
1
I

l
1984-2

Liil~UEAS~T,'

5C~EilLE

The Applicative Style of Programming

David S. Wise

Computer Science Department
Indiana University

Bloomington, IN 47405

Computer Science Department
Oregon State University

Corvallis, OR 97331

0

1

The Applicative Style of Programming

by David S. Wise

Copyright 1984 by D.S. Wise, all rights reserved.

1- Introduction

Pretend for the moment that you know nothing about programming and
just consider algorithms. Algorithms, sets of clear instructions on
how to produce given results, outputs, or behaviors, are central to com
puter science. That is, the science of computing pivots around algo
rithms. Before one even discusses programming---or styles thereof--one
must confront the underlying problem of just what is it that you want a
machine to do.

In the next paragraph I shall abandon discussions of various algo
rithms for a while to consider style, but note from the onset that there
exist both good and bad algorithms for solving any (solvable} problem,
and that an individual algorithm may be expressed in all decent program
ming languages, albeit with varying degrees of clarity. (Furthermore,
different machine architectures expand our perception of "good" arid
"bad."} Most certainly algorithms are not equivalent to the individual
computer programs (in individual languages} that might implement them.

This article explores a less conventional way of expressing
rithms, called applicative or functional programming. Both of
monikers are punny, for what kind of programming is interesting
does not apply to some problem or does not work, or function,
effective manner? The intention of the dual title is neither of
droll misinterpretations.

algo
these
if it
in an
these

I mean, by applicative or functional programming, a pure style of
expressing algorithms as mathematical functions that map from arguments
(usually called input} to results (output}. The only control structure
is application of defined functions to spec ,ified arguments. The only
output from a functional program is the results of some such "outermost"
function. The only binding---or interpretation of "variables"---arises
from association of argument with abstract parameter. Interestingly,
and we shall see this to be very important later, there need not be much
explicit specification of sequentiality or order-of-action over time,
except that implicit from mathematical depending of results (indirectly}
upon arguments.

z_. Arithmetic

A fine example of functional programming is familiar to all: stan
dard infix notation of arithmetic expressions. Examples are addition,

2

subtraction, and multiplication:

(1 + 3) 1 (4 - 7) 1 (3 x S) 1

or, to use a definition from the formal study of language:

E : := (E + E) (E - E) (E X E) integer

This rule is read that an ~ (expression) is defined to be either an
addition, subtraction, multiplication, or a simple integer, where the
terms/factors in the more complicated expressions are also (recursively)
~•s, a few alternative definitions of~ are given below~ Like well
formed-formulas in logic, however, there will only be a precise number
of alternatives in any language.

The semantics of this language is well-refined and perhaps too con
ventional, because we often fail to see the general ideas in such a
specific and familiar case. Two features of it are that the function
(or operator) takes exactly two arguments (i.e. that it is binary, or
dyadic) and that it is conventionally written between the arguments (or
operands) in infix notation. Their third shared feature, which has been
relaxed in only a few higher-level programming languages, is that the
result of a function is a single, atomic value, here an integer. The
term, unate, will specify this property of an operator or function.

The necessity for a function being unate is easiest to shatter,
consider integer division. Conventionally (and I mean primary school
arithmetic) integer division has two results: quotient and remainder.
So .shall it be here, integer division is to be both binary and binate,
returning two results. This convention, however, requires us to agree
on some way of representing non-atomic values, elsewhere one uses
arrays, vectors, records, register-files, etc. (Let us avoid a unneces
sary tangent on data-structures at this point.) I choose what I believe
to be the simplest, a list structure, and define it below. For now, let
us agree that a two element list may be constructed using angle brackets
around two arithmetic expressions:

<S 4> , ((1 + 7) (2 X 2)) ,

and decomposed into either of its two elements by applying the appropri
ate probing (projection) function first or second to it. Then we would
unambiguously introduce integer division by requiring that its result be
a list of two integers: quotient and remainder, respectively. Thus,

E : := (E / E) 1

and

(35 I 3) = <11 2)

and what we see in most languages for integer division becomes a compo
sition of first and 1-/_l

i. Prefix notation

My, but that was hard to write! Just what was the last thing in
the previous section? Well, you just saw me trip over infix notation.
(I mentioned earlier that it is not sufficiently general.) Avoiding an

3

analysis of why infix becomes awkward, allow me to repair
introducing left-hand (or prefix) functional notation.
sions, ~ as before, to be either integer or list valued.
string of ~•s, and.Eis a function.

E : := I < Elist > I integer
Elist : := I E Elist

the problem by
Define expres
Elist can be a

F . ·=

F : E
empty
plus I minus I times divide

If this new syntax replaced (rather than just extended) the previ
ous one, the only syntactic symbols that would remain are the angle
bracket list builder and the infix colon, indicating f'Qllction applica
tion. The examples above would then translate to

pl us: <1 3 > ,
divide: <35 3 >

minus: <4 7 > ,
= (11 2>

times: <3 S> 1

Actually, we can safely retain the infix notation as a syntactic con
venience for certain (very familiar) operators as long as they have
alternate prefix · names like these.

Now I can reiterate the last sentence from the previous section.
FORTRAN, PASCAL, et fils abandon the primary school definition of
integer division by neglecting the remainder (likely available in
hardware anyway). That is, in those languages division is what we
expect from "composing" first and divide, as defined here. The problem
before was that we had no crisp (prefix) name for the division operator.
Exclusively represented by a semi-syntactic symbol that necessarily sat
in infix position and between required, wrapping parentheses, the divi
sion function had no clear name for use here in running English. Among
all that other syntax, it wasn't quite right to call it merely "/".
(Denying certain functions a general syntax in favor of an embellished
syntax, often raises such awkwardnesses upon subsequent generalization.)

I shall stick with spelled-out names (like identifiers') for unfam
iliar functions in this paper. This convention has the desirable prag
matic effect of requiring th~t new functions be given names as we define
them. If we choose the names to be meaningful, as well as pronounce
able, we practice good engineering, documenting our creations as we
create. While it is good to put only a formal name on an unfamiliar
beast, familiar animals may enjoy the additional luxury of a syntactic
nickname.

!. Conditional Expressions

We need an important feature of ALGOL 60 expressions that was lost
in successors to that language, the conditional expression. It is
introduced here as the primitive if that takes an odd number of argu
ments. When applied to a singleton argument, if behaves like the iden
tity function:

if:<elsepart> = elsepart

Most familiar is the form when if is applied to a triple:

if:(truthvalue thenpart elsepart>

This is the conventional conditional expression from ALGOL 60 which asks

4

that truthvalue be evaluated either to true or to false. In the first
instance it evaluates to whatever thenpart evaluates to, in the other
case it evaluates to the value of elsepart.

Extensions to quintuples, septuples, etc. extend this pattern.
Predicates (or truth-valued expressions) occur in odd-numbered posi
tions, except the last, possible-result expressions occur in the immedi
ately following even-numbered positions. The truth-values are evaluated
in order until the first true one is found, the value of the conditional
is the value of the expression immediately following~ If all truth
values. are false then the last expression in the argument list deter
mines the value of the conditional expression.

In order to make decent use of conditional expressions, we shall
need some non-trivial predicates, or truth-valued functions. I intro
duce three familiar ones without much explanation, except to notice that
they, too, are familiar binary, unate, infix operators, and therefore
are allowed a their common infix notations.

F ::=
E ··=

less? I
(E < E) I

greater? I
(E > E) I

equal? ,
(E = E) I TRUE I FALSE.

It is possible to define these "order" predicates over any well-ordered
data type, here, we intend that integers be compared to integers.

In introducing these two values for truth, either we may require
them to be of a distinct boolean type, or we might interpret their
values as integers: say, false as O and true as 1 or another positive
integer. The choice does not matter here, so picture a truth-value in
whichever way you like. Like internal representation of numbers, this
decision is best left under-specificed so that an implementation of the
language is less constrained, better to fit a peculiar machine.

1- Recursion for Creation

Now the tools are in hand for
rules of the game are, from Section
tion of functions to arguments.
unforeseen nesting? The answer,
trained programmers, is recursion.
ten how to program for the moment,
unknown term. Let us discover it.

a little creative programming. The
1, that the only control is applica
How can functions be applied with
all too fearsome to traditionally-

All readers, however, have forgot
so none are intimidated by this yet

The essence of recursion is the idea that a function exists before
we set about writing a program for it. All we need to do is to specify
which program it is that we desire. Indeed, any program for a particu
lar function---say, greatest-common-divisor---is merely one of many pos
sible descriptions for the function, which "becomes" the function with
the aid of some hardware.

1.1,. A Problem

First, we need a problem that we can treat with the few primitive
functions in hand. Arithmetic, integers, comparisons, conditionals,
hmmmmmrnrnrn, why not "greatest common divisor" or ~? (I' 11 bet you
picked that one tool)

5

The greatest common divisor of two integers is the largest integer
that evenly divides them both. For now we shall consider both positive
and negative integers al though the result of gcd must surely be posi
tive. · (Why?)

~-1• Some Algebra

that
Now let's tinker a bit with mathematics, here are some identities
always apply.

gcd:<i j) = gcd:<i -j)
gcd: <i j > = gcd: <j i>
gcd:<i j) = gcd:<(i+j)

since sign does not affect definition,
from commutativity of gcd definition,

j) discussed below.

Equation (3) holds because if

g = gcd:<i,j)

then g evenly divides both i, j, and therefore their sum. Moreover, if
.any integer n, n2g, divided both (i+j) and j, then n would necessarily
be a divisor of i, and therefore n.{ gcd: <i, j > =gJ hence n=g • From
these three equations many others may be derived. Of them, only three
turn out to be of interest below.

(1)
(2)

gcd:<i j) = gcd:<(j-i) i)
gc d: < i j > = gc d: < (i- j) j >

from (2), (1), (3), and (1),
from (1), (3), and again (1),

gcd:<i j) = gcd:<second:divide:<i j) j) by (2) or (5) repeatedly. 1

Justifying Equation 6 requires a case analysis, which we'll skip because
it turns out to be uninteresting.

~-1• Simple Cases

The form of a good recursive definition usually takes the form of

gcd:<i j) =: if:< >
where the equals-colon symbol is used in the infix position to suggest a
definition, and the ellipsis in the conditional expression is to be
filled in. (Section 9 offers the exception to this rule.) Assuming that
integer equality is available, we might start out

gcd:<i j) =: if:< (i=j) i
>

This would be fine when i is positive, but we must not neglect the pos
sibility that i and j may be negative---or even zero. How about using
Equations 1 and 2 to eliminate these exceptional cases first?

1From the rules of Section 3 we infer that colon "associates to the
right" like the conventional exponential operation. Thus:

divide:divide:(139 8) = <S 2) •

,,
gc d: <i j > =: if: < (i<O)

(j <O)
(i=O)
(j=O)
(i=j)

6

gcd:<(O-i) j)
gcd:<i (0-j)>
j
i
i

>
That takes care of the touchy cases, at this ellipsis we know that
O~ilj)O and that we have defined the correct result in other cases. Now
we can use Equations 4 and 5 from above.

i.,i. Other Cases

In order to direct our thinking toward a non-obvious (but useful)
algorithm, let us assume that we are to implement gcd on a machine that
does not have efficient division or multiplication. This is a surpris
ingly frequent constraint, hardwired multiplication can be painfully
expensive and hardware division is often not be available at all. Equa
tion 6, which suggests that gcd be recast using remainder on integer
division, is therefore skipped. 2

Let us try to complete
5, applied in a way to keep

gcd:<i j> =: if:<

the definition of gcd.
differences positive:

(i<O)
(j <O)
(i=O)
(j=O)
(i=j)
(i<j)
(i) j)

gcd:<(O-i) j)
gcd:<i (0-j)>
j
i
i
gcd: < (j-i) i>
gcd:<(i-j) j)

>

with Equations 4 and

A bit of logic tells us that the ellipsis is now irrelevant because of
the total ordering on integers.

Congratulations I
Euclid's Algorithm.

i-i• Is it Correct?

We have just reinvented the simple form of

The formulation now has the property that we have been searching
for. It is total or well-define .d on all integer input. This takes a
bit of proof, which might appear to an experienced programmer as some
sort of testing. The similarity is no accident, because recursive pro
gramming lends itself to proof by a kind mathematical induction, known
as recursion-induction, that is very nearly the same mental exercise as

creating the program in the first place. 3 If the reader is squeamish

2It might be useful on hardware where integer division is efficient,
or on data where division by repeated subtraction is uniformly less ef
ficient than other division algorithms, we ignore these possibilities
for now.

3While writing programs that can be supported by correctness proofs
is desirable, pro forma proofs are not necessary in programming prac-

7

about proofs, this section is easily skipped on £irst reading.

Recursion-induction, a term coined by John McCarthy, works
(roughly) like this. First, establish that this code for gcd is defined
for i=0=j, and then for i=0 or j=0, we did this earlier. Then,
hypothesize that this fil is well defined for i and j positive and less
than some number, n, prove that it is also well-defined for i and j
positive and less than n+l by using the observation that either

i = j = n+l = gcd: <i j >
or, after one reduction step using one of the alternatives introduced
last (from Equations 4 and 5), the hypothesis applies. Finally, observe
that if either i or j (or both) are negative, one or two reductions
expresses the expression in terms of gcd with non-negative arguments-
which we have just considered.

The previous paragraph, with the proof of Equations 1-5, above,
constitutes a proof of strong correctness of this definition of gcd. To
the mathematician, this means that the expression constructively speci
fies the function as defined originally. To the computer scientist,
this means that the expression may be interpreted as a program mechani
cally and, for any integers i and j, it will stop and return the correct
answer.

In fact, the two interpretations coincide, and that's a good thing
because the underlying philosophical concepts of correctness are the
same. That the two concepts of proof unify with a program expressed
under this applicative style of programming is quite a powerful observa
tion, because it means that a programmer can construct a program and
prove it at the same time. If he bothers to write his programs in such
a language with such rigor, .then he produces a much refined product. It
will be correct (in the first place), easy for others to read and fol
low, and thereby easier for them to maintain or revise, should specifi
cations change.

I do not claim that these virtues occur automatically simply by
adopting this kind of language, I do claim that, because it is closer to
the style of mathematics (as refined over the centuries), this language
facilitates this kind of disciplined programming. It still takes a dis
ciplined programmer to follow through on rigorous thought patterns, I
claim that this style does enable more people to practice that discip
line.

Another way to decide whether one's program is wrong is to "r~" a
few cases. No further rules are necessary about how this program actu
ally works, but I do like to verify how the reduction works, if only for
myself:

tice. For a provocative review of the role of · proofs in programming
(and in mathematics), see the essay by De Millo, Lipton, and Perlis on
Pages 271-280 of the 1979 Communications of the ACM (Vol. 22), with
responses from readers on Pages 621-630 of that same volume.

gcd:<78 -21) = gcd:<78 21) =
= gcd:<15 21) =
= gcd:< 3 6) =

gcd: < 0 -21> =

gcd: <78 0) =

8

gcd: <57 21) =
gcd:< 6 15) =
gcd:< 3 3) =

gcd: < 0 21) =

gcd:<36 21)
gcd: < 9 6)

3

21

78

Not only might this uncover cases where a definition is incorrect, but
also it exercises the cases that arise in an inductive proof. While
such testing is not a proof, it generally helps to identify the cases
that must be considered in one.

Even when a proof is not explicitly included as doc1U11entation,
thought patterns, like this, that generate an applicative program con
stitute a weak proof of its correctness. A good programmer uncons
ciously follows the course of a recursion-induction proof as he pro
grams, and that proof is almost visible in his code.

i,.~. Refinement for Clarity/Efficiency Now that we have a correct
program, let us rearrange it syntactically. The first change might have
happened in constructing gcd two sections back. At that point we might
have split the problem into two functions: one for integer arguments
and one for positive-integer arguments. The result looks like this:

gcd:<i j) =: if:<

GCD:<i j) =: if:<

(i<O)
(j <O)

gcd: < (0-i) j >
gcd:<i (0-j))
j (i=O)

(j=O) i
GCD: <i j > >
(i=j)
(i <j)
(i) j)

i
GCD: < (j-i) i)

GCD: < (i - j) j >
>

We needed another name for the second function above, and I used upper
case so that the proof in the previous section still scans. In this
case the GCD function is conceptually internal to the definition of gcd,
and not to be called directly from outside gcd.

Not only is this a good place to split our thoughts, it is a good
place to split the computation, because GCD need not call gcd. There
fore, most reduction is accomplished through GCD which, with constrained
arguments, has become simpler (and faster).

As observed earlier, the ellipsis in GCD may be omitted, in fact,
the order of its predicate-value lines may be scrambled because they are
mutually exclusive. We are free to choose any of the six permutations
and to omit the (respectively) last test, the last result becomes an
"elsepart" of the conditional.

GCD:<i j) =: if:< (i(j)
(i) j)
i

GCD: <(j-i) i)
GCD : < (i - j) j >

>
I chose this form for elegance and for efficiency. The two predicates

9

that remain are nicely symmetrical in appearance, and this order of
testing postpones the least likely alternative to the most remote posi
tion, the "elsepart". It does, however, move the "simple" case to a
position deeper in the program. (The reader should appreciate th~t this
program would never be initially composed in this cleansed.)

Further efficiencies might be necessary, depending on an implemen
tation. One might avoid writing two subtractions like this:

GCD: <i j > =: if: < (i<j)
(i)j)

GCD: <j i>
GCD:<(i-j) j)
i >

This is really an algebraic transformation using Equation 2. Other
transformations are possible, including some that transform GCD into
BASIC-like code for use under traditional iterative, languages.

~-1• Summary of Creating Recursions This section has become terribly
long, and only treated a simple example. Someone who has forgotten how
to program, however, probably needs a review of what just happened. We
learned how to program recursively in just five steps.

First, we formulated an intuitive understanding of the desired
function and we assumed that it did exist. Then (second) we set out to
describe that extant function by specifying its behavior on simple input
arguments, for each elementary case we described the complete answer.
The trick is, of course, to be able to isolate those simple case using
simple predicates.

Having handled the simple cases, thirdly, we looked for reductions
of each of the complicated cases to other invocations of the available
functions, including the one under construction. The idea here is that
we can safely apply the new function (here m) to a case slightly less
complicated than the one being confronted. In the case of gcd, we
reduced the complicated case to that of taking gcd of slightly smaller
integers. Then with a prototype definition in hand, we tested it or--
better yet---proved it as the fourth step.

Finally, the code was polished with consideration for readability
and efficiency. By using algebraic transformations here, we are sure to
preserve the correct function as we alter the form of its specification.
These last few steps do not necessarily proceed so smoothly, because
late insights might prompt revisions to early work, with succeeding
steps necessarily repeated.

For instance, testing may uncover a case not properly handled or
polishing might reveal a generalization of the function that would make
it useful for cases other than that which immediately motivated the pro
gramming effort. It is also possible that predicates for reductions of
complex cases may not be readily available. In such cases, additional
"helper" functions, like GCD, might be required to complete the original
program.

These are familiar problems, however. Most problems are not
refined into tractable subproblems on first analysis, and most programs
get redesigned after some testing. These are ordinary steps in "step
wise refinement," a powerful tool that fits nicely into applicative

10

pro gram.ming.

All you need to do is to assume that the program (function) exists,
and then set it down on paper. The only difference is that under appli
cative programming, all the hard problems may be postponed to the end-
--instead of to the middle of the program under construction.

!. List Processing

Section 2 introduces the concept of a list, restricted to a list of
two values: a pair. This section generalizes that concept to a list of
any length, including (surprisingly) infinity.

Let us first define the list handling primitives by extending~.

F : := first I rest I null? a tom? I cons

The first is easiest to explain because we have already seen it; first
extracts the leftmost element from a list:

first:<8 4) = 8.

Rest returns the remainder of the list with the first element removed:

rest:<8 4) = <4> ,
rest:rest:<8 4)
first:rest:<8 4)

= <>
= 4

From the last example, we see that the already defined second is just
the composition of first and rest, with repeated compositions we may
extract any specific element from a list: ~-A·

fifth = first:rest:rest:rest:rest

Just as it is useful 4 to be able to
it is good to have the predicate, null?
ment list is empty, or null:

null?:<> = TRUE
null?:<8 4> =FALSE .

test whether a file is empty,
for testing whether its argu-

Atom? is a predicate that tests whether its argument is an elementary
(atomic) type, like integer or boolean, or whether it is a list and
divisible using first and rest:

a tom? : 8 = TRUE
atom?:<8 4> =FALSE.

Finally, the binary function cons is used to construct new lists; its
two arguments are, respectively, the the first and the rest of the new
list-to-be. Because it always returns a list as a result, one might
argue that it is ~-ate, and this perspective will become useful in Sec-
tion 9 •5

4but not necessary. Even the first FORTRANs could not test empty
files.

5 Although some might claim that it is bina te---from the perspective
of first and rest--- this is incorrect.

~ons:(4 <>> = (4)
cons:(8 <4>>
cons: (16 (8 4 »

11

= (8 4)

= (16 8 4>

= (4 ! <>) ,
= (8 I <4 >)

= (16 ! (8 ! (4 I <>)))

At the right of these equations I introduce an exclamation point as an
infix notation for £.QA!J it should not be surprising that, like plus,
cons is so important a binary, unate operator that it has been granted a
shorthand, infix alias! Thus, the grammar is extended, and in two ways
while we're at it:

E : := (E I E) <E •>
This use of asterisk (suggestive of Kleene's star) denotes an infinite
list homogeneously composed of a single value. For instance, we might
define a zero-vector as a solution to this equation:

= zerovec = (0 I zerovec)

Or the meaning can be explained with three axioms:

first:<a •>=a
rest:<a •>=<a•> ,

null?:<a •>=FALSE = atom?:<a •> •

Such "infinite" lists will be useful with functional combination, to be
defined later.

The observant reader will notice that all uses of angle brackets
may al so be perceived as shorthand for applications of cons, even the
asterisk used with angle brackets may be avoided by solving equations
like the latter one for zerovec.

Let us close this section with an example of list construction that
should be distinguished from ~. whose arguments are to be perceived
as "element" and "suffix" of the resulting list. Append3 takes three
lists as arguments and returns the list that is their concatenation. In
this case the arguments are homogeneous.

append3: <a b c> =: if:<
null? :a

append3:((1 2 3)(4 S 6)(7 8 9))

if:(null?:a null?:b FALSE) c
(first:b ! append3:(a rest:b c))
(first:a append3:<rest:a b c>) > •

= (1 2 3 4 S 6 1 8 9)

The first line of the previous definition will scan much more easily if
the nested conditional is recognized as a conjunction, the predicate and
will be defined in the next section.

1. Lazy Lists

The next point deals with real-life computer implementation, it is
one of confusion for trained programmers rather than for iaymen because
what follows differs from conventions of all common language. In a
sense it is merely a detail of implementation that extends a language,
but it becomes necessary here because I really do want every non-unary
function to take a list of arguments ---even the conditional primitive,
if.

12

The point is that nothing is required about evaluation order within
lists. To a mathematician, this lack of restriction means that evalua
tion must be as general as possible, so I shall describe the most gen
eral evaluation order: don't evaluate list elements until they are
accessed. That is (and in contrast to FORTRAN, COBOL, PASCAL, etc.
that force evaluation of contents of a data structure before the struc
ture, itself, "exists"), evaluation of elements is postponed as long as
possible - until their values really becomes critical to the computa
tion.

Consider the conditional expression:

if : < (1 = 1) 7 undefined>.

Undefined means some uncomputable value, like the solution to the equa
tion

X = (x + 1) J

the argument to if is a list of three values, but evaluation of the
whole expression (to seven) only requires that two of them be evaluated.
You may assume that evaluation of undefined leads to a computation that
never stops (which is about as undefined as one would want), and manda
tory evaluation of every argument in a list, therefore, would preclude
us from finding seven as the result of this simple example.

As a parameter-passing mechanism, this convention is variously
known as "call-by-name" or "call-by-need. 116 It suggests that argument or
list-element evaluation is postponed until a particular element is
really needed to determine the course of computation.

Again, unfortunately, using arithmetic expressions as our model for
applicative programming leads us away from this convention. In most
instances arithmetic primitives are strict. That is, in addition to
being binary and binate, arithmetic operators are perceived to require
evaluation of both operands. A sum depends on all addends, a difference
on both minued and subtrahend. A product usually depends on multiplier
and multiplicand, the exception being the rare multiplication by zero.
How different is the situation with the logical operations of conjunc
tion and disjunction, where anding a false factor, or oring a true term
determines the result without evaluation of the other argument. This
observation is useful for half the uses of these functions. (if the
operands take random values, three-quarters, if arguments can also be
evaluated simultaneously.)

We might define dyadic functions and, or as follows:

or: <a b)

and: <a b)
=: if (a TRUE b >.
=: if: <ab FALSE).

If the first argument to and and (exclusive) or were some random truth
value (say, that a coin flip comes up "heads") then the second argument

6There would be an operational distinction between these · terms (as
well as a semantic difference) if assignment statements were also in the
language. I use the latter because it has the intended meaning in both
contexts.

13

is only evaluated half of the time.

The example of and raises another point about function definition:
sometimes we should like to allow the number of arguments to be arbi
trary. That is, we would like to allow and to take an arbitrary number
of conjuncts, actually evaluating only the minimal prefix of the list of
its conjuncts. There are two styles for presenting the definition:

and:conjuncts

and: 0
and: (a l suffix)

=: if:<

=: TRUE
=: if:<

null?:conjuncts lRUE
first:conjuncts and:rest:conjuncts
FALSE).

a if:suffix
FALSE>.

The reader might try to define inclusive - , and then exclusive- or simi
larly.

The first definition above is closer to LISP style and closely fits
the primitives defined in this article . The second is closer to
Prolog-style and denotes the same algorithm, a case analysis of the
argument structure is implicit in the second which appears explicitly
(as the first test) in the first. The latter form, however, may avoid
repeated and conceptually redundant uses of first and rest, as the next
example illustrates.

Suppose that the only conditional expression available were if2,
defined exactly as if was defined above, except that it required an
argument list of length precisely three: a truth-value and only two
"conditional" values. (The conditional expression of ALGOL 60 coincides
with if2.) How could if be defined from if2?

if:condpairs =: if2:< null?:rest:condpairs first:condpairs
if2:(first:condpairs second:condpairs

if:rest:rest:condpairs >

if: (elsepart) =: el separt ,
if: (truth r (value r suffix)) =: if2 : < truth value

if: suffix).

Again, these two definitions are intended to coincide except for syntax,
with the ability to name fields within data structures making the second
a bit more readable. This definition also illustrates the fact that
lists need not be homogeneous. That is, the condpairs list contains
both truth values and candidate values for the expression, itself, only
the (alternating) access pattern distinguishes one value from the other.

i. Streams

This section is short, but terribly important. It deals with
Input/Output, which has been the weak point in program language design
from the very beginning. Because I/O depends so much on the implementa
tion environment, specifying it without redefining the surrounding sys
tem is nearly impossible, the ALGOL 60 definition said the least about
it: nothing.

14

We now have, in the primitive~. the ability to construct either
list-like or tree-like structures. Files are best percieved as if they
were built in the same way---by the same primitive. Most often we deal
with sequential files as if they were lists of characters.

Peter Landin long ago proposed the concept of a stream, a list that
exists (is available for manipulation by first, rest, null? , etc.)
even though its suffix may not exist. A fine example of this is the
stream that travels down the wire from a keyboard into a computer, its
suffix "exists" at no point in time, yet---conceptually--- the stream
exists over time. In that sense an operating system may bind it to a
filename and manipulate it as an integrated object.

The idea of "lazy lists" provides us this sort of file directly.
All we can do with such a (non-empty) list/file is to extract the first
(character) and to compute with the rest. The usual I/0 primitives in
conventional languages allow us no more.

Random access files can be built from the ability of ~ to
represent trees. Circular structures and file directories are possible,
but their elaboration would entangle us in a discussion of "naming," a
generalization of the argument/parameter naming implicit in function
application.

An infinite list of nllDl.bers behaves much like a file generated from
some machine, so I shall, instead, offer a simple view of sequential
files through that model.

!- Lists as Functions

Consider now the problem of computing the list of Fibonacci
numbers:

(1 2 3 S 8 13 21 34 • • • • • •) •

This list is characterized by each element being the sum of its two
immediately predecessors. By way of motivation, I'll use a problem con
fronted by Samuel F. B. Morse:

Given two alternative signals (• and_) that are respectively
of length 1 and 2 (including the pause after the • or _) , how
many different codes can be formed with signal strings of vari
ous lengths? For example, there are

1 of length one 5!! e ,
2 of length two ~ i , e t ,
3 of length three: !:!! s , 5!! n , !:!! a ,
s of length four: !:!! h , !:!! d 5!! r , .. 5!! -
Morse's problem is to extend this sequence.

The result is the well-known Fibonacci sequence7.

u

7An excellent overview is Section 1.2.8 of Knuth's The Art of Comput
er Programming (Vol.!).

, St m .

15

Our problem is to write a program that would generate t~is sequence
(at least as far as the capacity of our computer's adder permits).
Under the rules of the preceding section, that an element of this list
is not computed until it is accessed---say, by the printer, it is not
too hard to understand the following program:

fib:<i j) =: (j fib:<j (i + j)))

where the solution we seek is given by

fibonacci = fib:<1 1) = <1 2 3 5 8 13 •••• >

Because of the convention that lists' contents are not computed and suf
fices aren't unfolded until accessed, however, the top result is quickly
available:

(somethlng I sufflx)

where "somethlng" will become 1 and "someflx" will become

(someth2ng I suff2x)

upon access.

Actually the sequence we want is merely the vector sum of two
accessible lists:

fibonacci = (1 I (2 I vectorsum::(fibonacci rest:fibonacci))) •

Each of the lists may only have its first element accessible, but that
is sufficient to unfold rest of it incrementally. (Such recursive use
of lazy cons is the exception to the need for conditional expressions
within recursive definitions, as used in Section 5.3.)

Vectorsum may be perceived as

vectorsum = (plus*>

under the following convention, known as functional combination.! A list
as a function requires a list of (sub)list-arguments, Perceived as a
matrix represented as a list of rows (each a sublist), each function in
the function list is applied to a list of arguments corresponding to the
appropriate column of that matrix, the list of results is the result of
the functional combination. For example,

8Those familiar with MAPping functions in LISP, especially MAPCAR, or
"apply-to-all" convention in FP will recognize their generalization in
the examples of functional combination that follow.

(plus minus times
(2 4 6
(1 3 5

(plus minus times
(2 4 6
(2 •
< minus •
< 2 4 6
(2 •

divide):(
8 >
7 > >

divide>: (
8

8

>
> >

>:<
>
> >

16

= (1 1 30 (1 1> > ,

= (4 2 12 (4 0> > ,

= (0 2 4 6 > •
It is often useful to write functional combination out aligned verti
cally, as above, to clarify the colt11Dnar application convention.

The convention of using asterisk for forming infinite lists com
bined with functional combination is particularly powerful when used
with functional combination. Several matrix operations are surprisingly
easy to . program: if

identity:a = a

what is the result of evaluating

< identity
< 2 4 6
< 1 3 5

•
8
7

>:<
>
> > ?

What would a linear algebraist call the function (identity •> ? How
would

sigma:addends =: if:< null?:addends 0
(first:addends + sigma:rest:addends) >

help in defining the function dotproduct?

10. Why Functional Programming?

The preceding sections merely introduced a peculiar style of pro
grammming. Experienced programmers might well ask, "What is the point?"
Why do some seriously propose this radical discipline of programming
when there is already so much software in the field written in what I
call imperative programming. and written quite successfully in light of
the expansion of the scope and accessibility of computing over the past
ten, twenty, or thirty years. Why fight success?

There are two answers to such questions. Both are trends that have
long been present in computer science, but that have been unified and
made tractable by the recognition of functional style. I touched on the
first earlier: for some time there has been an effort to incorporate the
rigor of mathematics, especially algebraic transformations, into- the
manipulation of programs, functional style facilitates such the algebra
of programs because it is so close to the familiar form and algebra of
mathematical equations.

The second is the problem of programming for a richly parallel exe
cution environment. Novice programmers learn "programming" in a
language that has been derived from FOR1RAN, whose arithmetic formulae

17

were patterned after mathematics (a revolutionary idea) but whose con
trol structures were modeled on the Von Neumann uniprocessor computer of
the 1950' s. Now that microcircuit technology has made processors so
fast that improvements are constrained by absolute, physical limits, and
so cheap that the memory of a typical computer is orders of magnitude
more expensive than the processor (a drastic reversal from the fifties),
it now makes economic sense to swarm many processors around data occupy-'"
ing precious memory. The problem is that traditional FORTRANesque
languages cannot handle the problems of parallel control for such a
machine.

10 .1. Algebra

We ought to be manipulating programs with the same facility that we
manipulate algebraic equations. Initially FORTRAN was a tremendous suc
cess because it extended the notation of classic mathematics into the
programming task. Whether we should adopt the language of mathematics
in toto for programming is doubtful. (It is not clear what the language
of mathematics is, anyway!) We should, however, carefully consider any
way of incorporating classical mathematical syntax and semantics into a
programming notation. Where the notation is suitable, we would be fool
ish to cast aside so many years of refinements and so many hours of
learning.

This manipulation facility is important in light of the various
demands placed on the programmer, and on the language he is using. Some
programs must be correct. Validation, in its extreme--proving code
correct, is often the hardest part of such programming tasks. The exam
ple of Section S.S illustrates the facility available when that language
is close to universally-known notation. I would not have attempted that

proof in an imperative language for this audience9 J the universally
accepted and timeless notation of equations would not have been so
readily available. With such tools in hand, however, verification and
proof becomes much like algebraic manipulation, involving distributive
and associative laws. These techniques extend to surprisingly compli
cated programs, as we shall see in Section 11.1.

The implementation of a program that has been proven correct is
only as correct as the implementation of the language in which it is
expressed. Developing formalisms for semantics all share the underlying
perception of a program as a mathematical function from inputs to out
puts. The ground rules for writing functional programs, therefore, are
most similar to those for writing formal semantics. As a result, it is
quite easy to join a program's definition to a definition of the
language in which it is expressed, obtaining a deep definition for a
program subject to aforementioned proof techniques. Indeed, this simi
larity of styles often prompts breadboarding of new languages or
language features in a functional language (notably LISP) as part of
their development.

9Either I would have been forced to introduce one of the notations
that have been developed for such proofs, or I might have attempted an
English proof saturated with strained, temporal subjunctives.

18

This nearness to the style of formal semantics also makes it easier
to specify and to implement correct program transformations, such as
compilers and program optimizers. That is, the process of messaging
code into another form, generally one that allows it to be executed more
efficiently, also proceeds along lines of algebraic laws derived from
the semantics (set of axioms) that defines the language. While com
pilers have been designed and built for years without all the rigor of
formal semantics, current research in language semantics is paralleled
by discoveries that explain how a semantics is carried through the
implementation of a compiler. It turns out that conventional techniques
do have formal support • .

Finally, we should eventually see an improvement in the facility
with which a program, expressed functionally in a language under a
rigorous semantics, is maintained and revised. There is now little
experience to support such a claim, but a program that reads so much
like its own specification or proof should be more easily understood by
someone more comfortable with any of algorithms, specifications, or
proofs. Moreover, functional definitions seem to be limited to a few
lines by the need to establish new parameter bindings, by the limita
tions of an extended conditional expression, or by the natural need to
subdivide a function into named pieces after it exceeds a certain thres
hold of intellectual content. This inherent modularity of functional
definitions implicitly creates a remarkable testing environment that is
easily turned into a maintenance environment, when the maintenance
engineer tinkers with pieces of an extant program just as the author
tested each function-piece when he originally wrote it.

One feature often associated with readability and efficiency is the
requirement to declare types of various identifiers. Rigorous type
declaration is desirable but function-valued identifiers must be
declared, as well. Robin Milner and his associates at the University of
Edinburgh have developed a preprocessor that derives type information
from the primitive operands and operators deep within the program, and
propagates it up through levels of functional definitions. Just as
run-time storage management (generally "garbage collection") is often
left to the system, the validation of type correctness may be left to
the compiler. ML, the Edinburgh language which admits higher-order
functions (i.e. with functional arguments and results), can detect type
inconsistencies between formal parameters and actual arguments without
requiring the programmer to declare anything. (Therefore, I have not
used explicit typing in the examples here.)

10.1. Parallelism

A major motivation for the interest in functional programming is
the realization that we can now afford to build "supercomputers,"
machines with many, many processors--if only we knew how to program
them. For quite some time various parallel architectures have been
available and there has been much effort invested in tailoring certain
algorithms to take advantage of the variously enriched efficiencies
available. The experience has been that a few tailored algorithms run
extremely well, but that the multiprocessor resource remains idle most
of the time while the system behaves like a uniprocessor, synchronized

19

by the control structure.

We would like to revamp control structure so that the system avoids
uniprocessor mode as much as possible, making efficient use of the mul
tiprocessor resource, once the price of transmitting a problem into main
memory (usually serially) has been paid. In particular, we would prefer
to avoid swapping, in favor of a sustained and massively parallel compu
tation.

Functional programming offers that opportunity. Without side
effects, there is no possible conflict among processes. There are many
opportunities for parallelism, moreover, that can be extracted from the
mathematical notation (which exhibits no implication of time or sequen
tiality). The notation introduced above, for example, allows parallel
ism in evaluating the several elements in a list simultaneously. (In
Section 7 we observed that these elements need not be evaluated until
after they were accessed, now we observe that they may also be computed
any time before that if the resource is available.) By implication . we
may evaluate all arguments (in an argument list), all columnar results
from functional combination, and contents of (arbitrarily deep) sublists
in parallel. In fact, the ubiquity of list structures assures that
there are plenty of processes available to occupy idle processors, with
a program implicitly fragmented into non-contending processes there is
no need to "choreograph" processes to avoid conflicts. (There remains
the problem of how to schedule processes onto processors.)

Like storage management, however, parallelism is not part of the
denotational semantics of a language and may remain invisible except to
the expert programmer, however, it might well be part of an implementa
tion that takes advantage of any (sufficiently weakly defined) seman
tics. In composing the functions in this paper I was not conscious of
execution order, I concentrated on meaning---correctness, alone. In
this way parallelism is left to the execution environment, and the same
program might run well on several parallel architectures without any
detailed tailoring of code. Of course, if the architecture and the
quirks of a peculiar scheduler are known, then some sort of program
annotations might enhance performance, but these should be optional,
certainly independent of the "denotation" of the program.

A clue to solving the scheduling problem comes from the observation
that process initiation and termination will always generate undesirable
processing overhead. If processes are only initiated near the leaves of
the process tree, then too often these will terminate quickly, increas
ing their relative overhead. · Better to dispatch processes near the root
of the process tree, processes that will run for some time (and create
needed results) before they stop. In a list-oriented functional
language it is easy to identify, say, three such independent processes:
they compute the next three items on the stream being printed (Section
8). In an iterative language, like FORnAN, it is more difficult to
identify such processes, because the root structure of the program is a
sequence of interdependent statements to be performed in an order,
while we find parallelism within FOR'llUN's arithmetic expressions, they
reside close to the leavers of the processing tree and will not likely
occupy processors long enough to recover dispatch overhead.

20

A final impact that the functional programming style already offers
for parallelism is an expressive facility, independent of confining
uniprocessor languages, for refining good algorithms and for discovering
new ones in anticipation of (and to help design) future multiprocessors.
Because the constraints of every programming language shapes the hor
izons of its practitioners, and because almost all programmers are best
trained in uniprocessor languages, we are not well equipped to discover
superlative algorithms for general multiprocessing architectures. While
there is a good deal of work on fitting a specific architecture with a
specific algorithm for solving a particular problem, there is no compar
able effort for developing algorithms whose performance advantages only
manifest themselves under massive parallelism. Functional programming
offers a convenient method for developing and comparing general algo
rithms of this sort, independently of particular computer models.

11. Algorithms

As a rule of thumb, the better algorithms for solving particular
problems are recursive, rather than iterative. That is, the power of
purely applicative programming is more likely to suggest excellent algo
rithms than iterative style. While I know of particular cases where
this rule may not hold,lO . it certainly seems that recursive and func
tional thinking is a tool more powerful than iterative and procedural
thinking.

In this section I support this observation with two examples of
"good" algorithms expressed in the language developed above. Perhaps it
will encourage readers to invent new ones, particularly algorithms that
may not perform as well on existing architectures (probably because of
overhead of control structures to carry out all implied processes), but
which may shine in a parallel environment.

11.1. Sorting

Every student of iterative program has seen a couple solutions to
the problem of sorting a list of numbers. Usually the solution is some
kind of interchange sort, which seems easiest in the iterative language
being learned (here, in PASCAL).11

lOit's hard to be certain where new discoveries are possible. These
known algorithms are highly serialized, mixing side-effects from itera
tive style into applicative style.

11As I was editing this section, Jon L. Bentley considered this very
problem in his montly column, "Programming Pearls," in Comm. ACM 27, 4
(April, 1984), 287-291. I recommend his article to those who would
probe deeper into this problem.

21

TYPE vectyr = ARRAY[!. .N] OF INTEGER,
PROCEDURE sort(VAR vector:vectyr),
VAR i,j: 1. .N,
BEGIN

END

FOR i:=1 TO ~1 DO
FOR J:= i+l TO N DO

IF vector[i] < vector [j] THEN {already ascending}
ELSE exchange(vector[i],vector[j])

There are many variants on this nested-loop solution to sorting:
insertion sort, bubble sort, selection sort, etc., but all share the
property that, in the worst case, nearly W-/2 comparisons are made.1 2

I have attempted a translation of this algorithm into the applica
tive language described above. As you read it you should be aware of a
useful convention: when a function is specified to return a heterogene
ous result composed of, say, two subresults, its name is a hyphenation
of the two names of the subresults. Here the function min-residue
returns two subresults, the smallest integer in the vector, and the vec
tor, slightly scrambled and with that integer removeds it corresponds to
the inner loop in the PASCAL code above.

sort: <vector> =: if:< null?:vector vector
cons: <first sort>: <

min_residue:<first:vector rest:vector> > > ,

min_residue:<candidate unseen!>=: if:< null?:unseenl <candidate unseen!>
less?:<candidate first:unseenl>

<second cons >: <
< <> first:unseenl>

<second
< <>

min_residue:<candidate
cons >:

rest:unseenl> >
<

candidate>
min_residue:<first:unseenl rest:unseenl> > > •

Functional combination plays a significant role in this code. The
columns suggest that the min subresult is always that returned by the
recursive invocation of min-residue, and something is always added to
the residue from that recursive call.

This exercise of translating from an iterative program to an appli
cative program is strained because information (about the array struc
ture and in-place management of vector storage) is actually removed. In
practice the translation should go the other way, with information
dependent on a particular implementation environment (here, storage
management) being added.

I find the applicative version of sort above, strained and awkward
(relative to applicative style) where the PASCAL code seems deceptively

12The notation O(N2) is usually used, suggesting that the worst-case
number of comparisons grows proportionally to the square of the problem
size, N.

22

clean (relative to its style). While it is possible to express the same
algorithm as we just saw in PASCAL, it is not easy to. When I first did
this back-translation exercise, I struggled to remain faithful to the
PASCAL code because intuition screamed that more useful results could be
returned from the machinery of the min-residue function. The vector
traversal there could as well partition the list, instead of just
returning the minimum and the list's remainder. Following that tempta
.tion, one would rediscover a much better algorithm due to C.A.R. Hoare,
called "quicksort", which is derived with but a slight alteration in the
functional combination in gsort, below. Here the analog of min-residue
is lt-eg-gt, which reshapes its argument list into three vectors of
integers less than, equal to, and greater than the boundary value.

qsort: <vector>

lt_eq_gt:<boundary list>

=: if:<
append3:

null?:vector vector
<qsort first qsort>: <
lt_eq_gt:<first:vector rest:vector> > >,

=: if:< null?:list <<> <boundary> <>>
less? .: <first: list boundary>

<cons second second>: <
< first:list • >
lt_eq_gt:<boundary rest:list> >

greater?:<first:list boundary>
<second second cons>: <
< first:list • >
lt_eq_gt:<boundary rest:list> >

<second cons second): <
< first:list • >
lt_eq_gt:<boundary rest:list> > >.

The auxiliary functions append3 and second have all been defined previ
ously.

Much can be learned from studying these two algorithms. The
worst-case behavior of either one requires time (number of comparisons)
proportional to N2. Average time of quicksort, however, is proportional
to N(log N) where there is no difference between worst and average case
with sort. The improved performance occurs in the ideal case that lt
.!.9::.ll divides the list in half or thirds, the worst case performance
occurs when it behaves just as min-residue did, with all other elements
either above or below the boundary value, when one subresult is all but
as long as the original argument.

While sort may actually be better than gsort for sorting very small
vectors, gsort will be better for a problem of any significant size. 13
This is an excellent example of the "divide and conquer" paradigm of
programming. The efficiency of gsort is due to the likelihood that the
linear traversal of lt-eg-gt will cleave, rather than peel, the original
problem into subproblems.

13see the discussion of hybrid algorithms in the following subsec
tion.

23

Qsort is only the simplest representative of a family of sorting
algorithms, known as "partition sorts," that attain asymptotic optimal
ity: expected sorting time proportional to input size. I mention them
because they can be so easily characterized in this context:

dpsort :vector =: if:<
appendn: <

homogeneous?:vector vector
dpsort • >: <

partition:vector > > •

The auxiliary function appendn is append3 rewritten to take an arbitrary
number of arguments, much like and above. The functions homogeneous?
and partition return results befitting their names, but usually are per
formed with a single function, homogeneous?_partition, that determines
whether each partition is homogeneous as it is built, for larger vec
tors, partitioning into more pieces yields better performance.

The applicative code, above, is only "source code" and is subject
to much algebraic manipulation. For instance, the similarity of the
alternative result-expressions in lt-eg-gt suggests that we apply a dis
tributive law (of conditional over function application) to get

lt_eq_gt:<boundary list> =: if:< null?:list <<><boundary><>>
(if:< less?:<first:list boundary> <cons second second)

greater?:<first : list boundary> <second second cons>
<second cons second)>): <
< first:list • >
lt_eq_gt:<boundary rest:list> > > •

One more distributive law (of conditional over list formation) yields a
single function-list like

<if:<lt cons second) if:(eq cons second) if:<gt cons second))

where the identifiers ll, £9. and.&! are the three boolean subresults of
a single comparison of boundary and first:list.

That is to say, this code is still subject to much manipulation
before its performance on specific data might be measured. Such manipu
lation might take the form of translation (into PASCAL or into a
"machine code"), something that is generally accepted from all program
ming languages. But it also might include determination of data struc
tures (linked or sequential allocation), static (in place) or dynamic
(virtual memory) space resources, or storage management (garbage collec
tion, hardware reference counting, or provided' •for free' by an oversee
ing operating system.) Certainly the implementation need not be faithful
to the apparent recursion pattern if algebraic manipulation allows
another interpretation.

Most importantly, consider implementation of these sorting algo
rithms in a brilliantly multiprocessing environment. The applicative
code specifies no assignments of values to "specific" variables, thus
there is no implicit synchronization. The partitioning implicit in
gsort really shines in this light. A large sorting problem is immedi
ately decomposed into two (nearly equal-sized, we hope) subproblems that
are mutually independent. Each will occupy a processor for some time
and is, in turn, subject to further decomposition as long as idle pro
cessors are avail able and the subproblems are significantly large. In

J

24

this way the overhead of processor dispatch and recovery can be distri
buted over much useful processing.

(In such an environment sort generates dependent subprocesses,
which exhibit a "cascading" behavior under lazy evaluation.) Thus, as we
have two, four, eight, etc. processors, the gsort code ~or the sort
code, for that matter) need not be retailored to run well on each
machine.

11.~. Matrix Representation

The material in this section is offered to demonstrate the power of
programming applicatively, both in terms of uncovering good algorithms
and also for crisply expressing parallelism. Readers not yet comfort
able with applicative style or unfamiliar with linear algebra might want
to skip this on first reading. In presenting these algorithms I am make
no comparisons with other programming styles, except to observe that
these programs cannot be cleanly written any other way. They offer
dramatic improvements over those common use. They are transparent to
identification of (mutually independent) parallel processes, ~ ipse
loguitur in different ways to different readers.

Let us represent a matrix using recursive lists. Somewhere (not
necessarily local to the list) there will be need for some sort of
"header" information (£,_g, dimension, scalar representation, number of
rows, columns, etc.) which I shall not specify precisely. The crux is
the list structure itself: a matrix is defined to be one of

-the empty list (representing an all-zero matrix),
-an integer or scalar (representing a lxl matrix),
-a list of four matrices (the quadrants explained below).

In the last case we envision a matrix as cleaved, once vertically and
once horizontally, into quarters, each exactly one-fourth the size of
the original matrix. The quarters, or quadrants, are indexed as one
reads English: the first is upper-left and the third is lower-left. By
inference all matrices are square and sized by the largest power-of-2
not exceeding both the height and width of the "intended" matrix.

How can square matrices of size 1, 2, 4, 8, etc. efficiently
represent all other sizes? The answer rests in the use of the all-zero
matrix. What we precieve as a 12-by-24 matrix will be represented as a
32-by-32 matrix, whose third and fourth quadrants are null. Its second
quadrant will similarly have two null sub-quadrants, and so forth, see
Figure 1. Al though Figure 1 . appears to have capacity for a much large
matrix, not very much space is wasted in representing non-existent (i.e.
zeroed) rows and columns.

At first one suspects that the only quadrant that is really "full"
is the first, but even this assumption may not hold. A covey of zeroes
in the upper left corner of a matrix will al so be represented as empty
quadrants (nulls), with the desirable result that the representation
takes far less space than conventional representations. How would a
33-by-33 matrix containing all zeros, except for a 1 in the dead center,
be represented?

J

25

+==
t I I ' t r I l
t r I l
t r I l
f f I Null 2.2nd l
t r I quadrant l
t r I l
t r I l
t r I l
t---------------i--___,,-----~------1-----------------+----------------l
t I l
t I l
t I l
t I l
t · r------+---1---+--- Null 2.4th l
t Null Null ! Null Null I Null Null quadrant J
t 1.3.3 1.3.4 r 1.4.3 : 1.4.4 I 1.2.3 : 1.2.4 l
t quad. quad. r quad. : quad. I quad. : quad. l
·t : r : I : r 1
t===============================+===============================l
t l
t l
t l
t l
t l
t l
t l
t l
f Null 3rd quadrant Null 4th quadrant l
t l
t l
t l
t l

t ' t l
t l
t l
t l
t------------ -------- ----------+
Figure 1. A 12 x 24 matrix in 32 x 32 quad representation.

Space-efficient representations for sparse matrices have been known
for some time, and some have even been incorporated in vector-machine
hardware. While the representation proposed here is not space-optimal,
it does compress matrices in a way that lends itself to matrix opera
tions, as we shall see. For now, observe that on null (zero) matrices
addition, mul tipl ica tion, trans po sing, and testing-for-singularity are
all trivial operationally, as well as conceptually.

I

26

The natural analog for representing a vector is a binary tree, for

representing an n-dimensional array, a 2nary tree. This vector
representation should be contrasted with the list representation from
Section 8. There I used an asterisk notation to imply distribution of a
function over a linear list, it or a a similar notation might also indi
cate distribution over a tree. As we shall see below, some languages
(FP and APL) specify little or nothing about the internal representation
of vectors, and so are free to provide explicit or implicit functional
notation for distribution of functions over trees.

In the 'following algorithms I have made no provision for size
information that might be present in the matrix header. Such informa-

tion is not essential here. 14 As a result, my code has more tests than
would be necessary if size specification is verified beforehand, a
counter would be used · (instead of the atom? tests here) to curtail
recursion. Detection of size conformabil i ty could thereby be handled
before, not during, the application of these particular functions. (It
is easier to assume here that all matrices are square and that all
operands conform.)

Probing a specific entry within a matrix, however, does require
knowledge (from the header or other specification) of the size of the
matrix, that is, the maximum of its length and width. Let us define a
function to access the .!,1th element of a matrix whose largest side is,
at most, twice the integer middle, For Figure 1 the value of middle
would be 16.

access:<matrix middle i j) =: if:<
null? :matrix 0
and:<(middle = 0) atom?:matrix (i = 1) (j = 1)) matrix
or :<(middle= 0) atom?:matrix (i = 1) (j = 1)) conformerror:<matrix middle i
if:<(i < middle)

if:<(j < middle)
access:< !:matrix half:middle i
access:< II :matrix half:middle i (j

if:<(j < middle)
access:<III:matrix half:middle (i - middle)
access:< IV:matrix half:middle (i-middle)(j

Some easily defined helper functions are assumed above, in particular,
1, II, III, and IV access the appropriate quadrants:

I:mat =: first:mat
II :mat =: first:rest:mat

III:mat =: first:rest:rest:mat
IV:mat =:

half: i
first:rest:rest:rest:mat,

=: first:divide:<i 2)

Access of a specific element takes time logarithmic in the size of the
matrix, or O(log(size)).

14 On the contrary, these algorithms do not need rigorous size check
ing, running correctly whenever sizes conform within an order of magni
tude (taken as the power of 2).

j >
middle)> >

j >
- middle)) »>

27

For the purposes of input and output, we should like to present
matrices in either row-major or column-major form. Now that the
quadrant-representation is understood, the reader is encouraged to
define translation functions between row-major presentation of matrices
(of Section 8) and this "quad-tree" form. 15 The program is not easy, but
fortunately it is executed relatively rarely.

Section 8 reminds me of the problem of matrix transpose. We can
effect the transpose of a matrix represented in this way merely by
exchanging the definitions of II and III throughout. Rather than a par
tial recopying or a complete rebuilding of an extant matrix, all we need
to do is to arrange a rebinding of two probing functions:

II:mat =: first:rest:rest:mat
III:mat =: first:rest:mat

by a boolean in the matrix header, which selects how II and III are to
be interpreted for that matrix. Transposing a matrix is effected by
just providing a new header (which would be necessary anyway) for the
untouched list representation.

Matrix addition is easy for "untransformed" matrices. The only
trick is to maintain the normal form when submatrices sum to zero.

matplus:<a b) =: if:< null ?:a b
null?:b a
and: <atom? :a atom? :b> scalar: (a + b)
or :<atom?:a atom?:b) conformerror:<a b)
normform:<matplus •>:<

a
b > >

scalar:i =: if:< (i = 0) 0 i > ,
normform:quad =: if:< and:(null? *):quad<> quad>

The time to add two matrices is, again, at least O(log(size)), even when

there are n2 adders in parallel, the logarithmic time arises from the
quad structure, just as in access.

The preceding code for matrix addition and that following for Gaus
sian matrix multiplication both exhibit a natural high-level decomposi
tion of the matrix operation into four additions or (respectively) eight
multiplications of quadrants. Functional combination and collateral
argument evaluation yield the top-down decomposition that we want.

15The quad tree, which inspired these algorithms, is a well known
structure for analyzing two-dimensional graphics.

J

28

mat times: <a b> =: if:< null?:a a
null? :b b
and:<atom?:a atom?:b> (a• b)
or :<atom?:a atom?:b> conformerror:<a b>
<matplus •>: <

<mattimes *>:< < I:a I:a III:a III:a>
< I:b II:b I:b II:b> >

<mattimes *>:< < II:a II:a IV:a IV:a>
<III:b IV:b III:b IV:b> >> > •

Running time, even with n3 multipliers, is no better than O(log(size)).

If either of the arguments, ..! or ~.
described above, then more 10 versions of
needed, essentially with and without uniform
or II:b and III:b throughout this code.

might be "transposed" as

matplus and mattimes are
exchange of II:a and III:a,

At first providing different programs for the same operations seems
expensive, but it is cheaper than requiring that any matrix to be
represented in either of two formats as some stream-oriented implementa
tions do ("row major" and "column-major" form.) This "quadrant-major"
representation serves both roles. ,pp When either operand is null, the
efficiency of matplus or mattimes is startling. Zero quadrants are not
just random, because the canonical forms for matrices exhibit such
sparseness. If just one quadrant of one operand to mattimes is null,
then two of its eight recursive calls and half of its four invocations
of matplus become trivial, massively improving its performance. Being
able to reduce eight recursions to six is a fine improvement.

In 1969 V. Strassen presented a remarkable way to multiply
matrices, perfectly suited to this matrix representation, that can
reduce these eight recursions to seven in all cases. It, too, is best
presented in applicative style but I shall not press through it here. A
fine presentation appears in Chapter 6 of The Design and Analysis of
Computer Algorithms by Aho, Hopcroft, and Ullman (Addison-Wesley, 1974).
Instead of the four additions that we saw above, however, it requires
eighteen 17 quadrant additions, of which ten, six, and two may be done in
parallel, For ~ultiplying sparse or small matrices it is no improvement
over the Gaussian multiplication, above, (just as gsort is no improve
ment for small sorting problems), but as matrices grow, the savings in
multiplications quickly compensates for the additional additions.

[Because addition does not associate under ordinary representations
of floating-point numbers, however, this quadrupling of addition opera
tions at each step can introduce precision errors. (There is no problem
with ordinary computer representations of rings like modulo-2 arithmetic
or the integers, where normal algebraic laws hold.) Earlier I said that
programming languages should allow us to practice algebra, here I note
another restraint on that practice: number representation.]

16Actually only two for addition and three for multiplication.

17s. Winograd has improved this to fifteen at the cost of some syn
chronization.

29

Tha best algorithm is a hybrid, working roughly as follows:

-if the matrix is sized 16 x 16 or less, use Gaussian multiplication,
-if all or any quadrant of either operand is null, take a Gaussian step,
-otherwise take a Strassen step.

The Strassen or Gaussian (essentially mattimes) step reduces the problem
to seven, six, or fewer matrix multiplications of this hybrid variety.
The boundary size · of sixteen is derived from analysis (of dense
matrices), which shows this strategy to be optimal in number of scalar
arithmetic operations, .!,.~. sum and product, and almost optimal in
number of non-trivial function-invocations (which translates under
parallelism to a census of process-dispatches, a critical measure of
complexity there.)

The point of this section is to demonstrate the leverage of appli
cative style on a known problem, the code presented here not only admits
more efficient algorithms, but also it remains transparent to their
implementation under multiprocessing. The elegant quad-tree matrix
representation yields many benefits: matrix transpose is trivial, it
facilitates decomposition of other operations into large subprocesses,
it allows efficient, high-level representation of sparse matrices while
lending itself well either to Gaussian or to Strassen's multiplication
algorithm, thereby it admits a three-way hybrid algorithms, and there
are no clever exceptions hidden in its structure to hamper algorithms
that we cannot now anticipate.

The last is most important, because I have not mentioned all the
conventional matrix operations, Aho, Hopcroft, and Ullman discuss some.
It turns out that finding inverses, determinants, eliminants (a new dual
of determinants) , 18 and "pivot-steps" are all operations that lend them
selves to the quad-tree matrix representation.

And even more significant algorithms might remain to be discovered
in this area. When such a simple observation yields algorithms this
elegant, I suspect that some fundamental perspective has been uncovered,
and that the underlying theory might be better recast from that angle.
Surely we would be able to reproduce the known results under the refor
mulated definitions, but---more importantly---we also might be able to
prove new results by using more powerful tools. If matrices had been
originally perceived as quadrants, how could FORTRAN' s EQUIVALENCE
statement have been entended to matrices? And how differently would
development of "vector machines" have proceeded!

12. Comparing Various Functional Languages

In this section I present the program guicksort from Section 11.1
recast into four popular applicative languages, as well as PASCAL. The
choice of an example is not easy because these languages are fairly
diverse. For instance. APL seems to be designed around scalar and
matrix arithmetic, while LISP is built on manipulation of list

18s.K. Abdali AB. D. Saunders, Transitive closure and related semir
ing properties via eliminants, Theoretical Computer Science (August,
1984.)

;.J

30

structures. I have chosen quicksort because it mixes both problems of
arithmetic (the key comparisons) and of structure manipulation. The
resulting programs may not always compare, because of, for instance,
conceptual differences between list and array structures.

The last section, moreover, points out constraints of overly expli
cit structure manipulations, there I argued that vectors and matrices
should be reconsidered as tree structures. While APL seems most
numeric, it also has the least constrained matrix representation, APL
just may use trees internally without the user knowing. Sorting would
be most efficient if the data vectors were trees, and with a bit of
unseen algebra the APL in Section 12.5 could realize this optimnm.

At least we are familiar with the example already. Section 11.1
uses a style that is quite close to the language, Daisy, implemented at
Indiana University. It would be well to compare this with an iterative
and array-oriented language, PASCAL, before we proceed to languages less
widely known.

12.!. PASCAL

PASCAL is not designed to be an applicative language. Therefore,
its parameter-passing mechanism is not tuned to the style. For
instance, there is a difference between the kinds and numbers of objects
that can be passed as arguments and that can be returned as results,
writing a binate "divide" is awkward. One does not, therefore, expect
to infer parallelism from PASCAL programs.

C.A.R. Hoare invented guicksort as an in-place algorithm for
languages like PASCAL. Because it "destroys" its input parameter in
order to "create" its result, it violates the side-effect-free con
straint on applicative languages. (For instance, lazy evaluation from
Section 7 might be crippled.) On the other hand, we can expect it to
achieve the high-level bifurcation desirable for multiprocessing.

The code I present in Figure 2 is a modification from Bentley•s 19 ,
he indicates several possible enhancements.

A good compiler still has opportunity for algebraic improvements
even to this highly sequential code. The comparison in the inner condi
tional is better distributed out of the logic to be cast as a single
comparison, it might look like

CASE. COMPARE(vec[scan], boundary) OF
< statementl ,
= sta tement2 ,
> statement3

END

if PASCAL allowed such syntax.

The interesting point is that the first recursive invocation of
gsort may be dispatched as a separate process. The second recursive

19 from Comm. ACM 27 , 289 as previously cited.

31

CONST size = 254, sizel = 255,
TYPE range = 1 •• size, rangel = O •• sizel,

scalar= integer,
vector= array[range] OF scalar,

PROCEDURE qsort(VAR vec:vector, lo,hi:rangel),
VAR boundary: scalar,

lastequal, scan: range,
lastlow: rangel,

BF.GIN
IF lo)=hi 'IBEN {It's already sorted} ELSE
BF.GIN

boundary:= vec[lo],
lastequal := lo, lastlow := lo,
FOR scan:= lo+l TO hi DO

{Invariant:
(vec[lo,,lastequal]
(vec[lastequal+l •• lastlow]
(vec[lastlow+l •• scan-1]

IF vec[scan] <boundary TIIEN
BF.GIN

= boundary)
< boundary)
> boundary)

lastlow := lastlow+l,
swap2(vec[lastlow], vec[scan])

END
ELSE IF vec[scan] =boundary 'IBEN
BF.GIN

lastlow := lastlow+l,

a
a . }

lastequal := lastequal+l,
swap3(vec[lastequal], vec[lastlow], vec[scan])

END END

END
ELSE {vec[scan])boundary. Let it stay there.} ,

qsort(vec, lastlow+l, hi),
FOR scan := lastequal DOWNTO lo DO
BF.GIN

END,

swap2(vec[scan], vec[lastlow]),
lastlow := lastlow-1

qsort(vec, lo, lastlow)

Figure 2. PASCAL code for Quicksort

ca11 20 then runs in parallel and asynchronously with the first recur
sion. The properties of the algorithm guarantees that there is no con
flict between the processes.

20Recognizable as a so-cal led "tail recursion" and easily transformed
into a loop.

32

12 .z_. LISP

LISP is really a family of languages traceable to one common .root.
There is a fairly well recognized subset that meets my definitions for a
functional language, and I use a tame extension of it. If the following
code is not legal in your particular version of LISP, then a fairly
trivial syntactic transformation will render it so.

When reading LISP, be aware that the name of the operation being
invoked occurs just to the right of the opening parenthesis, rather than
just to the left of it. While some complain about the spartan syntax
((too many parentheses)), others relish it because every program is also
a list, among the higher-level languages, it, alone, realizes von
Neumann's unification of program and data structures.

(def qsort (lambda (lis) (cond
((null lis) lis)
(t (let (((lt eq gt) (lt_eq_gt (first lis)(rest lis))))

(append3 (qsort lt) eq (qsort gt)))))))
(def lt_eq_gt (lambda (boundary lis) (cond

((null lis) (list lis (list boundary) lis))
(t (let (((lt eq gt) (lt_eq_gt boundary (rest lis)))

(this (first lis)))
(cond
((lessp this boundary) (list (cons this lt) eq gt))
((greaterp this boundary) (list lt eq (cons this gt)))
(t (list 1 t (cons this eq) gt))))))))

(def append3 (lambda (ab c) (append a (append b c))))
(def first (lambda (x) (car x)))
(def rest (lambda (x) (cdr x)))

We define the function gsort to take one parameter, lis
and to return the result of a conditional expression. (The keyword,
lambda, is a holdover from Church.) Either lis is empty, and itself is
the result, or the result may be described by appending three sublists.
The three are obtained by partitioning and applying gsort recursively to
the first and third partition before appending.

The partitioning function 1 t eg gt returns a list of three lists.
In the complex case that its argument, lis, is non-empty it binds this
to the first item on lis, lt, .!.Q., and..&! to the partition of the rest of
lis. Then its problem is reduced to ..Q.Q.!!.!ing this onto one of the three
sublists, .and returning the triple.

12 .1. Prolog

There are two immediately noticeable differences in the Prolog
code. The first is that gsort has two parameters, the second is that
no explicit append function is invoked. Both have the same explanation.
Prolog is less a language than a theorem prover, The user defines rela
tions, not functions, patterns to the left of the :- . symbol are
equivalent to the conjunction (on the right) of patterns separated by
commas.

33

qsort(Vector, Sorted) :- qs(Vector, Sorted-[]).
qs([]. Vee-Vee).
qs([BoundarylSuffixl. Lsort-Gtail) :-

lt_eq_gt(Boundary, Suffix, [Lt-[], Eq-Gsort, Gt-[]]),
qs(Lt, Lsort-Eq),
qs(Gt, Gsort-Gtail).

lt_eq_gt(Boundary, [], [L-L, [BoundarylEl-E. G-G]).
lt_eq_gt(Boundary, [FirstlRest], [L, [FirstlE]-Etail, G]) :

Boundary=First, I.
lt_eq_gt(Boundary, Rest, [L, E-Etail, G]).

lt_eq_gt(Boundary. [FirstlRest], [[FirstlL]-Ltail, E. G]) :
Boundary)First, I,
lt_eq_gt(Boundary, Rest. [L-Ltail, E. G]).

lt_eq_gt(Boundary, [FirstlRest]. [L, E, [FirstlG]-Gtail]) ·
Boundary(First, I.
lt_eq_gt(Boundary, Rest, [L, E, G-Gtail]).

In this case the parameter, Vector will be bound to a list of
integers. and the parameter, Sorted will be unspecified. In fact the
latter is to be a result of a proof, Prolog attempts to validate the
assertion that Vector and Sorted fulfill the specified relation. and it
will find a binding for Sorted as a byproduct of the proof. That is,
Vector and Sorted fulfill the gsort relation exactly when Vector and
Sorted-[] meet the ll relation.

The proof is pattern-driven, and the pattern mechanism is used to
force Sorted to be constructed in three pieces, already appended into
one. The use of the pattern

Head-Tail

is not a subtraction, it is a reference to a sublist, referenced by its
head and also by a reference to its suffix, its tail, which is not con
ceptually part of it. Thus

Vee-Vee

is conceptually empty for any Vee, it remains for another part of the
proof to constrain the particular value of Vee.

The same pattern matching mechanism relaxes the need to structure
"results" of lt eg gt as a list of three sublists. Here it is a rela
tion. rather than a function, and the fact that we perceive the first as
"input" and the second three as "output" is merely our perspective.

I should say a word about the two vertical strokes, "I" and "!".
The first is merely infix £.Q.!!!, essentially as introduced in Section 6.
The second is a cut and is fairly sinister. It should be perceived as a
program annotation that guides Prolog toward the correct answer by cut
ting off uninteresting possibilities. However, its placement affects
the semantics of the program, if misplaced then Prolog may not discover
an intended "result" relationship. It is correct to leave out all cuts
at the cost of processing time, but their correct placement requires a
deeper understanding of the theorem prover.

I\

34

12 .J.. FP

The most striking thing about Backus's language FP, 21 is that no
formal parameter names appear in the definitions of functions. One
should read them as if they were applied to the input (here, the vector
to be sorted), with the rightmost functions operating on that input.

This absence of named objects may , at first, seem awkward but it
is perfectly consistent with the functional style and the goal of "doing
algebra." FP offers a very rich language for abstract manipulation of
programs, including both primitive and user-defined (in FFP) "func
tional" operators for combining functions. Of these the most frequently
used are 1, 2, 3, etc. indicating selection of the first, second, third,
etc. part of a subresult.

The 'little circle' denotes ordinary functional composition. Func
tion lists in brackets yield a result vector of the same length as the
function list, each function in the list is applied to the single argu
ment. Such an argument may be decomposed with the integer-functions.

The following code follows that above, with the exception that the
first element and the entire input vector are passed to the partitioning
function.

Def qsort .:: null -> [], /un• [qsoru, 2, qsoruJ•• [1 , id] •

Def lt_eq_gt =
a /un • trans • a (gt -> [[2], [], []] ,

lt -> [[]. []. [2]] ,
[[], [2], []]) • dist! •

In the case of gsort, a null argument results in a null result by apply
ing the null function to it. Otherwise, three results are united into a
single list by inserting the (infix) binary. una te, associative pr imi
tive M between its elements, the functional slash, /, inserts un to
effect append.

The partitioning function, 1 t eg gt, conceptually constructs an
intermediate result that is a matrix of null or singleton lists. Each
of elements in the three columns contains elements of the second element
of the argument (a vector) that are, respectively, less than, equal to,
or greater than the first element of the argument (an integer). (In an
actual implementation this structure may never actually exist.) This
matrix is transposed, and then the "append" operation, above, is per
formed on each row. The functional alpha behaves much like the star in
functional combination (Section 9) •

.John Williams, who kindly helped me compose and test this code,
properly points out that FP allows a much better sorting strategy. His
implementation of FP has a version of the slash functional, /, that
structures its argument as a (complete) binary tree. Together with a
primitive merge (which does what its name implies to two sorted lists)

21r. Backus. Can programming be liberated from
style? A functional style and its algebra of programs.
(August, 1978), 613-641.

the von Neumann
Comm. ACM 21, 8

., 35

it allows us to write the following whiz-bang sort:

Def sort= tree merge •a[id] •

This code makes every element into a singleton vector (a[id]) and then
builds a tree of merge's over them. Not only is this code more elegant,
but also it is much faster---even without taking advantage of' implicit
parallel ism •

12.,2. APL

While the language of APL expressions is functional, much more is
needed to write programs. Unfortunately, it lacks a conditional expres
sion, forcing me to write some assignment statements and apparently
serial go-to code. View that as syntactic overhead for recasting the
conditional inside an expression, Lines 1-3, below, only sort the
trivial vector.

APL is oriented towards arrays rather than lists, with some remark
able distributive laws. Generally, primitive operators may be applied
to arrays elementwise, yielding an array of results. In the following
example, I use comparisons between an integer and a vector to construct
(conceptual) intermediate results that are vectors of bits, like the
columns from the intermediate array in the FP code above. These are
used as operands to the slash, /, operator that selects elements from
that same vector to be collapsed into a shorter one. In this case no
append is needed because APL's comma implicitly concatenates vectors.

\/ Z ~ QUICKSORT V
[1] -> ((pV) > 1) / 4
[2] Z ~ V
[3] -> 0
[4] Z ~ (QUICKSORT (V<V[l]) / V) , ((V=V[l]) / V) , QUICKSORT (V)V[l]) / V

\/

Unfortunately, every operator in APL is either unary or binary,
with every operand either primitive or a very regular structure. Infix
notation is mandatory and no functions may be passed as arguments. This
prevents me from extracting the pattern

(V relationopr V[l]) / V

from Line 4 and then abstracting relationop as
expression. Then it could be written but once and
of the three relational operators (suggesting but
as before I want V to be traversed but once during

a parameter to this
applied to the vector
one traversal of V) ,

partitioning.

But APL al so has the virtue that the user is kept unaware of its
array representation or its pattern of execution. In fact, an implemen
tation just might traverse V only once, it might even represent V as a
complete binary tree, allowing a multiprocessing tree traversal.

Thus, the specific details that APL has denied the programmer do
not constrain the implementor. An implementor of APL may choose her own
matrix representation and algorithms, one could find quad trees and

36

recursive matrix operations already buried in an existing implementa
tion.

13. Conclusion

This description of applicative programming is hardly comprehen
sive. I could have said more about the importance of passing functions
as arguments/results, and functionals to use them. I only hinted at
algebras for program manipulation. Nothing but numeric examples have
been offered, though the reader surely understands that non-numeric pro
grams make heavy use of lists and trees. Numeric examples were chosen
as a common ground for characterizing four or five languages, some hav
ing few other applications in common.

Although I argue for applicative programming, I do not expect that
the software industry will ever embrace it. Why retrain? Most of
today's applications and most ordinary resources are well-suited to
current imperative style.

There is a role for functional style, however. While FORTRAN and
ALGOL did not eliminate assembly language programming, they did change
the way that programming was taught and the way that most work was done.
They did that by expanding the horizons of computer applications to
problems and to people that wouldn't have gotten together in any other
way. They also prompted a continuing rethinking of computer architec
ture. A similar future belongs to applicative programming.

For an attack. on the problems that we haven't solved satisfac
torily, for insight on the architectures that we haven't yet built, and
for motivating the students who haven't yet learned to program, I sug
gest applicative programming.

'1

J

37

Note to typesetter: For the code in the late sections on FP and APL •••

\/ is mathematical "del".
• is infix little circle (function composition}.
-> is right pointifig arrow.
~ is left pointing arrow.

a is Greek alpha.
pis Greek rho.

I
r

·l

~

