased.

A1 A2 I I An b

D1 bl

D2 I b2

Dn bn

Figure 2. Pattern of a Decomposed Linear Program.

The decomposed linear programs are a special class of LPs in
\vhich the coefficient array A contains all zeros except in the first
few rows and along diagonal blocks according to the pattern shown
rn Figure 2, where for j=l..n, A j is an m by nj matrix; D j is an mj by
n j matrix; b j is an mj vector; and b is an m vector.

An example of a decomposed LP 1s:

Find (Xl, X2, x3, x4) that

m1n1m1zes
subject to

z = 2x1 + x2 + x3 + 5x4
2 X 1 + X2 - 3 X3 + X4 = 0

Xl + X2 = 1
3x1 - X2 = 0

X3 + 5x4 = 1

In this example,

A1 = (2, 1), A2 = (-3, 1)

D2 = (1, 5)

A ..,.

The decomposition principle of Dantzig and Wolfe [DANTZIG-60,
61] is an elegant method for solving decomposed LPs. According to
this principle, an input decomposed linear program is treated as the
central program, and the diagonal blocks are treated as the
coefficient matrices of sublinear programs. Each central iteration
first determines the solutions of the sublinear programs and then
uses the solutions to determine its own pivot operation. Although
there are many sequential implementations of the principle ([ADLER-
73], [BEALE-65], [KUTCHER-73], [HO-81]), there are very few
discussions on the parallelization of the algorithm ([WYPIER-77]).

5

Performance Evaluati on Metrics

There are two ways that a program can be parallelized: 1)
implicit parallelization ([KUCK-72, 76, 81, 84]), in which the parallel
algorithm is the same as the sequential algorithm except that certain
statements of the sequential algorithm are allowed to be executed m
parallel; 2) explicit parallelization, in which the parallel algorithm
employs a different approach to the problem than the sequential
algorithm.

Implicit parallelization is limited because the original program
was designed with sequential semantics in mind. Only very few
programs can be implicitly parallelized with nearly linear speedup,
and in most cases an efficiency of 10% is considered quite
satisfactory ([LEE-85]), as stated in [WOLFE-87], "users rarely achieve
the peak speed of the machine unless they are willing to rewrite
their programs."

Explicit parallelization requires that a programmer redesign the
sequential algorithm to exploit parallelism in both the problem and
the underlying parallel machine. However, explicit parallelization 1s
a difficult job because the programmer has to think in terms of
multiple threads of program execution and take care of many
possible interactions among · the parallel processes.

For a parallel algorithm (PA) obtained through implicit
parallelization from a sequential algorithm (SA), the performance
improvement of PA over SA can be measured by the speedup of PA
over SA and the goodness of PA can be measured using the efficiency
of PA. Formally, if SA takes Ts time units to execute and PA takes
T p(i) time units to execute using i parallel processors, then the
speedup of PA over SA is defined as:

S p(i) = Ts/T p(i)

and the efficiency of the parallel program usmg 1 processors 1s
defined as:

Ep(i) = Tp(l)/(i*Tp(i)).

6

\Ve note that Sp (i) ~ i in the implicit parallelization case. This
may not be true in the case of explicit parallelization. Assume SA is
parallelized explicitly through algorithm changes to PA. Then PA can
be executed sequentially by using only one processor. Clearly, we
can rewrite PA as another sequential program (SA') using sequential
constructs as if the program is executed by only one processor. Now
suppose PA is "obtained" from SA' through implicit parallelization,
and we compute the speedup of PA over SA' using i processors. The
speedup of PA over SA' will be ~ i. However, SA' can run many times
faster than SA. If SA' runs F (> 1) times faster than SA, then the
speedup of PA over SA can be as high as F*i.

For both implicit and explicit parallelization, Ep(i) ~ 1. The
efficiency of a parallel program is a variable of the number of
processors used and is independent of which sequential program it
corresponds to.

3. Computational Procedure for Decomposed Simplex
Algorithm

Based on Dantzig-Wolfe's decomposition principle, a
decomposed simplex algorithm for solving decomposed linear
programs can be described as follows (see [WU-88c]):

Input. Ai, m*Ili matrices and Di, mi*ni matrices, i = 1, ... n; bo, an m
vectors; bi, mi vectors, i = 1, ... n; Ci, ni vectors, i = 1, ... n.

Initialization. Assume e be a vector of all 1 's.

The inverse of initial base

U =(u1, u2, ... Um+n+2) = 8 -1 = l1m+n+1 07;
L-e u

the initial base feasible solution
m

s = (s1, s2, ... , Sm+n+2) = (bo, 1, ... 1, 0, n+ I,bo);
i=l

the central left hand side vector b = (b o, 1, ... 1, 0, 0);

the initial subsolutions ex = (ex1, ex2, ... , exm+n) = (0, 0, ... ,0)

7

and the corresponding indices of the subproblems that lead to
the subsolutions w = (w1, w2, ... , Wm+n) = (0, 0, ... ,0), meaning
that the initial subsolutions are not solutions of any
subproblems (sub-problems range from 1 to n); phase = 1; q =
m+n+2.

Iteration.

Step 1. If Sq = 0 and phase = 1, then set phase = 2, q = m+n+ 1, and
redo step 1. If sq < 0 or phase = 2, then

a) calculate Cj = (uq,l..mAj + Uq,m+n+lCj), for j = 1, ... ,n.

b) using the two-phase revised simplex algorithm to solve
sublinear problems Sj, for j=l, ... , n,

mm1m1ze
subject to

CjXj,

AjXj=bj and Xj~O

for optimal solutions or extreme homogeneous solutions (if Sj is
unbound) Xj, j = 1, .. , n. If any of the subproblems is infeasible,
the original problem is infeasible, stop.

c) If Xj is an optimal solution of Sj, make aj = (AjXj,0, ... ,0,
1,0, ... ,0,cjXj,O), otherwise, make aj = (Ajxj,0, ... ,0, 0,0, ... ,0,cjXj,O).

d) For j = 1, ... , n, calculate . Oj = Uq * aj. If phase = 2 then for j =

1, ... , n, calculate Aj = Um+n+2 * aj and if Aj ;e O then set Oj = 0.

Step 2. Calculate Ok = min(8j I j = 1, ... , n). If Ok 2: 0 and phase = 1,

then the original LP is infeasible, stop. If Ok 2: 0 and phase = 2,
then sq is the optimal solution and -sq is the minimal value of
the original LP, exit. Otherwise, ak is the new column to enter
the base.

Step 3. Compute Yi = Ui * ak, i = 1, ... , q.

Step 4. If all Yi $ 0 and phase =1, then the original LP is infeasible,

stop. If all Yi ~ 0 and phase =2, then the original LP is
unbounded, stop. Otherwise, calculate

and at is the column to be removed from the base.

Step 5. Calculate the new values of the variables in the base
solution:

Wt= k, Sk = 8
Si = Si-8Yi (i:;=k, i =1, .. ,m+n+2)
eXk = Xk,

and update U, the inverse of the base:

Uij = Uij - yi*Utj/Yt (i:;=t, i =1, .. ,m+n+2,j=l, .. ,m+n+2)

Utj = Utj/Yt.

Output. The optimal objective value is -sq, and the optimal feasible
solution (may not be basic) is x =(x1, ... , Xn), where Xj is
obtained from:

X = ~ S.*eX . 'L..i1 1 J n
Vw .=j
i=l 1

4. Parallelizing Decomposed Simplex Algorithm

The kernel of the procedure is the iteration of the steps 1 to 5.
The data dependency graph of the iteration is shown in Figure 3,
from which the parallelism can be easily seen as each iteration (the
central iteration) requires the solutions from the subLPs, which can
be solved independently. In addition, the calculation of y1, ... , yq and
u 1, ... , Uq can be done in parallel.

8

..
=-------,

y l y 2

w

Figure 3. Data Dependency Graph of The Decomposed
Simplex Algorithm.

9

A straightforward parallelization is to invoke the subLP solvers
in parallel and continue the central iteration when all of the subLP
solvers finish. In this algorithm (call it SF algorithm), n processes, pl,
p2, ... pn, are used and pi is assigned to solve the subproblem i in
step 1, as in Figure 4 (a). When all of the subproblems find their
solutions, the subprocesses send oi's to one of the processes (say pn)

and this process determines Ok=min(Oi). After k is determined, it 1s
broadcasted to all of the other processes, and the process pi

calculates Yi (i=l, ... m). Then, Yi1S are sent to pn. Pn determines

0t=min(Si/Yi) and broadcasts t to all of the other processes. Finally,
the process pi updates Ui (i=l , ... q), and the next iteration begins.

A timing chart of the algorithm is sketched in Figure 4 (b),
where pi represents process i, i= 1, ... n, and the circle indicates the
point in time when the optimal Xk is produced.

p1... pi ... pn-1 p 1 p2 pi pn

n(6 1.. 6 n

update Un s w

(a) (b)

Figure 4. Straightforward Parallelization Algorithm.

step 1

step 2
step 3
step 4
step 5

The straightforward algorithm seems to exploit the inherent
parallelism fairly well. However, step 2 cannot proceed until all of
the subproblems finish. As indicated by [KUNG-76], the efficiency of
this kind of synchronous algorithm is heavily affected by the
structures of the subproblems. A synchronous algorithm performs
best when the subproblems are of equal size and take the same
amount of time to finish. Even with the assumption that all
subproblems have the same number of constraints and same number
of variables, the subproblems will take a very different number of
iterations to finish, depending on the starting bases and the cost
functions. It is even possible for one subproblem to find its solution
in one iteration, while another takes exponential number of
iterations ([KLEE-76]). Each central iteration has to wait until the
slowest subproblem finishes.

The algorithm has been implemented on the Sequent/Balance
shared memory machine. We ran the algorithm using 8 processors
on randomly generated decomposed LPs of 3 to 20 subproblems.
Figure 5. plots the speedup.

f

s
p
e
e
d
u
p

8.0 ~

7.2
6.4
5.6

:: ;.'; . . . ii C '' : i

ii rd id H ~ : H H H H I
0 .0

4 6 8 10 12 14 16 18 20

sub-problems
□SF/saqSF c Linear Speedup

Figure 5. Speedup of ·straightforward Algorithm.

11

From Figure 5, we see that the speedup is much less than the
number of processors used. The speedups is at _,most 5 times using 8
processors (with an efficiency of less than 65%).

To elaborate on this inefficiency further, we cite the
experimental data of [LINDBERG-84], which shows that, to solve the
assignment problem of d dimensions (2d-1 constraints) using the
standard Simplex algorithm, the number of simplex iterations follows

the normal distribution with mean µct = 1.1 Odl .57, and standard

derivation crct = 0.33dl.51. According to this distribution, an
assignment problem of d dimensions needs in the average of

1.1 Od 1.57 iterations to solve. Assume the number of iterations for N
assignment problems of d dimensions are T1, T2, ... , TN, respectively.
Solving them sequentially requires a total of Ts= T1 + T2 + ... +TN=

N * µct iterations, and solving them in parallel using N proces sors needs
T p = max (Tl, T2, ... , TN) iterations . The efficiency using N processors
1s:

T
E(N) = s

N*T p

N *µ µ
= d =-d

N*T T p p

To evaluate E(N), instead of determining the mean value of Tp
analytically, we used simulation to estimate E(N). The expected
efficiency for N = 10, d = 10 is 65.3%. This low efficiency matches

12

our experimental result well.

Because the big variance (crct) on the number of simplex
iterations does not allow all subproblems to find their minimal
solutions at the same time, new approaches or algorithm changes are
needed to achieve better performance.

Para11elizing Subproblem Solvers.

An alternative way to parallelize the decomposed simplex
algorithm is to parallelize individual subproblem solvers (see [WU-
88a]). In this algorithm , step I) can be solved as follows:

Perform step I a) in parallel;
Solve the n subproblems in b) one after the other in sequence
and each subproblem is solved by multiple processors m
parallel ;

. Execute step I c) and d) in . parallel.

In this algorithm, no subproblem needs to wait for the other
subproblems to finish. A timing char~ for the algorithm is shown in
Figure 6 (a). Figure 6 (b) plots the speedup of . the algorithm using 8
processors on randomly generated decomposed LPs of 3 to 20
subproblems.

pl p2 pl pn

sub-prob 1 em 1

sub-prob 1 em 2

sub-problem 3 step I

sub-prob 1 em n

step 2
step 3
step 4
step 5

s
p
e
e
d
u
p

8,0

7.2

6.4

5,6

4.8

4.0

3.2

2.4

1.6

0.8

6 8 10 12 14 16 18 20

sub-problems
□ SFPSiseqSF c l.i1ear Speed!p

(a) (b)

Figure 6. Subsolver Parallelizing Algorithm.

r

The performance of the algorithm is even worse than the
straightforward algorithm. The reasons for the inefficiency are that
I) the subproblems are usually of relatively small size compared to
the original problem and we know from [WU-88a] the performance
drops when the input data size decreases; 2) in this algorithm, each
subiteration needs a fork-join of processes (an invocation of the PAR
construct, which costs CPU time), while, the straightforward algorithm
requires a fork-join only for each central iteration; 3) When the sizes
of the subproblems are not the multiple ·of the number of processors,
lots of last round effects are encountered, leaving several processors
idle at the end of solving each subproblem. From these we conclude
that parallelizing the subsolvers is not an appropriate approach to
improve performance.

These two parallelizing approaches , have one thing in common,
that is, they both extract the parallelism in the sequential algorithm
without modification to the algorithm itself. Better performance may
result if we adapt the algorithm to parallel execution.

5. Parallel Algorithms for Decomposed Linear Programs

We note that in step 1, finding the best Xk among all of the
solutions of the subproblems after . waiting for all subproblems to
finish is equivalent to moving from the current extreme point to an
adjacent extreme point such that the objective function is improved
by the greatest amount. Statistics shows that moving to the best
adjacent extreme point performs only moderately better than
moving to any of the adjacent extreme points which improves the
objective function ([DANTZIG-63]). Thus, we can use any solution Xk

that makes Ok < 0. In this way, there is less chance that a fast
subproblem waits for a slow subproblem. We have several ways to
implement this strategy.

5.1. First Finished First (FFF) Algorithm

Instead of finding the best solution among the subsolutions of
all of the subproblems that make 8j < 0, we use the solution of the
first finished subproblem that satisfies the condition.

I •
I

14

In this method, every time a subproblem Sj finds its optimal
solution Xj, it checks to see whether or not this solution makes 8j =

uqaj < 0. When its solution satisfies the condition, it proceeds to step
2 and signals all other subprocesses to stop searching. When step 5
finishes, a new cycle starts. The modified algorithm is illustrated in
Figure 7 (a), and the timing chart of the algorithm is sketched is
Figure 7 (b) (where the circle indicates when the qualified solution
Xk 1s found).

pi,k>j
p 1 p2 pi pn

get y1 i <>

uodate LI· s w

(a) (b)

Figure 7. Parallel FFF Algorithm.

5.2. Tightly Synchronous (TS) Algorithm

step 1

step 2
step 3
step 4
step 5

We further notice that the minimal solution of one subproblem
may not be as good as the non-minimal solutions of the other
subproblems. For example, it is possible that a subproblem that
takes a very long time to find a minimal solution may have already
found a non-minimal solution that is better than the minimal
solutions of the other subproblems. When this happens , the FFF
algorithm will ignore these good solutions.

In the TS algorithm described here , instead of determining
optimal solutions, each subproblem sends its current solution (not
necessarily optimal) to the central process after some number of

15

iterations. The central process selects from the n solutions the one
that makes Oj = uqaj negative if one exists, or el se repeatedly invokes
the subproblems. If we assume that the subproblems are the same
size, then all subproblems will take equal time fo finish a single
iteration , and this algorithm can synchronize all subproblems after
they perform an equal amount of computation . The TS algorithm is
shown in Figure 8 (a). The timing of the algorithm can be sketched
as in Figure 8 (b) (where the circle indicates when the qualified
solution Xk is found).

pi, k>j

p 1 p2 pi pn

• 9ety ,,i<>D

uodate u, s w

(a) (b)

Figure 8. Parallel TS Algorithm.

5.3. Lookahead First Finish First (FFFL) Algorithm

step 1
step 2

step 3
step 4
step 5

The consideration that leads to the lookahead algorithms is the
observation that the optimal solution of a subproblem constantly
changes as the objective vector of the subLPs changes. A non-
minimal solution for one objective vector may be optimal or very
close to optimal for another objective vector. This suggests that,
during steps 2 to 5 of the central iteration, the subproblems should
not wait for the next iteration to start. Instead, the subprocesses can
keep optimizing on the current objective functions, and when the
next iteration starts, the solutions of some subproblems may already
be good enough to satisfy the condition Oj < 0. So step 2 of the next
iteration of the central problem can start immediately .

The lookahead algorithms use n processes (the subprocesses)
for the n subproblems. An n+ I 'th process (the central process)
controls the central problem. These processes all share a global

16

value uq, and each subprocess Sj maintains the values Oj and Xj which
can be are accessed by the central process .

Each subprocess calculates its own objective vector from the
global Uq that is updated by the central process. ~ When it finds a

solution with 8j < 0, it recommends the solution (Xj and oj) to the
central process. The central process periodically checks whether or

not any of the Oj is negative, and once it finds such a Oj, it starts steps
2 to 5. Meanwhile, the subproblems continue optimizing on the
current objective vectors. When the central process finishes
updating Uq, the subproblems update their objective vectors.

I

The Lookahead FFF algorithm is based on the FFF algorithm.
When a subproblem finds its optimal solution that makes Oj < 0, it
will not signal the other subproblems to stop, so the other
subproblems continue running as the central problem proceeds. The
algorithm is shown in Figure 9 (a). The timing of the algorithm 1s
shown in Figure 9 (b).

p1...pL.pn p I p2 -... Pi pnpA

Iteration I
step 1

step 2
step 3

step 4
step s·uq

Iteration I+ I step S'ul..q-1

(a) (b)

Figure 9. Lookahead FFF Algorithm.

17

5.4. vVypior's Approach

Wypior' s approach is a variation of the lookahead FFF
algorithm. In this approach, n processes, p 1, p2 , ... , pn, are assigned
to solve the n subproblems, and these processes continually perform
steps 1 a) to c), send the result aj's to another process PA, and wait
for the uq before performing the next iteration. Process PA
continually collects aj's and performs steps 1 d) and 2, and if it finds

an ak that makes Dk < 0, it sends _the ak to yet another process PB.
Process PB continually asks for ak from PA and performs steps 3, 4,
and 5. This situation can be described in Figure 10 (a) . The timing
of the algorithm is shown in Figure 10 (b).

p 1 p2 _____ pi-······ pnpApB

Iteration I

rmmrmmr,m,:'rmmrtmt-~

Iteration I+ 1

(a) (b)

Figure 10. Wypior's Algorithm.

step I'

step f' 61..n
step 2

step 3

step 4

step s·uq

step S"ul..q-1

The reason for using process PA is that passing the solutions
from pi, i=l, ... ,n, to PB may take some non-trivial time, especially in a
message passing system. Using PA, the collection of the solutions
from pr , ... ,pn can be overlapped with the update of u done by PB.

One drawback of this method is that PA can be the bottleneck

18

of the algorithm, as all of oj's are calculated in PA sequentially

without overlapping with any other processes and each Oj needs an
inner product operation. An improvement is to let each subproblem
solver calculate Oj and send Oj and aj to PA. In this way, PA only

needs to determine Ok= min(oj) and send ak to PB. Even with this
modification, we see that among all of the vector aj's sent to PA, only
ak is used in later computation. We can further modify the algorithm

so that each process pj only sends o j to PA, and when PA finds Ok, it
sends k to process pk, asking for the vector ak; and Pk directly sends
ak to PB. With these two modifications, only very few data are
shared among pj's and PA and PB. With the decreased data sharing,
however, the consideration that leads to the necessity of PA is no
longer valid, and we can merge PA to PB, thus resulting in the
lookahead FFF algorithm. For this reason , we consider Wypior's
algorithm less efficient than the lookahead FFF algorithm and will not
evaluate Wypior's algorithm further.

__,

5.5. Lookahead Tightly Synchronous (TSL) Algorithm

p1...pi...pn pA p 1 p2 ····-···Pi pnpA

Iler I

Iler I+1

(b)

Figure 11. Lookahead TS Algorithm.

step I
step 2

step 3

step 4
uq

u I. .q-1

Another lookahead algorithm is based on the tightly
synchronized algorithm. In this algorithm, each subproblem checks
to see whether or not its current solution makes Oj < 0 after a
constant number of iterations . When one such solution is found, the
subproblems continue running as the central problem proceeds. The

algorithm is shown in Figure 11 (a). The timing of the algorithm 1s
shown rn Figure 11 (b).

5.7. Performance Comparison

19

Experiment is performd on the parallel algorithms and the
sequential algorithm on the Sequent/Balance machine using 8
processors. The input LPs consist of n=3 to 20 subproblems, each
with m=2+2n/3 constraints and v=2m variables. For each fixed triple
(n,m,v), 5 different cases are run and averaged. Figure 12. plots the
speedup of the parallel algorithms over the sequential algorithm.

18.0

16.2

14 .4
s 12 .6
p
e 1 0 .8
a
d
u
p

9.0

7.2
5.4

18.0

1 6.2

14.4

12.6

10.8

9.0
b-~_,_ __)-o-{"o_-Q--!,._...-0 7.2

3.6 3.

1. 8 1.

o. o.u.j.l~+'-"<~u+--~+-'-'+"""+'-'+"-'+"""+=+-u+"-~~o. ..r.;;,.u,+JJ~-"-'+-L.l.f-'J4-'-"'-+--""-t-~-4J-Ll""+~"'f-l'-~.l.4"

4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
sub-problems . # sub-problems

D FFF/seqSF □ Linear Speedup OTS/seqSF □ Linear Speedup

18 .0
18.0

16 .2

14 .4
s
p 12.6

·1 6.2

·14.4

·12 .6

·1 0.8
e 10 .8
e 9.0

7.2

9.0

d
u
p 5.4

3.6

,,_-c,---;::,-.o.-c-~C,--V.,~-!>:4,j-o-H;:44-:-;~: 7.2

:~: 5.4
:: ,...
·.- .::i . ·,.

1.8 :·:. 1.

O.O~J+a.1.1.+J-4.J..4.a~i..µ...i.1-a1--4-.1.1.+J.-4a..1+-U-1-.JJ..1-JLJ.+.J.J4--L1-j;.l.4.j.O • ..-4-'~4'-'-l'-Ll+'-'+'-~+"-+.J...4-'~+-'-'+~'4-"+--',~

4 6 8 1 0 1 2 1 4 1 6 1 8 20 4 6 8 10 12 14 16 18 20

sub-problems

D FFFUseqSF □ Linear Speedup

sub-problems

D TSUseqSF □ Linear Speedup

Figure 12. Speedup of Parallel Algorithms Over the Sequential
Algorithm.

20

The parallel TS algorithm has a peak speedup of more than
twice the number of processors used (see Figure 12). The parallel
FFF algorithm has a speedup a little less than the linear speedup.
The Lookahead algorithms (FFFL and TSL) have nearly linear
speedup in the number of processors used. All of the algorithms
here perform much better than the parallel SF algorithm, which has
only half of linear speedup.

5.8. Fast Sequential Algorithm

In the above, we showed that the parallel TS algorithm
achieves more than 2*P speedup over the sequential algorithm. This
implies that the TS criterion can reduce the execution time of the
sequential algorithm by half as well. In order to see whether or not
this is the case, we implemented a particular version of the
sequential algorithm which uses the TS criterion. Figure 13 (a) plots
the execution times of the two sequential algorithms, and Figure 13
(b) plots the speedup of the TS algorithm over the two sequential
algorithms .

6934060 18.0 .
6265672 16.2

5567264 s
14.4

m m6656 p 12.6

e mom e 10.8

3492040 e
d

9.0

m 2H3532 7.2
u

s 2095224 p 5.4 .
) 1396316 3.6

698406 1.8

0.0

345678 9 10 11 12 13 H 15 16 17 18 19 20 4 8 10 12 14 16 1 a

subs # sub-problems
osiq S.C csiqTS [ITS/seq TS c TSlseqSF ♦ 2'Line.r Sp~ IUH~

(a) (b)
Figure 13. Comparison of SF(fS Sequential Algorithms.

' I

21

From Figure 13 (a), the sequential algorithm using TS criterion
runs twice as fast as the normal sequential algorithm. Figure 13 (b)
shows that the parallel TS algorithm has nearly linear speedup over
the sequential TS algorithm and nearly twice the linear speedup over
the sequential SF algorithm.

5.9. Performance vs. Number of Processors

In order to observe the behavior of the parallel TS algorithm
when the number of processors changes, we run the TS parallel
algorithm using 3 to 8 processors. The 5 input LPs are fixed to have
16 subproblems, each with 12 constraints and 24 variables. Figure
14 plots the corresponding speedup.

18 .0

16.

H.4
s
p 12.6

e 10.8

e 9 .0
d

7.2 u
p 5.4

3.6

1.8

0.0

6

processors
o paraTS/seqSF cparaTS/seqTS + 21inear speedup ■ linea-sp-eedup

Figure 14. Speedup of Parallel TS Over Sequential TS and
SF When Number of Processors Changes From
Three to Eight.

From · Figure 14, we see that, as the number of processors
increases from 3 to 8, the parallel TS algorithm has nearly linear
speedup over the sequential TS algorithm, and the parallel TS
algorithm has improved the performance of the normal sequential
algorithm by twice the linear speedup.

• I

22

5.10. Removing Last Round Effects

In Figure 13 (b), a drop-off in speedup occurs when the
number of subproblems goes from P to P + 1, where P is the number
of processors used . This because when the N /subproblems are
executed by P processors in parallel, they are solved in 1N/Pl rounds,
and in the last round only N MOD P subproblems are solved by N
MOD P processors and the remaining processors are left idle .

We also observe last round effects in Figure 14. For the input
LPs of 16 subproblems, the parallel TS algorithm has the best
performance when the number of processors used is a divisor of 16.
For example, when 4 (a divisor of 16) processors are used, the
parallel TS algorithm has a speedup of 3.72 over the sequential TS
algorithm . But when the number of processors increases from 4 to 7,
the speedup only increases from 3 .72 to 5.0. When the number of
processors changes from 7 to 8 (a divisor of 16), the speedup jumps
from 5 .0 to 7.28.

s
p
e
e
d
u
p

20

1 a

16

14

12

10

2

0 --------'"'t-"'-1--"+'""t-",~
B 10 12 H 16 18 20

I sub-problems
Ds?'ei.%'seqTS c~e.:i&'s.~ ,rtm ~~ 1~-u~

(a)

E
f
f
i
C

e
n
C

y

1.0

6 8 10 12 14 16 18 20

sub-problems
o Effeciency or SfXead TS

(b)
Figure 15. Balanced Performance of Parallel TS Algorithm.

This is the typical processor load balance problem ([COFFMAN-
76]). The performance drop-off can be prevented using the Loop

Spreading technique described in [\VU-88b]. Figure 15 shows the
balanced speedup of the parallel TS algorithm over sequential TS
algorithm and the efficiency of the parallel TS algorithm when loop
spreading is used.

Comparing the results in Figure 15 (a) to those in Figure 13 (b),
we see that the performance of the parallel TS algorithm is quite
stable, showing an efficiency of around 90%, without drop-off when
the number of subproblems changes.

Figure 16 shows the balanced speedup of the parallel TS
algorithm with loop spreading over sequential SF and TS algorithms
when the number of processors changes from 3 to 8. From Figure 16
we see that the performance of the parallel TS algorithm is always
more than two times the linear speedup when compared to the
sequential algorithm and is very close to linear speedup over the fast
sequential algorithm.

18 . 0

16 .2

14.4
s
p 12.6

e 10.8
e 9.0
d

7 .2
u
p 5.4

3 .6

1.8

0 .0

3 " 5 6 7 8

processors
o sp'8adTS/seqSF D sp'8adTS/seqTS ♦ 2" fl near speedup ■ line..- •P"••ciJp

Figure 16. Speedup of Spread TS over sequential TS and SF
When Number of Processors Changes From Three to
Eight.

5.11. Why TS algorithm is Good

The evolution from SF to FFF and then to the TS algorithm aims
at speeding up the step 1 of the decomposed simplex algorithm. We
call this optimization local optimization . The side effect of this
optimization is that the time saving in step 1 might increase the

execution time of the step 1 in the next central iteration. Also, it
might increase the total number of central iterations (and also the
total number of subiterations) required to solve the given LP. We
call the minimization of the total number of sub/central iterations
the global optimization.

24

To see the relative goodness of the three algorithms in local
and global optimization, we collected the• number of subiterations in
central iterations and the total number of central iterations for each
of the algorithms, shown in Figure 17 (a) and Figure 17 (b).

17140

15426

13712

11998

10234

8570

6856

5142

3428

1714

0

3 4 5 6 7 8 9 1011121314151617181920

sub-problems

230

69

46

23

3 4 5 6 7 8 9 10 11121314 1516 1718 19 20

sub-problems
ototal sub iters,SF clotal sub iters/FFF I total sub iters/TS o tot~ ceo itefs/SF c kll~ csn iterrJFFF + total ceo ilers/TS

(a) (b)
Figure 17. Numbers of Subiterations and Total Numbers

of Central Iterations.

From Figure 17 (a), we see that the TS algorithm has only about
half of the total number subiterations used by the SF algorithm, and
the SF and FFF algorithms have similar total numbers of
subiterations. From Figure 17 (b), we further see that all three
algorithms have similar numbers of central iterations. It is clear
that algorithm TS is not only the best in local optimization but also
the best in global optimization. This conforms our experimental
results.

6. Conclusions

Direct parallelization of the sequential algorithm yields very
limited performance improvement using multiple processors. For
example, without changing the algorithm itself, the performance of
the sequential decomposed simplex algorithm can be improved by
only half the number of processors used. ,

We discovered four new ways to parallelize the decomposed
simplex algorithm. The parallel TS algorithm can achieve more than
2*P times performance improvement over the sequential algorithm
using P processors. Furthermore, sequential execution of the TS
algorithm runs more than 2 times faster than the original sequential
algorithm.

7. References

[ALDER-73] Alder, I. and A. iilkiicii, "On the number of iterations m
Dantzig-Wolfe Decomposition." in: D.M. Himmelblan, ed.,
Decomposition of Large Scale Problems. (North-Holland,
Amsterdan, 1973) pp 181-187.

[BEALE-65] Beale, E., P. Huges, and R. Small, "Experiences in Using a
Decomposition Program," Computer : Journal 8 (1965) 13-15.

[COURTOIS-71] Courtois, P.J., F. Heymans; and D.L. Parnas, "A
Concurrent Control With Readers and Writers," CACM, Vol. 14,
No. 10, October 1971, pp667-668.

[DANTZIG-60] Dantzig, G. B., and P. Wolfe, "The Decomposition
Principle for Linear Programs," Operations Research 8, 1960,
pp. 101-111.

[DANTZIG-61] Dantzig, G. B., and P. Wolfe, "The Decomposition
Algorithm for Linear Programs," Econometrica, 29, 1961, pp .
767-778.

[DANTZIG-63] Dantzig, G. B., Linear Programming and Extensions,
Princeton University Press, Princeton, NJ (1963).

[GILL-85] Gill, P., W. Murray, M. Saunders, J. Tomlin and M. Wright,
"A Note on Interior-point Methods for Linear Programming,"
MPS Committee on Algorithms Newsletter 13, 13-18 (1985).

[FINKEL-87] Finkel, Raphael A., "Large-grain Parallelism -- Three
Case Studies," The Characteristics of Parallel Algorithms, Leah
H. Jamieson (ed), The MIT Press, 1987.

26

[HO-78] Ho, J.K., "Implementation and Application of a Nested
Decomposition Algorithm," in: \V.\V. \Vhite, ed, Computer and
Mathematic Programming (National Bureau of Standards, 1978)
pp67-76.

[HO-80] Ho, J.K., and E. Loute, "A Comparative Study of Two Methods
for Staircase Linear Programs," ACM Trans on Math. Software 6
(1980) 17-30.

[HO-81] Ho, J.K., and E. Loute, "An Advanced Implementation of the
Dantzig-Wolfe Decomposition Algorithm for Linear
Programming," Mathematical Programming 20 (May 1981) 303
326.

[KARKARMAR-84] Karkarmar, N., "A New Polynomial Time Algorithm
for Linear Programming," Proceedings of the 16th Annual ACM
Symposium on the Theory of Computing, 302-311 (1984).

[KLEE-76] Klee, V. and G.J. Minty, "How Good is the Simplex
Algorithm?", in 0. Shisha, ed., Inequalities III (Academic Press,
New York, 1972).

[KUCK-72] D. J. Kuck, Y. Muraoka, S. C. Chen, "On the Number of
Operations Simultaneously Executable in Fortran-like
Programs and Their Resultant Speedup," IEEE Trans Comp. vol.
C-21, no. 12, Dec. 1972, pp._ '1293-1310.

[KUCK-76] D. J. Kuck, "Parallel Processing of Ordinary Programs," in
Advances in Computers, vol. 15, Rubinoff and Yovits, eds,
Academic Press, New York, 1976, pp. 119_::179.

[KUCK-81] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M.
Wolfe, "Dependence Graphs and Compiler Optimizations," Proc.
8th ACM Symp. Principles Programming Languages, Jan. 1981,
pp. 207-218.

[KUCK-84] D.J. Kuck, A.H. Sameh, R. Cytron, A.V. Veidenbaum, C.D.
Polychronopoulos, G. Lee, T. McDaniel, B.R. Leasure, C. Beckman,
J.R.B. Davies, and C.P Kruskal, "The Effects of Program
Restructuring, Algorithm Change, and Architecture Choice on
Program Performance," 1984 ICPP, Aug. 1984, pp. 129-138.

[KUNG-76] Kung, H. T., "Synchronized and Asynchronous Parallel
Algorithms for Multiprocessors," in Algorithms and Complexity,
Academic Press, 1976, pp. 153-200.

[KUNZI-68] Kiinzi, P. Hans, H.G. Tzschach, and C.A. Zehnder, Numerical
Methods of Mathematical Optimization with ALGOL and
FORTRAN programs. Academic Press, New York and London,
1968.

[LEE-85] Lee, Gyungho, Clyde P. Kruskal, and David J. Kuck, An
Empirical Study of Automatic Restructuring of Nonnumerical
Programs for Parallel Processors, IEEE Trans . on Computers ,
Vol. c-34, No. 10, October 1985.

2 7

[LINDBERG-84] Lindberg, P. 0. and Snjolfur Olafsson, "On the Length
of Simplex Paths: the Assignment Case," Mathematical
Programming 30 (1984) 243 -260.

[ORCHARD-54] Orchard-Hays, Wm., "Background, Development, and
Extensions of the Revised Simplex Method," RAND report (RM)
1433, 1954.

[OSTERHAUG-86] Osterhaug , Anita, Guide to Parallel Programming on
Sequent Computer Systems, 1986.

[SYSLO-83] Syslo, Maciej M., Deo, Narsingh, and Kowalik , Janusz S.,
"Discrete Optimization Algorithms--with PAS CAL Programs ,"
Prentice-Hall, 1983.

[THAKKAR-85] Thakkar, S. P. Gifford, and G. Fielland, "Balance: A
Shared Memory Multiprocessor System," Proc . Int'l Conf.
Supercomputing, Institute for Supercomputing, St. Peterburg.
Fla., pp. 93-101.

[WOLFE-87] Wolfe, M.J. and Utpal Banerjee, "Data Dependence for
Parallelism Detection," Int'l Journal of Parallel Programming,
Vol. 15, No. 2, April, 1987.

[WU-88a] Wu, Youfeng and Ted G. Lewis, "Performance of Parallel
Simplex Algorithms On a Shared Memory Machine," Technical
Report, Dept. of Computer Science, Oregon State University,
198 8.

[WU-88b] Wu, Youfeng and Ted G. Lewis, "Parallel Processor Load
Balance Through Loop Spreading," Technical Report, Dept. of
Computer Science, Oregon State University, 1988.

[WU-88c] Wu, Youfeng,"Parallel Simplex Algorithms and Loop
Spreading," Ph. D. Thesis, Dept. of. Computer Science, Oregon
State University, 1988.

[WYPIOR-77] Wypior, Peter, "A Parallel Simplex Algorithm," Parallel
Computers-Parallel Mathematics, M. Feilmeier (ed), Proc~_edings
of the !MACS (AICA)-GI, Symposium, t1arch 14-16 ;_J 977 , "­
Technical University of Murich. (North-holland) p235-237.

	Wu_Youfeng_88_70_05_A
	Wu_Youfeng_88_70_05_B

