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ABSTRACT 

A computer- pr-ogr-am complexity measur-e is a measur-e of how 
easy the pr-ogr-am is to under-stand, test, modify, maintain, etc. 
Many of these measures ar-e derived fr-om the control or flow gr-aph 
of the pr-ogr-am. We describe these measures gr-aph theoretically, 
indicate what aspect or- aspects of the pr-ogr-am they measur-e and 
compar-e their- strengths and weaknesses. 
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I NTF:ODUCT I ON 

Studies of programming have revealed that over the life of a 
program nearly two-thirds of the cost is spent on maintenance and 
over one-half of the time is spent testing. Both maintenance and 
testing are primarily human activities. Hence the complexity or 
ease of working with or understanding a program is extremely 
important. 

There are two approaches to assessing how difficult a given 
program will be to work with. We can either 

a) actually measure the performance of a programmer working with 
the program, or· 

b) we can observe that the program has characteristics similar 
to those possessed by other programs that we have found to 
be difficult to work with by following the methodology of a). 

Research on software (psychological) comple>:ity has attempted to 
identify and measure characteristics of a program that determine 
how difficult or easy it is t~ work with. Note that for the 
purposes of this paper, software complexity is associated with 
the programmer rather than program performance. The term 
computational complexity refers to the formal mathematical 
analysis of the efficiency (execution time, memory space used) of 
the program algorithm, data structures, etc. 

A software complexity metric is a mapping from computer 
programs into the positive integers. The interpretation of the 
mapping is the larger the integer the more complex the program. 
Thus for two programs A and B, if the value of A is less than the 
value of B, then program A is "less comple>:" than program B. 

Software complexity measures have several uses. Probably 
the most immediate is to provide feedback to the programmer about 
his or her code. It could indicate that it will be difficult to 
test or maintain and should be rewritten. It could also be used 
as a measure of the quality of the program such as an acceptance 
standard. A software complexity measure could also be used to 
predict the resources needed to implement and test or the number 
of errors or the difficulty in maintaining the program. 

There is no one measure of software complexity. In fact 
there is no commohly accepted definition of complexity. It is 
acknowledged that complexity is a multi-faceted, relative and 
elusive concept. Everyone has nearly the same general idea of 
what complexity is, but nearly everyone disagrees on how to 
measure it, or for that matter, if it can be measured. Often 
complexity is defined in terms of the proposed measure. 

Many of the software complexity measures are derived from a 
static analysis of a graph associated with the program. These 
measures are based on program properties such as flow of control 
within a program or between program modules. In the next section 
we will define the graphs most commonly associated with computer 
programs. Of these, the control graph or flow graph is the most 
common. 
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Section 3 describes several graph theoretic complexity 
measures. For each measure we will define it graph theoretically 
and indicate the program property it measures. We will also give 
an evaluation of the metric in terms its utility and ease of 
computing. Section 4 summarizes the graph theoretical measures 
and indicates directions for future work in the area. 

GRAPHS ASSOCIATED WITH PROGRAMS 

One of the simplest graphs associated with a computer 
program is the program graph [BJ. It has a node for each program 
statement and an arc (a~b) if statement b may be executed 
immediately after after statement a. An example of a program 
graph is given in Figure 1. This definition · works well for 
Fortran~ Basic~ Cobol or other languages without a grouping 
statement. However for languages with a grouping statement such 
as the compound statement in Pascal or Algol~ one or more 
statements may be part of a single statement. A compound 
statement consists of a BEGIN followed by one or more statements 
followed-by an END. A problem is how to represent this in the 
graph. Probably the simplest solution is to treat the BEGIN, END 
and each statement in the compound statement as statements. 

One obvious disadvantage of the program graph is its size 
one node per statement. Usually straight-line sequences of 
program statements (set of nodes with indegree 1 and outdegree 1) 
are considered no more complex than a single statement. In a 
flow graph or control graph, straight-line sequences are replaced 
by a single node. A program block (or just block) is a sequence 
of consecutive program statements that can only be entered at the 
first statement and exited from the last statement and there is 
no flow of control to other than the next statement. The nodes 
of the flow graph ( control graph or control flow graph ) are the 
program blocks and the edges correspond to a branch or flow of 
control between blocks. The flow graph of the Bubble Sort 
program of Figure 1 is given in Figure 2. Flow graphs are the 
graphs most frequently used in defining software complexity 
measures. 

A third graph is the call graph. Its nodes are the main 
program and its subprograms (procedures~ subroutines~ functions~ 
etc.). An edge (a,b) represents the invocation of subprogram b 
in subprogram a. See Figure 3. Note that a subprogram may 
contain several different invocations of the same subprogram. 
Hence the call graph may have multiple edges between a pair of 
nodes. Also a non-recursive program will have an acyclic call 
graph; the call graph of a recursive program will contain one or 
more cycles. 

Graphs have many applications in the programming area 
besides software complexity measures. One example is structured 
programming. A program is said to be structured if it is 
written usiAg only the three building blocks: sequence, if-then­
else and do-while. See Figure 4. A structured program is 
characterized by a "forbidden subgraph" characterization of its 
flow graph. 
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Theorem [7]: A program is nonstructured if and only if its flow 
graph contains a subgraph ismorphic to one of the four graphs 
given below. 

(a) <b> <c> (d) 

Corollary: If a program is _nonstructured it contains at least 
two of the forbidden subgraphs. 

Note 
(a) 
Cb) 
(c) 
(d) 

that the four graphs in the Theorem correspond to 
Branching out of a loop. 
Branching into a loop. 
Branching out of a decision. 
Branching into a decision. 

S6FTWARE COMPLEXITY MEASURES 

In this section we will describe the most common graph 
theoretic software complexity measures. Our descriptions will 
include both the graph theory definition and the program property 
it measures. We will discuss the merits and sh6rtcomings of each 
measure. 

1. McCabe's Cyclomatic Complexity 

McCabe [7] defined the complexity of a program as the 
cyclomatic number of its control graph. The cyclomatic number 
V(G) of a graph with n nodes~ e arcs and p connected components 
is 

V(G) = e - n + p. 

McCabe's cyclomatic complexity is the most widely used graph 
theoretic complexity measure. He felt that complexity was best 
measured by the number of paths through a program. But since 
this number could be extremely large and hence impractical to 
compute~ he defined complexity in terms of the number of linearly 
independent basic paths. Every path can be expressed as a 
combination of basic paths. He was motivated by the following 
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theorem from Berge [1J: 

Theorem: In a strongly connected graph G, the cyclomatic number 
is equal to the maximum number of linearly independent circuits. 

Given a program we can associate a flow graph with a unique 
entry node and a unique exit node. Note that if a flow graph has 
several exit nodes, we can add arcs from these nodes to a unique 
exit node. If we assume that each node of the control graph is 
reachable from the entry node (i.e. every program statement can 
be reached from the first statement>, then by adding an arc from 
the exit node to the entry node the flow graph becomes strongly 
connected. Hence the theorem applies. 

The cyclomatic number is simple to compute. It equals the 
number of program predicates (conditional or looping statements) 
plus one. Thus it is not necessary to construct the flow graph 
in order to compute the cyclomatic complexity. 

Undoubtedly this ease of computation is one of the major 
reasons for the popularity of McCabe's measure. An early 
experiment in software complexity measures for large programs by 
Farr and Zagorsky [4] also concluded that the "IF" statement 
density was a useful and easily computed measure of logical 
complexity. Of the 93 candidate measures, their study concluded 
that the IF statement count had a significant weight in their 
most accurate formula. 

After he analyzed many Fortran programs McCabe 
that rather than limiting a module to a certain 
statements such as 50~ a cyclomatic complexity of 
reasonable upper limit. 

concluded 
number of 
10 was a 

The major limitation of the cyclomatic number as a 
complexity measure is that it is based entirely on one property 
of the program~ the number of condition and looping statements. 
It totally ignores such things as nesting levels of these 
statements, program comments~ choice of data structure~ choice 
of variable names~ etc. Certainly the number of predicates is 
only one aspect of complexity. 

McCabe"s results were based on a study of a large number of 
Fortran programs. It is not clear that the same is true for 
other programming languages. 

2. CHEN"S PROGRAM COMPLEXITY 

Chen [2] attempted to analyze programmer productivity as a 
function of program control complexity. His complexity measure 
took nesting of statements into account. He defined the maximal 
intersect number <MIN) on the regions of either the program graph 
or the flow graph of the program. A single arc whose removal 
disconnects the weakly connected graph is called a bridge. For 
each maximal subgraph that does not contain a bridge or is not 
weakly connected, draw a line from the arc entering its entry 
node to the arc leaving its exit node. Then the MIN of a 
strongly connected graph is the maximum number of arcs 
intersected by a line drawn from the outer region that enters all 
regions of the graph only once. See Figure 5. 
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For a weakly connected graph its MIN is equal to the sum of 
the MIN's of all its strongly connected subparts minus twice the 
number of subparts plus two. Thus 

MIN= sum of MIN's of strongly connected subparts 
2 * number of subparts+ 2 

For the graph of Figure 6~ 
MIN= (4 + 5) - 2*(2) + 2 = 7 

To show that the MIN takes nesting into account~ Figure 7 shows 
two programs with two conditional statements. When the 
conditional statements are in sequence and not nested~ the MIN is 
2; whereas when the conditional statements are nested~ the MIN is 
3. In general if a program has n conditional statements, its MIN 
value ranges from n+1 (all conditionals are in a single nested 
structure) to 2 (the conditionals are in sequence with no 
nesting) 

There is no natural program characteristic that correpsonds 
to the MIN. In fact~ the MIN is not a graph parameter. It is 
only defined in terms of a graph. Probably the graph parameter 
that comes closest to the MIN is a type of maximum cut-set. 

Chen's empirical data showed that programmer productivity 
(number of source statements produced) decreased as the 
comple>:ity (MIN) of the program increased. However the MIN of a 
program is very tedious to compute. 

3. Scope Metric 

The Scope Metric [5] is computed from the flow graph. It 
also attempts to measure the nesting of the blocks of the program 
by measuring the scope of control of the control structure. 

Every node of the graph is classified as either a selection 
node (outdegree 2 or more) or a receiving node (outdegree 1 or 
0). To obtain the scope number create a subgraph G' consisting 
of all nodes immediately succeeding a given selection node. The 
subgraph G' will have at least one ''lower bound'', or node that is 
reachable via every path out of the subgraph. The greatest lower 
bound (GLB) is the lower bound of the subgraph that precedes 
every other lower bound of G'. The number of nodes preceding the 
GLB and succeeding the selection node plus one is the ''adjusted 
complexity'' of the selection node. The procedure is repeated for 
every selection node in the flow graph. The adjusted complexity 
of a receiving node is one. The Scope Number is the sum of the 
adjusted complexities of all nodes in the flow graph. See Figure 
8. 

It is claimed that the Scope Number reflects the level of 
nesting and the amount of processing done within the nested 
structure. A program with n binary decisions will have Scope 
Number that ranges from 3n+1 ( decisions are serial) through 
3(n(n+1)/2)+2n+1 ( each decision node is nested under the 
previous decision node.) 

Just as for McCabe's cyclomatic complexity, the Scope Number 
is based on the number of decision statements. It does take 
statement nesting into account, but does not consider the choice 
of algorithm, data structure, comments, meaningful variable 
names, etc. However, the Scope Number assigns complexities to 
control constructs based on their scope of effect within the 
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program rather than upon the construct alone. The Scope Number is 
easier to compute than the MIN~ but more difficult than the 
cyclomatic complexity. 

4. Knot Count 

The knot count [10] is a measure of the unstructuredness of 
a program. Programmers frequently draw arrows in the left hand 
margin of a program listing as an aid in following the logic flow 
and branching in the program. This is especially true for 
Fortran and Basic programs. Intuitively~ the knot count is the 
minimum number of intersections of these arrows. 

Graph theoretically~ the knot count can be defined from the 
program graph as folows: List the nodes of the program graph in 
order vertically on a page. Draw all of the arcs on one sid~ of 
the vertical list of nodes. The knot count is the minimum number 
of arc crossings over all possible arrangements of the arcs. See 
Figure 9. 

Cook [3] related the knot count to the overlap graph. 
Assign consecutive integers starting with 1 to the statements of 
the program. The overlap graph has a node for each transfer of 
control in the program to other than the natural successor 
statement~ e.g. the next statement. Hence each node corresponds 
to the open interval of statements between the two statements 
involved in the transfer of control. There is an undirected edge 
in the overlap graph between two nodes whenever the corresponding 
open intervals have more than an endpoint in common and neither 
is properly contained in the other. Figure 10 gives the overlap 
graph of the program in Figure 9. The number of edges in the 
overlap graph is the knot count of the program. 

The knot count depends on the order of the program 
statements. This is in sharp contrast to McCabe's cyclomatic 
measure which is totally independent of the statement ordering. 
Clearly the layout of the program impacts its readablility and 
understandability. The larger the knot count~ more difficult it 
is to follow the program logic. 

The knot count does not measure nesting~ but it does measure 
unstructuredness. A program with n properly nested loops has a 
knot count of zero. A structured program does not have a knot 
count of zero as the if-then-else construct has one knot. 
However if we perform the usual reduction (primitive structured 
programming constructs replaced with a single node and removal of 
self loops)~ a structured program reduces to a single node with 
zero knots. After a program has been reduced as much as 
possible~ the remaining knots are called essential knots. The 
essential knot count is a measure of unstructuredness. 

The knot count is determined from the program text. Its 
best utilization is as an indictor of program readability. It is 
simple to compute especially using the overlap graph. 

5. Henry and Kafura's Information Flow Complexity 

This measure is quite different from the ones we have 
encountered thus far. It measures the interconnectivity of the 
program modules. Our previous metrics basically measured the 
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complexity of a single module and defined the complexity of a 
large program with subprograms as the sum of the complexities of 
the subprograms. Henry and Kafura [6] based their measure on the 
premise that the complexity of the interface between program 
modules and data flow are critical for program testing and 
maintenance. 

The graph of the program is the call graph with additional 
nodes for the data structures. Arcs correspond to invocations of 
modules, data values passed to or between modules, and 
information deposited or retrieved from a data structure. The 
fan-in and fan-out are merely the indegree and outdegree 
respectivley. They defined the complexity of a module as 

1 ength * (fan-in * fan-out )-Z 

where the length is some complexity measure of the module such as 
McCabe's cyclomatic complexity or the number of statements' in the 
module. 

They validated their measure by correlating it with data 
about changes in the UNIX system. These changes were mostly to 
correct errors. The modules with a high complexity had most of 
the changes. The advantage of their measure is that it can be 
applied at design time as well as to program code. Current 
techniques in data flow analysis can provide the information 
for the graphs automatically at compile time. Hence the 
computation is not that difficult. 

Henry and Kafura feel that an information flow complexity 
measure is an appropriate and practical measure for large real 
world systems. It provides information that cannot be derived 
from simple single module based measures. 

FURTHER WORK 

As we have shown, a popular approach to measuring software 
complexity involves the analysis of some of the characteristics 
the program flow graph. Typically, these characteristics are 
some aspect of the flow of control. All of the metrics we have 
described concentrate on different characteristics. For example, 
McCabe's metric is based on the number of decisions in the 
program; Chen's metric is a function of how the decisions in the 
program are related to each other (e.g. nesting); and the Scope 
metric reflects both the number of decisions and how they are 
related. The knot count is also based on how decisions are 
related to each other, but rather than nesting it reflects 
program "unstructuredness". The information flow metric 
approaches complexity from an entirely different direction by 
considering of control flow betweem module~. 

It is not clear what is the best approach or what most 
accurately measures the complexity of real programs. However, it 
appears that limiting the analysis to control flow 
characteristics disregards other factors that most programmers 
feel contribute to the ease or difficulty of working with a 
program. These other factors include commenting~ choice of 
variable names, data structuring, etc. Two programs that are 



identical except for comments and variable names have identical 
flow graphs, but could have quite different complexities. Also 
it is not clear that that complexity metrics provide a valid 
comparison between different programs. Are two quite different 
programs with the same complexity value equally difficult to work 
with? Is a program with a complexity value twice that of another 
program twice as difficult to work with? Ideally a metric should 
be sensitive to more than the number or nesting of decisions and 
should be fine enough so that rarely will two non-isomorphic 
flow graphs have the same complexity value. This leads us to 
conclude that it is impossible to expect a single integer value 
to accurately reflect the complexity of a program if the measure 
is based on the flow graph or another graph associated with the 
program. It seems more likely that a complexity metric measures 
only one aspect of complexity or the difficulty of performing a 
particular programming task. Thus, for example, McCabe's measure 
would seem to be a good indication of the difficulty of testing a 
program. 

Three goals for further research in this area are: 

1. Development of more sensitive metrics. 

2. Establishment through empirical evaluation of the utility of 
existing metrics. 

3. Relation of existing metrics to particular programming tasks. 

CONCLUSIONS 

There currently exist many metrics that purport to measure 
program complexity. A number of these are based on an analysis 
of the flow graph of the program. This approach has a major 
weakness in that the program flow graph only reflects the flow of 
control in the program. It does not reflect characteristics of 
easy-to-understand programs such as meaningful variable names, 
comments, indentation, etc. 

Our understanding of program complexity is currently in its 
infancy so we are unable to evaluate the "goodness" of any metric 
based on what characteristics it measures. However, it is clear 
that current metrics lack sufficient sensitivity as they are 
based on only a few (usually on~) program characteristics. 
Future research must determine the relevant parts of current 
metrics and expand the pool of potential candidate 
characteristics to be investigated. 
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1 SUBROUTINE BUBBLE<A~N) 
2 DO I = 2~N ..,. 
·-' IF <A (I) . GE. A<I-1)) GOTO 200 
4 J = I 
5 100 IF (J .LE 1) GOTO 200 
6 IF <A <J > .GE. A<J-1) > GOTO 200 
7 ITEMF' = A(J) 
8 A<J) = A<J-1) 
9 A(J-1) !TEMP 
10 J = J-1 
1 1 GOTO 100 
12 200 CONTINUE 
13 RETURN 
14 END 

FIGURE 1. Fortran Bubble Sort Program and its Program Graph. 
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Figure 2. Flow graph of Fortran Program in Figure 1. 



PROGRAM MAIN 
CALL SUB1 
CALL SUB2 
CALL SUB1 
CALL SUB3 
END 

SUBPROGRAM SUB1 
CALL SUB3 
CALL SUB2 
CALL SUB3 
END 

SUBPROGRAM SUB2 
CALL SUB1 
CALL SUB3 
END 

SUBPROGRAM SUB3 
CALL SUB2 
CALL SUB4 
CALL SUB1 
END 

SUBPROGRAM SUB4 
CALL SUB3 
END 

Figure 3. Example program and call graph. 



(a) Sequence o----)() 

(b) if-then-else 

(c) do-·while 

Figure 4. Three structured programming building blocks 
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MIN= 2 

Figure 5. Example of MIN 
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MIN= 4 + 5 - 2 * (2) + 2 = 7 

Figure 6. MIN as sum of subparts 
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....._ ...... I ---
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MIN= 4 - 2 * (2) + 2 = 2 

/ 
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' \ 
I 

I 
/ 

MIN= 3 - 2 + 2 = 3 

Figure 7. MIN of nested and non-nested conditional statements. 
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Adj Ltsted Compl e>: i ty 

Node 1 7 

Node 2 1 

Node ..,. 
·-' 4 

Node 4 1 

Node 5 1 

. 
Node 6 1 

Node 7 1 

Node 8 1 

Scope NLlmber - 17 

FigLlre 8. Example of flow graph and its scope nLlmber. 
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100 

- 150 
r 

200 

.... 300 ,. 

,,. .. 500 
~ 

,,. 

.... 550 ,. 

... 2000 r 

CALL SUB! 

IF (ZR) 500, 500, 100 

CALL SUB2 

IF (23) 200, 200, 550 

ZG = ZG + 1 

zc = 0 

CALL SUB3 

CALL SUB4 

GOTO 2000 

CONTINUE 

23 = 1 

GOTO 150 

CONTINUE 

CALL SUB! 

ZB =AB+ 1 

zc = zc + 1 

GOTO 300 

RETURN 

END 

Figure 9. Program with 9 knots 
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Line 
Numbers 

1 CALL SUB1 l 
2 IF <ZR) 500, 500, 100 

3 100 CALL SUB2 

4 150 IF (23) 200, 200, 550 

5 200 ZG = ZG + 1 

6 zc = 0 

7 CALL SUB3 

8 3(10 CALL SUB4 

9 GOTO 2000 

10 500 CONTINUE 

1 1 23 = 1 

12 GOTO 150 

13 550 CONTINUE 

14 CALL SUB1 

15 ZB = ZB + 1 

16 zc = zc + 1 

17 GOTO 300 

18 2000 RETURN 

19 END 

Figure 10. Program and its overlap graph 
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