
83-60-3 

LirllUEASlTY 

5ClErlCE 

VNS - A Virtual Network Simulator 

Walter F. Oomka 

Michael J. Freiling 

Department of Computer Science 
Oregon State University 

Cnrvallis, Oregon 97331 



VNS -- A Virtual Network Simulator 

by 

Walter F. Domka and Michael J. Freiling 

Computer Science Department 
Oregon State University 

ABSTRACT 

*A software system to study network algorithms was implemented on 
UNIX. Each part of a network algorithm can be written as a single C 
program which becomes a virtual node in the network. During a 
sim**ation all virtualized nodes run as separate processes on a single 
PDP 11/44. Inter-node communication is carried out with procedures 
local to each node, to send and receive inter-node messages to and 
from a message queuing process. Communication between nodes is 
effected by use of virtual links which are specified in the simulated 
network's topology. The links are implemented on inter-process pipes 
between the message queuing process and the node processes. Run-time 
support routines include communication facilities and a mechanism for 
recording communication histories. 

* UNIX is a Trademark of Bell Laboratories. 
** PDP is a Trademark of Digital Equipment Corporation. 

l 



INTRODUCTION: 

VNS -- A Virtual Network Simulator 

by 

Walter F. Domka and Michael J. Freiling 

Computer Science Department 
Oregon State University 

Efficient design and implementation of distributed computer systems 
require a means of ascertaining the correctness of software which governs 
interaction between computers in the network. Testing such software requires 
the use of a special purpose simulator program, an existing computer network or 
a testbed. The concept behind VNS is to allow network algorithms to be rapidly 
prototyped in a normal program development environment, without requiring 
special simulator languages or hardware support. 

VNS provides a user with a core of support programs which perform the 
necessary pre-simulation network specification, post-simulation analysis of the 
inter-node message transactions, compilation of the C programs which make up 
the nodes of the network, and a means of checking the progress of a simulation 
while it is executing. Also included in VNS are two programs and several func­
tions which are transparent to the user. The first transparent program, called 
the Simulation Driver Program, supervises execution of a simulation by creating 
node processes, initializing node processes, establishing the pipes used in a 
simulation, starting a simulation, and terminating a simulation. The second 
transparent program, called the Message Queuing Process, provides run-time 
support for communication between node processes by running as a separate 
process in the UNIX environment. During a simulation the Message Queuing 
Process queues inter-node messages and governs use of the inter-process pipes. 
The transparent functions, called utilities, interface the network nodes' prog-
rams with the two transparent programs. · 

Since the support programs, transparent programs and the utilities are all 
composed of executable code, VNS does not expend a great amount of "system 
overhead" in carrying out a simulation. The duration of a simulation is deter­
mined by network size, number of other users on the UNIX system, and compu­
tations unique to the simulation at hand. 

SYSTEM ARCHITECTURE: 

VNS consists of seven programs and functions: Specifications Program, 
Utilities, Compilation Program, Simulation Driver Program, Message Queuing 
Process, Checkup Program, and a Report Program. Each of these components is 
described below. 

SPECIFICATIONS PROGRAM: 

The Specifications Program is an interactive program with which the user 
selects specifications for the network. These specifications are then saved by 
the Specifications Program for use by other components of VNS. Specifications 
may be reused or altered for subsequent simulations. Specifications which are 
used in the present version of VNS are: 



-2 -

1. Number of nodes in the network, 
2. Topology of the network, 
3. Node code file names, and 
4. Number of inter-node messages. 

The number of nodes allowed in a network is limited only by the number of 
processes which may be present in the UNIX operating system. A tunable para­
meter is used to set the number of nodes allowed in the simulator. Forty-five 
nodes are allowed in the present version. 

Nodes in a network are identified by numbering them in the increasing 
sequence; 0, 1, 2, ••• , N-1 where N is the total number of nodes. Assignment 
of numbers is arbitrary but after an assignment is made it may not be changed 
during preparation for a simulation. The node numbering is binding due to the 
use of the numbers for node identification by VNS during a simulation. 

A network's topology is set during entry of the specifications. Topol­
ogies are described in terms of the nodes which are connected by links. Since 
each link is bidirectional, a link from node i to node j implies that node j 
may transmit messages to node i. Once a topology has been selected, it is 
saved as an adjacency matrix which becomes part of the network specifications. 
The . adjacency matrix is used by the Message Queuing Process to determine if 
transmission of an inter-node message is valid. A message from node i to node 
j is valid only if there exists a virtual link between the nodes as described 
during entry of the network specifications • The Specifications Program allows 
selection of standard topologies such as ring, star or complete, and more 
general topologies may be established by specifying individual links or by 
altering one of the standard topologies. 

Programs which run at the nodes are called node code. Node code file 
names are used by the Compilation Program to compile the node code programs and 
store the resulting core images on files which have predetermined names. Pre­
determined names are used to allow the Simulation Driver Program to locate the 
core images when starting a simulation. 

The number of inter-node messages transmitted during a simulation is used 
to control the duration of the simulation. Each inter-node message delivered 
by the Message Queuing Process is counted until the number of messages deliver­
ed equals the limit specified at invocation. 

UTILITIES: 

Utilities 
simulation and 
interface node 
driver. 

are functions which provide special services to a node during a 
are called from within the node's program. These functions 
programs with the message queuing program and the simulation 

Utilities are included with node code by using the C compiler's pre­
processor. This relieves the user of tedious details involving the utilities' 
source code which must be present with the node code at compilation time. 

Currently there are two utilities available: a communication utility and 
a random number generator. The communication utility is used by every node as 
it provides the mechanism for inter-node communication. The random number 
utility generates ranged, random integer values in the range O - ((2Al5)-l). 

* Inter-node messages sent between nodes which are not connected by a link 
must be handled by routing algorithms implemented in the node code. 



-3 -

Additional utilities which perform other specialized tasks may be written 
by a user. These utilities are easily incorporated into node code and do not 
require any modification to other VNS components. 

COMPILATION PROGRAM: 

This program uses the node code file names which were entered by the user 
as part of the specifications to compile the node code. If an error occurs 
during compilation of a node's code, the user is notified and given an oppor­
tunity to obtain a listing of the node code with error messages. 

SIMULATION DRIVER PROGRAM: 

The Simulation Driver Program is responsible for creating and initializing 
a separate process within the UNIX operating system for each node and the . 
Message Queuing Process. After creation and initialization the Simulation 
Driver Program broadcasts a signal to each node process and the Message Queuing 
Process to commence the simulation. Three inter-process pipes are also estab­
lished by the Simulation Driver Program for use by the node processes and the 
Message Queuing Process. These pipes are used by the processes to transmit 
inter-node messages via the Message Queuing Process. Pipes are limited to 4096 
bytes in size, which in turn limits the maximum message size. Pipe size is 
also tunable by changing a defined constant within the UNIX operating system 
source code. 

Each of the three pipes is used for a separate purpose. The first pipe, 
RIN, is used to send requests from nodes to the Message Queuing Process. The 
second pipe, MIN, is used to send inter-node messages from nodes to the Message 
Queuing Process. The third pipe, MOUT, is used to send inter-node messages 
from the Message Queuing Process to their destination nodes. Organization of 
the pipes and processes is diagramed in Figure 1. 

Figure 1. 

,---------------------Message 
RIN pipe Queuing MOUT pipe 

------------------~'Process1---------

Node 
0 

Node 
1 

Node 
2 

Node 
3 

Node 
N 

After the Simulation Driver Program initiates a simulation it waits for 
the Message Queuing Process to terminate, signaling completion of the simula­
tion. When the simulation is completed the Simulation Driver Program removes 
unneeded temporary files. 



-4 -

MESSAGE QUEUING PROCESS: 

The Message Queuing Process performs four functions during a simulation: 
1) queuing of messages which have been transmitted but have not been 
"delivered" to the receiver node, 2) acting as a monitor to synchronize use of 
the MIN and MOUT pipes by the node processes, 3) controlling the duration of a 
simulation, and 4) trapping each inter-node message and creating a file of the 
same for post-simulation analysis. This file of messages is called a Network 
History File. 

An inter-node message transmission is performed by the transmitting node, 
the Message Queuing Process and the receiver node as follows. 

1. When the transmitting node code calls its communication utility to 
transmit, the ut .ility sends a request-to-transmit to the Message 
Queuing Process via the RIN pipe (Figure 2, step 1). The 
transmitting node is then blocked until the request is processed by 
the Message Queuing Process, thus the RIN pipe serves as a queue of 
requests for action to the Message Queuing Process. 

2. The Message Queuing Process signals the transmitting node 
(Figure 2, step 2) when the request-to-transmit has been 
acknowledged. 

3~ The transmitting node locks the MIN pipe and writes the message into 
the MIN pipe. When the lock is removed by the transmitting node, the 
Message Queuing Process reads the message from the pipe 

4. After reading the message, the Message Queuing Process writes it 
onto the Network History File which is a random access file. A 
pointer to the message's location in the file is saved by the 
Message Queuing Process and placed on a queue of 
messages destined for the receiver node (Figure 2, step 4). 

5. When the receiver node code calls its communication utility to obtain 
the next message a request-to-receive is sent to the Message Queuing 
Process by the communication utility via the RIN pipe 
(Figure 3, step 1). The receiver node is then blocked. 

6. After processing the request-to-receive, the Message Queuing Process 
refers to the receiver's message queue and uses the pointer to 
locate the message. The Message Queuing Process reads the message 

7. The Message Queuing Process places the message into the MOUT pipe and 
then signals the receiver node to begin reading the message 
(Figure 3, step 4). The Message Queuing Process is then blocked. 

8. When the receiver node completes reading the message, a signal is 
sent to the Message Queuing Process by the receiver node (Figure 3, 
step 5). 

·I 



(1) 

Request to transmit 

RIN pipe 

Message (3) 

MIN pipe 

-5 -

Figure 2. 

Message 
Queuing 
Process 

signal (2) 

(4) 
Message 

MOUT pipe 
access 
file 

~---------------1Node 
Process 

(1) 
Request to receive 

RIN pipe 

MIN pipe 

Figure 3. 

Message 
Queuing 
Process 

Signals (4) (5) 

I 

( 2) 
Messaget-----~ Random 

access 
MOUT pipe file 

IM•L···I 

Node 
1-------------------lProcess 

Pipes are in-memory buffers which the Message Queuing Process and node 
process have read/write access to. In order to guarantee safe and fair use of 
the pipes, the Message Queuing Process allows only one node to use either the 
MIN or MOUT pipe at any given time. Unsynchronized access to the pipes is 
prevented by the Message Queuing Process through use of mutually exclusive 
locks and inter-process signals. Node processes wait their turn to use a pipe 
until receiving a signal from the Message Queuing Process, after which the node 
process locks the pipe. The recipient process is awaiting the signal, so it 
becomes an "acknowledged/proceed" message. 

Mutually exclusive locking of a pipe is accomplished with the UNIX system 
call, "link", by linking a temporary file to a unique file name. A signal is a 
standard UNIX inter-process communication feature which allows one process to 
interrupt another. 

Requests for messages 
receipt of them. When more 
are enqueued for the nodes, 
in order to decide which 

are noted by the message queuing process upon 
than one node has requested a message and messages 
the Message Queuing Process must act as an arbiter 
node will be serviced. The algorithm used by the 

l 



-6 -

Message Queuing Process is a round-robin in which each node is given its turn. 
The round-robin algorithm is designed to be fair and in the worst case a node 
would have to wait N-1 turns before receiving its message. Use of a round­
robin also produces the most even distribution of processor time among message 
receiving nodes. 

Ideally, the node processes and the Message Queuing Process would alter­
nate in being scheduled to run by the operating system. Since there is conten­
tion between processes for central processor time, the order in which the simu­
lation's processes are scheduled is non-deterministic. Use of signals and 
locks by the processes prevents scheduling from affecting the integrity of 
messages. Synchronization overhead does increase the elapsed time of a simu­
lation, but does not necessitate any modification of the UNIX process schedu­
ling algorithm. This permits VNS to run on a standard UNIX, in the presence of 
other users. 

CHECKUP PROGRAM: 

A simulation may require considerable elapsed time, particularly if 
several users are on the UNIX system while a simulation is running. UNIX 
allows programs to be run in the background or completely detached from an 
active user. Background jobs permit the user to do other useful work while a 
simulation is in progress, but the user may not log off of UNIX. Detached jobs 
allow the user to log off while a simulation runs. Simulations which run as 
background or detached jobs do not give the user any means of determining how 
the simulation is progressing. The Checkup Program allows a user to check on 
the progress of a simulation. 

The Checkup Program communicates with the Message Queuing Process to 
obtain the number of inter-node messages yet to be transmitted. Communication 
between the Message Queuing Process and the Checkup Program is effected by use 
of a temporary file which is created by the Message Queuing Process during 
initialization. The file contains the process identification number of the 
Message Queuing Process which is read by the Checkup Program. The Checkup 
Program writes its own process identification number onto the file before send­
ing a signal to the Message Queuing Process using the Message Queuing Process's 
process identification number. 

The Message Queuing Process contains a signal catching function which is 
executed upon receipt of the signal from the Checkup Program. This function 
reads the Checkup Program's process identification number from the file and 
then rewrites the file with the Message Queuing Process's process identifica­
tion number and the number of inter-node messages left. The Checkup Program is 
then signaled. Upon receipt of the signal, the Checkup Program reads the file 
and prints the number of messages left to be transmitted on the user's 
terminal. 

REPORT PROGRAM: 

At the conclusion of a simulation the Network History File contains the 
inter-node messages which were transmitted during the simulation. Error mess­
ages generated in the Message Queuing Process or in any of the node processes 
are also present in the Network History File. Transactions between the node 
processes and the Message Queuing Process are stored in the file in the 
sequence they occurred. 

The report program produces a list of the transactions contained in the 
Network History File. Each inter-node message transmitted from a node to the 

l 



Message 
receiver 
message 
present, 

-7 -

Queuing Process is noted by the transmitting node's number, the 
node's number and the number of bytes in the message. A request for a 
is noted by the requesting node's number. If an error message is 

it is listed with the node number where the error occurred along with 
an error number. 

Totals of the number of messages transmitted, requests for messages and 
errors are accumulated by the report program. These totals are printed in a 
summary at the end of the listing. 

Contents of the inter-node messages are not included in the report because 
of the large variety of message formats that might be used in different simu­
lations. The UNIX operating system has a file dumping utility which may be 
used to view the contents of messages in the Network History File. 

Information which is pertinent to a simulation may also be output by a 
node process to a file. A user may exploit this technique to trap information 
which is not saved in the Network History File. 

LEVELS OF SIMULATION: 

Topologies which require specialized components, for instance a complete 
topology implemented via a bus, may be simulated by including network nodes for 
the specialized components. A bus topology would be implemented with a star 
where the central node contained program code to simulate the arbitration and 
broadcast capabilities of the bus under consideration. 

VNS permits simulation of networks at several levels of detail. At the 
highest level a bus architecture appears as a complete network . (Figure 4.1). 
The existence of the bus itself can be modeled via a star as mentioned above, 
(Figure 4.2) and another level of detail can be reached where the bus inter­
faces themselves from part of the network (Figure 4.3). 

Figure 4.1 Figure 4.2 Figure 4.3 

node processes 



-8 -

EXAMPLE SIMULATION: 

A small simulation is given in this section to demonstrate how a simu­
lation is carried out using VNS. The network to be simulated is a star network 
of seven nodes and node 6 is the center of the star. The task to be simulated 
is to send a message from each node on the periphery to every other peripheral 
node. When each peripheral node has received a message from all other peri­
pheral nodes it will terminate processing of messages. The task of the center 
node is to forward each message received to its destination node. 

The message transmitted by each node will consist of two fields, a sixteen 
bit integer value which identifies the destination node and a sixteen bit 
integer value which identifies the transmitting node (Figure 5). This small 
message format is used for rapid prototyping only, a more elaborate scheme 
could easily be implemented which would use more fields and have headers and 
trailers to form a packet. 

Figure 5. 

Inter-node Message Format: 

0 

Destination 
(16 bits) 

15 0 

Transmitter 
(16 bits) 

15 

Synthesization of the node code programs involves writing the following 
two C programs and editing them into files which are named center.c and 
peripheral.c for the center and peripheral nodes respectively. 

**************************************************************************** 
# define FOREVER 1 
char buffer [4]; /* Message buffer*/ 
int to; 
{ft include "cm.gvar" /* Include data structures used by communication*/ 

main () { 
nodeinit (); 

/* Main program for center node*/ 

while (FOREVER) { 
receive(); 
send(); 
} 

} 

ft include "cm. c 11 

receive () { 
cm(l, 0, buffer, 0); 
to= _ctoi(buffer); 
} 

send () { 
cm(2, to, buffer, 4); 
} 

/* Loop continuously,*/ 
/* receive a message and*/ 
/* send it to its destination*/ 

/* Include the communication utility*/ 

/* Request next message*/ 
/* Unpack destination node id*/ 

/* Send message to destination*/ 

l 



-9 -

************************************************************************ 
{F define NODES 7 
# define CENTER 6 
{F define TRUE 1 
{F define FALSE 0 
char buffer [4]; 
int LOCAL; 

I* Message buffer*/ 
I* Local node id*/ 

int received [NODES-1]; /* Boolean array to keep track of received messages*/ 

{F include 11cm.gvar" /* Include data structures for communication util. */ 

main () { /* Main program for peripheral nodes*/ 
int i, j; 
nodeinit(); /* Initialize from simulation driver*/ 
initialize(); /* Initialize local data structures*/ 
for (i=O; i < NODES; ++i) { /* For every other peripheral node,*/ 

if ((i I= LOCAL) && (i I= CENTER)) { /* form and send message.*/ 
formmessage(i); 
send(i); 
} 

while ( l(i = receive())) /* Receive messages from other nodes */ 

} 

{F include II cm. c 11 /* Include communication utility*/ 

initialize () { 
int i; 
LOCAL= _ln(); /* Obtain 
for (i=O; i < NODES; ++i) 

received [i] = FALSE; 
received [LOCAL] = TRUE; 
received [CENTER] = TRUE; 
} 

formmessage ( i) 
int i; 
{ 

local node id */ 
/* Set received to false except*/ 
/* for center and local node*/ 

_itoc(i, &buffer[O]); /* Pack destination node id*/ 
_itoc(LOCAL, &buffer[2]); /* and local node id into message */ 

} 

send (i) 
int i; 
{ 
cm(2, CENTER, buffer, 4); 

} 
/* Request to send the message*/ 



-10-

receive() { 

/* Request next message*/ 
/* Unpack node id of sender*/ 
/*Checkoff sender*/ 

int from, finished, i; 
cm(l, 0, buffer, O); 
from= _ctoi(&buffer[2]); 
received [from] = TRUE; 
finished= TRUE; /* Find out if all nodes have*/ 

++i) {/*been heard from*/ for (i=O; i < NODES; 
if(! received[i]) 
} 

return(finished); 
} 

finished= FALSE; 

************************************************************************ 

After debugging 
specifications. The 
specifications. 

the programs, the user is ready to select the network 
following terminal session would establish the necessary 

************************************************************************ 
% specs 
Welcome to the Network Simulator. 

This program is the initial step in using the 
network simulation package on the PDP 11. 

You may set up and/or use a network 
simulation spec1fication file by entering one 
of these modes: 

new 
old 
change 

new 

A network may contain 2 - 45 nodes . 
How many nodes are needed in your network? 

7 

There will be 7 nodes in the network. 
They will be numbered O - 6 . 

Please enter the topology specifications. 
The topologies which are available are: 

complete 
ring 
star 
general 



-11-

What is the topology of your network? 

star 

What 1s the center node of the star? 

6 

The topology will be a star network of 7 nodes 
and node 6 will be the center. 

This is the adjacency matrix which represents the topology of your network. 

From 
0 
1 
2 
3 
4 
5 
6 

To 
0123456 
0000001 
0000001 
0000001 
0000001 
0000001 
0000001 
1111110 

The adjacency matrix has been translated 
into a more readable form. 

The links in your network are: 

From 
0 
1 
2 
3 
4 
5 
6 

To 
6' 
6' 
6, 
6, 
6' 
6' 
1, 2, 3, 4, 5 

The topology specifications have been completed. 
Are you satisfied with the current 
specifications? Enter "yes" or "no". 

yes 

Please enter the node code specifications. 

Please use a carriage return on a new line to 
terminate input of the node code specifications. 

center.c 6 
peripheral.c 0 1 2 3 4 5 

The node code file for each node is: 



-12-

At node 0, peripheral. c 
At node 1' peripheral.c 
At node 2, peripheral.c 
At node 3, peripheral.c 
At node 4, peripheral.c 
At node 5, peripheral.c 
At node 6' center.c 

The node code specifications have been completed. 
Are your satisfied with the current 
specifications? Enter "yes" or "no". 

yes 

How many inter-node messages 
are to be sent during the simulation? 

60 

There will be 60 messages sent. 

The number of inter-node messages specifications have been completed. 
Are you satisfied with the current 
specifications? Enter "yes" or "no". 

yes 
************************************************************************ 

Compilation of the nodes' programs is accomplished with the Compilation 
Program as shown below. 

************************************************************************ 
% comp 
The node code for node 0 has been compiled. 
The node code for node 1 has been compiled. 
The node code for node 2 has been compiled. 
The node code for node 3 has been compiled. 
The node code for node 4 has been compiled. 
The node code for node 5 has been compiled. 
The node code for node 6 has been compiled. 
************************************************************************ 

At 
example 
Checkup 

this point the user is ready to execute the simulation. The following 
shows how the simulation is executed as a background job, and how the 

Program is utilized to determine how the simulation is progressing. 



-13-

************************************************************************ 
% sim > simout& 
% checkup 
58 messages to go . 

Again? 
yes 
57 messages to go. 

Again? 
no 
************************************************************************ 

A portion of the report produced by the Report Program is given below. 

************************************************************************* 
% netprt 

The network contains 7 nodes. 
The nodes are numbered from 0 to 6. 
The network traffic during the simulation 
was 60 inter-node messages. 

Transmit 8 bytes from node 0 to node 6 
Transmit 8 bytes from node 0 to node 6 
Transmit 8 bytes from node 0 to node 6 
Node 6 requested a message 
Transmit 8 bytes from node 1 to node 6 
Transmit 8 bytes from node 1 to node 6 

Transmit 8 bytes from node 6 to node 0 
Transmit 8 bytes from node 6 to node 1 
Transmit 8 bytes from node 6 to node 2 
Node 3 requested a message 

Network simulation errors= 0 
Messages transmitted= 60 
Messages requested= 61 
Idle nodes= 0 
************************************************-!<************************* 

l 



-14-

SUMMARY: 

A software system has been presented which promotes study of networks. 
The salient features of this system are: 

1. Rapid prototyping of network algorithms is possible. 
2. Network algorithms are developed and tested in a normal program 

development environment. 
3. The system does not require the overhead effort of more traditional 

simulation languages. 
4. A core of support utilities are available. Other, more specialized 

utilities may be added as needed. 




