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Abstract 

Large integer factorization exemplifies a class of hard computational problems requiring the 
power of a supercomputer but which have algorithms decomposable into many large indepen­
dent computations. The availability of internetworking provides the opportunity to solve such 
problems in distributed fashion on ordinary machines . Such a distributed network might contain 
a heterogeneous collection of machines running under the administrative authority of different 
organizations in separate geographic locations. DCS uses standard UNIX1 BSD 4.2/4.3 features 
to implement a central scheduler daemon and remote grain server daemons providing support for 
an extended model of very large grain data flow computation . A system providing such a service 
needs to address the essential goals of reliability, fault tolerance, courtesy and security in addi­
tion to dataflow functionality. In particular, checkpointing becomes essential for reliability and 
efficiency when grain lifetimes become comparable to system uptimes. A user control program 
makes grain requests and receives results from a central scheduler which launches and coordi­
nates grain computations on remote grain servers . Grain servers supply checkpoint information 
at regular intervals to the central scheduler or a passive backup. Grain computations on busy or 
failed server hosts are automatically moved by the scheduler to quiescent hosts using checkpoint 
information . Additionally, the system transparently recovers from temporary failure of the cen­
tral scheduler or the user control program. A simple paradigm for the organization and update 
protocol of a reliable backing store is introduced. Other design, implementation, and operational 
issues are discussed . DCS was used to run the computation finding the 34 digit penultimate 
prime factor of a 93 digit "more wanted" number from the Cunningham Project [BRI88]. 

1 Introduction 

This project is an outgrowth of the DRAFT 2 machine project [RUD84]. Whereas the DRAFT 
machine is a prototype of an alternative high performance architecture for large integer and par­
allel computation, the Distributed Computing System uses networking with a variety of ordinary 
computers and UNIX operating systems to achieve high performance using distributed processing. 
An important goal of DCS has been to provide a practical distributed engine for doing research 

1 UNIX is a registered trademark of AT&T Corporation. 
2 Dynamically Reconfigurable Architecture for FacToring. See Appendix D for a bri ef description . 
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with long running hard computational problems. The mobilization of large numbers of machines 
available on a non-intrusive low priority basis fuels this capability. DCS uses common features of 
UNIX systems along with traditional UNIX reliance on simplicity [ALL87] to implement a reliable, 
efficient, and fault tolerant system to centrally control and coordinate an extended model of very 
large grain data flow computation. 

Other systems have been described in the literature which perform some of the functions of this 
system. However, none of these systems attempt to handle a fully heterogeneous UNIX environ­
ment. An interesting batch system using image based checkpoints for a homogeneous network has 
been described by Litzkow[LIT87]. The complexity of adding kernel supported transparent check­
pointing for Cray's is made evident by a paper of Kinsbury and Kline[KIN89]. A recent paper 
by Smith and Ioannidis[SMI89] describes a remote fork mechanism with checkpoint/restart on ho­
mogeneous machines. Using RPC as an alternative requires the existence on the parent machine 
of active controlling processes for every remote client job. These processes are not independent. 
Failure of the parent machine causes failure of all the client jobs. RPC lacks the fault tolerant and 
checkpointing capabilities of the DCS system. In summary, DCS provides support for very large 
grain distributed processing which is not available with other networking techniques. 

Pardon this introduction which is not yet complete, being one full iteration behind the following 
sections 2,3, and 4. There is a substantial amount of material still missing from this section, 
including a discussion of the relationship of DCS with other distributed processing systems such 
as LINDA and ISIS. The following sections describe the design and enhanced features of the next <:\: 
version of DCS currently being developed. However, from the user's point of view, most of the basic 
features already exist in the current implementation. The example control programs and example 
grain programs with checkpointing found in the current revision level of source code distribution 
closely parallel the description and examples found in this paper. The material found in sections 
5,6, and 7 of this paper vary in version level between the existing implementation and part way 
toward the revised design. Unfortunately, there is a substantial amount of new design discussion 
which has not yet made its way into the last few sections and some sections have become quite 
outdated. 

2 Model of Computation 

Algorithms are not monolithic blobs. Decomposition into computational grains can be made on 
a scale from the grain size of modules to as small as individual machine instructions. A grain 
of computation can be viewed simply as a functional unit of computation which transforms an 
input string representing its data token arguments to an output token string. The data flow model 
represents the decomposition of an algorithm as a directed graph, with nodes corresponding to 
grains and the directed arcs representing the movement of data tokens [HWA84]. Unlike the chain 
of processes in a UNIX pipeline, where a process can continue producing data while it is being 
consumed by its successor, data flow grains terminate before their successors begin computation. 
That is, each grain computation fires when all its inputs become completely known. 

Strictly speaking, the dataflow graph fragments the view of accumulated grain data and state 
information to just those grain outputs or tokens corresponding to the input edges to the grain. 
Although it would be possible with such a model to enhance the grain's view to encompass all 
the accumulated state information, the increase in structure and complexity of the dataflow graph 
would be enormous. Rather than produce such an enormous graph corresponding to distributed 
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control at the node level with complete access to accumulated information, it is possible to gain 
the same benefit without the appearance of overwhelming complexity. The important ingredient 
from the dataflow paradigm is the notion of decomposition into functional units bare of side effects 
to other executing grains. Although we desire to exclude side effects between grains, we welcome 
the seeming use of side effects for control of the overall dataflow computation. Control of these 
grains may benefit from having an complete view of all completed grain output and messages 
from partially completed grains. The trace of such a dataflow computation simply corresponds 
to a dynamically created dataflow graph which effectively has links from all completed grains and 
partially completed grains to each new grain as it prepares to fire. As the control is central, being 
done by a program which is either sequential or parallel with shared locking memory, it is possible 
to keep a sequential log containing the order of finished grains and relevant grain messages. This 
sequential ordering is sufficient to retrace and recreate the implied dataflow graph up until a point 
of failure for recovery purposes or else to create the graph for the entire computation. Note that 
for small grain decompositions this log trace of the computation could become unwieldy, becoming 
perhaps millions of entries in length. However, for large grain decompositions this extended dataflow 
model becomes a reasonable and effective tool merging the benefits of functional decomposition and 
flexible control. 

Observing figure 1, all the diagrammed components of DCS communicate through UNIX IPC sock­
ets. The user's control program provides the central control for the computation, making grain 
requests and receiving information and output from the central scheduler. The central scheduler 
manages the grain computations using a pool of remote grain servers. The central scheduler main­
tains a reservoir of accumulated output, grain checkpoint data and feedback messages, logging and 
other system information. 

Let us first consider the effect of grain size using just the simple data flow model with DCS as the 
computational platform. 

A small grain data flow view of an algorithm performing arithmetic computation might con­
sider each addition or multiplication as an independent grain of computation, proceeding when 
its operands become available. Logically independent computations could occur in parallel, and 
in turn would feed their respective results as operands to succeeding grain computations. With 
each small grain computation occurring on a remote host, DCS would perform miserably given the 
unavoidable high overhead for grain handling relative to the size of the grains. 

On a medium scale, the grain size might be the size of short lived procedures, allowing independ ent 
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procedures to be invoked in parallel whenever their arguments become available. Decomposition 
of a program into independent procedural sized pieces might occur naturally by partitioning data 
into sets which can be acted on simultaneously, or by unwinding a recursive divide and conquer 
formulation of a program. On such a scale, DCS does become an acceptably efficient platform, but 
perhaps at first glance just another remote procedure call mechanism. 

On a larger scale, the grain size could be that of complete long running programs. It now becomes 
prudent to checkpoint the grain computations and use the checkpoint information to support au­
tomatic migration of grains from busy or failed hosts. Additionally, grain computation should not 
be lost or fail even if the user's or central scheduler's host becomes temporarily disabled. Even 
if system crashes occur only rarely, scheduled shutdowns for backups and maintenance produce 
system interruptions . Thus a primary concern of a system supporting long running distributed 
computations should be to handle host interruptions transparently with minimal loss. In contrast 
to DCS, typical remote procedure call mechanisms fail completely if either the user's local host or 
remote call host fails during computation. 

Returning to Figure 1, let us continue with an overview of DCS. The user control program is written 
in a high level language, such as C, and employs a tool set of library calls which individually 
communicate with the central scheduler. These calls provide the interface to initiate sessions, 
submit grain requests, gather grain output, messages and other information, and otherwise direct 
and monitor activity. These calls are described in the next section. Unlike a simple data flow 
system, which follows the paths of a fixed data flow graph, the DCS model encourages the use of 
feedback from the total computation to alter the course of the computation or perhaps abandon 
useless grain computation. Of course such a computational plan could be formulated a priori as an 
enormously complex dataflow graph, but it is simpler to put the cart behind the horse and consider 
the dataflow graph as the dynamic trace of centrally controlled grain executions. 

The central scheduler acts as shepherd for the grain requests it receives. It maintains ready queues 
for grains waiting for execution, and launches grains when an appropriate host is available. The 
remote grain servers call the scheduler when server status changes and at regular intervals to report 
grain checkpoint or output, and system status information. The scheduler detects busy or failed 
remote server hosts, moving grains on such hosts to appropriate alternates or to the head of the 
appropriate ready queue. If the central scheduler's host becomes temporarily disabled, current grain 
computations continue unaffected with the grain servers calling a passive backup daemon on another 
host with their checkpoint and status reports. When restarted, the central scheduler rebuilds its 
internal data structures using both its own state information saved on disk and information from 
the passive backup. 

3 User's view of DCS 

The first task for the user is to find a highly parallel decomposition of the problem into many 
large sized grains . This group of grains is referred to as a session. Once the decomposition 
is determined, each grain is then implemented as an individual executable program with optional 
support for checkpointing. Input and output for each grain occurs through standard input, standard 
output and standard error, along with the standard execve parameters argv and envp. Written 
as ascii text, the standard input file first specifies the initial state of the computation, followed 
by input data for the computation. If standard input would have a length greater than a rather 
generous installation defined limit, then arrangement should be made to read excess data read from 
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a separate file specified in argv or the environment. Such secondary files are a convenient way to 
provide large read only tables of data for repeated instances of a similar grain computation. These 
conventions ease the development, debugging and testing of individual grains. Further discussion 
on requirements and technique for providing input and checkpoints for grain programs occurs in 
section 3.3 . First, we discuss the coordination of the distributed computation by the user's control 
program. 

3.1 Control program communication and authentication 

To manage the distributed computation, the user prepares a control program written in a high 
level language, such as C. The control program weaves the grains of a session together, using the 
DCS library calls to initiate , monitor and retrieve grain activity. The control program can be run 
on either the scheduler's host or on remote hosts permitted by the scheduler. The DCS library 
routines on the scheduler's host use UNIX domain stream sockets, and on remote hosts utilize 
Internet domain stream sockets. The overhead of stream sockets has not been a bottleneck, so the 
development of an ad hoc reliable datagram protocol has been a low priority item. Although some 
transaction requests could reside within a single datagram, others would require the stream socket 
benefits of packet sequencing and reconstruction. 

For security, it is mandatory that not even a user with knowledge of the DCS source code be able to 
impersonate a valid user . To accomplish this level of protection, before beginning the user control 
program the actual user is identified to the scheduler in a secure fashion. Permission is then granted 
to a valid user by the scheduler transparently providing an authentication token associated with 
that user. The identification is performed by the dcs_begin command which is used to invoke the 
control program with all its possible arguments and standard input/output redirection. 

dcs_begin control_program [args ... ] [< file!] [> file2] 

Execution access to the dcs_begin command is restricted to members of a special des group. The 
dcs_begin command runs with root privilege and is thus able to use an internet domain privileged 
port to connect to the scheduler and reliably report the invoking user's name. It leaves open the 
socket connection to the scheduler and does an execve of the user's control program. The control 
program immediately makes a d_get_auth(control_ident) call in order to invisibly receive the 
authorization token through the inherited socket connection to the scheduler. through the inherited 
socket connection to the scheduler. The token is held as a static variable within the des user library 
and is not visible in the control program. This token is then implicitly used with all the control 
program's user library calls to the scheduler. The calls are accepted only if the authorization token 
is valid and the token's user name bound to the token matches the user name provided with the 
library call. 

The scheduler maintains an authorization token table with each entry containing the following 
information: the actual token; the user's name; the control program's control_ident; the number 
of active sessions associated with the token; and an integer field for a timestamp. The user name 
and the control_ident are specified by the dcs_begin call along with the control program's 
get_auth call. The timestamp is stamped initially and is stamped again whenever the active 
session count becomes zero. This table is checked periodically to remove authorization entries which 
simultaneously have an active session count of zero and are older than a installation defined amount. 
Each active session in the scheduler's database has a pointer to its current authorization tok en's 
entry. This has a desired side effect of limiting authority over a session to only on'e control program 
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d_get_auth(control_ident) name control program and retrieve authorization token 
d_open_ses(session_num) open a new session 
d_resume_ses ( session_num, sent_reset) resume active session and optionally reset 

count of grains sent to control program 
d_reopen_ses (session_num, sent_reset) reopen closed session and similarly reset grains sent 
d_close_ses(session_num) close session, remove active grains 
d_gexec(session_num,grain_num,gargv,genvv,input_str,host_class,thrash,urgent,notice) 

submit a grain for remote execution on a grain server host 
d_gwait(block,session_num,tg_num,tg_completed,tg_sent,tg_terrnsig,tg_retcode, 

tg_rusage,tg_outlen,tg_output,tg_errlen,tg_error) 
receive results from the next finished grain 

d_gkill(session_num,grain_num) terminate the grain 
d_query(query_type,session_num,grain_num,tinfo_block) 

query the scheduler for system, session or grain information, return in info_block 

Figure 1: DCS user library calls 

at a time. The various library calls for beginning, resuming, or closing a session appropriately set 
or unset the session's token pointer along with incrementing or decrementing the active session 
count fields in new or old tokens. 

Unintentionally, a user might start a second control program which uses a session number already 
in use by the same user in another control program. If the existing session is opened by the 
d_resume_ses call which is used to write simple restartable control programs, then the authoriza­
tion token for the session might be changed and the connection with the original control program 
broken. However, the control program's control_ident helps prevent such accidental disconnec­
tions. The d_resume_ses call fails if the control_ident bound to the token of the second control 
program differs from the one belonging the token currently associated with the session. It succeeds 
when the control_idents are the same, allowing a restarted control program to reconnect to an 
orphaned session. 

Additionally, there is a set of secure commands which can be invoked by the session's user, sched­
uler_master or root in order to manipulate a session directly without altering or requiring the use 
of the authorization token. 

3.2 User library interface 

Each user session is uniquely identified by the attribute pair user name and session number. The 
user can have multiple sessions running simultaneously, possibly under the direction of a single 
control program. Each possible pair of user name and session number corresponds to a session 
which is non-existent, active, or terminated. The session number is specified as a parameter when 
making library calls to manipulate sessions and their grains. With all the library calls the user's 
name is implicitly determined and passed to the scheduler which checks to see that it matches the 
authorization token's user name. Only grains of active sessions are allowed to execute on a remote 
server or reside in the scheduler's ready queues. Any grain of a previously initiated session has 
priority for execution over all grains of later sessions. See figure 3 for a listing of the DCS user 
library calls. 

The d_open_ses call initiates a new session by creating the appropriate internal data structures, 
backing store disk directory and entries. The call fails and returns a corresponding error status if 
the session is active or terminated. 
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The d_resume_ses call is used when writing restartable control programs according to tech­
niques described later. The call succeeds and opens a new session if the session designated by 
the session_num parameter is non-existent. If the session is active and its authorization token's 
control_ident matches that of the call's token, then the call succeeds and replaces the session's 
previous authorization token with its own. The second parameter sent_reset can be used to 
reset the session's counter for grain results returned to the control program. The counter should 
be reset when using the simple idempotent approach for control program recovery, and not reset 
if the control program recovers using its own saved state information. If the session is closed or 
the tokens' control_ident's don't match, then the the call fails and returns an appropriate error 
status for each failure case. 

The d_close_ses call terminates an active session. This action is first asserted by updating as 
closed the session's status maintained by the backing store. Any of the session's grains executing 
on remote hosts are removed, and any related data structures on the remote hosts are cleaned up. 
Additionally, these grains have their status as maintained by the backing store changed to ready. 
All the scheduler's in memory data structures for the session are purged. However, all the session's 
backing store data including grain status, checkpoint, output, and other session information is re­
tained. This directory and its contents are owned by the user and are thus available for examination 
or manual removal. The knowledgeable user can modify the directory contents and reactivate the 
session by using the d_open_ses call. This call succeeds only with terminated sessions and rebuilds 
the session's in memory data structures and ready queues using the session information held by the 
backing store. 

The life cycle of a user session begins with non-existence, followed by creation and being active, 
followed by termination, and finally return to non-existence with the removal of the terminated 
session directory. The d_clean_ses call succeeds only with a terminated session, removing all the 
terminated session's backing store data and directory. 

Once a session exists and is active, the user's control program can submit grain requests through 
the d_gexec call. For active sessions, grains can be in one of four states: ready, executing, killed 
or finished. To prepare for a grain submission, the control program constructs the appropriate 
argument vector and environment vector for the grain's eventual execve on a remote server, along 
with the string which is used for the grain's standard input. Absolute file path names can be used 
in gargv, genvv and referenced in grains, but it is more convenient and practical to use path names 
relative to a DCS designated home directory for the user on remote grain servers. Gargv contains 
the path name of the grain executable as argument zero, which is used as the name parameter for the 
grain's eventual execve call. The last component of this name is used as argv{O} and the remainder 
of gargv and genvv correspond to the normal execve arguments argv and envv. Besides these 
parameters specifying the grain program and its input, there are four more parameters pertaining 
to grain placement, diplomatic and operational considerations. 

First consider the host_class parameter. The central scheduler maintains a database of all possible 
grain server hosts. Each host is designated as belonging to one of thirty two possible host types 
defined during system installation by representing each host type as a single bit in an unsigned 
long integer. Typically, considerations such as vendor, architecture, peripheral resources, and 
operating system characteristics are used to partition the machines into host types. Additionally, 
administrative, political or geographic considerations can be used. The value of the host_class 
parameter in the d_gexec call is specified by an OR of the acceptable host types for execution of 
the grain. When multiple acceptable types are specified for the grain, the types have an implied 
ordering according to their numerical value as unsigned integers. That is, when the grain is being 
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assigned to a remote host, hosts of the least valued type are considered first, if an acceptable host 
is not available, then the next higher valued type is tried and so on. Given that the initial input, 
checkpoint information, and output are written as ascii text, all grain input/output can be written 
so as to be independent of host architectural differences such as byte ordering. This has proven 
quite useful for targeting a particular grain computation for a set of host types of similar overall 
capability for that particular computation, even though their vendors, architectures, or operating 
system versions may differ. Additionally, the environment variables can be used to help provide 
information that grains might need to tailor their execution on dissimilar hosts. During its lifetime, 
the grain is allowed to migrate within the pool of machines designated by its host_class parameter. 
This migration is forced by either a host becoming busy or failing, or by usurpation of the host by 
a grain belonging to a higher priority session. 

Another important concern of DCS is to avoid noticeable interference with the performance of 
normal users' processes on the remote grain server hosts. Accordingly, when a grain server creates 
new grains, before execve'ing the new grain, a setpriority call is done to nice the child process to 
minimal priority. For compute bound grains with small memory images and little paging this has 
proven adequate to avoid interference with normal users' processes on the grain's host. However, 
grains with large images and considerable paging wreak havoc on competing processes no matter 
how low the grain's priority. An advisory integer parameter, thrash, provides a rough measure of 
the expected memory load of the the grain in half megabyte units. The scheduler compares this 
value with the host statistics it keeps to avoid sending the grain to a remote host whose current free 
memory is considered too low. If the value of thrash is zero, then memory load is not considered to 
be a problem. For all executing grains, the remote server and the grain itself monitor page faults 
and the grain is withdrawn and returned to the scheduler if thrashing occurs. 

A boolean parameter, urgent, indicates that if no suitable grain server host is available, then 
place the submitted grain at the beginning of the session's ready queue , rather than at the end. 
Migrating grains are also placed at the beginning of the ready queue if a suitable alternate host is 
not immediately available. The last parameter, notice, is the number of minutes advance notice 
a grain should be given before checkpointing occurs. 

There is an additional important characteristic that the d_gexec call possesses that assists with 
the writing of simple restartable grain programs. If the session has been successfully opened with 
the d_resume_ses call, then the d_gexec call exhibits idempotent behaviour. Specifically, this 
means that if the grain already exists, then regardless of its current state, if the parameters of the 
d_gexec call are identical to those of its original call then the call becomes a null operation and 
returns successfully. However, if the grain's gargv, envv or input parameters differ, then the call 
fails. If the call has not occurred before, then the call proceeds as usual. 

The control program can abort a particular grain computation specified by its session number and 
grain number parameters with the d_gkill call. All the information related to the grain kept on 
disk is retained, but the grain's status is marked as killed. If it is executing on a remote grain server, 
the grain is removed and its related data structures and administrative entries purged on the remote 
server. Likewise, on the scheduler the grain's entry and data are purged from the session's ready 
queue or execution list. The grain's status as killed held in the backing store prevents resumption 
of the grain's computation as a part of the normal DCS system recovery following a scheduler host 
crash and reboot. 

To receive grain output, the control program uses the d_gvait call to retrieve the output of the 
next unreported finished grain computation for a session. The user specifies the session numb er 
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and several output parameters for receiving grain output and status information. The boolean 
parameter block determines whether the call uses blocking or non-blocking mode. In non-blocking 
mode, the call returns immediately with an error if every completed grain has already had its output 
reported by a previous d_gwait call. Otherwise the call will return with the status and output 
corresponding to the next unreported finished grain computation. In blocking mode, if unreported 
grain output is available, it behaves just as in non-blocking mode. However, if no unreported grain 
output is available, the d_gwait calling process opens a listen socket, informs the scheduler of its 
address, and waits for a socket connection from the scheduler. Eventually, when one or possibly 
more of the session's grains finish, the scheduler calls the listen socket and sends the output and 
status from the first of the unreported finished grain computations. The various output parameters 
include the identifying number of the grain being reported, the current number of grains completed 
in the session, the number of grain results already delivered, and the return code and termination 
signal of the grain. In normal operation the return code and termination signal are always zero, as 
otherwise the grain is not considered finished. Unfinished grains are not reported unless they are 
killed by the system following a fixed number of failures while running on different hosts. 

Two more output parameters return the lengths of the grain's stdout and stderr files. Different 
variants of d_gwait return the grain's standard output and standard error either as strings or 
as pointers to streams open for reading. The alternative of strings returns up to the first 20 K 
characters from each file. As streams, there is no problem with truncated output, but this option 
is not available from hosts which do not have remote access to the scheduler's backing store data 
files. The user's control program parses the grain's output, using the information extracted to alter 
its own global state and to prepare future grain requests. For simple restartable control programs, 
when the session is opened with the d_resume_ses call with the sent_reset flag set, the scheduler's 
counter for the number of grain results returned to this session is reset to zero. Consequently, 
successive d_gwai t calls return all the grain results in the same order as they originally occurred . 

The d_query call is useful both in the user control program and for monitoring the operation of 
DCS. For monitoring, there is a tailored set of user commands using the d_query call providing 
formatted listings of system status information. For example, the command for hosts displays lists 
for "active" and "delinquent" hosts, providing host name, configuration and statistics information. 
Other commands provide listings of various system information and attributes including: user 
sessions; the executing, ready, and killed grains for a session; all executing grains; all ready grains; 
all killed grains. Whereas these general status commands only require the restricted DCS group 
privilege, other commands to retrieve detailed grain information succeed only for the owner of the 
grain, the schedulerJnaster, or root. Using the appropriate options, any of the grain information 
is available such as rusage, number of restarts, current status, initial grain input, most recent 
message and checkpoint/restart, or the first 20 K of output. Called from a user control program, 
the d_query call provides access to the same data. As with the d_gwai t call, it is possible to get 
a open file pointer for the grain output files. 

With any of the user library routines, if the attempted connection with the scheduler does not 
succeed or the socket connection is broken, then the routines return with a corresponding error 
status. 

The DCS library also includes routines supporting administrative tasks. These routines are built 
into secure commands which can only be invoked by the schedulerJnaster or root. As indicated 
previously, there are commands to manipulate sessions and also commands to manipulate individual 
grains. Some of the grain host configuration parameters can also be changed by command. In 
particular, changing a grain host's allowable grain limit to zero causes any grains running on the 
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remote server to be removed immediately, and effectively removes that host from service. 

3.3 Checkpointing grain programs 

A grain program is responsible for providing its checkpoint information. The checkpoint information 
captures and specifies the complete state of the grain computation so that it can be moved to a 
new host in case of host failure or forced withdrawal. To utilize checkpointing, the grain program 
is written to load the starting state of the computation from an initial portion of standard input. 
Consequently, when a new or restarted grain begins executing, the grain reads standard input 
to build its state which may either be its true initial state or a checkpointed state. The state 
information contained in standard input should be written as ascii text in a form understood 
correctly by all machines in the grain's host class. Additional ascii input data for the grain program 
may directly follow the initial state information in standard input. When writing the checkpoint 
state information, the user need not be concerned about the unread portion of standard input. 
Standard input's file pointer position is returned to the scheduler so that it is able to append 
precisely the unread input to the checkpointed state information in order to form an appropriate 
input file for grain restart. It is acceptable for grain programs to open and use other read only files, 
however the files need to be available on any host in the host classes specified for the grain, and 
the user's checkpoint state information must specify the appropriate positions for the file offsets. 

It is mandatory that checkpoint information is written at a location in the program where it is pos­
sible to specify a consistent state for the grain computation and file pointers. For checkpointing to 
be effective, such a location needs to be encountered at least once during the grain's figurative time 
slice after which the grain server calls the scheduler to report status and checkpoint information. 
For some programs a single location in a main loop may be satisfactory. For others, there may 
need to be checkpoint locations in several major modules or loops. Rather than waste effort writing 
checkpoint information every time such a location is encountered, the grain server signals the grain 
process with the grain's d_gexec specified notice minutes advance warning before a checkpoint is 
needed. The signal is caught by the grain program and the handler sets an unseen static flag to 
enable checkpointing. At the checkpoint locations, the boolean macro d_ time_ to_ckpt is called to 
test and reset the flag. The signal handlers for checkpointing and also for monitoring page fault 
thrashing are installed by calling the d_ghandler routine at the beginning of the grain's program 
code. 

The grain's checkpointing code first prepares a status message string which later becomes accessible 
to the user control program through a query call. It then calls the DCS library routine d_opencheck 
with the message string as a parameter. First, as checkpoint files are written with the same sequence 
number as their corresponding incremental output files, it is a simple matter to make sure that 
checkpoint files older than the one with the previous sequence number have been removed. The 
immediately preceding checkpoint file needs to be saved as it may be still be in use by the server 
for a grain activity report to the scheduler. The d_opencheck call then opens a new checkpoint file 
with the current sequence number, where it first writes the message string, followed by the grain's 
rusage information and finally the file pointer offset for standard input. Its final task is to update 
the access time of the the grain's standard input file so that system cleanscripts don't remove it 
from /trnp. The return value of d_opencheck is the open file pointer to the new checkpoint file. 
It is now the user's responsibility to write out the current state of the grain computation as ascii 
text to the file. This state information is precisely what is used by the scheduler to form the initial 
portion of standard input for a restarted grain. The closing library call for the checkpoint routine 
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d_closecheck takes care of several important details. It flushes the new checkpoint file, and the 
grain's stdout and stderr files and checks for write errors. If write errors have occurred such as 
caused by a full partition, the d_closecheck performs an immediate exit for the grain with an error 
status which indicates the write problems to both the grain server and scheduler. Finally, before 
returning, it increments the sequence number for the stdout and stderr files, and uses /reopen to 
open new incremental output files for use until the next checkpoint. 

Currently grains only send passive messages (not guaranteed to be read), and only receive blunt 
active messages in the form of signals for checkpointing, thrash checking, or termination. The 
messages sent from the grain to the scheduler have a lifetime until the next reported checkpoint 
and are meant as nonessential, but possibly useful feedback to the user control program. An 
example showing the details of grain checkpointing is in Appendix A. 

This checkpointing technique has worked well in practice. In addition to being portable, the user 
created ascii checkpoint file is generally much smaller than a binary image based checkpoint, saving 
space and communication cost, furthering the goal of minimal impact on system resources. In 
support of this approach, even in lisp which offers the ability to dump running images, local lisp 
programmers have often chosen to create their own concise checkpoint files rather than dump a 
large running image. 

If a grain is small enough not to warrant checkpointing, then the entire checkpoint support can 
simply be omitted. The grain's server and the scheduler recognize this situation. The ouput is 
merely sent once when the grain finishes, and if restart is necessary the grain restarts from the 
beginning with its original input file. 

3.4 Structure of User Control Program 

Disruption of the user's control program has no direct effect on the scheduler's obsession to shepherd 
executing or ready grains through their course to successful completion. If the central scheduler 
also fails, then currently executing grains send their checkpoints and output to a passive backup 
until the scheduler resumes service. However, the passive backup takes no action to launch new 
grains or to move and restart grains from busy or failed hosts . With this framework of system 
operation in mind, the user has a choice in the design of the control program in order to handle 
resumption of the grain program after externally caused failure. 

The question is that of how to recover the control program's state prior to failure in order to 
correctly continue execution. The easiest solution for the programmer would be one which did 
not require special programming effort and yet provided for automatic recovery and rebuilding 
of the prior state by simply rerunning the control program. This is possible if just a few simple 
restrictions are obeyed which are reflected in the requirements that the control program always 
be restarted with the same initial state, and that only the output from finished grains be used 
to determine control and grain input. In particular, this implies that query information or status 
messages from grains not be used for control or to determine input. Additionally, random number 
generators which might be used in generating input data have to initialized with the same seed at 
the start of the control program. The order and control of grain submissions does not have to be 
statically fixed in advance, as it is expected to vary according to control decisions may be made on 
the basis of returned grain output. Assuming that the session has been opened by a d_resume_ses 
call with the sent_reset flag set, the previously described idempotent behaviour of the d_gexec 
call along with the grain results being returned in the same order mimics the original execution. 
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Consequently, a restarted control program effectively retraces its previous execution and continues 
from the point of interruption. 

The control library calls are atomic in the sense that if the control program is interrupted before a 
call successfully returns, either the scheduler's state will be unchanged or it will reflect the changes 
dictated by a successfully completed call. In particular, a partially completed d_gexec call would 
be purged by the scheduler if all the parameters and input had not yet been committed to the 
backing store. Similarly, once the parameters for a d_gkill call have been received, it is inevitably 
carried through to completion even if the scheduler is interrupted. 

Consider the following scenario regarding the d_gkill call. If the control program is interrupted 
just before a grain is to be killed with a d_gkill call, the reprieved grain might finish and place 
its output and status in the queue for future d_gwai t calls before the control program is restarted. 
In this case the restarted control program retraces its prior execution, finally making the d_gkill 
call, which then would either kill the grain if still running or remove it from the output queue if it 
has already finished. 

A more general approach for successfully restarting the control program requires saving state in­
formation at each transaction with the scheduler. On restart, this saved state would reconstruct 
the computation up to the next scheduled library call. As the next library call might have been 
done but not recorded or vice versa, it is possible take advantage of the idempotent behaviour of 
the d_gexec call if the parameters are known to be the same. Otherwise, more generally a query 
call can be made to determine whether the next call had been made and act accordingly. At this 
point, the control program has recovered fully and can continue. This program approach allows 
more flexibility in using query information and grain messages to influence grain control and input. 

An example of a restartable control program using the simple approach of not using explicitly saved 
state can be found in appendix B. 

3.5 Grain binary placement 

Users of DCS are not assumed to have accounts on grain hosts. However, the set of users privileged 
to use DCS must have have unique login names on the machines permitted to issue user library calls 
to the scheduler. These login names are used by the scheduler to identify the user's various data 
structure entries on the scheduler, and on the remote grain servers to determine the user's DCS 
home directory. When a grain is submitted to the scheduler, its program binary can be specified 
either by an absolute path, or by a path relative to the user's DCS home directory on the remote 
server. For grain servers where the user has an account, the special directory might be a symbolic 
link into a subdirectory of the user's real home directory. If a binary is not found or the special 
subdirectory is missing, the scheduler sets the host's bit in grain's bad host bit vector kept in the 
grain's data structure on the scheduler. This prevents the host from being tried again unless the 
bit is cleared. 

Currently there is no support for automatic distribution of grain binaries. It is planned to extend 
the scheduler's grain host data base to include binary compatibility classes, so that the scheduler 
could manage a central library of grain binaries. A missing or out of date binary could be replaced 
at the time of actual grain startup. The grain servers could periodically remove stale binaries, thus 
reducing the disk storage load on grain servers. 
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4 The backing store as the basis for reliable recovery 

An essential property of DCS is its ability to recover from unexpected host crashes affecting the 
control program, central scheduler, or grain servers. The central scheduler maintains a backing 
store which at any time specifies a complete consistent state for DCS operation. A simple but 
effective protocol for committing data and related state changes to the backing store is used to 
insure its integrity and consistency. Transactions with control programs and remote grain servers 
are patterned to promote the central role of the backing store for asserting a consistent state of 
system operation. The scheduler's backing store thus provides a foundation for recovery after 
transient failure of the scheduler and any or all of the remote grain servers. 

4.1 DCS interaction with the backing store 

The total state of DCS can be reconstructed from the backing store's image of asserted changes 
in system state from control program transactions and the threads of incremental state changes 
asserted by the activity spawned by these transactions. The general pattern of active control 
program transactions is as follows: 1) the request with its parameters is passed to the scheduler, 2) 
this information is committed to the backing store implying an assertion that it will be carried out, 
and 3) an acknowledgement is made to the control program. As mentioned previously, a control 
program recovering using its own stored state information may not know whether the last pending 
transaction was accepted, but it can use a query to check whether it needs to repeat the request 
before continuing. A control program's query for information is a passive transaction, not requiring 
a change in state for the scheduler. On the other hand, a successful non-blocking call for grain 
results does assert an increment in the count of grain results sent. 

Transactions between the scheduler and servers produce changes of state in individual grains as th eir 
activity reports assert changes in their checkpointed state and and output. Additionally, the grain's 
running or ready state fluctuates as it follows its possible path of migration . All these asserted 
changes are comitted to the backing store in a manner which guarantees a correct, consistent state 
of DCS in the event of random failure. 

4.2 Backing store update protocol model 

Let us examine the protocol model used to commit the vanous system activity data and state 
change assertions to the backing store in a reliable, consistent fashion. The logical relationships 
between backing store data files and their accompanying update protocol can be modeled simply 
as a forest of rooted update tree templates with linear branches. Each node of an update tree 
template represents either a singleton or ordered pair of backing store files and their function at 
update. The restriction of linear branches means simply that only the root nodes may have more 
than one child. As described later, files which occur in more than one update tree must occur as a 
root node file in exactly one update tree. 

A single update tree template coordinates a group of closely related files representing an activity or 
perhaps a class of activity. At any time the current backing store contents of an update tree template 
correspond to an instance of that template. This instance may be that of a tree which has either 
been partially prepared for update commitment, committed, undergoing update transformation, or 
completed update. 
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Here are the templates for the example DCS update trees: 

Figure 2: Update tree templates for DCS 

An ordered pair node implies an action to be taken during update transformation between an 
existing file and an optional temporary file. If the existing file is absent, then the temporary file is 
renamed as the node's existing file. If the existing file is present, then the template node specifies 
whether the action for the temporary file is either to replace or append to the existing file. If the 
temporary file is absent, then no action occurs. 

A singleton node may contain either an existing file or a temporary file. In any case, a singleton file 
provides information relevant in the construction of the temporary root node file. In particular, a 
singleton existing file represents information which is a fixed part of the entity represented by the 
nodes of the branch. For a temporary file, the template node specifies whether its update action is 
to become renamed as the node's existing file, or simply to be discarded. Additionally, either the 
root node file or its committed temporary can occur in an information bearing singleton node in a 
different update tree. 

The root node always consists of an ordered pair of :files with the temporary replacing or creating 
the existing root file. The update tree is committed for incorporation into the backing store after 
first each of the update tree's included temporary files has been committed, and then precis ely 
when the temporary root file is itself committed. If the update tree has but a single branch, then 
commitment of the temporary files on the branch is implied by commitment of the temporary root 
file. 

Just as a single branch may represent the constituent files of a single entity, multiple branches may 
represent the complete or restricted membership of a class. Figure 2 displays such a hierarchical 
organization with the update templates of DCS. Further details of the DCS backing store update 
process beyond the scope of the following discussion are found in later sections. 

The complete state of a single DCS grain's computation is represented by an instance of an update 
tree template containing just a single branch with five nodes plus the root node. The root node 
for this template is the status file for the grain. The grain's status file holds a time stamp which 
is changed in the committed temporary status file only if the grain is changing its status between 
running, ready, finished or killed. The time stamp is unique for all the session's grains as it is 
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derived from a shared counter. 

The time stamp for the grain's status file provides a simple mechanism for subsequently defining the 
session update tree template which has a variable number of branches and the session's status file 
as the root node. Each branch consists of a single leaf node containing the existing or committed 
status file of one of the session's grains. These branches correspond to the subclass of the session's 
grains which have a newer grain time stamp than the grain time stamp kept in the root node's 
existing session status file. When the root node's temporary file is committed, its grain time stamp 
value becomes that of the newest grain included in the update. An invariant property of this update 
tree is that at any time a new session status file can be constructed and committed from the current 
existing session status file and the implied accumulation of newer branches. This example exposes 
and encourages the notion of lazy commitment of update trees. This helps decrease the amount of 
disk traffic and allows scheduling of the session status file commitment between other activity. In 
normal operation, the new committed session status file is trivially constructable from a memory 
data structure, but the update tree protocol correctly constructs one during recovery when only 
backing store information is available. 

Some user calls or system state change assertions require undelayed commitment of an update tree. 
With the session status update tree, this situation occurs with a user call to close the session which 
requires commitment of the altered session status file in order to assert the cleanup of the session's 
activity from the system. 

Another DCS update tree concerns dynamic host statistics and configuration and has for its root 
node a file containing the dynamic host configuration table. The branches each have a single leaf 
node with a committed temporary file containing statistics and status information for a single host. 
Following a similar lazy update commitment of the root node, the leaf node files are discarded. 

Finally, the authorization token table update tree is similar in style to the session state tree. The 
leaf nodes contain existing or committed session status files which have changed status between 
open and closed after the the authorization tree's root node was last committed. Again, a shared 
counter is used as a time stamp. Commitment of the root node is forced if a new control program 
is authorized. 

Now let us return to a discussion of the correctness of the update tree protocol. Every file in the 
backing store is a member of at least one update tree. Each update tree is an instance of some 
update tree template. Each node in an update tree template is specified as having either a singleton 
or ordered pair of files along with a designated action as described previously. The only existing 
or temporary files which the protocol requires for a valid committed update tree to contain is the 
committed temporary root file. Consequently, a valid instance of an update tree may contain only 
a root node file, all the other files specified in the template's nodes are optional. Thus update 
preparation for a tree may involve all the template's nodes, or as few as just the root node alone. 
Multiple update preparation procedures involving different subsets of an update tree's template's 
nodes are allowed and typically correspond to distinct types of transactions involving the update 
tree entity. Only root node files or comitted root node files can occur in more than one update 
tree, and in secondary occurrences only as an information bearing branch node. Once the update 
tree's temporary root node file is committed, the update process commences with each branch of 
the tree being traversed from the leaf to the root with the following rules being applied to each 
node of the tree's template. 

i) A singleton node which is empty or contains either an existing file or the root node file of 
another update tree is skipped. 
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ii) If the node contains a singleton temporary file whose action is rename, then it is renamed as 
the node's existing file. 

iii) If the node contains a singleton temporary file used solely as information for the committed 
root node, then the temporary file is discarded. 

iv) An order pair node without its temporary file member is skipped. 

v) If an ordered pair node contains a temporary file member whose action is rename, then the 
corresponding existing file is either created or replaced by renaming the temporary file. 

vi) If an ordered pair node contains a temporary file member whose action is append, then the 
temporary file is appended to the existing file or renamed as the existing file if doesn't exist. 

vii) The root node is processed last, and the committed temporary root file is renamed to replace 
or create the corresponding existing file. After this step, the update process is finished. 

The individual operations of the protocol can be reliably accomplished using normal UNIX system 
calls. The replacement operation is done with the rename system call. For the append operation, 
first the existing target file is truncated to its old length which should be specified in the existing 
root file. Next, the temporary file is appended to it, and the temporary file is discarded. This 
approach prevents repeated appends in case of failure during the operation. When the temporary 
root file for a tree is written to commit the update, it specifies the length files subject to appends 
will have after the update. 

We can track the behaviour of the protocol to provide an informal proof of its success in incorporat­
ing a committed update tree to the backing store even if unpredictably interrupted by host failure. 
If failure occurs during the update process for a committed tree, as a part of system recovery the 
uncompleted update process is discovered by the existence of a committed root file and is restarted. 
As the nodes of the template are processed from the leaf toward the root for each branch, the pro­
tocol rules imply that nodes which were previously processed are effectively skipped over as null 
operations. If failure occurs before completion of either a replacement or append operation for a 
node, then as described above both operations successfully complete when rerun. The remaider of 
the tree is processed normally and the committed tree is successfully incorporated into the backing 
store. 

Additionally, during the recovery phase after host failure, all uncommitted update trees are checked 
for broken branches. A broken branch is one which contains an uncommitted temporary file. Such 
a broken branch should have all its temporary files discarded. 

Recall that the protocol rules allow a single template to represent several kinds of updates for a 
single update tree entity. In the case of the DCS grain update tree, it's beginning update uses only 
the template's initial input and root nodes. While the grain is running, activity updates involve 
all the template nodes. Simple status change updates use only the root node. Finally, when the 
grain finishes, only the output nodes and root node are used. With the possibility of different 
update preparation patterns for a branch depending on the kind of update, the question arises of 
how broken branches might be detected following transaction failure or other system failure. For 
the case of a single branch tree, if failure occurs before the temporary root node file is committed, 
then the branch is considered broken and the temporary files are removed. Similarly, in an update 
tree with multiple branches, broken branches can trivially be detected during subsequent update 
preparation if the following convention is used for preparing branches. The first branch's first 
temporary file written is not committed until the last temporary file on the branch is committed. 
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A very important issue is the behaviour of the update tree model when all activity can occur in 
parallel. That is, what happens when preparation for commitment of update trees and additionally 
the update protocol process for committed trees can all occur in parallel. 

First, update trees which represent a single entity, such as the DCS grain update template, are 
prepared and committed by a single transaction. Simple locking mechanisms can arrange for such 
transactions to occur in sequential fashion. If such a transaction should fail before completion , 
perhaps by hanging and timing out, then any broken branches are cleaned up and the lock is 
released, allowing another pending transaction for the same update tree to proceed. 

For update tree templates representing a subclass or class of entities, the branches are independent 
and branch preparation can occur in parallel. The update commit process is delayed in lazy fashion, 
and only needs to lock the preparation and commitment of a new root node. 

Finally, the question of possible deadlock needs to be resolved. As all locking occurs in coincid ence 
with incorporation of a committed update tree into the backing store, the answer depends on a 
simple analysis of the graph consisting of the forest of update tree templates. First, supplement the 
forest of tree templates with edges between any template root node and its possible occurr ences as 
a singleton file node in another tree template. Now, topologically sort the supplemented forest of 
templates and if it is cycle free then deadlock avoidance during the update process is guaranteed. 
An examination of the example templates for DCS finds that secondary references of root nod es 
occurs in a hierarchical fashion and that the supplemented forest is cycle free. 

In summary, the update tree paradigm provides a simple way to model the backing store data 
for DCS in . a fashion which effectively organizes and binds the logging information directly to the 
entities involved. Unlike traditional logging methods which can accumulate data associated with 
multiple transactions involving the same entity, the update tree model bounds the total data stor ed 
for each entity to be less than twice its maximal updated size. 

5 Scheduler and server daemons 

The central scheduler coordinates all system activity, and provides fault tolerant management of 
grain activity information. It provides and checks for authentication of user directives and acts 
automatically as a shepherd for grain computations, using checkpoint information to move grain 
computations from failed or busy hosts. 

The scheduler and the servers can write a logfile of system activity . For both the scheduler and 
servers, there are several levels of logging ranging from a succinct listing of major events, to details 
of all transactions which may occur. The default logging level for the scheduler and each server can 
be reset while the system is running by the scheduler administrator or the scheduler host's root 
while the system is running. The default level for servers is for logging to be turned off. 

5.1 Scheduler communication with servers and users 

The scheduler spends most of its time listening for the arrival of user directives and remote server 
activity reports. The communication between scheduler and servers is done with internet domain 
stream sockets. User calls from designated remote hosts use internet domain stream sockets and 
calls from the scheduler's host use Unix domain stream sockets. The scheduler uses distinct internet 
domain ports to listen for server calls and user calls. The scheduler is thus able to conveni ently 
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alternate between server and user calls in a fashion weighted toward server calls. 

In any case, if communication with a server or user control program becomes hung or a transaction 
is taking too long, the connection is broken and after any required cleanup occurs the scheduler 
proceeds to its next activity. Broken connections have occurred occasionally, usually with a remote 
server many hops and thousands of miles away. In this situation the server would be marked by 
the scheduler as delinquent, but could restore itself to good standing with a successful conversation 
on its next normally occurring status report. However, depending on the scheduler's configuration 
values for the remote server host, the server's may be considered failed before a later call and 
its grains moved or put on the ready queue. This is explained further in the sections on host 
configuration and servers. 

5.2 Session data management 

When a new session is opened, the scheduler creates a subdirectory specifically to hold data for 
that session. Some of the scheduler's transient information is kept only in memory, some state 
information is stored in both memory and disk, and some bulky items like grain input, output 
and checkpointed state information are maintained only on disk. The disk information not only 
provides data support for grain migration and user queries, but also provides a consist~nt data base 
for scheduler and system recovery following unexpected failure and reboot of the scheduler's host. 

5.2.1 Global session data 

Much of the global session data held in memory data structures is implicit in the accumulated 
grain data kept on disk. Some of the following structure data is redundant, but for convenience 
the following in memory data structure is written to disk in steps intertwined with the soon to be 
described protocol for reliable update of disk grain data. 

struct session_info { 
char username[10]; I* the user name and session number pair *I 
int session_num; I* identify this session *I 
int auth_index; I* index to session's authentication table entry *I 
int block_flag; I* control program blocked waiting for grain results? *I 
int control_addr; I* 0 if unix domain, otherwise hex internet addr *I 
short control_port; I* if internet, then port number of listen socket *I 
int active_grain_count; I* currently executing grains *I 
int ready_grain_count; I* on ready queue *I 
int completed_count; I* finished grains *I 
int grains_sent; I* how many finished grain results sent *I 
int fin_vector[8]; I* bit vector showing finished grains *I 
char reslist[GRAINS_MAX]; I* list of grains in order finished *I 

}; 

The only new essential data found here which is needed when the scheduler restarts is the ordered 
history list of grain finishes and the blocking information. The first completed_count entries of 
the reslist array contain the history list. If the control program is blocked waiting for a grain result 
from this session, then if the controLaddr field is zero then connection is made through a known 
unix domain socket, otherwise the connection is made to the internet address and port specified 
in the structure. As implied in the structure, grain numbers are restricted to the range 0 .. . 255. 
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If more grains are required, it is recommended to decompose the problem into multiple sessions, 
possibly run by the same control program. 

Just as the scheduler spends most of its time listening, control programs spend most of their time 
blocked listening for grain results. If the control program is running on a different host from 
the scheduler and is blocked listening, then there is a good chance that the restarted scheduler 
can continue its interaction with the control program without error. The sessionjnfo structure is 
written to disk as a part of the update protocol for a grain activity report involving a finished grain. 
Similarly, it is also written to disk after a control program makes a d..gwait call indicating that it 
is blocking to wait for grain results. 

5.2.2 Individual grain data 

Each grain has separate files for holding the following activity information items: the original 
submission input preceded by a header and the exec parameters, status information, most recent 
message, most recent checkpoint, standard output and standard error data. The input file consists 
of the initial state specification followed by any additional input. The message and checkpoint files 
are replaced each time the remote host calls with an update of the grain's activity. The grain's 
standard output and error files additionally are updated incrementally in synchronization with 
the grain's checkpointed state. The content of the grain's status file is described by the following 
structure. 

struct grain_info { 

}; 

int grain_number; I* the assigned number of this grain *I 
int host_class; I* the logical or of host types this grain can run on *I 
int nogo_vector[8]; I* hosts tried, but can't run on, missing binary etc *I 
int fail_kntr; I* more than two non-innocent failures, grain is killed *I 
int restart_num; I* 0 for initial startup, incremented at grain restart *I 
int param_length; I* length of grain's identifying triple, argv, and env *I 
int input_ptr_pos; I* ptr to remaining input, computed at checkpoint update *I 
int restart_ckpt_len; I* length of the checkpoint used for current restart *I 
int sequence_num; I* current sequence number of received stdout and stderr *I 
int output_len; I* current length of grain's output *I 
int error_len; I* current length of grain's standard error *I 
int grain_status; I* running, ready, finished, or killed *I 
int current_host; I* if running, index in host list, else -1 *I 
int last_contact; I* time of last report to scheduler *I 
int last_ckpt_time; I* time on server checkpoint was created *I 
struct rusage current_restart_rusage, total_rusage; 

At the time a grain is submitted, the status information file is created with a grain...status field value 
of ready, and zero values for all the other fields. The message, checkpoint, standard output and 
error files are created, each with zero length. When the grain is first started on a remote host, the 
status file is rewritten with a running grain...status and an appropriate currenLhost field, but the 
other fields are not changed. Later, the status file is rewritten at the time of grain activity updates, 
or when the grain's operating status changes between running, ready, finished or killed. The other 
grain files are changed only by grain activity updates made when the grain's server reports to the 
scheduler. 

Care is taken to maintain the consistency and integrity of the scheduler's disk data. A simple but 
effective protocol is used to avoid loss or corruption of session grain data resulting from scheduler or 
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server host failure during a grain activity update or when the operating status of the grain changes. 

The update process consists of creating the appropriate temporary files containing new informa­
tion, committing the update, and then altering the actual grain files. Once the update has been 
committed, the update process proceeds to completion, even if rudely interrupted by scheduler 
host failure. In case of host failure, the normal scheduler recovery process upon reboot finishes 
the committed update. If failure occurs before the update has been committed, then the partial 
update information is discarded during recovery. The actual changes which occur from an update 
involve . changing fields in the grain status information file, replacing the message and checkpoint 
files, and appending incremental output to the grain's standard out and error files. 

In detail, the grain activity update events occur in the following order. The message, checkpoint, 
and incremental output and error are each written to temporary files. Values for a new status infor­
mation file are computed. The fields restartJlum, restart_ckptJen, grain....status, and currenLhost 
remain the same. The input_ptr_pos field is a byte offset value in the original submission input and 
is used as a pointer to unread input. The grain server returns the current byte offset in the grain's 
input file. Thus, if no restart has occurred, i.e. restartJlum equals zero, then the new inpuLptr_pos 
is simply the current byte offset. Otherwise, the inpuLptr_pos is the sum of the old input_ptr_pos 
plus the current byte offset minus the restart_ckptJen. When the server sends the incremental out­
put and error, it also sends the contiguous range of sequence numbers involved by sending the first 
and last numbers. These will usually be the same number unless the server has been unable to call 
the scheduler or the passive backup for more than one update cycle, causing incremental output files 
to stack up. The sequence numbers are used to insure no gaps occur in output. Sequence number 
gaps are considered an error causing restart using the current consistent checkpointed state, unless 
the gaps are determined to have had zero length by comparing the total length values maintained 
on both the server and scheduler. Assuming no error, the the sequenceJlum field is given the new 
high value. The fields outputJen and errorJen are given values corresponding to their new total 
lengths. Similarly the currenLrestarLrusage and totaLrusage fields have the update's incremental 
rusage amounts added to their component fields. Thus the current_restart_rusage and totaLrusage 
reflect the total rusage by the current grain process and by the grain through its complete migration 
path respectively. 

After the temporary grain status file is written, the update is committed by using the system call 
rename to add the extension ".commit" to its name. If the scheduler host crashes, on recovery the 
scheduler recognizes the committed status file and finishes what might be left of the following steps. 
The message and checkpoint files are replaced by renaming their temporary files. The appends to 
the standard output and then to the standard error files are each done with the following three 
steps: 1) if the incremental file still exists, truncate the main file to the old length specified in the old 
status file, 2) append the incremental file to the end of the main file, and 3) delete the incremental 
file. Finally, the status information file is replaced by renaming its committed temporary file. 

During scheduler recovery after host failure, the same steps are followed when a committed status 
information file is encountered. However, if temporary files are missing, the related operation is not 
attempted. Thus, in the alternate case of a grain operating status change, where only the status 
information file is written, the same recovery procedure still works correctly. As temporary files 
without a committed status file are removed on recovery, there are no stale temporary files left 
around to corrupt a later simple status change update where only a committed status file had been 
created. 
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If the grain is late making a checkpoint, or is not doing them at all, the server simply informs 
the scheduler that no activity update information is available. In this case, the scheduler does no 
rewriting of the grain's activity files. 

When the grain finishes, the final update of its activity information is done slightly differently. 
The same commit protocol is followed, however no temporary files are written for the message or 
checkpoint files. The temporary files for incremental output and error are written. The temporary 
status information file is written and committed, but its contents are determined by slightly different 
rules. The grain...status field becomes finished and the rusage fields are updated. However, the other 
fields remain unchanged, keeping the values consistent with the last checkpoint update. Thus the 
length fields in the status information file may not agree with the actual length of the finished 
output and error files. 

When the scheduler changes a grain's state from ready to running, only the status information file 
is rewritten with the following changes. The restart_num field is incremented. The restart_ckptJen 
field is assigned the length of the current checkpoint file. The grain...status is changed to running . 
The currenLhost is assigned the internet address of the grain's host. 

The scheduler also maintains relevant parts of the grain's activity information in data structures 
in memory. 

5.3 Scheduler passive backup and restart 

When making their grain activity update calls to the scheduler, the grain servers use an exponential 
backoff approach in their attempts to connect with the central scheduler. It has been observed that 
the central scheduler has never been so busy as to force a remote server to make even a second 
call attempt. If a fixed small number of attempts are unsuccessful, then the scheduler is assumed 
down and a passive backup is called in its place. The passive backup collects checkpoint and 
status information until the central scheduler resumes operation. If the remote server is unable to 
reach either the central scheduler or the passive backup, it continues grain processing, appropriately 
updating checkpoint information and accumulating the sequenced incremental output files until the 
server can make a successful call to deliver its activity update. When the central scheduler restarts, 
it first reads from disk its own checkpoint and status information for each session, rebuilding the 
grain ready queues, grain running lists, and other data structures. It then calls the passive backup 
to retrieve the information gathered by the passive backup, updating its memory data structures 
and data stored on disk. 

The local system has run for months, recovering successfully from many scheduled downtimes and 
several unexpected host crashes. The scheduler should reside on a very reliable host, both in terms 
of hardware and software. The local host for the scheduler has been an HP 9000-320 running the 
Utah port of 4.3 BSD. This choice has provided extremely reliable service. 

5.4 Scheduler queue management and grain selection 

As mentioned previously, DCS allows multiple users and sessions. Each session has its own queue 
for ready grains and list for executing grains. All grains of a particular session have priority over 
grains of sessions created later. 

The remote grain servers make periodic calls to the central scheduler according to their designated 
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time slice to report status and activity. If a server has an available slot for grain execution, th e 
session grain ready queues are checked according to session seniority to find a ready grain compatibl e 
with the grain server's host class. Session ready queues belonging to users not permitted to use 
the server are skipped. This is determined by configuration information kept on the schedul er. If 
an acceptable grain is found, the scheduler attempts to start the grain on the remote server. If 
the attempt fails perhaps because of a missing grain binary, the scheduler continues its search until 
it has checked all the grains in the ready queues. If the server has more than one slot availabl e, 
the process is continued. In a startup attempt failed because of a missing binary, the server's bit 
position in the grain's nogo_bitvector is set. This prevents the grain from trying this host again 
until its bit is cleared. 

The scheduler maintains individual lists of active hosts for each host type. When a user submits a 
new grain request, the list for the smallest numerical valued host type in the host_class is checked 
first for a host with an available grain slot. If a grain slot is not found, then the list for next 
higher valued host type in the grain's hosLclass is checked until all the acceptable host type lists 
are checked. If a matching host with an available grain slot is found, then first the scheduler's 
host configuration information is checked to make sure the user is permitted to use the server. If 
the user is allowed, then remote startup is attempted, otherwise the host search continues. If th e 
startup fails , then the grain's nogo_vector bit for that host is set and the host search is continu ed. 
Finally, if no empty slot on an acceptable host is available, the grain is added to the end of it s 
session's ready queue. If the grain request had been designated urgent, instead it is pushed onto 
the front of the queue. Note that lower priority grains which might be running on hosts match ing 
the new submission's host class are not affected at this time. 

Lower priority grains running on a server are usurped only at a time slice boundary when th e server 
calls in to report status and activity. When a server calls in, first any free slots th e server might 
have are filled according to the process previously described. After the free slots are filled, then th e 
the search is continued through the remaining ready grains which are on ready queues of high er 
seniority sessions than the session of one or more executing grains. If an acceptable higher priority 
grain is found, a tentative startup is attempted which checks to make sure that the new grain can 
run on the server host before the lower priority grain is suspended and removed. 

Grains which are suspended from busy hosts or whose hosts have failed are placed on the front of 
their session's ready queue if an acceptable alternate host is not immediately availabl e. This would 
be the case for a grain removed from a server because of excessive page faults. On the oth er hand, 
if a grain is suffers failure during execution three times, then it is killed. The failure count is kept 
by the faiLkntr field in the grain's status structure. 

5.5 Valid users information 

As briefly mentioned previously, user calls to the DCS scheduler can only be made from sourc e 
machines designated by the scheduler. Likewise, on such a machine the actual users allowed to 
make calls are limited to those listed as members in a special DCS group in the /etc/group file. 
Users in DCS are identified by login name, not by uid. DCS users need not have accounts on all th e 
designated machines, and are not allowed to use accounts on machines which conflict with anoth er 
users identifying login name. This way, the login name can be used as a primary key for session 
and grain activity on both the scheduler and remote grain servers. Possible bogus users are avoid ed 
by including only login names corresponding to the valid user associated with that login name in 
each source machine's DCS group list. 
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For each grain server host the scheduler has a list of users whose grains are permitted to run on 
that server. 

For grain servers which do not run as root, the grain processes run under the server owner's uid. If 
the grain server is run by root, then an additional list kept by the scheduler for each grain server 
tells whether the user's grain process can and should be run setuid to the account with the user's 
login name. If the account with user's identifying key login name belongs to someone else or the 
user has no account, then the grain should be run under an anonymous uid. Currently there is no 
provision for mapping the session user name to different user names on grain servers. 

The described unique login names of valid DCS users are kept in a DCS configuration file. This 
file is read on scheduler startup and reread when the scheduler is directed to update the user 
information. The user names are put into a hash table and each assigned a unique integer id which 
is used as a bit vector index. Using this hash function, two files, containing lists of permitted users 
for each host and users permitted to run as themselves for each host, are read or reread to build 
bit vectors for each host containing this user information. These bit vectors are in fact fields in 
each host's configuration structure. 

/subsectionAuthentication for user calls 

All normal user directives received by the scheduler explicitly or implicitly specify a user name, 
session number, and authentication token. The corresponding session entry on the scheduler has 
an index into the authentication table. If the authentication token passed by a call matches the 
one found in this table entry, then the directive is accepted. 

struct authentication_entry { 
long auth_token; /• the authorization token •I 
char username[9]; /• the user's login name as a string•/ 
char cp_ident[10]; I• control program identifier string•/ 
int session_knt; I• count of active sessions using this token•/ 
long time_stamp; I• zero, except when session_knt zero, the stamped •I 

}; 

When a user sends a directive to open a brand new session, the authentication table is searched 
for an authentication token matching the token and user name sent. If the entry is found then 
its position in the table is assigned to the authjndex field in the new session's data structure. 
Otherwise, the request is rejected. If the user sends a directive to reopen an existing session, and 
if the existing session's token entry cpjdent field matches the new token's cpjdent field, then the 
old entry's sessionJmt is decremented and the session's authjndex field is changed to point to 
the new token entry and it's active session count is incremented. When a session is closed, the 
corresponding tokens session's count is decremented. 

5.6 Server configuration information 

All potential grain hosts have an entry in the grain host configuration table on the scheduler. The 
table is built from a grain host configuration file which is read when the scheduler starts up, or 
when directed to rebuild the configuration table. The identifying key for the host table entries is 
the 32 bit internet address associated with each host. This is the structure representing a grain 
server configuration entry. 

struct server_config { 
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}; 

unsigned long inet_addr; I * server internet address in hex *I 
char name[NAMELEN]; I • grain server's official host name • I 
unsigned hostclass; I• bit mask value representing the hostclass •I 
int time_zone_offset; I • time_zone offset in minutes from scheduler•/ 
int grain_limit; /• number of grains host can run simultaneously •I 
int call_in_interval; / • call in period or time slice for server grains•/ 
int call_in_alert; /• server delinquent if not heard from for this long *I 
int call_in_limit; /• server considered dead, grains moved •I 
unsigned long mach; /• internet address of machine to check, else zero •I 
unsigned long valid_users, setuid_users; /• bit vectors for access etc *I 

When hosts are either added or deleted from a running. 

Grain server host information can be set or reset using the d...sethost library call. This call can be 
used to reset the job limit count of a reformed grain server which misbehaved and had its job limit 
count set to zero. Additionally, this call can even reset the bit entry in the server host avoidance 
bit vector contained in a grain's data structure in memory on the scheduler. This is useful after a 
problem with a remote grain server has been repaired, but a grain waiting on the ready queue still 
thinks it should avoid the previously delinquent host. This typically occurs when the installation 
of a new grain server was botched. 

6 Grain Servers 

The central scheduler maintains a database of candidate grain server configuration information 
which include s for each host: its name, internet address, host class, number of simultaneous grains 
allowed, call in interval, time out limit, extended time out limit, file server host (if any), and 
gateway (if any). When a grain server host calls in for the first time, it is rejected if it is not in the 
database, otherwise its call in interval and grain count limit are sent to it, and its host class and 
other scheduler grain host list attributes are set from the database. Typically, only multiproccessor 
hosts are allowed to run more than one grain simultaneously. The grain servers call the central 
scheduler each "call in interval" to report possible grain status and checkpoint information and to 
maintain their host active status. If a grain server host which becomes overdue is running grains, 
then a child of the scheduler will assess whether the host and grain server are still up. The grain 
server host, file server and gateway will be checked to see if they are active. If it is determined 
possible for the host to be active, then it can be delinquent "extended time out period" time before 
its grain(s) are placed on the ready queue for possible reassignment to other grain servers. If the 
missing host shows up with the grain still running, and the grain request is still on the ready 
queue, then all is forgiven and it is reinstated on the exec list. If the grain has been reassigned to 
a new host, and later the missing host shows up, then the copy of the grain which has less total 
running time is killed. This feature helps prevent needless shifting of grains and lost effort because 
of gateway maintenance or temporary problems. 

Grain servers use a child process to call the central scheduler in order to remain ready to receive 
calls from the scheduler. The grain servers call in with a period which effectively becomes the 
time slice quantum of grain computations. Premature calls to the scheduler are made if a grain 
changes state by terminating, or a "thrash" job being suspended by the server. The return code 
and termination signal are reported to the scheduler host so it can determine whether the grain 
terminated normally. As programs are assumed to have been thoroughly debugged, errors have 
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usually indicated system errors. A failed grain is first retried on the same machine. If it continues 
to fail, the host is effectively marked as down and the grain is attempted on another host. If the 
grain fails again, it is terminated and reported as failing. Interestingly, some obscure bad disk block 
errors have been discovered by a failed grain which was successfully restarted and compl et ed on 
the same machine. Unobtrusive, courteous use of grain server hosts is a very important goal of this 
system. For grains running in the small image, little paging, compute bound category, the rusage 
information returned to the scheduler is used to determine whether the grain should be moved 
because it has been shut out by heavy usage. For "thrash" category grains, immediate suspension 
and migration occurs if grain server system load is perceived to be too high. Idle grain servers also 
report system load status information with their periodic calls to the scheduler. 

The grain server can run as root or under a user uid. When running as root, grains are run under the 
user's uid if the user has an account, or a nobody style uid otherwise. When running as a nobody, 
the binaries need to have been placed in the users subdirectory of the grain servers directory for 
user binaries. When the server is running under a user's uid, all grains run under that user's uid. 
This feature is convenient for grain servers residing on remote machines where it is not possible or 
practical to run the server as root. 

Temporary files for collecting output reside in a subdirectory in the grain server's home directory. 
The file names contain the host name, session number, and grain number in order to avoid any 
problems with grain server hosts which share file systems. 

7 Security 

The scheduler runs as root using privileged sockets . This gives assurance to grain servers that they 
are receiving requests from a root process on the scheduler host which should be a secure machine . 
Requests for grain activity come only either from user control programs, or on restart from secure 
checkpoint files. The user control programs use Unix domain sockets and therefore run on the same 
host as the central scheduler. A list of allowable users is maintained used by the scheduler. Calls 
from grain servers on machines not listed in the scheduler's host configuration information are not 
accepted. Grain server's cannot initiate grain requests, only accept grain execution requests from 
the scheduler. The grain servers can run as root and use privileged, but as the server sometimes 
has a rather tenuous guest status on machines, it is useful to allow it to run under an ordinary user 
uid. The scheduler handles servers of either type. 
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APPENDIX A: Grain checkpointing example 

from DCS library source files 

static int ckpt_flag = O; 

SIG_TYPE d_catch_sig() 
{ ckpt_flag = 1;} 

I* checkpoint signal handler, sets flag *I 

void d_ghandler() I* install signal handlers, initialize static vars *I 
{ signal(CKPT_SIG, d_catch_sig()); ... } 

int d_time_to_ckpt(); I* query function to test and reset checkpoint flag *I 
{ if (ckpt_flag){ 

} 

ckpt_flag = O; return(1);} 
return(O); 

FILE *d_opencheck(message) 
char *message; 

I* returns file pointer to new checkpoint file *I 
I* handles message, status, and stdin position *I 

{ ... }; 

void d_closecheck(); 
{ ... }; 

I* checks for file errors, such as partition full *I 

Grain main progmm file 

#include "grainlib.h" I* declarations of grain library functions *I 
I* includes stdio.h *I 
main(argc,argv) 
{ 

} 

FILE *ckfpb, *fp; I* fp, for example of checkpointing read only file *I 
char *message, o1[256], o2[256], o3[256], *outhex(); 
int powersize, pkntr, pkntlim2, numcurves, i; 
MULTIPRECISION n,x[],y[],z[]; I* large integer type, outhex converts to hex string *I 

I* set up signal handler for checkpointing *I 
d_ghandler(); 

I* read and create initial program state from standard input *I 

I* checkpoint at location where consistent program state can be specified *I 
if ( d_time_to_ckpt() ){ 

} 

message= "message available to the user's control program"; 
ckfpb = d_opencheck(message); I* takes care of message, stdin, status *I 
I* write the grain's current state information to ckfpb *I 
fprintf(ckfpb, "1/.s\n1/.x\n1/.ld\n", outhex(n,o1), powersize, ftell(fp)); 
fprintf(ckfpb, "1/.d\n1/.d\n1/.d\n", pkntr, pkntlim2, numcurves); 
for(i=O; i < numcurves; i++){ 

fprintf(ckfpb, "1/.s\n1/.s\n1/.s\n", outhex(x[i] ,o1) ,outhex(y[i] ,o2) ,outhex(a[i] ,o3)) ;} 
d_closecheck(ckfpb); I* checks for file errors and renames checkpoint *I 
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APPENDIX B: Simple control program example 

This sample program uses the simple "don't care" approach for restarting control programs which 
takes advantage of the optional idempotent style behaviour of the d_resume_ses, d_close..ses, and 
d....gexec calls. Additionally the d....gwait call returns grain output in the same order as prior disrupted 
control program executions. The d_resume_ses call returns without error for either terminated or 
active sessions if the control program name strings match. If the session doesn't exist, the session 
is created and the call returns without error. Additionally, for active sessions, with senLreset 
parameter set to TRUE, all grain results are resent, allowing a simple tracing of activity to regain 
the state of the session computation. The d....gexec call becomes a successful null operation if the 
sesssion has been "opened" with d_resume_ses, and is identical in all parameter values to a previous 
call. These properties are sufficient to allow successful restart of a program which doesn't use grain 
messages and has fixed initial state. 

This example control program is invoked by the following command line. 

dcs_exec find_factor < composite_big_integer_list 

Source listing of example control program find_factor.c 

#include "dcs.h" 
I***** here are the grain host class definitions from dcs.h 

#define UNKNOWN OXO 
#define VAX OX00000001 
#define SEQ OX00000002 
#define RTPC OX00000004 
#define HP320 OX00000008 
#define UTEKA OX00000040 
#define UTEKC OX00000080 
#define UTEKS OX00000100 
#define SUN35 OX00000200 
#define SUN36 OX00000400 
#define SUN37 OX00000800 
#define SUN46 OX00001000 
#define UTEKE OX00002000 
#define ZAPPY OX00004000 
#define NEXTE OX00008000 
#define NEXTC OX00010000 

*****I 
#include "sdefines.h" 
#include <signal.h> 
#include <stdio.h> 
#include <strings.h> 

#define LENPROG "ellipse" 
#define POWERSIZE Ox1000 
#define PKNTLIM2 50000 
#define SEEDVALUE 596561004 
#define SIZE 256 
static char state[SIZE]; 
extern char •outhex(); 

I• campus 750's and micro vax II's •/ 
I* department Sequent Balance •I 
I* campus RT's •I 
I* department HP 9000-320, also the scheduler•/ 
/• department Tektronix utek apple servers•/ 
/• department Tektronix utek lab clients *I 
I* department Tektronix utek lab file server *I 
I• campus Sun 3/SO's •I 
I• campus Sun 3/60's •I 
/• campus Sun 3/260's, 3/280's •I 
I• campus Sun 4/280's •/ 
/• Tektronix uteks in ECE •/ 
/• Sun 3/50 off campus *I 
/• NEXT machines in ECE •/ 
I• department NEXT machines *I 
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int session; 
long time(), tloc; 
char *ctime (); 
int onintr(); 

makecurves(num, powersize, pkntlim, numcurves, buffer) 
int powersize, pkntlim, numcurves; 

{ 

} 

char *num, *buffer; 

NUMSTR o1, o2, o3, o4, o5, 06; 
MULTIPRECISI0N x, y, n, a, b, d; 
int i, string_index; 

inhex(n,num); 
sprintf(buffer, 111/.s\n1/.x\n1/.d\n1/.d\n1/.d\n11

, 

num, powersize, 0, pkntlim, numcurves); 
string_index = strlen(buffer); 

for(i=0; i < numcurves; i++){ 
selectcurve(x,y,a,n,b,d); 
printf("curve 1/.d\nx=1/.s\ny=1/.s\na=¼s\nn=1/.s\nb=1/.s\nd=¼s\n", 

i+1,outhex(x,o1),outhex(y,o2), 
outhex(a,o3),outhex(n,o4),outhex(b,o5),outhex(d,o6)); 

sprintf(&buffer[string_index], "1/.s\n¼s\n1/.s\n", 
outhex(x,o1), outhex(y,o2), outhex(a,o3)); 

string_index += strlen(&buffer[string_index]);} 

main(argc,argv) 
int argc; 
char **argv; 

{ 

char *arg_vector[5], *env_vector[5], *output, *error; 
int 
int 

count, grain_number, grain_termsig, grain_retcode, status, trys; 
badknt, grains_completed, grains_sent; 

char filename[40]; 
int smallcurves, mediumcurves, largecurves; 
int 
char 

lim_utek, lim_seq, lim_sun35, lim_sun36, lim_sun37, grain_num; 
num[200], bigbuffer[MAXSTRING]; 

I* get authorization token and pass this program's name "ellips1" to scheduler *I 
d_get_auth("ellips1"); 

smallcurves = 3; 
lim_utek = 15; 

mediumcurves = 
lim_sun35 = 10; 

lim_sun37 = 3; lim_seq = 10; 
initstate(seedvalue,state,SIZE); 
session=0; 

while ( scanf( 111/.s11 ,num) != EDF ){ 
session++; 

4; largecurves = 5; 
lim_sun36 = 4; 

if ((status= d_resume_ses(session, TRUE)) != N0_ERR0R ){ 
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fprintf(stderr, "Error initializing session 1/.d - status = 1/.d, 1/.s", 
session, errno, ctime(&tloc)); 

exit(1);} 

arg_vector[O] = LENPROG; 
arg_vector[1] = NULL; 
env_vector[O] = NULL; 
for (grain_nurn=O; grain_nurn<lim_seq; grain_nurn++){ 

makecurves(nurn, POWERSIZE, PKNTLIM2, smallcurves, bigbuffer); 
status=d_gexec(session,grain_nurn,arg_vector,env_vector,bigbuffer, 

SEQ,0,0,5);} 
for (grain_nurn=O; grain_nurn<lim_utek+lim_sun35; grain_nurn++){ 

makecurves(nurn, POWERSIZE, PKNTLIM2, smallcurves, bigbuffer); 
status=d_gexec(session,grain_nurn,arg_vector,env_vector,bigbuffer, 
UTEKEIUTEKCISUN35, 0,0,5);} 

for (grain_nurn=O; grain_nurn<lim_sun36; grain_nurn++){ 
makecurves(nurn, POWERSIZE, PKNTLIM2, mediurncurves, bigbuffer); 
status=d_gexec(session,grain_nurn,arg_vector,env_vector,bigbuffer, 
SUN36INEXTEINEXTC, 0,0,5);} 

for (grain_nurn=O; grain_nurn<lim_sun37; grain_nurn++){ 
makecurves(nurn, POWERSIZE, PKNTLIM2, largecurves, bigbuffer); 
status=d_gexec(session,grain_nurn,arg_vector,env_vector,bigbuffer, 
SUN37, 0,0,5);} 

if ( (status= d_gwait(BLOCK, session, &grain_nurnber, &grains_completed, 
&grains_sent, &grain_termsig, &grain_retcode, 
&g_rusage, &grain_outlen, &grain_errlen, 

&output, &error)) == NOERROR ){ 
printf("Grain 1/.d, session 1/.d, sig 1/.d, retcode 1/.d, comp 1/.d, sent 1/.d\n", 

grain_nurnber, session, grain_termsig, grain_retcode, 
grains_completed, grains_sent); 

printf("output -\n1/.s\nstandard error -\n1/.s\n", output, error);} 
else 
{ 

} 

I* Otherwise, if the system is down, terminate the program. *I 
if (errno == ECONNREFUSED) 

exit(ERROR); 

d_close_ses(session); 
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