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Abstract 

In this paper we will describe two known strategies for 
static processors allocation in an n-cube multiprocessor, 
namely the buddy system strategy and the gray code 
strategy and then propose a new strategy that outperforms 
the first by (n-k+ 1) and the second by (n-k+ 1)/2 in cube 
recogmt10n. Furthermore, our strategy is suitable for static 
as well as dynamic processors allocation and it results in a 
less system fragmentation, more subcubes recognition, and 
higher fa ult tolerance. 

We also introduce an extension to our strategy that will 
enhance the performance drastically so that our algorithm 
together with the extension will outperform the buddy 
system by a factor of [k(n-k)+ 1] and the gray strategy by 
[k(n-k)+l]/2 in cube recognition. The implementation 
details of these algorithms are also described. 



I. Introduction 

During the the last five years, a movement from the SIMD (Single 
Instruction Multiple Data) to the general purpose MIMD (Multiple 
Instruction Multiple Data) machines has taken place, and the latter is 
drawing a lot of attention as a numerous research has been undertaken 
[1-12]. One common MIMD machine is the hypercube [2-12] which 1s 
becoming very popular for its attractive features to be addressed later. 

The hypercube is a network of a loosely coupled processors connected m 
such a way that two processors are linked if and only if their binary 
representation differ in exactly one bit pos1t10n. i.e the indices of 
neighboring processors differ by a power of 2. 

A n-dimensional hypercube , denoted as n-cube or Qn, is a hypercube 

with 2n processors and is defined recursively as: A 0-dimensional 
hypercube, Q0, is a _single processor , and an n-dimensional hypercube is two 

(n-1)-dimensional hypercubes with links between corresponding 
processors in each of them. Fig. 1 and 2 show a Q3, and a Qp hypercubes 

respectively. 
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Fig. 2, A 4-dimensfonal hypercube, o4 

Some of the hypercube characterizations are : 

1. Each processor has a local memory and no shared memory is used. 
2. Processors communicate by sending messages direct or through some 

intermediate processors. 
3. Synchronization occurs by the availability of data and messages. 

Some attractive features of the hypercube are: 

1. Regularity and high potential for the parallel execution of various 
algorithms. 

2. Its architecture allows high level of concurrency and efficiency. 
3. The number of links among processors is small allowing us to have a 

very large hypercube with a reasonable number of links. At present 
machines with up to 16384 processors are available [2]. 

Processors allocation iri a hypercube is a two steps process: 

1. Determination of the size of the incoming task in terms of the number 
of processors needed in order to accommodate it. 

2. Recognizing and locating a subcube that can accommodate the 
incoming task. 
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The first step is investigated in [3], · and some algorithms for step 2 are 
given in [ 4]. In this paper more efficient algorithms for processor allocation 
are described. 

The paper is organized as follows. Section II introduces the necessary 
notations. In section III, we will describe two existing allocation strategies 
namely the buddy system, and the gray code, [ 4 ], for the n-cube 
multiprocessor; then we will propose a new strategy that outperforms both 
of the above. Our strategy is suitable for static as well as dynamic 
processors allocation and it results in a less system fragmentation, higher 
subcubes recognition and higher fault tolerance. In section IV, we will 
explain an efficient way to implement our algorithm. The paper concludes 
with section V. 

II. Notations: 

Below are some operations that we will be using in our next definitions. 

1) A ex\~ means for each element ak_l'ak_2, ... ,a~,a~_1, ••• ,a0 in A, insert 0< in the 

j)th position as '1c-i•3k-2, ... ,a~,0<,a~_1, ... ,a0 

Example 1: 

If A = { 00,01,11,10 } then we have 

A l\l = { 010,011,111,110 } 

A l\2 = { 100,101,111,110 } 

* 2) A means reverse the elements of A. 

Example 2: 

* If A= { 00,01,11,10 } then A = { 10,11,01,00 } 

3) Bn(m) is the binary representation of an integer m with n bits. 

- 3 -



Example 3: 

B/1) = 0001, Bil)= 001 

4) For a set A, IAI is the number of elements in A and is called the 
cardinality of A. 

Example 4: 

The cardinality of a set A= {al''½•····,an} 1s IAI = n 

Definition: 

The product of any two graphs G 1 = (V 1,E1) and G2 = (V2,E2), denoted by 

Gp= Gl X G2, is the graph Gp= (VP,EP), where VP= vl X v2 and any two 

nodes u = (ul'u 2) and v = (v l'v 2) are adjacent if and only if 

( u 1 = v 1 & u2 is adjacent to v2 in G2 ) or 

( u2 = v2 & u 1 is adjacent to v 1 in G 1 ) 

Definition: 

An N-Cube Q0 is defined recursively as 

a) C2o is a trivial graph with one node. 

b) Q0 = K 2 x Q0 _ 1 n > 0 

The address of the subcube Q2 which consists of the processors {0000, 

0011, 0110, 0111 } in a 4-cube is written as 0XlX. i.e. Xis the don't care 
term and it can take values 0 or 1. 
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III. Processor Allocation Strategies 

In an n-cube multiprocessor, processors must be allocated to incoming 
tasks in a way that will maximize the processors utilization and minimize 
the system fragmentation. In order to achieve this goal, it is necessary to 
detect the availability of a subcube of required size and merge the released 
small cubes to form a larger ones. 

First, we will briefly describe the known methods [ 4], the buddy strategy 
and the gray code strategy. Then we will propose a new strategy and show 
that it out performs both of these by a high factor. Next, an extension to our 
strategy that will enhance the performance drastically at a cost of a little 
overhead is introduced. It is shown that our strategy results in a less 
fragmented system and recognizes more subcubes. 

A. The Buddy Strategy : 

The buddy strategy can be described using a binary tree. An example is 
shown for the 4-cube in Fig . 3, where the external nodes are the processors. 
The nodes in level i are associated with subcubes of dimension n-i and a 
node is available if all of its offsprings are available. When an incoming 
task requests a cube of certain size, say Qk, the level n-k is searched from 

left to right for an internal node which is free. When a free internal node is 
found all the descendant nodes are allocated for this task. In this method 
2 n allocation bits are needed to keep track of which node is available; a 
processor with its bit set to O (1) is available (not available) . 
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... .. .......... . ... . .. .. .... . .. ...... . ......... . . . .... . ..... Level 0 

• • • • • • • • • •· • • • • • • • • • • • •.•••••••Level 1 

......... . ... . .. Level 2 

... . •·••Level 3 

.. . .. Level 4 
0000 0001 0010 0011 0100 0101 0110 011110001001101010111100110111101111 

Fig. 3, Processor allocation using the buddy strategy 

This method was studied in [ 4] and implemented m the NCUBE/six 
multiprocessor [5]. The algorithm is given below . 

Algorithm 1 (Buddy System Strategy): 

Processor Allocation : 

Step 1. Set k to the dimension of a subcube required to accommodate the 
request. 

step 2. Determine the least integer 0<, 0 ~ 0< ::;; 2n-k+l_l such that all the ,!3th 

allocation bits, 0<2k ~ ,t3 ~ ( 0<+ 1 )2k-1, are O's. Set all these 
bits to l's. 

step3. Allocate processors with addresses B ( ,t3) to the request, where n , 

0<2k ~ ,t3 ~ (0<+1)2k-1. 

Processor Relinquishment : 

Reset every pth allocation bit to 0, where Bn(p) is used in the subcube 

released. 

Example 5: 

An example of the static processor allocation using the buddy system 
strategy in a 4-cube multiprocessor is given in Fig . 4. 
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Incoming Request 
Allocated processors 

No. Size 

I 1 Oo 0000 

'2 03 1 000, 1 001 , 1 01 0, 1011 
11 00, 11 01 , 111 0, 111 .1 

13 02 0100,0101,0110,0111 

14 01 0010,0011 

's oo 0001 

Fig. 4, Processor allocation using budd~ s~stem 

This strategy recognizes only 2n-k Qks within the n-cube multiprocessor. 

Compared to other ·methods, which we explain later, the buddy strategy 
underutilizes processors in the n-cube multiprocessor. 

B. The GC Strategy : 

This strategy can also be explained using a binary tree. An example is 
shown for 4-cube m Fig. 5, where the edges of the tree are labeled with 
gray code, which is explained below, and the processors are the external 
nodes. 

· · ·· · ·· ·· ·· ·· ·· ···· ···· · · ·· · · · · · · · · · · · · · · · ·· ·· ·· ·· ·· ·· ······ ·Level 0 

... . . . .. . ...... . .. . ....... . . ... Level 1 

· · ···· ·· •·· · · ···Level 2 

· · · ···· ·-Level 3 

... .. Level 4 
0000 0001 0011 0010 0110 0111 010101001100 1101 111111101010 1011 1001 1000 

Fig. 5, Processor allocation using the gray strategy 

- 7 -



Like the buddy strategy each node in level i is associated with a cube of 
dimension n-i and 2n allocation bits are needed to keep track of the 
availability of the processors. A node is available if all of its offsprings are 
available where a processor with its bit set to 0(1) indicates the availability 
(unavailability) of that processor. When an incoming task requests a cube, 
say Qk, level n-k+ 1 is searched from left to right for two adjacent Qk12 

cu bes and these two combined constitute a Qk, instead of searching for a Qk 

cube in level n-k, as in the buddy strategy. Because of this reason the 
number of Qk cubes recognized by the gray code strategy is twice that of 

buddy system strategy. This method was studied in [4]. 

Before describing the algorithms some definitions are stated first. 

Definition : 

Let L = { g1, g2, •••.•• , gn} be a set. The partial rank ri of gi is the rank of gi 

in the subset {g1 ,g 2 , ... ,g) when rearranged these elements in ascending 

order. 

Example 6: 

= {3} ==> r = 1 1 

{g1 ,g2} = {3,1} ==> r2 = 1 

{g1,g2,g3} = {3,1,2} => r3 = 2 

Definition: 

A gray code Gn with parameters {g1,g2, ... ,~} where {g1,g2, ... ,~} is any 

permutation of { 1,2, ... ,n} is defined recursively as 

Gl = {0,1} 
G = {G()\rk (G* )l~k} k k-1• k-1 

where n is the partial rank of gk. 
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Example 7: 

If {g1,g2,g3} = {2,3,l} then we have {r1,r2,r3} = {L,2,1}. Thus 

Gl = {0,1} 

G2 = {00, 01, 11, IO} 

G3 = {000, 010, 110, 100, 101, Ill, 011, 001} 

If gi = i then we have Binary Reflected Gray Code (BRGC), the most 

frequently used case. 

Example 8: 

If {g1,g2,g3} = {1,2,3} then {r1,r2,r3} = {1,2,3}. 

Gl = {0,1} 

G2 = {00, 01, 11, IO} 

G3 = {000, 001, 011, 010, 110, 111, 101, 100} 

The Relation between GC and Binary: 

To translate the gray code to its corresponding binary representation and 
vice versa the formula below is used [13]. 

g. = b. xor b. 1 i :;t: n 
1 1 l+ 

~ =bn 

Example 9: 

The gray code that corresponds to the binary number 101 is 111. 

Algorithm 2 (Gray Code Strategy): 

Processor Allocation : 

step 1. Set k to the dimension of a subcube required to accommodate the 
request. 
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step 2. Determine the least integer ex, 0 ~ ex ~ 2n-k+ 1-1, such that all 
( ,!3 mod 2n)th allocation bits are O's, where ex2k-1 ~ ,!3 ~ ( ex+2)2k-1 - 1 

Set all these bits to 1 's. 

step3. Allocate nodes with addresses G ( ,!3 mod 2n) to the request, where n 

ex2k-1 ~ ,!3 ~ (ex+2)2k-1-1. 

Processor Relinquishment: 

Reset every pth allocation bit to 0, where Gn(p) is used in the subcube 

released. 

Example 10: 

Using the same request sequence from example 5, the static processor 
allocation using the gray code strategy in a 4-cube multiprocessor is given 
in Fig. 6. 

Incoming Request 
ATiocated processors 

No. Size 

11 Oo 0000 

12 03 0110,0111,0101,0100 
11 00, 11 01 , 1111 , 111 0 

13 02 1010,1011,1001, 1000 

14 01 0011 ,0010 

15 00 0001 

Fig. 6, Processor allocation using the gray Btrate~y 

This strategy recognizes 2n-k+l Qk within then-cube multiprocessor and this 

is an improvement by a factor of two over the buddy strategy. 
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C. A new Strategy : 

We propose a new strategy that outperforms the buddy strategy by a 
factor of 2(n-k+l) and thus the gray strategy by a factor of (n-k+l) in 
recognizing subcubes of size k. This is a significant improvement because in 
practical systems it is normal to have many small incoming jobs and large 
number of processors. 

The new strategy can be described usrng the binary tree in Fig. 3. The 
external nodes in this tree correspond to the processors. The nodes in level 
i are associated with subcubes of dimension n-i and a node is available if 
all of its offsprings are available. Like the gray code strategy, when an 
incoming task requests a cube, say Qk, level n-k+ 1 is searched from left to 

right for two Qk/2 and these two combined constitute the cube Qk but unlike 

gray code strategy, our strategy will recognize these two Qk/2 cubes even if 

they are not adjacent. When a free internal node is found all the 
descendant nodes are allocated for this task. Like in the other strategies 2n 
allocation bits are needed to keep track of which node is available, a 
processor with its bit set to 0(1) available (unavailable) . A more efficient 
method using 2n+I_1 bits, is described in section IV. 

The path from the root of the tree to any node is that node's address. This 
address corresponds to the subcube which consists of all the descendants 
processors (leaf nodes). Note that in ~ subcube 01, OlX or OIXX denotes 

the same subcube. 

We ·will list some definitions and then describe the new algorithm. 

Definition: 

The exth partner of '1c-1''1c-2, ••• , a(X+1,aex,aex_1, ••• ,¾ for any O:;; ex :;; k-1 is 

defined as 

if a = O ex 
undefined , if a = 1. ex 

we denote the pth partner of Bii) as BP k(i). 
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Example 11: 

All the partners for the nodes B3(i), 0::;; i::;; 7, are shown in Fig. 7. 

Lemma 1: 

Node 0th parlner 1st partner 2nd partner 

000 001 010 100 
001 undefined 011 101 
010 011 undefined 110 
011 undefined undefined 111 
100 101 110 undefined 

101 undefined 1 1 1 undefined 

110 1 1 1 undefined undefined 

1 1 1 undefined undefined undefined 

Fig. 7, The partners for B (i) for all i. 
3 

The 0th partner of an even number a is a + 1 which can be represented 
using the same number of bits. 

proof: 

Since 2i is an even integer, it has O in the least significant bit and 
changing it to 1 will give 2i+ 1; thus 2i+ 1 will need no more than ex bits. 

Lemma 2: 

For any two integers ex and ,e such that O ::;; ,e ::;; cx-1 , out of all the 
nodes B (i), 0::;; i::;; 2cx-1 , there are exactly 2cx-1 nodes that have a ,eth 

ex 

partner. 

proof: 

Only those that has a O in the ,eth bit will have a ,eth partner. If we fix 
the ,e th bit to be O then the other ex - 1 can take any value. This will give 

2cx· 1 possible nodes. 
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Example 12: 

Consider the nodes Bii), 0 ::; i ::; 7 shown in Fig. 7. We can see that exactly 

4 nodes have a 0th partner, 4 nodes have a 1st partner, and 4 nodes have 
2nd partner defined. 

Definition: 

For any integer 0<, 0::; 0<::; 2n-k+I_1, the node Bn-k+l(0<) is free if and only 

if all of its descendants are free. For example for n = 4 and k = 2, the node 
000 is free if and only if the processors 0000, 0001 are free. 

Algorithm (3) (new strategy): 

Processor Allocation : 

Step 1. Set k to the dimension of a subcube required to accommodate the 
request. 

Step 2. Determine the least integer 0<, 0 ::; 0< ::; 2n-k+I_1, such that Bn-k+l ( 0<) 

is free and it has a pth, 0 ::; p ::; n-k, partner BP n-k+l ( 0<) which is 

also free. Take p as small as possible. 

step3. Allocate these processors to the request and set their allocation 
bits to I. 

Processor Relinquishment: 

Reset the allocation bits of all the processors that correspond to the 
descendants of the nodes Bn-k+l(0<) and BPn-k+l(0<) to 0. ( See section IV for 

detail). 
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Example 13: 

In Fig 8 , we show an example of the allocation strategy for a 4-cube 
multiprocessor using the same request sequence as in Examples 5 and 10. 

Incoming Request 
Allocated processors 

No. Size 

I 1 Oo 0000 

12 03 0110 ,0111,0101,0100 
11 00, 1101, 1111, 111 0 

13 02 0011, 0010 
1010,1011 

14 01 
0001 
1001 

's 00 1000 

Fig. 8, Processor allocation using our strategy 

From this example we can see that our strategy compacts things to the left 
which result in less system fragmentation; thus our strategy recogmzes 
more subcubes. 

The following lemmas give the number of subcubes recognized by the new 
algorithm. 

Lemma3: 

Algorithm (3) generates (n-k+l) 2n-k Qk cubes. 

proof: 

In step (2), Algorithm (3) considers each of the nodes , Bn-k+l (ex), 

0 ::;; ex ::;; 2n-k+ 1-1 with each of its partners and then combine them to form a 

Qk. 
Summing over the partners, we can conclude that the number of Qk 
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cubes generated by the algorithm is equal to 

n-k 

~ (number of nodes which have a !3th partner) = (n-k+ 1) 2n-k 
!l=O 

Example 14: 

Consider requesting a Q2, in a 4-cube multiprocessor. In step (2), 

Algorithm (3), will consider each of the 8 nodes Bi0<), 0 $; ex $; 7 with all of 

its partners. 

To ease the counting, we can group them by partners as follows: 

The nodes which have a 0th partner are {000,010,100,110} 
The nodes which have alth partner are {000,001,100,101} 
The nodes which have a 2th partner are {000,001,010,011} 

A cube will be formed by combining any node with any of its partners. 
Thus, the number of cubes = (3)(2) 2 

Lemma 4: 

The Qks generated by Algorithm (3) are disjoint among themselves. 

proof: 

The cubes recognized by algorithm (3) can be listed in 2n-k X (n-k+l) 
matrix as shown in Fig. 9. 

n-k+1 
r-""'---, 
00 ... oox 00 ... oxo oo ... xoo ........... oxo ... oo xoo ... oo 
00.:.01 X oo ... OX1 oo ... xo1 ........... oxo ... 01 xoo ... 01 

........... ........... . .......... 
11 ... 1 OX 1 1 ... 1 XO 11 ... X10 ........... 1X1 ... 10 X11 ... 1 0 
11...11X 11 ... 1X1 11 ... X11 ........... 1 X1...11 X11 ... 11 

"-k 
2 X (n-k+1) 

Fig. 9 , R.eco~r:ed subcubes 
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We can see from the matrix that each element a .. , 0 $ i $ 2n-k_1, and 
IJ 

0 $ j $ n-k, is of the form: 

a .. = (B k(i)l\j = a k 1.a k 2 ... ... a.,x,a. 1 ... .. ,a1, a0 1J n- n- - n- - J J-

Suppose two cubes aij and ast are equal (i.e. aij = ast) 

where 

This implies i = s and j = t. Thus all cubes are distinct. 

The subcube recognition problem becomes more important when 
considering some faulty processors or when allocating processors 
dynamically. In these situations also out strategy does better than the 
buddy strategy or gray code strategy as illustrated in the following 
examples. 

Example 15: (fault tolerance) 

In a 4-cube multiprocessor if two nodes, one from (0000,0001) and the 
other from (1000,1001) are faulty. Then neither the buddy system 
allocation strategy nor the gray code strategy will be able to satisfy the 
requests {11 = Q3, 12 = Q2 } but our strategy will satisfy this. 

Example 16: (Dynamic allocation) 

Consider the request { 11 = Q 1, 12 = Q2 , 13 = Q1, 14 = Q3 } . If 11 and 13 

released their processors and others do not then using the buddy system 
strategy or the gray code strategy a request like { 15 = Q2 } will not be 

satisfied. But our strategy will combine the two released Q1s into a Q2 and 

allocate it to 15 • 
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D. Algorithm (4): (An extension to Algorithm (3)) 

In Algorithm (3), when a Qk cube is requested, the nodes at level n-k+l of 

the tree are searched. Suppose none of the subcubes corresponding to this 
level is available. In this case, the algorithm terminates without allocating 
a Qk cube. However, it might be possible to get to the higher levels of the 

tree and get more Qk cubes. We first explain the method by taking an 

example and then describe the algorithm. 

Example 17: 

In the case of n = 5 and k = 3, Algorithm (3) will recognize the following 12 
subcubes in Fig. 10. These subcubes are searched at level 3 of the tree. 

ooxxx 
OlXXX 
lOXXX 
1 lXXX 

k-1 :k-1 ,......., 
oxoxx 
OXlXX 
lXOXX 
1X1XX 

,......., 
xooxx 
XOlXX 
XlOXX 
Xl lXX 

Fig. 10, Q3 cubes recognized in o5 using Algorithm 3. 

Suppose none of the above subcubes are available. After cyclic right 
shifting the columns 2 and 3 of the subcubes we get the following 16 new 
subcubes as shown in Fig. 11. 

xoxox xxoox xxoxo xxxoo 
XOXlX XXOlX XXOXl XXXOl 
X lXOX XXlOX XX lXO XXXlO 
XlXlX XX 1 lX XX lXl XXXl 1 

After one cy c lie right shift After two cyclic right shift 

Fig. 11, Q3 cubes in o5 generated by Algorithm (4). 

The subcubes obtained after shifting once and twice correspond to 
searching the tree at levels 4 and 5 respectively. Thus these new subcubes 
can be generated systematically. 
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The formal algorithm is given below. To balance the search overhead and 
the recognition ability, we use a parameter S which will limit the depth of 
the search up to, and including, level n-k+ 1 +S. If S ;?: k-1, then the search is 
done at all levels from n-k+2 to n. A good heuristic approach is to make S 
large if the cubes are not released very frequently. Note that, when S = 0, it 
will not search any cubes in step 2 and when S = infinite, it will search all 
the levels. 

Algorithm (4): 

Processor Allocation: 

Step 1: Use algorithm (3) to find Qk. If succeeded then done else goto step 

2. 

Step 2: 

{ This is the extension to Algorithm 3, needed if Step 1, fail } 

S = How far we want to go down, infinite to maximize. 

For i = 0 to (2n-k+l_2) do 

begin 
Ford= 1 to min (k-1, S) do { Search level n-k+l+d} 
begin 

end 

For j = 0 to (n-k) do 
begin 

If (Bn-k+l (i) has a jth partner) then 

begin 
current_cube = (The address of the cube formed from 

Bn-k+l (i) and Bjn-k+l (i)) 

current_cube = concat ('X'd, current_cube) 
if (current_cube is free) then 
begin 

allocate (current_cube); 
exit; 

end 
end; 

end 
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Lemma 5: 

Step2 of Algorithm (4), with 8 = infinite, generates (k-l)(n-k)2n-k new 

Qkcubes. 

proof: 

Ignoring the case p=O, Algorithm (3) generates (n-k) 2n-k subcubes. These 
correspond to the last n-k columns of the matrix in Fig. 9. Each of these can 
be expanded k-1 times. So step 2 of Algorithm (4) will generate (k-l)(n-k) 
2n-k new Qk cubes. 

Lemma 6: 

The Qkcubes generated step 2 of Algorithm (4) are disjoint among 

themselves. 

proof: 

Step 2 of Algorithm ( 4) generates cubes by right cyclic shifting addresses 
that are already proved to be disjoint, by lemma 4, thus have distinct 
(n-k+l) most significant digits. When shifting i times, 1 $; i $; k-1, the 
(k-1-i) least significant digits will be X's. So each shift will produce a new 
set of cubes that are different and disjoint from all others. 

Lemma 7: 

The Qk cubes generated by stepl of Algorithm( 4), i.e. Algorithm (3), are 

disjoint from those generated by Step 2 of Algorithm (4). 

proof: 

This is clear smce the addresses of those recognized by Algorithm (3) 
when expressed with n digit have at least k-1 X's. However, those 
generated by step 2 of Algorithm (4) have less than k-1 X's. 

From the above lemmas the following theorem holds. 
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Theorem 8: 

Algorithm (4) (both steps) will generate [k(n-k)+l] zn-k distinct Qks 

Example 18: 

As a quick comparison we consider a request for a Q2 subcube m a Q4 

multiprocessor. Form the previous discussion one can easily see the 
following: 

a) The buddy system strategy will recognize 

OOXX OlXX lOXX 1 lXX 

b) Gray code strategy will recognize 

OOXX OXlX OlXX XlOX llXX lXlX lOXX XOOX 

c) Algorithm (3), i.e. step 1 of Algorithm (4), will recognize 

OOXX OXOX XOOX OXlX 
XOlX OlXX XlOX XllX 
lOXX lXOX lXlX llXX 

d) Step 2 of Algorithm ( 4) will recognize 

xoxo xxoo 
XOXl XXOl 
XlXO XXIO 
XlXl XXII 

e) Algorithm (4) will recognize both (c) and (d). 

A summary is given in Fig. 12. 
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The Method Number of Q2 s recognized 

Buddy System (Algor;thm 1) 2 
n-k 

Gray Strategy (AlgorHhm 2) 2 
n-k+1 

( A lgor;thm 3) (n-k+1) 2 
n-k 

Our Strategy (Alqor;thm 4) n-k 
(Step. 2) (k-1) (n-k) 2 

( A lgor;thm 4) [k(n-k)+ 1 ] 2 
n-k 

Fig. 12, The number of O s recognized in a o4 
2 

IV. Implementation Issues: 

=4 

=8 

=12 

= 8 

= 20 

When implemented using an array of 2n bits, we will have to check 
sequentially 2n allocation bits each time a cube is requested which could be 
extremely large. This will result in an inefficient implementation especially 
if dynamic allocation is used and/or the rate of releasing the cubes can't be 
predicted. 

An efficient way to keep track of the availability of the processors and the 
subcubes is to organize their allocation bits as a tree in which the external 
nodes are the allocation bits for the processors and the internal nodes are 
the allocation bits for the subcubes. The external node is O if the 
corresponding processor is available and 1 if it is not. Similarly, the internal 
node is O if the subcube associated with it is available as a whole and 1 if it 
is not. We can represent a tree of height n using an array A[l: 2n+1-1] of 
2n+l_1 bits. The root node corresponds to location 1. For an internal node i, 
the left son is stored at 2i and the right son is at 2i+ 1. Furthermore, the 
internal nodes at level i are at location 2i to 2i+l -1. So when a Qk is 

requested, the nodes at level (n-k+ 1) of the tree needs to be searched. 
These nodes correspond to array positions 2n-k+ 1 to 2n-k+2 _ 1. For these 
nodes the pth partner, if exists, can be obtained by changing the pth bit 
from O to 1. An example is shown for Q3 in Fig. 13 below. 
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.................................. ................ .. ....... Level D 

········ ·· ······· ··· ······ ······•le-rel 2 

..... 12 ..... 

000 001 010 011 100 101 110 111 

□LIi II Ar-r.ay 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Address 

r-0"1!-1-11 2 3 level 

Fig.13, A tree and its array representation for o3 

Allocation: 

To allocate a k-dimensional subcube, Qk : 

1. Search the tree at the level n-k+ 1 for two free Qk/2s that form a Qk, 

when combined.We use algorithm (3) given in section ID to do the 
search systematically. 

2. Allocate these two Qk/2s to the incoming task. 

3. For each external node,v, covered by ( i.e. descendents of) the subcubes 
obtained in the previous step do: 
a. Set v to 1. 
b. Traverse the fathers link setting the allocation bits to 1, until either 

the root or an unavailable cube is reached. 
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Deallocation: 

To deallocate a k-dimensional subcube, Qk: 

1. Set the allocation bits associated with the two Qk/2 to 0. 

2. For each external node, v, covered by ( i.e. descendents of) the subcubes 
obtained in the previous step do: 

a. Set v to 0. 
b. If its sibling is available set the fathers allocation bit to 0. 
c. Propagate upwards until nodes can't be merged anymore or the root 

is reached. 

V. Conclusion: 

We briefly reviewed the two known strategies for static processors 
allocation in an n-cube multiprocessor, namely the buddy system strategy 
and the gray code strategy and then proposed a new strategy that 
outperforms the first by (n-k+l) and the second by (n-k+l)/2 in cube 
recognition. 

Furthermore, our strategy is suitable for static as well as dynamic 
processors allocation and it results in a less system fragmentation, more 
subcubes recognition, and higher fault tolerance. 

An extension to our strategy that searchs the whole tree and thus improves 
the performance is described. _When our algorithm and its extension are 
combined, Algorithm (4), they outperform the buddy system by [k(n-k)+l] 
and the gray strategy by [k(n-k)+l]/2 in cube recognition. Implementation 
details of these algorithms are also discussed. 
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