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Abstract: 
A denotational semantics is presented for a language that includes multiple-valued functions 
(essentially Lisp S-expressions), which map from ground values into the power domain of ground 
values. The domain equations are reflexive, and fixed points of all functions are defined. Thus, 
it is possible to specify an operating system as a function whose codomain is a set of possible 
behaviors of the system, only one of which is realized under an operational semantics. Such a 
system can be specified using "pure" applicative programming (recursion equations without side 
effects) over primitive functions like amb, frons, arbiter, or arbit, all of which are formally 
defined. 

Tempered by 'environmental transparency,' we consider a power domain semantics in 
which the power domain may only occur within the codomain in the equation that defines func
tion space. The problem addressed is how to define,the analog of 'fixed point' for a function 
from the ground domain to thathat power domain, in a semantics that uses natural extension as 
the axiom for function application. Denotational and equivalent operational semantics are 
presented for the Smyth-upside-down power domain; a similar denotational semantics is 
presented for the Plotkin power domain (Egli-Milner order), along with a likely operational 
semantics. 

CR Categories and Subject Descriptors: F32 [Logics and Meanings of Programs]: Seman
tics of Programming Languages--Denotational semantics; D.4.1 [Operating Systems]: Process 
Management-Multiprocessing/multiprogramming; D3.1 [Programming Languages]: Formal 
Definitions and Theory-Semantics; D32: Language Classifications--Applicative languages. 

General Terms: Theory, Languages. 

Additional Key Words and Phrases: power domain, indeterminism, nondeterminism. 

1. Introduction and Notation 

Indeterminate programs are those which can return any of a set of many possible results. 
The archetypical example is an operating system, which takes one or several streams as input 
and returns one or several streams of output; typically the streams are routed from/to peri
pherals ~uch as interactive consoles of users who are contending for system resources. The rea
son that a set of results is acceptable is because users expect any of a set of different behaviors 
from identical contention. For instance, if A and B both attempt to reserve the last seat on the 
afternoon plane _ we allow either A or B to succeed (but not both). 

Applicative or functional programming is the style of specifying programs as recursive 
equations, with function application as the only control structure, and with parameter/argument 
association as the only binding. Under this discipline, where time or sequentiality of execution is 
often elided by relaxing input/output synchronization or by lazy evaluation [7], the two input 
streams that represent the aforementioned reservation attempts are identical. Thus, there can be 
no single answer. We expect A to succeed if he tries an hour before B, and B to succeed if he 
reserves well before A. The set of legal system responses must, therefore, include both the pair 
of streams accepting A and refusing B and the pair that seats B and turns A away. Moreover, if 
the reservations are made concurrently, no one will be able to predict which pair the correct 
reservation system will choose. Cases like this, where even the programmer cannot predict 
machine behavior, are the object of this paper. 

Denotational semantics [18, 21] is the mathematics of inferring meanings from a continuous 
function on an underlying 'domain' through the abstract device of Tarski's fixed points. No 
mechanical ("operational'') model of a computing device, such as Curry's logic , Church's cal
culus, Turing's machine, or Markov's computation is necessary. Applicative programming is 
intellectually close to the endeavor of composing a continuous function, because the usual 
expression of a continuous function appears as a set of recursive equations. No go-to's and no 
assignment statements appear in either style. 
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Programs composed under either discipline appear to be a product of the other simply 
because the syntax and style of expression is so nearly the same. To those used to more classic 
programming styles (e.g. FORTRAN) these fields are often perceived as one. The confusion 
should be encouraged because of the consistency between the denotational and expressive power 
that they offer. If, as its proponents believe, denotational semantics is the most precise way of 
imparting meaning to programs, and if, similarly, applicative programming is the best way to 
program for highly parallel architectures, then symbiosis between them will yield deep and pre
cise understanding for highly parallel programs. Without hope for such understanding from any 
other . approach, we must pursue their relationship before we build grandiose software tools for 
driving the plethora of parallel architectures now electronically possible . 

1.1. Domains and Power domains 

The reader is referred to Stoy [21] for a precise and readable introduction to this topic. 
Briefly, domains are the collections of values over which we compute. Here characterized as 
continuous, countably-based, complete partial orders (Stoy uses lattices, and other characteriza
tions are available [18D, they include both elementary data and the functions, themselves, that 
programmers construct when they ply their trade. The fact that domains include functions on 
them-that they are reflexive-is a confusion both to i!omputer scientists and to mathematicians. 
The mathematician is concerned about the cardinality of a set that includes functions over it, 
until he realizes that only the continuous functions are being considered. The computer scientist 
is confused by all those "extra" functions within the domain of values, forgetting that von Neu
mann architecture requires programs as data; denotational semantics merely abstracts representa
tion away from programs, leaving behind pure functions. 

A domain is ordered by the relation ~ which may be interpreted as A ~B if the value B 
contains more information than A, or represents the result of more computing effort on the 
same problem than the result A. The ''well-below" ordering, A ICC, holds when A and C may 
be separated by some finitely computable (isolated) element of the domain, B, between them: 
A r:ar:c. The minimum value .L in every domain contains the least information; it results from 
a computation that is elsewhere interpreted as "divergent". When one applies the theory to 
impart meaning on a recursive equation for a function, one understands that the intended func
tion is the least (-defined with respect to ~) fixed point of that equation. 

When denotational semantics is extended into the realm of operating systems, the role of a 
simple result datum is now occupied by a set of legal answers, any of which is acceptable. That 
is, the elements of the domain are the elements of the power set over an underlying domain. It 
is the purpose of this paper to explore how fixed points in that power domain might be inferred 
from recursive equations of any sort . Several domain orderings have been proposed for power 
domains, two of which are explicitly defined below. The so-called "Smyth-upside-down" or the 
"other half" of the Egli-Milner order is the one mainly used here. 

1.2. Motivation 

The goal of this paper is to explore a powerdomain construction in some detail in order to 
understand the relationship between operational indeterminism and the formal definition of 
semantics of recursive definitions. Insight into a formalism that supports the intuitive opera
tional procedures is sought. The infered proof rule is subtle and best explained in terms of 
environments. The results are general, applying to Egli-Milner, Smyth-upside-down, and Smyth 
domains; they appear as a series of lemmas and theorems that support the formalism and tie it 
closely to the anticipated procedures for operational semantics (established for Smyth-upside
down) . 

1.3. Environmental Transparency 

The most important concept to be developed is that a function from a ground domain into 
its powerdomain dominates some continuous functions on that ground domain, and that the ana
log of the fixed point of this function may be described as the powerdomai :1 element defined by 
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the fixed points of these dominated functions. This idea is sufficiently general to transfer to 
other powerdomain definitions, and we shall see how it derives from the concept of environmen
tal transparency below. 

1.3.1. Transparency Considered Twice 

"Environmental transparency" is a broad philosophical refinement of "referential tran
sparency," a term attributed to Russell and Whitehead [22), but defined more precisely by 
Quine[17). Quine's descriptive definition, perfectly suitable for deteministic computation, centers 
on the universal safety of so-called !3-substitution of the A-calculus. 

Environmental transparency denies this universality, and replaces it with recognition of 
environment as an implicit object that interprets identifiers. An environment is a function which 
maps identifiers to unique, elementary (below dubbed denoted) values; the image of any single 
identifier under that map is its binding in that environment. Whenever one creates new bindings, 
one creates a new environment (a conceptually important and operationally expensive feat). 
Environmental transparency recognizes that many envrionments may "exist" at once and that a 
burden in computation, evaluation, or semantic interpretation is to recognize the appropriate 
environment to use for discharging an identifier. 

1.3.2. Bindings to Denoted Values 

Environmental transparency seems natural to practitioners of denotational semantics 
(where p is generally bound to environment [21D, and of lexically-scoped programming 
languages like Common LISP [19), where function-values must include their respective environ
ments. Even these colleagues may not, however, subscribe to the elementary nature of the 
codomain of an environment [4), necessitated by indeterminism 1• 

Quite an intuitive situation obtains when the binding of a parameter to an individual argu
ment is considered. A parameter can only be bound to a single function (program) or to a sin
gle ground (underlying the power domain) value; meaning of a parameter in any binding 
environment must be unique. Under indeterminism, environmental transparency holds that 
environment creation distributes over choice, so that instead of binding X, say, to the choice of 
values indicated by the set {1,2}, we instead consider the choice of two environments, where Xis 
bound to 1 in one and X is bound to 2 in the other. This leads to the use of "natural extension" 
of traditional application rules in the language axioms &elow. 

Elements from power domains, or sets, of ground values never crawl through the environ
ment into the evaluation of an expression . An identifier X is bound to exactly one value (never 
an element in the power domain), and X=X can never evaluate to false. That is, Xx.(x=x) 
applied to the powerdomain element {1,2} cannot return false in its answer set. General 13· 
substitution becomes impossible, because !3-substitution of-expression-for-identifier here leads to 
evaluation of {l,2}={1,2}, one of whose constituent interpretations is (1=2) which evaluates false. 

1.3.3. Power Domains over Ground Values 

A major thesis of the present work is that it is wrong simply to build a power domain 
directly from any underlying reflexive domain. Rather, one should build the power domain 
from an underlying domain without functions, a domain of ground or simple data types, and 
adjoin to it the appropriate reflexive domain of functions. 

At first it appears that this thesis thereby denies functions as "first class citizens", but, while 
still not first class, their restrictions are not so onorous . Functions, though explicitly excluded 
from indeterminism, may still be arguments of functions , results of functions, and even elements 
of data structures (Section 8 below); exclusion from these roles has classically been dubbed 
''second" class, though I suggest that ''third" is better here, definitely beneath the stature of 

1Indeterminism has not yet been sufficientJy well understood, but I believe that we are close to a satisfactory for
malism that , as will be shown, denies select roles for power domains: as objects of bindings (codomains of environments) 
and over objects of indeterminsitic choice (over indeterminate functions or other power domains). 
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functions. A new intermediate "second class" role is rendered the equivalent of "first" in all 
ways except contention in indeterministic computations - except for mem!:>ership in power 
domains. Functions have the rights of this new, intermediate, class. 

There are a couple of justifications for this kind of "second class" status for functions. 
Easiest to understand is the practical observation that indeterminsim, as practiced in operating 
systems, is restricted to choice among signals - among ground values. A systems programmer 
places indeterminate control at a unique (and delicate) level in his system, a level where func
tions (i.e. programs) are static - and very reliable. Pragmatic indeterminism selects, but never 
constructs, running programs. 

Second would be a conflict between syntactic and semantic indeterminism if functions 
would appear within power domains. As I intend that an element from a powerdomain semanti
cally represent .only runtime contention (between incomparable values), I would have a problem 
with any element that included both a ground value and a function. Any strongly typed system 
[15] would deny such semantic contention and could syntactically force the choice of the func
tion (if needed as the left operand to an application) or of the ground value (if needed as print-
able output) regardless of termination behavior2. 

The domain equations that follow, therefore, separate functions (called systems) from 
ground values (roughly, printable data). Denoted values are either systems or ground values; 
expressed values (results from systems) are either systems or sets of ground values: 

D = G + S (denoted values) 
E = ~M(G) + S (expressed values) 
S = [D ➔ E] (systems) 

1.3.4. Fixed Points 

For reasons to be developed, the remainder of this paper deals with finding the analog to a 
fixed point for a function in [G ... P (G)]. That is, if 

'11' E P = [G ➔ P (G )] 
4> E F = [G ➔ G] 

(programs) 
(functions) 

then from '11' we want to construct an analog to fix, here mispelled fyxE [p ... l'(G)J; 

fyx('11') = The least element, eEl'~(G), such that 
E = { (( 'Y 1 !:-y 2)... 'Y 2' 'Y 1) I 'Y 1 E E & 'Y 2 E '11' 'Y 1 } • 

The preceding operational characterization has a formal characterization; the main result of this 
paper is proving these two equivalent: 

fyx('11') = {fix 4> 1\f-yEG(<f>'Y E '11''Y)}. 

The first formulation of fyx suggests a fixed point and even a proof rule without giving any indi
cation that it might be proved continuous. The second formulation is philosphically justifiable 
and admits a proof of w-continuity, but it gives no hint of an operational semantics for discharg
ing the implicit existential on 4>. 

I argue that environmental transparency suggests that fyx's desired image in P (G) is 
described pointwise in terms of single ground values in G. Just as natural extension of applica
tion to argument-values in I' (G) (the application axiom uniformly used below) "distributes appli
cation over choice", so also is the fyx analog to be defined pointwise; we intrepet '11' as an assem
blage of w-continuous ground functions, <f,: 

' '11' = ~.-y.'11'-y = X-y.{'YE'11'i} = A-y.{<f>i 1\f-y(<f,-yE'11'-y)}, 

and specify that the set of all their fixed points is the value intended by fyx( '11' ). 

2If forced to create an indeterministic choice among similarly typed functions, I would, instead, write a single new 
function whose result reflects the indeterministic choice. 

l 
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In the following fyx will appear as tj,. 

1.4. MacQueen's Problem 

The direct challenge addressed by this paper is a clean formal denotational semantics (with 
philosophical insights derived from polished formalism), that provides the intuitive meaning for a 
problem by David MacQueen, presented completely in Sections 5 and 7. MacQueen poses the 
problem of deriving "suitable" semantics for evaluation of an expression of the form 

(letrec I {1 2 (if (first I)=l then 3 else 4)} ) 

where the braces here indicate all permutations of the enclosed items. Drawing from the nota~ 
tion of group theory, where S3 indicates the permutation group of order 3, let 

S < 1 2 3> = { 1 2 3} 

here denote the set of the permutations of the three explicit atoms 1, 2, and 3; its cardinality is 
six. Then the preceding recursive expression might be interpreted as 

(letrec I S< 12 ( ((tint 1)=1)-.J,4)>) 

where I stands, in tum, for each one of the possible permutations of 1, 2, and either 3 or 4 
depending (circularly) on what I is. It should evaluate to a set of at most six lists (perhaps less if 
.L occurs, because .L may indicate more than one "unrealized" alternative.) 

What is a "suitable" permutation; what is possible? Let us consider possible permutations 
intended by the recursion. Surely (1 2 3), (1 3 2), (2 1 4), and (2 4 1) are allowable. What about 
a permutation beginning with 3? There are none, because the presence of 3 depends circularly 
on that permutation beginning with 1. 

What about computing permutations beginning with 4? By an argument on circularity, we 
conclude that there is no computationally plausible reasoning that requires 4 to begin a permuta
tion. While such permutations, once "in hand", are included in some fixed-point under the 
desired semantics, they cannot be computed if they are "in the bush"; that is, they are not 
included in a (plausible) least fixed point of that denotational semantics. The strongest intuitive 
(least fixed-point) argument we can cast is that (.L 1 2) and (.L 2 1) are the last two legitimate 
permutations, completing the census of six. 

1.S. Streams and Fairness 

Three other points must be made regarding the intent of this work. First, a principal inten
tion was to allow more than flat underlying domains. Although this might be perceived as a 
rebuttal against researchers who naively propose implementations of unspecified objects [6,7], the 
importance of nonflat ground domains, specifically those allowing for LISP list-structures, should 
not be overlooked for general operating systems. Through streams [13] this domain allows for 
modeling the true input/output behavior of operating systems. Also, internal data structures of 
arbitrary complexity thereby become available for system support. 

Second is the intention to allow lazy evaluation or call-by-need operational semantics. This 
provides a way of implementing streams, but it also has subtle implications for the way recursive 
domain equations are read. Infinite list/nesting structures are intended by an equation like 

L = { eor} + A XL . 
With infinite list structures somewhere in the domains, it becomes possible to consider issues of 
fairness. 

Considerations of fairness are beyond the original scope of this research. It is a concept 
that has little meaning in denotational semantics, which treats eventualities as realizations 
because it interprets systems as limit points which (if non-isolated) might only really exist after 
Armageddon. Bounded fairness makes no sense because (even in a power domain) continuity is 
defined without any regard to bound, and unbounded fairness is difficult to grasp because of 
completeness (the difference between ~ and lb). 

l 
I 
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1.6. Power Domain Definitions and Closure 

The conventional Egli-Milner power domain [16) (sometimes called the "Plotkin domain") 
is the principle tool of this paper. The crispest definition, given by Hennessy and Plotkin [9], 
characterizes it as the initial algebra on the power set with a union function , U , meeting axioms 
of associativity, commutativity, and absorbtion: 

\;/X,Y,Z ((XU Y) U Z) 
\;/ X,Y (X U Y) 

\JX (XU X) 

= (X U (Y U Z)) ; 
=(YU X); 
=X. 

(Associativity) 
(Commutativity) 

(Absorption) 

It is weaker than those that follow. The Smyth domain [20) may be characterized by adding this 
inequality to the rules above: 

\j X,Y (X U Y) i: X . (Inequation) 

The Smyth-upside-down-domain, (called by some the ''Hoare domain"), is so-called because it 
derives from the the Egli-Milner ordering: its "other half" with respect to the Smyth ordering 
Hennessy and Plotkin characterize it by adding the inequality: 

\j X,Y X i: (X U Y) . (Inequation) 

The stronger definitions that appear below define domains isomorphic to Hennessy's and 
Plotkin's, the difference being specific inclusion of non-isolated limit points within each element 
of the power domain. 

Definition: A domain G is an ro-algebraic, complete partial-order. 

Definition: (Egli-Milner) Let P be the closed set: 
P ={ XCG f\lh)ie .. (\/iEro('yiEX & "Yii:"Yi+l) :J (Ui"Y;EX)) & 

\;/ "Yp"Y2'"YlG (("Yp"Y3EX & "Y1~"Y2~"YJ :J ("Y2EX)) }; 
and let ~ p be the preorder defined on P by 

X 1 ~P~ if and only if both 

\J-y1EX1 (::h2E~ ("Yl kc "Y2)) 'and\J-y2E~ (::h1EX1 ("Y1 ~G "Y2) ). 
Then the domain Pi!M(G) is the set of the equivalence classes of ~P 
with the k partial order defined by 

E1 tEM E2 if and only if\JX 1E E1(\JX 2E E2 ((X 1~pX 2)). 

Definition: (Smyth) Let P be the closed set: , 
P ={ XCG f\lh);e.J\/iEro("Y/X & -yik"Y;+1) :> (U;"Y;EX)) & 

\;/ "Yp"Y2EG ((-y1EX & -y1~-y2) :J (-y2EX)) }; 
and let i:P be the preorder defined on P bI., 

X1kp~ if and only if\;/-y 2EX2 ( ::::h1EX1 ( "Y1 ~c "Y2 )). 
Then the domain I' Sm is the set of the equivalence classes of ~P 
with the ~sm partial order defined by 

E 1 ksm E2 if and only if\;/X 1EE1(\;/~EE 2 ((X 1~p~)) . 

Definition: (Smyth-uNide-down) Let P be the closed set: 
P={XcG {'y.\ .E (\;/iEro("Y.EX&-y .~"Y-+1):> (LJ.-y.EX))& jJ 1 Cd 1 1 l 1 l 

\;/-y2,-y3EG ((-y3EX & -y2~-yJ :J ("Y2EX) )}; 
and let i:P be the preorder defined on P b..Y. 

X1kpX 2 if and only if\;/-y 1EX1 ( ::h 2EX2 ( -y1 i:G "Y2 )). 

Then the domain PsuiG) is the set of the equivalence classes of kp 
with the ~~ partial order defined by 

E 1 -Sud E2 if and only if\JX 1EE1(\;/X 2EE2 ((X 1kpX 2)). 
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With the meanings of X and E taken as in these definitions, simple set membership, 'YEE, is 
used to abbreviate 'YE XE E . 

As in lattice theory, the unary up and down arrows are taken to be the closure to upper 
and lower sets, respectively. 

Definition [8]: For XC G, define 
tX =h2EG I :3-v1EX(-y1i;;;;'Y2)}; 
,x = h1EG I :3-v2EX ('Y1i;;;;'Y2)} • 

The Smyth order might have been defined using X=tX ; the Smyth-upside-down order may be 
described with X=iX . 

Definition [8]: Define the upper and lower closures of a function '11' E [D- P (G )] by extension: 
t'JI' = A6. t('J1'6); 
,'11' = A6. i('11'6). 

While the singleton h} is a valid element in the Egli-Milner power domain, the arrows on 
th} and , h} are required for precise specifications--of singleton elements in the Smyth and 
Smyth-upside-down domains, respectively. 

Elements of these domains are closed in two ways. First, they are complete (containing 
limit points of monotone subsets). Secondly, they are expressible as intersections of upper sets 
with lower sets3 [8]. Each equivalence class is represented by the largest set in it, which may be 
derived by taking the appropriate t/i closure of any set in the class. In the latter case, PSuiG), 
each element in the power domain (a union of lower sets) may alternatively be represented by 
the set of its representative elements in G, which are the (maximal) mutually-incomparable ele
ments of G that occur in all sets of that class. 

1.7. Power Domain Well-Below 

Each power domain i:., ordering rule .can extended to the "well below" relation IC., by: 

Definition: X11Cs..){2 if and only if\;;/-y1EX1 ( :3-v2EXi ( 'Y1 !CG 'Y2 )) . 

Definition: X 1 ICEM~ if and only if 

"f-y1EX1 (:3-v2EXi ('Y1 lf:G 'Y2)) • and \J'Y2EXi (:3-Y1EX1 ('Y1 [CG 'Y2) ). 

1.8. Summing Domains 

Summing of domains is usually effected by the usual disjoint sum operator, +, on complete 
partial orders. The lattice-theoretic sum, EB, is sometimes used below, but only where the 
specific domain equation is not reflexive. The EB sum introduces both T and ..l... from the original 
lattice theoretic development of domains [21], where T may be here interpreted as the result of 
an error from clashing types in indeterministic programs . 

Such a T value may result, for instance, where a program indeterministically returns either 
a ground value or a function. This kind of behavior is generally the result of poor programming 
style, which can be avoided by installing a strong (polymorphic [15]) typing mechanism in the 
language. The languages presented here lack such a mechanism so that we may more clearly 
consider specific issues of fixed points. 

1.9. Infinite tuples 

The reader is again reminded that domain equations of the form 
L = {eof} + AXL. 

are used to indicate both finite and infinite nesting. One may use lazy evaluation or call-by-need 

3where the trivial power-domain element, G, is the only intersecting lower (upper) set for Smyth (respectively, 
Smyth-upside-down) domains . 
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to achieve the operational behavior required from such denotations. An alternative (not used 
here) is to interpret the Cartesian product, above, as a coalesced product [2] generating a flat 
domain, any of whose elements is finite. 

Infinite products are desirable in order to admit streams (13]. They are, however, undesir
able as objects of/ air contention between processors; fairness is not considered in this paper and 
so any tuple can be infinite. 

Section 8 presents a domain of infinite structures not underlying a power domain, and for 
which the issue of fairness does not, therefore, arise. With such deterministic structures avail
able, the stronger theory (required by this weak restriction on tuple nesting) may not be neces
sary and fairness might become tractable. 

1.10. String Notation 

Strings are used later in Section 4.4, Procedure 3, to construct extended subscripts of arbi
trary length. Lower case Roman x is used to represent an arbitrary string of integers. The 
empty string is denoted by A . Infix period indicates string concatenation. 

1.11. Outline 

The remainder of this paper is divided into ten parts. Parts 2, 3, and 4 develop the denota
tional semantics used, and link it to procedures for implementation. Section 2 presents the 
definition of a skeletal semantics that is established by a continuity proof in Section 3. Section 4 
ties it to operational procedures. Section 5 presents and solves MacQueen's problem in an 
artificial language that uses triples for data structures. A full blown language definition (7,10,12] 
appears in Section 6, which is used in Section 7 to solve MacQueen's problem with more surgical 
results using available strictness. Sections 8, and 9 present peripheral observations: Section 8 
introduces a data structure that can contain programs unlike the earlier ones, Section 9 presents 
abbreviated examples of stream merge, and codes for expressing the several indeterminate 
operators in terms of one another. Finally, Section 10 offers some conclusions for powerdomain 
semantics that should influence design of this sort of programming language . 

2. Denotational semantics for an indeterminate language 

The notation in this section follows Stoy (21]. 

2.1. Syntactic Categories 

2.2. Syntax 

I E Ide 
KE Con 
EE Exp 

K :: if lamb I etc. 
E :: I I K I (E 0 E 1) I (lambda I E) I (letrec I E) 

2.3. Value Domains 

(the usual identifiers) 
(constants) 

(expressions) 

(See Section 5.1.1 or 62) 

t 
I 
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p E U =[Ide .... D] (environments) 

6 E D=GEBS (denoted values) 
E E E = PrLM(G) EB S (expressed values) 
CT E S = [D .... E] (systems) 

'Ir E P = [G .... PEM(G)] (programs) 
cl> E F = [G .... G] (functions) 
'Y E G (ground values) 

Environments map identifiers onto denoted values which are "elementary" to us; those are 
the basic "chunks" of computation. Such values are not indeterminate as conceived; indetermin
ism deals with the situation where more than one such simple value is an acceptable computed 
result, throwing the answer into a power domain. That is, arguments are these elementary 
chunks; results might be indeterminate. 

One chunk that we perceive as elementary contains "packaged" indeterminism: the system 
functions that we write and perceive as a single unit, but which may elicit indeterminate 
behavior on identical input. An operating system that can generate any of several results is still 
perceived as a unique object instead of an indeterminate set of functions that, together, 
represent the system. 

Expressed values are the result of such systems, and often include a set of ground values, 
whereas denoted values are, at worst, single ground values. If an element of either domain is 
interpreted as a system, then a unique system is implied. 

The substance of this paper is determining how to interpret the fix operator on CT ES , on 
systems. The problem can be interpreted as finding fixed points of functions in S, which are 
either trivial - J...E - or are to be found as fixed points in terms from the following domain 

quasi-distribution 4: 

S = [D .... E] = [G EB S] .... [PEM(G) EB S] 
= [G .... PEM(G)] EB [G .... S] EB [S .... ~M(G)] + [S .... S]. 

Based on the knowledge that all we seek are fixed points from S, only the first of the four terms 
distributed from S appears puzzling. Conventional semantics provides a denotational and opera
tional semantics for fixed points of [S .... S] , and fixi11g in either of the middle two terms in E 
results in _LE . What follows, then is a study of "fixed points" from [G .... ~M(G)] = P . 

The additional domains P and F are explicitly defined because the object of the following 
study is [G .... ~M(G)] . We need these domains labeled because they become the center of out 
attention as the theory unfolds. These domains do not, however, appear in any semantics of any 
particular language; the later definitions of the evaluation functions E and K do not use them. 
Only the domains, D, E, and S, as well as whatever is necessary for structure within G, will be 
specified for a particular language. 

2.4. Notational Conventions 

Definition: V : D .... E is defined as a type coercer: 
V = U.(6 E G .... {~}in E, (6 E S .... 6~ in E, (6=T 0 .... ~, _LE))). 

Definition: 4,-E'lr , read "cl> is dominated by 'Ir", means'v''YEG (<l>'YE'lr'Y)

Notation: When CTJ...0 EP(G) we write c!><ECT to mean<!> <E A'Y.(CT('Y in D)IP(G)). 

41 do not claim that ➔ literally (cf. use of "=" to "=" here) distributes over IE, but I suggest that the problem be 
considered as if it did, under a kind of subdomain embedding . 

l 
I 
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The concept of 'II' E P dominating <l> E F derives from the perspective that each 'II' really 
stands for the amorphous collection of such <l>; hence, the centrality of the -E relation whenever 
P occurs below. 

The symbol-Eis at once suggestive of set membership (E) and, to a lesser degree, of a par
tial ordering ( < ). An ordering because, under the Smyth-upside-down power domain, it is cer
tainly true that 

cf>1i;;;;cf>2, cf>2-E'l1'1, and '11'1i;;;;'l1'2 together imply that <l>t'""'ll'l' cf>2-E'l1'2, and (hence) cf>tE'l1'2• 

Set membership reads directly from the definition of that symbol by "cancelling" the universally 
quantified -y. 

2.S. 
Semantic Functions 

I( : [Con -+ D] Definition detailed later 
E : [Exp -+ [U -+ El] 

E [I)p = V (p [I)) 

E [K)p = V (K [KD) 

E [(lambda I E)]p = (>..6E [E]p[6/ID in E ·, 

(parameter) 

(constant) 

(function) 

E [(E 0 E1)]p = (Let CJ =((E [E 0] p )~) and e = (E [E 1] p) in 
(e E PEM(G)-+ LIE{ CJ(-y in D) I 'YE (elfliM(G))}, 
(e E S-+ CJ(e~ in D), 
(e=Tg ➔ CJl-;,, 
CJ .L0 ))) ) ( application) 

E [(letrec I E)]p = (Let CJ=(>..6E [E]p[6/ID in 
(CJ .L0 E PEM(G) ➔ {fi:s: <l> I <j,-E:CJ }in E , 
(CJ.L0 E S ➔ fi:s: >..e. CJ(elS in D), 

(CJ.Ln=TE-+ Tg ' 
.LE)))) (recursion) 

The first three axioms, above, are not remarkable. The last two provide for four cases 
each. The application rule uses "natural extension" of ordinary application to bind one 6 at a 
time in applying a system CJ; the only interesting situation arises from an argument in ~M(G), 
from which one -y at a time is taken through D. This uniqueness of binding achieves environ
mental transparency. 

(For e = .LE , the result CJ .L0 is available operationally through lazy evaluation of the body 
of CJ before testing whether eE~M(G) or eES ; this tack is not necessary in general, but it 
preserves our ability to specify constant-functions CJ.) · 

The first alternative in the axiom for recursion motivates Section 3, its justification. The 
rest is straightforward and would support a proof of the continuity of E by structural induction 
on EE Exp. 

3. Continuity of E 

In the proofs that follow the relations i;;;;sm and i;;;;Sud are used over the ~M(G) domain to 
suggest the corresponding half of the i;;;; EM relation. These relations are used outside their 

l 
I 
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associated Smyth and Smyth-upside-down domains, so that no additional closures are necessary; 
their definitions are the same as it is under those domains. 

Definition: 11 : [(a) ... P ... P]; 
,, = Afl.A'JI' 1'.-y.{cj,D.y I cj,<E:'JI'} . 

Theorem 1: For all nE (I), ,in is monotone. 

Proof: The relations ~Sm and ~Sud are used over the Pm_tCG) domain to suggest the 
corresponding half of the ~EM relation. 
Let 11't~EM11'2 be both in P. Then for all -y: 

11D11't'Y ={<1>0 'Y lc!><E:11'1} 
~Sm t { c!>n'Y I \I 'Y ( cj,-y E 11' 1'Y) } = { cj,D-y I \I 'Y ( cj,-y E ( t 11' t'Y )) } 

:> {c!>n'Y I\J-y(cj,-yE (t11'2'Y))} = t{cj,n-y 1\1-y(<f>-yE 11'2'Y)} 

~Sm {<1>0 'Y i\J-y(cj,-yE11'2'Y)} = {cj,D.y I cj,<E:11'2} = 1lfl11'2 · 

11°11' 1-Y = {<!>0 -Y I c!><E:11' 1} 

~Sud Hc!>0 'Y I\J-y(cj,-y E 'JI' 1'Y)} = {<!>0 'Y 1\1-y(cj,-y E (•11' 1'Y))} 

C {c!>n'Y 1\1 'Y( <l>'Y E ( • 11' 2'Y )) } = •{<l>n'Y I \1-y(cj,-y E 11' 2'Y) } 

~Sud {<1>0 'Y I\J-y(cj,-yE11'2'Y)} = {<1>0 'Y I <f,<E:11'2} = 11D11'2 · 

Lemma 1: If cj,<E:11', cl> is isolated, and 11' =Ui'll'i' where {11'i}ie .. satisfies\li(11'i~EM11'i+t), 
then there exists a k such that cl> <E: 11' k • 

Proof: Given <f> isolated, define ,fr= >..-y.{cj,-y} . Obviously, cj,<E:,fr and ,fr is isolated because <f> is. 
B ..... h c Ac -ecause 'I' <E:11', we ave 11' -sm 11' -sud 11' - U i'JI' i • 
But since * is isolated and* ~Sud U ;11' i' there must exist some m E (I) such that *~Sud'JI' m; 
similarly U .11'. ~s -& , so there must exist some n E (I) such that 11' ~s -fr • 

1 1 m n m 
Let k = max(m,n) so that: 11'0 ~Sm 'Jl'k ~Sm -fr ~Sud 'Jl'm ~Sud 'Jl'k • 

Thus, cl> <E:11' k. □ 

l 
I 
I 
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Proof (after one by Clinger): Let {tf>J.E be an increasing sequence of isolated points approximating cj>. 
A A i'J•AcA 

<I> = LJ .cj>. , <l>n = ...1.., , and \I j( <I>-isolated & <I>--<1>-+1) . 
J J " ~ J .I:: } 

Define <l>i = cf\ where k = miu\ j 111" i ,;Sm A 'Y .{ cf\ 'Y} . 
It is claimed that 

• cj>. is well-defined, since for all i: 
I C C - • 

11" i -sm 11" -sm A "f .{ <l>'Y} -: U j(A 'Y .{ <l>j'Y}) ' 
because <!>~'II". Because every <I>- is isolated, there must exist i such that 

C • J 
'll"i -Sm X-y.{4►i,} · 

Thus, k in the definition of cj>. is at most i . . 
• 1 "'i 

• cj>. is isolated, since every cj>. is. 
1 J 

• cj>. E F is monotone and continuous, as are all <I> E F . 
1 A A A 

•<!>-~<!>:since 11"-~11"-_,_, and <l>-~<1>-+i in the definition of cj> .. 
1 1 1 h~ J J 1 

• 11". 'Y l;s { <I> ·'Y} by the definition of cj> . . 
1 m 1 1 

• <I> = u .cj>. according to the argument that follows. 
1 1 • 

From Lemma 1 for every cj>. isolated, there is some k. such that 
C • J J 

'll"k.'Y -s A-y.{cj>.-y} · 
• J m J 

So <!>i !; <!>k. . • 
From the definition of cj>. we already have <l>-~U .cj> .. 

1 1 J J 
Taking the join: - ·c C ._ 

<I> - u j<l>j - u i<l>i - u j<l>j - 4> • 
□ 

Lemma 3: If <I> ~ 11" and 11" is approximated by {11")iE .. : 
'll"=LJ.11". , 11"0=..Lp, and \liEw('l'l" .1;'11"._,_,), 

l l l lTJ. 

then there exists {<l>i}iE., such that <!>0=...1..,, Ui<l>i = <I> , and 
\liEw( <l>/F & <l>i~<l>i-ti & <l>i isolated & <l>i~'l'l"i). 

Proof : Let {4>)jE .. be an increasing sequence of isolated points approximating <I> as in the proof 
of Lemma 2 above, but where this decomposition is sufficiently refined that, for all 'Y and for all 
isolated 11". , there is some j such that <l>-'Y E 11" .-y. This is a reasonable requirement; it says that 

1 J 1 • 

every 'Y is mapped into every set 11" ·'Y by one of the ascending cj>.'s. The alternative is that some 
1 • J 

such '11" .-y are jumped over by the ascending { cf>J .E . 
1 i'J .. 

Define cj>. = A 'Y .(4>.-y where j is minimum such that 4>:y E 11" ·'Y) . 
· 1 J J 1 

l 
I 
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It is claimed that 
• cf,. is well defined since the refinement of {4>.l., guarantees 

I j' J, OI 

that a minimum j exists as required in the definition of cf, .• 
• I 

• cf,. is isolated since all cf,. are and, by Lemma 2, there is an 
I J 

upper bound to j in the definition of any cf,.. Thus, each cf,. is 
I • I 

defined from finitely many isolated functions cf, .• 
J 

• cf,. is monotone because '11". is: 
I I 

If -y1i;-y2 then 
..1. -.i. h .. . . .i. E C '!"·'Yi - '!"·'Yi w ere 11s m1mmum s.t. '!"·'Yi '11".-y1_'71".-y2 • 

1 "J J... 1 1 

cf,i-y2 = 4\'Y2 where k is minimum s.t. 4\-y2E'11"i'Y2 • 
Therefore, as qualified above, the smallest j is less than the smallest k , 
and cf>i'Y1 i;c1,i'Y2 · 

• cf,i is continuous, also because '11" i is. 
Let -y=4: 'Yi. for hi.}i.e .. ascending. 
By monotonicity 

L\e.,(cf>i'Yk) I; l_\(cf>il_\ 'Yi.)= cf,i(~ 'Yi.). 
Alternatively 

cf,i(l_\ 'Yi.) = 4>j(Uk 'Yi.) • 
where j is smalles_t such that cf,i(l_\ 'Yi.) E '11"i(L\ 'Yi.) 

iff U m(cf,j-ym) E U n<'Jl"i'Yn) • 
So 

C • 
cf,i(Uk 'Y k) - LJk,m,nE., cf,j('Y k) • 

where j is the smallest such that cf,.-y E '11" ·'Y , 
• J m I D 

but since {'YL,cf,.,'11".} are ascending and continuous: ._ J I 

I; L\e.,cf>i'Yk • 
C C • c· • cf,i _cf,i+1 because '11"i _'Jl"i+i and cf>i-cf>i+l. 

• cf,. -<E'JI". by definition. 
I I 

• cf, = U .cf,. because 
l l • .., 

U .cf,. = U .(>,. 'Y .( cf,.-y where j is minimum such that cf,.-y E '11" ·'Y) ) ; 
I I I .J .J I 

= "A.-y. U .( cf,.-y where j is minimum such that cf,.-y E '11" ·'Y) ) ; 
It · I . } J I 

= A_'Y· LI\ cf,j-y {cf,j-y} i;Sm Ui'Jl"i • 
But all <f>. -<E '11" = U -'11"-, and so 

J ..., 1 l ,.. 

U icf, i = "A. 'Y .(LJ icf,i-y) = U icf,i = cf, • 
D 
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Theorem 2: For all n, 11n is continuous. 

Proof: Let 'IT E [G .. ~M(G)] be approximated by an increasing sequence {'11').E . - - ,-1- C ' ., Thus, Ui'll'i - 'IT, '11'0-..Lp, and" 1('11'i -EM 'll'i-+i). 
Monotonicity of 11n (Theorem 1) implies U i11D'IT i i;;;;EM 11n(U i'IT) . 
In order to establish continuity, we only need to show 11n(LJ.'IT.) t;;;;EM U -(11n'IT.). 

I 1 I 1 

We show this in two steps: the first for t;;;;Sud and the second for t;;;;Sm . 

Step 1 (Clinger): For all -y1EG, 11D'IT'Y1 = 11n(Ui'IT)Y1 = {cf>n'Y1 I cf>4EUi'll'i} • 

If 'Y 2 = cf>n'Y 1 for cf> 4E U i'IT i , then Lemma 3 guarantees an ascending sequence 
{<f>.}.E of isolated <f>.4E,r. such that u .<f,. =cf>. 

1 1 OJ 1 1 1 1 

Thus, -y2 = <1>~1 = (Uicf>/-y1 = Ui(<f>t-y1) for some set of continuous, ascending, isolated cf>i' 
and so -y2 is in i( Ui(11D'll'i'Yi)). Such -y2 generate i( 11n,r-y1) by definition; 
so the closure of the set of all such -y2 equals i(11n'IT-y1), and therefore, 11n,r i;;;;Sud Ui11n,ri. 

Step 2: For all -y1EG, (Ui(11n'IT)h1 = Ui(11n,ri-y1) • 
Let -y2 E (U .( 110,r .))'Y 1 ; then there is a sequence { cf>.}. E such that 

1 l 1 1 OJ 

\jiECJ>(cf>i4E,ri & cf>i~l t;;;;cf>f+1'Y1), 

and 'Y2 = Ui(<l>t'Y1). 
Since ,r i i;;;;'IT i+l , without loss of generality we can require cf>i i;;:;4,i+l . 

Let cf> = U icf>i -o:;: U i,r i = ,r . 

Then 'Y2 = Ui(<l>t'Y1) = (ui<1>th1 = <l>n'Y1" 
Therefore, -y2 E 11n(LJi,r)rl = 110,rrl. 
Since, for all 'Yl' (ui11n,ri)'Y1 is composed of such -y2, we have shown that 

11D'IT t;;;;Sm LJi(11D'11'i)" 

Therefore the desired continuity is established: 
11D'IT [;;;; EM LJ i( 11D'IT i) " □ 

Suppose we wrote 110,r using the notation 'll'n . This notation suggests that if one wanted an 
analog to the fixed-point of such a 'IT, then the result would appear as 

Un(,rn..L0 ) = Un(11n,r..L0 ) which is the join of an increasing sequence 
( 11n'IT..L i;:;; 11(n+l}rr..L because <f,4E'IT are monotone) 

and, thus, reaches a limit in PeM(G) ; 

= un{<l>n..L I <f>4E,r}; 

= {Uncf>n..L I cf>4E,r} since G is continuous; 
= {r1x <1> I cf>4E'11'}. 

So, indeed, shall we define the function tj,. 



15 

Definition: lj, : [P - PEM(G)]; 
"' = A'IT .{fh cf> I cf>--E1r} . 

Proof: Above. 

Theorem 3: lj, is monotone and continuous. 

Proof: Let 1r1i;;;;1r2 be both in [G- PEM(G)]. Then 

by Theorem 1, \if n( 11n1r t1- i;;;; 11n1r z-1-) and, taking the join over all n, 

lj,1r1 = Un(11n1rt1-) i;;;; Un(11n1rz-1-) = lj,1r2 by Lemma 4. 

Let 1r E [G- PEM(G)] be approximated by an increasing sequence {1r)iEoo . 

lj,1r = 1j,(Ui1ri) = Un(11n(Ui1rJL) = UnUi(11n1rj,1-) = Ui{lj,1ri) by Theorem 2. □ 

Theorem 4: E is monotone and continuous. 

Proof by structural induction on EE Exp: If we set up an ordinary structural induction, we find 
that all operators used in the definition of E, except for that at the second line of the letrec 
axiom, are well known to be monotone and continuous. Consider just that letrec line, where 

a .Lo E PeM{G) ,• 
Let 

1r = 'A-y. (a(-y In D)I-PeM{G)) 
C, 

It is here shown that lj,1r aln E is the result specified at that line, 
and interpreting it in this way we can show that E is monotone and continuous. 

1r is monotone and continuous in a and Theorem 3 establishes that 
C, 

lj, is monotone and continuous in 1r, and hence 
'Aa~lj,1r ) = 'A.a. (lj, ('A-y.(a(-y In D)IPEM{G)))) 

C, 

= 'A.a.{ fix cf> I cf> --E (('A-y.(a(-., In D)IPeM{G))} 
= 'A.a .{fix cf> I cf>--Ea} 

is monotone and continuous when a .L0 E~M{G) . 
Thus, E is defined using only monotone and continuous operations, 
and ordinary structural induction on E succeeds for proving the theorem. 
□ 

4. Operational Semantics 

In this section we shall prove the correctness of procedures to generate elements of lj,1r 
The presentation is a purely mathematical justification of Procedure 3, below, which prompted 
this work . 

Whereas the preceding theory was developed in the Egli-Milner domain, most of the fol
lowing theory is stated in the Smyth-upside-down power domain because the proofs arc construc
tive there. I believe that the rift is minor, as reflected in Conjecture 3. 
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4.1. Constructing approximations to tj,,r 

Lemma 5: If 'Y = fix <!> for <j>-<E,r, then there exist two ascending sequences 
{-y., ,r .}.E such that -y0= r , LJ.-y.=-y, LJ.,r .=,r, and for all i: 

1 11 (I) -<; 1 1 I l 

'Y)~'Yi+l' 'll';i;;:;;'ll'i+l' 'Y; and 'IT; are isolated, 
and b;+t} i;;:;; 'll';'Y; i;;:;; 11(i+1)rr.1... 

Proof: Let 'IT be approximated by an increasing sequence of isolated points, {11-.l. where 'IT = .1.. . 
i:'1Ew o P 

Lemma 3 shows that there is a sequence {<!>.}.E such that 11 ., 

<l>;i;;:;;<l>i+t ,<!>; isolated, <l>;-<E*;• and U;<!>;=<!>. 

The idea of the following construction is to define the sequence hle so that 
I I Ol 

'Yi E ,ii'IT .1.. , 
or, using Knuth's termial notation [11], 

.? ~. i(i+l) 
1. = ""'J = ; 

j=O 2 

'Y;1 E ,ii'll'i'Y(i-1)?. 

Since it is not termial-but its inverse-that is required, we define Q 
to be an inverse of termial [5]: 

Q:w ➔ w; 
Qk = the largest integer j such that j? s k ; 

a-n.i~-1j 
Define 'IT i = *Qi 

'Yo= .l..G ; 
For example, 

'Y1=<1>ftl-; 

'Y 3 = <l>i<l>ftl-; 

'Y 6 = <l>~<l>i<l>ftl-; 

.,, -..1.i ..1. i-1 ,1,.itl.l. 
' .• - 'f' · 1'f' · 2 ••• 'f' ' II 1- 1-

The point of introducing Q here is to establish the last point below; otherwise i would suffice 
wherever Qi is used in the following. 
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It is claimed that 
• Ui'ITi = UinOi = Uifri = 'IT · 
• 'IT.i:'IT.+1 because Q(i+l) equals either Qi or l+Qi; 

I I 
. h I ACA m t e atter case '!Ti_ 'ITi+l . 

C b · I . d . C . . II • 'Yi-'Yi+t y stmp em uctton. 'Yo-'Yt tnvta y. 
Assuming -y.i:-y.+1, we use Q(i+l) equals either Qi or l+Qi 

I I 

to establish cf>~ i:cf>Q(i+1) and hence 

'Yi-+t = cf>Oi'Yi - cf>oi'Yi+1 i;: cf>o(i+t)'Yi-+t = 'Yi+2 
establishing the hypothesis for i +1 . 

• 'IT. is isolated because there exists j such that 'IT. =fr. and all fr. are isolated. 
I I J J 

• 'Yi is isolated. By induction, 'YO trivially is, and the rest are the result of applying 
an isolated function cf>Oi to a value that is (by inductive hypothesis) isolated. 

• 'Yi+t = cf>oi'Yi E noi'Yi = 'ITi'Yi since~i(cf>j"Efri). 
• A simple induction on '!Tii;:'IT shows that 'ITi'Yi i: 'IT(i-+i)...L = 11(i+l}rr.L. 
• u ·'Y· = fix cf> = 'Y from an inductive proof of the fact that 

I I 

.A.. i-+i I C 'Y C .A.. (i-+i)?...L '!'j ..I.... - (i-+i)? - '!'j . 
For i=O we establish cf>/...L I;: -y1 I;: cf>/...L trivially . 
Assume this fact for i and consider i +1 : 

..4.. i+2 1 C ..4.. i+2 · .A.. • t 'l'i+t ...1.... - 'l'i-+t 'Y (i-+i)? smce 'l'i-+t ts mono one; 
= 'Y (i+2)1 by definition; 

I;: cf>i+/+2 cf>/i-+i)?...L by induction; 

i;: cf>i+/i+2) cf>i-+i (i-+i)?_i_ = cf>i-+i (i+2)?...L because cf>i l;:cf>i-+i . 
Now that we have proved this inequality we shall extend it, 
observing that each cf>i is monotone and~ i( cf>i l;:cf>(i-+i)?) : 

.A.. i I C .A.. i-+i...L C C .A.. (i-+i)?...L C .A.. (i-+i)? I 'l'j ...1.... - 'l'i - 'Y (i+l)? - 'l'j - '1'(i+1)7 ...1.... • 

Because 'vi( 'Yi l;:-yi-+i), we then take the join over i to find 

Ui'Yi = Ui'Yi? = Uicf>/.L = uiujcf>ij...L = Ui(flx cf>)= fi:x(Uicf>) = fix cf>= 'Y· 
D 

The following few results are stated in the Smyth-uypside-down domain. Therefore, the 
reader will note many down-arrows creating lower sets from singletons, the i:Sud relation so sub-
scripted and restricted to half the strength of ,;;;;EM' and a similar subscript on -E:: 

Definition: cf>-ESud'IT if for all -yEG ( i{cf>-y} i;:Sud 'IT'Y ). 

In the Smyth-upside-down domain these definitions are implicit; the notation is used here for 
emphasis. Under this domain the standing definition of tj, is interpreted using ""Sud in place of -E: 

and is, therefore written as Q, • 

l 
I 
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Lemma 6: In the Smyth-upside-down domain, let {11' Jie., satisfy \Ii( 11' il.:Sud'II' i+l) . 

If -y=fh: 4> for cf,-ESudLJ.11'. then there is a sequence h.}.e such that -y0= 1 , -y=U.-y . , 
l l 11 OI --C 1 1 

and for all i: -yil;;;;'Yi+l' 'Yi is isolated, and •hi+l} !;;;;sud 'll'i'Yi. 

Proof: Let 'll'=Ui'll'i; thus 4,~d'II'. 
Because 'Y =fix ct,, Lemma 5 shows that there exists {'9.,-frJ.e satisfying 

J i'J .. 
'YO= J_G, U .'9. =-y , U .-fr. =11' , and for all j: 

A c JA A J~ A A d A • l t d d { A } c A A 

'Yi- 'Yi+l' 'll'j-Sud'll'i+l' 'Yi an 'll'i are 1so a e , an • 'Yi+l _Sud 'll'?i . 

Because each -fri is isolated, for every j there exists a ki such that ,fi-jl;Sud'll'k .. 

Define 'Y· = '9 (') for all i, where n is a function on the integers defined by{ 
1 n I 

n(0) = 0 ; 
n(i+l) = n(i) when kn(i)> i ; 
n(i+l) = n(i)+l when kn(i)s i . 

The lemma is proved point-by -point from this definition. 

• 'Yo = '90 = J_G by definition. 
• U ·'Y· = U .'9. = 'Y because \I i(:::]j(-y.='9.\) and\/ j(:3i(-y .=i-'). 

I I J J I j-' I j-' 
The first claim follows from the definition of {-y.} ; 

I 

the second is a consequence of the existence of ki . 

• -y/;;;;'Yi+l since either -yi='Yi+l (when n(i+l)=n(i)) or 

'Yi = 'Yn(i) I.: 'Yn(i)+l = 'Yi-t1 (when n(i+1) = n(i)+l) . 
• Every 'Y· is isolated because it coincides with some '9., each of which is isolated. 

I J 
• We must argue inductively that •hi+l}l;;;;Sud'll'i'Yi • 

D 

If n(l)=0 the basis is trivial. Otherwise, if n(l)=l, then k(0)=0 and so -fr0 l.:Sud'II' 0 • 

Th { } - { A } C A A - A C en• 'Y1 - • 'Y1 -Sud 'll'o'Yo - 'll'o'Yo -Sud 'll'o'Yo · 
Assume this point for i and consider the successor case: 
Either n(i+2)=n(i+1) and •hi+ 2} = •hi+1} !;;;;Sud 'll'i'Yi !;;;;Sud 'll'i-t1'Yi-t1 

(by inductive hypothesis and monotonicity), 
or n(i+2) = n(i+l)+l = and kis i+l, so 

{ } - {A }C AA _A C C 
• 'Yi+2 - • 'Yj+l -Sud 11'(ij - 'll'j'Yi+l -Sud 'll'i.?i-t1 -sud 11'i-t1'Yi-t1. 
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Lemma 7: In the Smyth-upside-down domain, if {'yi;n)iE ... satisfies -y0=.J,;, and for all i: 

-yik'Yi+l' 'Yi is isolated, 11'ikSud11'i+1' and l{'yi+1} ksud 11'i'Yi, 
then u i'Yi = fix cf> for cf>~Sudu i11' i . 

Proof: Let 11' =LJ .11' ., and let {cf>.}.E be defined from {-y.l..E as follows: 
l 1 l 1 Cd iJt Cd 

cf>o = 1-F = .>..-y~ ; 
cf>.+1 = .>..-y.('Y.k-y ... 'Y·+1 'cf>.-y ) . 

1 1 l 1 

We shall show that, for all i, 
cf>ikcf>i+l, cf>i+l~Sud11'i, cf>i is monotone and continuous, and fix cf>i ='Yi. 

It then follows, taking the join, that cf> = U .cf>. ~Sud U .11'. = ,r such that 
1 1 1 1 

fix cf> = fix(Uicf>) = Ui(fix cf>i) = Ui'Yi · 

The properties of {cf>JiE ... follow by induction. <f,0 trivially satisfies all requirements. 
<t,1~Sud,rO, because for all -y, l{cf>1-y} = l{'Y1} ~sud ,r 0-y0 = ,ro--1-G kSud ,r 0-y . 
Assume that cf>i satisfies the other requirements, as well, and inductively consider cf>i+l . 
• cf>i k cf>i+l ~Sud ,ri. For every 'Y, either 'Yi~'Y or not. 

In the case that -yik'Y we find that cf>i'Y = 'Yi k 'Yi+1 = cf>i+t'Y . 
Moreover, l{cf>i+t'Y} = l{-yi+l} ~Sud ,ri-yi kSud ,ri-y since ,ri is monotone . 

In the other case that 'Y· rf 'Y , we find cf>.-y = cf>-+l'Y by definition, 
1Y- 1 1 

and l{cf>i+l'Y} = l{cf>i-y} kSud ,ri-t'Y ~Sud ,ri-y by induction: 

cf>i ~Sud ,ri-1 kSud ,ri" 
So in either case cf>i'Y ~ cf>i+1'Y and l{cf>i+t'Y}kSud,ri-y , establishing this point. 

• cf>i+l is monotone, because if i 1 l:i 2 then there are two cases. 
If -yi!:i 1 then -yi!:i 2 as well, and cf>i+1i1 = 'Yi+l = cf>i+li2 . 

If -yir/_i1 then cf>i+li1 = cf>ii1 !: cf>ii2 !: cf>i+1i2 by induction and because cf>i!:cf>i+t. 
• cf>i+t is continuous. 

Let i = U iii . Monotonicity of cf>i+l shows that U icf>i+ii) k cf>i+1(U iii). 
We need to show that c!>i+l(Uii) !: Uicf>i+ti); again there are two cases: 'Yi~i and 'Y/1-i. 
If -y.!:i then, because 'Y· is isolated, there is some k such that -y.ki1r.. 

l l l 

Thus, cf>i+t(UiiJ),= 'Yij!. = cf>i+1i1r. k Uicf>i+ti) -
If 'Y· rf i then, because V j(-y.f/-i) and because cf>. is continuous by induction, 

1 'f- 1 l 

cf>i+1(U ii) = cf>i(U iii)= U i(cf>ii) = U i(cf>i+ti) · 
• fix cf>i+l = 'Yi+l . 

□ 

Since cf>i+l is monotone and continuous, let 'Y = fix cf>i+1 . 
In the case that -yi!:-y we find that 'Yi !: 'Y = <1>i+l'Y = 'Yi+l. 
If, on the other hand, -y.rf_-y then by induction, fix cf>. = -y. rf_ 'Y = fix cf>.+l. 

l 1 1 1 

But the latter conclusion contradicts cf>ikcf>i+l (implying fix cf>i k fix cf>i+l ), 
and so we reject the latter and accept the former case, that 'Y = 'Yi+l . 

t 
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Theorem 5: Let 'll'=LJ.'11'. for {'11'.}.E ascending: \:/i('ll' .!:Sud'll'.+1). I 1 1 1 CO 1 1 

Then -y = fix <I> for q><E:Sud'll', if and only if there exists a sequence h)ie .. such that 
""o=, , u .-y.=-y, and for all iEw, -y.!:-y.-", -y. is isolated, and !{-y.~,} ~Sud '11'."f . . 
I ~ 1 1 l lTJ. 1 IT.I. 1 1 

Proof: Lemma 6 shows sufficiency; Lemma 7 shows necessity. □ 

4.2. A counterexample 

It is not necessarily the case that all -y such that -y E !IJ,'11' (equivalently h}~Sudq,'11') can be 
described as in Theorem 5. That is, some -y are introduced from fixed-points of q><E:Sud'll' because 
of closure requirem~nts in the domain PSuiG); an example follows. After it we consider the 
procedure for enumerating sets of sequences approaching a desired set in PsuiG) . 

Example 1 (Clinger): 
Let G be the conventional Boolean lattice. Define 'II' E [G ... PSud(G)] by the following: 

'!I': .Lt-- {TRUE}; 
TRUE t-- {T}; 

FALSE t-- {T}; 
T t-- {T}; 

Let us consider the skeletons of candidate <f><E:sud'll' : 

<f>o: .Lt-- .L . 

<1>1= .Lt-- TRUE; 
TRUEt-- TRUE; 

<1>2= .Lt-- TRUE; 
TRUEt-- T; 

Tt-- T. 

These skeletons are sufficient to determine that 
fix <!>0 = .L; fix cf,1 = TRUE; fix cf,2 = T. 

Moreover, they exhaust all the possible fixed points for <!>~d'll'. Thus, 
i),'11' = {.L, TRUE, T} = {.L, TRUE, FALSE, T} =Sud {T} 

because of necessary closures in PsuiG). 

The point of this example is that FALSE is included in i),'11' because 
of downward closures in the Smyth-upside-down domain, even though it 
is the fixed point of no q><E:Sud'll' ! 
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Theorem 6: 1{-y}lb:Sudq,11" if and only if there is some cj,-<ESud'll" such that 'Y lb: fix cl>= Ui(<f>i'Y). 

Proof: Necessity: If :3<!>-<E'll"('Y lh(fix cl>)) then 
h} lb: {fix q,} lb: Q,'11" since <f,-<E'll" . Hence h} lb: Q,'11" . 

Sufficiency: If 1{-y} U:Sud Q,'11" , then :3iE Q,'ll"('Y fC-y). 
Then let {i) •e be an ascending chain of isolated points approximating -y: U .-y.=-y and 

)"' -:J A A )) 

\/ jE CJ>( -vii:'Yi+l & ii is isolated & :::::i<l>tSud'll"('Yi=fix <!>) ). 
Because 'Y is way below U .-y., there is some j such that 'Y i;:-9.; · 

J L J 
because that -y. is isolated, 'Y 1::-y.fC-y. and: 

IF J A A • CJ J . C. A • A A 

'Y Lb fix<f,i = u i<t>/J,; _ u ic!>/'Y _ u ic!>i'i i = u i(fix <!>) = fh: <!>i . 
□ 

In cases like Example 1, where 'Y might be in Q,'11" because of completion rather than because 'Y is 
a specific fixed-point of some <f,-<ESud'll", Theorem 6 shows that such a legitimate fixed-point above 

'Y may be generated from 'Y by the same means that it is generated from J_. All that is neces
sary is that the 'Y in question be "well removed" from those boundary points specifically intro
duced by completion. This is satisfied when an isolated point separates 'Y from that boundary, 
and is trivially satisfied when 'Y, itself, is isolated . This latter observation includes all the cases in 
which we are immediately interested, because the 'computable' ground values are, themselves, 
isolated. Those are the finite (prefices to infinite) computations that can only output isolated ele
ments. 

4.3. Proof Rule 

Corollary 1: Let 'Jl"=Ui'll"i for {'11"Jieoo ascending: \li('ll"ii;:Sud'll"i-!i). 
Then 1{-y} lb:Sudq,'11" if and only if there exists a sequence 

hJieoo such that -y0=_1,;, -yi;:Ui'Yi' Ui11"i=1r, and for all i: 

'Yii:'Yi-!i' 'Yi is isolated, and 1{-yi-!i} i:Sud 1ri-yi. 

Proof: Theorem 5 and Theorem 6. □ 

This is the corollary that yields the operational semantics for q, . Given a program 1r , or 
perhaps a sequence {1rJie .. describing 1r, we can generate sequences htie .. that reach or exceed 
all 'Y such that 1{-y} [CSudq,1r in their limits. Thus, every value in Q,1r well removed from its 

boundary will be either reached or exceeded by one of the sequences that we generate by the 
repeated iteration of 

l{'yi-!i} i:Sud 1Ti'Yi i:Sud 11(i+l)1rj_ · 

A different perspective is available from Corollary 1 if we strengthen the fundamental 
theory of comains . The following commonly accepted axiom has not yet been used here . 

Axiom 1: If 'Y is isolated in G, then the cardinality of 1{-y} in J>(G) is properly less than CJ>. 

Axiom 1 implies that there are no isolated elements in' G above any non-isolated element. Simi
larly , there can be no non-isolated element properly above another non-isolated element in . 
That is, the non-isolated elements (if there are any) are supreme in . 

Then, the discussion following Theorem 6 Gustifying the use of lb: rather than i: there) is 
mooted, and so Corollary 1 might be stated in a weaker form using i:. That is, 1{<f,}i;:SudQ,1r 

l 
I 
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then implies either that 'YE iµ'll' or that 'Y is isolated and so Theorem 6 applies; in either case the 
sequence described in Corollary 1 exists. 

Corollary 2: Let 'll'=LJ.'ll'. for {'11'.}.E ascending: \li('ll' .[;;;s d'll'.-+i). 
1 1 1 1 C10 1 U 1 

Then i{-y}[;;;sudiJ,'ll' if and only if there exists a sequence 
b.}.E suchthat-y 0=1 ,-y[;;;u.-y.,LJ .'ll'.='ll',andforalli: 

llot --C 11 11 

-y.[;;;-y.-+i, -y. is isolated, and i{-y.-+i} [;;;Sud 'll'.-y . . 
1 I I I I 1 

Proof: Corollary 1, tempered by Axiom 1. □ 

The proof of Corollary 2 is wholly constructive and so the more convincing. Is such a 
result available under the Plotkin power domain? I suggest that the answer is affirmative below, 
but it seems clear from the proofs above (e.g. of Theorem 2) that the proof is not constructive. 
The requisite sequences {<f>)iE ... would be above those constructed before (e.g. in the proof of 
Lemma 7), and little more than an existence claim for <f,.-E'll'., instead of <f>.-ESud'll'., is needed to 

I 1 1 1 

strengthen those proofs. 

Conjecture 3: In the Egli-Milner order, let 'If =LJ i'll'i for {'11' liE .. ascending: \I i('ll'i[;;;EM'll' i-+i). 
Then 'Y E tj,'ll' if and only if there exists a sequence 
hJiE .. such that -y0=..Lc;, -y=Ui'Yi' Ui'll'i='ll', and for all i: 

-yi[;;;'Yi-+i' 'Yi is isolated, and 'Yi-ti E 'll'i'Yi. 

From Corollary 2 (and Conjecture 3) we infer both the operational semantics and the proof rule . 
It is most important that no cf,E F appear in either. 

Proof rule for Pi!M(G): 'YE tj,'ll' if and only if 'YE 'll''Y 
and anything in 'll''Y above 'Y is also in tj,'ll'. 

For Pi!M(G) the proof rule need not apply to every 'Y in tj,'ll', just so every 'Y is bracketed (above 
and beneath) by others satisfying the rule. For PSuiG) the rule need only apply to an upper 
bound, as indicated by -y[;;;Ui'Yi in Corallaries 1 and 2. tj,'ll' is the least set (with respect to [;;;l'(G)) 

that satisfies the proof rule. · 

There is a temptation to refine this result so that only the upper frontier, the supremum of 
tj,'ll' (as defined), becomes the semantics of tj,'!l'. Unfortunately, there seems to be no operational 
semantics that nicely excludes inferior non-isolated points, and so the present definition stands. 
When the inferior points tum out to be isolated, a decent implementation might opt for one of 
those above; an instance of this appears in Section 7 25• 

4.4. Procedures to compute IJ,'ll' 

In the following, we shall present examples run tluough procedures also derived from these 
corollaries. The proofs of their correctness thereby becomes trivial, since the proof rule derives 
from the same source. It appears that the procedures are tailored after the proof rule or vice 
versa. 

The procedures are presented generically, for either PEM(G) or PsuiG). The first pro
cedure is designed to find just one 'YE IJ,'ll'. Ordinarily CT, and hence 'If , is defined by some recur
sive program , that specifies 'If by some approximating sequence {'11'.}.E . So long as only maximal 

I I o, 

'Y·-tt are chosen at each step, it is easy to see that the computation of a single sequence {-y.} gen-
1 I 

eratcs a tree of finite degree at every node. The procedure follows: 

5Excluding detectably inferior 'Y in "1"1 is harmless, unless a strong definition of ''fairness" is breached thereby. 
Otherwise, it )1st provides "more" meaning from evaluation. 
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Procedure 1: Compute -y=LJ.-y.Etj,(LJ.'11'.) where each 'IT. is isolated. 
1 I I I I 

1. Set -y0:=..L . Set i:=O. 
2. Compute 'll'i'Yi' representable as a finite set of isolated representative elements 

because both 'IT. and 'Y. are isolated. 
I I 

3. Study each element 'YE 'IT .-y. and cull it unless 'Y. C::-y 
1 1 1 • 

(While 'Yi E 'IT i'Y i' it is still culled because the relation is proper!) 
If there is nothing left then stop; -y. is the isolated limit. 

I 

4. Choose the new, isolated 'Y i+1 = 'Y surviving Step 3. 
5. Increment i, and go to Step 2. 
□ 

In this way, the corollaries guarantee that we will build a sequence that approaches or reaches a 
least fixed point that is a supremum of tj,'11' in ~M(G) , or in PSuiG) a repres~I!tative element in 
the sense of Clinger [3]. (Were fairness at issue, the exclusion of values 'Yi+1C::'Y and the strategy 
for choice among candidate values at Step 4 would be important.) 

Suppose that we want to compute, or to compute a sequence approaching, that entire ele
ment in the power domain. Such a computation is similar to a breadth-first expansion of the 
computation tree suggested by the formula describing a path of length i: 

11i'IT..Lc . 
Two procedures are presented: Procedure 2 is "brute force", but Procedure 3 is more sparing of 
computational effort and will be used in the examples below. 

Procedure 2: Compute e =tj,(U .'IT.) . 
1 1 

1. Set E = ..Lr, (G) In E . 
2. For i := 0 Fo u> compute 11(i+l}rr r1-c, while 
3. joining (h} In E) into e for any 'Y satisfying 

c:: . c:: 'Y _4>1..1-c and 'Y -c!>'Y for cj,--E'll'i. 
□ 

Again the corollaries guarantee that Procedure 2 will generate in its limit any 'YE tj,'11' . Pro
cedure 3 uses an indexing scheme to avoid repeatedly rebuilding the same parts of the computa
tion tree. 

Procedure 3: Compute e=tj,(Ui'IT) where each 'll'i is isolated. 
1. Set j:=O; define 'YA= .Le . 
2. For iE u> (according to some effective enumeration strategy't) compute 

'IT ·'Y where x Eu>• and 'Y is already defined. 
1 X X 

This set is finitely representable since 'Y and 'IT. are isolated. 
X I 

3. and for every t isolated 'Y such that h} i:'11' i'Y x' 

if 'YxC::'Y then define 'Y . = 'Y and increment j. 
If no such 'Y exist then 'Yx~J is a representative limit point of the tree. 

□ 

In the examples below, 'Y satisfying the test at Step 3 will be displayed plainly, but those not 
satisfying it will be struck through and referred to as "culls". Thus, a representative point 'Y is 

X 

found when everything is culled at Step 3. 

A sequence of the sort described in Corollary 2 may be extracted from successive finite 
Prefixes of the subscript, x, of a defined 'Y . Thus , once defined, the value of 'Y will be in tj,'11', 

X X 

although perhaps not representative of it. Those generating all culls at Step 3 are representative 
elements, as are the limits of infinite ascending sequences whose subscripts are prefixes of one 
another. 

l 
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S. Semantics for sets of triples 

In this section the ground domain, G, is fleshed out to include triples and six atoms. This is 
done surgically in order to consider the particular problem introduced in Section 13. In addition 
it presents a polished letrec semantics and hints at the way that general data structures are to be 
introduced in the following section. Indeterminism is introduced with McCarthy's amb operator. 

In this section the down arrow, i, is used as infix notation to indicate projection from pro
duct domains in the standard manner. The example will be treated in PsuiG) , based on the 
results of Corollary 2. 

MacQueen poses the problem of deriving "suitable" semantics for evaluation of an expres
sion of the form 

(letrec I {1 2 (if (first I)=l then 3 else 4)} ) 

where the braces here indicate all permutations of the enclosed items. Section 13 states the 
problem and should be reviewed here under the interpretation of PSuiG). 

Once the reader is reminded that .L is a legitimate value, she will, no doubt, suggest other 
possible values besides those in Section 13, like (.L 2 .L). While these are certainly correct, each 
is beneath (J:) one of the acceptable permutations already mentioned above. The definition of 
the Smyth-upside-down power domain that is being used, indicates that the intended value of 
evaluating the above expression is the element 

{ (1 2 3), (1 3 2), (2 1 4), (2 4 1), (.L 1 2), (.L 2 1) }, 

a maximal representative of the partition block (mod J:.11 (G~ in the power domain that we 
want. It includes all values beneath the six permutations list~~ within the braces. 

' 
5.1. Semantics 

Much of the following appears in a previous section. The letrec line of the semantics, 
however, now directs evaluation to a constant fixed-point function. Now that lj, has been shown 
to be as "safe" as fix, its effect need no longer be so explicit in the language definition. 

The richer part of this language occurs in the constant definitions, which are at last 
presented completely. 

S.1.1. Syntax 

K :: fix Iamb I if I first I second I third I equal? I true I false I 112 I 3 I 4; 
E :: I I KI< E 1 E2 E3> I (E0 E 1) I (lambda IE) I (letrec IE) 

I 

f 



5.1.2. 
Value Domains 

p E U = [Ide .. D] 

6 E D=GEBS 
E E E = Psud(G) EB S 
a E S = [D .. E] 

1T E p = [G .. Psud(G)] 
cf> E F = [G .. G] 

-y E G=A+T 
T E T = GXGXG 
a E A = {true, false, 1, 2, 3, 4} 

5.1.3. Semantic Functions 

E : [Exp .. [U .. El) 

E [I)p = V (p [ID) 
E [K)p = V (K [K)) 
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E [(lambda I E))p = (X6E [E)p[6/ID In E 

(environments) 

(denoted values) 
(expressed values) 

(systems) 

· (programs) 
(functions) 

(ground values) 
(triples) 
(atoms) 

(parameter) 
(constant) 

(function) 

E [< E1 E2 E3> )p = {bl' 'Y2' -yJ In G hiE ((E [Ei)p) IPsuiG))} In E 

E [(E 0 E1))p = (Let a= ((E [E0)p)~) and e= (E [E 1)p) in 

(E E Ps.,iG) .. Lf a(-y in D) I 'YE (e!PsuiG))}, 

(triple) 

. ( E E S .. a ( E~ In D), 
(e=Ti .. aT 0 , 

a .L0 ))) ) (application) 

E [(letrec I E))p = E [(fix (lambda I E)))p 

Propositlont: The last of the above semantic equations is superfluous, 

because of K [fix) . 

( recursiont) 
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K : [Con-+ D] 

K [fix] = (A-6. (Let a = &IS in 
(rr...L.0 EPsuiG)-+ tj,(A-y.(rr('y in D) I PsuciCG))) in E , 
(a ...L.0 ES -+ fix Ae.(rr(e IS in D)), 

(rr..Lo=1i-+ 1i' 
...LE ))) )) in D ; (t) 

K [amb] = (A-6.( Let ('Y1''Y2,-y:J = &IGIT in 
hl' 'Y2' 'YJ in E)) in D; (14] 

K [if] = (A-6. ({ Let -r=(&IGIT) in 
(-rnlA =true-+ -rt2, 
(-rnlA=false -➔ -ri3, 
...le)) } in E) ) in D ; 

K [first] = (A-6.( { ((6 IG IT) , 1)} in E )) in D ; 
K [second] = (A-6.( { ((6 IG IT) , 2) } in E )) in D ; 

K [third] = (A-6.( { ((6 IG IT) , 3)} in E )) in D ; 
K [equal?] = (A-6. ({ Let -r=(&IGIT) in 

((-rnlA)=...L.A -+ ...LA, 
((-r,2IA)=...L.A -+ ...LA' 
((-rillA)=(-rt2IA) -+ true, 
false))) in G } in E)) in D ; 

K [true] = true in G in D ; 
K [false] = false in G in D ; 

K [1] = 1 in G in D ; 
K [2] = 2 in G in D ; 
K [3] = 3 in G in D ; 
K [4] = 4 in G in D . 

5.2. Solution to MacQueen's Problem 

Since S< 1 2 3> can be expressed as a set of triples, it can be represented in the domains 
defined above. Specifically we might represent it as e: 

S< 123 > = { (( (1 in G), (2 in G), (3 in G)) in G), (( (1 in G), (3 in G), (2 in G)) in G), 
(( (2 in G), (1 in G), (3 in G)) in G), (( (2 in G), (3 in G), (1 in G)) in G), 
(( (3 in G), (1 in G), (2 in G)) in G), (( (3 in G), (2 in G), (1 in G)) in G)} 
in E; 

= E = { (1 2 3), (1 3 2), (2 1 3), (2 3 1), (3 1 2), (3 2 1) } in E 

where we have omitted internal commas and the tiresome occurrences of "in G" in the last line. 
Having understood that "in G" gets in the way, we shall elide its use later. 

Now let us write a program in this language to generate e = S < 1 2 3> from < 1 2 3> using 
the constant function, amb. 

(E 0 < 1 2 3>) where 
E0 = (lambda T (amb < < (first T) (second T) (third T)> 

(amb <<(first T) (second T) (third T)> < (first T) (third T) (second T)> 
< (second T) (first T) (third T)> >) 

(amb <<(second T) (third T) (first T)> < (third T) (first T) (second T)> 
< (third T) (second T) (first T)> >) >) . 

Extend this to a function akin to A.x.S < 1 2 x>; given an argument, x, it returns the set of all 
the permutations of 1, 2, and x: 
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E 1 = (lambda X (E0 < 1 2 X> )) where E0 is as defined above. 
E [E 1]p = >..6£ [(E 0 < 12 X> ]p[6/X]; 

= >..6.({(12 6jG) (16IG 2) (2 1 6jG) (2 6jG 1) (6jG 12) (61G 2 1)} in E). 

Extension to >..x.S<12 ((x=lr 3,4)> is also easy; one would ordinarily expect the result of this 
function to be under S < 1 2 3> or S < 1 2 4> , and certainly above S< 1 2 .L.e . (In the code below 
there appears to be an extra argument for equal?; why?) 

E2 = (lambda X (E 1 (if < (equal? < X 11>) 3 4>) ) where E1 is defined as above. 
E [E2]p = >..6£ [(E 1 (if ... ))]p[6/X]; ' 

= >..6.({(1 2 C) (1 C 2) (2 1 C) (2 C 1) (C 12)(C21)} in E) , 
where C is syntactically the conditional ( (6 IG IA)=l-+ 3,4)in G . 

Now suppose that we were passing a triple (of, say, integers) to this function instead of x, 
and retrieving the first item in the triple in place of x: 

E3 = (lambda T (E2 (first T))) ; 
= (lambda T (E0 < 1 2 (if< (equal?< (first T)l 1>) 3 4>) >)) ; 

where E0 and E2 are defined as above. 
E [EJ.l.u = (>..6E [(E 2 (first T))]p[6/T] )in E ; 

= ( >..6.({(1 2 C) (1 C 2) (2 1 C) (2 C 1) (C 1 2)(C 2 1)} In E) )In E , 
where C is syntactically the conditional ( ((61Glnl)IA)=l-- 3,4)in G. 

Let us define a as this last value projected into S . Again we expect the result of this function 
to be under either S< 12 3> or S< 12 4> but above 

S<12.l..A>. 

Define a = (E [E 3].l. 0 )1S as above and derive 1r from a: 

1T = >..-y.(a('y in D) I PsuiG)); 
= >..-y.( ((E [EJ.1. 0 )(-y in D)) I PSuiG)); 
= >..-y.({(12 C) (1 C 2) (2 1 C) (2 C 1) (C 1 2) (C 2 1)} , 

where C is syntactically the conditional ( ((-yjTn)IA)=l-- 3,4) in G; 
= >..-y .(S < 12 (((first "I IT)=l}- 3,4)> I PSud(G)) · 

Enough is in hand to present the first solution to MacQueen's problem: we apply fix to E3• 

E [(fix E3)).l. 0 = lj,1r in E because a .l.0 E PSuiG). 

Two ways to figure tj,1r occur here. The difficult path is to follow the definition of lj, and 
to find all cf>~1r (or equivalently cf>~a), and then find their respective least-fixed-points. This is 
not particularly easy (G is infinite so there are infinitely many candidate cf>), and awfully 
inefficient because, after all, tl:e cf> are not of direct interest. 

The tractable path is to use either procedure which finds all the least fixed points, only 
implicitly dealing with cf> E F. Since 1r is isolated, choose Procedure 3 where all 1r i =1r . This par
ticular example has only finitely-many and isolated least-fixed-points among the infinity of dom
inated functions, moreover, so the tree exploration will terminate cleanly when all branches of 
the tree cull out to leaves at Step 3. 

E0 = .l.PsuiG) In E = {~} in E i;;;; a .1.0 . 

Let 'Yo be~• as forced by Procedure 3 and as suggested by E0 • 

E1 = 1r~ In E; 
= { (1 2 .l.G), (1 ~ 2), (2 1 ~), (2 .l.G 1), (~ 1 2), (~ 2 1)} In E . 

Procedure 3 proceeds on the illustrated six choices for -y1 E E 0 1PsuiG), and indexed E 1; as 
l$ i$6. 

I 
L 
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= 'lT (1 2 --1;;) in E ; 
={ (1 2 3), (1-H);--(+H},-~~1),-(H--l),fJ-a-l)} In E . 
= 'lT (1 --1;; 2) in E ; 
={ -(-14-~, (1 3 2), (+H},-f2-~1).M-l),f3-a-l)} in E . 
= ,r (2 1 --1;;) in E ; 
={ fl-~-fl-4-2t, (2 1 4), f2-4-1),-f'--l l), (4 2-l)} in E . 

E1,4 = 'IT (2 --1;; 1) in E ; 
={ (~2 4), (1 ~~+4, (2 4 1),-(4+~~-l)} in E . 

El,S = 'IT (--1;; 1 2) 
={-fl-2-~-+,--fl-±=c 2t,-f24±w,~ ~ (..!;; 12), (~~-l)} In E . 

E1,6 = ,r (..!;; 2 1) in E ; 

={-fl4~-+,-fl-±=c2t.~~-+,--(H_~,-½-1-~, (--1;; 2 1) } in E . 
where the crossed out values in G indicate values rejected at Step 3 of Procedure 3. Identify 
those residue values as (the first) candidates for -y2• 

There are still more candidates for 'Y 1, because we must also consider every -y beneath 

(l;:.,suiG~ the -y1 already processed above. These will be indexed E1j for j a digitwise composite 
of the indexing above, depending on which elements of E 1 _introduce it. In this case, however, 
we thereby generate nothing not already beneath -y2 values already discovered. (For the 

remainder of this example, we shall not distinguish among --1;;, ...LT and ...LA ; all are written ...L.) 

El,123456 = 'IT (...L ...L ...L) In E = El ; 

El,25 = ,r (...L 1 ...L) in E = E 1 ; 

E1,46 = 'IT (...L ...L 1) in E = El ; 

E1,16 = 'IT (...L 2 ...L) in E = El ; 

El,25 = 'IT (...L ...L 2) in E = El ; 

El,!2 = 'IT (1 ...L ...L) in E ; 
={ (1 2 3), (1 3 2), (+H},-~~1),-(H--l),f3-2-l)} In E . 

El,34 = ,r (2 ...L ...L) in E ; 
={ fl-~-(,l-4-2t,(2 1 4), (2 4 l),fl--1-.Jt~-l)} in E . 

In order to recover the full result in E, we continue to apply Procedure 3 to these -y2 candi

dates, but doing so causes everything to be culled at Step 3, and the breadth-first evaluation 
stops. 

El.1,1 = ,r(l 2 3) in E = El,1 ; 

E1,2,2 = ,r(l 3 2) in E = El,2 ; 

El,3,3 = ,r(2 1 4) in E = Et,3 ; 

El 44 = ,r(2 4 1) in E = El 4 ; 

E 1~~ = ,r(½ 1 2) in E = ~l,S ; 

El ,6,6 = ,r(½ 2 1) in E = E 1,6 ; 

That is, we have reached the fixed-points of all <f>~,r (which fortunately are isolate<l in this 
example) and Theorem 6 gives us the desired result. The result of evaluation is the join of all 
these b 2} in E: 

E = { (1 2 3), (1 3 2), (2 1 4), (2 4 1), (..!;; 1 2), (...LG 2 1) } in E . 

Note that neither ( 4 1 2) in G nor ( 4 2 1) in G occurs inside E IPsuiG). Wliile either of these 
two values, -y', is a fixed point for some <f>~,r and so an element of a 'fixed point' with respect to 
,r: 

l 
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h'}U (elPSuiG)) ~ L~'IT'Y hE (h'}U (elPSuiG)))}; 
nevertheless, each is rh:: 4> for no cf,-E'IT, and so fails to be in our "least" solution required by 
K [fixD. 

The denotational semantics developed here, therefore, meets our intuition on how 

(letrec I {l 2 (Ir (first I)=l then 3 else 4)} ) 

should be computed effectively and our original intent for its final value (Section 13.) 

6. Denotational semantics ror rerns and multisets 

This section presents the formal semantics that is the motivation of this paper. Parts of the 
definition, notably the definition of E, and of the domains D, E, S, have already been seen 
above. The new content is the domain of structures, M, here called multistruc.tures for historical 
reasons that are suggestive not of the ground domain (here extended), but of the power domain 
P(G) which includes sets of structures. New here also is the rich variety of constants reflected in 
the extended definition of K. Ferns [6,7] are a generalization of both deterministic lists and of 
multisets; all examples here use pure multisets. 

Notable in K are the definitions of frons and arbiter; these are not isolated functions, here 
described in terms of fixed points of functionals. They are not the only primitive functions that 
return non-singleton values in -'liM(G); both amb and orbit return such indeterminate values. 
They illustrate the need for approximating 'IT by {'ITJie .. in Theorem 6. 

6.1. Syntactic Categories 

I E Ide; (the usual identifiers) 
(constants) 

(expressions) 
( expression strings) 

KE Con; 
EE Exp; 

E 0 E ;1xp*. 

6.2. Syntax 

6.3. 

K :: fix I if I am b I cons I first I rest I null? I atom? I equal? I nil I zero? I succ I strictify I frons I 
arbit I arbiter I true I false I O I 112, ... 

E :: I I K I< E0 > I (E0 E1) I (lambda I E) I (letrec I E) 
E0 

:: A IE E0 

Value Domains 

p E U· 
' 6 E D; E E E; 

'IT E P; 4> E F· , 

'Y E G=A+M; 
µ. E M ={nil}+ T; 

T E T = GXM; 
a E A; 

(J' E S· , 
(as before) 

(ground values) 
(multistructures) 
(tuples or twins) 

(some primitive values, including true,ralse,0,1,2, ... ) 
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6.4. Notational Convention 

The following notation is used to construct twins (non-null structures) that are strict in their first 
field. Compare to Landin's pref ix* [13]. 

Notation: <t-y,µ.> means (-y=-1..-c ... ..LT, <-y,µ.> ) . , 

6.5. 
Semantic Functions 

E : [Exp ... [U ... El) ; 

E [IDp = V (p [ID) ; 
E [KDP = V (K [K)); 

E[<>Dp= {nillnG}lnE; 

E [ < E E 0 > D p = L( { < 'Y 1' 'Y 2'"" > In M in G }in E I 
h 1}i;;;(E [EDP)iPiiM(G) and h 2}i;;;(E [< E 0 > DP)lf>EM(G)}; 

E [(lambda I E)DP = (>..6.E [EDp[6/ID in E ; 

E [(E 0 E 1)D p = (Let CT =((E [E 0] p )t,)) and e =(E [E 1] p) in 

(e E 'l!M(G) ... Li CT ('Y in D) I 'YE (e!PeM(G))}, 
(e E S ... CT(et', in ri), 
(e=i-;; ... CTTu, 
CT ..LD ))) ) ; 

E [(letrec I E)D p = E [(fix (lambda I E))] p . 

(parameter) 
(constant) 

(empty multilist) 

(non-empty list) 

(function) 

( application) 

The following constant primitives take arguments in G which sometimes are structured in 
tuples. The exception is K [ifD which is "curried" to allow systems to be the result of condition
als. 

K : [Con ... D]; 

K [fix] = (>.6.(Let CT =61S in (CT..L0 EFEM(G) ... lj,(X-y.((CT('Y In D)) I 'l!M(G) )) , 
(CT..L0 ES ... fix (Xe.(CT(elS In D) )), 

(CT..LD=TE ... TE' 
..LE ))) )) in D ; (*) 

K [if] = (>..6. (Let a=6IGIA in ( a =true ... (>.61.((>.62.V 61)in E)), 
( a = false ... (>-6r((X6 2.V 62)in E)), 
--1-s ))In E)) in D ; 

K [amb) = (>.6.(Let T=6IGIMIT in 
{ (T n), (T i21n 1) }in E)) in D ; [14] 

L 
I 
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K [cons)= (X6.(Let T=6IGIMIT in 
{ <Til, (Tl2IT,t1M)> in Min G}in E)) in D; 

K [first) = (X6. ({6 IG IM In l}in E)) in D ; 

K [rest) = (X6. ({ (6IGIMITl2)in G }in E)) in D; 

K [null?) = (X6.(Let µ.=6IGIM in 
{ (µ. = nil ➔ true, 

(µ. = J...M ➔ J...A ' 
false))in G }in E)) in D ; 

K [atom?) = (X6. ({ (61G E A ... true, 
(6 IG E M ... false, 
..LA))in G }in E)) in D ; 

K [equal?)= (X6. (Let T=6IGIMIT, a 1=TlllA, a 2=Tl2IT,1IA in 

{ (a1=..I...A ... ..LA, 

(a2=J...A ... J...A, 
(a 1=a 2 ➔ true, 
false)))in G }in E)) in D ; 

K [nil) = nil in G in D ; 

K [zero?)= (X6.(Let a=6IGIA in 
{ ( a=O ➔ true, 

( a=J...A ... ..LA, 
false)) in G }in E)) in D ; 

K [succD = (X6. ({ (6IGIA + l)in G }in E)) in D ; 

K [a)= • in Gin D; 

[14] 

[14: car] 

[14: cdr] 

[14: null) 

[14: atom] 

[14: eq) 

[14) 

for all •EA 

L 
I 
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K [strictify] = (>..6.(Let -r=6IGIMIT in 
{(-r'1=...LG-+ ~' -rl2IT'1 )}in E)) in D; [7] 

K [frons] = (>..6.(Let -r=6IGIMIT in [7) 
( (tons (-r'1)) ((-rl2IT'1)1M)) in -'EM(M) in 'liM(G) in E))in D 

where Jons: G-. M - -'EM(T); 
Jons= fix (>..f.A-y.A.µ.. ({<t-y,µ.:>} U (µ.=nil - {<-y,µ.> }, 

{<t(µ.ITll), -r in M> I -r E ((f-y)(µITl2))}) )) ; 

K [arbit] = (>..6.(Let T = 6IGIMIT in [8] 
{(-r'1 = ~ -. ~' true in G), 
(-r l21Tn = ~ -+ ~' false in G)} in E)) in D; 

K [arbiter]= (>..6.((Let -r=6IGIMIT in [12] 
((demult(-r l llMIT))(-r l21Tl llMIT))in ~M(M) in PEM(G) in E)) in D 

where demult : T -+ T - -'EM(T) ; 
demult = fix(>..d.A.-rrAT2• ( 

{ <t<t-r 1l 1, < true in G, nil>> in M in G, T in M> I TE ((d{-r 1l2IT))T 2)} U 

{<t<t-r2n, < false in G, nil>> in Min G, -r in M::t> 1-r E ((d-r 1)(-r2 l2IT))} )). 

7. MacQueen's Example with Multistructures 

Reconsider MacQueen's problem, now recast in the language of the previous section. We 
seek the value of 

(letrec I (frons< 1 (frons< 2 (frons < (( (if (equal?< l(first I)>)) 3)4) nil>) >) >)) 

according to this language, with this example interpreted in '8M(G). 

A major difference in the set that is the answers arises because Jrons is strict in the first 
position of its result unless it happens to be a "tuple" of one ground value-with rest yielding nil. 

No explanations or intuition here! We just want the value that E gives for this expression 
in environment ...L0 • 

7 .1. Approximations to J rons 

As indicated earlier, J rons has not been defined as simply as, say, amb. According to its 
definition it only exists as a limit point, which will here be approximated to a sufficient degree 
only to answer the problem at hand. Really it is not J rons that has been specified directly as a 
fixed point of a functional, but rather its 'helper,' Jons, which is now explored. 

Jons: G -. M -+ ~M(T) ; 
Jons= fix (.>..U-y.A.µ. ({<t-y,µ::t>} U (µ.=nil-+ {< -y,µ> }, 

{<t(µ.ITll), -r in M> I -r E ({f-y)(µ.ITl2))}) )) ; 

The value of Jons will be approximated by an ascending sequence {fons.}.E . Each element is 
1 1 o, 

the result of i~ 0 applications of the lambda expression, in the fixed-point expression above, to 

~~ M~ -fM{T) . 

l 
I 
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f onso = .Le- M~ fM(T); 
f onsi-+i = (Let f=f onsi in 

33 

A:y.Xµ.. ({<-y,µ.::t>} U (µ.=nil .. {<-y,µ.> }, 
{<(µ.lnt),T lnM> IT E ((f-y)(µ.ln2))}))); 

fons 1 = A.-y.Xµ.. ({<-y,.LM::t>} U (µ.=nil .. {<-y,µ.> }, {-½}) )) ; 
= A.-y.Xµ.. (µ.=nll - {<-y,nll> }, {<-y,µ.>,-½}). 

fons 2 = A.-y.Xµ.. ({<-y,.LM::t>} U 
(µ.=nll - {<-y,µ.> }, 

{<(µ.lnt),T lnM> IT E (µ.ln2=nil - {<-y,nil> }, 
{<-y, µ.lnz>,-½}}) )) ; 

= A.-y.Xµ.. (µ.=nll .. {< -y,nil> }, 
(µ. In Z)=nil .. { <-y ,µ.>}u {<µ.In 1, < 'Y ,nil> >}, 
{<µ.IT,t, <-y, µ.lnZ>ln M>, <-y,µ.>,-½} )) . 

According to a similar derivation: 

fons 3 = A.-y.Xµ.. (µ.=nll-+ {<-y,nll> }, 
(µ. 1n2)=nil .. { <-y,µ.>}u { <µ. ITn,< -y,nil> 1n M>}, 
(µ.ln21T,2=n11 .. {<-y,µ.>}u {<µ.Int, <-y, µ.IT,2::t>in M>} u 

{<µ.IT, 1, <µ.ITli2ITH, <-y, nil> In M::t>ln M>}, 
{ <µ.ITil, <µ.ITl,Zlnt, <-y, µ.ITi21n2:>1n M>in M>, 

<µ.ITn, <-y, µ.ln2>1n M>, <-y,µ.>, .LT}))). 

Now we can proceed with the approximation to I( [fronsD which we shall call {frons.}.E . 
I Io, 

fronsi = (A.6.(Let T=6IGIMIT in ( (fonsi (TH)) ((Tl21Til)IM) )In ~M(M) in PeM(G) in E))in D 

yielding much the same functions as appear above except for argument selectors: 

frons 0 = (A.6.(Let T=6IGIMIT, -y=(TH), and µ.=(Ti2jnt)IM in 

.Lp, (G) 

In ~{M) In Pi!M(G) In E)) In D . 

frons 1 = (A.6.(Let T=6IGIMIT, -y=(Tll), and µ.=(Ti2jTH)IM in 

(µ. =nil .. { < 'Y ,nil> } ' { <-y ,µ. >' -½ } ) 
In ~M(M) In PiJM(G) in E)) In D . 

frons 2 = (A.6.(Let T=6jGIMIT, -y=(TH), and µ.=(Ti2jnt)IM in 
(µ. =nil .. { < 'Y ,nil>}, 
(µ.ln2)=nII - {<-y,µ.>}u {<µ.ITH,<-y,nil>ln M>}, 
{<µ.jT, 1, <-y, µ.ln2::t>in M>, <-y,µ.>,-½} )) 

In ~M(M) In Pi!M(G) In E)) In D . 

frons 3 = (A.6.(Let T=6IGIMIT, -y=(Til), and µ.=(Ti2ITH)IM in 
(µ. =nil .. { < 'Y ,nil> } ' 
(µ.ITi2)=nII - {<-y,µ.>}u {<µ.jnt,<-y,nll>ln M>}, 
(µjnZITiZ=nil .. {<-y,µ>}u {<µjTn, <-y, µln2:>in M::1>} u 

{<µITH, <µjTjiZjT,t, .<-y, nil> In M::l>in M>}, 
{<µIT, 1, <µ.ITli2jnt, <-y, µ.ITi21Ti2::t>ln M::i>ln M::1>, 

<µITH, <-y, µIT,2::l>in M::I>, <-y,µ::1>, .LT}))) 
in ~(M) In Pi!M(G) In E)) in D . 
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E [(letrec I (frons< 1 (frons< 2 (frons < (( (if (equal?< l(first I)>)) 3)4) nil>) >) >) )]...Lu 

we observe the derivation of CT and 1r: 

CT = >..8E [(frons< 1 (frons< 2 (frons < (( (if (equal?< l(first I)>) ) 3)4) nil>) >) > )D...L0[8/I] ; 
,r = >..-y.((CT('y in D)) I PiiM(G)) · 

fn order to use Procedure 3, we need an increasing sequence of isolated points approximating ,r: 

CT i = >..8E [(fronsi< 1 (fronsi< 2 (fronsi < (( (if (equal?< l(first I)>)) 3)4) nil>) >) > )]...L.0 (8/1] ; 
,r. = >..-y.((CT.('y in D)) I Pi!M(G)). 

1 1 

Then, again omitting the tiresome domain coercions like in M and in PEM(G) as before, 

,r tt-1-c = {..Le} . 

1T 1...Lc = { < 1, ..1.--r> ' ..Lr } . 

1r z-Lr = { < l, < 2, ..Lr> > , < 2, < l, ..Lr> > , 
< 1, ..1.--r> , < 2, ...Ly> , ..Lr } . 

ir 2<1,..Lr> ={ <l, <2, <3,nll>>>, <l, <3, <2,nil>>>, 
< 1, < 2, ..1.--r> >, < 1, < 3, ..1.--r> >, < 1, ..1.--r>, 
~-3,41-;-4J,eil.;;....>-:;:,., <~,-<:-l;-<:-2,-ei~...;>.;: .... , 
< 2, < 1, :±:j;>-:;:,., <-3, < 1, :±:j;>-:;:,., ~:;:,., 4-l;--i=j,~, 

..Lr}. 

Note that ,r 2 cannot yet generate < 3, < 2, < 1, nil> > > and < 2, < 3, < 1, nil> > > . The res
triction arises from the fact that ir 2 can only reverse adjacent pairs of elements in the multislruc
tures; it cannot freely permute triples. 

I 
r 
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n 3< 1, < 2, < 3, nil>>> = { < 1, < 2, < 3, nil>>>, <--1;~~~-2,-Bi~➔➔, 
4~41;-4-J,ail.;:...;:....:;:,.., <--2-,~~~+,-nD,;;:>.;:....;:..., 
4~41;-4-~ail.;:...;:....:;:,..,<~~4,~+,~➔} 

= 'If 3 < 1, < 2, -1....r> > . 

n 3 < 1, < 3, < 2, nil>>> = { <-+,~-2,~~-Bi~➔➔, < 1, < 3, < 2, nil>>>, 
4~41;-4-J,ail.;:...;:....:;:,.., <--2-,~~~+,-nD,;;:>.;:....;:..., 
4~41;-4-~ail.;:...;:....:;:,.., <~.~4,~+,-nD,;;:>.;:....;:...} 

= 11"3< 1, <3,i.> > . 

'If 3 < 2, < 1, l....r> > = { 4-1,42, < 4, eD;:....;:....:;;;...., <-+,~-4;~-2,-Ri~➔➔, 

< 2, < 1, < 4, nU> > >, <--2-,~-4;~+,-nD,;;:>...;:..;:..., 
44,41;-4-~ail.;:...;:....:;:,.., <-4-,~4,~+,~...;:..;:... } . 

n 3 < 1, l....r> = { < 1, < 2, < 3, nil> > > , < 1, < 3, < 2, nil> > > , 
< 1, < 2, -1....r> > , < 1, < 3, l....r> > , < 1, -1....r> , 
4~41;-4-J,nU.;:...;:....:;:,.., <--2-,~~~+,-ftD;::.➔➔ , 

4~41;-4-~ail.;:...;:....:;:,.., <~.~4,~+,~...;:..;:...} . 

'If 3 < 2, l....r> = { 4-1,42, < 4, ~;:....;:...., <-+,~-4;~-2,-lli~➔➔ , 

< 2, < 1, < 4, nU> > > , < 2, < 4, < 1, nil> > > , 
~4;4-l-; 2> > >, < 4, < 2, ~➔➔}. 

n ~ = { < 1, < 2, l....r> > , < 2: < 1, -1....r> > , 
< 1, l....r> , < 2, j_T> , l....r } . 

The next step, using n 4, is not presented here because it does not introduce any new values 
into tj,n. The derivation will then stop with the following precisely defined element in the 
power domain: 

{ -1....r, < 1, < 2, < 3, nU> > > , < 1, < 3, < 2, nil> > > , 
< 2, < 1, < 4, nil>> > , < 2, < 4, < 1, nil> > > } . 

There are other 'Y in this powerdomain element, besides those explicitly listed, specifically those 
included by closing this set to the representative of the congruence class defined from l.:8 M. 

This set is the set of those 'Y satisfying the proof rule. 

The presence of -1....r here is annoying, since ithe opportunity for precisely expressing 
bottom-avoiding set values is one reason for using the Plotkin powerdomain. This is an instance, 
suggested after the proof rule in Section 43, where we would prefer to accept only the 
supremum set of the four permutations, avoiding the inferior -1....r· Avoidancel'.>f isolated inferior 
values, and certainly avoidance of isolated J_, may be accomplished in implementation using 
ordinary breadth-first evaluation to implement Procedure 3 (with sinister requirements for global 
breadth-first evaluation [4] if used throughout the semantics.) If there were a mechanism to 
implement bottom-avoidance in fM(T) then it would generate exactly four ground values in the 
resulting powerdomain element, because once -1....r is avoided only the four elements listed expli
citly above survive as limit points. Lesser values are here included only by closure of an element 
that included J_. 
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Broy [1] describes the gap between 1-..r and the four supremea as "holes" within a power
domain element; one way to avoid them is to so collapse all inferior values to ..1..., as was done 
above, and then to force interpretation of such an element as its non-bottom constituents, 
Clinger's "representative element" [3) in PsuiG). This can be done by using an appropriate 
bottom-avoiding join in all definitions off ons and/ ons1• Here we would use the join on I' (T), 
tJ , defined by 

A tJ B = (A=..1... .... B, AU B). 

This operator coincides with U in PsuiG), but is not even monotone in 1'8 M(G). Used in the 
definition off ons with the ordinary join used in the function application axiom, however, it does 
yield the operational behavior originally ascribed to frons [6). We would like a semantics to 
surgically eliminate bottom like this, allowing bottom-avoidance within definitions like that of 
f ons, even if it is not a generally safe powerdomain join. Perhaps, as Broy suggests, there is a 
way of alternating between two power domains that does it. 

The fifth and sixth permutations that arose in the "triples semantics" of Section 52 are col
lapsed to 1-..r by the strictness inherent in frons. The first element of the extra two triples in the 
resulting powerdomain element there was ..l...G. Both are indicated by the presence of 1-..r in the 
result above, and in implementation, too, if bottom-avoidance is ignored. 

8. Rote: System Structures 

Functions are supposed to be first class citizens under denotational semantics. Yet the 
language of Section 7 provides no way for a ES to be preserved within a structure. In this sec
tion we present a minor enhancement that provides this ability. 

Thus far, only ground values could be in data structures and any structure (multistructure 
in M). This is true because systems may be used to encode a set of values, and certainly we do 
not want ground values to be nested many layers deep in nondeterminism. (The application rule 
would then be required to look arbitrarily deep in set structure.) 

We escape this problem by specifying an entirely new domain of data structures, the 
''rote", which is little more than a list of denoted values. It, however, is deterministic!!!. The 
only indeterminism in p ER occurs within the function domain [o .... E) - not directly in a rote. 
Infinite streams, therefore, pose no problem for fairness if restricted to rotes and thereby 
excluded from indeterminism. 

8.1. Syntax 

Two additions are made to Section 62. A new primitive function is introduced to con
struct rotes, and a new constant is needed to denote the empty rote. 

K :: kons lnul . 

8.2. Value Domains 

Ide is countable; the map from identifiers used in any finite program fragment to a finite 
prefix of w is often called the "symbol table". Because identifiers are countable, any environ-
ment can be represented as a rote, where the ith identifier is discharged by accessing the ith posi
tion in the rote (treated as a list). Thus, the reuse of the letter p is consistent with its former 
notation; U can be subsumed by R. 

The following is a revision of Section 63 



p E U = [Ide ➔ D] ; 

6 E D=GEBS; 
E E E = PEM(G) EB S ; 
a E S = [D ➔ E] + R ; 

,r E P = [G ➔ PEM(G)]; 
cl> E F = [G ➔ G]; 

'YE G=A+M; 
µ. E M = {nU} + T ; 

T E T =GXM; 
a EA; 

p E R = {nul} + DXR ~ U . 

8.3. Semantic Functions 
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( environments) 

(denoted values) 
(expressed values) 

(systems) 

(programs) 
(functions) 

(ground values) 
( m ultistructures) 
(tuples or twins) 

(atoms) 

(rote) 

This section presents only the structure building primitives revised from Section 65. The 
code for kons, like the code for if there, must be curried to allow arguments in S. The structure 
probing functions have been altered here to handle an argument from either domain of struc
tures: M or R . 

K [cons) 
K [nil) 

K [konsD = (X61. (X~\- ( < 61, 62 IS IR> in S in E))in E )in D . 

K [first)= (X6.(6EG ➔ ({6IGIMITil} inE), 
(6ES ➔ V (6ISIR'1), 
(6=T 0 ➔ ~, 

...LE)))) in D; 

K [rest) = (X6. (6EG ➔ ({ (6IGIMITi2)1n G} in E), 
(6ES ➔ (6ISIRi2 In S In E), 
(6=T 0 ➔ TE, 
...LE))) ) in D ; 

K [null?) = (X6.(6=T0 ➔ ~ , ' 

{ (6EG ➔ (Let µ.=6IGIM in 
(µ. = nil ➔ true, 
(µ. = ...LM ➔ ...LA ' 
false)) ), 

(6ES ➔ (Let p=6ISIR in 
(p = nul ➔ true, 
(p = _LR ➔ ...LA ' 
false))), 

...LA)) In G }In E)) In D ; 

K [nulD = nul in S in D ; 

(as in Section 65) 
(as in Section 65) 

l 
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9. Other Examples 

This section presents additional examples without complete exposition. They are impor
tant, however, because they represent the standard problems addressed by this theory. First a 
stream-merge is presented in terms of frons, and later subsections present f rons, amb, arbit, and 
arbiter, each expressed in terms of the next. 

Code is written in the expanded programming language of Section 6. Evaluation of these 
fragments is trivial, yielding a lambda expression that is not terribly interesting. Application of 
this lambda expression to an argument, however, is interesting, because that argument should 
evaluate to an element in il!M(G) and the naturally extended version of application will be used 
over the ground elements in that set. Natural extension does all the interesting work! 

A proof that Evaluation of each of the codes (with ..L.0 ) below yields the same functions as 
I{ does in Section 6 would establish that each of the four primitives is of equivalent power. 
However, the semantics of Section 6 includes infinite nesting in M and so a transfinite induction 
would be necessary for Sections 92 and 95. Recursion-induction will work, however, for finite 
cases there. Sections 93 and 9.4 are straightforward; only the proof for 93 is given. 

9.1. Merge and other Indeterminate Operators 

Merge is designed to work on streams. It takes as an argument a multistructure (really a 
list) of streams, and interleaves them as long as non-bottom elements occur as the first element 
of each stream. Any stream with a bottom as its first element is ignored as the interleaving con
tinues on the others. 

merge = (lambda listoflists 
( (letrec mer (lambda streams 

(cons < (first(first streams)) 
(mer (frons < (rest(first streams)) (rest streams)> )) >) )) 

( (letrec streamify (lambda lists 
(frons < ((letrec stream (lambda list 

( strictify < ( first list) 
(cons< (first list)(streamify(rest list))>) >) )) 

(first lists)) 
(streamify (rest lists)) >) )) 

Iistoflists)) )) . 

In the preceding code, the function identified as stream turns a list (or nested tuple) into one 
whose successive suffices are strict in the associated prefixes; the name is taken from Landin [13]. 
The function streamify takes a list of lists and returns a shuffled list of the streams derived 
therefrom. Then merge does the interleaving based on the convergence of the successive first 
stream, and indirectly its first element. 

For an application of merge consider 
E [(merge< < 12 3> < 4 (letrec I I)> (letrec J J) > D..1...0 . 

The result of streamif y is the set of permutations of the list containing 
< l,< 2,< 3,..LM> > >, < 4,..LM>, and -1-c. 

Merging then yields the result 
{ < l,< 2,< 3,< 4,..LM> > > >, < l,< 2,< 4,< 3,..LM> > > >, 

< l,< 4,< 2,< 3,..LM> > > >, < 4,< l,< 2,< 3,..LM> > > > } 
in il!M(G) as specified. 

l 
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9.2. Frons in terms of Amb 

(letrec frons (lambda pair 
(amb< (((if (null? (first(rest pair)))) pair) (letrec I I)) 

(amb< (strictify< (first pair) (cons < (first pair)(first(rest pair))>) >) 
(strictify< (first(rest pair)) 

(cons < (first(rest pair)) 
(frons < (first pair)(rest(rest pair)) >) 

> ) >) >) > ) )) . 

9.3. Amb in terms of Arbit 

amb = (lambda pair 
(((if (arbit pair)) (first pair)) (first(rest pair)) )) . 

Proof: 

E [(lambda pair (((if (arbit pair)) (first pair)) (first(rest pair)) )) ]p = 
= (>..6E [ (((if (arbit pair)) (first pair)) 

□ 

(first(rest pair)))) )p[6/pairD in E ; 
= (>..6.( (E [ ((if (arbit pair)) (first pair))Bp[6/pair]IS) 

(6IGIMln21n1 in D) )) in E ; 
= (>..6.(( (E [(if (arbit pair))Jp[6/pair]IS) 

(6IGIMIT!l in D)) 
(6IGIMITi2ITH in D) )) in E ; 

= (>..6.(( Lil E (E ((arbit peir)Dp~/pairD.I~) 
( 'Y A = true -- (>..61.((>..o2.v 61)in E)), 

= (>..6.(( 

( 'Y IA = false -- (>..61.((.>..62.v 62)in E)), 
..l...s )) 

(6IGIM IT• 1 in D)) 
(6IGIMITi2IT!l in D) )) in E; 

Ll..,e {(~IGIM!T1l = 1<; - k, trae In G) , cglG[MjT12jT1l = -4; - -4;, folse In G)} 
( 'Y IA = true ➔ (>..61.((.>..62.v 6~in E)), 
( 'Y IA = false -- (>..61.((.>..62.v 62)in E)), 

..l...s )) 
(6IGIMITH in D)) 
(6IGIMln21n1 in D) )) in E; 

= (>..6.(( {(6IGIMITi 1 = ..!...c -- ..l...c, 6IG IMIT•l), 
(6IGIMITi21n1 = ..l...c -- ..l...c· 6IGIMln21n1), ..l...c} in E) u ..1...E)) in E; 

= (>..6.( {(6IGIMITil, 6IGIMIT!21Ti 1} in E)) in E; 
= V K [amb]; 
= E [~mb]p . 

9.4. Arbit in terms of Arbiter 

arbit = (lambda pair 
(first(rest(first (arbiter <<(first pairs)> < (first(rcst pairs))>> ))) ) . 

9.5. Arbiter in terms of Frons 

(letrec arbiter (lambda pairstreams 
(merge < (tagTRUE (first pairstreams)) (tagFALSE (first(rest pairstreams))) >) )) , 

where each instance of tagBOOL is macro-expanded according to the pattern: 
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tagBOOL = (letrec tagBOOL (lambda stream 
(strictify < (first stream) 

(cons <<(first stream) bool> (tagBOOL (rest stream)) >) >) )) 

for the appropriately consistent boolean value of BOOL and bool. The idea is to attach a 
boolean tag to each element in the stream forming a stream of records that contain the original 
elements and the tag associated with this stream. Every record in the resulting stream of records 
is strict in its contained element. 

10. Conclusions 

Several conclusions arise from this paper that should become principles of indeterminate 
programming languages. A few hints and observations will steer designers around some nasty 
traps; at least one common misconception must be set aside. 

10.1. Lessons for Indeterminate Language Design 

Call-by-name is not a safe evaluation rule. The correct perspective in indeterminate systems 
is environmental transparency, which maintains that an identifier is bound to a unique denoted 
value in any environment. In every semantics herein, power domains are directly excluded from 
environments. (They are indirectly available through application of a bound function, however, 
under the philosophy that application already consumes resources and may introduce indeter
minism, but merely discharging a binding should not and cannot.) 

Environmental transparency prompts the distinction between D and E [4). It is important 
not to confuse their roles. D contains the chunks that are the objects of bindings, and hence is 
the domain of system-function parameters. E contains the sets that represent uncertainty or 
indeterminism, and hence is the domain of system-function results. Since one must maintain the 
integrity of an identifier bound to a 6, one cannot substitute more than once E (and a choice of a 
second, independent 6) for that identifier . Such independent choice occurs under call-by-name 
where E is reevaluated (likely to the same value) and a choice of 6 is extracted (likely a 
different one) at every discharge of the bound identifier. The strategy is safe in deterministic 
programming because there is no choice. 

Under indeterminate programming, however, Lambda calculus's straightforward ~
substitution fails . Syntactic substitution of argument for parameter is trouble. String reduction is 
unsatisfactory; graph reduction is needed. 

The distinction between D and E in tum prompts all the other results herein. The known 
technique of natural extension of application effects the binding of indentifiers to simple values 
in D. Finding a reasonable interpretation for extracting fixed points from [D➔ E) leads to 
definition of the <Ee relation. 

An indeterminate function ,r E [G .... 'liM(G)] stands for a collection off unctions on the underly
ing ground domain G: 

1T = {cf>E [D➔ D] I cf><Ec,r} . 
This perception holds because of the way that indeterminate functions (called systems here) are 
used. In spite of reflexivity of domains, such a system is never the output of a real operating 
system . (We would never agree on the way a function should be displayed on output anyway.) 
The only use for such systems, aside from being passed around as bound values, is for use in 
application and computing fixed points. For both these uses it is sufficient to perceive ir as a 
composition of cf>'s. 

Indeterminate functions should be excluded from indeterminate data structures. To allow sys
tems within the structures of Sections 5 and 6 introduces an unnecessary implementation cost 
from breadth-first or depth-first choice among function objects, choice which propogates through 
the application of these objects or corrupts the interpretation of taking fixed points. (This is 
required by the definition of join on the function domain [D➔ E); it distributes through lambda
abstraction.) Structures are supposed to be cheap! The additional cost is unnecessary because the 
indeterminacy of the entire data structure can be subsumed into a single function, with a 

l 
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pleasing reduction in the conceptual baggage that a programmer must carry; programmers 
already deal with programs as simple values. They would understand indeterminate choice from 
a set of ground values much more easily than they would accept indeterminate choice of pro
grams. ("Choose any of these square-root routines and .... ") 

Section 8 presents rotes, a second kind of data structure that allows sy~tems-functions in 
but keeps indeterminism out. This type distinction is easier to implement; it has been used in 
deterministic programming practice for some time (e.g. in LISP). The new development is the 
earlier multiset structure that allows indeterminate content, P (G ), but prohibits programs. 

10.2. Open Issues 

The techniques used here are quite general. Within the original constraints they provide a 
facile tool for designing semantics of powerful programming languages for synchronous and 
asynchronous multiprocessors. With streams representating communication pipes, they extend 
nicely to communicating processes. 

There are, nevertheless, two constraints and a loose end. First, and of lesser practical 
significance, is the fact that the languages here are not strongly typed. It is possible to compose 
a function in S that returns a system, a, for some arguments and returns an element from the 
power domain, PEM(G), for others. The application axiom can call for the join of such incompa
tible results, and this has not been hendled well here. The introduction of TE through use of the 
EB domain sum is less than satisfactory. A typing system is needed for this kind of domain struc
ture that can be implemented as part of the language. 

Second, and very important, is reconciliation of fairness with the semantics here. A direc
tion is indicated by these results. Section 8 shows how to specify determinate data structures of 
a very general sort, called rotes; these data structures may contain indeterminate functions (sys
tems), and may themselves be of infinite length. The original data structure, a multiset, is 
allowed to participate in indeterminate "contention" within a power domain. As defined here it, 
too, may be infinite. 

Infinite length of multisets (as of streams [13D is a luxury that will never be implemented 
in practice, because fairness within a powerdomain clement becomes unwieldy over infinite 
ground elements (and even impossible with bounded fairness). It will turn out, however, that 
only finite data structures are needed to model contending processes, that multisets will be per
fectly useful even if they must be finite. With that restriction, every ground element becomes 
finite and the impressed power domain is much simplified. With ground elements finite, the 
problems of specifying and implementing fairness suddenly become tractable. 

Bottom-avoidance, as desired in Section 7 2, also might be impossible unless the ground 
domain is restricted to finite values. The example of that section shows that bottom-avoidance 
(of .Lr there) is nearly possible after using frons 3, which is an approximation to f ons sufficiently 
large to detect that each permutation is finite (that µ.=nil). That is, the fact that the recursive 
expression generates a set of finite ground values is there necessary merely to argue bottom
avoidance. 

Finally, one should note the inadequacies of the two power domains used here, and recog
nize that yet another formulation for the power domain, itself, might improve these results. The 
Plotkin power domain, ~M(G), seems inadequate because Conjecture 3 depends on an existen
tial argument. The Smyth-upside-down domain provides clear, intuitive, and constructive proofs, 
but the downward closure of all its elements distorts the results that we desire. In both cases we 
can wish for more explicit "bottom avoidance" in denotational semantics than is now provided 
operationally [6). 
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