
83-1-2

osu 2569

LI

A SURVEY OF GRAPH THEORETIC COMPUTER
PROGRAM COMPLEXITY MEASURES

Curtis R. Cook
Warren Harrison

Department of Computer Science
Oregon State University
Corvallis, Oregon 97331

D~P ·.nTrr!,'. i or- c~:' ::.. -~ ' ~ClCNCE
c1 ••,rr,, 1 :~'"!,\·r:: U~·•:,:· --; · t
con-.· t.LUS, OR2GOt,J 07331

A SURVEY OF GRAPH THEORETIC COMPUTER

PROGRAM COMPLEXITY MEASURES

Curtis R. Cook
Warr-en Har-r- i son

Computer- Science Department
Or-egon State Univer-sity

Cor-vallis, Or-egon 97331

ABSTRACT

A computer- pr-ogr-am complexity measur-e is a measur-e of how
easy the pr-ogr-am is to under-stand, test, modify, maintain, etc.
Many of these measures ar-e derived fr-om the control or flow gr-aph
of the pr-ogr-am. We describe these measures gr-aph theoretically,
indicate what aspect or- aspects of the pr-ogr-am they measur-e and
compar-e their- strengths and weaknesses.

KEYWORDS Gr-aph theor-y, psychological compl~xity, complexity
measur-es, flow gr-aph, pr-ogr-am graph, call gr-aph

1.

I NTF:ODUCT I ON

Studies of programming have revealed that over the life of a
program nearly two-thirds of the cost is spent on maintenance and
over one-half of the time is spent testing. Both maintenance and
testing are primarily human activities. Hence the complexity or
ease of working with or understanding a program is extremely
important.

There are two approaches to assessing how difficult a given
program will be to work with. We can either

a) actually measure the performance of a programmer working with
the program, or·

b) we can observe that the program has characteristics similar
to those possessed by other programs that we have found to
be difficult to work with by following the methodology of a).

Research on software (psychological) comple>:ity has attempted to
identify and measure characteristics of a program that determine
how difficult or easy it is t~ work with. Note that for the
purposes of this paper, software complexity is associated with
the programmer rather than program performance. The term
computational complexity refers to the formal mathematical
analysis of the efficiency (execution time, memory space used) of
the program algorithm, data structures, etc.

A software complexity metric is a mapping from computer
programs into the positive integers. The interpretation of the
mapping is the larger the integer the more complex the program.
Thus for two programs A and B, if the value of A is less than the
value of B, then program A is "less comple>:" than program B.

Software complexity measures have several uses. Probably
the most immediate is to provide feedback to the programmer about
his or her code. It could indicate that it will be difficult to
test or maintain and should be rewritten. It could also be used
as a measure of the quality of the program such as an acceptance
standard. A software complexity measure could also be used to
predict the resources needed to implement and test or the number
of errors or the difficulty in maintaining the program.

There is no one measure of software complexity. In fact
there is no commohly accepted definition of complexity. It is
acknowledged that complexity is a multi-faceted, relative and
elusive concept. Everyone has nearly the same general idea of
what complexity is, but nearly everyone disagrees on how to
measure it, or for that matter, if it can be measured. Often
complexity is defined in terms of the proposed measure.

Many of the software complexity measures are derived from a
static analysis of a graph associated with the program. These
measures are based on program properties such as flow of control
within a program or between program modules. In the next section
we will define the graphs most commonly associated with computer
programs. Of these, the control graph or flow graph is the most
common.

L
I

Section 3 describes several graph theoretic complexity
measures. For each measure we will define it graph theoretically
and indicate the program property it measures. We will also give
an evaluation of the metric in terms its utility and ease of
computing. Section 4 summarizes the graph theoretical measures
and indicates directions for future work in the area.

GRAPHS ASSOCIATED WITH PROGRAMS

One of the simplest graphs associated with a computer
program is the program graph [BJ. It has a node for each program
statement and an arc (a~b) if statement b may be executed
immediately after after statement a. An example of a program
graph is given in Figure 1. This definition · works well for
Fortran~ Basic~ Cobol or other languages without a grouping
statement. However for languages with a grouping statement such
as the compound statement in Pascal or Algol~ one or more
statements may be part of a single statement. A compound
statement consists of a BEGIN followed by one or more statements
followed-by an END. A problem is how to represent this in the
graph. Probably the simplest solution is to treat the BEGIN, END
and each statement in the compound statement as statements.

One obvious disadvantage of the program graph is its size
one node per statement. Usually straight-line sequences of
program statements (set of nodes with indegree 1 and outdegree 1)
are considered no more complex than a single statement. In a
flow graph or control graph, straight-line sequences are replaced
by a single node. A program block (or just block) is a sequence
of consecutive program statements that can only be entered at the
first statement and exited from the last statement and there is
no flow of control to other than the next statement. The nodes
of the flow graph (control graph or control flow graph) are the
program blocks and the edges correspond to a branch or flow of
control between blocks. The flow graph of the Bubble Sort
program of Figure 1 is given in Figure 2. Flow graphs are the
graphs most frequently used in defining software complexity
measures.

A third graph is the call graph. Its nodes are the main
program and its subprograms (procedures~ subroutines~ functions~
etc.). An edge (a,b) represents the invocation of subprogram b
in subprogram a. See Figure 3. Note that a subprogram may
contain several different invocations of the same subprogram.
Hence the call graph may have multiple edges between a pair of
nodes. Also a non-recursive program will have an acyclic call
graph; the call graph of a recursive program will contain one or
more cycles.

Graphs have many applications in the programming area
besides software complexity measures. One example is structured
programming. A program is said to be structured if it is
written usiAg only the three building blocks: sequence, if-then­
else and do-while. See Figure 4. A structured program is
characterized by a "forbidden subgraph" characterization of its
flow graph.

I

r

Theorem [7]: A program is nonstructured if and only if its flow
graph contains a subgraph ismorphic to one of the four graphs
given below.

(a) <c> (d)

Corollary: If a program is _nonstructured it contains at least
two of the forbidden subgraphs.

Note
(a)
Cb)
(c)
(d)

that the four graphs in the Theorem correspond to
Branching out of a loop.
Branching into a loop.
Branching out of a decision.
Branching into a decision.

S6FTWARE COMPLEXITY MEASURES

In this section we will describe the most common graph
theoretic software complexity measures. Our descriptions will
include both the graph theory definition and the program property
it measures. We will discuss the merits and sh6rtcomings of each
measure.

1. McCabe's Cyclomatic Complexity

McCabe [7] defined the complexity of a program as the
cyclomatic number of its control graph. The cyclomatic number
V(G) of a graph with n nodes~ e arcs and p connected components
is

V(G) = e - n + p.

McCabe's cyclomatic complexity is the most widely used graph
theoretic complexity measure. He felt that complexity was best
measured by the number of paths through a program. But since
this number could be extremely large and hence impractical to
compute~ he defined complexity in terms of the number of linearly
independent basic paths. Every path can be expressed as a
combination of basic paths. He was motivated by the following

4

theorem from Berge [1J:

Theorem: In a strongly connected graph G, the cyclomatic number
is equal to the maximum number of linearly independent circuits.

Given a program we can associate a flow graph with a unique
entry node and a unique exit node. Note that if a flow graph has
several exit nodes, we can add arcs from these nodes to a unique
exit node. If we assume that each node of the control graph is
reachable from the entry node (i.e. every program statement can
be reached from the first statement>, then by adding an arc from
the exit node to the entry node the flow graph becomes strongly
connected. Hence the theorem applies.

The cyclomatic number is simple to compute. It equals the
number of program predicates (conditional or looping statements)
plus one. Thus it is not necessary to construct the flow graph
in order to compute the cyclomatic complexity.

Undoubtedly this ease of computation is one of the major
reasons for the popularity of McCabe's measure. An early
experiment in software complexity measures for large programs by
Farr and Zagorsky [4] also concluded that the "IF" statement
density was a useful and easily computed measure of logical
complexity. Of the 93 candidate measures, their study concluded
that the IF statement count had a significant weight in their
most accurate formula.

After he analyzed many Fortran programs McCabe
that rather than limiting a module to a certain
statements such as 50~ a cyclomatic complexity of
reasonable upper limit.

concluded
number of
10 was a

The major limitation of the cyclomatic number as a
complexity measure is that it is based entirely on one property
of the program~ the number of condition and looping statements.
It totally ignores such things as nesting levels of these
statements, program comments~ choice of data structure~ choice
of variable names~ etc. Certainly the number of predicates is
only one aspect of complexity.

McCabe"s results were based on a study of a large number of
Fortran programs. It is not clear that the same is true for
other programming languages.

2. CHEN"S PROGRAM COMPLEXITY

Chen [2] attempted to analyze programmer productivity as a
function of program control complexity. His complexity measure
took nesting of statements into account. He defined the maximal
intersect number <MIN) on the regions of either the program graph
or the flow graph of the program. A single arc whose removal
disconnects the weakly connected graph is called a bridge. For
each maximal subgraph that does not contain a bridge or is not
weakly connected, draw a line from the arc entering its entry
node to the arc leaving its exit node. Then the MIN of a
strongly connected graph is the maximum number of arcs
intersected by a line drawn from the outer region that enters all
regions of the graph only once. See Figure 5.

5

For a weakly connected graph its MIN is equal to the sum of
the MIN's of all its strongly connected subparts minus twice the
number of subparts plus two. Thus

MIN= sum of MIN's of strongly connected subparts
2 * number of subparts+ 2

For the graph of Figure 6~
MIN= (4 + 5) - 2*(2) + 2 = 7

To show that the MIN takes nesting into account~ Figure 7 shows
two programs with two conditional statements. When the
conditional statements are in sequence and not nested~ the MIN is
2; whereas when the conditional statements are nested~ the MIN is
3. In general if a program has n conditional statements, its MIN
value ranges from n+1 (all conditionals are in a single nested
structure) to 2 (the conditionals are in sequence with no
nesting)

There is no natural program characteristic that correpsonds
to the MIN. In fact~ the MIN is not a graph parameter. It is
only defined in terms of a graph. Probably the graph parameter
that comes closest to the MIN is a type of maximum cut-set.

Chen's empirical data showed that programmer productivity
(number of source statements produced) decreased as the
comple>:ity (MIN) of the program increased. However the MIN of a
program is very tedious to compute.

3. Scope Metric

The Scope Metric [5] is computed from the flow graph. It
also attempts to measure the nesting of the blocks of the program
by measuring the scope of control of the control structure.

Every node of the graph is classified as either a selection
node (outdegree 2 or more) or a receiving node (outdegree 1 or
0). To obtain the scope number create a subgraph G' consisting
of all nodes immediately succeeding a given selection node. The
subgraph G' will have at least one ''lower bound'', or node that is
reachable via every path out of the subgraph. The greatest lower
bound (GLB) is the lower bound of the subgraph that precedes
every other lower bound of G'. The number of nodes preceding the
GLB and succeeding the selection node plus one is the ''adjusted
complexity'' of the selection node. The procedure is repeated for
every selection node in the flow graph. The adjusted complexity
of a receiving node is one. The Scope Number is the sum of the
adjusted complexities of all nodes in the flow graph. See Figure
8.

It is claimed that the Scope Number reflects the level of
nesting and the amount of processing done within the nested
structure. A program with n binary decisions will have Scope
Number that ranges from 3n+1 (decisions are serial) through
3(n(n+1)/2)+2n+1 (each decision node is nested under the
previous decision node.)

Just as for McCabe's cyclomatic complexity, the Scope Number
is based on the number of decision statements. It does take
statement nesting into account, but does not consider the choice
of algorithm, data structure, comments, meaningful variable
names, etc. However, the Scope Number assigns complexities to
control constructs based on their scope of effect within the

6

program rather than upon the construct alone. The Scope Number is
easier to compute than the MIN~ but more difficult than the
cyclomatic complexity.

4. Knot Count

The knot count [10] is a measure of the unstructuredness of
a program. Programmers frequently draw arrows in the left hand
margin of a program listing as an aid in following the logic flow
and branching in the program. This is especially true for
Fortran and Basic programs. Intuitively~ the knot count is the
minimum number of intersections of these arrows.

Graph theoretically~ the knot count can be defined from the
program graph as folows: List the nodes of the program graph in
order vertically on a page. Draw all of the arcs on one sid~ of
the vertical list of nodes. The knot count is the minimum number
of arc crossings over all possible arrangements of the arcs. See
Figure 9.

Cook [3] related the knot count to the overlap graph.
Assign consecutive integers starting with 1 to the statements of
the program. The overlap graph has a node for each transfer of
control in the program to other than the natural successor
statement~ e.g. the next statement. Hence each node corresponds
to the open interval of statements between the two statements
involved in the transfer of control. There is an undirected edge
in the overlap graph between two nodes whenever the corresponding
open intervals have more than an endpoint in common and neither
is properly contained in the other. Figure 10 gives the overlap
graph of the program in Figure 9. The number of edges in the
overlap graph is the knot count of the program.

The knot count depends on the order of the program
statements. This is in sharp contrast to McCabe's cyclomatic
measure which is totally independent of the statement ordering.
Clearly the layout of the program impacts its readablility and
understandability. The larger the knot count~ more difficult it
is to follow the program logic.

The knot count does not measure nesting~ but it does measure
unstructuredness. A program with n properly nested loops has a
knot count of zero. A structured program does not have a knot
count of zero as the if-then-else construct has one knot.
However if we perform the usual reduction (primitive structured
programming constructs replaced with a single node and removal of
self loops)~ a structured program reduces to a single node with
zero knots. After a program has been reduced as much as
possible~ the remaining knots are called essential knots. The
essential knot count is a measure of unstructuredness.

The knot count is determined from the program text. Its
best utilization is as an indictor of program readability. It is
simple to compute especially using the overlap graph.

5. Henry and Kafura's Information Flow Complexity

This measure is quite different from the ones we have
encountered thus far. It measures the interconnectivity of the
program modules. Our previous metrics basically measured the

7

I

r

complexity of a single module and defined the complexity of a
large program with subprograms as the sum of the complexities of
the subprograms. Henry and Kafura [6] based their measure on the
premise that the complexity of the interface between program
modules and data flow are critical for program testing and
maintenance.

The graph of the program is the call graph with additional
nodes for the data structures. Arcs correspond to invocations of
modules, data values passed to or between modules, and
information deposited or retrieved from a data structure. The
fan-in and fan-out are merely the indegree and outdegree
respectivley. They defined the complexity of a module as

1 ength * (fan-in * fan-out)-Z

where the length is some complexity measure of the module such as
McCabe's cyclomatic complexity or the number of statements' in the
module.

They validated their measure by correlating it with data
about changes in the UNIX system. These changes were mostly to
correct errors. The modules with a high complexity had most of
the changes. The advantage of their measure is that it can be
applied at design time as well as to program code. Current
techniques in data flow analysis can provide the information
for the graphs automatically at compile time. Hence the
computation is not that difficult.

Henry and Kafura feel that an information flow complexity
measure is an appropriate and practical measure for large real
world systems. It provides information that cannot be derived
from simple single module based measures.

FURTHER WORK

As we have shown, a popular approach to measuring software
complexity involves the analysis of some of the characteristics
the program flow graph. Typically, these characteristics are
some aspect of the flow of control. All of the metrics we have
described concentrate on different characteristics. For example,
McCabe's metric is based on the number of decisions in the
program; Chen's metric is a function of how the decisions in the
program are related to each other (e.g. nesting); and the Scope
metric reflects both the number of decisions and how they are
related. The knot count is also based on how decisions are
related to each other, but rather than nesting it reflects
program "unstructuredness". The information flow metric
approaches complexity from an entirely different direction by
considering of control flow betweem module~.

It is not clear what is the best approach or what most
accurately measures the complexity of real programs. However, it
appears that limiting the analysis to control flow
characteristics disregards other factors that most programmers
feel contribute to the ease or difficulty of working with a
program. These other factors include commenting~ choice of
variable names, data structuring, etc. Two programs that are

identical except for comments and variable names have identical
flow graphs, but could have quite different complexities. Also
it is not clear that that complexity metrics provide a valid
comparison between different programs. Are two quite different
programs with the same complexity value equally difficult to work
with? Is a program with a complexity value twice that of another
program twice as difficult to work with? Ideally a metric should
be sensitive to more than the number or nesting of decisions and
should be fine enough so that rarely will two non-isomorphic
flow graphs have the same complexity value. This leads us to
conclude that it is impossible to expect a single integer value
to accurately reflect the complexity of a program if the measure
is based on the flow graph or another graph associated with the
program. It seems more likely that a complexity metric measures
only one aspect of complexity or the difficulty of performing a
particular programming task. Thus, for example, McCabe's measure
would seem to be a good indication of the difficulty of testing a
program.

Three goals for further research in this area are:

1. Development of more sensitive metrics.

2. Establishment through empirical evaluation of the utility of
existing metrics.

3. Relation of existing metrics to particular programming tasks.

CONCLUSIONS

There currently exist many metrics that purport to measure
program complexity. A number of these are based on an analysis
of the flow graph of the program. This approach has a major
weakness in that the program flow graph only reflects the flow of
control in the program. It does not reflect characteristics of
easy-to-understand programs such as meaningful variable names,
comments, indentation, etc.

Our understanding of program complexity is currently in its
infancy so we are unable to evaluate the "goodness" of any metric
based on what characteristics it measures. However, it is clear
that current metrics lack sufficient sensitivity as they are
based on only a few (usually on~) program characteristics.
Future research must determine the relevant parts of current
metrics and expand the pool of potential candidate
characteristics to be investigated.

REFERENCES

1. Berge~ C. Graphs and Hypergraphs, North-Holland, Amsterdam,
The Netherlands, 1973.

2. Chen, E., Program complexity and programmer productivity,
IEEE-SE-2 No. 2, May 1978, pp. 187-194.

3. Cook, C., A Graph theoretic program complexity measure,
Proceedings of First West Coast Conference on Graph Theory
and Computing, 1978, pp. 109-124.

4. Farr, L. and Zagorski, H. S., "Quantitative analysis of
programming cost factors: a progress report'' in Frelink, A.
B. (ed) Economics of Automatic Data Processing. ICC
Symposium Proceedings 1965 Rome. North-Holland, Amsterdam,
1965.

5. Harrison, W. and Magel, K., A Complexity measure based on
nesting level, ACM SIGPLAN Notices, March 1981, pp. 63-74.

6. Henry S. and D. Kafura, Softwa~e structure metrics based on
information flow, IEEE-SE-7, No. 5, Sept. 1981, pp. 510-518.

7.

8.

McCabe, T., A complexity measure,
1976, pp. 309-321.

IEEE-SE-2 No. 4, Dec.

Paige, M. R., Program graphs, an algebra
implications for programming, IEEE-SE-1, No. 3,
pp. 286-291.

and their
Sept. 1975,

9. Ryder, B., Constructing the call graph of a program, IEEE­
SE-5 No. 3, May 1979, pp. 216-226.

10. Woodward, M., Hennell, M. and Hedley,
control flow complexity in program text,
Jan. 1979, pp. 45-50.

10

D., A Measure of
IEEE-SE-5 No. 1,

1 SUBROUTINE BUBBLE<A~N)
2 DO I = 2~N ..,.
·-' IF <A (I) . GE. A<I-1)) GOTO 200
4 J = I
5 100 IF (J .LE 1) GOTO 200
6 IF <A <J > .GE. A<J-1) > GOTO 200
7 ITEMF' = A(J)
8 A<J) = A<J-1)
9 A(J-1) !TEMP
10 J = J-1
1 1 GOTO 100
12 200 CONTINUE
13 RETURN
14 END

FIGURE 1. Fortran Bubble Sort Program and its Program Graph.

:L:l

Figure 2. Flow graph of Fortran Program in Figure 1.

PROGRAM MAIN
CALL SUB1
CALL SUB2
CALL SUB1
CALL SUB3
END

SUBPROGRAM SUB1
CALL SUB3
CALL SUB2
CALL SUB3
END

SUBPROGRAM SUB2
CALL SUB1
CALL SUB3
END

SUBPROGRAM SUB3
CALL SUB2
CALL SUB4
CALL SUB1
END

SUBPROGRAM SUB4
CALL SUB3
END

Figure 3. Example program and call graph.

(a) Sequence o----)()

(b) if-then-else

(c) do-·while

Figure 4. Three structured programming building blocks

:1.4

\ I
/

..._ ___ _ --

MIN= 2

Figure 5. Example of MIN

1 ,:::-,..!

\
\
\

"_ --
I

I \
\

\
\

'

MIN= 4 + 5 - 2 * (2) + 2 = 7

Figure 6. MIN as sum of subparts

:L6

I
I

I

I
I
\
'

-/
/

....._ I ---
-

MIN= 4 - 2 * (2) + 2 = 2

/
/

' \
I

I
/

MIN= 3 - 2 + 2 = 3

Figure 7. MIN of nested and non-nested conditional statements.

17

Adj Ltsted Compl e>: i ty

Node 1 7

Node 2 1

Node ..,.
·-' 4

Node 4 1

Node 5 1

.
Node 6 1

Node 7 1

Node 8 1

Scope NLlmber - 17

FigLlre 8. Example of flow graph and its scope nLlmber.

:1.8

100

- 150
r

200

.... 300 ,.

,,. .. 500
~

,,.

.... 550 ,.

... 2000 r

CALL SUB!

IF (ZR) 500, 500, 100

CALL SUB2

IF (23) 200, 200, 550

ZG = ZG + 1

zc = 0

CALL SUB3

CALL SUB4

GOTO 2000

CONTINUE

23 = 1

GOTO 150

CONTINUE

CALL SUB!

ZB =AB+ 1

zc = zc + 1

GOTO 300

RETURN

END

Figure 9. Program with 9 knots

19

Line
Numbers

1 CALL SUB1 l
2 IF <ZR) 500, 500, 100

3 100 CALL SUB2

4 150 IF (23) 200, 200, 550

5 200 ZG = ZG + 1

6 zc = 0

7 CALL SUB3

8 3(10 CALL SUB4

9 GOTO 2000

10 500 CONTINUE

1 1 23 = 1

12 GOTO 150

13 550 CONTINUE

14 CALL SUB1

15 ZB = ZB + 1

16 zc = zc + 1

17 GOTO 300

18 2000 RETURN

19 END

Figure 10. Program and its overlap graph

20

