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Object-oriented programmine languages have been promoted as the solution to the size and 
complexity issues of program development and maintenance [Cox86, and Poun90]. Object­
oriented programming (OOP) is purported to provide a more direct way of modeling the 
world than action-oriented (procedural) programming [Wegn87]. Object-oriented 
programming has different components [Cox86], different methods of design [Blai89, 
Cox86, and Wegn87], and different methods of testing [Fied89, and Perr90] than imperative 
programming languages. 

There has been little investigation of the quality and complexity of object-oriented 
programs. Object-oriented programming is so new that there are few accepted principles 
and guidelines. We do not know what makes an object-oriented program difficult or easy to 
understand, test, or maintain. The long-term goal of this research is to develop a 
quantitative method to determine the areas of greatest complexity in object-oriented 
programs, thus enabling a programmer to focus on the most error-prone or difficult to 
understand portions of code. 

In this paper we describe an object-oriented software complexity metric and our preliminary 
efforts in validating the metric. Our basic premise was that because of the function 
orientation and separation of procedures and data in traditional procedural programming, 
traditional software complexity metrics ( e.g. Lines of Code, McCabe's v(G) [McCa76], and 
Halstead's Software Science [Hals77]) do not adequately measure the complexity of object­
oriented programs. Our approach was to identify the OOP problem areas in the current 
literature and where appropriate adapt procedural metrics or develop new metrics that 
model these problem areas. Because extensive searching of the inheritance tree was 
common to all of the problem areas and because of the crucial role of classes in object­
oriented programming, for our metric we concentrated on measures of the class inheritance 
tree. Our initial hypothesis is that the depth and size features of the inheritance tree are 
major contributors to complexity. 

Several papers have proposed metrics similar to ours, but have not conducted empirical 
studies to validate them. Chidamber and Kemerer [Chid91] proposed a suite of metrics for 
object-oriented design: weighted methods per class, depth of inheritance tree, number of 
children, coupling between objects, all methods available to a class, and lack of cohesion in 
methods. They did not attempt to empirically evaluate their metrics. Instead they formally 
evaluated their metrics against Weyuker's metric evaluation property list [Weyu88]. Morris 
[Morr89] defined nine candidate metrics: methods per object class, inheritance 
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dependencies, degree of coupling between objects, degree of cohesion of objects, object 
library effectiveness, factoring effectiveness, degree of reuse of inheritable methods, average 
method complexity, and application granularity. Morris djd not attempt to empirically 
evaluate the complexity metrics proposed. He mapped the candidate metrics to 
productivity impact variables proposed by Booch (Booc86] and Seidewitz and Stark [Seid86] 
and he subjectively judged the influence of these metrics on impact variables: 
maintainability, reusability, extensibility, testability, comprehensibility, reliability, 
authorability. In another related paper Coppick and Cheatham [Copp92] applied McCabe's 
v(G) and Halstead's software science to objects in Lisp Flavors. They constructed a tool and 
computed metrics for part of a simple graphics editor program. Based on the limited data 
they suggested an upper limit for v( G) for an object, but stressed the need for more 
empirical data. 

To test our ideas we developed a software complexity metric for C++. We developed a 
program that computes a wide variety of size and inheritance tree measures from C+ + 
source code. This paper reports our initial evaluation of the metrics. Our preliminary 
results support our hypothesis that the size and depth features of the inheritance tree are 
indicators of complexity in object-oriented programs. 

This paper is organized as follows. In the next section, we describe the essential features of 
OOP, the basic OOP definitions and factors, and the OOP problem areas. The third section 
defines the basics of the traditional classes of software complexity metrics, and presents our · 
conclusions for use of these classes in OOP. In the fourth section we define our 
assumptions, the reasons for picking C++, the components of our C++ metric, and the 
unique method we use to augment our software complexity metric tool. In the fifth section 
we give our preliminary findings, and the similarities and differences in the C+ + code we 
have analyzed during testing of the metrics tool. Finally in the last section we give a 
description of a preliminary experiment we conducted. 

2. Object-oriented Programming Background 

Before presenting OOP complexity issues we will first fully characterize the essential 
features of OOP. Since there is no single accepted definition for OOP, we will give what are 
considered by most authors to be the essential ingredients and factors of OOP. 

Object-oriented Programming Definitions 

An object-oriented system should have the following [Blai89]: 
a. Possess encapsulation and inheritance, 
b. Have set-based abstraction, and 
c. Support inclusion polymorphism and operation polymorphism. 

Most authors agree that the two most important features of an object-oriented 
programming language are inheritance and encapsulation [Budd90]. Inheritance and 
encapsulation are defined as [Budd91 ]: 

Inheritance -A class may be defined as an extension or restriction of another. All the 
information known about one class can be inherited by a subclass. Classes can be 
ordered hierarchically with subclasses inheriting behavior from superclasses. This 
allows a programmer to structure a solution by building on a base of existing code. 
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Encapsulation - An object is encapsulated if it incorporates an operation set and a data set 
into a single entity. So encapsulation provides objects with both data and operations 
to perform the requested activities. This allows the programmer to hide 
implementation details and develop a solution in terms of high level abstractions by 
incorporating actions (operations) with data. 

Since inheritance is the mechanism of deriving or defining a new class from an old one, the 
description of a derived class is inherited from the base class. This description can be 
altered by adding members, overloading existing member functions, and modifying access 
privileges [Pohl89], producing a complex tree hierarchy when all the class interrelationships 
are juxtaposed. 

Object-oriented Problem Areas 

Our literature review showed the following OOP problem areas: 

Classes and inheritance [Knud89] - the base class defines the action of the derived 
class through inheritance, but the inheritance tree must be searched for the 
properties of the base class. 

Operator overloading [Wirf90] - operator overloading for class operands allows the 
implementor of a class to define the semantics of each operator separately. 
Operator overloading occurs when variables of the same name with similar or 
totally different functionality are defined in the same inheritance tree. 
Overloading requires a context sensitive search of the inheritance tree to find 
the base class and determine the attributes of the operator. 

Encapsulation abstraction [Wirf90] - encapsulation is the enforcement of the 
abstraction barrier by hiding the implementation details from the externally 
available operations and functions. Encapsulation allows information hiding 
to take place, which requires a search of the inheritance tree. 

Constructors and destructors [Knud89] - permit dynamic allocation of space during 
the execution of the program. Derived classes can have private areas that 
require knowledge of the base class prior to programming. This knowledge 
requires a lookup of the base class definition to determine private and public 
attributes, class initialization, class deallocation, and dynamic memory 
allocation. 

Yo-yo problem [Taen89] - with software reuse, construction and inheritance, an 
interclass dependency problem can occur. For example, any time a class calls 
itself or passes itself as an argument, a message is sent to the base class of the 
calling object. The base class interprets the message. A lookup of the calling 
class must be done, which is like a yoyo going down to the bottom of its string. 
If the base class does not implement a function for the message, a search of 
the superclass hierarchy chain occurs looking for the class that does 
implement the function. This is like the yoyo going back up the string 
[Taen89]. The yo-yo problem necessitates the lookup of the base class to 
determine behavior and data that activates a search of the inheritance tree. 



Polymorphism [Kors90] - the ability of procedures or functions to operate on more 
than one type. In object-oriented languages the ability to create a 
polymorphic function is due to message passing and inheritance. Since an 
object will determine which polymorphic function to utilize by characteristics 
that are inherited there must be a lookup of the inheritance tree to determine 
which function is the appropriate one. This lookup can be particularly 
difficult for the programmer because there can be multiple functions with the 
same function name and the variables in the function call need to be analyzed 
to help determine the proper function utilized. 

It is important to notice that extensive searching of the inheritance tree is common to all of 
these object-oriented problem areas. All uses of class behavior require a lookup, i.e., 
search, of the inheritance tree to determine the proper behavior and characteristics to be 
attributed to the class. 

3. Software Complexity Metrics 

Definition of source code complexity 

Software complexity metrics are objective measures of how complex source code is and how 
difficult it may be for a programmer to test, maintain, or understand programming source 
code [Cook84]. Software complexity metrics do not measure the complexity itself, but 
instead measure the degree to which those characteristics thought to contribute to 
complexity exist within the source code [Oman90]. For example, if a program has complex 

. control flow with many logical paths through the code, the program is thought to be difficult 
to test and more likely to have errors. Hence, a software complexity metric for this example 
of complex control flow is the number of decision statements. 

Traditional Classes of Software Complexity Metrics 

The classes of software complexity metrics for traditional procedural languages are: 

Size metric - a measure of the size of the source program. Examples of this metric include 
counts of lines of code, tokens, functions, and adapted or modified lines of code 
(Jone78 and Duns84]. 

Data structure/Information flow - a count of the amount of data input to, processed in, and 
output from a data structure metric . Examples of this metric include variable count, 
live variables count, variable span, fan-in and fan-out of the module, and global 
variable count [Cont86]. 

Logic structure - a measure of the control flow or logic execution of a program. Examples of 
this metric include decision count, McCabe's cyclomatic number, and nesting level 
[McCa76]. 

Logic structure complexity metrics are considered the least applicable to inheritable 
features because there are no control flow issues in true OOP. Hence we will only include 
size and information flow metrics in our OOP metric. · 
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4. Software Complexity Metric for C+ + 

Our software complexity metric for object-oriented programs was influenced by the 
problems for object-oriented programming that have been identified in the literature and by 
traditional software complexity metrics. Recall that extensive searching of the inheritance 
tree was common to all six OOP problems. Size and information flow are the traditional 
software complexity metrics incorporated into our metric. Control flow was not included 
because control flow issues do not impact the inheritance tree. Our metric measures the 
depth, size, and amount of information passed up and down the inheritance tree. 

We choose to test our ideas by developing a software complexity metric for the 
programming language C++. We choose C++ because a large amount of C++ code 
exists and there is a large amount of programming currently being done in C+ +. Since 
C+ + is an extension of C using C+ + will also allow us to evaluate the effectiveness 
traditional complexity software metrics on object-oriented programs. 

Components of CPPOOM 

CPPOOM (C+ + Object-oriented Metric) is written in C+ + and consists of the following 
four programs: · 

Includes - returns counts of the number of user-defined include files, called local 
files, and the number of global library files. This program creates a 
temporary file, CPPOOM.TMP, which includes all local include files 
expanded. An optional display shows all of the local include files with 
counts in physical order. 

Functions - returns a count of the number of procedural functions. An optional 
display shows all of the function names with counts in physical order. 

Operators/Operands - returns counts of the number of tokens, keywords and library 
functions. An optional display shows the complete list of C+ + 
keywords and functions with counts. 

Inheritance Tree - parses the temporary file created by the Includes program, 
CPPOOM.TMP, to create the complete inheritance tree and returns 
counts of number of classes, class depth, number of lines of code in 
classes, number of subclasses, number of polymorphic member 
functions, number of overloaded functions, number of member 
functions, and number of data variables . 



Figure 1 is an example of the output from our metrics tool (CPPOOM) for a sample 
program [Budd91]. In the right hand column we added an annotated description of what 
the metrics values represent. 

CPPOOM version 0.2 
Software C~lexity Metric for C++ 
File: expr.cc 

Total nunber of includes: 
Nll!ber of local includes: 
Nll!ber of library includes: 

Nll!ber of functions: 

Nll!ber of coament lines: 
Total nunber of lines: 
Total nonblank lines (SL0C): 
Total blank lines: 

Nll!ber of C++ tokens: 
Total Nll!ber C++ keywords: 
Distinct C++ keywords: 
Total Nll!ber of C++ library functions: 
Distinct C++ library functtons: 

4 
3 
1 

4 

23 
269 
231 
38 

145 
137 
11 
8 
2 

Inheritance Counts With All Include Files Expanded 
Class Counts: 

Total nll!ber of classes: 
Total base classes: 
Average class depth: 
Maxinun class depth: 
Average class LOC: 
Maxinun class L0C: 
Mininun class L0C: 
Greatest class uses: 
Maxinun subclasses: 
Class references outside tree: 
Total# of lines (expanded): 
Total SLOC (expanded): 
Total lines in classes: 
Procedural lines in classes: 
Total polymorphism count: 
Maxinun polymorphism count: 
Total overload count: 
Maxinun overload count: 

Member function counts: 
Total member functions: 
Maxinun member functions: 

Data variables counts: 
Total data variables: 
Maxinun data variables: 

57 
3 

3.02 
4 

. 7.88 
27 
4 
0 

24 
1 

848 
729 
449 

0 
202 
32 

351 
9 

194 
17 

71 
4 

Date: 9/10/91 

counts the nunber of user-defined local 
includes · and library includes 

counts the nunber of procedural functions 

counts the nunber of lines in the file 

counts the nunber of C++ keywords and functions 

number of classes in the inheritance tree 
number of root classes in the tree 
average class depth · 
deepest class depth 
average class lines of code 
largest class lines of code 
smallest class lines of code 
greatest nunber of class uses 
greatest nunber of subclasses 
shows the number of references beyond the tree 
total l i nes expanded 
total source ltnes of code expanded 
total source lines of code· in classes 
total procedural lines in classes 
total iunber of JX>lymorphic member functions 
largest nunber of polymorphic member functions 
total nunber of overloaded member functions 
largest nunber of overloaded member functions 

total nunber of member functions in the tree 
largest nunber of member functions in a class 

total nunber of data variables in the tree 
largest number of data variables in a class 

Figure 1. CPPOOM Output 

Optional Displays of CPPOOM 

CPPOOM has several optional displays that provide more detailed information. These 
optional displays include the following: 

a. the class hierarchy list, shown in Figure 2., 
b. the number of nodes at each level of the inheritance tree, 
c. the member functions display, which shows the class depth of each member 

function and a count of the number of polymorphic objects, 
d. the names and sizes of the local include files, 
e. the operator and operands, a list of C+ + keywords and C+ + library 

functions and the number of uses, and 
f. the procedural function names and sizes. 
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The class hierarchy display lists the extended class hierarchy by indenting to depict the 
inheritance tree relationship of each class. The display contains the class name, the class 
type, the number of lines of code, class depth, the number of immediate subclasses, the 
number of public member functions, and the number of public data variables. Additionally, 
the names of the member functions of each class can also be listed below each class. Figure 
2 is a partial listing of the class hierarchy for a sample program [Budd91 ]. 

Class Name Class Type LOC Depth Subclass Funes Variables 

expression undefined 27 0 8 17 
variable expression 17 1 4 8 

rankVariable variable 4 2 0 1 
shapeVariable variable 4 . 2 0 1 
valuesVariable variable 4 2 0 1 
teq,orary variable 9 2 0 3 

scalar express!on 16 1 0 9 
rscalar express!on 8 1 0 3 
condexpr express!on 11 1 0 4 
searchexpr express!on 11 1 0 3 
letexpr expression 25 1 4 9 

letSifma letexpr 16 2 0 6 
letCo Leet letexfr 19 2 2 7 

letC~ress letCo Leet 11 3 0 4 
letExpand letCol lect 10 3 0 4 

letVar letexpr 11 2 1 4 
letSort letVar 8 3 0 3 

Figure 2. Class Hierarchy - Optional Display 

The following terms are used in Figure 2: 
Class Type is the type of the base class. 
LOC are the total lines of code count of the class being defined. 
Depth is the depth of this class in the inheritance tree. 
Subclass is the count of immediate subclasses. 

2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
4 
1 
1 
1 
1 
1 
1 

Funes is the count of the public member functions defined within this class. 
Variables is the count of the public data variables within this class. 

Unique Approaches of CPPOOM 

Our metric utilizes several unique approaches to analyzing object-oriented programs. First, 
CPPOOM differentiates between member functions and procedural functions. Member 
functions are a part of the inheritance tree complexity and procedural functions are part of 
the procedural complexity. Member functions have a different use than procedural 
functions. A member function is declared and allows the base class or a derived class to 
have particular functions act on its private representation; in other words the privacy of a 
member function allows the class type to be hidden from all other classes. Procedural 
functions are dependent upon which path of the program is taken for execution. So that 
member functions are an inheritable attribute that is a component of the data structure and 
procedural functions are part of the logic structure. This is an important distinction for 
C+ + because not all object-oriented programming languages have logic structure 
complexity attributes, i.e., control flow. 

Second, CPPOOM analyzes the inheritance characteristics of the entire inheritance tree by 
expanding all include files prior to computing the various counts. Most object-oriented 
programmers utilize include files to compartmentalize or abstract the information. This 
practice allows the programmer to hide the implementation details and develop a solution 
in terms of a form of high level abstraction. This high level abstraction is another form of 



data abstraction, allowing the programmer to not have to consider all of the details of the 
program . 

Finally, CPPOOM analyzes only the public inheritable characteristics of classes, since 
private characteristics will be restricted to only a few categories of functions. The private 
elements in each class are not given the same level of importance or significance as the 
public elements. Private characteristics are characteristics that will be restricted to only a 
few categories of functions so the significance of these characteristics will be localized. 
Public characteristics of a class can be considered to be global in nature to the subclasses 
inheriting. This inheritance obviously depends on the level of the class in the inheritance 
tree. A derived or subclass inherits the public members of the base class so the private 
members will not have an impact on the subclasses of the base class. 

S. Preliminary Validation of Metric 

Preliminary Data Analysis 

Traditional software complexity metrics, such as lines of code (LOC) and McCabe's 
cyclomatic number (v(G)), have been used to identify error-prone modules ( e.g. the few 
modules that contain most of the errors), difficult to test modules, and hard to understand 
modules, to assist in the allocation of resources ( e.g. test resources), and to provide 
reasonable predictions of the number of errors in modules, [Shen85 and Kafu87]. These 
relationships were validated by our analysis of metrics and performance data ( e.g. number 
of errors, testing time, etc). We feel that the object-oriented metrics should have similar 
uses, but the same validation steps ( analysis of metrics and performance data) needs to be 
done. 

We have applied CPPOOM to several reasonably sized C+ + programs (APL compiler, 
Borland C++ library, C++ instructional code, and an accounts receivable application). 
Our initial results are that most C+ + programmers use small sets of autonomous classes, 
i.e. separate, unconnected, and shallow inheritance trees . The inheritance trees tended to 
be either flat or narrow. Most of the programs had fewer than 20 classes of small or 
moderate size and an inheritance tree of depth one. Of the larger, more complex systems 
we analyzed, the average size of the classes in these programs was less than 13 lines of code. 
Inheritance trees of depth three or more were usually very narrow, sometimes almost 
becoming a linear graph. As we expected, programs with large or deep trees were by far the 
most difficult to understand. 

Our preliminary findings also show that traditional software complexity metrics do not seem 
to measure object-oriented complexity. Figure 3 gives the metric values for some of the 
programs we studied. The compiler program, expr.cc [Budd91], is considerably more 
difficult to understand than the other programs because of the sheer size and depth of it's 
inheritance trees . Notice that, according to the traditional metrics lines of code (SLOC) and 
cyclomatic number (v(G)), it appears to be as complex or less complex than the other 
programs. Both todolist.cpp and tododlgs.cpp have over three times as many lines of code. 
The v(G) of todolist.cpp is nearly twice that of expr.cc. Also, expr.cc bas more classes (Total 
# classes) of smaller average size (Average class size) at a greater class depth (Average 
class depth) and fewer inheritance trees ( # Trees). · · -
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Program Name expr.cc todolist.cpp tododlgs .cpp 

Average class depth 3.02 2.56 2.47 
Average class size 7.88 31.83 30.52 
Total # classes 57 18 19 
#Trees 3 6 7 
SLOC 848 2,8% 2,749 
Total v(G) 58 92 50 

. # Functions 38 . 38 20 

Figure 3. Table of Metric Values for 4 Programs 

6. Preliminary Depth Threshold Experiment 

We conducted a three part experiment to further test our preliminary findings about how 
the depth of classes in the inheritance tree impacts task performance. We wanted to know if 
programmers have more difficulty working with classes deeper in the inheritance tree than 
working with shallow classes. Our hypothesis was that for C+ + programs programmers 
perform common programming tasks more effectively on classes at or near the root of the 
inheritance tree than on classes at or near the leaves of the inheritance tree. The three 
programming tasks we selected for this experiment are: program understanding, debugging, 
and program modification. · 

Subjects 

Our 11 subjects were graduate students in computer science who were proficient in object­
oriented programming and C+ +. They were selected from 54 students who responded to 
an e-mail request for subjects. The selection criterion was proficiency in C++ as measured 
by completion of a graduate level object-oriented programming course and a term project. 
The subjects were paid $25 for participating. · 

The subjects averaged 1. 7 years in graduate school, 6.0 years of programming, and 2.5 years 
of professional programming. Four of the subjects had no professional programming 
experience. Five of the subjects had undergraduate computer science degrees. C+ + 
proficiency ratings were self reported on a 1-10 scale with 10 being the most expert. The 
average C+ + proficiency rating was 7.0. 

Method 

The experiment was a within subjects experiment with three tasks: program 
comprehension, debugging, and modification. A different program was used for each task. 
We constructed functionally equivalent deep and shallow versions of each program. In the 
deep version the key class (the class involved in the programming task) was located at the 
maximum depth or leaf in the inheritance tree. In the shallow version the key class was 
located at depth zero or the root level. At this level the key class has no inheritable 
attributes. 

We randomly divided the 11 subjects in two groups: A (6 subjects) and B (5 subjects). 
There were no significant background differences between the two groups. Group A 
performed the comprehension task on the deep version, the debugging task on the shallow 



version, and the modification task on the deep version. Group B did the opposite. They 
performed the comprehension task on the shallow version, the debugging task on the deep 
version, and the modification task on the shallow version. 

Materials 

We selected three programs from the Borland C++ Library [Borl91]. The original 
programs are the deep versions. To create the shallow versions we modified each of the 
programs to move the key class to depth one. The functionality of the superclasses in the 
original tree were compressed into this single class so that the original program and the 
modified program have the same functionality. The modified programs have the same 
number of classes and functions as the original program, but the maximum class depth of 
the inheritance tree was decreased by one. Figure 4 gives the size and class depth 
information for each version of th~ six programs. Note that the shallow versions have a 
larger LOC (lines of code) count because of the need to explicitly include the inheritable 
attributes in the key class definition. The number of classes and functions in the inheritance 
tree was the same for the deep and shallow versions. 

Program Number 1 2 3 
Task Comprehension Debugging Modification 
Program Version deep shallow deep shallow deep shallow 

LOC 315 500 152 186 170 227 
SLOC 268 436 128 158 144 193 
#cla5.5e5 11 11 5 5 4 4 
avg class LOC 10.09 11.09 8.20 8.75 10.33 10.54 
# functions · 6 6 5 5 2 2 
maximum depth 5 4 3 · 2 4 3 

Figure 4. Table of Metric Values for Test Programs 

The source code listings were printed on 8.5" by 11" standard copier paper in Courier 12-
pitch type using a laser printer. No bold typeface or other accents were used in the program 
listings. No comments were included in the source code, and function and variable names 
were not changed from the Borland code. All of the local include files were incorporated 
into the single program file and the class definitions were done in the same order. 

For the comprehension quiz, the four forward and backward reasoning questions concerned 
program output and input. The same questions were used for both the shallow and deep 
versions of program 1. Forward and backward questions were alternated in the quiz. The 
order of forward and backward questions were alternated within each group of subjects. 

The compiler error for the debugging task on program 2 was: 

line 109: 'lsVisible()' is not a member of 'Circle' 

Since the error referred to the same class in both the deep and shallow versions, the only 
difference in the error message for both versions was the line number. The error could be 
fixed by a simple change to the key class. 
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The third task was to modify program 3 to add the capability to output the value of the 
radius of a circle. For the modification only the key class needed to be changed. 

Procedure 

The subjects were given 10 minutes to read and sign the informed consent form, read the 
general instructions for the experiment, and complete the background questionnaire, 
(Appendix A). Their first task was a program comprehension task. They were given a 
program listing and a comprehension quiz with 4 questions (2 forward reasoning questions 
and 2 backward reasoning questions). They were given 20 minutes to answer the questions. 
The second task was debugging a program with a compiler error message. Given the 
program listing and error message identifying the line in error, the subjects had 10 minutes 
to explain why the error occurred and correct the error. The last task was a program 
modification task. Given a program listing and the desired modification, the subjects were 
given 15 minutes to identify where the program should be changed and to indicate the 
changes. They were instructed to make maximum use of inheritable attributes. A class 
table of contents, showing the class name within the inheritance tree hierarchy and the class 
type, was included with each program listing. No other information was included with the 
class listing. An example of the class table of contents is shown in Figure 5. 

Class Listing 
File: progl.cpp 

Class Name 

Location 
GM~ge 
Point 

Distance 
Circle 
Arc 

Square 
OrderedList 

Stack 
Cube 
List 

Class Type 

undefined 
Location 
Location 
Point 
Distance 
Circle 
Distance 
undefined 
OrderedList 
undefined 
undefined 

Figure 5. Class Table of Contents 

When the exercise was completed, the subjects filled out the Conclusions sheet, that asked 
for their level of confidence with their work, their perception of the usefulness of the 
inheritance tree table of contents, and any general comments about the exercise. 

Results 

The times and scores for each group and tasks are given in Figure 6. Values with 
significance (p < 0.05) are shown with two asterisks (**), and values with significance (p < 
0.10) are shown with one asterisk (*) in Figure 6. The actual scores and times for each 
subject is given in Appendix B. 

Three subjects stated that the time for the comprehension task was not sufficient. They 
mentioned difficulty with the coding style and one subject thought the task was a "warm up" 
session. Most of the subjects used the entire 20 minutes as they spent time checking their 
answers. Since each answer required a sequence of numbers, correctness was scored on a 
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four point scale: 0 if no answer was attempted, 1 if the answer was wrong, 2 if input or n 
output numbers were correct but in the wrong order, and 3 if input and output numbers , 
were correct and in the correct order. The results are given in Figure 6. At-test showed no 
significant differences in the time, number of questions answered, or number of correct R 
answers between the deep and shallow versions. We were surprised because we expected l I 
the subjects with the shallow version to take less time and be more accurate. We suspect 
that the performance similarity may be due to the relative complexity of the class hierarchy 
depth of 5 in the deep version being compressed into a single class. n 
Results for the debugging task are shown in Figure 6. The error identification was scored as 
0 (incorrect) or 1 ( correct). The error correction was scored on a four point scale: 0 if no n 
correction was attempted, 1 if a correction was attempted but was in the wrong place, 2 if a 
correction was attempted in the right place, but will generate an error, and 3 if the 
correction is correct. Subjects with the deep version took longer, but not significantly 
longer. Subjects with the shallow versions were significantly more successful in error 
identification and scored much higher, but not significantly higher on the correction 
subtasks. 

Results for the modification task was scored much like the debugging task. The error 
identification was scored as O (incorrect) or 1 (correct). The modification change was 
scored on a four point scale: 0 if no change was attempted, 1 if a change was attempted but 
was in the wrong place, 2 if a change was attempted in the right place, but will generate an 
error, and 3 if the change is correct. Syntactical correctness was not a factor in grading this 
task. Subjects with the deep version spent significantly less time making the modification. . j 
However, the subjects with the shallow version were significantly more accurate. This may 
suggest that the modification task was more difficult than the group with the deep version 
realized. 

Group A GroupB Overall t-value 
Mean (Std) Mean (Std) Mean (Std) 

Comprehension Task 

' dee~ shallow 
time 17.1 (3.93) 18.20t12J 17.64 (3.62) 0.4302 
#answered 3.67 ~0.75l 3.80 0.40 3.73 ~o.62l 0.3249 
correctness 2.33 0.47 2.40 0.49 2.36 0.48 0.2075 

Debugging Task 
shallow deep 

time 4.08t71) 7.00 (3.35) 5.41 t.35) 1.4435 
identification 1.00 o.ool o.40~0.49l o.73 0.45l 2.7136** 
correction 2.50 0.50 1.20 1.17 1.91 1.08 2.2356* 

Modification Task 
deep shallow 

time 12.00 (2.16) 14.60 t80) 13.18 (2.12) 2.3061** 
identification o.so ~o.sol 1.00 o.ool o.73 ~0.45l 2.0226* 
change 1.67 0.75 2.80 0.40 2.18 0.83 2.7618** 

Figure 6. Table of Tasking Order for Test Programs 

A class table of contents listing was included with each program listing. Ten of the 11 
subjects drew some type of graph sketch of the class hierarchy as they studied the program 
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listing. The one subject who did not draw the inheritance tree structure was the only subject 
who felt the class table of contents was not useful; however, the subject did state that the 
class table of contents listing might be useful in a larger program. 

At the end of the experiment we asked the subjects to rate on a scale from Oto 5 (with 5 as 
most confident) their overall confidence in their answers. There was little difference 
between the mean of the ratings for subjects in Group A and in Group B as shown in Figure 
7. There was no significant correlation between the rating and task performance. The two 
subjects with the highest rating did not have the highest scores on all of the tasks and the 
one subject with the lowest rating did not have the lowest scores on all of the tasks. 
Generally, the confidence ratings and comments of the students shows a lack of confidence 
in their work. This may be due to the fact that the subjects could not execute the programs 
to verify the error was corrected or the modification worked. Three of the subjects stated 
that the time for the comprehension task was not sufficient to complete the task successfully. 
The subjects level of confidence in their overall work, their perception of the use of the 
inheritance class table of contents and the usefulness of the class table of contents is shown 
in Figure 7. There was not a significant difference in programmer confidence between 
Group A and Group B. 

Conclusions 

Group A 
Mean (Std) 

Confidence 2.83 (0.69g 
TOC Use 0.67 (0.47 
TOC Usefulness0.83 (03 ) 

GroupB 
Mean (Std) 

2.60fl.02l 1.00 0.00 
1.00 0.00 

Overall 
Mean (Std) 

2.73~0.86i 0.82 0.39 
0.91 0.29 

Figure 7. Table of Confidence and TOC Use 

This preliminary experiment indicates that programmers more effectively debug and modify 
classes at or near the root of the class hierarchy than classes deep in the class hierarchy. The 
results of this experiment also appear to indicate that there is a point of accumulated 
complexity where the relative class size and loss of data abstraction make the task of 
comprehending a single class at the root as difficult as searching through the inheritance 
tree. 

Our results suggest that the depth of the inheritance tree does affect programming tasks. 
However, more studies will need to be done to determine if there is a depth threshold for 
programming tasks and the trade-offs between depth and breadth of the inheritance tree. 
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Appendix A 
Background questionnaire 

Instructions: You have 10 minutes to complete this background questionnaire sheet 
and read the instructions on the next page. Once you have finished the background 
questionnaire read the instructions on the next sheet. Once you have completed the 
background questionnaire do not come back to this page during the experiment. 

Graduate Major: 

Undergraduate degree in Computer Science Yes/ No 

Number of years in grad school . 

Number of years programming: 

Number of years programming professionally: ____ _ 

(circle one) 

List the programming languages you feel you are proficient in 

How experienced a C+ + programmer are you? (circle one) 

(expert) 10 9 8 7 6 5 4 3 2 1 (novice) 

How knowledgeable are you in the object-oriented paradigm? (circle one) 

(expert) 10 9 8 7 6 5 4 3 2 1 (novice) 

Thanks for your assistance with this experiment. 

Go on to the next page when you have completed this page. 
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Appendix B Raw Data Group A GroupB 
Item 
Background information Subject number A-1 A-2 A-3 A-4 A-5 A-6 B-1 B-2 B-3 B-4 B-5 

Grad major cs cs cs cs cs cs CE cs cs cs cs 
Undergrad CS No Yes No Yes Yes Yes No No No No Yes 

#yrs grad 1.5 1 2.5 1 1 2 2 3.5 1 2 1 
#yrs prg 4 5 9 5 4 6 3 1.5 7 15 6 
yrs professional 0 1 6.5 1.5 0 6 0 0 3 8 1 
C+ + proficient 8 4 8 6 4 8 5 5 7 5 3 
OOP proficient 10 7 8 8 4 8 6 8 7 8 3 

Comprehension task tree version deep shallow 
time 20 16 18 9 20 20 20 19 20 12 20 
# answered 4 4 4 4 2 4 3 4 4 4 4 
correctness@ 2 3 3 2 2 2 2 2 3 3 2 

Program error task tree version shallow deep 
time 10 3 2.5 4 3 2 9 10 2 4 10 
identification * 1 1 1 1 1 1 1 0 0 1 0 
correction+ 2 3 3 3 2 2 2 0 1 3 0 

Program modification task tree version deep shallow 
time 15 15 11 10 10 11 15 15 13 15 15 
identification* 1 0 1 1 0 0 1 1 1 1 1 
change~ 2 1 2 3 1 1 3 3 3 3 2 

Conclusions Confidence 2 3 3 4 3 2 2 3 4 3 1 
· Class list use& 0 1 0 1 1 1 1 1 1 1 1 

Class list useful& 1 1 0 1 1 1 1 1 1 1 1 

Legend * identification @ correctness . + correction - change &use 
O=lncomplete/lncorrectarca O=noanswer O= no answer attempted 0= no answer attempted O=No 

l=Complete l=wrong answer l=correction attempted in wrong place l=cbange attempted in wrong area l=Yes 

2=numbcn correct, wrong order 2=in rigbt place, error generated 2=in rigbt place, error generated 

3=answcr correct 3=correction attempted, correct 3=cbange attempted, correct 

cc CI - · - ---, - -
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