
1984-3

5C~ErlCE

Representing Matrices as Quadtrees
for Parallel Processors

David S. Wise
Computer Science Department

Indiana University
Bloomington, Indiana 47405
Computer Science Department

Oregon State University
Corvallis, Oregon 97331

Representing Matrices as Quadtrees

1- Introduction

David S. Wise
Computer Science Department

Indiana University
101 Lindley Hall

Bloomington, IN 47405

~ 1;,._r:·r:r, SCfENC
.~' !TY

roce ,s s@ i 31

Implementation of matrix algebra is a favorite application for

motivating various parallel-processing architectures. This paper

approaches this familiar area by reconsidering the structure of these

algorithms--more specifically the structure of matrices, themselves--in

order to arrive at algorithms suitable to multiprocessing, in general.

The result is a homogeneous tree data structure implementing matrices,

that is at once amenable for parallel processing, on-the-fly algorithm

selection, and sparse matrix representation.

An algorithm that is amenable to parallel processing will execute

efficiently with a high degree of parallelism in any of several possible

multiprocessing environments, it should admit high-level decomposition

into a few mutually independent processes. Successive decomposition is

necessary in order to extend the degree of parallelism to take advantage

of whatever population of processors is available. Such decomposition

should occur at a high level in the the program structure in order that

each process be large or, more accurately, long - running so to better

amortize the overhead of its dispatch and recovery. Finally, each such

decomposition should cleave one process into but a few others, in order

that parallelism expand in a controlled fashion to fit within an unknown

run-time processor resource, too many processes create undesirable

2

process-swap overhead. It is better to have seven nested options of

splitting a process in half, than to have just one choice between 1 and

128 active processes.

I mean by "on-the-fly algorithm selection" a second-order algorithm

that selects between two first-order algorithms at run time, responding

to the nature of data. Such a choice is often made within floating

point library functions that are sensitive to convergence of alternative

expansions over different ranges. Sparse matrices [5] are matrices that

have a plethora of zero elements, represented in a way to avoid storage

space and computation cycles for those elements.

This short description uses two-dimensional matrices and quaternary

trees for exposition. Consistently, scalars are isolated nodes, vectors

are binary trees, and n-dimensional arrays are 2n_ary trees.

1- Heaps and Multiprocessing

Heaps, memories organized exclusively with explicit links within a

data structure, are common in uniprocessor language environments, like

those of LISP and PASCAL. They are not usually considered fundamental

there, however, being absent in many useful languages and having been

only recently implemented in hardware. In older languages the quadtree

structure would 1 ikely have been implemented as a complete qua ternary

tree [5] and stored sequentially in linear memory.

In spite of the space and access overhead associated with heaps,

they are better suited to multiprocessing [4]. A homogeneous heap may

be distributed across several independently accessed banks of memory

connected to allow many processors to access different banks simultane-

I ,_

3

ously. Because memory addresses are transparent to the user, a single

data structure may be distributed across all the banks. When a struc

ture has been built from random nodes, two processors accessing dif

ferent parts of it are not likely to be addressing into the same bank.

In contrast, parallel access to related, sequentially-allocated data

generates access clusters much like those into some scatter-tables.

Ordinary conventions for manipulating linked structures, moreover,

alleviate conventional problems of interprocess contention. If we adopt

the convention that structures are built, shared, dereferenced, but

never altered (as in single-assignment or purely applicative languages),

then there is never any need for fetch/store synchronization among pro

cessors, the unique store to an address implicitly precedes all fetches

from there. If sharing of infrastructure is prohibited (i.e. trees are

required), then two processes dispatched on different substructures will

never contend for access to the same memory in the identical pattern, as

they would if they were traversing the same structure.

The conventional model of a processor changes somewhat. Because

some sort of interconnect-switch is interposed between physical proces

sors and memory banks, finite delay in memory response time (depending

on the number of banks) must be expected, this time can be absorbed by

cacheing several active processes on each physical processor (extending

the number of active processes beyond the number of physical processors)

so that some may run while others await their pipelined memory

responses. The burden of storage management, moreover, can be almost

entirely removed from processors in this architecture, a banked and

switched memory can remotely maintain its own reference counts without

4

overhead of additional address space.

As in all multiprocessor architectures, the overhead for process

dispatch and recovery remains. This is the analog of overhead for sub-

routine initiation and termination on a uniprocessor and, in the absence

of interprocess communication at other times, no more bothersome.

~- Definitions and Simple Operations

Inspired by the quadtree structure as used in computer graphics

[7]. let us structure a two-dimensional matrix in one of three ways.

Either it is composed only of zero elements, or it is a non-zero scalar

(equivalent to a one-by-one matrix). or it is composed of four equal

sized quadrants, each (recursively) a matrix. Let the NIL pointer refer

to the zero-matrix (of any size), and let the quadrants be accessed-by

four non-NIL pointers.! By convention the upper-left quadrant will

always be square, sized by the largest power of two less than the size

of the matrix, thus the quadrants are all about half the size of the

original matrix. Typically, the right and lower edges will be padded

with NIL. 2

If a matrix is sparse, then significant numbers of blocks within

the matrix (away from the edges) will also be represented by NIL

pointers. Even when these blocks are mostly two-by two, we still can

1 It might also be useful to provide another easily recognized pointer
(say, IDE) to the square identity matrix, [6i,jl. of any size. Th.us
both of the ring• s identities are easily detectable at run time, when
various operations can be accelerated by application of appropriate ax
ioms. In that case, a scalar should be both non-zero and non-unitary.

2 and the lower, right corner will be IDE, preventing zero padding
from introducing false singularities.

s

prune the equivalent of nearly a full level from the ordinary quadtree

structure without special reordering of the data. (In contrast, an

entirely zero substructure nearly never occurs under row-major represen

tation, such a matrix is singular.) In addition to the space efficiency,

ring theory provides axioms that accelerate operations on zero blocks,

yielding a time savings whenever NIL is uncovered during a matrix opera

tion.

Accessing an individually indexed element from this structure is,

at worst, a tree walk from root to leaf, requiring time logarithmic in

the size of the matrix (the height of the tree). At best, a NIL pointer

is uncovered along that pa th, forcing the result immediately to zero.

The walk algorithm is quite simple, discharging one bit from the binary

expansion of the two indices at each step. Those two bits indicate in

which of the four quadrants the element lies.

Transposing a matrix is just as straightforward. The matrix is

recopied recursively with upper-right and lower-left quadrants

exchanged. When a header is provided for each user-defined matrix (e.g.

containing bounds for compatibility checks), an additional bit there can

indicate whether the matrix has been transposed. Matrix transpose then

takes constant time, simply by building a new header and sharing the

infrastructure. That bit indicates exchange of the upper-right and the

lower-left pointer-accessing functions for that matrix.

Matrix addition is also recursive. The basis cases are a NIL

addend (additive identity) or scalar addition. Otherwise, addition

decomposes into four independent additions, suitable for multiprocess

ing. Pointers to these four sums are assembled as a new sum-matrix.

6

Addition, as well as recopying transpose, is amenable to parallelism,

regardless of the size of the matrix.

!- Matrix Multiplication

Though not too typical of large matrix problems, much theoret :i.."al

work is available on the problem of efficient matrix multiplication.

Treated here at length, this problem illustrates the flexibility of

quadtree representation by admitting superlative algorithms over homo

geneous data.

Consider the problem of multiplying two compatible matrices

represented as quadtrees. Multiplication of NIL and scalar matrices is

trivial. Traditional Gaussian mul tipl ica tion on non-trivial quadtrees

can be effected by eight recursive multiplications of quadrants followed

by four additions (of the sort discussed above).

While the expanded formula for each element is identical to that of

accumulated dot-products, the order of addition is altered. The associ

ation pattern of the additions follows a complete binary tree rather

than a left-linear tree, a matter of concern to a numerical mathemati

cian aware that floating-point addition is not associative. (In fact,

the complete tree addition is more accurate than the linear tree addi

tion.)

In 1969, Volker Strassen [3,6,8] showed how to multiply such qua

drants using only seven (parallel) mul tipl ica tions, but eighteen addi

tions (parallel in three waves of 10 before, and 4, then 4 after the

multiplications.3) It is obvious that this is no improvement over

3s. Winograd improved this to fifteen additions [3], at the cost of

7

Gaussian for small matrices (e.g. 2x2) but the improvement for large

matrices is dramatic. The dominating exponent in the time formula, 3

for Gaussian multiplication, asymptotically decreases to 2.81 = lg(7) as

factors enlarge. This algorithm, however, has not found its way into

popular use, Knuth [6] attributes · this fact to additional bookkeeping,

apparent in memory architecture tuned to row/column traversal.

If the matrix operands are already represented in quadtree form,

however, Strassen's algorithm becomes much more useful, because one can

readily alternate between Gaussian and Strassen's algorithm at different

levels in either recursion, no additional access overhead is accrued in

switching between the two. (Stability remains a problem, extra

floating-point additions erode accuracy [2].) It follows from the inef

ficiency of Strassen's for small matrices that the most practical paral

lel algorithm will be a hybrid of Gaussian multiplication (near the

leaves of the quadtree) and Strassen' s (nearer the root) 1 the quadtree

representation offers ready alternation between these two, while offer

ing a homogeneous representation for other matrix operations.

Analysis of square, dense matrices shows that the hybrid algorithm

should perform Strassen's multiplication step on submatrices 32x32 and

larger, and perform Gaussian multiplication on submatrices 16x16 and

smaller. One exercise, counting all scalar arithmetic operations, shows

that Gaussian should be performed for matrices 12x12 and smaller.

Another, counting process/subroutine dispatches, indicates that Gaussian

should be done for matrices 17x17 and smaller. (These results are

parallelism and some stability [2]. Parallel addition can be done in
waves of 4, 2, 2, followed by the 7 multiplications, and then addition
again in waves of 3, 2, 2.

I
[

8

analytic, subject to verification on implementations.) Thus, a header

cell giving the size of the matrix is most useful to determine which

algorithm should first be used on the eight quadrants of a non-trivial

matrix multiplication problem.

The presence of easily-detected sparse matrices, however, adds

another wrinkle. When just one of the eight quadrants in a multiplica

tion is all zeros (NIL), then a Gaussian multiplication step requires

only six (non-trivial) recursive multiplications and but two (non

trivial) additions. Strassen's algorithm does not accelerate so nicely

in the presence of NIL, because of additions within each factor.

This last point leaves us with the following hybrid algorithm for

multiplying compatible matrices whose size is known:

1. If either of the matrices is NIL, then their product
is NIL. If both are scalar, use scalar multiplication.

2. If the factors are 16x16 or smaller, use pure
Gaussian multiplication.

3. If the factors are 32x32 or larger, fetch up
their eight quadrants.

4. If any of the eight quadrants is NIL, do the
multiplication using a Gaussian recurrence
at this step, but this very algorithm for
subsequent recursions (on quadrants.)

5. Otherwise use Strassen' s recurrence at this
step, but use this algorithm for subsequent
recursions (on the sums of quadrants.)

The analysis of this algorithm, certainly amenable to parallel process

ing, is an open problem.4

4 lf IDE is used, it would be necessary to include testing for it at
Steps 1 and 4. At Step 4 a Gaussian mul tipl ica tion step requires only
six (non-trivial) recursive multiplications and four additions.

9

i_. Conclusions

I have also considered other matrix operations which are not

described in detail here. Matrix inversion is related to multiplication

[3], determinants, eliminants [1], and pivot-step [5] all seem to led

themselves to quad representation and to parallelism. Of particular

note is the last, where intermediate results are triples: the pivoted

matrix, the extracted pivot-row vector, and the extracted pivot-column

vector--all structured as trees. Parallelism arises from simultaneous

processing of the two quadrants that coordinate on the pivot element,

the pivot quadrant is done (recursively) before these two, and the off

pivot quadrant is processed afterwards.

Hybrid storage representations may be built over this scheme,

linearly-allocated and pipeline-processed vectors may be substituted for

"scalars" above. If matrix multiplication were critical in an applica

tion, the analysis cited above suggests that matrices of size 16x16 and

smaller should be so packed and pipelined, rather than linked as small

quadtrees.

At the beginning of this investigation I asked myself why all of

linear algebra is implemented using row-major representations. The only

answers that occurred to me (and others) is that the theory was

developed this way, and that the linearity of memory addresses makes it

worthwhile to structure matrices linearly for conventional processors.

It is possible, however, that the first answer has created the second.

Therefore, I suggest that linear algebra be reformulated under the

rigors of quadtree representation of matrices. Many results are already

available through proofs using block-decomposition, these blocks should

10

be constrained to be sized by powers of two, and that this proof tech

nique be forced in preference to row-decomposition. Where vectors are

needed, they must be treated as binary trees.

Surely, the same theory will result, perhaps some proofs will be

more elegant, and possibly some new theorems will appear. I expect the

real justification to be the discovery of new algorithms (e.g. [1] and

[8]) that arise from viewing some old, important, problems from block

decomposition. These algorithms will be most amenable to multiprocess

ing.

At the same time, analysis and performance evaluation of these and

similar matrix algorithms might suggest that quaternary trees become the

default representation for multiprocessor software packages and hardware

accelerators. The historical, numerical motivation for pipelined pro-

cessing would then require multiprocessing heap processors, computa-

tional mathematics would suddenly need something most similar [4] to a

multiprocessing LISP machine!

i- References

1. K. Abdali. a D.D. Saunders. Transitive closure and related semiring

properties via el iminants. Theoretical Computer Science 30 (August,

1984).

2. D. Bini IC. Lotti. Stability of fast algorithms for matrix multi

plication. Numer. Math. 36, 1 (December, 1980), 63-72.

3. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, MA (1974), Chapter 6.

11

4. D.P. Friedman I D.S. Wise. Aspects of applicative programming for

parallel processing. IEEE Trans. Comput. ~-27, 4 (April, 1978), 289-296.

5. D.E. Knuth. The Art of Computer Programming. !, Fundamental Algo

rithms, 2nd Ed., Addison-Wesley, Reading, MA (1975), 299-304 + 401.

6. D.E. Knuth. The Art of Computer Programming. II, Seminumerical

Algorithms, 2nd Ed., Addison-Wesley, Reading, MA (1981), 481-482.

7. H. Samet. Connected component labeling using quadtrees. l. ACM 28,

3 (July, 1981), 487-501.

8. V. Strassen. Gaussian elimination is no.t optimal. Numer. Math. 13,

4 (August 19, 1969), 354-356.

