
88-70-2

Lirl~UEAS~TY

A New Strategy for Processors Allocation in an N-Cube Multiprocessor

Abdullah Al-Dhelaan
Bella Bose

Department of Computer Science
Oregon State University
Corvallis, Oregon 97331

A New Strategy for Processors Allocation
in an N-Cube Multiprocessor

Abdullah Al-Dhelaan *
Bella Bose

Department of Computer Science
Oregon State University

Corvallis, OR 97331
(Tel.No. 503-754-3273)

* The first author is supported by King Saud University, Riyadh, Saudi Arabia

Abstract

In this paper we will describe two known strategies for
static processors allocation in an n-cube multiprocessor,
namely the buddy system strategy and the gray code
strategy and then propose a new strategy that outperforms
the first by (n-k+ 1) and the second by (n-k+ 1)/2 in cube
recogmt10n. Furthermore, our strategy is suitable for static
as well as dynamic processors allocation and it results in a
less system fragmentation, more subcubes recognition, and
higher fa ult tolerance.

We also introduce an extension to our strategy that will
enhance the performance drastically so that our algorithm
together with the extension will outperform the buddy
system by a factor of [k(n-k)+ 1] and the gray strategy by
[k(n-k)+l]/2 in cube recognition. The implementation
details of these algorithms are also described.

I. Introduction

During the the last five years, a movement from the SIMD (Single
Instruction Multiple Data) to the general purpose MIMD (Multiple
Instruction Multiple Data) machines has taken place, and the latter is
drawing a lot of attention as a numerous research has been undertaken
[1-12]. One common MIMD machine is the hypercube [2-12] which 1s
becoming very popular for its attractive features to be addressed later.

The hypercube is a network of a loosely coupled processors connected m
such a way that two processors are linked if and only if their binary
representation differ in exactly one bit pos1t10n. i.e the indices of
neighboring processors differ by a power of 2.

A n-dimensional hypercube , denoted as n-cube or Qn, is a hypercube

with 2n processors and is defined recursively as: A 0-dimensional
hypercube, Q0, is a _single processor , and an n-dimensional hypercube is two

(n-1)-dimensional hypercubes with links between corresponding
processors in each of them. Fig. 1 and 2 show a Q3, and a Qp hypercubes

respectively.

000 001

'
,

'
,

'
,

'
,

'
,

'
,

' ■'

100 101

110 111
,

' ,
' ,
' ,
' ,
' ,
' ,
' ,

010 011

Fig. 1 , 3-dimensiona l hy perc:ube, Q 3

- 1 -

·-·-------------------------------------·---, ' .

.
' '

' .

0100

0110

0101

0111

·---------------------- ------------------- --
0011 1011

. .
1101 1100

1111 1110

·---·

Fig. 2, A 4-dimensfonal hypercube, o4

Some of the hypercube characterizations are :

1. Each processor has a local memory and no shared memory is used.
2. Processors communicate by sending messages direct or through some

intermediate processors.
3. Synchronization occurs by the availability of data and messages.

Some attractive features of the hypercube are:

1. Regularity and high potential for the parallel execution of various
algorithms.

2. Its architecture allows high level of concurrency and efficiency.
3. The number of links among processors is small allowing us to have a

very large hypercube with a reasonable number of links. At present
machines with up to 16384 processors are available [2].

Processors allocation iri a hypercube is a two steps process:

1. Determination of the size of the incoming task in terms of the number
of processors needed in order to accommodate it.

2. Recognizing and locating a subcube that can accommodate the
incoming task.

- 2 -

The first step is investigated in [3], · and some algorithms for step 2 are
given in [4]. In this paper more efficient algorithms for processor allocation
are described.

The paper is organized as follows. Section II introduces the necessary
notations. In section III, we will describe two existing allocation strategies
namely the buddy system, and the gray code, [4], for the n-cube
multiprocessor; then we will propose a new strategy that outperforms both
of the above. Our strategy is suitable for static as well as dynamic
processors allocation and it results in a less system fragmentation, higher
subcubes recognition and higher fault tolerance. In section IV, we will
explain an efficient way to implement our algorithm. The paper concludes
with section V.

II. Notations:

Below are some operations that we will be using in our next definitions.

1) A ex\~ means for each element ak_l'ak_2, ... ,a~,a~_1, ••• ,a0 in A, insert 0< in the

j)th position as '1c-i•3k-2, ... ,a~,0<,a~_1, ... ,a0

Example 1:

If A = { 00,01,11,10 } then we have

A l\l = { 010,011,111,110 }

A l\2 = { 100,101,111,110 }

* 2) A means reverse the elements of A.

Example 2:

* If A= { 00,01,11,10 } then A = { 10,11,01,00 }

3) Bn(m) is the binary representation of an integer m with n bits.

- 3 -

Example 3:

B/1) = 0001, Bil)= 001

4) For a set A, IAI is the number of elements in A and is called the
cardinality of A.

Example 4:

The cardinality of a set A= {al''½•····,an} 1s IAI = n

Definition:

The product of any two graphs G 1 = (V 1,E1) and G2 = (V2,E2), denoted by

Gp= Gl X G2, is the graph Gp= (VP,EP), where VP= vl X v2 and any two

nodes u = (ul'u 2) and v = (v l'v 2) are adjacent if and only if

(u 1 = v 1 & u2 is adjacent to v2 in G2) or

(u2 = v2 & u 1 is adjacent to v 1 in G 1)

Definition:

An N-Cube Q0 is defined recursively as

a) C2o is a trivial graph with one node.

b) Q0 = K 2 x Q0 _ 1 n > 0

The address of the subcube Q2 which consists of the processors {0000,

0011, 0110, 0111 } in a 4-cube is written as 0XlX. i.e. Xis the don't care
term and it can take values 0 or 1.

- 4 -

III. Processor Allocation Strategies

In an n-cube multiprocessor, processors must be allocated to incoming
tasks in a way that will maximize the processors utilization and minimize
the system fragmentation. In order to achieve this goal, it is necessary to
detect the availability of a subcube of required size and merge the released
small cubes to form a larger ones.

First, we will briefly describe the known methods [4], the buddy strategy
and the gray code strategy. Then we will propose a new strategy and show
that it out performs both of these by a high factor. Next, an extension to our
strategy that will enhance the performance drastically at a cost of a little
overhead is introduced. It is shown that our strategy results in a less
fragmented system and recognizes more subcubes.

A. The Buddy Strategy :

The buddy strategy can be described using a binary tree. An example is
shown for the 4-cube in Fig . 3, where the external nodes are the processors.
The nodes in level i are associated with subcubes of dimension n-i and a
node is available if all of its offsprings are available. When an incoming
task requests a cube of certain size, say Qk, the level n-k is searched from

left to right for an internal node which is free. When a free internal node is
found all the descendant nodes are allocated for this task. In this method
2 n allocation bits are needed to keep track of which node is available; a
processor with its bit set to O (1) is available (not available) .

- 5 -

... Level 0

• • • • • • • • • •· • • • • • • • • • • • •.•••••••Level 1

......... Level 2

... . •·••Level 3

.. . .. Level 4
0000 0001 0010 0011 0100 0101 0110 011110001001101010111100110111101111

Fig. 3, Processor allocation using the buddy strategy

This method was studied in [4] and implemented m the NCUBE/six
multiprocessor [5]. The algorithm is given below .

Algorithm 1 (Buddy System Strategy):

Processor Allocation :

Step 1. Set k to the dimension of a subcube required to accommodate the
request.

step 2. Determine the least integer 0<, 0 ~ 0< ::;; 2n-k+l_l such that all the ,!3th

allocation bits, 0<2k ~ ,t3 ~ (0<+ 1)2k-1, are O's. Set all these
bits to l's.

step3. Allocate processors with addresses B (,t3) to the request, where n ,

0<2k ~ ,t3 ~ (0<+1)2k-1.

Processor Relinquishment :

Reset every pth allocation bit to 0, where Bn(p) is used in the subcube

released.

Example 5:

An example of the static processor allocation using the buddy system
strategy in a 4-cube multiprocessor is given in Fig . 4.

- 6 -

Incoming Request
Allocated processors

No. Size

I 1 Oo 0000

'2 03 1 000, 1 001 , 1 01 0, 1011
11 00, 11 01 , 111 0, 111 .1

13 02 0100,0101,0110,0111

14 01 0010,0011

's oo 0001

Fig. 4, Processor allocation using budd~ s~stem

This strategy recognizes only 2n-k Qks within the n-cube multiprocessor.

Compared to other ·methods, which we explain later, the buddy strategy
underutilizes processors in the n-cube multiprocessor.

B. The GC Strategy :

This strategy can also be explained using a binary tree. An example is
shown for 4-cube m Fig. 5, where the edges of the tree are labeled with
gray code, which is explained below, and the processors are the external
nodes.

· · ·· · ·· ·· ·· ·· ·· ···· ···· · · ·· · · · · · · · · · · · · · · · ·· ·· ·· ·· ·· ·· ······ ·Level 0

... Level 1

· · ···· ·· •·· · · ···Level 2

· · · ···· ·-Level 3

... .. Level 4
0000 0001 0011 0010 0110 0111 010101001100 1101 111111101010 1011 1001 1000

Fig. 5, Processor allocation using the gray strategy

- 7 -

Like the buddy strategy each node in level i is associated with a cube of
dimension n-i and 2n allocation bits are needed to keep track of the
availability of the processors. A node is available if all of its offsprings are
available where a processor with its bit set to 0(1) indicates the availability
(unavailability) of that processor. When an incoming task requests a cube,
say Qk, level n-k+ 1 is searched from left to right for two adjacent Qk12

cu bes and these two combined constitute a Qk, instead of searching for a Qk

cube in level n-k, as in the buddy strategy. Because of this reason the
number of Qk cubes recognized by the gray code strategy is twice that of

buddy system strategy. This method was studied in [4].

Before describing the algorithms some definitions are stated first.

Definition :

Let L = { g1, g2, •••.•• , gn} be a set. The partial rank ri of gi is the rank of gi

in the subset {g1 ,g 2 , ... ,g) when rearranged these elements in ascending

order.

Example 6:

= {3} ==> r = 1 1

{g1 ,g2} = {3,1} ==> r2 = 1

{g1,g2,g3} = {3,1,2} => r3 = 2

Definition:

A gray code Gn with parameters {g1,g2, ... ,~} where {g1,g2, ... ,~} is any

permutation of { 1,2, ... ,n} is defined recursively as

Gl = {0,1}
G = {G()\rk (G*)l~k} k k-1• k-1

where n is the partial rank of gk.

- 8 -

Example 7:

If {g1,g2,g3} = {2,3,l} then we have {r1,r2,r3} = {L,2,1}. Thus

Gl = {0,1}

G2 = {00, 01, 11, IO}

G3 = {000, 010, 110, 100, 101, Ill, 011, 001}

If gi = i then we have Binary Reflected Gray Code (BRGC), the most

frequently used case.

Example 8:

If {g1,g2,g3} = {1,2,3} then {r1,r2,r3} = {1,2,3}.

Gl = {0,1}

G2 = {00, 01, 11, IO}

G3 = {000, 001, 011, 010, 110, 111, 101, 100}

The Relation between GC and Binary:

To translate the gray code to its corresponding binary representation and
vice versa the formula below is used [13].

g. = b. xor b. 1 i :;t: n
1 1 l+

~ =bn

Example 9:

The gray code that corresponds to the binary number 101 is 111.

Algorithm 2 (Gray Code Strategy):

Processor Allocation :

step 1. Set k to the dimension of a subcube required to accommodate the
request.

- 9 -

step 2. Determine the least integer ex, 0 ~ ex ~ 2n-k+ 1-1, such that all
(,!3 mod 2n)th allocation bits are O's, where ex2k-1 ~ ,!3 ~ (ex+2)2k-1 - 1

Set all these bits to 1 's.

step3. Allocate nodes with addresses G (,!3 mod 2n) to the request, where n

ex2k-1 ~ ,!3 ~ (ex+2)2k-1-1.

Processor Relinquishment:

Reset every pth allocation bit to 0, where Gn(p) is used in the subcube

released.

Example 10:

Using the same request sequence from example 5, the static processor
allocation using the gray code strategy in a 4-cube multiprocessor is given
in Fig. 6.

Incoming Request
ATiocated processors

No. Size

11 Oo 0000

12 03 0110,0111,0101,0100
11 00, 11 01 , 1111 , 111 0

13 02 1010,1011,1001, 1000

14 01 0011 ,0010

15 00 0001

Fig. 6, Processor allocation using the gray Btrate~y

This strategy recognizes 2n-k+l Qk within then-cube multiprocessor and this

is an improvement by a factor of two over the buddy strategy.

- 10 -

C. A new Strategy :

We propose a new strategy that outperforms the buddy strategy by a
factor of 2(n-k+l) and thus the gray strategy by a factor of (n-k+l) in
recognizing subcubes of size k. This is a significant improvement because in
practical systems it is normal to have many small incoming jobs and large
number of processors.

The new strategy can be described usrng the binary tree in Fig. 3. The
external nodes in this tree correspond to the processors. The nodes in level
i are associated with subcubes of dimension n-i and a node is available if
all of its offsprings are available. Like the gray code strategy, when an
incoming task requests a cube, say Qk, level n-k+ 1 is searched from left to

right for two Qk/2 and these two combined constitute the cube Qk but unlike

gray code strategy, our strategy will recognize these two Qk/2 cubes even if

they are not adjacent. When a free internal node is found all the
descendant nodes are allocated for this task. Like in the other strategies 2n
allocation bits are needed to keep track of which node is available, a
processor with its bit set to 0(1) available (unavailable) . A more efficient
method using 2n+I_1 bits, is described in section IV.

The path from the root of the tree to any node is that node's address. This
address corresponds to the subcube which consists of all the descendants
processors (leaf nodes). Note that in ~ subcube 01, OlX or OIXX denotes

the same subcube.

We ·will list some definitions and then describe the new algorithm.

Definition:

The exth partner of '1c-1''1c-2, ••• , a(X+1,aex,aex_1, ••• ,¾ for any O:;; ex :;; k-1 is

defined as

if a = O ex
undefined , if a = 1. ex

we denote the pth partner of Bii) as BP k(i).

- 11 -

Example 11:

All the partners for the nodes B3(i), 0::;; i::;; 7, are shown in Fig. 7.

Lemma 1:

Node 0th parlner 1st partner 2nd partner

000 001 010 100
001 undefined 011 101
010 011 undefined 110
011 undefined undefined 111
100 101 110 undefined

101 undefined 1 1 1 undefined

110 1 1 1 undefined undefined

1 1 1 undefined undefined undefined

Fig. 7, The partners for B (i) for all i.
3

The 0th partner of an even number a is a + 1 which can be represented
using the same number of bits.

proof:

Since 2i is an even integer, it has O in the least significant bit and
changing it to 1 will give 2i+ 1; thus 2i+ 1 will need no more than ex bits.

Lemma 2:

For any two integers ex and ,e such that O ::;; ,e ::;; cx-1 , out of all the
nodes B (i), 0::;; i::;; 2cx-1 , there are exactly 2cx-1 nodes that have a ,eth

ex

partner.

proof:

Only those that has a O in the ,eth bit will have a ,eth partner. If we fix
the ,e th bit to be O then the other ex - 1 can take any value. This will give

2cx· 1 possible nodes.

- 12 -

Example 12:

Consider the nodes Bii), 0 ::; i ::; 7 shown in Fig. 7. We can see that exactly

4 nodes have a 0th partner, 4 nodes have a 1st partner, and 4 nodes have
2nd partner defined.

Definition:

For any integer 0<, 0::; 0<::; 2n-k+I_1, the node Bn-k+l(0<) is free if and only

if all of its descendants are free. For example for n = 4 and k = 2, the node
000 is free if and only if the processors 0000, 0001 are free.

Algorithm (3) (new strategy):

Processor Allocation :

Step 1. Set k to the dimension of a subcube required to accommodate the
request.

Step 2. Determine the least integer 0<, 0 ::; 0< ::; 2n-k+I_1, such that Bn-k+l (0<)

is free and it has a pth, 0 ::; p ::; n-k, partner BP n-k+l (0<) which is

also free. Take p as small as possible.

step3. Allocate these processors to the request and set their allocation
bits to I.

Processor Relinquishment:

Reset the allocation bits of all the processors that correspond to the
descendants of the nodes Bn-k+l(0<) and BPn-k+l(0<) to 0. (See section IV for

detail).

- 13 -

Example 13:

In Fig 8 , we show an example of the allocation strategy for a 4-cube
multiprocessor using the same request sequence as in Examples 5 and 10.

Incoming Request
Allocated processors

No. Size

I 1 Oo 0000

12 03 0110 ,0111,0101,0100
11 00, 1101, 1111, 111 0

13 02 0011, 0010
1010,1011

14 01
0001
1001

's 00 1000

Fig. 8, Processor allocation using our strategy

From this example we can see that our strategy compacts things to the left
which result in less system fragmentation; thus our strategy recogmzes
more subcubes.

The following lemmas give the number of subcubes recognized by the new
algorithm.

Lemma3:

Algorithm (3) generates (n-k+l) 2n-k Qk cubes.

proof:

In step (2), Algorithm (3) considers each of the nodes , Bn-k+l (ex),

0 ::;; ex ::;; 2n-k+ 1-1 with each of its partners and then combine them to form a

Qk.
Summing over the partners, we can conclude that the number of Qk

-14-

cubes generated by the algorithm is equal to

n-k

~ (number of nodes which have a !3th partner) = (n-k+ 1) 2n-k
!l=O

Example 14:

Consider requesting a Q2, in a 4-cube multiprocessor. In step (2),

Algorithm (3), will consider each of the 8 nodes Bi0<), 0 $; ex $; 7 with all of

its partners.

To ease the counting, we can group them by partners as follows:

The nodes which have a 0th partner are {000,010,100,110}
The nodes which have alth partner are {000,001,100,101}
The nodes which have a 2th partner are {000,001,010,011}

A cube will be formed by combining any node with any of its partners.
Thus, the number of cubes = (3)(2) 2

Lemma 4:

The Qks generated by Algorithm (3) are disjoint among themselves.

proof:

The cubes recognized by algorithm (3) can be listed in 2n-k X (n-k+l)
matrix as shown in Fig. 9.

n-k+1
r-""'---,
00 ... oox 00 ... oxo oo ... xoo oxo ... oo xoo ... oo
00.:.01 X oo ... OX1 oo ... xo1 oxo ... 01 xoo ... 01

...........
11 ... 1 OX 1 1 ... 1 XO 11 ... X10 1X1 ... 10 X11 ... 1 0
11...11X 11 ... 1X1 11 ... X11 1 X1...11 X11 ... 11

"-k
2 X (n-k+1)

Fig. 9 , R.eco~r:ed subcubes

-15-

We can see from the matrix that each element a .. , 0 $ i $ 2n-k_1, and
IJ

0 $ j $ n-k, is of the form:

a .. = (B k(i)l\j = a k 1.a k 2 a.,x,a. 1 ,a1, a0 1J n- n- - n- - J J-

Suppose two cubes aij and ast are equal (i.e. aij = ast)

where

This implies i = s and j = t. Thus all cubes are distinct.

The subcube recognition problem becomes more important when
considering some faulty processors or when allocating processors
dynamically. In these situations also out strategy does better than the
buddy strategy or gray code strategy as illustrated in the following
examples.

Example 15: (fault tolerance)

In a 4-cube multiprocessor if two nodes, one from (0000,0001) and the
other from (1000,1001) are faulty. Then neither the buddy system
allocation strategy nor the gray code strategy will be able to satisfy the
requests {11 = Q3, 12 = Q2 } but our strategy will satisfy this.

Example 16: (Dynamic allocation)

Consider the request { 11 = Q 1, 12 = Q2 , 13 = Q1, 14 = Q3 } . If 11 and 13

released their processors and others do not then using the buddy system
strategy or the gray code strategy a request like { 15 = Q2 } will not be

satisfied. But our strategy will combine the two released Q1s into a Q2 and

allocate it to 15 •

-16-

D. Algorithm (4): (An extension to Algorithm (3))

In Algorithm (3), when a Qk cube is requested, the nodes at level n-k+l of

the tree are searched. Suppose none of the subcubes corresponding to this
level is available. In this case, the algorithm terminates without allocating
a Qk cube. However, it might be possible to get to the higher levels of the

tree and get more Qk cubes. We first explain the method by taking an

example and then describe the algorithm.

Example 17:

In the case of n = 5 and k = 3, Algorithm (3) will recognize the following 12
subcubes in Fig. 10. These subcubes are searched at level 3 of the tree.

ooxxx
OlXXX
lOXXX
1 lXXX

k-1 :k-1 ,.......,
oxoxx
OXlXX
lXOXX
1X1XX

,.......,
xooxx
XOlXX
XlOXX
Xl lXX

Fig. 10, Q3 cubes recognized in o5 using Algorithm 3.

Suppose none of the above subcubes are available. After cyclic right
shifting the columns 2 and 3 of the subcubes we get the following 16 new
subcubes as shown in Fig. 11.

xoxox xxoox xxoxo xxxoo
XOXlX XXOlX XXOXl XXXOl
X lXOX XXlOX XX lXO XXXlO
XlXlX XX 1 lX XX lXl XXXl 1

After one cy c lie right shift After two cyclic right shift

Fig. 11, Q3 cubes in o5 generated by Algorithm (4).

The subcubes obtained after shifting once and twice correspond to
searching the tree at levels 4 and 5 respectively. Thus these new subcubes
can be generated systematically.

-17-

The formal algorithm is given below. To balance the search overhead and
the recognition ability, we use a parameter S which will limit the depth of
the search up to, and including, level n-k+ 1 +S. If S ;?: k-1, then the search is
done at all levels from n-k+2 to n. A good heuristic approach is to make S
large if the cubes are not released very frequently. Note that, when S = 0, it
will not search any cubes in step 2 and when S = infinite, it will search all
the levels.

Algorithm (4):

Processor Allocation:

Step 1: Use algorithm (3) to find Qk. If succeeded then done else goto step

2.

Step 2:

{ This is the extension to Algorithm 3, needed if Step 1, fail }

S = How far we want to go down, infinite to maximize.

For i = 0 to (2n-k+l_2) do

begin
Ford= 1 to min (k-1, S) do { Search level n-k+l+d}
begin

end

For j = 0 to (n-k) do
begin

If (Bn-k+l (i) has a jth partner) then

begin
current_cube = (The address of the cube formed from

Bn-k+l (i) and Bjn-k+l (i))

current_cube = concat ('X'd, current_cube)
if (current_cube is free) then
begin

allocate (current_cube);
exit;

end
end;

end

-18-

Lemma 5:

Step2 of Algorithm (4), with 8 = infinite, generates (k-l)(n-k)2n-k new

Qkcubes.

proof:

Ignoring the case p=O, Algorithm (3) generates (n-k) 2n-k subcubes. These
correspond to the last n-k columns of the matrix in Fig. 9. Each of these can
be expanded k-1 times. So step 2 of Algorithm (4) will generate (k-l)(n-k)
2n-k new Qk cubes.

Lemma 6:

The Qkcubes generated step 2 of Algorithm (4) are disjoint among

themselves.

proof:

Step 2 of Algorithm (4) generates cubes by right cyclic shifting addresses
that are already proved to be disjoint, by lemma 4, thus have distinct
(n-k+l) most significant digits. When shifting i times, 1 $; i $; k-1, the
(k-1-i) least significant digits will be X's. So each shift will produce a new
set of cubes that are different and disjoint from all others.

Lemma 7:

The Qk cubes generated by stepl of Algorithm(4), i.e. Algorithm (3), are

disjoint from those generated by Step 2 of Algorithm (4).

proof:

This is clear smce the addresses of those recognized by Algorithm (3)
when expressed with n digit have at least k-1 X's. However, those
generated by step 2 of Algorithm (4) have less than k-1 X's.

From the above lemmas the following theorem holds.

-19-

Theorem 8:

Algorithm (4) (both steps) will generate [k(n-k)+l] zn-k distinct Qks

Example 18:

As a quick comparison we consider a request for a Q2 subcube m a Q4

multiprocessor. Form the previous discussion one can easily see the
following:

a) The buddy system strategy will recognize

OOXX OlXX lOXX 1 lXX

b) Gray code strategy will recognize

OOXX OXlX OlXX XlOX llXX lXlX lOXX XOOX

c) Algorithm (3), i.e. step 1 of Algorithm (4), will recognize

OOXX OXOX XOOX OXlX
XOlX OlXX XlOX XllX
lOXX lXOX lXlX llXX

d) Step 2 of Algorithm (4) will recognize

xoxo xxoo
XOXl XXOl
XlXO XXIO
XlXl XXII

e) Algorithm (4) will recognize both (c) and (d).

A summary is given in Fig. 12.

-20-

The Method Number of Q2 s recognized

Buddy System (Algor;thm 1) 2
n-k

Gray Strategy (AlgorHhm 2) 2
n-k+1

(A lgor;thm 3) (n-k+1) 2
n-k

Our Strategy (Alqor;thm 4) n-k
(Step. 2) (k-1) (n-k) 2

(A lgor;thm 4) [k(n-k)+ 1] 2
n-k

Fig. 12, The number of O s recognized in a o4
2

IV. Implementation Issues:

=4

=8

=12

= 8

= 20

When implemented using an array of 2n bits, we will have to check
sequentially 2n allocation bits each time a cube is requested which could be
extremely large. This will result in an inefficient implementation especially
if dynamic allocation is used and/or the rate of releasing the cubes can't be
predicted.

An efficient way to keep track of the availability of the processors and the
subcubes is to organize their allocation bits as a tree in which the external
nodes are the allocation bits for the processors and the internal nodes are
the allocation bits for the subcubes. The external node is O if the
corresponding processor is available and 1 if it is not. Similarly, the internal
node is O if the subcube associated with it is available as a whole and 1 if it
is not. We can represent a tree of height n using an array A[l: 2n+1-1] of
2n+l_1 bits. The root node corresponds to location 1. For an internal node i,
the left son is stored at 2i and the right son is at 2i+ 1. Furthermore, the
internal nodes at level i are at location 2i to 2i+l -1. So when a Qk is

requested, the nodes at level (n-k+ 1) of the tree needs to be searched.
These nodes correspond to array positions 2n-k+ 1 to 2n-k+2 _ 1. For these
nodes the pth partner, if exists, can be obtained by changing the pth bit
from O to 1. An example is shown for Q3 in Fig. 13 below.

-21-

.................................. Level D

········ ·· ······· ··· ······ ······•le-rel 2

..... 12

000 001 010 011 100 101 110 111

□LIi II Ar-r.ay

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Address

r-0"1!-1-11 2 3 level

Fig.13, A tree and its array representation for o3

Allocation:

To allocate a k-dimensional subcube, Qk :

1. Search the tree at the level n-k+ 1 for two free Qk/2s that form a Qk,

when combined.We use algorithm (3) given in section ID to do the
search systematically.

2. Allocate these two Qk/2s to the incoming task.

3. For each external node,v, covered by (i.e. descendents of) the subcubes
obtained in the previous step do:
a. Set v to 1.
b. Traverse the fathers link setting the allocation bits to 1, until either

the root or an unavailable cube is reached.

-22-

Deallocation:

To deallocate a k-dimensional subcube, Qk:

1. Set the allocation bits associated with the two Qk/2 to 0.

2. For each external node, v, covered by (i.e. descendents of) the subcubes
obtained in the previous step do:

a. Set v to 0.
b. If its sibling is available set the fathers allocation bit to 0.
c. Propagate upwards until nodes can't be merged anymore or the root

is reached.

V. Conclusion:

We briefly reviewed the two known strategies for static processors
allocation in an n-cube multiprocessor, namely the buddy system strategy
and the gray code strategy and then proposed a new strategy that
outperforms the first by (n-k+l) and the second by (n-k+l)/2 in cube
recognition.

Furthermore, our strategy is suitable for static as well as dynamic
processors allocation and it results in a less system fragmentation, more
subcubes recognition, and higher fault tolerance.

An extension to our strategy that searchs the whole tree and thus improves
the performance is described. _When our algorithm and its extension are
combined, Algorithm (4), they outperform the buddy system by [k(n-k)+l]
and the gray strategy by [k(n-k)+l]/2 in cube recognition. Implementation
details of these algorithms are also discussed.

References:

[1] K. Hwang and F.A. Briggs, Computer Architecture and Parallel
Processing, New York: McGraw-Hill, 1984.

[2] R. M. Chamberlain, "Gray codes, Fast Fourier Transformations and
Hypercubes," Parallel Computing, 6, 1988, pp. 225-233.

-23-

[3] M. Chen and K. G. Shen, "Embedment of interesting task modules into
a hypercube multiprocessor," in Proc. Second Hypercube Conf., Oct.
1986, pp. 121-129,.

[4] M. Chen and K. G. Shen, "Processor Allocation in an N-Cube
Multiprocessor Using Gray Codes," IEEE Trans. Comput., vol. C-36,
Dec. 1987, pp. 1396-1407.

[5] B. Becker and H. U. Simon, "How robust is then-cube?," in Proc. 27th
Ann. Syrop. Foundations Comput. Sci., Oct. 1986, pp. 283-291.

[6] C. L. Seitz, "The cosmic cube," Commun. Ass. Comput. Mach., vol. 28,
Jan. 1985,pp.22-33.

[7] NCUBE Corp., NCUBE/ten: AN Overveiw, Beverton, OR, Nov. 1985.

[8] L.N. Bhuyan and D.P. Agrawal, "Generalized hypercube and hyperbus
structures for a computer network," IEEE Transactions on Computers,
C-33, pp. 323-333, April 1984.

[9] J. R. Armstrong and F. G. Gray, "Fault Diagnosis in a Boolean n Cube
Array of Multiprocessors," IEEE Trans. Comput., vol. C-30, Aug. 1981,
pp. 390-393 .

[10] M. Pease, "The Indirect Binary n-Cube Microprocessor Array," IEEE
Trans. Comput., C-26, May. 1977, pp. 458-473.

[11] H.P. Katseff, "Incomplete hypercubes," IEEE Trans. Comput., vol. 37, 5,
pp.604-608,May1988.

[12] Y. Saad and M. H. Schultz, "Topological Properties of Hypercubes," IEEE
Transactions on Computers, C-37, July 1988, pp 867-872.

[13] Z. Kohavi, Switching and Finite Automata Theory, New York:
McGraw-Hill, 1978.

[14] F. Harary, Graph Theory. Reading, MA:Addison-Wesely, 1969.

-24-

'

	20221020130620501
	20221020130736221

