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Abstract 

It often makes sense to write a program in the SIMD style, even if the program is to 
execute on a MIMD computer. Simulating physical events, in which all motion takes place 
simultaneously, is one area in which SIMD languages fit the applications particularly well. 
In this paper we present the SIMD programming language Dataparallel C and describe how 
we compile Dataparallel C programs into C code suitable for efficient execution on shared 
memory multiprocessors. We outline the parallel implementation of the Wa-Tor model 
and benchmark the performance of the compiled Dataparallel C program on the Sequent 
Balance™ and Sequent Symmetry™ multiprocessors. 

1. Introduction 

The compute-intensive nature of many simulation problems has led to an increasing interest 
in the use of parallelism to reduce execution time [l]. If the simulation to be performed 
is stochastic in nature, and the goal is to perform long simulation runs to reduce variance, 
or if a particular simulation problem must be executed for a variety of parameter settings, 
then the simplest and probably most efficient approach is to execute independent, sequential 
simulation programs on different processors [2, 3]. The focus of this paper, however, is the 
problem of using parallelism to solve a single simulation problem. 

Sequential simulation algorithms are generally event-driven. A typical event-driven 
simulator uses two data structures to drive the computation: state variables and and event 
list. The state variables describe the condition of the system. The event list contains pending 
events, sorted in nondecreasing order of the simulation time at which they will occur. After 
processing one event, the simulator moves to the first pending event on the event list and 
advances the simulation time to match the time of the event. 

Parallel simulation algorithms may be time-driven or event-driven. Time-driven parallel 
simulation algorithms are characterized by a single global time, shared by all processes. 
Concurrency is achieved when multiple events occur at the same time. Event-driven parallel 
simulation algorithms are characterized by a lack of a single global time. Concurrency is 
achieved through the simulation of multiple events that may occur at different times. 

Because earlier events can influence later events, causality errors can occur if events 
are simulated in the wrong order. Event-driven simulations may be divided into two 

Balance and Symmetry are trademarks of Sequent Computer Systems, Inc. C* is a trademark of Thinking Machines Corporation . 
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categories, depending upon their approach to causality errors. Conservative methods strictly 
avoid causality errors. Bryant [ 4] and Chandy and Misra [5] have developed well known 
conservative algorithms for parallel discrete event simulation. Optimistic methods detect and 
recover from causality errors. The best known optimistic algorithm is Time Warp, developed 
by Jefferson [6]. 

Event-driven parallel simulations are more suitable when the number of events per time 
step is small, and when the time needed to process an event is relatively large. Conversely, 
time-driven parallel simulations are more suitable when the number of events happening at 
any time step is large, and when the grain size of the event is small. 

Our goal in this paper is to illustrate that SIMD (single instruction stream, multiple 
data stream) languages can simplify the programming of time-driven simulations on MIMD 
(multiple instruction stream, multiple data stream) computers. To that end we have chosen 
for our case study the parallel implementation of Wa-Tor, a simple simulation problem 
characterized by a high degree of parallelism at every time step and fine-grained events. In 
the remainder of this paper we present the SIMD programming language Dataparallel C and 
describe how we compile Dataparallel C programs into C code suitable for efficient execution 
on shared memory multiprocessors. We outlin~ the parallel implementation of the Wa-Tor 
model, and we conclude by presenting the speedup achieved by the compiled Dataparallel C 
program on the Sequent Balance and Sequent Symmetry multiprocessors. 

2. The Dataparallel C Programming Language 

The Dataparallel C programming language is very similar to the original C* TM language 
designed by Rose and Steele [7]. We have added the notion of virtual topologies, extended 
the specification of pointers, and made array assignment a part of the language. In this 
section we summarize the features of the language; a detailed description appears in [8]. 

2.1. Virtual Processors 

The conceptual model presented to the Dataparallel C programmer is that of a SIMD 
computer: a front-end uniprocessor attached to an adaptable back-end parallel processor. 
The sequential portion of the Dataparallel C program (consisting of conventional C code) is 
executed on the front end. The parallel portion of the Dataparallel C program (delimited by 
constructs not found in C) is executed on the back end. 

The back end is adaptable in that the programmer selects the number of processors to 
be activated. · This number is independent of the number of physical processors that may 
be available on the hardware executing the Dataparallel C program. For this reason the 
Dataparallel C program is said to activate virtual processors when a parallel construct is 
entered. 

Virtual processors are allocated in groups. Each virtual processor in the group has an 
identical memory layout. The Dataparallel C programmer specifies a virtual processor's 
memory layout using syntax similar to the C struct. A new keyword domain is used 
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domain cell ( struct key_info key, *nbr[DIRECTIONS]; 
int seed; 
unsigned char direction, prior_kind; 
void look_for(), swim_and_breed(); 

Fig. 1. Declaring the Wa-Tor domain. 

domain cell ocean[CELLS] [CELLS]; 

Fig. 2. Declaring virtual processors. The world of Wa-Tor is a CELLSxCELLS torus. 

[ domain cell] . ( 
seed= ID; 
nbr[0] = &north->key; 
nbr[l] . = &east->key; 
nbr[2] = &south->key; 
nbr[3] = &west->key; 

Fig. 3. Activating virtual processors through a domain select statement. 

to indicate that this is a parallel data declaration. Figure 1 contains the domain declaration 
for the Wa-Tor simulation. As in C structures, the names declared within the domain are 
referred to as members. 

Instances of a domain are declared using the C array constructor. Each domain instance 
becomes the memory for one virtual processor. The array dimension, therefore, indicates 
the size of the virtual back-end parallel processor that is to be allocated. Figure 2 contains a 
domain array declaration. Note that domain arrays can be multidimensional, in which case 
the number of virtual processors allocated is the product of the array dimensions. 

Figure 3 illustrates the Dataparallel C domain select statement. The body of the domain 
select is executed by every virtual processor allocated for the particular domain type selected. 
The virtual processors execute the body synchronously. The domain members seed and 
nbr are included within the scope of the body of the domain select. These names refer to 
the values local to a particular virtual processor. 

2.2. Mono and Poly Data 

Data located in Dataparallel C' s front-end processor is termed mono data. Data located 
in a back-end processor is term_ed poly data. 

The code executing in a virtual processor of a Dataparallel C program can reference a 
variable in the front-end processor by referring to the variable by name. A variable that 
is visible in the immediately enclosing block of a domain select statement is visible within 
the domain select. 
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Similarly, the members of a domain instance are accessible everywhere in a program. 
The members of one domain can be read and written from within a domain select statement 
for a different domain. Poly data can also be read and written from the sequential portion 
of the program. The syntax employed is to provide a full domain array reference followed 
by a member reference. 

Dataparallel C, like C++, has a keyword this. In Dataparallel C this is a pointer to 
the domain instance currently being operated on by a virtual processor. Pointer arithmetic 
on this can be performed to access other virtual processors' members. For example, the 
Wa-Tor program has seven macros 

#define ID 
#define ROW 
#define COL 
#define north 
#define south 
#define east 
#define west 

(this-&ocean[0) [OJ) 
(ID/CELLS) 
(ID%CELLS) 
(ROW? (this-CELLS) (this+CELLS*(CELLS-1))) 
((ROW==(CELLS-1)) ? (this-CELLS*(CELLS-1)) : (this+CELLS)) 
( (COL== (CELLS-1)) ? (this- (CELLS-1)) : (this+l)) 
(COL? (this-1) : (this+(CELLS-1))) 

that allow each virtual processor to access the memories of its neighbors to the north, east, 
south, and west. 

Dataparallel C supports general pointer-based communication. A parallel pointer derefer­
ence operation can produce a nearly arbitrary memory access pattern. Each virtual processor's 
memory access is determined solely by the contents of its local pointer value. 

2.3. Flow of Control 

The sequential portion of a Dataparallel C program is just C code and executes according 
to the normal C semantics. Conceptually, the parallel sections of a Dataparallel C program 
execute synchronously under the control of a master program counter (MPC). A virtual 
processor's local program counter is either active, executing in step with the MPC, or 
inactive, waiting for the MPC to reach it. 

For example, the MPC steps through an if-then-else statement by first evaluating 
the control expression, then executing the then clause, and finally executing the else 
clause. A local program counter would also proceed first to the control expression. However, 
if the expression evaluated to zero (false in C), then the local program counter would proceed 
to the else clause and wait for the MPC to reach it. If the expression evaluated to nonzero 
(true in C), then the local program counter would wait at the then clause for the MPC. 

As well as being synchronous at the statement level, Dataparallel C is also synchronous at 
the expression level. No operator executes within a virtual processor unless all active virtual 
processors have evaluated their operands for the operator. Once the operands have been 
evaluated, the operator is executed as if in some serial order by all active virtual processors. 
This seemingly odd use of a serial ordering to define parallel execution is required to make 
sense of concurrent writes to the same memory location. 
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Because the execution of Dataparallel C programs is synchronous at the expression level, 
it is actually easier to implement algorithms requiring simultaneous motion in Dataparallel 
C than in C. For example, consider the problem of performing a cyclic rotation of an array. 
Because C manipulates only a single value at a time, a temporary variable must be introduced. 
In contrast, the entire assignment can be performed in a single step in Dataparallel C. 

Dataparallel C allows member functions to be defined for domain types. A Dataparallel 
C member function is similar to a C++ member function in that the names of the other 
members of the domain are visible within the body of the member function. Unlike C++, 
however, a Dataparallel C member function is a parallel control structure. The body of the 
member function is executed synchronously in parallel for each active virtual processor of 
the corresponding domain type. 

Member functions may be called from either sequential code or from within a domain 
select If a member function is called from sequential code, then every virtual processor 
executes the function. If the member function is called from within a domain select statement, 
then it is executed by only those virtual processors that are active at the time the function 
is invoked. Figure 4 contains a member function, as well as a code segment that invokes 
the function. 

3. Compiling Dataparallel C Programs for a Shared 
Memory Multiprocessor 

Our Dataparallel C compiler generates C code as output. The compiler parses Dataparallel 
C input, transforms Dataparallel C syntax trees into C syntax trees, and then unparses C 
code suitable for compilation and execution on the Sequent Balance and Sequent Symmetry 
multiprocessors. In this section we provide a brief overview of the compiler. More detailed 
descriptions appear in [8, 9]. 

The abstract model of parallel computation imagined by the Dataparallel C programmer 
has virtual processors and synchronous execution. The role of the compiler is to bridge the 
gap between the abstract machine and the actual architecture in as efficient a way as possible. 

The compiler translates synchronous data-parallel programs into SPMD (single program, 
multiple data) [10] programs suitable for execution on a shared memory multiprocessor. The 
key to the efficient implementation of a data-parallel language on an asynchronous MIMD 
computer is the realization that physical processors need only synchronize when virtual 
processors interact. Between these points every physical processor can emulate its virtual 
processors at full speed. The compiler inserts barrier synchronizations at ~hose points in the 
emitted C code where synchronization is necessary. To a great extent the performance of 
the generated code relative to a hand-coded parallel C program is determined by the number 
of barriers the compiler inserts. 

All variables, both mono and poly, are stored in shared memory, where they are accessible 
by all processors. Sequential code is executed by only a single process. During the execution 
of the C program generated by the compiler, the state of the system switches from single 
process execution to multiple process execution every time a domain select or domain member 
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main (argc,argv) 
int argc; char *argv[); 

while ( its - - > 0 ) { 
[ domain cell] . { 

prior_kind = key.kind; 
key.moved= FALSE; 
if (key.kind== FISH) 

key.age++; 
look_for(WATER); 

void cell::look_for(desired_kind) 
int desired_kind; 

int found_it, i; 

found_it = FALSE; 
direction= (int) 4 * random(&seed); 
for (i = O; (i < DIRECTIONS) & (found_it == FALSE); i++) { 

direction= (direction+ 1) % DIRECTIONS; 
if (nbr[direction)->kind == desired_kind) found_it = TRUE; 

if (found_it) nbr[direction]->id = ID; 
else direction= DIRECTIONS; 

Fig. 4. Member function look_for from the Wa-Tor simulation, along 
with a code segment invoking the function. Only those virtual processors 
whose value of key. kind equals FISH execute the member function. 

function is entered, and the state reverts to single process execution when the locus of control 
returns to sequential code. 

Synchronizations are needed when one virtual processor defines a variable that is later 
read by another virtual processor, or vice versa. A data flow analysis of the Dataparallel C 
program yields these def-use and use-def dependencies. The compiler examines the entire 
set of constraints and attempts to derive a minimal set of barriers with the property that 
every use-def and def-use dependency spans at least one barrier. In addition, when it has 
the opportunity, the compiler places the barrier at the least disruptive point. For example, 
everything else being equal, it inserts a barrier between two statements, rather than at some 
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point in the evaluation of an expression, which would require the introduction of a temporary 
variable. 

Every physical processor must participate in every barrier synchronization. If a control 
structure contains a barrier synchronization, then the structure must be rewritten to pull the 
barrier to the outermost level. 

After the compiler has added synchronization points to the Dataparallel C program and 
transformed the control structures to pull the barriers to the outermost level, the program 
consists of sequential code and domain select statements separated by barriers. At this 
point the compiler replaces all Dataparallel C domain select statements with C for loops 
that emulate virtual processors. Given p physical processors and interleaved emulation, 
every processor i emulates every pth virtual processor, beginning with virtual processor i. 
The contiguous virtual processor emulation strategy partitions the virtual processors into p 

contiguous regions, with the largest region having no more than one virtual processor more 
than the smallest region. 

4. Wa-Tor 

In the December i984 issue of Scientific American, Dewdney describes a computer program 
to model the ecology of the mythical planet Wa-Tor [11]. The planet Wa-Tor is shaped like 
a torus, is covered completely by water, and is inhabited by two higher life forms, called 
sharks and fish. The computer program models the interactions of the predators (sharks) and 
their prey (fish). We have chosen Wa-Tor as a case study, because even though the model is 
simple, it shares attributes with more sophisticated physical models. In particular, we extend 
Dewdney's specification to require that each class of animal move simultaneously. Modeling 
the simultaneous movement of multiple objects is error-prone, when only a single object can 
be examined at a time. For this reason the Dataparallel C program is actually simpler than 
the corresponding sequential program written in C. 

The planet surface is modeled by a two-dimensional array. Each cell may be occupied 
by a fish or a shark, or it may be empty. The simulation is divided into time steps. Every 
time step has two phases. In the first phase the fish move; in the second phase the sharks 
move. Fish move by looking for an adjacent empty cell in one of four directions: north, 
south, east, or west. If there are empty cells in more than one direction, the fish has an equal 
probability of choosing each of the available cells as the cell to which it would like to swim. 
After the fish have moved, it is the sharks' turn. First the sharks examine neighboring cells 
to see if any of them contain fish. If one or more of the adjacent cells contains a fish, the 
shark randomly chooses one of the cells. When a shark enters a cell containing a fish, it 
devours the fish. During the second part of the sharks' phase those sharks unable to eat a fish 
try to locate an empty cell, and if such a cell is found, swim in that direction. When seeking 
and swimming toward empty cells, the behavior of the sharks is identical to that of the fish. 

Recall that all fish simultaneously attempt to move to an adjacent empty cell during their 
phase. Likewise, all sharks simultaneously. attempt to eat fish, and those sharks unable to 
eat a fish attempt to move to adjacent empty cells at the same time. One of the principal 
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Fig. 5. Typical state of the Wa-Tor world. Fish are grey 
and sharks are white. This scene depicts a 128-by-128 torus. 

complicating factors resulting as a consequence is that more than one swimmer may attempt to 
enter the same cell. When such collisions occur, the rule is that only one creature occupies 
the cell, and the other contenders must retreat to their former locations. For this reason 
movement is divided into two phases. During the first phase fish or sharks determine the 
direction in which they would like to travel and place their identifying number in that cell 
they want to occupy. If more than one creature places its number in the same cell, only 
one number will remain. After this phase has been completed, fish can check their desired 
destination to see if they have "won the right" to swim to that cell. 

Whenever a shark or a fish successfully moves to a new cell, if the age of the creature 
is greater than or equal to the age at which it can bear offspring, a baby is left behind at the 
cell just vacated. The age of the child is 0. The age of the parent is reset to 0, to prevent 
an animal from bearing an offspring every iteration after it reaching maturity. 

Figure 5 illustrates a typical state of the Wa-Tor world. In this figure fish are gray 
and sharks are white. Readers interested in learning more about the rules of Wa-Tor and the 
implementation of the model on MIMD computers can find more information in [11, 12, 13]. 

We have claimed that many physical models are more amenable to solution via SIMD 
languages than MIMD languages. To buttress our claim, we present the Dataparallel C 
implementation of the Wa-Tor simulation in its entirety. The entire code is less than 150 
lines long, excluding 1/0 and comments. In contrast, the MIMD-style implementation of 
Wa-Tor appearing in Angus et al. [13] requires more than 600 lines of C code, excluding 
1/0 and comments. 
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/ * 

* Wa-Tor in Dataparallel C 

*/ 

#include <stdio.h> 

#define DIRECTIONS 4 
#define WATER 4 
#define FISH 2 
#define SHARK 0 
#define CELLS 128 
#define ITERATIONS 100 
#define FISHINIT 1000 
#define FISHBREED 3 
#define SHARKINIT 100 
#define SHARKBREED 3 
#define SHARKSTARVE 4 
#define FALSE 
#define TRUE 

0 
1 

/ * North, East, South, West* / 
/ * Color of water c ell* / 
/* Color of fish cell */ 
/* Color of shark cell */ 
/ * Ocean size* / 
/* Simulation length* / 
/ * Initial number of fish */ 
/* Fish breeding age* / 
/ * Initial number of sharks */ 
/* Shark breeding age */ 
/ * Shark starving time* / 

struct pixelinfo { unsigned char x , y, grayvalue, dummy; } 
buffer[CELLS*CELLS+FISHINIT+SHARKINIT]; 

(this-&ocean[0] [0]) 
(ID / CELLS) 
(ID%CELLS) 

#define ID 
#define ROW 
#define COL 
#define north 
#define south 
#define east 
#define west 

(ROW? (this-CELLS) : (this+ CELLS* (CELLS-1))) 
((ROW==(CELLS-1)) ? (this-CELLS * (CELLS-1)) : (this+CELLS) ) 
((COL==(CELLS-1)) ? (this-(CELLS-1)) : (this+l)) 
(COL? (this-1) : (this+(CELLS-1))) 

struct key_info { unsigned char age, kind, moved, starved; 
int id; } ; 

domain cell { 
struct key_info key; 
int seed ; 
unsigned char prior_kind; 
unsigned char direction; 
void look_for(), swim_and_breed(); 
struct key_info *nbr[DIRECTIONS]; 

} ocean[CELLS] [CELLS]; 

int buffersize; 

float random () ; 

main (argc,argv) 
int argc; char *argv[] ; 
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void initialize_ocean(); 

int its= ITERATIONS; 
int x, y; 

initialize_ocean(); 

[ domain cell] . ( / * Each cell stores pointers to neighbors* / 
seed= ID; 
nbr[0] = &north->key; 
nbr[l] = &east->key; 
nbr[2] = &south->key; 
nbr[3] = &west->key; 

while (its-- > 0) { 
[ domain cell] . ( 

prior_kind = key.kind; 
key.moved= FALSE; 
if (key.kind== FISH) 

key.age++; 
look_for(WATER); 
swim_and_breed(FISHBREED) 

if (key.kind== SHARK) 
key.age++; 
key.starved++; 

/* Fish look for water* / 
/ * Fish swim and breed* / 

look_for(FISH); / * Sharks look for fish* / 
swim_and_breed (SHARKBREED); / * Sharks swim and breed* / 

if (key.kind== SHARK) ( 
if (!key.moved) ( 

look_for(WATER); / * Unfed sharks look for water* / 
if (key.starved>= SHARKSTARVE) ( 

key.kind= WATER; 

else swim_and_breed (SHARKBREED); / * Unfed sharks swim* / 

buffersize = 0; 
for (x = 0; x < CELLS; x++) 

for (y = 0; y < CELLS; y++) 
if (ocean[x] [y] .key.kind!= ocean[x] [y] .prior_kind) 

buffer[buffersize] .x = x; 
buffer[buffersize] .y = y; 
buffer[buffersize++] .grayvalue = ocean[x] [y] . key.kind; 

write (1, buffer, buffersize*sizeof(struct pixelinfo)); 
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void cell: :look_for(desired_kind) 
int desired_kind; 

int found_it, i; 

found_it = FALSE; 
direction= (int) 4 * random(&seed); 
for (i = O; (i < DIRECTIONS) & (found_it == FALSE); i++) { 

direction= (direction+ 1) % DIRECTIONS; 
if (nbr[direction]->kind == desired_kind) found_it = TRUE; 

} 

if (found_it) nbr[direction]->id = ID; / * Claim neighboring cell* / 
else direction= DIRECTIONS ; /* No suitable neighbors* / 

void cell::swim_and_breed (breed) 
int breed; 

struct key_info newkey; 

if (direction< DIRECTIONS) 
if (nbr[direction]->id == ID) 

newkey.moved = TRUE; 
newkey.kind = key.kind; 
if (key.kind== SHARK) { 

/ * If swimmer wins cell . .. * / 

if (nbr[direction]~ >kind == FISH) key.starved= O; 
newkey.starved = key.starved; 

} 

if (key.age>= breed) { 
newkey.age =key.age= O; 
key.moved= TRUE; 

} else { 

} 

key.kind= WATER; 
newkey.age = key.age; 

*nbr[direction] = newkey; 

void initialize_ocean() 
{ 

inti, x, y; 
int seed; 

/ * initialize the ocean* / 
[domain cell]. {key.kind= WATER; 

/* Leave offspring behind* / 

/ * Leave water behind* / 

/* initialize our share of fish and sharks* / 
seed= 2; 

for (i = O; i < FISHINIT; i++) 
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x =CELLS* random (&seed); 
y =CELLS* random (&seed); 
ocean[x] [y] .key.kind= FISH; 
ocean[x] [y] .key.age= i%FISHBREED; 

for (i = O; i < SHARKINIT; i++) { 
x =CELLS* random (&seed); 
y =CELLS* random (&seed); 
ocean[x] [y) .key.kind= SHARK; 
ocean[x] [y) .key.age= i % SHARKBREED; 
ocean[x] [y) .key.starved= O; 

buffersize = O; 
for (x = O; x < CELLS; x++) 

for (y = O; y < CELLS; y++) 
buffer[buffersize] .x = x; 
buffer[buffersize) .y = y; 
buffer[buffersize++] .grayvalue = ocean[x] [y] .key.kind; 

write (1, buffer, buffersize*sizeof(struct pixelinfo)); 

5. Benchmark Results and Conclusions 

We have compiled the Dataparallel C Wa-Tor program and executed it on a Sequent Balance 
and a Sequent Symmetry, both shared memory multiprocessors. We recorded the time needed 
for the parallel program to execute 100 iterations, excluding time spent performing 1/0. 

Table 1 contains the execution times and speedups of the Dataparallel C · program 
executing on the Balance and the Symmetry. We define speedup to be the time required 
by our best sequential algorithm divided by the time required by the parallel algorithm. 
Given the same input parameters, our best sequential C Wa-Tor program executed in 622 
seconds on the Sequent Balance and 249 seconds on the Sequent Symmetry. The execution 
times on the two machines are plotted in Figure 6. The irregularities in the curves are caused 
by imbalances in the work performed by each processor. The compiler statically assigns 
virtual processors to physical processors, and there is no dynamic load balancing mechanism 
in the current system. 

We have contended that it sometimes makes sense to program MIMD computers in SIMD 
languages, and the Wa-Tor problem is a case in point Our Dataparallel C implementation of 
Wa-Tor is less than 25% the length of the MIMD-style Wa-Tor program published by Angus 
et al. [13]. Our Dataparallel C compiler is able to take this program and generate code that 
achieves reasonable speedup on a MIMD computer. 
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Sequent Balance Sequent Symmetry 

Execution Time Speedup Execution Time Speedup 
Processors (sec) (sec) 

1 691.8 0.9 289.7 0.9 

2 396.6 1.6 154.8 1.6 

3 284.8 2.2 98.4 2.5 

.4 215.7 2.9 74.2 3.4 

5 163.6 3.8 61.5 4.0 

6 137.0 4.5 52.1 4.8 

7 113.5 5.5 42.3 5.9 

8 90.6 6.9 41.8 6.0 

9 80.4 7.7 35.3 7.1 

10 77.7 8.0 33.3 7.5 

11 70.6 8.8 28.5 8.7 

12 67.7 9.2 28.6 8.7 

13 63.2 9.8 24.2 10.3 

14 60.5 10.3 24.3 10.2 

15 61.0 10.2 22.3 11.2 

16 59.5 10.5 27.9 8.9 

17 58.4 10.7 20.5 12.1 

18 60.2 10.3 19.8 12.6 

19 59.8 10.4 19.4 12.8 

20 64.0 9.7 19.3 12.9 

Table 1 Execution time and speedup of compiled Dataparallel C Wa-Tor 
program on the Sequent Balance and Sequent Symmetry multiprocessors. 

Computer Science Division, Argonne National Laboratory, and the Department of Computer 
Sciences at the University of Wisconsin-Madison, who gave us access to their Sequent 
Symmetry computers. 
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Fig. 6. Time needed to perform 100 iterations of 128 x 128-cell 
Wa-Tor program on Sequent Balance and Sequent Symmetry. 
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